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a b s t r a c t 

With the further development of marine and information technologies, ship intelligence, green policies 

and automation will become mainstream with global cargo ships. Ship labor costs increase every year, so 

for the foreseeable future, the number of experienced crew members will be greatly reduced as smart 

ship emergence accelerates. At present, there is no mature research system for the human-like piloting of 

smart ships. In this paper, we use an improved decision tree, which could address problems of fuzziness 

and uncertainty. This will allow us to study the decision mechanisms of different piloting behaviors in 

order to realize the automatic acquisition and representation of the pilot’s decision-making knowledge in 

inbound ship analysis as well as the simulated reproduction of the pilot’s behavior. The simulation results 

show that the piloting decision recognition model, based on the fuzzy Iterative Dichotomiser 3 (ID3) 

decision tree, possesses a high reasoning speed and can accurately identify current piloting behavior. 

This provides theoretical guidance and a feasibility basis for research into human-like piloting behavior 

and the realization of automatic smart ship piloting systems. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

With the development of marine technologies, information

technologies, and “big data” intelligent applications, smart ship

emergence is accelerating. The improvement of smart ships over

the next 10–20 years will be an important factor in determining

the future direction of the shipping industry. According to Global

Marine Technology Trends 2030, co-launched by Lloyd’s Register

(LR), the Aquinas TEEK group and the University of Southampton,

smart ships are listed as one of the 18 key future marine tech-

nologies. German Industry 4.0, based on big data, is predicting

technique-centric intelligent manufacturing. Through the integra-

tion of networks, entities, and "shore-sea integration" intelligent

information service systems, it promotes the transformation of tra-

ditional manufacturing and the development of smart ships. "Man-

ufacturing in China 2025 ′′ views marine engineering equipment

and high-tech shipbuilding as one of top ten key areas, in which
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mart ships will be an important part. Ship intelligence, green poli-

ies and automation will become the mainstream of global cargo

hips. With the continued improvement of ship intelligence, the

evelopment of unmanned cabin maintenance, auxiliary piloting

echnology, fault self-diagnosis technology and other technologies

ill gradually reduce ship labor needs, potentially achieving un-

anned operation of a ship. In the foreseeable future, the number

f experienced crew members will be greatly reduced, which will

ead to increased ship safety requirements. Therefore, it is neces-

ary to strengthen the relevant theoretical and technical research.

he study of manned piloting mechanisms and piloting behavioral

ecision-making is indispensable and meaningful. 

The accuracy of piloting decisions is directly related to the

afety of water traffic. In the process of decision-making, pilot-

ng behavior is often influenced by multi-source information, such

s crew, the ship and the environment. Due to the limited infor-

ation processing capacity, the pilot cannot concurrently achieve

nowledge acquisition and representation of the multi-source in-

ormation so that piloting decisions can be carried out accurately

nd quickly, which can lead to water traffic accidents. The deci-

ion mechanisms of different piloting behavioral patterns and the

xecution mechanisms of ship operating modes are two important

teps in simulating task aggregation and multi-source information

https://doi.org/10.1016/j.eswa.2018.07.044
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
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timulation ( Wang & Yang, 2006 ; Zheng, Zhang, Huang, & Li, 2012;

ang & Yang, 2008; Xiao, Ligteringen, Van Gulijk, & Ale, 2015 ).

herefore, the automatic acquisition and representation of piloting

ecision-making is essential in ensuring accurate and rapid piloting

ecisions and water traffic safety. The selection of different eval-

ation methods will affect the pilot’s decision-making efficiency

nd accuracy, thus affecting water traffic safety. At present, the

ethods of knowledge acquisition and representation are mainly

ased on knowledge-based research methods, such as fuzzy theory

 Chen, Liu, & Tsai ,20 0 0 ), support vector machines ( Tsang, Kwok,

 Cheung, 2005 ), statistical analysis ( Chen, Wu, Zhong, Lyu, &

uang, 2015 ), rule extraction ( Martınez, Webb, Chen, & Zaidi, 2016;

oradi & Keyvanpour, 2015 ), neural networks ( Liang, Zhiqiang, &

ong, 2012 ) sparse representation ( Chen et al., 2017 ), etc. However,

here is no unified, comprehensive theoretical system, and there

re shortcomings in the evaluation methods. For instance, the sup-

ort vector machine method can solve optimization problems, but

t needs to compute Hesse or the inverse matrix, and the time

omplexity is high. Meanwhile, the storage space and computation

ime requirements are large when the number of training samples

s high. While a neural network can achieve knowledge acquisi-

ion and representation, the model exhibits over-fitting and under-

tting phenomena. The knowledge is implied, not easily tested and

as poor flexibility. Any changes in the system must be re-learned,

o learning convergence can be slow. Therefore, the research on

hip piloting behaviors and decision-making methods needs to be

mproved and further developed. 

Ship piloting behavior decision-making studies are a classifica-

ion of the ship’s operating behavior in accordance with certain

ules. A decision tree is a classification method of data mining

hat can potentially find valuable information by classifying a large

mount of data. It has the advantages of simple descriptions, fast

lassifications, and being suitable for large-scale data processing. It

an learn from the sample, obtain classification rules, and classify

he samples according to these rules. Decision tree methods can

vercome the previously mentioned defects. They integrate knowl-

dge representation and acquisition with a simple and intuitive

orm. This is convenient for expert testing and has higher reason-

ng efficiency. Therefore, it is feasible and reasonable to apply the

ecision tree classification method to the decision-making of ship

iloting behavior. At present, the commonly used decision tree

lassification algorithms include the Iterative Dichotomiser 3 (ID3)

lgorithm, C4.5 algorithm, Classification and Regression Trees algo-

ithm (CART) algorithm, etc. ( Wang & Jiang, 2011 ). In these algo-

ithms, the C4.5 algorithm is complex when continuously process-

ng data, and its workload is large. The CART algorithm is a statis-

ical analysis method appropriate for large samples but is not ap-

licable when processing small sample sizes. The ID3 algorithm is

he most influential decision tree generation algorithm. It chooses

he attribute with the highest information gain as the test attribute

f the current node. It divides the sample set based on the value of

he test attribute, how many different values of the test attribute

xist, the number of subset divisions, and then further divides

he corresponding subset of the sample using a recursive method.

owever, the decision tree construction algorithms above are all

ased on the assumption that the attribute and classification val-

es are clear, so these algorithms cannot address the uncertain-

ies related to human thinking and behavior. Quinlan (1986) noted

hat while classification results of a decision tree are clear, it can-

ot address potential uncertainty during the classification process.

hen the attribute value has a slight change, mutations can inap-

ropriately affect the classification results. The resulting decision

ree generally is not robust, and inaccurate or missing data can

revent in the decision tree growing phase ( Kantardzic, 2011 ). As

 data mining method, the Fuzzy Decision Tree (FDT) is an exten-

ion of the classical decision tree. It integrates the advantages of
uzzy theory and decision trees by combining the comprehensibil-

ty of decision trees and the comprehensive expressions of fuzzy

echnology. The FDT has strong decision-making abilities and can

ddress the problems of ambiguity and uncertainty. Therefore, the

ecision tree is more robust, its comprehensibility is improved, and

he expansion of the algorithm is enhanced ( Janikow, 1998; Olaru

 Wehenkel, 2003 ). 

In view of this, in this paper, we collect data on the full-task

andling simulation platform for large-scale ships named Navi-

rainer Professional 50 0 0. We use the fuzzy ID3 decision tree to

tudy the decision-making mechanisms of different piloting behav-

ors in order to realize the automatic acquisition and representa-

ion of a pilot’s decision-making. This will overcome the shortcom-

ngs of phase separation between representation and acquisition.

e use parameters α and β to control tree generation and carry

ut pre-pruning. We take the average of the optimal interval of

he FDT, the significance level α, and truth level threshold β . This

ethod can identify the current piloting behavior accurately and

as high reasoning efficiency, which provides theoretical guidance

nd feasibility bases for the simulation and realization of smart

hip automatic piloting systems. 

The remaining contents of this paper are organized as fol-

ows. First, the piloting decision-making model and the optimiza-

ion methodology are given. Then, the experimental processes, the

ethod of classification interval division, and the standardization

rinciple of piloting decision-making factors are introduced. Fi-

ally, the performance of the model and optimization methodology

re shown in the next part, and we end with conclusions. 

. Piloting decision-making model 

.1. Grey relation entropy model 

The grey relation analysis method is based on the degree of

issimilarity or similarity of target system to measure the correla-

ion degree between factors or factors and system behaviors ( Deng,

989; Zhang, Guo, & Deng, 1996 ). The grey relation entropy analy-

is method is based on the grey relation analysis method. By using

his method, it could avoid the loss when the local node correla-

ion value controlling the tendency of the whole grey correlation in

etermining the grey correlation degree ( Deng, 1990 ). Therefore, it

an distinguish the impacts of major factors and secondary factors

n the whole system more effectively. 

.1.1. Grey relation grade 

Let X be grey relation factor set (discrete se-

ies), X 0 = { x 0 ( k )| k = 1,2, ···, m } as reference columns and

 i = { x i ( k )| k = 1,2, ···, m }( i = 1,2, ···, n ) as comparison columns.

ue to the inconsistent dimension of various factors, X 0 and X i 

eed to be standardized. Then we get the sequences X 0 
′ and X i 

′ ,
s shown in Eqs. (1) and (2) : 

 

′ 
0 = 

{ 

x 0 (k ) − 1 

m 

m ∑ 

k =1 

x 0 (k ) / S 0 | k = 1 , 2 , · · ·, m 

} 

(1) 

 

′ 
i = 

{ 

x i (k ) − 1 

m 

m ∑ 

k =1 

x i (k ) / S i | k = 1 , 2 , · · ·, m 

} 

(2) 

hich is a standardized matrix for evaluation problems consisting

f n objects and m indicators. 

Among them, S i is the standard deviation of the sequence X i 
′ .

he correlation coefficient of X i to X 0 is: 

( x 0 (k ) , x (k )) 
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min 

i 
( min 

k 
| x 0 (k ) − x i (k ) | ) + ρ max 

i 
( max 

k 
| x 0 (k ) − x i (k ) | ) 

| x 0 (k ) − x i (k ) | + ρ max 
i 

( max 
k 

| x 0 (k ) − x i (k ) | ) (3)

among them, min 

i 
( min 

k 
| x 0 (k ) − x i (k ) | ) is the minimum difference

of two levels, and max 
i 

( max 
k 

| x 0 (k ) − x i (k ) | ) is the maximum dif-

ference of two levels. ρ is a resolution ratio, in (0, 1), if ρ is small,

the greater the difference between the relationship coefficient, the

stronger the ability to distinguish, and ρ usually takes a value of

0.5 ( Wang, Wang, &, Ai, 2014 ). 

2.1.2. Grey relation entropy 

Let X be grey relation factor set (discrete series),

X 0 = { x 0 ( k )| k = 1,2, ···, m } as reference columns and

X i = { x i ( k )| k = 1,2, ···, m }( i = 1, 2, ···, n ) as comparison columns.

R i = { ξ i ( x 0 ( k ), x i ( k ))| k = 1,2, ···, m }, so the grey correlation coefficient

distribution map is called the density value of the distribution, as

shown in Eq. (4) : 

P i 
�= 

ξi ( x 0 (i ) , x i (i )) ∑ m 

k =1 ξi ( x 0 (i ) , x i (i )) 
(4)

The grey relation entropy of X i is expressed as: 

H( R i ) 
�= −

m ∑ 

k =1 

P i ln P i (5)

From the entropy law, we can see that when the grey entropy

of sequence X i is the largest, it means that the influence of X i 

points on the reference column is equal, which indicates that the

distance between X i and the reference column is more balanced,

so X i is closer to the reference column geometry, and X i is the

strongest associated column. From the grey entropy theorem, the

entropy correlation Eq. is: 

E( X i ) 
�= 

H( R i ) 

H m 

(6)

Where H m 

is the maximum value of grey entropy, H m 

= ln n ,

and n represents the maximum value of the difference information

column consisting of n elements ( Deng, 1989 ). 

By entropy correlation criterion, the greater the entropy correla-

tion degree of the comparison column, the stronger the correlation

between the comparison column and the reference column. There-

fore, using the above model, take the ship entry piloting decision

(reflected on the control side, it is the ship rudder combination)

as the reference sequence, with various influencing factors as the

comparison sequence, and various influencing factors as the com-

parison sequence, then comprehensively judge the influence de-

gree of each influence factors on the ship entry piloting decision,

thus determine the order of each influence factors. 

2.2. Fuzzy decision tree model 

A decision tree, also known as a tree model or tree struc-

ture model, is extensively applied in the field of data mining. Its

principle is not complicated, as its basic idea is similar to varia-

tion analysis. Its basic purpose is to divide the total study sam-

ple into several relatively homogeneous sub-samples using some

characteristic(s) (independent variable(s)). The internal variables of

each sub-sample are highly consistent, and the corresponding vari-

ation/impurity falls between different sub-samples as far as pos-

sible. All decision tree algorithms follow this principle, with the

difference being in the definition of variation/impurity, such as

the use of P values, variance, entropy, Gini coefficient, etc. as a

measurement index. According to the predicted dependent variable
ype, the decision tree can be divided into two categories: classi-

cation tree and regression tree. A decision tree is a tree consist-

ng of internal nodes and leaf nodes for classification and decision-

aking, where each internal node represents a test on an attribute,

ach branch represents a test output, and each leaf node represents

 class or class distribution. The top node of the tree is the root

ode, and a path from the root node to the leaf node forms a clas-

ification rule. Decision trees are very intuitive classification repre-

entations and can be easily converted into classification rules. 

The FDT is the expansion and perfection of a traditional deci-

ion tree, which extends decision tree learning to handle uncer-

ainty. There is a lot of blurring in real life. Most knowledge is

mbiguous and uncertain. Thus, experts usually use vague exper-

ise to solve practical problems, and this transforms the traditional

ecision tree learning method. 

To create a FDT, we first must select the classification attribute

t each node. The fuzzy ID3 algorithm uses the concept of entropy.

his concept is inversely proportional to the order degree of the

ata in the sample space. The more ordered the data, the smaller

he entropy, and vice versa. If you select a classification attribute

o classify the sample data at the node so that the entropy of the

ode deceases the most, then it is optimal to choose it as a classi-

cation attribute. The fuzzy ID3 algorithm defines the information

ain ( Umanol et al., 1994 ) to represent the reduction of this en-

ropy, so the attribute with the largest information gain should be

elected as the extended attribute of the node. 

Set the domain as D = { e 1 , e 2 ···, e n } to represent the example set

hat summarizes the forecast rules. Each element e k ( k = 1,2, ···, n )

n the example set has � fuzzy attributes: A 

1 , A 

2 , ···, A 

� . The range of

ach attribute A 

i is { a i 
1 
, a i 

2 
, · · ·, a i m 

} (i = 1 , 2 , · · ·, � ) , the j -th example

 j ( j = 1, 2, ···, m ) around the value of the i -th attribute is represented

y the corresponding membership degree μij , which constitutes a

uzzy subset defined on the range { a i 
1 
, a i 

2 
, · · ·, a i m 

} of A 

i , and the

lassification to be divided is C = { C 1 , C 2 , ···, C n }. 

The information gain G ( A 

i ,D ) for the attribute A 

i is calculated as

ollows: 

 ( A 

i , D ) = I(D ) − E( A 

i , D ) (7)

here 

(D ) = −
n ∑ 

k =1 

( P k · log 2 P k ) (8)

 k = 

∣∣D C k 

∣∣
| D | (9)

( A 

i , D ) = 

m ∑ 

j=1 

μi j (10)

 i j = 

∣∣∣D a i 
j 

∣∣∣
∑ m 

j=1 

∣∣∣D a i 
j 

∣∣∣ (11)

i j = P i j · I( D a i 
j 
) (12)

Among them, let D C k 
to be a fuzzy subset in D whose class is

 k , | D | the sum of the membership values of the set of data D , and

 D C k 
| the sum of the membership values of the set of data D C k 

;

hen | D 

a i 
j 
| the sum of the membership values of the set of data D 

a i 
j 

nd calculate the 
∑ m 

j=1 | D 

a i 
j 
| . After that, we obtain the fuzzy infor-

ation gain of each attribute at each node calculated by G ( A 

i ,D )

hrough Eqs. (7) –(12) and select the attribute with the largest in-

ormation gain as the extended attribute of the node to realize the

ivision of the example set. 
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The fuzzy ID3 algorithm needs to calculate the information gain

f each decision attribute, and the attribute with the largest fuzzy

nformation gain is selected as the decision attribute node of the

iven data set. We then set up the branch of the node by the value

f each attribute. 

The FDT algorithm consists of three steps: 

1) Data preprocess: We need to fuzzify the data items of quan-

titative attributes and divide the quantitative attributes into

several linguistic terms. In other words, they must be con-

verted into character attribute values; 

2) Establish decision tree: Using fuzzy entropy as the heuristic,

we select the extended attribute from the root to the leaf,

divide the example set, and establish the FDT; 

3) Match: We predict unknown examples and use the fuzzy

matching method to determine the category based on the

FDT that has been generated. 

.2.1. Fuzzifying the training data 

In a classification issue, the training data attributes are either

ategorical attributes or continuous numerical attributes. When the

ata is quantity type, it needs to be fuzzified, and the data set

s fuzzified into several linguistic terms. That is, they must be

onverted into character type attribute values. This transforma-

ion process is a conceptual process of reducing decision informa-

ion ( Yuan & Shaw, 1995 ). There are two steps in the fuzzifica-

ion process. The first step is to select an effective membership

unction, such as the triangular membership function, the trape-

oidal membership function, or the Gaussian membership function

 Chang, Fan, & Dzan, 2010; Fan, Chang, Lin, & Hsieh, 2011; Pulkki-

en & Koivisto, 2008 ). The second step to find the center point

f the fuzzy domain, but the number of central points (divided

nto several linguistic terms) need to pre-set by experience. Some

tudies have shown that the fuzzy effect of the Gaussian member-

hip function is better. However, in practical applications, the tri-

ngular membership functions are used more often due to their

implicity ( Wang, Zhai, & Lu, 2008; Fan et al., 2011; Wang, Liu,

edrycz, & Zhang, 2015 ). Therefore, in this paper, we use the tri-

ngular membership function to fuzzify the quantitative database.

he following is a triangular membership function definition ( Yuan

 Shaw, 1995 ). 

Definition 1: For all examples, attribute that A has a quanti-

ative attribute value x , expressed as X = { x ( u ), u ∈ U }, We want

o cluster X to k linguistic terms T i ,i = 1,2, ···, k . And the triangular

embership function equation for each linguistic term T i is shown

n Eqs. (13) –(15) , the 

 T 1 (x ) = 

{ 

1 , x ≤ m 1 

( m 2 − x ) / ( m 2 − m 1 ) , m 1 < x < m 2 

0 , x ≥ m 2 

(13) 

 T k (x ) = 

{ 

1 , x ≥ m k 

(x − m k −1 ) / ( m k − m k −1 ) , m k −1 < x < m k 

0 , x ≤ m k −1 

(14) 

 T i (x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , x ≥ m i +1 

( m i +1 − x ) / ( m i +1 − m i ) , m i < x < m i +1 

(x − m i −1 ) / ( m i − m i −1 ) , m i −1 < x < m i 

0 , x ≤ m i −1 

, 1 < i < k (15)

Assume that the mentioned dataset D above, where each

ata has n values for each attribute and one classified class

 = { C S ,C M 

,C L }, in addition, if the attribute has three center points,

hen the three alternative classified classes could be defined over

 value range in fuzzy terms and expressed using the triangular

embership function, as shown in Fig. 1 . 
.2.2. Pruning decision trees 

The FDT algorithm is an improvement over the traditional Clear

ecision Tree (CDT) algorithm. The fuzzy ID3 algorithm uses fuzzy

ntropy as the heuristic to select the extended attribute, estab-

ishes the FDT, converts each path from the root to the leaf into

he rule, generates the fuzzy rule set, matches the example with

he fuzzy matching method, and draws conclusions that are closer

o human thought ( Lior, 2014 ). The CDT pruning method can be

sed in the FDT algorithm with only a few modifications ( Yuan &

haw, 1995 ). 

The CDT algorithm is not suitable for pre-pruning. Therefore, it

ocuses on post-pruning methods ( Esposito, Malerba, Semeraro, &

ay, 1997 ; Quinlan, 2014 ). Unlike CDT, the FDT algorithm contains

re-pruning strategies. During the establishment of the FDT, the

ignificance level α and truth level threshold β can be well con-

rolled when constructing the FDT. 

In addition, unlike the CDT algorithm, the training accuracy and

est accuracy are not changed greatly when the rule of FDT is sim-

lified and the lifting range is between 0.001 and 0.005. It has

een proven that the decision tree produced by the FDT algorithm

as strong prediction abilities, and regular set-pruning strategies

annot further improve its prediction accuracy. The main reasons

re as follows ( Sun & Wang, 2006 ): 

1) The FDT algorithm establishes the decision tree after blurring

the continuous data. The fuzziness expresses the correlation

and dissimilarity of the attribute value better than the dis-

cretization of the CDT algorithm. It can also reduce the in-

terference of the noise data to a certain extent. 

2) In the construction process, the FDT algorithm uses α and β
to control tree generation and carry out pre-pruning; 

3) The matching strategy of the fuzzy rule set can reduce the

noise in the test data so that the matching results are close

to the best classification results. 

In the process of the FDT generation, there is overlap between

he examples covered by the same attribute value, which affects

he selection of extended attributes. The introduction of significant

evel α can reduce the influence of this overlap and reduce the un-

ertainty of classification so that the entire generation process of

he FDT is performed on a given significance level α. Meanwhile, in

he FDT generation process, the parameter β is an important con-

ition that is used to control the leaves’ generation. The value of

and β directly affects the performance of the FDT. Often, as the

alue of α increases, the classification uncertainty in the process

f building is reduced, but the excessive value of α will lose some

ample information during the tree-building process. The higher
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the value of β , the larger the decision tree, but the extension abil-

ity of the decision tree is reduced. If the value of β is too low, then

the decision tree will be too small to summarize the feature set. In

addition, in ( Sun & Wang, 2006 ), the author, through the control

variate method, noted that the vicinity of 0.7–0.8 usually obtains a

better decision tree, and this conclusion has been verified by ge-

netic algorithm; when α ranges from 0.3 to 0.45, good results are

obtained. 

The FDT algorithm can effectively control the pre-pruning due

to its own parameters α and β , resulting in a small-shaped tree

with strong forecasting ability. The values of parameters α and β
are easily determined and can be derived empirically or experi-

mentally. FDT’s post-pruning method can also reduce the size of

the tree and improve the prediction ability to a certain extent, but

the effect is not obvious unless the parameters of the FDT algo-

rithm are not selected suitably; then, the pruning effect will be

obvious. 

The FDT algorithm is superior to or equivalent to the CDT

method with regular simplification in terms of efficiency tree size

and prediction ability. Therefore, in this paper, we construct the

FDT with a fuzzy ID3 algorithm and take the average of the op-

timal interval of the FDT, the significance level α, and truth level

threshold β interval set α = 0.375 and β= 0.750, to control the pre-

pruning process of FDT. 

3. Experiments 

3.1. Scenario design 

The data for this paper is compiled from the full-task han-

dling simulation platform for large ships, Navi-Trainer Professional

50 0 0, which conforms to the International Maritime Organiza-

tion (IMO) STCW78/10 convention and the requirements of the

China Maritime Safety Administration (MSA), the Det Norske Veri-

tas (DNV), the British Maritime Safety Administration (MAS), the

British Lloyd’s Register, the British Maritime and Coast Guard

(MCA), the Russian Ministry of Shipping (DMT) and other authori-

tative certifications. We collected the operational data of the exer-

cises and assessment exams as our experimental data (unlimited

navigational class crew, captain/chief officer). The simulator sce-

nario was the Shanghai Waigaoqiao wharf, and the ship was down-

stream berthing into the port. 

We define the process as when the ship’s stern leaves the main

channel near the port side of the boundary line in the electronic

chart ( Fig. 2 (f) shows the initial boundary) to the ship berths

docked at the end of the cable ( Fig. 2 (g) shows the end bound-

ary) as a complete berthing process. The experimental scenario is

shown in Fig. 2 . 

3.2. Data collection and processing 

Information was collected on the ship’s berthing process, in-

cluding the environment (wind, flow, tide and 15 other factors),

location (longitude, latitude - 2 factors), control (rudder order, ma-

rine telegraph - 2 factors), the target ship in the channel (Ship

types, speed, quantities and other factors), ship movement (ship

heading, steering rate and 11 other factors), the ship’s draft (ship’s

bow, the bow and other factors), tugs, the main collection control

(power, rudder order - 7 factors), mechanical contact force-related

parameters (4) , cable force-related parameters (4) , ship movements

(bow, 11 ratio factors, etc.), and other related parameters. These

above factors, such as the ship’s own movement, the environment,

the control, location and the relevant parameters of the tug and

other factors, were extracted from fixed factors and the weakly

related parameters. We record the piloting behavior and environ-

ment, including inside and outside the multi-source information. 
Fig. 3 (a) shows the spatial arrangement for The Navi-Trainer

rofessional 50 0 0 system, it mainly composed by the Main Bridge,

nstructor room, and three Secondary Bridge systems. Fig. 3 (b) is

he panorama of the Main Bridge. The experimental scheme of this

aper is shown in Table 1 . 

From Table 2 , we can get the average age of the crew participat-

ng in this experiment is 38.76 years old and their average piloting

xperience is 8.89 years. From Fig. 5 , we can get the distribution

f crew age and their piloting experience. The captains’ average

ge and piloting age are both higher than those of chief officers’. It

hould be noted that, in this article, we consider the tugboat itself

s a power plant system of ship OS1 in order to facilitate the ship’s

verall situation of a simplified analysis. 

Fuzzifying the data set as a linguistic term is essentially a con-

eptualization of reduced decision information. It is usually neces-

ary to divide the number of linguistic terms by experience ( Yuan

 Shaw, 1995 ). For instance, the temperature can be conceptual-

zed into three linguistic terms: Cool, Mild, and Hot. In this paper,

xperimental data of each piloting decision-making factor are tri-

ected into three levels: Small (a), Medium (b), and Large (c), to

bjectively describe the characteristics of each influencing factor,

acilitate the construction of a hierarchical and fuzzy decision tree

odel, and make it easier to describe and mine in detail how each

actor influences final driving decisions. Among them, for direc-

ional vector influencing factors, such as direction, speed, turning

ate, etc., if there is a situation in which the directions are differ-

nt (There are positive and negative signs in the original data), and

he data is asymmetrical, then the extreme value with a large ab-

olute value is selected as the endpoint of the equalization to per-

orm equalization processing. Moreover, the actual physical mean-

ng of each influencing factor, such as Wave Height, Height above

he Water and other influencing factors should be fully considered.

lthough they are vectors and have positive and negative values,

hey are still directly divided equally and are no longer considered

sing the above absolute value to get the endpoint. When the data

re preprocessed, all the influence factors whose internal data are

ll zero or unchanged are removed, and the remaining influence

actors are sorted in descending order. And the 30 sets of data with

arge saltation at both ends of the descending order data set are

emoved, and the extreme values at both ends of the processed

ata set are selected as the equalization endpoint values to deter-

ine the intermediate split points, in order to describe the various

haracteristics of each factor more objectively. Table 3 shows the

rocessed data set partitions. 

Furthermore, when the optimized middle split point is deter-

ined, the extreme value of the sorted original data is selected as

he extreme value of both ends when the saltation is inconspic-

ous; when it is judged that the saltatorial extremum is beyond

he normal range extension according to the real physical meaning

f the influence factors, then the corresponding row of the influ-

nce factor data at the moment of saltatorial occurrence is deleted,

nd then the processed endpoint extreme value is selected. Mean-

hile, in order to contain all the data in each influencing factor,

he selected rules do not completely follow the principle of round-

ng. And after four digits are retained after the decimal point, the

pen interval and closed interval of the split points are determined

exibly according to the trade-off situation. For instance, when the

umber 12.364512 is the left boundary of the interval, it is retained

s 12.3645, and the open interval is selected; when it is the right

oundary of the interval, then it is retained as 12.3646 and the

pen interval is selected; and if the boundary is an integer, it is

elected as the boundary value and the closed interval is selected.

he partition of the optimized data set segmentation interval is

hown in Table 4 . 

The method of classification interval division that is proposed

n this paper fully considers the distribution of data sets and the
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Fig. 2. The experimental scenario. 

Fig. 3. The Navi-Trainer Professional 50 0 0 system. 
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ndpoint extreme value within a reasonable range, so that all influ-

ncing factor data can be standardized accurately and scientifically,

nd maximally respect and restore the pilot’s actual operation and

ecision-making for the inbound ship under typical scenarios on

he simulator. The Performance of the optimized data set partitions

nd standardization principle is shown in Table 5 . 
According to the simulation scenario shown in Figs. 2 and Fig. 6 ,

he size of the rudder angle and the propeller speed are defined

ccording to the navigation experience and the situation of data

ollection from the emulator. When the output power ≥ 50%, it is

efined as the propeller rapid rotation state, the value range is

 − 100%, − 50%] ∪ [50%, 100%]. When the output power < 50%, it
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Table 1 

Experimental program. 

Name Contents 

Time 8: 00–11: 00 and 14: 00–17: 00 on May 17 to June 2. 

Place Wuhan University of Technology Waterway Road Traffic Safety Control and Equipment Ministry 

of Education Engineering Research Center, Maneuvering Simulator Laboratory for large ships. 

Crew Unlimited navigational class A chief officer or captain, 4 groups of 96 people, 32–45 years old, 

skilled piloting level. 

Ship 30,0 0 0 tons bulk carrier (experimental simulation ship OS1, see Fig. 4 (a)). 33,089.0t, 182.9 m 

long, 22.6 m wide. 

Scenes 1) Ship downstream berthing into the Shanghai Waigaoqiao Phase IV Port. 2) Sailing in narrow 

water. 3) Poor visibility. 4) Two tugs help berthing. 

Equipment Navi-Trainer Professional 50 0 0 and 40 Desktop NT-Expert V3.35 system for full-task handling 

simulation platform for large ships. See Fig. 2 (d), (e) and Fig. 3 (a), (b). 

Table 2 

Participants’ information. 

Number of 

participants Age (years) Piloting experience (years) 

Mean SD Mean SD 

All 96 38.76 4.13 8.89 2.10 

Captain 35 42.29 2.18 10.74 1.29 

Chief officer 61 36.74 3.59 7.82 1.69 

Fig. 4. Data collection and processing. 
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Table 3 

The processed data set partitions and standardization principle of piloting decision-making factors (input). 

Influence factors Meaning Symbolic principle 

Small (a) Medium (b) Large (c) 

Y1 Current draft at ship bow(meters) [9.9751, 10.16570) [10.1657, 10.3562) [10.3562, 10.5468) 

Y2 Current draft at ship stern(meters) [10.5908, 10.8096) [10.8096, 11.0283) [11.0283, 11.2470) 

Y3 Under keel clearance aft(meters) [1.3714, 3.3516) [3.3516, 5.3318) [5.3318, 7.3120) 

Y4 Under keel clearance fwd(meters) [3.3407, 4.8641) [4.861, 6.3874) [6.3874, 7.9108) 

Y5 Current direction(degrees) [313.90 0 0, 315.50 0 0) [315.50 0 0, 317.10 0 0) [317.10 0 0, 318.70 0 0) 

Y6 Current speed(knots) [1.0108, 1.0432) [1.0432, 1.0756) [1.0756, 1.1080) 

Y7 Relative current direction(degrees) [ −60.0 0 0 0, 0.0 0 0 0) [ −120.0 0 0 0, −60.0 0 0 0) [ −180.0 0 0 0, −120.0 0 0 0) 

[0.0 0 0 0, 60.0 0 0 0) [60.0 0 0 0, 120.0 0 0 0) [120.0 0 0 0, 180.0 0 0 0) 

Y8 Relative wave direction(degrees) [ −41.50 0 0, 0.0 0 0 0) [ −83.0 0 0 0, −41.50 0 0) [ −124.50 0 0, −83.0 0 0 0) 

[0.0 0 0 0, 41.50 0 0) [41.50 0 0, 83.0 0 0 0) [83.0 0 0 0, 124.50 0 0) 

Y9 Relative wind direction(degrees) [ −59.0205, 0.0 0 0 0) [ −118.0411, −59.0205) [ −177.0616, −118.0411) 

[0.0 0 0 0, 59.0205) [59.0205, 118.0411) [118.0411, 177.0616) 

Y10 Relative wind speed(knots) [0.2644, 7.5154) [7.5154, 14.7664) [14.7664, 22.0174) 

Y11 Water depth(meters) [13.0 034, 14.0 023) [14.0 023, 15.0 0113) [15.0 0113, 16.0 0 0 0) 

Y12 Wave height(meters) [ −0.4155, −0.1234) [ −0.1234, 0.1686) [0.1686, 0.4607) 

Y13 Forces Parameters. Lateral force(tonne-force) [ −37.5423, 0.0 0 0 0) [ −75.0846, −37.5423) [ −112.6269, −75.0846) 

[0.0 0 0 0, 37.542302) — —

Y14 Forces Parameters. Longitudinal force(tonne-force) [ −142.0715, 0.0 0 0 0) [ −284.1429, −142.0715) [ −426.2144, −284.1429) 

[0.0 0 0 0, 142.0715) — —

Y15 Forces Parameters. Summary force(tonne-force) [0.0 0 0 0, 160.2039) [160.2039, 320.4078) [320.4078, 480.6117) 

Y16 Forces Parameters .Vertical force(tonne-force) [ −11.6871, 0.0 0 0 0) [ −23.3742, −11.6871) [ −35.0612, −23.3742) 

[0.0 0 0 0, 11.6871) [11.6871, 23.3742) [23.3742, 35.0612) 

Y17 Mooring lines. Lateral force(tonne-force) [ −162.9374, 0.0 0 0 0) — —

[0.0 0 0 0, 162.9374) [162.9374, 325.8748) [325.874 8, 4 88.8122) 

Y18 Mooring lines. Longitudinal force(tonne-force) [ −44.9968, 0.0 0 0 0) [ −89.9937, −44.9968) [ −134.9905, −89.9937) 

[0.0 0 0 0, 44.9968) [44.9968, 89.9937) [89.9937, 134.9905) 

Y19 Mooring lines. Summary force(tonne-force) [0.0 0 0 0, 167.8068) [167.8068, 335.6137) [335.6137, 503.4205) 

Y20 Mooring lines. Vertical force(tonne-force) [ −33.1281, 0.0 0 0 0) [ −66.2562, −33.1281) [ −99.3843, −66.2562) 

Y21 Heading(degrees) [100.5245, 178.1916) [178.1916, 255.8587) [255.8587, 333.5258) 

Y22 Height above the water(meters) [1.4207, 2.0598) [2.0598, 2.6989) [2.6989, 3.3381) 

Y23 Lateral speed(knots) [ −0.7564, 0.0 0 0 0) [ −1.5129, −0.7564) —

[0.0 0 0 0, 0.7564) [0.7564, 1.5129) [1.5129, 2.2693) 

Y24 Longitudinal speed(knots) [ −2.6398, 0.0 0 0 0) — —

[0.0 0 0 0, 2.6398) [2.6398, 5.2797) [5.2797, 7.9195) 

Y25 Pitch angle(degrees) [0.1575, 0.1887) [0.1887, 0.2200) [0.2200, 0.2512) 

Y26 Pitch rate(degrees/min) [ −0.9887, 0.0 0 0 0) [ −1.9774, −0.9887) [ −2.9660, −1.9774) 

[0.0 0 0 0, 0.9887) [0.9887, 1.9774) [1.9774, 2.9660) 

Y27 Rate of turn(degrees/min) [ −13.370 0, 0.0 0 0 0) [ −26.7401, −13.3700) [ −40.1101, −26.7401) 

[0.0 0 0 0, 13.370 0) [13.3700, 26.7401) —

Y28 Roll angle(degrees) [ −1.4621, 0.0 0 0 0) — —

[0.0 0 0 0, 1.4621) [1.4621, 2.9242) [2.9242, 4.3864) 

Y29 Roll rate(degrees/min) [ −13.9547, 0.0 0 0 0) [ −27.9093, −13.9547) [ −41.8640, −27.9093) 

[0.0 0 0 0, 13.9547) [13.9547, 27.9093) [27.9093, 41.8640) 

Y30 Vertical speed(knots) [ −0.2744, 0.0 0 0 0) [ −0.5488, −0.2744) [ −0.8232, −0.5488) 

[0.0 0 0 0, 0.2744) [0.2744, 0.5488) [0.5488, 0.8232) 

Y31 Yaw rate(degrees/min) [ −13.370 0, 0.0 0 0 0) [ −26.7401, −13.3700) [ −40.1101, −26.7401) 

[0.0 0 0 0, 13.370 0) [13.3700, 26.7401) —

Y32 Latitude(degrees) [31.3410, 31.3447) [31.3447, 31.3483) [31.3483, 31.3520) 

Y33 Longitude(degrees) [121.6420, 121.64 4 4) [121.64 4 4, 121.6467) [121.6467, 121.6490) 
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s defined as the propeller slow rotation state, the value range is

 − 50%, 0) ∪ (0, 50%). When the rudder angle value belongs to the

nterval ( − 10, 0) ∪ (0, 10), it is defined as the small steering an-

le. When the value of the rudder angle belongs to the interval

 − 35, − 10] ∪ [10, 35], it is defined as the large steering angle. See

ig. 6 and Table 6 (showing 64 possible piloting decisions). In ad-

ition, this article does not consider “Midships” and “Stop engine,”

egardless of the rudder angle and if the power output is 0. 

Captains manoeuvre ships by operating different telegraph and

udder orders, so as to change ship’s speed and direction, and

o complete the ship’s control. Combining telegraph and rudder

rders, this control is a multi-dynamic process. Fig. 6 (c), (d) re-

eals the changing rule of telegraph order and rudder order within

he time in a typical situation that a ship sails from the initial

oundary to the end boundary designed in scenario design part.

ee Fig. 2 (c), (f), (g). 
c  
. Results and discussions 

Piloting decision-making is stimulated and influenced by multi-

ource information, such as human, ships, environment, as well

s real-time requirements. This requires piloting decision-making

nowledge to be automatically obtained and expressed along with

igher decision-making knowledge effectiveness. 

.1. Determining piloting decision main influence factor 

Piloting decision-making processes are often influenced by

ulti-source information such as human, ship and environmen-

al factors. These factors are collectively referred to as piloting

ecision-making factors. They act together to determine the next

ction strategy of the ship’s pilot. According to this strategy and

he current piloting environment, the pilot can quickly and ac-

urately develop piloting decisions and thus lay the foundation
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Table 4 

The optimized data set partitions and standardization principle of piloting decision-making factors (input). 

Influence factors Meaning Symbolic principle 

Small (a) Medium (b) Large (c) 

Y1 Current draft at ship bow(meters) (9.0160, 10.16570) [10.1657, 10.3562) [10.3562, 10.8347) 

Y2 Current draft at ship stern(meters) (9.6172, 10.8096) [10.8096, 11.0283) [11.0283, 14.3239) 

Y3 Under keel clearance aft(meters) (0.7235, 3.3516) [3.3516, 5.3318) [5.3318, 7.9108) 

Y4 Under keel clearance fwd(meters) (2.7321, 4.8641) [4.861, 6.3874) [6.3874, 8.9840) 

Y5 Current direction(degrees) [313.90 0 0, 315.50 0 0) [315.50 0 0, 317.10 0 0) [317.10 0 0, 318.70 01) 

Y6 Current speed(knots) (1.0107, 1.0432) [1.0432, 1.0756) [1.0756, 1.1080] 

Y7 Relative current direction(degrees) [ −60.0 0 0 0, 0.0 0 0 0) [ −120.0 0 0 0, −60.0 0 0 0) ( −180.0 0 0 0, −120.0 0 0 0) 

[0.0 0 0 0, 60.0 0 0 0) [60.0 0 0 0, 120.0 0 0 0) [120.0 0 0 0, 180.0 0 0 0] 

Y8 Relative wave direction(degrees) [ −41.50 0 0, 0.0 0 0 0) [ −83.0 0 0 0, −41.50 0 0) ( −124.50 0 0, −83.0 0 0 0) 

[0.0 0 0 0, 41.50 0 0) [41.50 0 0, 83.0 0 0 0) [83.0 0 0 0, 124.80 0 0] 

Y9 Relative wind direction(degrees) [ −59.0205, 0.0 0 0 0) [ −118.0411, −59.0205) ( −179.7170, −118.0411) 

[0.0 0 0 0, 59.0205) [59.0205, 118.0411) [118.0411, 179.8750) 

Y10 Relative wind speed(knots) (0.0228, 7.5154) [7.5154, 14.7664) [14.7664, 22.1793) 

Y11 Water depth(meters) (12.5530, 14.0023) [14.0 023, 15.0 0113) [15.0 0113, 16.0 0 0 0] 

Y12 Wave height(meters) [ −0.7300, −0.1234) [ −0.1234, 0.1686) [0.1686, 0.6900] 

Y13 Forces Parameters. Lateral force(tonne-force) [ −37.5423, 0.0 0 0 0) [ −75.0846, −37.5423) ( −1025.9804, −75.0846) 

[0.0 0 0 0, 37.542302) [37.5423, 75.0846) [75.0846, 2607.3083) 

Y14 Forces Parameters. Longitudinal force(tonne-force) [ −142.0715, 0.0 0 0 0) [ −284.1429, −142.0715) ( −24,592.3230, −284.1429) 

[0.0 0 0 0, 142.0715) — —

Y15 Forces Parameters. Summary force(tonne-force) [0.0 0 0 0, 160.2039) [160.2039, 320.4078) [320.4078, 25,144.6958) 

Y16 Forces Parameters .Vertical force(tonne-force) [ −11.6871, 0.0 0 0 0) [ −23.3742, −11.6871) ( −4547.0121, −23.3742) 

[0.0 0 0 0, 11.6871) [11.6871, 23.3742) [23.3742, 2024.0176) 

Y17 Mooring lines. Lateral force(tonne-force) ( −162.9374, 0.0 0 0 0) — —

[0.0 0 0 0, 162.9374) [162.9374, 325.8748) [325.8748, 953.2618) 

Y18 Mooring lines. Longitudinal force(tonne-force) [ −44.9968, 0.0 0 0 0) [ −89.9937, −44.9968) ( −286.8233, −89.9937) 

[0.0 0 0 0, 44.9968) [44.9968, 89.9937) [89.9937, 333.4608) 

Y19 Mooring lines. Summary force(tonne-force) [0.0 0 0 0, 167.8068) [167.8068, 335.6137) [335.6137, 983.4908) 

Y20 Mooring lines. Vertical force(tonne-force) [ −33.1281, 0.0 0 0 0] [ −66.2562, −33.1281) [ −246.0158, −66.2562) 

Y21 Heading(degrees) [100.2441, 178.1916) [178.1916, 255.8587) [255.8587, 339.7877) 

Y22 Height above the water(meters) (1.1746, 2.0598) [2.0598, 2.6989) [2.6989, 4.0339) 

Y23 Lateral speed(knots) [ −0.7564, 0.0 0 0 0) [ −1.5129, −0.7564) ( −1.2774, −1.5129) 

[0.0 0 0 0, 0.7564) [0.7564, 1.5129) [1.5129, 4.0375) 

Y24 Longitudinal speed(knots) [ −2.6398, 0.0 0 0 0) — ( −1.7988, −5.2797) 

[0.0 0 0 0, 2.6398) [2.6398, 5.2797) [5.2797, 8.6558) 

Y25 Pitch angle(degrees) ( −0.9631, 0.1887) [0.1887, 0.2200) [0.2200, 1.4851) 

Y26 Pitch rate(degrees/min) ( −92.3133, 0.0 0 0 0) [ −1.9774, −0.9887) [ −2.9660, 37.1897) 

[0.0 0 0 0, 0.9887) [0.9887, 1.9774) [1.9774, 2.9660) 

Y27 Rate of turn(degrees/min) [ −13.370 0, 0.0 0 0 0) [ −26.7401, −13.3700) ( −216.4195, −26.7401) 

[0.0 0 0 0, 13.370 0) [13.3700, 26.7401) [26.7401, 82.5781) 

Y28 Roll angle(degrees) ( −7.1696, 0.0 0 0 0) — —

[0.0 0 0 0, 1.4621) [1.4621, 2.9242) [2.9242, 12.1096) 

Y29 Roll rate(degrees/min) [ −13.9547, 0.0 0 0 0) [ −27.9093, −13.9547) ( −219.3305, −27.9093) 

[0.0 0 0 0, 13.9547) [13.9547, 27.9093) [27.9093, 220.8617) 

Y30 Vertical speed(knots) [ −0.2744, 0.0 0 0 0) [ −0.5488, −0.2744) ( −1.1612, −0.5488) 

[0.0 0 0 0, 0.2744) [0.2744, 0.5488) [0.5488, 2.5488) 

Y31 Yaw rate(degrees/min) [ −13.370 0, 0.0 0 0 0) [ −26.7401, −13.3700) ( −216.4195, −26.7401) 

[0.0 0 0 0, 13.370 0) [13.3700, 26.7401) [26.7401, 82.5781) 

Y32 Latitude(degrees) (31.1022, 31.3447) [31.3447, 31.3483) [31.3483, 31.3521) 

Y33 Longitude(degrees) (121.3144, 121.64 4 4) [121.64 4 4, 121.6467) [121.6467, 121.6494) 
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for the research of human-like piloting behavior. For a particu-

lar person-ship unit, the overall reliability is constant for a cer-

tain period of time or during a trip, so the person and ship fac-

tors have less influence on piloting decisions. With the operation

of the ship, the pilot’s waterway and the environment will change

with time and space, and the changing waterway and environmen-

tal factors will have a greater impact on piloting decisions. There-

fore, this paper uses the grey relation entropy analysis to focus on

the piloting decision-making factors from the waterway and envi-

ronment, where the factors are squeezed and sorted. The piloting
Table 5 

Performance of the optimized data set partitions and s

Segmentation 

of intervals Total number Selected nu

Table 3 677,650.00 675,670.00

Table 4 677,650.00 677,650.00 
f decision-making factors related to the information are shown in

ables 6 and Table 7 . 

According to the sorting criteria of the grey relational sequence,

he greater the degree of entropy correlation of the comparison

olumn, the greater the relevance of the comparison column to

he reference column, the greater the degree of influence on the

eference column, and the higher the ranking of the influencing

actors. The grey entropy analysis method uses information en-

ropy to quantitatively describe the similarity and consistency de-

ree between each comparison column and reference column and
tandardization principle. 

mber Accuracy (%) Total time (s) 

 99.71 7.65 

10 0.0 0 7.73 
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Table 6 

Piloting decision-making factors and standardization principle (output). 

Attributes Speed control Course control 

Symbolic principle Status Symbol Symbolic principle Status Symbol 

Variety a i + 1 − a i � = 0 Changed C1 b i + 1 − b i � = 0 Changed C2 

a i + 1 − a i = 0 Unchanged U1 b i + 1 − b i = 0 Unchanged U2 

Value [ − 100%, − 50%] ∪ [50%, 100%] Fast F1 [ − 35, − 10] ∪ [10, 35] Large L2 

( − 50%, 0) ∪ (0, 50%) Slow S1 ( − 10, 0) ∪ (0, 10) Small S2 

Direction a i > 0 Ahead D1 b i > 0 Starboard D2 

a i < 0 Astern T1 b i < 0 Port T2 

Influence factors Decisions Symbols Decisions symbol 

X(Dimensionless) U1F1D1U2L2T2 X1 U1F1D1C2L2T2 X33 

U1F1D1U2S2T2 X2 U1F1D1C2S2T2 X34 

U1S1D1U2L2T2 X3 U1S1D1C2L2T2 X35 

U1S1D1U2S2T2 X4 U1S1D1C2S2T2 X36 

U1F1T1U2L2T2 X5 U1F1T1C2L2T2 X37 

U1F1T1U2S2T2 X6 U1F1T1C2S2T2 X38 

U1S1T1U2L2T2 X7 U1S1T1C2L2T2 X39 

U1S1T1U2S2T2 X8 U1S1T1C2S2T2 X40 

U1F1D1U2L2D2 X9 U1F1D1C2L2D2 X41 

U1F1D1U2S2D2 X10 U1F1D1C2S2D2 X42 

U1S1D1U2L2D2 X11 U1S1D1C2L2D2 X43 

U1S1D1U2S2D2 X12 U1S1D1C2S2D2 X44 

U1F1T1U2L2D2 X13 U1F1T1C2L2D2 X45 

U1F1T1U2S2D2 X14 U1F1T1C2S2D2 X46 

U1S1T1U2L2D2 X15 U1S1T1C2L2D2 X47 

U1S1T1U2S2D2 X16 U1S1T1C2S2D2 X48 

C1F1D1C2L2T2 X17 C1F1D1U2L2T2 X49 

C1F1D1C2S2T2 X18 C1F1D1U2S2T2 X50 

C1S1D1C2L2T2 X19 C1S1D1U2L2T2 X51 

C1S1D1C2S2T2 X20 C1S1D1U2S2T2 X52 

C1F1T1C2L2T2 X21 C1F1T1U2L2T2 X53 

C1F1T1C2S2T2 X22 C1F1T1U2S2T2 X54 

C1S1T1C2L2T2 X23 C1S1T1U2L2T2 X55 

C1S1T1C2S2T2 X24 C1S1T1U2S2T2 X56 

C1F1D1C2L2D2 X25 C1F1D1U2L2D2 X57 

C1F1D1C2S2D2 X26 C1F1D1U2S2D2 X58 

U1S1D1C2L2D2 X27 C1S1D1U2L2D2 X59 

C1S1D1C2S2D2 X28 C1S1D1U2S2D2 X60 

C1F1T1C2L2D2 X29 C1F1T1U2L2D2 X61 

C1F1T1C2S2D2 X30 C1F1T1U2S2D2 X62 

C1D1T1C2L2D2 X31 C1S1T1U2L2D2 X63 

C1D1T1C2S2D2 X32 C1S1T1U2S2D2 X64 
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ses entropy correlation degrees to complete the matching order

f influencing factors. In this paper, we select X0 (X0 presents the

ercentage of the number of each piloting decision of X1-X64 in a

otal number of the data set records) as the reference column and

1 – Y33 as the comparison column. Limited to space, Table 7 lists

nly a part of multiple measured data. 

According to the grey relation entropy principle, the grey corre-

ation coefficient, and the entropy correlation degree of each com-

arison column is obtained by quantitative calculation of the data

n Table 7 ; the results are shown in Tables 8 and Table 9 . 

According to Table 9 , the influence factors are sorted according

o the influence degree: Y8 > Y22 > Y4 > Y31 > Y27 > Y16 > Y33

 Y11 > Y3 > Y13 > Y14 > Y15 > Y12 > Y30 > Y5 > Y18 > Y6 > Y26 > 

20 > Y10 > Y17 > Y19 > Y23 > Y25 > Y29 > Y24 > Y28 > Y32 > Y2 > 

1 > Y9 > Y21 > Y7. For simplicity, this paper selects the first six

actors to study the decision-making mechanisms for different

iloting behaviors. Table 10 lists some of the training samples. 

The data in Table 10 are standardized according to the prin-

iple of standardization of piloting decision influence factors in

ables 4 and Table 6 . 

In accordance with the optimized standardization principle of

nfluence factors for piloting decisions in Table 4 , the attributes of

he six factors selected in Table 10 are fuzzified, the number of

enter points k is 3, and the set of center points is M = { m ,i = 1,
i 
t

, ���, k }. By simple division method, the linguistic term Small is cal-

ulated using Eq. (13) , the linguistic term Medium is obtained by

q. (15) , and the linguistic term Large is obtained by Eq. (14) . Here

e opt for K-means clustering algorithm combines with the algo-

ithm proposed in data collection and processing part, then gener-

te the center points of impact factors as shown in Table 12 . The

raining set with fuzzy representation is shown in Table 13 . 

.2. Inducing piloting fuzzy decision tree 

The piloting decision classification tree is constructed by using

he fuzzy ID3 classification algorithms and fuzzy membership stan-

ard training samples in Table 13 . The fuzzy ID3 classification algo-

ithm is summarized as follows. First, select the piloting decision-

aking main influence factors with the maximum fuzzy informa-

ion gain to generate decision tree nodes and establish a branch by

he different values of the nodes. Second, take the instance sub-

et of the branch and use this method to establish the nodes and

ranches of the decision tree until the instances in a subset belong

o the same classification. Finally, the piloting decision classifica-

ion tree constructed by the fuzzy ID3 classification algorithm. And

he classification rules are graphically represented by the decision

ree structure in Fig. 7 . The algorithm scheme is as follows: 
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Table 7 

Sample data set for evaluation of the studied area (partially). 

Influence factors Sample set 

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 …

X0 (Dimensionless) 0.0384 0.0728 0.0384 0.2728 0.0454 0.0128 …

Y1 (meters) 10.1110 10.1516 10.1538 10.1560 10.1296 10.1355 …

Y2 (meters) 10.7500 10.7948 10.7961 10.7974 10.7643 10.7614 …

Y3 (meters) 4.2833 4.2363 4.2345 4.2327 4.2611 4.2589 …

Y4 (meters) 4.7445 4.7017 4.6990 4.6963 4.7179 4.7068 …

Y5 (degrees) 314.90 0 0 314.90 0 0 314.90 0 0 314.90 0 0 314.90 0 0 314.90 0 0 …

Y6 (knots) 1.0497 1.0497 1.0497 1.0497 1.0497 1.0497 …

Y7 (degrees) 28.0777 122.9068 −12.7913 −14 8.4 894 −179.4163 −179.40 0 0 …

Y8 (degrees) −8.9422 −8.90 0 0 −8.90 0 0 −8.90 0 0 −8.8513 −8.80 0 0 …

Y9 (degrees) 69.8398 70.0158 70.0536 70.0913 70.5728 71.0 0 0 0 …

Y10 (knots) 1.9827 1.9827 1.9827 1.9827 1.9733 1.9633 …

Y11 (meters) 14.9400 14.9400 14.9400 14.9400 14.9351 14.9300 …

Y12 (meters) 0.0401 −0.0016 −0.0054 −0.0091 0.0562 −0.0900 …

Y13 (tonne-force) 2.3463 2.3463 2.3463 2.3463 2.3463 2.3463 …

Y14 (tonne-force) 0.2803 0.2803 0.2803 0.2803 0.2803 0.2803 …

Y15 (tonne-force) 2.3630 2.3630 2.3630 2.3630 2.3630 2.3630 …

Y16 (tonne-force) −0.0092 −0.0092 −0.0092 −0.0092 −0.0092 −0.0092 …

Y17 (tonne-force) 0.0067 0.0067 0.0067 0.0067 0.0067 0.0067 …

Y18 (tonne-force) −0.0213 −0.0213 −0.0213 −0.0213 −0.0213 −0.0213 …

Y19 (tonne-force) 0.0786 0.0786 0.0786 0.0786 0.0786 0.0786 …

Y20 (tonne-force) −0.0754 −0.0754 −0.0754 −0.0754 −0.0754 −0.0754 …

Y21 (degrees) 233.9447 233.9200 233.9183 233.8878 233.8264 233.7855 …

Y22 (meters) 2.9483 2.9222 2.9225 2.9399 2.9623 2.9477 …

Y23 (knots) 1.0905 1.0908 1.0910 1.0939 0.9871 1.0972 …

Y24 (knots) 5.6254 5.6152 5.6152 5.6149 5.4510 5.5839 …

Y25 (degrees) 0.2091 0.2100 0.2097 0.2020 0.2193 0.2035 …

Y26 (degrees/min) −0.3208 −0.3458 −0.3713 −0.7965 0.5707 −0.4372 …

Y27 (degrees/min) −2.1088 −2.1241 −2.1421 −2.4411 −1.9075 −1.8242 …

Y28 (degrees) 0.0188 0.0233 0.0236 0.0272 0.0322 0.0331 …

Y29 (degrees/min) 0.3844 0.3141 0.3100 0.2430 0.0469 −0.0326 …

Y30 (knots) −0.0395 −0.0112 −0.0076 0.0528 −0.0161 −0.0336 …

Y31 (degrees/min) −2.1088 −2.1241 −2.1421 −2.4411 −1.9075 −1.8242 …

Y32 (degrees) 31.3495 31.3494 31.3494 31.3494 31.3494 31.3494 …

Y33 (degrees) 121.6494 121.6493 121.6493 121.6493 121.6493 121.6492 …

Table 8 

Grey correlation coefficient for the sample data (partially). 

Impact factors Grey correlation coefficient R 

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 …

Y1 0.948821 0.944801 0.935685 0.933054 0.940548 0.945995 …

Y2 0.94 4 423 0.941285 0.934170 0.932106 0.937298 0.941518 …

Y3 0.980756 0.981198 0.982183 0.982491 0.978342 0.977833 …

Y4 0.984270 0.984636 0.985512 0.985749 0.981410 0.980826 …

Y5 0.958720 0.958720 0.958720 0.958720 0.955696 0.955696 …

Y6 0.940306 0.940306 0.940306 0.940306 0.937397 0.937397 …

Y7 0.977801 0.977892 0.977932 0.977993 0.974925 0.974957 …

Y8 0.971251 0.971392 0.971609 0.971735 0.974998 0.975096 …

Y9 0.841280 0.841107 0.840897 0.840735 0.838168 0.838051 …

Y10 0.998258 0.998170 0.998126 0.998081 0.998665 0.998729 …

Y11 0.983231 0.983231 0.983231 0.983231 0.980051 0.980051 …

Y12 0.944236 0.944220 0.994049 0.977954 0.934740 0.944329 …

Y13 0.965905 0.965905 0.965905 0.965905 0.962835 0.962835 …

Y14 0.964395 0.964395 0.964395 0.964395 0.961335 0.961335 …

Y15 0.968953 0.968953 0.968953 0.968953 0.965865 0.965865 …

Y16 0.966102 0.966102 0.966102 0.966102 0.963031 0.963031 …

Y17 0.969357 0.969357 0.969357 0.969357 0.966265 0.966265 …

Y18 0.967034 0.967034 0.967034 0.967034 0.963957 0.963957 …

Y19 0.969569 0.969569 0.969569 0.969569 0.966476 0.966476 …

Y20 0.963393 0.963393 0.963393 0.963393 0.960339 0.960339 …

Y21 0.909890 0.910029 0.910146 0.910297 0.907702 0.907830 …

Y22 0.954179 0.955253 0.956160 0.956446 0.951070 0.950563 …

Y23 0.907782 0.907409 0.908501 0.908866 0.906425 0.906430 …

Y24 0.950644 0.950756 0.950573 0.950536 0.947538 0.947568 …

Y25 0.938662 0.938578 0.938564 0.938505 0.935553 0.935517 …

Y26 0.965855 0.965857 0.965923 0.965895 0.962822 0.962899 …

Y27 0.993808 0.993416 0.992348 0.991987 0.988237 0.987177 …

Y28 0.966143 0.966234 0.966354 0.966462 0.963519 0.963702 …

Y29 0.966916 0.966278 0.966579 0.966699 0.963888 0.964242 …

Y30 0.970562 0.972582 0.973802 0.958892 0.950538 0.968439 …

Y31 0.993808 0.993416 0.992348 0.991987 0.988237 0.987177 …

Y32 0.902639 0.902687 0.902726 0.902784 0.900150 0.900198 …

Y33 0.941088 0.941467 0.941775 0.942178 0.939635 0.939989 …
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Fig. 5. Analysis of participants’ information. 
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1) Create a root node D. Set the fuzzy training as the root node of

the input and the other nodes of the tree as a fuzzy subset of

the training set. 

2) Classify the example set. Select the attribute with the highest

fuzzy information gain as the extended attribute of the node.

Each attribute A 

i performs a fuzzy segmentation on D . Then,

calculate the fuzzy information gain G ( A 

i ,D ) generated by each

attribute A 

i at the node D . 

3) If the confidence level of a certain class in the node is greater

than β (the truth level threshold used in this paper is 0.750),

then the leaf is generated. 

4) If all the attributes on a node have been used, then the leaf is

generated. 
t  
5) Otherwise, select the unused attribute with the highest fuzzy

information gain as the extension attribute. If the fuzzy infor-

mation gain is less than the given value, the leaf is generated.

Blur the current node by the extended attribute value to gener-

ate its sub-node. Then, repeat the above process until the whole

decision tree is established. 

.3. Establishing piloting decision classification rules 

For the resulting piloting decision tree, the path from the root

ode to each leaf node of the decision tree corresponds to the

ombination of a set of attribute tests. The decision tree represents

hese conjunctive separations. With the piloting decision classifi-
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Fig. 6. Analysis of the experimental ship. 

Table 9 

Grey relation entropy and entropy correlation of each comparative column. 

Impact factors Grey relation entropy H ( R ) Entropy correlation E ( Y ) Impact factors Grey relation entropy H ( R ) Entropy correlation E ( Y ) 

Y1 9.9293545 0.9999514 Y18 9.9294521 0.9999612 

Y2 9.9293573 0.9999517 Y19 9.9294144 0.9999574 

Y3 9.9294876 0.9999648 Y20 9.9294297 0.9999590 

Y4 9.9295372 0.9999698 Y21 9.9293154 0.9999474 

Y5 9.9294551 0.9999615 Y22 9.9295775 0.9999738 

Y6 9.9294348 0.9999595 Y23 9.9294079 0.9999568 

Y7 9.9293085 0.9999467 Y24 9.9293957 0.9999555 

Y8 9.9295981 0.9999759 Y25 9.9294056 0.9999565 

Y9 9.9293199 0.9999479 Y26 9.9294307 0.9999591 

Y10 9.9294223 0.9999582 Y27 9.9295344 0.9999695 

Y11 9.9295045 0.9999665 Y28 9.9293906 0.9999550 

Y12 9.9294607 0.9999621 Y29 9.9294052 0.9999565 

Y13 9.9294823 0.9999642 Y30 9.9294555 0.9999615 

Y14 9.9294797 0.9999640 Y31 9.9295355 0.9999696 

Y15 9.9294764 0.9999636 Y32 9.9293865 0.9999546 

Y16 9.9295335 0.9999694 Y33 9.9295294 0.9999690 

Y17 9.9294209 0.9999581 — — —
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Fig. 7. Decision tree structure for piloting decision classification rules. 

Table 10 

Training samples (partially). 

No. X Y4 Y8 Y16 Y22 Y27 Y31 

Rudders order Telegraphs order 

1 −35.0 0 0 0 0.0 0 0 0 4.7793 −1.6463 −0.0092 2.7666 −10.1748 −4.9876 

2 −35.0 0 0 0 0.0 0 0 0 4.7833 −1.5230 −0.0092 2.8756 −10.0944 −4.6709 

3 −35.0 0 0 0 0.0 0 0 0 4.8618 −1.3379 −0.0092 2.8889 −10.4877 −4.8759 

4 −35.0 0 0 0 −4.3207 4.9425 −1.2042 −0.0092 3.0291 −10.3155 −4.7104 

5 −35.0 0 0 0 −17.9076 5.0 0 01 −0.9383 −0.0092 3.0278 −10.4462 −4.5943 

6 −35.0 0 0 0 −20.0 0 0 0 4.9737 −0.8662 −0.0092 2.9371 −10.3930 −4.4932 

… … … … … … … … …

Table 11 

Training set with the principle of standardization (partially). 

No. X Y4 Y8 Y16 Y22 Y27 Y31 

a b c a b c a b c a b c a b c a b c 

1 X3 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 

2 X3 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 

3 X3 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 

4 X55 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 

5 X55 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 

6 X55 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 

… … … … … … … … … … … … … … … … …

Table 12 

The center points of selected impact factors. 

Impact factors m 1 m 2 m 3 

Y4 4.0241 5.3161 6.6080 

Y8 31.20 0 0 62.40 0 0 93.60 0 0 

Y16 −0.0521 −0.0274 −0.0027 

Y22 2.0750 2.40 0 0 2.7250 

Y27 −2.1606 22.4190 46.9986 

Y31 −4.4106 17.9190 40.2486 

c  

d  

t  

t  

A  

g  

l  

t  

m  

s

 

T

 

 

 

 

 

 

 

ation tree, we can easily extract the decision-making knowledge

escribed by the decision tree and can use the "IF-THEN" form

o extract the rules. Each piloting decision can be obtained along

he path from the root node to the leaf node of the decision tree.

 collection of attributes and their values encountered along the
iven path constitutes a prerequisite for the rule (IF part). The

eaf node gives the predicted value of the classification, forming

he conclusion part of the rule (THEN part). Finally, all rules are

erged to form the piloting decision recognition rule base, as

hown in Table 14 . 

The following conclusions can be drawn from Fig. 7 and

able 14: 

1) In the piloting decision-making process, piloting behavior is of-

ten stimulated and influenced by pilots, ships, waterways, envi-

ronment and other factors. These factors together lead the pi-

lot to gradually form the next moment action (action, strategy

or tactics) in their mind. According to this long-term strategy

and the current piloting environment, the pilot can quickly and

accurately develop piloting decisions and prepare to establish
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Table 13 

Training set with fuzzy representation (partially). 

No. X Y4 Y8 Y16 Y22 Y27 Y31 

a b c a b c a b c a b c a b c a b c 

1 X3 0.629 0.371 0.0 0 0 0.0 0 0 0.019 0.981 0.720 0.280 0.0 0 0 0.992 0.008 0.0 0 0 0.918 0.082 0.0 0 0 0.975 0.025 0.0 0 0 

2 X3 0.625 0.375 0.0 0 0 0.0 0 0 0.016 0.984 0.706 0.294 0.0 0 0 0.997 0.003 0.0 0 0 0.926 0.074 0.0 0 0 0.963 0.037 0.0 0 0 

3 X3 0.601 0.399 0.0 0 0 0.0 0 0 0.013 0.987 0.710 0.290 0.0 0 0 0.999 0.001 0.0 0 0 0.938 0.062 0.0 0 0 0.953 0.047 0.0 0 0 

4 X55 0.593 0.407 0.0 0 0 0.0 0 0 0.009 0.991 0.726 0.274 0.0 0 0 0.997 0.003 0.0 0 0 0.949 0.051 0.0 0 0 0.943 0.057 0.0 0 0 

5 X55 0.597 0.403 0.0 0 0 0.0 0 0 0.005 0.995 0.710 0.290 0.0 0 0 0.998 0.002 0.0 0 0 0.970 0.030 0.0 0 0 0.926 0.074 0.0 0 0 

6 X55 0.618 0.382 0.0 0 0 0.0 0 0 0.001 0.999 0.691 0.309 0.0 0 0 1.0 0 0 0.0 0 0 0.0 0 0 0.985 0.015 0.0 0 0 0.926 0.074 0.0 0 0 

… … … … … … … … … … … … … … … … … … … …

Table 14 

Piloting decision classification rules. 

No. Piloting decision classification rules 

1 IF Y8 = a AND Y27 = a AND Y22 = a AND Y4 = a AND Y16 = a AND Y31 = a THEN X = X33 

2 IF Y8 = a AND Y27 = a AND Y22 = c AND Y4 = a AND Y16 = a AND Y31 = a THEN X = X43 

3 IF Y8 = a AND Y27 = a AND Y22 = c AND Y4 = b AND Y16 = a AND Y31 = a THEN X = X33 

4 IF Y8 = a AND Y27 = a AND Y22 = b AND Y4 = a AND Y16 = a AND Y31 = a THEN X = X30 

5 IF Y8 = a AND Y27 = a AND Y22 = b AND Y4 = b AND Y16 = a AND Y31 = a THEN X = X10 

6 IF Y8 = a AND Y27 = c AND Y4 = a THEN X = X1 

7 IF Y8 = a AND Y27 = c AND Y4 = b AND Y22 = c AND Y16 = a AND Y31 = c THEN X = X1 

8 IF Y8 = a AND Y27 = c AND Y4 = b AND Y22 = b THEN X = X1 

9 IF Y8 = a AND Y27 = b AND Y22 = a AND Y4 = a AND Y16 = a AND Y31 = b THEN X = X54 

10 IF Y8 = a AND Y27 = b AND Y22 = c AND Y4 = a AND Y16 = a AND Y31 = b THEN X = X33 

11 IF Y8 = a AND Y27 = b AND Y22 = c AND Y4 = b AND Y16 = a AND Y31 = b THEN X = X33 

12 IF Y8 = a AND Y27 = b AND Y22 = b AND Y4 = a AND Y16 = a AND Y31 = b THEN X = X33 

13 IF Y8 = a AND Y27 = b AND Y22 = b AND Y4 = b AND Y16 = a AND Y31 = b THEN X = X1 

14 IF Y8 = c AND Y22 = a AND Y27 = a AND Y4 = a AND Y16 = a AND Y31 = a THEN X = X44 

15 IF Y8 = c AND Y22 = a AND Y27 = a AND Y4 = a AND Y16 = c THEN X = X12 

16 IF Y8 = c AND Y22 = a AND Y27 = a AND Y4 = a AND Y16 = b THEN X = X12 

17 IF Y8 = c AND Y22 = a AND Y27 = a AND Y4 = b AND Y16 = a AND Y31 = b THEN X = X55 

18 IF Y8 = c AND Y22 = a AND Y27 = a AND Y4 = b AND Y16 = c THEN X = X12 

19 IF Y8 = c AND Y22 = a AND Y27 = a AND Y4 = b AND Y16 = b THEN X = X12 

20 IF Y8 = c AND Y22 = a AND Y27 = c THEN X = X4 

21 IF Y8 = c AND Y22 = a AND Y27 = b AND Y4 = a AND Y16 = a AND Y31 = b THEN X = X55 

22 IF Y8 = c AND Y22 = a AND Y27 = b AND Y4 = a AND Y16 = c THEN X = X12 

23 IF Y8 = c AND Y22 = a AND Y27 = b AND Y4 = a AND Y16 = b THEN X = X12 

24 IF Y8 = c AND Y22 = a AND Y27 = b AND Y4 = b AND Y16 = a AND Y31 = b THEN X = X3 

25 IF Y8 = c AND Y22 = c AND Y4 = a AND Y27 = a AND Y16 = a AND Y31 = a THEN X = X36 

26 IF Y8 = c AND Y22 = c AND Y4 = a AND Y27 = b AND Y16 = a AND Y31 = b THEN X = X3 

27 IF Y8 = c AND Y22 = c AND Y4 = c AND Y27 = a AND Y16 = a AND Y31 = a THEN X = X36 

28 IF Y8 = c AND Y22 = c AND Y4 = c AND Y27 = a AND Y16 = c AND Y31 = a THEN X = X2 

29 IF Y8 = c AND Y22 = c AND Y4 = c AND Y27 = a AND Y16 = b AND Y31 = a THEN X = X2 

30 IF Y8 = c AND Y22 = c AND Y4 = c AND Y27 = b AND Y16 = a AND Y31 = b THEN X = X2 

31 IF Y8 = c AND Y22 = c AND Y4 = c AND Y27 = b AND Y16 = c AND Y31 = b THEN X = X2 

32 IF Y8 = c AND Y22 = c AND Y4 = c AND Y27 = b AND Y16 = b AND Y31 = b THEN X = X12 

33 IF Y8 = c AND Y22 = c AND Y4 = b AND Y27 = a AND Y16 = a AND Y31 = a THEN X = X46 

34 IF Y8 = c AND Y22 = c AND Y4 = b AND Y27 = a AND Y16 = c AND Y31 = a THEN X = X12 

35 IF Y8 = c AND Y22 = c AND Y4 = b AND Y27 = a AND Y16 = b AND Y31 = a THEN X = X12 

36 IF Y8 = c AND Y22 = c AND Y4 = b AND Y27 = c AND Y16 = a AND Y31 = c THEN X = X27 

37 IF Y8 = c AND Y22 = c AND Y4 = b AND Y27 = b AND Y16 = a AND Y31 = b THEN X = X32 

38 IF Y8 = c AND Y22 = b AND Y27 = a AND Y4 = a AND Y16 = a AND Y31 = a THEN X = X44 

39 IF Y8 = c AND Y22 = b AND Y27 = a AND Y4 = b AND Y16 = a AND Y31 = a THEN X = X55 

40 IF Y8 = c AND Y22 = b AND Y27 = a AND Y4 = b AND Y16 = c THEN X = X12 

41 IF Y8 = c AND Y22 = b AND Y27 = b AND Y4 = a AND Y16 = a AND Y31 = b THEN X = X55 

42 IF Y8 = c AND Y22 = b AND Y27 = b AND Y4 = b AND Y16 = a AND Y31 = b THEN X = X7 

43 IF Y8 = b AND Y27 = a AND Y22 = a AND Y4 = a AND Y16 = a AND Y31 = b THEN X = X54 

44 IF Y8 = b AND Y27 = a AND Y22 = c AND Y4 = a AND Y16 = a AND Y31 = b THEN X = X44 

45 IF Y8 = b AND Y27 = a AND Y22 = c AND Y4 = b AND Y16 = a AND Y31 = b THEN X = X32 

46 IF Y8 = b AND Y27 = a AND Y22 = b AND Y4 = a AND Y16 = a AND Y31 = a THEN X = X54 

47 IF Y8 = b AND Y27 = a AND Y22 = b AND Y4 = b AND Y16 = a AND Y31 = a THEN X = X43 

48 IF Y8 = b AND Y27 = c AND Y22 = a THEN X = X4 

49 IF Y8 = b AND Y27 = c AND Y22 = c AND Y4 = a AND Y16 = a AND Y31 = c THEN X = X2 

50 IF Y8 = b AND Y27 = c AND Y22 = c AND Y4 = b AND Y16 = a AND Y31 = c THEN X = X33 

51 IF Y8 = b AND Y27 = c AND Y22 = b AND Y4 = a AND Y16 = a AND Y31 = c THEN X = X2 

52 IF Y8 = b AND Y27 = b AND Y22 = a AND Y4 = a AND Y16 = a AND Y31 = b THEN X = X43 

53 IF Y8 = b AND Y27 = b AND Y22 = c AND Y4 = a AND Y16 = a AND Y31 = b THEN X = X33 

54 IF Y8 = b AND Y27 = b AND Y22 = c AND Y4 = b AND Y16 = a AND Y31 = b THEN X = X33 

55 IF Y8 = b AND Y27 = b AND Y22 = b AND Y4 = a AND Y16 = a AND Y31 = b THEN X = X33 

56 IF Y8 = b AND Y27 = b AND Y22 = b AND Y4 = b AND Y16 = a AND Y31 = b THEN X = X10 
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Table 15 

The information of dataset used in our experiments. 

Database 

Number of 

instances 

Number of 

features 

Number of 

classes 

Our database 677,655 18 64 

Table 16 

Classification performance symbols and their equations or mean- 

ings. 

Symbol Formula/Meaning 

TN x i not predicted to be in C i and is not actually in it 

TP x i predicted to be in C i and is actually in it 

FN x i not predicted to be in C i but is actually in it 

FP x i predicted to be in C i but is not actually in it 

Accuracy ACC = 

T N+ T P 
T N+ T P+ F N+ F P 
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Table 17 

The performance of different classifier algorithms with 10-fold 

cross-validation. 

Classifier algorithms Performance measures in % 

SVM Fold Accuracy 

1 80.57 

2 79.26 

3 81.29 

4 81.89 

5 87.33 

6 79.72 

7 83.33 

8 86.56 

9 83.79 

10 87.11 

Average – 83.09 

NB Accuracy 

1 86.91 

2 82.55 

3 85.75 

4 81.21 

5 80.54 

6 84.23 

7 91.46 

8 82.57 

9 79.75 

10 86.54 

Average – 84.15 

Our method Accuracy 

1 86.33 

2 85.32 

3 87.23 

4 86.75 

5 85.44 

6 89.12 

7 84.77 

8 86.86 

9 85.46 

10 86.76 

Average – 86.40 

t  

N  

t

5

 

u  

k  

w  

r  

a  

o  

t  

e  

r  

i  

m  

r

 

 

 

 

 

 

 

the pilot’s comprehensive cognitive sequence activity execution

mechanism. 

2) Piloting decision-making also depends on the pilot’s personality

type. For instance, in the same navigational environment, when

the variable speed change conditions are in a critical state, con-

servative pilots will not risk changing speed or direction, even if

this would lead to great traffic delay. Impulsive pilots are more

likely to risk shifting or changing direction. 

3) Fuzzy ID3 decision tree sets features as main factors determine

whether the pilot will take the main piloting force or take

rudder operation during navigation, which is consistent with

the actual navigation experience. These rules and the current

skilled pilot’s background knowledge are also consistent. These

factors can be an important reference for piloting behavior se-

lection and can also be used to create a knowledge base of

an expert system. The results contain high reference value and

practical value. 

4) The classification accuracy of data mining using fuzzy ID3 deci-

sion trees can reach more than 86.40% (will be discussed later),

close to or even exceeding the effect of an empirical pilot judg-

ment, which well proves the validity of the fuzzy ID3 decision

tree algorithm in navigational piloting behavior data mining. 

.4. Comparative analysis 

To validate the effectiveness of the fuzzy decision tree algo-

ithm we proposed in this paper, the experiments are conducted

ith the experimental environment: an Intel (R) Core (TM) i7-

600U 2 Duo Processor 2.6 GHz processor (4 MB Cache), 12 GB of

AM, Windows10, and Python 2.7.14. 

In implementing the algorithm, the experimental samples are

ivided into two categories; we randomly select 80% of samples as

 training sample set, and the remaining 20% of samples are used

s a test sample set. 

To test the performance of the proposed Fuzzy ID3 methods,

upport Vector Machine (SVM), and Naïve Bayes (NB) are com-

ared. And we use classification accuracy to measure the proposed

uzzy ID3 algorithm. Assume the dataset D = { X 1 , X 2 , ..., X n }, each

ata record is represented as X i = {X 1 , X 2 , ..., X n } , D also contains

 set of classes C = { C 1 , C 2 , ..., C n }, then we can get the classifica-

ion performance symbol and equations or meanings, as shown in

able 15 . 

For the dataset, described in Table 15 , a ten-fold cross-

alidation (10-CV) is conducted, the performance of different clas-

ifier algorithms is shown in Table 17 . 

The classification accuracy using different classifiers on our

ataset is shown in Table 17 . According to the classification accu-

acy results, the proposed method can achieve the highest accuracy

mong these three algorithms. And the proposed method can ob-
ain the best average classification accuracy of 86.40%, followed by

B at 84.15%, and the SVM at 83.09%. Therefore, we can know that

he proposed method outperforms the compared methods. 

. Conclusions 

Based on the experimental data of the full-task handling sim-

lation platform and in view of the shortcomings of the existing

nowledge representation and acquisition methods, in this paper,

e use decision trees to integrate the advantages of knowledge

epresentation and acquisition. We combine a decision tree with

 fuzzy theory to address the potential uncertainty in the process

f classification. We then put forward the knowledge representa-

ion and acquisition method based on the fuzzy ID3 decision tree,

stablish the piloting decision recognition model, and apply it to

esearch on the decision-making mechanism of the different pilot-

ng behavior of an inbound ship to verify the performance of the

ethod. We achieve the following conclusions from the simulation

esults: 

1) The proposed method uses the fuzzy ID3 decision tree to ex-

press the piloting decision recognition model, which has high

reasoning efficiency. 

2) The method integrates the advantages of fuzzy theory and de-

cision trees, combining the comprehensibility of decision trees

and the comprehensive expression ability of fuzzy technology.

It has strong decision analysis ability and can address the prob-

lem of ambiguity and uncertainty. It improves the decision

tree’s robustness, comprehensibility, and efficiency. 
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3) This method can mine the key factors which affect piloting de-

cisions, accurately identify the current piloting behavior and

provide guidance for a smart ship-assisted or automatic pilot-

ing system for the research of human-like piloting behavior. 

Furthermore, considering the cost and feasibility of using real

ships, computer simulations and simulator experiments are more

commonly used. In addition, the number of captain, officers and

experienced crew is small, so it is difficult to organize large-scale

multi-batch experiments in a certain time and space. With the op-

portunity of Wuhan University of Technology’s training assessment,

it is valuable and unique to obtain experimental data operated by

an experienced senior crew on the full-task handling simulation

platform. However, there are still some problems with the mod-

els and experiments described in this paper, which need to be im-

proved in subsequent studies: 

1) According to the actual situation of the Shanghai Waigaoqiao

Phase IV Port and the actual simulation data of an inbound

ship, in this paper, we do not take into account the impact

of other vessels on the waterway. Based on the definition of

the inbound scenario proposed in this paper, there are no

other ships interfering with ship OS1 into the port, so there is

no need to consider this situation. However, follow-up studies

should consider outward ship piloting decisions. 

2) In this paper, considering the relevant output information of

the piloting decision influence factors, only the third level of in-

formation is considered. This includes the forward and reverse

rotation of the propeller, the propeller speed condition, the rud-

der angle direction, the rudder angle size and the correspond-

ing maintenance and change conditions. Although we made a

detailed division of the information and its guiding significance

on the ship into the port piloting decision-making process, the

ship rudder is a multi-dynamic factor, so follow-up research

needs to do further scientific division and consideration. 

In future research, the above problems will be further stud-

ied and explored. We hope to improve the ship piloting behavior

decision-making theory and system for smart ship piloting behav-

ior decision-making research to provide theoretical guidance and a

feasibility basis for the development of smart ships. 
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