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Abstract

Many firms are occupied with determining the optimal replacement time of machinery. Ma-
chine replacement is a complex investment decision that requires the estimation of future cash
flows and other parameters. The non-deterministic character of future cash flows has given
rise to stochastic models, that take into account this uncertainty. This study has applied a
theoretical stochastic asset replacement model in practice. It was found that the stochastic
replacement model can be used on real data by performing a weighted least squares (WLS)
regression. Decision-makers should however be aware of the model assumptions and limi-
tations of the model. The replacement decision-making process can be automated using a
Python script that is provided in this study. However, the CMMS that was used in the case
study needs to be upgraded to have additional features.

When one wants to perform an analysis of assets on a system level, the expected replacement
year value can be used. Until now, the probability distribution of the expected replacement
year had to be computed by means of Monte Carlo simulation. In this report, a closed form
solution is used for the expected replacement year distribution when operating cost follows a
geometric Brownian motion (GBM). With this contribution, decision-makers in engineering
asset management now have the opportunity to rapidly analyse and perform probabilistic
computations on the expected economic life of deteriorating machinery on system levels, such
as geographic systems or weather systems. As only few studies on stochastic asset replacement
are empirical, a second important contribution of this study is the application of the model in
a case study. The case study concerns HVAC systems of petrol stations in the Netherlands.
The paper describes how to perform a weighted least squares (WLS) regression so that model
parameters can be easily estimated for real cases. Finally, several new insights and barriers
on implementing theoretical models in practice are introduced.

Note: part of this project has been transformed into a research article that is to
be sent out for publication in a journal. Appendix B contains the draft.
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Chapter 1

Introduction

This chapter describes the context and problem formulation of the research project. The re-
search objectives and the research question are described and finally the research methodology
is discussed. A distinction is made between the scientific part and the consultancy part,
which will both be elaborated in this chapter. The scientific part aims to contribute to the
domain of stochastic asset replacement in the research field of engineering asset management.
The consultancy part relates to the empirical part of the research project. The case study is
elaborated in more detail in Chapter ?7.

1-1 Context

Scientific

A study that was conducted in the US found that manufacturers had spent $50 billion on
maintenance costs in 2016 [5]. It is safe to say that maintenance costs take up a significant
part of life cycle costs of assets and machinery. [2] found that on average 20.8% of the total
budgets of firms in manufacturing industries is assigned to maintenance, which explains why
firms aim for maintenance excellence. Among maintenance activities is the replacement of
assets and machinery.

Costs might increase inordinately if asset replacement is badly timed. Determining the op-
timal replacement year of assets is an important and interesting study, but also a complex
one. The optimum replacement age in terms of cost is often referred to as economic life. The
aim is to maximise the net present value (NPV) of all related costs and revenues of an asset.
A decision-maker thus needs to estimate these future cash flows. In reality, maintenance and
operating costs behave in a non-deterministic way and require a stochastic approach. This
characteristic has led rise to stochastic models, which take into account uncertainty of life
cycle costs. Uncertainty and the option to wait are believed to have value that should be
accounted for in investment decisions. Conventional methods that assume deterministic cash
flows fail to incorporate this uncertainty [6].
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2 Introduction

There are several methods and tools available that support firms in making their equipment
replacement decision. A common method that is often used for investment decisions is the
discounted cash flow method (DCF). This method assumes that a decision-maker makes his
investment decision based on the information that is available at present [3]. Information
that becomes available later cannot change the value of the investment. This characteristic
is often regarded as a limitation in investment decision-making [3, 7, 6, 8].

Consultancy

The research project was performed in collaboration with an asset manager in The Nether-
lands. This firm provides facility and asset management for a network of petrol stations in
the Netherlands. The goal is to optimise as much as possible the availability, reliability and
safety of the gas stations and to minimise costs. The asset manager is always looking for
ways to optimise the asset management process and to increase the quality of service level
of the petrol stations. Part of the asset management process involves the planning of re-
placing equipment. The replacement policy resembles the age replacement model. An asset
is either replaced correctively upon failure or when the asset is considered deteriorated. In
2019, a transition was made to a new Computerised Maintenance Management System. In
the CMMS, the asset manager stores all work orders, assets and cost related data.

1-2 Problem formulation

Scientific

[9] state in their review that only 10 percent of the contributions discussing uncertainty,
investment and stochastic models were empirical studies. The authors suggest that more
empirical work is needed to bring theoretical concepts closer to practice. There are several
views and studies that investigate other reasons behind stochastic modelling lagging behind
in practice. [10] found that infrastructure projects have characteristics that create barriers,
making it more difficult to implement models that incorporate uncertainty in practice. In their
paper, they describe barriers that prevent the adoption of stochastic models. The authors
argue that these barriers can only be overcome by including more project data in research
and by testing the theoretical tools that are available in practice. This thesis project aims to
bring existing theoretical models closer to practice by testing an application in practice.

Several authors did studies on the integration of stochastic models with asset replacement,
both theoretical and empirical. In their paper, [11] performed an empirical study and used
a stochastic approach on the replacement of public infrastructure assets when political deci-
sions, structural integrity and prices are uncertain. They observed that in the application of
theoretical models in practice, there exists confusion about the choice of using either decision
tree analysis (DTA) or a random walk process. Among the reasons for the lag of the use
of stochastic models in practice, the authors point to the complexity and the difficulties in
estimating market variables. A study on ship fleet replacement concluded that extending
their model to different scenarios requires computational capacity and new algorithm designs
[12]. [8] study replacement decisions of heavy machinery when operational expenditure costs
and lead-time of orders are uncertain. Reviewing the literature, there seems to be debate on
how to model costs, as some papers use a geometric Brownian motion (GBM), whereas other
papers model costs via an arithmetic Brownian motion (ABM). They also found that it is
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1-3 Research objectives 3

particularly difficult in practice to estimate volatility parameters. [13] developed a theoretical
model that optimises the replacement decision of equipment when the salvage value of assets
is uncertain. In conclusion, none of the found studies describe explicitly how to perform a
statistical regression and how to transform existing real data to model parameters such as
drift and volatility. Furthermore, it is observed that none of the existing case studies reflect
on the validity of using a Brownian motion to model operating costs.

Although several authors did empirical studies on the application in practice of stochastic
models and equipment replacement, none of them have yet tested the application in an auto-
mated real-time process. As new information becomes available every day, the replacement
strategy could constantly evolve. The studies that were performed all require a decision-maker
that gathers the data and performs the calculations. However, today’s software allows for
computing data in such a way that this process can be automated. It is not clear if existing
software has characteristics that lead to additional barriers in implementing stochastic asset
replacement in practice. Research on this topic has not yet been done.

Consultancy

Once every year, the asset manager related to the case study draws up a consultancy report,
advising which assets and components to replace. Until now, this advice has been merely
based on a gut-feeling, rather than a quantitative calculation. Consequently, the asset man-
ager faces the risk of wasting value by keeping equipment alive while replacement would create
more net value, and vice versa. Also, replacement requests are often rejected (and considered
too expensive) because of the lack of quantitative support for the request. The maintenance
management system that is used offers a feature that allows for generating reports based on
real-time data. Consequently, it should be possible to compute real-time data in such a way
that a replacement strategy is automatically provided by the system. It is suggested that
the use of a stochastic asset replacement model allows for a more cost-effective and accurate
method to decide on asset replacement decisions. Quantitative methods for equipment re-
placement are not yet utilised within the asset management firm as research needs to be done
on how to successfully implement this. This proposed research project aims to fill this gap.

1-3 Research objectives

Scientific

To cover the research gap, this research project studies an application of a theoretical stochas-
tic asset replacement model. A case study is chosen because it allows for an analysis on the
validation of the assumptions of this model. In addition, a weighted least squares (WLS) re-
gression is carried out that transforms real data into the required parameters of the stochastic
model. Barriers associated with implementing the theoretical model in the case study are pre-
sented. Besides filling a scientific research gap, the project has an additional goal, in that it
also introduces a technical innovation: it aims to develop a script that is able to automate
the equipment replacement decision-making process.

A major novelty of the study is the use of a closed form solution of the probability density
function of the expected replacement year, which has not been found before in the engineering
asset management literature. The expected replacement year allows for a collective analysis
and comparison of different asset groups or systems. Furthermore, using a closed form solution
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4 Introduction

is an important contribution because Monte Carlo simulations can only obtain point estimates.
Closed form solutions allow analysts to better understand the impact of variations in price
and cost [14]. The case study allows for an analysis on the validation of the assumptions of
this model. A weighted least squares (WLS) regression is carried out that transforms real data
into the required parameters of the stochastic model. Barriers associated with implementing
the theoretical model in the case study are presented. The contributions of this study are
summarised as follows; (a) the use of a closed formulation of the probability distribution
of the expected economic life and (b) a new application of stochastic asset replacement in
engineering asset management practice.

Consultancy

The consultancy assignment relates to the requirement to deliver a quantitative model that
is able to automatically select the most cost-effective course of action in making equipment
replacement strategies, based on real-time asset data. Successful implementation will allow
the delivery of an accurate replacement strategy. An automated process will also save time,
which will increase labour productivity.

1-4 Research question

The research objectives can be transformed into the following research question:

How can theoretical stochastic replacement models be used to automate the equipment replace-
ment decision-making process in practice?

1-5 Research methodology

The proposed research topic deals with an operation-related problem. The goal of the project
is to improve and optimise the working methods by designing a mathematical model. A
common approach that is often used for improving and optimising systems and processes is
the operation research approach [15]. Figure 1-1 depicts the seven steps that are to be taken
in order to carry out an operations research process [1]. This approach will be used in the
case study for carrying out the proposed research project. The orientation stage and the
problem formulation stage have already been explained above. The remainder of the stages
are described below.

Data collection

Nowadays, stakeholders within the asset management industry have the opportunity to make
use of modern information systems such as Computerised Management Maintenance Systems
(CMMS). Consequently, larger amounts of data can be generated. This provides firms with
the opportunity to gain value and to obtain a more competitive advantage [16]. In the
CMMS database, data such as downtime, cost, age, asset data and service level agreements
are registered for every workorder that is carried out. In another database, the asset manager
has information on replacement costs of assets. These data are available in the form of large
databases. In the data collection phase, the aim is to bring together the data from the relevant
sources and to centralise the data. Another task in this phase is the rearrangement of these
data into an orderly form so that the data can be used in a proper way.
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Orientation

Problem Definition

 — Data Collection

Model Formulation

Model Solution

Validation and Output Analysis

| Implementation and Monitoring

A O > ® O mm™M

Figure 1-1: The operations research approach [1]

Model formulation

During this phase, a stochastic asset replacement model is searched that is able to select an
equipment replacement strategy. When an appropriate model is found, the required data and
the format of the data will be known. A feedback loop to the previous stage is required, and
the data will be adjusted to the format that is required.

Model solution

The model solution stage involves the integration of the model to the CMMS. The model needs
to be compatible with the CMMS that is used in the asset management firm. Computations
on data in this software requires knowledge of Python programming skills. In order for the
model to work properly, the Python script has to be written in a way that makes the software
automatically select the correct data, perform the correct computations and generate a report.

Validation and Analysis

In the validation stage, the correctness of the model results will be discussed (internal valida-
tion) and the applicability of the model in a wider system will be tested (external validation).
First, it is assessed if the model solution itself makes sense. The model should be correct and
serve as an accurate representation of the reality. The results of the model will be compared
to the expected results according to the theoretical models, but also to empirical results that
are found in other case studies. If it turns out that the model solution is not consistent, the
model needs to be adjusted. This is a cyclical process. A sensitivity analysis will be per-
formed to investigate the impact of the results when model variables are altered. Secondly, it
is assessed whether the model is applicable for wider systems. What are the limitations of the
model and to what extent is the model applicable in a wider context on the subsystem level?
The relevance of the model will be discussed with the agents of the asset management firm
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6 Introduction

that are involved in the equipment replacement decision-making process. Assumptions, risks
and limitations of the model will be discussed. The last stage of the validation stage involves
the assessment of external validity. The model that is to be developed will be a tailor-made
model that applies to petrol stations in The Netherlands. It will be investigated to what
extent the model can be generalised. Assumptions, variables and boundary conditions that
apply in the model and in the case study will be tested for other situations that are found in
practice.

Implementation

The implementation phase entails the handover of the model to the asset management firm.
Based on the results of the validation and analysis phase, additional recommendations will
be made, and risks will be discussed.
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Chapter 2

Asset replacement: deterministic
versus stochastic

2-1 Introduction

Conventional Discounted Cash Flow (DCF) methods for investment decisions require a decision-
maker to estimate all future cash flows in a deterministic manner. In the case of engineering
asset management, this method yields a replacement strategy that takes into account the
information available only at present, that is, information that becomes available in a later
stage cannot change the outcome of the investment value. This is often considered an impor-
tant drawback [3][17]. Stochastic models can overcome this drawback by taking into account
uncertainty of future information and cash flows. The uncertainty approach is also known as
Real Option Analysis (ROA), which finds its roots in financial option valuation. This chapter
first discusses the deterministic approach. Regarding the stochastic approach, the analogy
with financial options is discussed and finally, three stochastic asset replacement models are

described.

2-2 Deterministic asset replacement

The basic model for asset replacement is illustrated in Figure 2-1 [2]. The model assumes
that operating and maintenance (O&M) costs increase as assets age. The ownership cost
reflects the capital outlay for a new asset minus the salvage value at the time of replacement,
divided by the replacement age. The decreasing trend in the ownership cost shows that the
salvage value decreases in time. Finally, fixed cost reflects costs that are independent of the
age of an asset, such as utilisation cost of an asset. The common convention in deterministic
asset replacement is to compute the total life cycle cost of an asset in terms of its Equivalent
Annual Cost (EAC). A present value can be easily transformed into its EAC by multiplying
the present value by the capital recovery factor (CRF) which is given by:
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8 Asset replacement: deterministic versus stochastic

r(1+r)t

F=_T0
CR (I+r)t—1

(2-1)

where r denotes the discount rate and ¢ the number of periods. If it is assumed that replace-
ment occurs over an infinite time interval, and that O&M costs are identical in each cycle,
the total cost C(t) of a replacement policy (with replacement in year t) can be computed as
follows:

_ Zle Cir® +rt(K — Sy)

1—rn

C(t) (2-2)

with C; equals the O&M cost in year 7 in terms of EAC, K the capital value of a new asset
and S; the salvage value of the asset in year t. The optimal replacement year can then be
selected by minimising the total cost C,, in terms of EAC. In formula form:

Zﬁzl Cir' + (K — Sy)

argming 4~ T

(2-3)

A Optimum replacement age

"

— Total cost

“— Operations and
maintenance cost

Annual cost

s Fixed cost

|
/M/ Ownership cost
I

Replacement age (years)

>

Figure 2-1: The deterministic approach of asset replacement [2]

2-3 Three approaches of stochastic asset replacement

[11] distinguish three valuation methods that incorporate uncertainty in investment decisions.
They are the decision tree analysis (DTA), the risk neutral approach and the single discount
rate approach. These three approaches are discussed in this paragraph.
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Figure 2-2: A decision tree with up and down moves [3]

2-3-1 The decision tree approach

The decision tree approach (DTA) captures flexibility but requires a decision-maker to know
all possible future outcomes. A single discount rate is used to discount future cash flows
back to a present value. Future cash flows are expressed in the form of a binomial tree that
comprises of one up move and one down move (Figure 2-2). This approach does not apply
a stochastic process and thus requires the estimation of future cash flows. When the entire
decision tree has been mapped out, backwards recursion of the decision tree leads to the
determination of the best course of action at each node.

2-3-2 The risk neutral approach

The risk neutral approach makes use of so called risk-neutral probabilities, whereas the
decision-tree approach uses actual probabilities. The risk neutral approach can be applied
when a decision-maker does not know exactly all future outcomes in advance as it makes use
of a stochastic process [11].

The risk neutral approach assumes that a state variable can go up to X, or go down to
Xg4. The approach is to build a replicating portfolio with two components: risk-free bonds
and a so-called spanning asset that together resemble identical cash flows. The price of the
replicating portfolio V' can then be computed by

_ TuYu + TaYy

v
Ry

(2-4)
where 7, and 75 equal the risk-free probabilities of an up and down move respectively, Y,
and Yy equal the market values of cash flows in an up move and in a down move respectively,
and Ry is the risk free interest rate. The risk-free probabilities can be computed by:

_ ZRy— Xy

= 2.
T X, — Xy (2-5)
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10 Asset replacement: deterministic versus stochastic

and

X, — ZRy

2-
X, X, (2-6)

Td —

where Z equals the current price of the spanning asset.

There are several ways to model the values of the up and down moves. The risk-neutral
approach makes use of a stochastic process for modelling the price. One of the most common
processes is the Brownian motion with drift [3]. The Brownian motion is also called a Wiener
process. A Wiener process is a continuous-time stochastic process with three important
properties [17]. First, it is a Markov process, which means that the distribution of future
values depends only on the current value. Second, the process has independent increments.
Third, price changes in any time interval are normally distributed and their variance increases
linearly in time.

The Brownian motion with drift can be modelled as an arithmetic Brownian motion (ABM)
or a geometric Brownian motion (GBM). In the case of GBM, the logarithm of the price
follows a Brownian motion. In formula form, a price that follows a GBM can be expressed as
follows:

dx/x = 0dt + odw; (2-7)

where x is the price, wy denotes the Wiener process, 6 equals the drift or growth rate and o
equals the volatility. An important feature of Equation (2-7) is that the change in a logarithm
of z is normally distributed with mean (6 — 20%) and variance o?t. If the growth rate 6 and
volatility ¢ are known, Monte Carlo computations can be carried out in order to simulate
paths that x can follow.

When translating the theory as described above to asset replacement, one can think of = as
the operating cost over a life cycle of a physical asset that deteriorates in time. Suppose
that the operating cost increases in time geometrically with a growth rate 8 and volatility o.
Suppose further that at some cost limit it will be economically more efficient to replace the
asset for a new one. Different simulations can then be performed by means of Monte Carlo
simulations. Figure 2-3 illustrates ten samples that were computed for a geometric Brownian
motion.

It can be observed that the times at which the samples hit the cost limit are different and are
in fact stochastic variables. The distribution of the hitting times can be computed as well.
The use of a closed form solution for the hitting time distribution is a scientific contribution
in the area of engineering asset management. The red dashed line in the figure highlights the
deterministic operating cost process, in which there is no uncertainty (i.e. volatility is zero).
A deterministic approach assumes a single growth rate and does not take into account the
possibility that operating cost might decrease (e.g. because of maintenance interventions on
the asset).

2-3-3 The single discount rate approach

The single discount rate approach is only slightly different from the previous approach, from
the fact that a single discount rate is used for discounting future cash flows, rather than

R. Hilwerda Master of Science Thesis
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GBM samples
4000 oo T e T e T o e A

- = Costlimit
- - Fitted cost curve

Costs (EUR)

0 10 20 30 40 50 60 70 80
Age of asset (years)

Figure 2-3: Samples of a geometric Brownian motion with drift

risk-neutral probabilities. Actual probabilities are used for the operating cost process. [11]
reason that the single discount rate approach is not entirely mathematically correct, because
it allows for arbitrage in financial markets. However, the authors reason that in situations
when one cannot reasonably predict future variables, it is unlikely that the single discount
rate approach will yield an outcome that significantly differs from the outcome of the risk
neutral approach. In the case study it was found that the operating cost process is a very
uncertain process with high volatility. Therefore, the single discount rate approach can be
applied. During the literature review, a model was found that is specifically developed for
modelling operating cost as a geometric Brownian motion with drift [18]. This model is
explained in the next chapter.

2-4 From financial to real options

Stochastic uncertainty modelling finds its roots in financial option valuation. To illustrate the
analogy with a financial option, the valuation process of a call option in finance is explained.

A call option gives the holder the right to buy stock at a given exercise price (or strike price)
on or before a particular date [7]. European call options can only be exercised on the maturity
date, whereas American call options can be exercised on or before the maturity date. The
flexibility that options give has value which is reflected in the option price that a holder needs
to pay. The profit that an option holder makes depends on the future stock price. The payoff
diagram in Figure 2-4 illustrates this. It can be observed that from a certain stock price, the
payoff increases with the stock price.

Determining the value of a call option has been problematic in the past, until Fischer Black
and Myron Scholes presented their famous paper on option pricing [19]. The Black and
Scholes formula uses a lognormal distribution to model the probability of stock prices. The
formula is as follows:
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12 Asset replacement: deterministic versus stochastic

%
E strike
] 10 20 1] 40 50 G0
Stock Price
Figure 2-4: Payoff diagram of a call option [4]
Value of call option = [N(d;) * P] — [N(d2) * PV(EX)] (2-8)
where
log|P/PV(EX t
oVt 2
dy=dy — oVt (2-10)
with

N(d) = the normal distribution of d;

EX = the strike price of the option;

PV (EX) = the risk-free discounted strike price;
t = number of periods until strike;

P = the current stock price at tg;

o = the standard deviation of the stock return

A holder of an American call option has the opportunity to wait for more information - that is,
stock price - before making the decision to exercise. This option to wait for more information
could easily be translated to the physical asset world. In this case, the option is known as a
real option. When a decision-maker wants to make an investment, he or she has the option to
wait with investing. For example, a decision-maker who wants to invest in a steel plant might
want to wait for higher steel prices, which will affect the future cash flows. This option also
has value and this value can be computed. The real option philosophy can also be extended
to asset replacement: a decision-maker who wants to replace an asset is in fact making an
investment decision. Every year, the decision-maker will gain new insight and information
on the asset, in this case in the form of incurred maintenance and operating cost. If it turns
out that maintenance and operating cost in a certain year was low, the decision-maker has
the option to wait with replacement until maintenance and operating cost rises to a higher
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level. Or, when maintenance and operating costs turn out to be higher than predicted, the
decision-maker can decide to replace earlier. The option to wait with replacement is important
because information that becomes available later has value.
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Chapter 3

Model and case study

This part has been removed from the report. It has been captured in the form of a journal
article. For reference, please see Appendix B.
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Chapter 4

Automating the replacement policy

4-1 Introduction

If one wants to apply the stochastic asset replacement model, input data such as operating
cost and asset price information is required. Nowadays, firms have the opportunity to cen-
tralise this data into Computerised Maintenance Management Systems (CMMS). Another
feature of CMMS is that decision-makers can assign information and data to assets, perform
computations and generate business intelligence reports. Consequently, an opportunity arises
that allows for automating this process. This chapter introduces a Python script that can
transform real time data into model parameters, such as drift and volatility of the geometric
Brownian motion, and output values, such as the trigger replacement level and the average
replacement year. First, the concept of CMMS is explained. The requirements for automated
replacement are laid out and finally a recommendation is made that applies to the case study
within the asset management firm.

4-2 Computerised Maintenance Management Systems (CMMS)

A CMMS can be regarded as a data storage platform for maintenance works. It also functions
as a central communication platform that allows involved stakeholders to adjust workorders
and update work related information. Consequently, the progress of a workorder, such as
an inspection or repair, can be tracked by all stakeholders. Regarding the case study, the
asset manager manages the petrol stations by means of this central information system. The
system comprises of an online environment, in which the maintenance leads can track all
workorder related information. The core of the database requires an asset matrix and a
repair matrix, so that the stakeholders, such as contractors and staff that works on-site, can
select the correct asset and the correct repair task, or upload invoices. Stakeholders can do so
by using the corresponding CMMS application on their smartphones. An additional module
is the Business Intelligence (BI) module, in which BI reports can be drawn up.
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4-3 Recommendation

If a decision-maker wants to automate the stochastic replacement model, several requirements
need to be met. They can be distinguished into three categories:

1) Real time input parameters of the model

The input parameters of the model are listed in Table 4-1.

Input parameter | Symbol | Description

O&M cost C(t) Operating and maintenance cost linked to the asset in CMMS
Age of the asset t; The age of the asset or the current year minus the building year
Interest rate r The rate at which life cycle costs of the asset are discounted
Price of new asset K The price of a new asset and linked to the asset in CMMS
Salvage value S The salvage value of the asset and linked to the asset in CMMS

Table 4-1: Input parameters of the stochastic model

It is important that all financial data are linked to an asset in the asset matrix. Missing
data might lead to an underestimation of O&M cost. The model will then yield an incorrect
replacement policy.

2) A CMMS module that allows for computation of real time data

It is required that the CMMS contains a module that is able to gather the input data and can
transform the data to the output values by means of a programming language. In the case of
the CMMS used in the case study, Python can be used in combination with the software.

3) A programming script that transforms input parameters to the output values of the stochas-
tic model

The script acts as the black box that transforms input parameters into the output values. In
the case study, Python was used to write a script that is able to do this. The Python script
that was written to automate the mathematical stochastic model that was used in the project
can be found in Appendix A. If the requirements as described above are met, an automated
replacement policy can be made possible.

Recommendation for the asset manager The CMMS that is used in the case study does
not yet meet all the requirements. It was found that out of the five input parameters needed,
only real time O&M cost is stored. A recommendation for the other parameters is given
below.

Age of the asset - In the CMMS, only the age of the asset components are stored (such as
a 3-in-1 system or a boiler). In order for the model to work, the installation date of the
entire HVAC system has to be stored as well. In the software, this is not yet possible. It is
recommended to have an additional parameter input per location added in the software, so
that this information can be added.

Interest rate - The interest rate can be either added within the CMMS or the value can also be
captured within the Python script. A disadvantage is that the latter makes it more difficult
for a decision-maker to adjust the value. It is recommended to store the value within the
script, only if the interest rate is assumed to remain relatively stable over time.
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Price of new asset and salvage value - The price of a new asset should also be available in
the CMMS. In the current software version, it is not possible yet to add this information. It
is recommended to have an additional parameter input per asset added in the software. This
also goes for the salvage value of the asset.

The second and third requirement are available in the case study. The BI module can be used
to make the replacement policy. The script that is needed is provided in the Appendix.
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Chapter 5

Conclusion and recommendations

This study has introduced the use of a closed form solution of the expected economic life dis-
tribution of asset systems when operating cost follows a geometric Brownian motion (GBM).
Secondly, this study has tested a practical application of a theoretical stochastic asset replace-
ment model. The case study that was used involves HVAC systems of a network of petrol
stations in the Netherlands. New insights and barriers are introduced when implementing
stochastic models in practice, an explicit parameter estimation method is provided and the
validity of using a geometric Brownian motion for modelling operating cost is discussed. Fi-
nally, the modelling process can be automated and a Python script is provided that can
perform this.

With the closed form solution, it is now possible to analyse asset groups on a system level.
For instance, assets can be analysed or compared on different geographical systems (e.g. on
provincial level or national level), different weather systems or different asset types. The closed
form solution yields the exact distribution of the expected replacement year, making discrete
Monte Carlo simulations obsolete. An advantage of the expected economic life distribution is
that data of multiple assets can be used. This is beneficial for situations in which operating
cost data is absent, as is often the case.

It was found that using geometric Brownian motion for operating cost modelling is possible,
but regression diagnostics of the data showed that the data points are not perfectly scattered.
The linear increase of the variance in the model did not correspond with the actual variance
development of the data. Although a GBM proved successful in modelling uncertainty, it was
also found that it cannot model the reality perfectly. Minimum inspection costs and fixed
maintenance intervals could not be captured because of the random walk process. The model
has additional limitations, such as fixed capital outlay values, salvage values and discount
rates. It would be interesting to test other theoretical models that have different assumptions.
Secondly, when implementing the model in practice, firms are required to have all operating
cost data available per asset. In reality, this might not always be available. It should also be
noted that the expected replacement year is highly elastic to changes in the drift parameter
(0). Therefore, caution should be taken when estimating the model parameters. Finally, it
should be noted that the model assumes a continuous GBM, whereas in the case study, data
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was provided on a monthly basis. It is not clear whether this has a significant impact on the
outcome of the model.

The main research question involved the question on how theoretical stochastic asset replace-
ment models can be used in practice and how they can be automated. It was found that
using the theoretical model as described in this paper in practice is possible, but one should
be aware of model assumptions and limitations. When one wants to apply the theoretical
model in a real case, a weighted least squares (WLS) regression can be carried out to transform
data into the required model parameters. Automating the process through a Computerised
Maintenance Management System (CMMS) is also possible, but the CMMS used in the case
study needs additional features to support this. Within the CMMS, several new input value
fields are required, such as the interest rate, capital value and salvage value. More research
is needed to test if other CMMS systems are capable of running the asset replacement model
in an automated process.
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Appendix A

Python script

Step 1 - Plotting the data points and computing the model parameters
Input

# import the modules needed for the script
import pandas as pd

import matplotlib.pyplot as plt
Jmatplotlib inline

import numpy as np
#plt.style.use(’grayscale’)

import random

from scipy.stats import norm

# import the excel file and select the relevant columns

df = pd.read_excel(r’C:\Users\robert.hilwerda\Downloads\PYTHON\datafinal.x1lsx’,
usecols= [’Accumulatiewaarde’, ’Leeftijd’])

df = df[df.Leeftijd !'= 0]

#plot data points

t_data = df[’Leeftijd’]

C_data = df[’Accumulatiewaarde’]

plt.plot(t_data , C_data, ’x’, ¢ = ’black’, label = ’Asset’)

#### Weighted Least Squares ####
#Assign weights
w = np.zeros(len(df))
for i in range(0, len(df)):
if df[’Leeftijd’].iloc[i] == 0.0:
wl[i] = 1.0
else:
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wli] = 1.0 / df[’Leeftijd’].iloc[i]

#Calculate weighted means:
t_w = np.sumn((w * t_data)) / np.sum(w)
C_w = np.sum((w * np.log(C_data))) / np.sum(w)

#Calculate estimates

beta_1 = (sum(w *(t_data - t_w)*(np.log(C_data) - C_w)))
/ sum((w *((t_data - t_w)**2)))

beta_ 0 = C_w - beta_1 * t_w

C_0 = np.exp(beta_0)

print ’Estimate for C_O0 =’, C_O
print ’Estimate for (theta - 0.5 sigma”2) =’, beta_1

#Calculate variance and standard deviation:
var = (np.sum( w *((np.log(C_data) - beta_O - beta_1xt_data)**2))) / (len(df)-2)
sigma = var**0.5

print ’Estimate for sigma = ’, sigma
theta = beta_1 + sigma**2/2
print ’Estimate for theta = ’, theta

# Plot fitted curve
print ’Weighted Least Squares fitted curve:’
print ’Fitted curve: C_0 =’, C_O.round(2), ’* exp(’, beta_l.round(4), ’* t)’

def fitted_curve():
x = np.linspace(0, df[’Leeftijd’].max(), df[’Leeftijd’].max() + 1)
y = C_O * np.exp(beta_1 * x)
return y

plt.plot(fitted_curve(), ’--’, label = ’Fitted cost curve’)
#plt.legend(bbox_to_anchor=(1.5, 1.0))

#plt.title(’Costs of HVAC systems of in 2018’)
plt.xlabel(’Age of asset in years’)

plt.ylabel(’Operating cost in EUR’);

# Determine variance of estimators

var_beta_0 = ( 1 / sum(w)) +( ( t_wx*2) / sum (wx(t_data - t_w)**2))* sigmax*2
var_beta_1 = sigma**2 / sum ( w * (t_data - t_w)*x2)

print ’Variance of estimator C_O =’, var_beta_0

print ’Variance of estimator (theta-0.5%sigma”2) =’, var_beta_1

print ’SD of C_O =’, 100*np.sqrt(var_beta_0), ’%’
print ’SD of (theta-0.5%sigma”2) =’, 100*np.sqrt(var_beta_1), ’%’

# RESIDUAL PLOT
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t_data
C_data

df [’Leeftijd’]
df [’Accumulatiewaarde’]

#plt.plot(t_data , np.log(C_data), ’x’, c = ’black’, label = ’Asset’)

def fitted_curve_log():

x = np.linspace(0, df[’Leeftijd’].max(), df[’Leeftijd’].max() + 1)

y = C_O * np.exp(beta_1 * x)
return np.log(y)

#plt.plot(fitted_curve_log(), ’--’, c = ’black’, label = ’Fitted cost curve’)

### RESIDUAL PLOT ###
#print C_data

residual = np.zeros(len(C_data))

for i in range(0, len(C_data)):

#print np.log(C_datal[i]) - fitted_curve_log()[ df[’Leeftijd’].iloc[i] ]

residual[i] = (( np.log(C_datalil) ) - fitted_curve_log()
[ df [’Leeftijd’].iloc[i] 1) / df[’Leeftijd’].iloc[i]
#print residual
plt.plot(t_data, residual, ’x’, ¢ = ’black’)
plt.axhline(c = ’black’)
plt.xlabel(’Age of asset in years’)
plt.ylabel(’Residuals’)

Output

Estimate for C_O = 1848.59310194

Estimate for (theta - 0.5 sigma™2) = 0.0264237709624

Estimate for sigma = 0.10323826293

Estimate for theta = 0.0317528404288

Weighted Least Squares fitted curve:

Fitted curve: C_O = 1848.59 x exp( 0.0264 * t)

Variance of estimator C_O = 0.0293459690591

Variance of estimator (theta-0.5%sigma™2) = 2.15743770738e-05
SD of C_O = 17.1306652116 Y,

SD of (theta-0.5*sigma”2) = 0.46448226095 %
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Figure A-2: Residual plot
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Step 2 - Determinstic replacement policy calculation

Input

Calculate minimum present value
SPECIFY VARIABLES

0.04 # DISCOUNT RATE

15000 # PRICE OF NEW ASSET
3000 # SALVAGE VALUE

0N XN K # #
I

def PV(x,y):
return y
x = np.linspace(1,30,31)
y = ((1-np.exp(~r*x))**x-1)*((((C_0)*(np.exp((theta-r)*x)-1)/(theta - r))) + K -
(S * np.exp(-r*x)))
plt.plot(x,y, ¢ = ’black’, label = ’Present value of life cycle costs’)
#plt.axhline(y = np.min(PV(x,y)), ¢ = ’r’, 1s = ’—-=?)
plt.axvline(x = np.argmin(PV(x,y)), ¢ = ’black’, 1ls = ’--’, label =
’Optimum replacement year’)

print ’Operational cost limit: EUR’, C_O * np.exp((theta) * np.argmin(PV(x,y)))
print ’Optimum replacement in year’, np.argmin(PV(x,y))

print ’Present value: EUR’, np.min(PV(x,y))

plt.legend(bbox_to_anchor=(1.8, 1.0))

plt.title(’Present Value of life cycle costs’)

plt.xlabel(’t, Age of asset [years]’)

plt.ylabel(’y(t), Present Value [EUR]’);

Output

Operational cost limit: EUR 3273.88054409
Optimum replacement in year 18

400000

Present Value of life cycle costs
T : —

— Present value of life cycle costs

350000 |- - - Optimum replacement year

300000

250000 |

200000 |

150000 |

y(t), Present Value [EUR]

100000 -

50000 . . . L L
0 5 10 15 20 25 30
t, Age of asset [years]

Figure A-3: Deterministic replacement year
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Step 3 - Stochastic asset replacement

Input

#### PROBABILISTIC REPLACEMENT ####

# importing the other modules needed for the script
import random
from scipy.stats import norm

#########H# CALCULATE COST LIMIT #############
# Define roots of the differential equation
R1 beta_1

R2 = (R1#%2 + 2%sigma**2*r)**0.5
labda_1 = (-R1 + R2) / sigmax**2

# Numerically solving for C
Initial_Guess = C_0O
ans = (Initial_Guess*((1-labda_1)-(C_0/Initial_Guess)**(labda_1))) + ((C_O+(K-S)*
(r-theta)) * labda_1)
for n in range(0,500):
while ans < -5 or ans > b:
Initial_Guess += 10
ans = (Initial_Guess*((1-labda_1)-(C_0/Initial_Guess)**(labda_1)))
+ ((C_0+(K-S)*(r-theta)) * labda_1)
#print (’Current Guess: C =’, Initial_Guess, ’Ans =’, ans)
else:
C = Initial_Guess
break
print ’Operational cost limit: EUR’, C

Output
Operational cost limit: EUR 3478.59310194

Step 4 - PDF of expected replacement year
Input

V_0 = np.log(C) - np.log(C_0)

def pdf():
X = np.linspace(0,40,41)
y_ptl = V_0 / ( (sigma) * np.sqrt(2 * np.pi * x**3))
y_pt2 = np.exp(-(( V_0 - beta_1*x) **2)/( 2ksigma**2+*x))
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y = y_ptl * y_pt2
plt.plot(y, ¢ = ’black’)

pdf O

beta_1 = theta - sigma*x2/2
print ’Expected hitting time =’, np.log(C / C_0)/beta_1

plt.axvline(np.log(C / C_0)/beta_1, ymax = 0.46, c = ’black’, 1s = ’-=’)
plt.xlabel(’Age of asset in years’)

plt.ylabel (’Probability’)
#plt.title(’Probability density function of hitting times’);

Output

Expected hitting time = 23.9255429345
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Figure A-4: PDF of expected economic life
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ABSTRACT

Many firms are occupied with determining the optimal replacement time of assets.
Asset replacement is a complex investment decision that requires the estimation of
future cash flows and other parameters. The non-deterministic character of future
cash flows has given rise to stochastic models, that take into account this uncertainty.
When one wants to perform an analysis of assets at a system level, the expected
replacement year value can be used. Until now, the probability distribution of the
expected replacement year had to be computed by means of Monte Carlo simulation.
In this paper, the authors use a closed-form solution of the expected replacement
year distribution when operating cost follows a geometric Brownian motion (GBM).
With this contribution, decision-makers in engineering asset management now have
the opportunity to rapidly analyse and perform probabilistic computations on the
expected economic life of deteriorating assets at a system level. For example, wind
turbine fields can be compared on different levels of maritime conditions . The
approach has been implemented based on a real case study, which concerns HVAC
systems of petrol stations in the Netherlands. The paper describes how to perform a
weighted least squares (WLS) regression that considers the time-dependent variance
of the operating cost, so that model parameters can be easily estimated for real
cases. Finally, several new insights and barriers on implementing theoretical models
in practice are discussed.

KEYWORDS
Stochastic asset replacement; geometric Brownian motion; Expected economic life;
Parameter estimation; Case study

1. Introduction

A recent study conducted in the US found that manufacturers had spent $50 billion
on maintenance costs in 2016 (Thomas 2018). It is safe to say that maintenance costs
take up a significant part of life cycle costs of assets and machinery. Jardine and Tsang
(2005) found that on average 20.8% of the total budgets of firms in manufacturing in-
dustries is assigned to maintenance, which explains why firms aim for maintenance
excellence. The replacement of assets and machinery, which is among maintenance
activities, might increase inordinately if it is badly timed. Determining the optimal
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replacement year of assets is an important and interesting study, but also a complex
one. The aim is to maximise the net present value (NPV) of all related cash flows that
are associated with the asset; thus, a decision-maker needs to estimate these future
cash flows. In reality, maintenance and operating costs behave in a non-deterministic
way and require a stochastic approach. This characteristic has led rise to stochastic
methods, which take into account the uncertainty of life cycle cost development. Al-
though uncertainty and the option to wait are believed to have value that should be
accounted for in investment decisions, conventional methods that assume deterministic
cash flows fail to incorporate this uncertainty (Martins et al. 2013).

Several authors did studies on stochastic asset replacement, both theoretical and em-
pirical. It is observed that two types of research gaps exist; namely, lack of knowledge
on how to use stochastic asset replacement models and issues around implementation
of these models in practice. Regarding the lack of knowledge, Van Den Boomen et al.
(2019) used a stochastic approach on the replacement of public infrastructure assets
when political decisions, structural integrity and prices are uncertain. They observed
that in the application of stochastic methods in practice, there is no consensus on the
choice of using either decision tree analysis (DTA) or using a stochastic process. A
study on ship fleet replacement concluded that extending the theoretical framework
to include new assumptions requires computational skills and new algorithm designs
(Zheng and Chen 2018). Richardson et al. (2013) study replacement decisions of heavy
machinery when operational expenditure costs and lead-time of orders are uncertain.
Regarding the cost modelling, some authors suggest the use of the geometric Brown-
ian motion (GBM), whereas others propose the arithmetic Brownian motion (ABM).
Such a choice can result in large differences in the estimated cost. Among the issues of
implementation of stochastic asset replacement models in practice, Van Den Boomen
et al. (2019) point to the complexity and the difficulties in estimating model variables,
in particular Zambujal-Oliveira and Duque (2011) highlight the difficulty of estimating
the volatility parameters.

It is observed that none of the found studies describe explicitly how to perform a
statistical regression that accounts for time-dependent variance and how to transform
existing real data to model parameters such as drift and volatility. Furthermore, it
is observed that none of the existing case studies reflect on the validity of using a
Brownian motion to model operating costs.

To cover both research gaps mentioned above, this paper presents a novel frame-
work to determine the optimal asset replacement accounting for the stochasticity of the
problem. A major novelty of the study is the use of a closed-form solution of the prob-
ability density function of the expected replacement year, which has not been found
before in the engineering asset management literature. The expected replacement year
allows for a collective analysis and comparison of different asset groups or systems.
In addition, the conventional applied methods, e.g., Monte Carlo simulation, can only
obtain point estimates, thus closed-form solutions allow analysts to better understand
the impact of variations in price and cost (Lima and Suslick 2005). Furthermore, the
proposed approach has been applied to a real case, allowing for an analysis on the val-
idation of the assumptions of this model. A weighted least squares (WLS) regression
accounting for the increasing variability with time is carried out that transforms real
data into the required parameters of the stochastic model.

The remaining document is organised as follows; Section 2 gives a brief introduction
of stochastic asset replacement, Section 3 describes the theoretical model that is used
throughout this paper and presents the closed form solution of expected economic
life. In Section 4 the case study is introduced and discussed in Section 5. Finally, in



Section 6 some conclusions and future research lines are drawn.

2. Asset replacement: deterministic versus stochastic

Conventional Discounted Cash Flow (DCF) methods for investment decisions require
a decision-maker to estimate all future cash flows in a deterministic manner. In the
case of engineering asset management, this method yields a replacement strategy that
takes into account the information available only at present, that is, information that
becomes available in a later stage cannot change the outcome of the investment value.
This is often considered an important drawback (Dixit et al. 1994, Guthrie 2009).

The stochastic character of cash flows can be incorporated by taking into account
different possibilities with regard to future values of uncertain cash flows (Van Den
Boomen et al. 2019). In the literature, two main approaches to uncertainty modelling
can be distinguished. They are the decision-tree analysis (DTA) and the stochastic
process, a modelling technique that models cash flows by means of random walks. The
approaches differ in the way that future values and their probability of occurring are
determined. In the former, future values of cash flows in combination with their ex-
pected probabilities need to be determined by the decision-maker. These future values
are then captured in a decision-tree, for which the expected present value can finally
be computed, based on the given probabilities and values. This approach thus requires
the decision-maker to predict both future costs and their corresponding probabilities.
The latter approach uses a stochastic process for modelling cash flow development.
The cash flows are modelled by the stochastic process which are partially determined
by a random walk, also called a Wiener process. Future cash flows and probabilities
do not require a decision-maker to predict these values. Instead, input parameters are
required to generate a random path of the cost process. These input parameters are
often estimated by analysing historical data or by means of expert judgment. The
stochastic process approach can be applied when a decision-maker does not know fu-
ture outcomes in advance, as it makes use of a stochastic model that generates random
cost paths. Within the stochastic process approach, future costs can be discounted by
using a single discount rate and actual probabilities. However, it is also possible to
make use of so-called risk-neutral probabilities, a method which is also known as the
replicating portfolio method (Guthrie 2009). Van Den Boomen et al. (2019) argue that
using a single discount rate is not entirely mathematically correct, because it allows
for arbitrage. However, the authors reason that in situations when one cannot reason-
ably predict future variables, it is unlikely that using a single discount rate will yield
a different outcome than the outcome of the replicating portfolio method.

There seems to be a wide consensus among authors about the need for more empiri-
cal studies on the topic of investment and uncertainty. Trigeorgis and Tsekrekos (2018)
state in their review that only 10 percent of the contributions discussing uncertainty,
investment and stochastic processes were empirical studies. The authors suggest that
more empirical work is needed to bring theoretical concepts closer to practice. Echoing
this issue, the present document makes use of a real case to show the challenges of
implementing the proposed approach.

The next section discusses the mathematical model that is used throughout the pa-
per. As stated before, operating cost development is uncertain and cost might increase
or decrease. This probabilistic characteristic of the cost process can be accounted for
by using a stochastic process in which operating cost can either go up or down. In
the model used in this paper, a random walk (Wiener process) is used to capture



this uncertainty. It is assumed that in the long run, operating cost increases as a re-
sult of asset deterioration. This increase is captured by a drift parameter. Drift and
uncertainty are then combined in the form of a Brownian motion with drift.

3. Mathematical model

3.1. Introduction of the model

The model that is used throughout this paper is the stochastic machine replacement
model as proposed by Dobbs (2004), which provides the basic mathematical overview
of the model. This model is the basis of a number of more complex approaches that
consider several extensions, such as assuming stochastic capital values or salvage val-
ues. For the aim of this paper, the most simple version of this model is used. It should
be noted that the model uses a single discount rate to discount future costs. The oper-
ating cost process is modelled by a stochastic process. Secondly, it is important to note
that the operating cost process is modelled by a continuous process. Third, the model
assumes an infinite replacement cycle of the asset. Finally, an important assumption
in this model is that the initial outlay, the operating cost profile and salvage value
are constant in each replacement cycle. The model does not allow for technological
progress or price changes. The implications of these assumptions in practice are dis-
cussed in Section 5. Dobbs assumes that operating costs increase by a constant rate.
This is then extended by incorporating uncertainty through a geometric Brownian
motion with drift, in which the increment of operating costs ¢; is described by:

dCt/Ct = 9dt+0’th (1)

where 6 describes the growth rate of operating costs, o represents the volatility and
Wy is a Wiener process.

The assumption of operating costs behaving as a Brownian Motion with drift is not
new. Richardson et al. (2013) found that using a Brownian motion to model operating
costs allows for a compact presentation. Beichelt (2006) claims that in general, all linear
processes that are permanently disturbed by random influences can be successfully
modelled by a Brownian motion with drift. Another advantage of using Brownian
motion is the attractive mathematical properties it carries (Lindqvist and Skogsrud
2008). However, it has also been found that validation of these models when used in
case studies is often absent (Nicolai 2008). Dinwoodie et al. (2015) explain that it
can be difficult for researchers to obtain suitable data to perform model validation, as
historical data is often not available. Shi and Min (2014) also experienced this. They
state that, even though some applications might not be fully supported by a GBM,
operating costs share important features with a GBM: they increase in time, which
is captured by the drift parameter; the uncertainty of operating costs can then be
captured by the volatility parameter. As models can only represent reality in part,
they are subject to several limitations, as occurs with GBM. The most important
limitation is the assumption of a constant volatility rate. The model does not allow
for time-varying volatility.

At some point, it will be more cost efficient to replace an asset, rather than keep
the asset alive. This point is captured by a cost limit ¢, also called the trigger level.



The replacement level can then be regarded as an optimisation problem which can
be solved by finding the value ¢ that minimises the expected present value costs for
the entire replacement chain. The trigger value is a deterministic function of K (the
initial outlay), S (the salvage value), ¢y (the level of operating costs in year zero),
0 (the growth rate of operating costs), r (the discount rate) and o (the volatility of
operating costs). The trigger level is the solution to a differential equation and can be
described by the following equation (Dobbs 2004):

c[(l—/\)—(co/c)’\ + co—I—(K—S)(r—G)])\:O (2)
with
A= (=R;y+ Ry)/o” (3)
where
Ri=6- 302 (4)
Ry = (R2 + 20%r) " (5)

Equation (2) is a non-linear equation that can be solved numerically.

According to the model, the economic life of an asset is a random variable. One
way of obtaining this value is by performing a number of Monte Carlo simulations and
take the average of the trigger level hitting times. The hitting time 7; is here defined
as the time it takes for a sample path ¢ to hit the replacement trigger level (see Figure
1). The estimator for the expected economic life T', simulating n runs, is thus:

T:ZTi/n (6)

The outcome will be an approximation, as the simulations need to be conducted within
a discrete time framework.

3.2. Closed-form solution

According to Dobbs (2004), an analytical method or closed-form solution for obtain-
ing the expected replacement year is not available. However, given that a GBM is a
stochastic process in which the logarithm of the variable follows an ABM with drift,
the probability density function of the hitting times of a GBM can be obtained by
means of an extension of the hitting time distribution of an ABM with drift. The
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Figure 1. GBM sample paths can be generated by means of Monte Carlo simulation

density function of the hitting time distribution of arithmetic Brownian motion equals
(Karlin and Taylor 2014):

_ c—Cp
f(t;c0,¢) = ——=exp
T oV 2rt3

(7)

202t

(E —Cco — 0t)2]

For the case of geometric Brownian motion, Equation (7) can be adjusted by substi-
tuting 6 with (6 — %2) and the barrier (¢ — ¢g) with (In¢/cp). The new probability
density function becomes:

F(t:co, ) = Mexp [_ [ln (¢/co) — (0 - %2> t]2] .

oV 2mt3 202t

This closed-form solution has not yet been applied in the area of engineering asset
management. The closed-form solution defined in Eq.(8) allows decision makers to
obtain the probability of average life of a given asset, based on the historical data of
such asset. However, as mentioned, these data are usually scarce, which reduces the
applicability of the approach.

The authors note that for a group of assets belonging to the same system (e.g.,
wind turbines in a WT field), the historical data can be aggregated and used to obtain
the average economic life at a system level. The average economic life is the expected
value of the above density function:

ln(E/CQ)

(- %)

E[f(t;co,0)] =



It should be noted that the average economic life might be different than the eco-
nomic life of an individual asset. In the next section, the model as described above is
applied in practice.

4. Application of the model

4.1. The petrol station network case

The case study concerns the life cycle costs of Heating, Ventilation and Air Condition-
ing (HVAC) systems of a petrol station network in The Netherlands. Part of the asset
management process involves the planning of replacing HVAC systems. The replace-
ment policy resembles the age replacement model. HVAC systems are either replaced
correctively upon failure or when the system is considered deteriorated.
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Figure 2. Operating costs of petrol station HVAC systems in 2018

Figure 2 shows the operating cost of all individual HVAC systems of the petrol
stations. A first observation of the figure reveals that operating cost is increasing as
assets age, but with high variance. A second observation is a horizontal asymptote,
which equals the minimum operating cost per year. This minimum of EUR 1755 equals
the yearly inspection cost of an HVAC system. In order to obtain the optimal replace-
ment time by applying the proposed mathematical framework, the model parameters
should be obtained based on the observed data. With this aim, a regression model is
proposed. It is noted that the regression model should capture the increasing variance
of the data with time. The methodology is presented in the following section.

4.2. Parameter estimation

The cost data as shown in Figure 2 can be used to estimate drift () and volatility
(0) parameters for the GBM in the model of Equation (1). To obtain the parameters,
a statistical regression model can be fitted to the data. Standard linear regression
techniques assume a constant variance (Rawlings et al. 2001). However, the variance
of a Wiener process grows linearly with the time horizon. This characteristic should
thus be accounted for in the regression. A weighted least squares (WLS) regression



can overcome this by assigning different weights to the data points. The variance of
the errors can be described by

o2
Var(e;) = — (10)

W;

in which w; is a positive constant that is inversely proportional to its corresponding
variance, describing the weight in the regression. If we suppose that the model can
be written in the form y; = By + Bix; + € with i = 1,2,...,n and ¢ ~ N(0,02/w;),
then the estimates of fy and 51 minimise the weighted sum of squares Sw(ﬁo, Bl) The
estimates are unbiased and are computed as follows:

Bo = T — P1Tw (11)

6 = Yo wi i — Tw)(Yi — Yu)

12
> i1 Wi — Tw)? (12)
with weighted means
_ Z:’L—l Wi g
Ty = = 13
“ > i Wi (18)
n

7, = L (14)

it Wi

The variances of the estimators can be computed as follows:
s 1 72

Var = + s o? 15
() D wi Yy wiTi — Tw)? (15)

~ 0‘2
Var(f1) = (16)

Do Wi — Top)?

An unbiased estimator for o2 can also be obtained. It equals the weighted error
mean square:

o2 — quiﬂ_o,fl) _ 2im wi(Q;:iO — frai)? (17)




in which Sw(ﬁo, Bl) equals the weighted sum of squares. The continuous form solution
of the differential equation as described in Equation (1) equals

o2
¢t = cpexp [(9 - 2) t+ O'Wt:| (18)

with Wy being a Wiener process. By taking the logarithms of both sides, a linear form
that is compatible with WLS can be obtained:

2
Inc; =Ilney + (0—02>t+aWt (19)

Here, cW; represents the error term of the linear regression. Also note that the variance
of a Wiener process increases linearly in time. The variance of the error is then:
Var(cW;) = o*Var(W;) = ot (20)

The weights in the regression are therefore:

W; = — (21)

~+~
ST

The linear regression model y; = Sy + S1x; + €;, can then be used by substituting y;
2

into Incs,, fp into Incg and B into (6 — %) and estimates of the model parameters

can be obtained.

4.3. Results

The input parameters that were used in the case study are summarised in Table 1.
Weighted least squares regression resulted in a drift (6) of 0.0318 and a volatility
(o) of 0.103. The estimate for the operating cost in year zero, ¢y, is EUR 1848. The
standard deviations of the estimates were also obtained. For ¢y and the estimator for
(0 — %2) they are 17,1% and 0.46% respectively. The trigger level for replacement, ¢,
as given by Equation (2), equals EUR 3479. Asset replacement is thus triggered when
the operating cost in a particular year reaches this level. The probability function of
the hitting times as described by Equation (8) can then be computed and is shown
in Figure 3, along with the expected economic life. In the case study, the expected
economic life is 23,9 years, as highlighted by the vertical dashed line in Figure 3. A
conventional discounted cash flow method without uncertainty was also performed,
yielding a replacement in year 18. This verifies the real option philosophy, stating that
uncertainty creates value. In the case of asset replacement, increasing uncertainty
means postponing the optimal replacement year.



Table 1. Input parameters that were used in the case
study

Description Symbol Value

Discount rate r 4%
Initial outlay of new asset K EUR 15.000
Salvage value S EUR 3.000
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Figure 3. Probability density function of trigger level hitting times

4.4. Sensitivity analysis

It is of interest to determine the influence of the input parameters on the final output,
for that reason, a sensitivity analysis has been conducted to gain further insights on
the model. For this study, a sensitivity analysis is performed specifically on the case
study in order to observe the impact of a 10 percent parameter increase on both the
replacement trigger ¢ and the replacement year 7. The results are listed in Table
2. It can be observed that expected economic life decreases significantly when the
drift (0) increases. It is therefore crucial for decision-makers to determine the drift
parameter accurately, because a small change can have a significant impact on the
expected economic life. A second observation is that the expected economic life is
rather inelastic with respect to interest rate (7). this is a very interesting result, given
the uncertainty that this value involves. This corresponds with the findings of other
authors, e.g. [here]. Also, as the initial capital outlay K increases, or when the salvage
value S decreases, the expected economic life increases, as it will be economically more
efficient to wait with the investment. The impact of uncertainty on decision-making
is central in this paper. Therefore, an additional analysis is carried out with regard to
the impact of volatility (o) in the model. The impact of changes on the replacement
trigger and the replacement year are shown in Figure 4. It can be observed that
both the trigger level for replacement and the expected replacement year increase
exponentially with increasing volatility. Higher uncertainty leads to a higher expected
economic life. This characteristic has been found in many other studies [author]. It
has also been adopted as the option effect, which states that the option to wait has
value and should thus be accounted for in investment decision-making.
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Table 2. Sensitivity analysis on the case study data, showing the impact of a 10% parameter
increase on ¢ and T'

Parameter Value c Percentage change T Percentage change
Benchmark value — 3479 24.6

0 0.0349  3498.59 +0.56% 21.57 -12.3%

o 0.113 3504.97 +0.75% 25.22 +2.52%

r 4.4 % 3524.39 +1.30% 24.42 -0.73%

K 16.500  3.602.80 +3.56% 25.25 +2.64%

S 3.300  3.455.12 -0.69% 23.68 -3.74%
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Figure 4. Volatility impact on the trigger level hitting times and average replacement year

5. Discussion

It is of interest to find out the barriers and limitations that arise in practice when
applying a theoretical stochastic asset replacement model, that is, to which extent the
assumptions of the model are supported by the data.

As mentioned before, the operating cost development is assumed to be similar in
each cycle. This implies that the model does not allow for technological progress or
varying growth rates. In the case study, existing HVAC systems that were powered by
gas were replaced by all-electric systems, so the model fails to capture this property.
These new systems might have significant different characteristics in terms of prices
and operating cost.

Moreover, the validation of using geometric Brownian motion (GBM) for modelling
the cost data should be discussed, which is done by performing a residual plot of
the WLS in which the residuals are corrected for the weights (Figure 5). A GBM

11
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Figure 5. Weighted residual plot in which the residuals are corrected for their weights in the regression

for modelling operating cost development would be a good fit if the points in the
residual plot are dispersed around the horizontal axis in a random manner (Larsen
and McCleary 1972). Observation of the residual plot shows that the data points are
not perfectly random dispersed. The residuals seem to converge, which is caused by
the increasing variance of the GBM in time. This characteristic might indicate that
a linear increase of the variance in time does not correspond with the data. One
might therefore argue that a GBM is not a good representation of the operating cost
process. However, because there is no significant systematic pattern disturbing the
residual plot, the assumption of using a GBM is supported.

A mathematical limitation arises in the fact that the model assumes a continuous
geometric Brownian motion, whereas the data points in the case study were only
available on a monthly basis. The implication is that both the model estimates and
the weight variances that were obtained are different from the outcomes that would be
obtained in a discrete framework. The impact of neglecting this is hard to investigate
analytically.

Some practical issues were found with regard to the case. It was observed that data
of asset groups other than HVAC often could not be used, because costs could not
be assigned to single assets, which was caused by the fact that for some asset groups,
lump-sum contracts were held with subcontractors. Cash flows that follow from lump-
sum contracts were not assigned to separate assets.

Finally, it should be noted that the expected economic life value does not imply
that all assets should be replaced on that time. Therefore, to determine the economic
life of a single asset, historical cost data of the one asset is required.

6. Conclusion

This study has introduced the use of a closed-form solution of the expected economic
life distribution of asset systems when operating cost follows a geometric Brownian
motion (GBM). Secondly, this study has tested a practical application of a theoretical
stochastic asset replacement model. The case study involves HVAC systems of a net-
work of petrol stations in the Netherlands. New insights and barriers are introduced
when implementing stochastic models in practice, an explicit parameter estimation
method is provided and the validity of using a geometric Brownian motion for mod-
elling operating cost is discussed.

12



With the closed-form solution, it is now possible to analyse asset groups at a sys-
tem level. Assets can be analysed and compared on different geographical systems or
systems that have different environmental conditions. For example, volatility values
can be obtained for the decommissioning of wind turbine parks, or compared on dif-
ferent levels of maritime conditions or construction materials. HVAC systems could
be analysed and compared for levels of different air quality.

The closed-form solution yields the exact distribution of the expected replacement
year, making discrete Monte Carlo simulations obsolete. An advantage of the expected
economic life distribution is that data of multiple assets can be used. This is beneficial
for situations in which operating cost data is absent, as is often the case.

It was found that using geometric Brownian motion for operating cost modelling is
possible, but regression diagnostics of the data showed that a validation of the fitness
of the selected approach for the analysed dataset is required. The linear increase of the
variance in the model did not correspond with the actual variance development of the
data. Although a GBM proved successful in modelling uncertainty, it is also important
to take into account the limitations in modeling reality. Minimum inspection costs and
fixed maintenance intervals could not be captured because of the random walk process.
The model has additional limitations, such as fixed capital outlay values, salvage values
and discount rates.

Future research will analyse how to extend the closed-form solution to more flexible
initial assumptions. Moreover, the effect of other weight functions for the WLS will
be analysed. Secondly, when implementing the model in practice, firms are required
to have all operating cost data available per asset. In reality, this might not always
be available. It should also be noted that the expected replacement year is highly
elastic to changes in the drift parameter (). Therefore, caution should be taken when
estimating the model parameters. Finally, it should be noted that the model assumes
a continuous GBM, whereas in the case study, data was provided on a monthly basis.
It is not clear whether this has a significant impact on the outcome of the model.

The limitations of the proposed approach are mainly linked to the stochastic model
given that it assumes fixed values for the initial outlay and salvage value and it fails to
capture fixed maintenance interventions. Moreover, the modelled operating costs can
reach values below a minimum maintenance and operating cost level. More complex
models and extensions should be explored to address these limitations.
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BI Business Intelligence

CMMS Computerised Maintenance Management System
CRYF Capital Recovery Factor

DCF Discounted Cash Flow

DT Decision Tree

DTA Decision Tree Approach

EAC Equivalent Annual Cost

MRDP Machine Replacement Dynamic Programming
NPV Net Present Value

O&M Operations and Maintenance

ROA Real Options Analysis

WLS Weighted Least Squares
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