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Abstract

Biofilm and granular sludge processes depend on diffusion of substrates. Despite

their importance for the kinetic description of biofilm reactors, biofilm diffusion

coefficients reported in literature vary greatly. The aim of this simulation study was

to determine to what extent the methods that are used to measure diffusion

coefficients contribute to the reported variability. Granular sludge was used as a

case study. Six common methods were selected, based on mass balances and

microelectrodes. A Monte Carlo simulation was carried out to determine the

theoretical precision of each method, considering the uncertainty of various

experimental parameters. A model‐based simulation of a diffusion experiment was

used to determine the theoretical accuracy as a result of six sources of error: solute

sorption, biomass deactivation, mass transfer boundary layer, granule roughness,

granule shape, and granule size distribution. Based on the Monte Carlo analysis, the

relative standard deviation of the different methods ranged from 5% to 61%. In a

theoretical experiment, the six error sources led to an 37% underestimation of the

diffusion coefficient. This highlights that diffusion coefficients cannot be determined

accurately with existing experimental methods. At the same time, the need for

measuring precise diffusion coefficients as input value for biofilm modeling can be

questioned, since the output of biofilm models has a limited sensitivity toward the

diffusion coefficient.

K E YWORD S
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1 | INTRODUCTION

Many biological wastewater treatment technologies use biofilms to

immobilize essential microorganisms. Trickling filters have been used

for more than a century to treat wastewater (Daigger & Boltz, 2011)

and more recently, anaerobic, aerobic, and Anammox granular sludge

have been introduced. In essence, granules are a special form of

biofilms, where bacteria are immobilized in auto‐generating biomass

particles instead of growing on a carrier surface. Immobilizing the

biomass allows high‐rate wastewater treatment because of the ef-

ficient separation of granules and treated wastewater. High volu-

metric conversion rates can be achieved due to the increased liquid/

solid mass transfer surface area in granular sludge reactors (Nicolella

et al., 2000).
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Before a compound can be converted in a biofilm, it has to

diffuse into the biofilm. Diffusion has both negative and positive

effects on biofilm performance. On the one hand, diffusion will limit

the effectiveness of a biofilm. Microorganisms located deeper in the

biofilm experience lower substrate concentrations than those

located at the biofilm surface. Consequently, the organisms deeper in

the biofilm convert substrates at a reduced rate, or are inactive. On

the other hand, diffusion creates different redox conditions

throughout a biofilm. Therefore, multiple biological reactions can

take place within a single reactor (de Kreuk et al., 2005; Vlaeminck

et al., 2012) and a separate reactor for each conversion is not re-

quired. The overall conversion rates can be steered by controlling

the diffusion depth of rate‐limiting soluble substrates (e.g., oxygen,

nitrate, ammonium, carbon sources). Therefore, to optimize the

conversion rates in biofilm‐based wastewater treatment, a proper

understanding of the diffusion process is required.

Extracellular polymeric substances and microbial cells in a bio-

film hinder the diffusion of solutes into the biofilm. As a result, the

diffusion coefficient for a solute in a biofilm is lower than the dif-

fusion coefficient of the same solute in water (Stewart, 2003). The

impact of the biofilm matrix on the diffusion coefficient of a solute

depends on the solute properties, which includes size and charge

(Hinson & Kocher, 1996; Stewart, 1998), and biofilm properties, such

as density (Fan et al., 1990; Horn & Morgenroth, 2006). Many re-

search have studied diffusion of different solutes in different bio-

films, with methods such as steady‐state flux measurements (Beyenal

& Tanyolac, 1994; Livingston & Chase, 1989; Tang & Fan, 1987;

Williamson & McCarty, 1976), transient uptake measurements (Fan

et al., 1990; Westrin & Zacchi, 1991), and microelectrode measure-

ments (Fu et al., 1994; Kühl & Jørgensen, 1992; Lewandowski et al.,

1991; Revsbech et al., 1986). A review by Stewart (1998) highlighted

the wide range of diffusion coefficients described in literature, even

for the same solutes. This was partially attributed to differences in

biofilm density, but very few studies have been done after publica-

tion of this review to verify this hypothesis (Guimerà et al., 2016;

Horn & Morgenroth, 2006). The wide range of values makes it dif-

ficult to know which diffusion coefficients to use in biofilm models or

kinetic analyses. Possibly, as suggested by Stewart (1998), the large

variation in diffusion coefficients is the result of the variety of bio-

films that exist. Another possibility, that has often been overlooked,

is the quality of the methods that were used to determine the biofilm

diffusion coefficients. The precision or accuracy in the methods

might be an important factor in the reported variation. To our

knowledge, the methods to determine biofilm diffusion coefficients

have never been reviewed comprehensively. Westrin et al. (1994)

have given an overview for diffusion coefficient measurements in

hydrogels, but several methods commonly used to study biofilms

were not included.

The aim of this paper was to illustrate fundamental shortcomings

of methods to measure biofilm diffusion coefficients. To limit the

scope of this study, aerobic granular biofilms were used as example

case. We selected six common methods and used an uncertainty and

sensitivity analysis based on Monte Carlo simulations to determine

the theoretical precision of each method. Furthermore, we assessed

the theoretical accuracy of one method with simulations of six il-

lustrative examples. The examples were solute sorption, granule

deactivation, boundary layer, granule roughness, granule shape, and

granule size distribution. We found significant method limitations for

both precision and accuracy. Furthermore, we discuss the translation

of the results to biofilms in general, as well as the implications of our

findings for process engineering of biofilm reactors.

2 | MATERIALS AND METHODS

2.1 | Selection of methods

The methods evaluated in this paper were selected based on lit-

erature (Stewart, 1998). We chose to exclude light or fluorescence‐
based methods as they are generally limited to thin or translucent

biofilms. Magnetic resonance based methods are excluded as well,

since they only apply to paramagnetic molecules or water. The dia-

phragm cell was excluded as it does not apply to granular biofilms.

Methods 1–3 are based on mass balance calculations, while method

4–6 are based on microelectrode measurements. Note that the

steady‐state methods (1, 4, and 5) yield the effective diffusive per-

meability, while the transient methods (2, 3, and 6) yield the effective

diffusivity. If the diffusion process is framed in terms of only the

biofilm water volume, the effective diffusivity is the proper para-

meter. However, if the diffusion process is framed in terms of the

whole biofilm volume (including cells and polymeric matrix), the ef-

fective diffusive permeability is the right parameter. As a con-

sequence, both parameters typically differ by a factor equal to the

porosity. For determination of the steady‐state flux into a biofilm,

the effective diffusive permeability is required (see Stewart (1998)

for a detailed explanation). The theory of six selected methods is

briefly described below, while relevant equations are given in Sup-

porting Information Section 1.2.

Method 1: Steady‐state reaction. This method determines the

apparent flux of a solute into granules, from the apparent granule

area and the concentration change of the solute in the liquid phase.

A diffusion‐reaction equation (see Supporting Information

Section 1.2) is then solved iteratively, to match the apparent flux into

the granules and the liquid phase concentration. The diffusion

coefficient is varied to obtain the best fit, thus kinetic constants

should be known a priori. This method has been used extensively in

the past (Beyenal & Tanyolac, 1994; Livingston & Chase, 1989; Tang

& Fan, 1987; Williamson & McCarty, 1976).

Method 2: Transient uptake of a nonreactive solute. In this

method, granules that are free of solute are placed in a well‐mixed

solution of finite volume and known concentration of a solute. The

uptake of the solute into the granules follows Fick's 2nd law of dif-

fusion and the diffusion coefficient is obtained by least‐squares fit-

ting of the liquid phase concentration (Crank, 1975, pp. 93–96;

Westrin & Zacchi, 1991). This method works with inert molecules or

with deactivation of the biomass.

1274 | VAN DEN BERG ET AL.



Method 3: Transient release of a nonreactive solute. This

method is the reverse of the previous method. The granules are

soaked with a solute before being placed in a solution of finite vo-

lume that is initially free of solute. The increase in liquid phase

concentration can be used to obtain the diffusion coefficient (Crank,

1975, pp. 93–96).

Method 4: Steady‐state concentration profiles inside and out-

side a granule. In this method, microelectrodes are used to measure

the concentration profile of many small molecules (e.g., oxygen)

within a granule. Under steady‐state conditions, the flux into the

granule equals the flux through the concentration boundary layer.

Both fluxes can be determined from the local concentration gradient

and the local diffusion coefficient. If the diffusion coefficient in the

boundary layer is known, the diffusion coefficient in the granule can

be calculated (Cronenberg & Van Den Heuvel, 1991; Hille et al.,

2009; Lewandowski et al., 1991).

Method 5: Steady‐state reaction with concentration profile

inside a granule. This method is a combination of method 1 and 4

and is useful when the concentration gradient in the boundary layer

is not clearly detectable. The apparent flux into a granule can be

estimated from the change in liquid phase concentration, granule

area and bulk volume (Hille et al., 2009; Horn & Morgenroth, 2006).

This apparent external flux equals the internal flux, which can be

calculated from the concentration gradient within a granule and the

unknown solute diffusion coefficient. When the concentration gra-

dient within a granule is measured with a microelectrode, the dif-

fusion coefficient is the only unknown parameter.

Method 6: Transient penetration of a solute to the center of a

granule. With a microelectrode tip placed in the center of a single

granule and a step‐change in liquid phase concentration, a con-

centration profile in the center of the granule can be obtained. This

profile follows Fick's 2nd law of diffusion and a least‐squares fitting

can be used to obtain the diffusion coefficient (Beuling et al., 2000;

Crank, 1975, pp. 90–91; Cronenberg & Van Den Heuvel, 1991; Hille

et al., 2009).

2.2 | Model experimental system

To assess precision and accuracy in an easy and flexible manner,

virtual experiments were carried out. These virtual experiments

were done with a model system: granules with certain properties and

a solute with certain properties. For clarity, the properties of the

model system were kept constant throughout all simulations (see

Table 1). Oxygen was used as the diffusing solute and the reaction

kinetics were taken from the first biofilm benchmark problem

(Morgenroth et al., 2004). For each of the six methods described in

the previous section, an experimental data set was simulated based

on the corresponding model equations and experimental parameters

(see Table S1). The simulated experimental data set of a method

should be similar to a data set that an experimentalist would obtain

with that specific method. We chose to simulate experimental da-

tasets instead of using published datasets, to have full control over

the input variables and to have a separate evaluation of precision

and accuracy. Still, experimental parameters (e.g., experiment dura-

tion, microelectrode step size) were taken from literature when

possible. A full overview of the experimental parameters, the gov-

erning equations, and the resulting simulated experimental data is

given in the Supporting Information (Table S1, Equations S1–S8, and

Figure S1).

2.3 | Simulations to determine precision

The precision of a method refers to the closeness of two or more

measured values to each other. Here, the theoretical precision of

each method was quantified by the relative standard deviation (RSD)

of each method. The RSD was obtained from an uncertainty analysis

with Monte Carlo simulations. For each method, typical experimental

parameters with corresponding experimental uncertainty were de-

fined. By sampling and propagating this input uncertainty through

the measurement methods with Monte Carlo simulations, the

theoretical precision of the diffusion coefficient determination could

be quantified. The major contributors to the imprecision of the

measurements were determined by a sensitivity analysis.

2.3.1 | Step 1: Uncertainty analysis

The uncertainty of the parameters that were required as input was

estimated based on literature when possible (see Table 2). The un-

certainty of the remaining five parameters was estimated to our best

knowledge: the total volume (sum of liquid and granule volumes), the

liquid phase concentration, and the microelectrode concentration

TABLE 1 Characteristics of the
granular sludge and solute, which will be
used in all subsequent simulations

Parameter Value Unit References

Granule radius (rg) 1.5e‐3 m ‐

Granule diffusion coefficient (Dg) 1.2e‐9 m2/s Stewart (2003)

Bulk diffusion coefficient (Daq) 2.0e‐9 m2/s Stewart (2003)

Biomass concentration (CX) 10,000 gCOD/m3 Morgenroth et al. (2004)

Maximum uptake rate (qmax) 3.54 gO2/gCOD/d Morgenroth et al. (2004)

Half saturation coefficient (K) 0.2 g/m3 Morgenroth et al. (2004)

VAN DEN BERG ET AL. | 1275



were considered quite well known and a RSD of 1% was chosen. The

uncertainty in granule volume and granule radius were set to 5% and

10% respectively, according to our own laboratory experience.

Lastly, the granule biomass concentration uncertainty was set to

25%. This high value was deemed reasonable, due to the complexity

of estimating the microbial cell concentration in the granule. All

parameters were assumed to follow a normal distribution and cor-

relation between parameters was not considered. The parameter

space of each method was sampled with Latin Hypercube Sampling

(LHS) with 1000 samples (McKay et al., 1979; Sin et al., 2009).

2.3.2 | Step 2: Model simulation

The Monte Carlo simulations were carried out for each of the six

methods (Section 2.1) separately. For each method, 1000 LHS‐
sampled datasets were used to fit the simulated experimental

datasets of step 1. The procedure to fit the datasets is given in

Supporting Information Section 1.2. Due to the changing input

parameters, each Monte Carlo simulation step resulted in a slightly

different diffusion coefficient. The 1000 combined diffusion coeffi-

cients yielded a distribution with a certain standard deviation. The

distribution was checked visually for normality, and the RSD was

used as the precision of the method. The difference in the diffusion

coefficient used to simulate the experimental data set (Table 1) and

the mean of the diffusion coefficient distribution, was used as a

measure of the inherent accuracy of the method.

2.3.3 | Step 3: Sensitivity analysis

A sensitivity analysis was performed to determine the relative im-

portance of the input parameters in the uncertainty in the diffusion

coefficient. The analysis consisted of a multivariate linear regression

of the model output (diffusion coefficient) on the model inputs

(Saltelli et al., 2008). The standardized regression coefficients, βi,

were obtained by mean‐centered sigma‐scaling (Helton & Davis,

2003). The model was considered sufficiently linear if the coefficient

of determination (R2) was equal to or larger than 0.7 (Sin et al., 2011).

An input parameter was considered significant only if its absolute βi
2

value was >0.01 (Sin et al., 2011). For a concentration profile in time

or space, each data point gave a unique regression coefficient. In that

case, the βi
2 values of each data point were summed together to

obtain a βi
2 that represents the aggregate impact of the uncertainty

in concentration measurements.

2.4 | Simulations to determine accuracy

Accuracy refers to how close a measured value is to a true value. The

accuracy of a method can be limited by simplifications of real conditions,

which are often needed to estimate diffusion coefficients in granules.

The simplifications that lead to inaccurate measurements are also called

systematic errors. The impact of such systematic errors is assessed in

this paper. We have selected several potential errors based on pre-

valence and potential impact, according to our own insight. The potential

errors are meant to be illustrative and therefore do not necessarily apply

to all the methods described in Section 2.1. The estimation of the in-

accuracy due to solute sorption and biomass deactivation, was based on

Stewart (1996) and Stewart (1998), respectively. A detailed description

is given in Supporting Information Section 1.4.

The impact of several other errors is estimated with a mathe-

matical model, which compares the experiment with and without the

assumptions. The model is based on method transient uptake of a

nonreactive solute, as described in Section 2.1. The granule is simulated

with a 2D‐axisymmetric model. The base model consisted of a single

granule in water with an α (the ratio of liquid volume over granule

volume) of 4. The initial solute concentration in the liquid was 10 g/L,

TABLE 2 Parameters used in the
Monte Carlo simulations including the RSD
involved in each parameter and the
method, described in Section 2.1, they are
required for

Parameter RSD (%) Methods References

Granule volume (VG) 5 1–3, 5 ‐

Total volume (VT) 1 1–3, 5 ‐

Granule radius (rg) 10 1–3, 5, 6 ‐

Bulk concentration (CB) 1 1–3, 5, 6 ‐

Biomass concentration (CX) 25 1 ‐

Half saturation constant (K) 50 1 Sin et al. (2009)

Maximum uptake rate (qmax) 5 1 Sin et al. (2009)

Microelectrode concentration (CM) 1 4, 5, 6 Bryant et al. (2010)

Microelectrode step size (dx) 10 4, 5 Cronenberg and Van

Den Heuvel (1991)

Note: The uncertainty was approximated to be either 1%, 5%, 10%, 25%, or 50% RSD, since more

accurate estimates could not be made.

Abbreviation: RSD, relative standard deviation.
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while the granule was initially free of solute. Other granule char-

acteristics are as described in Table 1. The diffusion coefficient in the

bulk liquid was set to an artificially high value of 1 × 109m2/s to

simulate a perfectly mixed reservoir. The model simulated the

concentration change over time until equilibrium was reached. The

concentration data of the bulk liquid were extracted from COMSOL

and used as input data to determine the diffusion coefficient

(according to the standard procedure for method transient uptake of a

nonreactive solute, as described in Section 2.1). The standard procedure

did not consider any systematic error and the difference between the

diffusion coefficient that was used in COMSOL (1.2 × 10−9m2/s) and

the fitted diffusion coefficient therefore equalled the inaccuracy

caused by the simplifications of the measurement. The following sys-

tematic errors were considered in COMSOL (see Figure 1):

• Mass transfer boundary layer (MTBL): A MTBL was added to the

model. The MTBL thickness was set to 100 µm (estimated based

on Horn & Morgenroth, 2006; Rasmussen & Lewandowski, 1998),

with a diffusion coefficient of 2 × 10−9 m2/s.

• Surface roughness: The granule surface in the model was changed

from smooth to sinusoidal. The amplitude of the sine wave was

50 µm and the period was set to 10 sine waves for the full granule

radius (see Figure 1b). The average granule radius was kept at

1.5 mm, and therefore the granule volume remained unchanged.

The diffusion coefficient in the pores (liquid volume within the

maximum granule diameter) was set to 2 × 10−9 m2/s.

• Granule shape: The shape of a granule was changed to an oblate

spheroid, with a length of its semimajor axis of 1.80mm and a

length of its semiminor axis of 1.04 mm. The spheroid had an

equivalent spherical diameter of 1.5 mm and a sphericity of 0.95.

• Granule size distribution: The model was extended to four dif-

ferently sized granules to simulate the spread of granule radii

present in a sample (Westrin & Zacchi, 1991). Two granules had a

radius of 1.5 mm, one granule had a smaller radius of (1.5 − δ) mm,

and the last granule had a larger radius of (1.5 + δ) mm. Here, δ is

the deviation from the mean diameter. It was set to 0.5 mm.

A sensitivity analysis was carried out for each systematic error

to investigate the influence of the chosen parameters on the accu-

racy. The values described here were used as typical values.

3 | RESULTS AND DISCUSSION

3.1 | Precision

A Monte Carlo uncertainty analysis was used to determine the

theoretical precision of six common methods to estimate diffusion

coefficients. The analysis yielded the precision and the inherent ac-

curacy of each method. The precision was defined as the RSD. The

inherent accuracy was defined as the difference between the true

diffusion coefficient used to simulate the experimental datasets and

the average fitted diffusion coefficient. An example of the output for

one method (transient uptake of a nonreactive solute) is given in

Figure 2. The uncertainty analysis to quantify the precision of each

method revealed a wide spread among the methods (see Table 3).

The RSD ranges from 5% (steady‐state concentration profiles inside and

outside a granule) to 61% (steady‐state reaction). This wide range

shows that there are significant differences between the methods. It

suggests that the impreciseness of the methods could indeed be a

major source of the wide range of diffusion coefficients reported in

literature (Stewart, 1998). Strikingly, the steady‐state reactionmethod

is simultaneously the least precise method and one of the most

frequently used methods in past research (Arvin & Kristensen, 1982;

Beyenal & Tanyolac, 1994; Herrling et al., 2015; Khlebnikov et al.,

1998; Livingston & Chase, 1989; Mulcahy et al., 1981; Tang & Fan,

1987; Wagner & Hempel, 1988; Wang & Tien, 1984; Williamson &

McCarty, 1976; Yano et al., 1961; Yu & Pinder, 1994).

3.1.1 | Mass balance based methods

None of the mass balance based methods (methods 1–3) were pre-

cise, with RSD always greater than 33%. A clear comparison between

F IGURE 1 Geometry of the four systematic errors that were
simulated in COMSOL, based on the typical values. The black area
represents the granule, the gray area represents the bulk liquid,
and the dash‐dotted line represents the axis of symmetry.
(a) Concentration boundary layer, with the dashed line indicating the
layer thickness. (b) Surface roughness, with the dashed line indicating
the liquid volume within the maximum granule diameter where no
convection occurs. (c) Granule shape. (d) Granule size distribution,
with one bigger, one smaller, and two average granules. Note that
figure (d) is not drawn to scale
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our simulated precision and experimental precisions reported in lit-

erature was not possible. Diffusion experiments in a laboratory are

often carried out only once, due to the time and effort required per

experiment. This also limits the usefulness of replicate measure-

ments. The standard error of the mean of an experiment is given by

σ
σ

=̅x n
, where σ is the SD of the method and n is the number of

replicates. With a RSD of 33%, the relative standard error is 19%,

15%, or 10% for 3, 5, and 10 replicate measurements, respectively.

The uncertainty in the granule volume was a major source of

imprecision for the transient uptake and transient release of a non-

reactive solute methods. The input uncertainty was only 5%, but it

accounted for 31% and 57% of the total uncertainty of the transient

uptake and transient release methods, respectively (see Table S3). The

transient release and transient uptake methods are quite similar, but

the release method is more precise. This could be expected, since the

relative concentration change in the releasemethod is greater than in

the uptake method (see Figure S1). As a result, the concentration

uncertainty accounted for <1% and 33% of the total uncertainty of

the transient release and transient uptake methods, respectively. For

the steady‐state reaction method, the biomass concentration in the

granule was the major source of uncertainty (49% of total un-

certainty). This parameter is not easily measured, but it apparently

plays a significant role for this method. The granule radius also had a

major effect on the precision of the methods (6–37% of total

uncertainty).

A substantial inherent inaccuracy was present for the steady‐

state reaction method (19%), which could be caused by non-

linearity of the data processing. The distribution of diffusion

coefficients of the Monte Carlo analysis is skewed, indicating that

input uncertainties are amplified more in one direction than the

other (see Figure S2). This inherent inaccuracy is difficult, if not

impossible, to identify with conventional experiments. In our

analysis, the inherent inaccuracy in the data processing could be

identified, because we used virtual experiments. The diffusion

coefficient used to design these virtual experiments was known

and could directly be compared with the output diffusion coeffi-

cient. The inherent inaccuracy of the other methods can be found

in Table 3.
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F IGURE 2 Uncertainty analysis output for the transient uptake of a nonreactive solute method. (a) Simulated data set with simulated
experimental data (dots) and example model fit (solid line). (b) Distribution of fitted diffusion coefficient for 1000 Monte Carlo simulations
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Results of Monte Carlo
simulation with RSD and inherent
inaccuracy per method

Method RSD (%) Inaccuracy (%)

1 Steady‐state reaction 61 19

2 Transient uptake of a nonreactive solute 42 −10

3 Transient release of a nonreactive solute 33 5

4 Steady‐state concentration profiles inside and outside a granule 5 19

5 Steady‐state reaction with concentration profile inside a granule 12 16

6 Transient penetration of a solute to the center of a granule 20 −1

Note: A complete overview of the sensitivity analysis results is given in Table S3.

Abbreviation: RSD, relative standard deviation.
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3.1.2 | Microelectrode based methods

Overall, microelectrode based methods (methods 4–6) were more

precise than mass balance based methods. The RSD was always

20% or lower, which agrees with Etterer (2006). However, Chiu

et al. (2007) report a higher RSD of 30–40%. Microelectrode

measurements are highly localized and rely less on granule para-

meters, like granule volume, granule area, or granule radius. They

are thus less impacted by the relatively large uncertainty in these

parameters (see Table 2). For microelectrodes, many replicates

are done relatively easy (Horn & Morgenroth, 2006). However,

these replicates cannot be considered as true repeat measure-

ments. The granules are heterogeneous and multiple granules may

have different diffusive properties (Wilén et al., 2004). The repeat

measurements in microelectrode studies are required to average

spatial heterogeneity. Van Loosdrecht et al. (1995) and Ning et al.

(2014) have shown that oxygen profiles at multiple locations can

differ significantly and lead to a wide range of calculated flux

values.

Similar to the mass balance based methods, the largest

sources of uncertainty for the microelectrode based methods

are the granule volume and granule radius (see Table S3).

Input parameters that are specifically related to microelectrodes

are of limited importance. Only for the steady‐state concentration

profiles inside and outside a granule method is the relative impact

of microelectrode concentration measurement and microelec-

trode position significant. However, given the overall high

precision of this method (5% RSD), their absolute impact is small.

The steady‐state reaction with concentration profile inside a

granule is affected by both the granule radius (74% of total

uncertainty) and the granule volume (19% of total uncertainty).

The dependence on these uncertain parameters leads to a total

uncertainty of 12% RSD. Still, it is significantly more precise

than the mass balance based methods. The transient penetration

of a solute to the center of a granule is almost solely affected by

the granule radius, resulting in a lower precision as well

(compared to steady‐state concentration profiles inside and outside

a granule).

3.1.3 | Recommended method for granular sludge

The ideal method to measure diffusion coefficients can be used for a

wide range of solutes, measures diffusion coefficients on a global scale,

and combines a high precision with a high accuracy. It is clear that none

of the methods analysed meet these requirements. Microelectrodes

offer high precision, but they are limited to the molecules for which a

microelectrode is readily available and they only measure locally. We

therefore recommend the use of the second method, transient uptake of

a nonreactive solute, for future experiments. Since its large imprecision

makes this method far from ideal, it is an inferior method that is

nonetheless the best option. Despite its large imprecision, this method

has the potential to determine the order of magnitude of diffusion

coefficients for a wide range of solutes. The third method, transient

release of a nonreactive solute, is more precise, but we expect more

practical issues. For example, one major issue is transferring granules

soaked with some solute from one solution to another, without trans-

ferring excess water that is retained between granules. Note that this

recommendation is specific for spherical biofilms, for flat biofilms a

diaphragm cell might be the preferred option (see Section 3.4).

3.2 | Accuracy

The impact of six systematic errors was estimated with analytical cal-

culations (solute sorption and deactivation method) and with a

COMSOL model (mass transferboundary layer, surface roughness,

shape, and size distribution). The impact of the different systematic

errors on the observed diffusion coefficient is shown in Figure 3. The

figure displays a wide range of under‐ and overestimations of the true

diffusion coefficient. In the most extreme case, the observed diffusion

coefficient is more than twice as high as the true diffusion coefficient.

3.2.1 | Sorption

Binding of solutes to the granule matrix creates an underestimation

of the true diffusion coefficient. A solute that enters a granule has to

F IGURE 3 Simulated effect of different
systematic errors on the observed diffusion
coefficient. The bars represent the range of
errors that result from the sensitivity analysis
(see Figure S3–S8). The red lines indicate the
inaccuracy for the typical case [Color figure can
be viewed at wileyonlinelibrary.com]
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distribute according to the concentration gradient. If part of the

solute binds to the granule matrix, more solute needs to enter the

granule before equilibrium is reached. This will require more time

and thus lead to an underestimation of the diffusion coefficient. This

error only plays a role with transient methods, since in steady‐state
the binding of solutes to the matrix is in equilibrium. The nature of

the solute will often reveal whether adsorption will be a problem.

Hydrophobic molecules (e.g., phenols, phthalates) or charged mole-

cules (e.g., ammonium) are much more likely to adsorb than hydro-

philic, neutral molecules. Even though there are some reports that

indicate oxygen can adsorb to bacterial cell walls (Beuling et al.,

2000; Möller et al., 2005), it is unclear how significant this effect

would be for a biofilm. Therefore, no typical error is included.

3.2.2 | Deactivation

Permeabilisation of microbial cells leads to an increase in the area

available for diffusion, and thereby to a significant overestimation of

the diffusion coefficient (up to 60%). Some molecules, such as oxy-

gen, can already diffuse through the cells and will therefore be less

impacted (Beuling et al., 2000). Experimental work with nuclear

magnetic resonance by Lens et al. (2003) and microelectrodes by

Lens et al. (1993) revealed an inaccuracy of similar magnitude due to

deactivation of methanogenic granules. Deactivation with glutar-

aldehyde and mercuric chloride were notable exceptions. Glutar-

aldehyde caused an underestimation, most likely because it does not

permeabilise cells (Azeredo et al., 2003) and even forms cross‐links
in the EPS matrix (McDonnell & Russell, 1999). Mercuric chloride did

not lead to an inaccuracy, but literature reports on its effect are

conflicting (Ames et al., 1986; Fu et al., 1994; Matson & Characklis,

1976; Valko & DuBois, 1944).

3.2.3 | Mass transfer boundary layer

Negligence of the MTBL can result in a clear underestimation of the

true diffusion coefficient. The layer provides an additional resistance

for the diffusing solute, and thus the concentration change will be

slower. The error increases with increasing boundary layer thickness.

The thickness values tested ranged from 0 to 800 μm, with 100 μm as

a typical value (estimated based on Horn & Morgenroth, 2006;

Rasmussen & Lewandowski, 1998). Reducing the thickness of the

boundary layer is not trivial, since it depends on the liquid properties,

as well as the slip velocity of the granules (Van Benthum et al., 1999).

3.2.4 | Surface roughness

A rough granule surface resulted in a small underestimation of the

diffusion coefficient. This may seem counterintuitive, since the sur-

face area of a granule increases with its roughness. A higher surface

area should lead to an overestimation. However, in the simulation,

mass transfer in the liquid volume in the granule valleys was through

diffusion only (Picioreanu et al., 2000). The total distance a solute has

to diffuse increases with surface roughness, and thus the diffusion

coefficient is underestimated. This is in accordance with the findings

of Picioreanu et al. (2000), who found that smooth biofilm surfaces

allow for maximum mass transfer. Overall, the impact of this error is

small, since the roughness amplitude (≤100 μm) is small compared to

the granule radius (1500 μm).

3.2.5 | Shape

Negligence of granule shape can cause a significant overestimation of

the diffusion coefficient (up to 120%). A spheroidal granule has a

larger surface‐to‐volume ratio than a perfectly spherical granule. The

increase in area leads to a faster change in liquid concentration and

thus an overestimation of the diffusion coefficient. Since literature

reports of spheroidal granules are common, this is an error that

might play a large role (Csikor et al., 1994; Gjaltema et al., 1995;

Li et al., 2013; Liu et al., 2006; Schmidt & Ahring, 1996). A correction

factor to the measured diffusion coefficient based on observed

granule shape might solve this problem partially.

3.2.6 | Size distribution

A size distribution of the granular sludge sample can introduce a

moderate underestimation of the diffusion coefficient. In the simu-

lation of size distribution, both a smaller granule fraction and a

bigger granule fraction are included. Diffusion into the smaller

granules proceeds much faster, while diffusion into the larger frac-

tion is much slower. The combined effect is not readily predicted, but

the simulation reveals that the larger fraction has a bigger effect. The

smaller fraction only impacts the initial concentration change, while

the larger fraction increases the time required to reach equilibrium.

Therefore, the larger fraction impacts the whole concentration pro-

file, while the smaller fraction only affects the initial part. Our results

match with those found by Westrin and Zacchi (1991), who used a

similar method to test the impact of the size distribution.

3.2.7 | Combined effect

The exact effect of the systematic errors is difficult to quantify, since

multiple systematic errors might cancel out. However, it seems just

as reasonable to expect additive effects of different errors. After all,

four out of the six simulated errors lead to underestimations of the

diffusion coefficient. If we assume that all errors are multiplicative,

we obtain an underestimation of 37% (Dobserved/Dtrue = 0.63). This

highlights the importance of the systematic errors and the need for a

thorough analysis of the assumptions that are made. Obviously,

other errors, that are not part of this study, can play a role as well.

Still, the results highlight that the overall effect can be substantial.
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We recommend experimentalists to routinely check their diffusion

methods for systematic errors to maximize accuracy.

3.3 | Sensitivity of the diffusion coefficient

At first glance, the simulations of precision and accuracy suggest that

the granule surface area is the core parameter that limits the methods.

The granule surface area was not included explicitly in the Monte Carlo

simulations, but it was implicitly derived from the granule volume and

radius. Exactly these two parameters were the biggest contributors to

the imprecision of the methods. Furthermore, three out of the six

simulated systematic errors (surface roughness, shape, and size dis-

tribution) are related to surface area. However, the impact of granule

surface area cannot explain all simulation results. For example, the

simulation results for method 5 (Steady‐state reaction with concentration

profile inside a granule) suggest that the impact of the granule surface

area is limited. Method 5 depends on granule volume and radius, but it

is still quite accurate (12% RSD).

We believe that there is another, more significant reason that limits

precision and accuracy. The two most precise methods (methods 4 and

5, see Table 3) are based on a direction evaluation of Fick's 1st law. The

measurement of the concentration gradient with microelectrodes and a

direct measurement of flux allow to directly estimate the diffusion

coefficient. In contrast, the four least accurate methods (methods 1, 2,

3, and 6) are based on derivations of Fick's 2nd law. This difference

might seem trivial, but that is not the case. We found that all input

uncertainties were amplified in methods that depend on Fick's 2nd law.

For example, the uncertainty in the granule radius was set to 10% (see

Table 2). If we carry out a Monte Carlo simulation without considering

the uncertainty in other parameters, the precision of method 1, 2, 3,

and 6 was always 20% RSD. For other parameters (e.g., granule volume,

concentration) the result were amplified by a factor of two as well. This

amplification was not observed in methods 4 and 5, which are based on

Fick's 1st law. For method 5, a 10% uncertainty in the granule radius led

to a precision of 10% RSD.

The aforementioned amplification of uncertainty in Fick's 2nd

law suggests that the diffusion coefficient is a parameter with limited

sensitivity. Any uncertainty in sensitive parameters (granule volume,

radius, etc.) is amplified, leading to imprecise estimates of the dif-

fusion coefficient. This amplification can explain why for some

methods, the precision is much worse than the uncertainty of input

parameters. For example, method 3 has input uncertainties of 1%,

5%, and 10%, but the method precision is 33%. Other authors have

also found a reduced or limited sensitivity of the diffusion coefficient,

at least under certain conditions (Boltz et al., 2011; Harremoës,

1978; Harris & Hansford, 1976; Morgenroth et al., 2004). This re-

duced sensitivity of the diffusion coefficient is the core reason why

diffusion coefficients cannot be measured accurately. Only methods

based on Fick's 1st law do not suffer from the reduced sensitivity,

but those methods require measurements of the concentration

gradient. This means that these methods measure locally and are

limited to solutes for which localized measurements are possible.

3.4 | Translation to other biofilm types

Even though granular biofilms are an important application of bio-

films in wastewater treatment, more biofilm types are being used.

Other processes that rely on biofilms are the tricking filter, the

moving bed biofilm reactor, the membrane biofilm reactor, and the

rotating biological contactor. We believe that the two major reasons

that limit diffusion experiments for granular biofilms (biofilm surface

area and diffusion sensitivity) apply to flat biofilms as well.

The surface area of biofilm carriers is well‐defined, but the actual

biofilm surface area is more difficult to estimate. Biofilms growing on

carriers can have rough surfaces and the thickness can be nonuni-

form (e.g., see the figures in Gapes & Keller, 2009; Ødegaard, 2006).

Furthermore, the relation between biofilm surface area and biofilm

volume is not per definition constant with biofilm thickness. Many

biofilm carriers have irregular geometries and assuming flat geo-

metry can introduce a systematic error for thicker biofilms. The

geometry of typical carriers might also lead to imperfect mixing and

MTBLs within the carrier (Gapes & Keller, 2009; Nogueira et al.,

2015; Tang et al., 2017). Even if the estimate of biofilm surface area

would be more precise, this does not mean that the methods are

more precise. The methods based on Fick's 2nd law still amplify the

input uncertainty. Fick's 2nd law can be used to describe both flat

and spherical geometry, although the formulation will be slightly

different. Thus, the reduced sensitivity of the diffusion coefficient

applies to flat biofilms as well.

For flat biofilms, the diaphragm cell is also frequently used to

measure biofilm diffusion coefficients (Horn & Morgenroth, 2006).

A preliminary Monte Carlo simulation of this method showed that

precise results can be achieved, with a RSD of 5% (data not shown).

This implies that diffusion coefficients can be measured more pre-

cisely in flat biofilms than in spherical ones. However, biofilms have

to be either grown directly on the diaphragm membrane or they have

to be transferred from their natural environment onto the mem-

brane. The biofilms have to be the exact same shape and size as the

membrane to prevent leakage of solutes around the biofilm. For

example, Bryers and Drummond (1998) have shown that channels in

a biofilm can lead to clear overestimation of the diffusion coefficient.

Therefore, although a diaphragm cell is precise, we expect that the

measured diffusion coefficients are still relatively inaccurate.

Obviously, experimental verification of this hypothesis is required.

Overall, we expect the findings of this paper to translate quite

well to other biofilm types. We recommend researchers who want to

measure diffusion coefficients in flat biofilms to perform a similar

analysis to verify the precision and accuracy of their method of

choice.

3.5 | Implications for biofilm modeling

Biofilm models are commonly used to predict performance and im-

prove understanding of biofilm reactors. These models often rely on

diffusion coefficients, which raises the question how these models
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are impacted by our findings. At first, it might seem likely that the

descriptive and predictive power of the models is reduced with less

accurate diffusion coefficients. However, we expect the impact to be

limited. The principles that apply to diffusion experiments apply to

biofilms models as well. Namely, biofilm models also require input

parameters (biofilm thickness, surface area, etc.) that are measured

with a certain precision. Furthermore, simplifications that lead to

inaccuracy are often implemented in biofilm models as well (Boltz

et al., 2010).

The most important reason why inaccurate diffusion coefficients

have a limited impact on biofilm models is the sensitivity of the

diffusion coefficient toward the predicted flux of solutes into the

biofilm. We showed that the diffusion coefficient is a parameter with

limited sensitivity in methods based on Fick's 2nd law. Biofilm

models typically employ this same law (together with a reaction

term) to determine the flux of a solute in or out of a biofilm. It is this

flux combined with the biofilm area that ultimately determines the

changes in bulk liquid concentration. It has been shown previously

that the flux for zero‐order kinetics is roughly proportional to the

square root of the diffusion coefficient (Harremoës, 1978; Harris &

Hansford, 1976). We briefly tested this relationship for Monod ki-

netics, with a numerical diffusion‐reaction model, a single rate‐
limiting substrate, constant concentration at the granule surface, and

parameters from Table 1 (see Supporting Information Section 2.5).

We observed that a 10% change in the diffusion coefficient led to a

change in the flux between 0% and 6% (depending on the penetra-

tion depth, see Supporting Information Section 2.5 for full results).

Obviously, these preliminary results should be rigorously verified in

future research to determine if there are certain conditions under

which the reduced sensitivity does not apply.

Interestingly, the exact reasons why diffusion coefficients cannot

be measured with accuracy are simultaneously the reasons why ac-

curate values are not required. Therefore, a better, more accurate

method will only marginally improve biofilm models. We suggest to

treat biofilm diffusion coefficients as imprecise parameters. Practi-

cally, this means that biofilm models do not require a unique diffu-

sion coefficient for each solute. A quick analysis of literature values

of common solutes reveals that a high (0.5–0.8) and a low (0.1–0.4)

relative diffusion coefficient might be sufficient (see Figure 4), given

the accuracy of the diffusion coefficients. Future research could

classify molecules into the fast diffusion group and slow diffusion

group, as well as determine the approximate diffusion coefficient of

larger molecules.

4 | CONCLUSION

In this simulation study, the theoretical precision of six different

methods to measure biofilm diffusion coefficients was evaluated, as

well as the theoretical accuracy for one of those methods. The pre-

cision of all methods was affected by uncertainty in experimental

parameters, although the extent differed per method (RSDs of

5–61%). The precision of microelectrode based methods was higher

than that of mass balance based methods. The least precise method,

steady‐state reaction, has often been used in past research. The ex-

perimental parameters with the biggest impact were granule volume,

granule radius, and biomass concentration in the granule. These

parameters are difficult to identify experimentally and a direct so-

lution for more precise measurements could not be identified. The

inaccuracy of the mass balance–uptake method was significant, which

reduces the reliability of the diffusion coefficient measurements

even further. The exact impact of the systematic errors could not be

quantified, but an underestimation of the true diffusion coefficient

by more than 30% is likely.

Accurate methods for diffusion coefficient measurements are

currently not available, but from the point of view of biofilm ki-

netics they are also not required. The limitations of diffusion

coefficient measurements (uncertain experimental parameters,

process simplifications, and reduced sensitivity to the diffusion

coefficient) apply to biofilm models as well. An imprecise diffusion

coefficient will most likely not have a big impact on the descriptive

and predictive performance of biofilm models. It might be suffi-

cient to use two relative diffusion coefficients in biofilm models: a

high value of 0.5–0.8 for small solutes, such as oxygen, and a low

value of 0.1–0.4 for medium‐sized solutes, such as glucose and

acetate.
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