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A B S T R A C T

The ever-growing demands on speed and precision from the precision motion industry have pushed control
requirements to reach the limitations of linear control theory. Nonlinear controllers like reset provide a
viable alternative since they can be easily integrated into the existing linear controller structure and designed
using industry-preferred loop-shaping techniques. However, currently, loop-shaping is achieved using the
describing function (DF) and performance analysed using linear control sensitivity functions not applicable for
reset control systems, resulting in a significant deviation between expected and practical results. This major
bottleneck to the wider adaptation of reset control is overcome in this paper with two important contributions.
First, an extension of frequency-domain tools for reset controllers in the form of higher-order sinusoidal-input
describing functions (HOSIDFs) is presented, providing greater insight into their behaviour. Second, a novel
method that uses the DF and HOSIDFs of the open-loop reset control system for the estimation of the closed-
loop sensitivity functions is proposed, establishing for the first time — the relation between open-loop and
closed-loop behaviour of reset control systems in the frequency domain. The accuracy of the proposed solution
is verified in both simulation and practice on a precision positioning stage and these results are further analysed
to obtain insights into the tuning considerations for reset controllers.
. Introduction

PID and the like linear controllers continue to dominate industrial
ontrol including the high-tech industry with precision applications
uch as photolithography wafer scanners, atomic force microscopes,
daptive optics etc. This status quo is likely to continue as observed
n Samad et al. (2019). An important reason for this sustained trend
specially in the precision industry is that these linear controllers
end themselves for loop-shaping based design using the plant fre-
uency response function (FRF) and for performance prediction using
ensitivity functions in the frequency domain. However, the constant
ush for higher bandwidths, tracking precision, robustness cannot be
et by linear controllers which are fundamentally limited by the
aterbed effect (Bode et al., 1945). While nonlinear control theory
as developed significantly over the decades, controllers compatible
ith well-established industry-standard techniques, especially design,
rediction and analysis in the frequency domain, are required to meet
uture needs.

Reset control, first proposed by J. C. Clegg in 1958 (Clegg, 1958),
s one such nonlinear control technique with significant potential to re-
lace PID and its family of controllers. Reset technique was introduced

∗ Correspondence to: Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
E-mail address: s.h.hosseinniakani@tudelft.nl (S.H. HosseinNia).

for an integrator wherein its state is reset to zero when the error input
hits zero. Describing function (DF) analysis of this element — reset
integrator or more popularly dubbed as ‘Clegg Integrator (CI)’ shows
that CI has similar gain behaviour compared to a linear integrator, but
with a significant phase advantage of only 38◦ lag compared to 90◦ in
the linear case.

This idea was extended in the form of ‘First order reset element
(FORE)’ in Horowitz and Rosenbaum (1975) and Krishnan and
Horowitz (1974), adding much needed tuning flexibility, with closed-
loop performance improvement using reset control also shown for the
first time in the same works. Over the years, elements such as ‘Second-
order reset element (SORE)’ (Hazeleger, Heertjes, & Nijmeijer, 2016)
and ‘Fractional-order reset element (FrORE)’ (Saikumar & HosseinNia,
0000) have been introduced expanding the design freedom. Additional
degrees of tuning have also been introduced with the PI+CI (Baños &
Vidal, 2007) and partial reset techniques (Beker, Hollot, Chait, & Han,
2004), with the latter resulting in generalized reset elements (Saiku-
mar, Sinha, & Hoseinnia, 2019a). The advantage of reset control in
improving performance has been extensively studied from process to
motion control systems (Akyüz, Saikumar, & HosseinNia, 2019; Baños
& Barreiro, 2011; Beker, Hollot, & Chait, 2001; Chen, Chait, & Hollot,
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2001; Chen, Saikumar, Baldi, & HosseinNia, 2018; Chen, Saikumar, &
HosseinNia, 2019; HosseinNia, Tejado, & Vinagre, 2013; Palanikumar,
Saikumar, & HosseinNia, 2018; Wu, Guo, & Wang, 2007; Zheng, Chait,
Hollot, Steinbuch, & Norg, 2000). While the mentioned works have
retained the original condition of resetting the state when the error
input hits zero, several works have also looked at modifying the reset
condition to gain performance improvements (Li, Du, & Wang, 2011;
Panni, Alberer, & Zaccarian, 2012). However, most of these alternative
reset conditions do not lend themselves to frequency domain analysis
and hence are not the focus of this study.

While a large volume of work exists on the use of traditional reset
technique in practice, a large fraction of this has been limited to the
exploitation of the reduced phase lag advantage and hence reset is
mainly used in the integrator part of PID. Recently, the ‘Constant-in-
gain Lead-in-phase (CgLp)’ (Saikumar et al., 2019a; Saikumar, Sinha, &
HosseinNia, 2019b) element was introduced, aimed at a more wholistic
utilization of reset from a loop-shaping perspective to gain significant
improvements in tracking precision, bandwidth and stability. This CgLp
element can potentially replace the derivative part of PID and go
beyond (Saikumar, Valério and HosseinNia, 2019; Valério, Saikumar,
Dastjerdi, Karbasizadeh, & HosseinNia, 2019). While the potential of
reset control to go beyond the limitations of linear control has been
well-established, a fundamental roadblock that remains is the lack of
a clear frequency domain analysis method for reset control systems,
which is critical for design, performance prediction and analysis in
the loop-shaping framework. The current use of DF for loop-shaping
design falls short especially in precision systems and a large deviation
from performance estimated using linear analysis of DF has been re-
ported (Akyüz et al., 2019; Saikumar et al., 2019a; Saikumar, Valério
et al., 2019).

In this paper, this bottleneck is reduced through two contributions
for analysing performance in the frequency-domain. First, the extension
of a frequency-domain tool called ‘Higher-order sinusoidal-input de-
scribing functions (HOSIDFs)’ for reset controllers is provided enabling
a deeper analysis in the open-loop. Second, a method for translation
of the open-loop behaviour to closed-loop in the frequency domain
is proposed, which in essence are the sensitivity functions for reset
control systems. The remainder of this paper is structured as follows.
The preliminaries of reset control along with the existing describing
function analysis method are presented in Section 2. The HOSIDF tool
as applied to reset controllers is presented in Section 3, followed by
the novel method establishing sensitivity functions for reset control
systems in Section 4. The accuracy of the proposed solutions is tested in
both simulation and practice on a precision motion system in Section 5,
followed by a general analysis of the results and a discussion in terms
of the validity of the assumptions as well as the implication for loop-
shaping of reset controllers in Section 6. The paper is concluded with
a summary and remarks for future work in Section 7.

2. Preliminaries on reset control

The preliminaries of reset control including definition, describing
function, reset elements, stability and the problem with using DF for
loop-shaping are presented in this section.

2.1. Definition of reset controller

While reset controllers with various state/input/time dependent
resetting conditions/laws exist in literature, the most popular reset law
which lends itself for frequency domain analysis is based on the input
(generally error) hitting zero. This is also referred to as ‘zero-crossing
law’. A SISO reset controller with this law can be defined using the
following equations:

 =

⎧

⎪

⎨

⎪

𝑥̇𝑅(𝑡) = 𝐴𝑅𝑥𝑅(𝑡) + 𝐵𝑅𝑒(𝑡) 𝑒(𝑡) ≠ 0
𝑥𝑅(𝑡+) = 𝐴𝜌𝑥𝑅(𝑡) 𝑒(𝑡) = 0 (1)
⎩

𝑢𝑅(𝑡) = 𝐶𝑅𝑥(𝑡) +𝐷𝑅𝑒(𝑡)

2

where 𝑒(𝑡) is the error input, 𝑢𝑅(𝑡) is the controller output and 𝑥𝑅(𝑡) ∈
R𝑛 . 𝐴𝑅, 𝐵𝑅, 𝐶𝑅, and 𝐷𝑅 represent the state-space matrices and are
together referred to as the base-linear controller. The first equation
provides the non-reset continuous dynamics referred to as flow dy-
namics, whereas the resetting action is given by the second equation
referred to as the jump dynamic. 𝐴𝜌 is the resetting matrix which
determines the after-reset values of the states and is generally of form
𝑑𝑖𝑎𝑔(𝛾1, 𝛾2,… ., 𝛾𝑛 ) where 𝛾𝑖 ∈ [−1, 1]. A general reset controller can be
defined using (1) to include the linear non-resetting controller part in
which case, the first 𝑛𝑟 states are the resetting states, followed by 𝑛𝑛𝑟
non-resetting states, with 𝑛 = 𝑛𝑟+𝑛𝑛𝑟. In this case, the resetting matrix
𝐴𝜌 can be represented as

𝐴𝜌 =
[

𝐴𝜌𝑟
𝐼

]

2.2. Describing function (DF)

Reset controllers  are analysed in the frequency domain through
the sinusoidal input describing function (DF). The output of , 𝑢𝑅(𝑡) is
convergent and hence periodic to a sinusoidal input if |𝜆(𝐴𝜌𝑒𝐴𝑅𝛿)| <
1 , ∀𝛿 ∈ R+ (Guo, Wang, & Xie, 2009; Pavlov, van de Wouw, &
Nijmeijer, 2005). Satisfying this condition allows for DF analysis which
considers only the first harmonic of the Fourier series expansion of
𝑢𝑅(𝑡). The analytical equations for the calculation of DF are provided
in Guo et al. (2009) as

𝐻1(𝜔) = 𝐶𝑅(𝑗𝜔𝐼 − 𝐴𝑅)−1(𝐼 + 𝑗𝛩𝐷(𝜔))𝐵𝑅 +𝐷𝑅 (2)

where
𝛬(𝜔) = 𝜔2𝐼 + 𝐴2

𝑅

𝛥(𝜔) = 𝐼 + 𝑒
( 𝜋
𝜔𝐴𝑅

)

𝛥𝑟(𝜔) = 𝐼 + 𝐴𝜌𝑒
( 𝜋
𝜔𝐴𝑅

)

𝛤𝑟(𝜔) = 𝛥−1
𝑟 (𝜔)𝐴𝜌𝛥(𝜔)𝛬−1(𝜔)

𝛩𝐷(𝜔) =
−2𝜔2

𝜋
𝛥(𝜔)

[

𝛤𝑟(𝜔) − 𝛬−1(𝜔)
]

2.3. Reset elements

The most popular and relevant reset elements are presented here.

2.3.1. Generalized Clegg integrator (GCI)
The first reset element as introduced by Clegg in Clegg (1958) can

be generalized with partial reset allowing for the integrator state to be
reset to a fraction of its value instead of zero. This is represented in
transfer function form as below with the arrow indicating reset.

GCI = 1

��⌃
𝐴𝜌

𝛼𝑠
(3)

where 𝛼 corrects for the change in gain of DF seen at all frequencies.
𝛼 = 1.62 has been noted for 𝛾 = 0 in literature and varies for different
values of 𝛾. 𝐴𝜌 = 𝛾 ∈ [−1, 1] allows for the generalization of Clegg
Integrator. The corresponding state-space matrices as per (1) are given
as

𝐴𝑅 = 0, 𝐵𝑅 = 1∕𝛼, 𝐶𝑅 = 1, 𝐷𝑅 = 0

2.3.2. Generalized FORE (GFORE)
FORE presented in Horowitz and Rosenbaum (1975) was general-

ized and extended as GFORE by Guo et al. (2009) creating a first-order
reset filter with the resetting matrix 𝐴𝜌 controlling the level of reset.
GFORE with corner frequency at 𝜔𝑟 can be represented as

GFORE = 1

��⌃
𝐴𝜌

𝑠 + 1

(4)
�
�𝛼𝜔𝑟
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where 𝛼 accounts for the change in the gain of GFORE at high frequen-
cies as noted in Saikumar et al. (2019a), 𝐴𝜌 = 𝛾 ∈ [−1, 1] with the
value of 𝛼 dependent on the value of 𝛾. The corresponding state-space
matrices as per (1) are given as

𝐴𝑅 = −𝛼𝜔𝑟, 𝐵𝑅 = 𝛼𝜔𝑟, 𝐶𝑅 = 1, 𝐷𝑅 = 0

.3.3. Generalized SORE (GSORE)
SORE creates a second-order reset filter and allows for additional

uning of the damping parameter of the filter. SORE presented in
azeleger et al. (2016) was generalized in Saikumar et al. (2019a) and
an be represented as:

SORE = 1

(

��������⁓
𝐴𝜌

𝑠
𝛼𝜔𝑟

)2
+ 2𝜅𝛽𝑟

𝑠
𝛼𝜔𝑟

+ 1

(5)

here 𝛼 again corrects for the change in gain, 𝛽𝑟 being the damping
oefficient, 𝜅 being the correction factor for the change in damping
oefficient and resetting matrix 𝐴𝜌 = 𝛾𝐼 with 𝛾 ∈ [−1, 1]. The

corresponding state-space matrices as per (1) are given as

𝐴𝑅 =
[

0 1
−(𝛼𝜔𝑟)2 −2𝜅𝛼𝛽𝑟𝜔𝑟

]

, 𝐵𝑅 =
[

0
(𝛼𝜔𝑟)2

]

,

𝐶𝑅 =
[

1 0
]

, 𝐷𝑅 = 0

2.4. Stability of reset control systems

Consider  in closed-loop with a linear plant  as shown in Fig. 1
having state-space matrices 𝐴𝑝, 𝐵𝑝, 𝐶𝑝 and 𝑥𝑝 ∈ R𝑛 such that

 =

{

𝑥̇𝑝(𝑡) = 𝐴𝑝𝑥𝑝(𝑡) + 𝐵𝑝𝑢𝑅(𝑡)
𝑦𝑝(𝑡) = 𝐶𝑝𝑥𝑝(𝑡)

(6)

Neglecting exogenous signals, 𝑟, 𝑑 and 𝑛, combining (1) and (6) gives

 =

⎧

⎪

⎨

⎪

⎩

𝑥̇(𝑡) = 𝐴𝑐𝑙𝑥(𝑡) 𝑥 ∉ 
𝑥+ = 𝐴𝜌𝑐𝑙𝑥 𝑥 ∈ 
𝑦(𝑡) = 𝐶𝑐𝑙𝑥(𝑡)

(7)

where 𝑥𝑇 =
[

𝑥𝑇𝑅 𝑥𝑇𝑝
]

∈ R𝑛 with 𝑛 = 𝑛 + 𝑛 ,

𝐴𝑐𝑙 =
[

𝐴𝑅 −𝐵𝑅𝐶𝑝
𝐵𝑝𝐶𝑅 𝐴𝑝

]

, 𝐶𝑐𝑙 =
[

0 𝐶𝑝
]

𝐴𝜌𝑐𝑙 =
[

𝐴𝜌
𝐼

]

and  ∶= {𝑥 ∈ R𝑛
|𝐶𝑐𝑙𝑥 = 0}

The stability of this closed loop reset control system (𝑅𝐶𝑆) can be
verified using the 𝐻𝛽 condition provided in Beker et al. (2004).

Theorem 2.1. The 𝑅𝐶𝑆(7) is quadratically stable if and only if the 𝐻𝛽
condition holds, i.e., there exists a 𝛽 ∈ R𝑛𝑟 and a positive definite matrix
𝑃𝑟 ∈ R𝑛𝑟×𝑛𝑟 such that the transfer function

𝐻𝛽 (𝑠) ∶=
[

𝑃𝑟 0𝑛𝑟×𝑛𝑛𝑟 𝛽𝐶𝑝
]

(𝑠𝐼 − 𝐴)−1
[

𝐼𝑛𝑟
0

]

(8)

s strictly positive real and additionally a non-zero reset matrix 𝐴𝜌𝑟 satisfies
he condition
𝑇
𝜌𝑟
𝑃𝑟𝐴𝜌𝑟 − 𝑃𝑟 ≤ 0 (9)

BIBO stability of  is also guaranteed if the above conditions are
et (Beker et al., 2004).

.5. CgLp-PID design and the problem of describing function

The ‘Constant-in-gain Lead-in-phase’ (CgLp) element is introduced
n Saikumar et al. (2019a) to provide broadband phase compensation.
his element is designed by combining a GFORE or GSORE element

ith corner frequency 𝜔𝑟 in series with a corresponding first or second

3

rder linear lead element with zero and pole located at 𝜔𝑟 and 𝜔𝑓
𝜔𝑓 ≫ 𝜔𝑟) respectively. While the resetting action results in minor

changes to the gain profile of the reset element (compensated by 𝛼 as
noted in Section 2.3), it results in a substantial reduction of phase lag as
seen in the DF. The gain profile of the reset element is cancelled by that
of the linear lead element to provide constant gain. However, the phase
lead obtained from the linear lead is higher than the phase lag of the
reset element, resulting in broadband phase lead in the range [𝜔𝑟, 𝜔𝑓 ].
In reality, phase compensation can be obtained even at frequencies
below 𝜔𝑟. The state-space matrices of CgLp created using a GFORE
along with a first order linear lead are given as

𝐴𝐶𝑔𝐿𝑝 =
[

−𝛼𝜔𝑟 0
𝜔𝑓 −𝜔𝑓

]

, 𝐵𝐶𝑔𝐿𝑝 =
[

𝛼𝜔𝑟
0

]

,

𝐶𝐶𝑔𝐿𝑝 =
[𝜔𝑓
𝜔𝑟

(

1 − 𝜔𝑓
𝜔𝑟

)]

, 𝐷𝐶𝑔𝐿𝑝 = 0,

𝐴𝜌𝑟 =
[

𝛾 0
0 1

]

The design of the CgLp-PID is done in two main steps. In the first
step, the linear PID controller is designed using loop-shaping with
the frequency response function (FRF) of  to meet the performance
specifications in terms of tracking, steady-state precision, disturbance
rejection. While the closed-loop system has to be stable, the phase
margin (PM) requirement related to stability is ignored in this first step.
In the second step, a CgLp element is designed to provide phase com-
pensation and obtain the required PM as per DF. The series combination
of CgLp with PID results in CgLp-PID controller design. More details on
this can be found in Saikumar et al. (2019a, 2019b).

The phase compensation of CgLp is seen through the DF analysis
and assuming 𝜔𝑓 ≫ 𝜔𝑟, the two variables 𝜔𝑟 and 𝛾 are the tuning
knobs of this element. Since CgLp is capable of providing large phase
compensation of up-to 52◦ with a traditional 𝛾 = 0, phase compensation
in general can be achieved with several different combinations of
{𝜔𝑟, 𝛾} as shown in Fig. 2 for 20◦ phase compensation at 150 Hz.

Now, consider the plant  given by

 = 6.615𝑒5
83.57𝑠2 + 279.4𝑠 + 5.837𝑒5

(10)

A PID controller is designed as given below to obtain a gain cross-over
frequency of 150 Hz with a phase margin of 20◦.

PID(𝑠) = K
(

1 +
𝜔𝑖
𝑠

)( 𝑠
𝜔𝑑

+ 1
𝑠
𝜔𝑡

+ 1

)(

1
𝑠

𝜔𝑙𝑝𝑓
+ 1

)

(11)

where 𝜔𝑖 = 2𝜋15, 𝜔𝑙𝑝𝑓 = 2𝜋1500, 𝜔𝑑 = 2𝜋84.34, 𝜔𝑡 = 2𝜋266.75 𝑟𝑎𝑑∕𝑠,K =
60.835

The various CgLp compensators of Fig. 2 are used to make 5 differ-
ent CgLp-PID controllers such that the DF of the open-loop now shows
a PM of 40◦ as shown in Fig. 3 with the steady-state responses to a
sinusoidal excitation as reference for all 5 systems shown in Fig. 4. The
responses as predicted by DF are also shown. The simulated responses
clearly show that the plant output is not a single sinusoid, and addition-
ally the difference in peak output between the 5 systems is not captured
by the DF predicted output. Similar differences in performance be-
tween different CgLp-PID controllers and additionally deviation from
DF based predicted performance in tracking and precision are noted in
greater detail in Saikumar et al. (2019a). Additionally, the presence
of limit cycles resulting in large errors (not predicted by DF) when
the integrator is reset is well recorded in literature (Baños & Barreiro,
2011). This establishes the problem associated with the exclusive use
of DF for the design and analysis of  and the requirement of more
tools for the frequency domain analysis of these systems.

3. Higher-order Sinusoidal-input Describing function (HOSIDF)
for reset controllers

Frequency domain-based concepts and tools like loop-shaping which
use the FRF of the plant assume linear system behaviour. Although in
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Fig. 1. Reset Control System with linear plant  and reset feedback controller  with reference 𝑟, process noise 𝑑 and measurement noise 𝑛.
Fig. 2. Describing function of multiple CgLp elements designed to provide 20◦ phase compensation at 150 Hz. Slight deviation from unity gain is seen due to the nonlinear
frequency behaviour of the GFORE.
Fig. 3. Describing function of open-loop with the 5 CgLp compensators of Fig. 2 used to design 5 different CgLp-PIDs with same PM of 40◦.
this paper, plants are still considered to be linear, the use of nonlinear
reset control for performance improvement is handled in literature
through the quasi-linear descriptor of the describing function. However,
the exclusive use of DF is highly dependent on the first component of
the Fourier series expansion dominating the other components, which
is not true for a large class of reset controllers. Additionally, vital
4

information regarding the system behaviour is neglected. Nuij, Bosgra,
and Steinbuch (2006) introduces the concept of a virtual harmonic
generator as a bridge between the frequency domain analysis of linear
and a class of static nonlinear dynamic systems to extend DF for higher-
order functions resulting in higher-order sinusoidal input describing
functions (HOSIDFs). In this section, these concepts are applied to reset
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Fig. 4. Steady state responses to a sinusoidal reference of 75Hz for the closed-loop systems whose open-loop DFs are shown in Fig. 3.
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controllers for open-loop frequency domain analysis and the analytical
equations for the calculation of these functions are presented.

3.1. Virtual harmonic generator

Reset controllers  are nonlinear time-invariant systems and the
condition for their open-loop convergence and stability is provided in
Section 2.2. For 𝑒(𝑡) = 𝐴 sin(𝜔𝑡) input signal, the steady-state output
𝑢𝑅(𝑡) is periodic and consists of harmonics of the fundamental frequency
𝜔 and hence can be expressed as the summation of harmonics of the
input signal, with exclusive amplitude and phase associated with each
harmonic. Since reset is not an amplitude-dependent nonlinearity, this
system can be modelled as a virtual harmonics generator and a linear
system associated with each harmonic according to Nuij et al. (2006),
where the generator converts the input signal into a harmonic signal
consisting of an infinite number of harmonics. The plant  can also
be included in this model as shown in Fig. 5 as a complete open-loop
model of . As seen, since a separate amplitude and phase is asso-
ciated with each harmonic, an exclusive linear block is modelled for
each harmonic with a parallel interconnection. Since linear plants are
considered, this essentially results in a modification of the Hammerstein
model (Narendra & Gallman, 1966).

3.2. DF and HOSIDF

The describing function 𝐻1(𝜔) of a system is defined as the ratio of
the fundamental component of 𝑢𝑅(𝑡) and the input 𝑒(𝑡). This describing
function can be considered as the first element of a set of higher-order
describing functions 𝐻𝑛(𝜔), where each function is the complex ratio
of the 𝑛th harmonic of the output 𝑢𝑅(𝑡) to the input 𝑒(𝑡). Hence as per
Fig. 5, the higher-order describing function of  can be calculated as

𝐻𝑛(𝜔) =
𝑎𝑛(𝜔)𝑒𝑗(𝑛𝜔𝑡+𝜃𝑛(𝜔))

𝐴
(12)

where 𝑎𝑛 and 𝜃𝑛 are as shown in Fig. 5. Note that in this case, 𝜔 refers
to the fundamental frequency of the output, i.e., the frequency of the
input signal, while the frequency of the harmonic is 𝑛𝜔.

The describing function 𝐻1(𝜔) of a reset controller can be analyt-
ically calculated as per the equations provided in Guo et al. (2009)
and repeated in Section 2.2. Based on this work, the equations to
analytically calculate the HOSDIF of a reset controller  are provided
next.
5

Theorem 3.1. For a reset controller ,

𝐻𝑛(𝜔) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐶𝑅(𝑗𝜔𝐼 − 𝐴𝑅)−1(𝐼 + 𝑗𝛩𝐷(𝜔))𝐵𝑅 +𝐷𝑅

for 𝑛 = 1
𝐶𝑅(𝑗𝑛𝜔𝐼 − 𝐴𝑅)−1(𝐼 + 𝑗𝛩𝐷(𝜔))𝐵𝑅

for odd 𝑛 ≥ 2
0

for even 𝑛 ≥ 2

(13)

ith

𝛬(𝜔) = 𝜔2𝐼 + 𝐴2
𝑅

𝛥(𝜔) = 𝐼 + 𝑒(
𝜋
𝜔𝐴𝑅)

𝛥𝑟(𝜔) = 𝐼 + 𝐴𝜌𝑒
( 𝜋𝜔𝐴𝑅)

𝛤𝑟(𝜔) = 𝛥−1
𝑟 (𝜔)𝐴𝜌𝛥(𝜔)𝛬−1(𝜔)

𝛩𝐷(𝜔) =
−2𝜔2

𝜋
𝛥(𝜔)

[

𝛤𝑟(𝜔) − 𝛬−1(𝜔)
]

(14)

Proof.  is divided into the linear part consisting of the 𝐷𝑅 matrix
and the nonlinear part consisting of the rest. The nonlinear part of  is
nalysed first. (14) are defined for convenience. For a sinusoidal input
(𝑡) = sin(𝜔𝑡) (amplitude normalized since reset is not an amplitude
ependent nonlinearity), the steady-state output (for 𝐷𝑅 = 0) can be
alculated as given in Guo et al. (2009) as

𝑠𝑠(𝑡) =𝐶𝑅𝑒
𝐴𝑅𝑡𝜃𝑘(𝜔)

− 𝐶𝑅𝛬
−1(𝜔)[𝜔𝐼 cos(𝜔𝑡) + 𝐴𝑅 sin(𝜔𝑡)]𝐵𝑅 (15)

here 𝜃𝑘(𝜔) = (−1)𝑘+1𝑒−𝐴𝑅𝑡𝑘 [𝛤𝑟(𝜔) − 𝛬−1(𝜔)]𝜔𝐵𝑅 and 𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1] with
𝑘 = 𝑘𝜋∕𝜔 and 𝑘 = 0, 1, 2,⋯ ⋅ ⋅ providing the reset instants.

The Fourier series component for the first harmonic needed for the
alculation of DF is provided in Guo et al. (2009) as noted in Sec-
ion 2. Hence only higher orders are calculated here. The 𝑛th harmonic
omponent of 𝑢𝑠𝑠(𝑡) is given as

𝑠𝑠𝑛 (𝜔) =
𝜔
2𝜋 ∫

2𝜋
𝜔

0
𝑢𝑠𝑠(𝑡)𝑒−𝑗𝜔𝑛𝑡𝑑𝑡

=
𝜔𝐶𝑅
2𝜋

(𝐼1 + 𝐼2) −
𝜔𝐶𝑅𝛬−1(𝜔)

2𝜋
(𝜔𝐽1 + 𝐴𝑅𝐽2)𝐵𝑅
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Fig. 5. Representation of Higher-order sinusoidal-input describing function for open-loop reset control systems.
Source: The representation has been adapted for  from Nuij et al. (2006).
|

t

a
t
o
t
a
i
c
m
c

t
t
t
s
d
r
f
o
u
s

4

o
l
r
t

where

𝐼1 = ∫

𝜋
𝜔

0
𝑒𝐴𝑅𝑡𝜃0(𝜔)𝑒−𝑗𝜔𝑛𝑡𝑑𝑡

= 𝜃0(𝜔)(𝐴𝑅 − 𝑗𝜔𝑛𝐼)−1(𝑒
𝜋
𝜔𝐴𝑅 (−1)𝑛 − 1)

= [𝛤𝑟(𝜔) − 𝛬−1(𝜔)]𝜔𝐵𝑅(𝐴𝑅 − 𝑗𝜔𝑛𝐼)−1(1 − 𝑒
𝜋
𝜔𝐴𝑅 (−1)𝑛)

𝐼2 = ∫

2𝜋
𝜔

𝜋
𝜔

𝑒𝐴𝑅𝑡𝜃1(𝜔)𝑒−𝑗𝜔𝑛𝑡𝑑𝑡

= 𝜃1(𝜔)(𝐴𝑅 − 𝑗𝜔𝑛𝐼)−1(𝑒
2𝜋
𝜔 𝐴𝑅 − 𝑒

𝜋
𝜔𝐴𝑅𝑒−𝑗𝜋𝑛)

= [𝛤𝑟(𝜔) − 𝛬−1(𝜔)]𝜔𝐵𝑅(𝐴𝑅 − 𝑗𝜔𝑛𝐼)−1(𝑒
𝜋
𝜔𝐴𝑅 − 𝑒−𝑗𝜋𝑛)

𝐽1 = ∫

𝜋
𝜔

0
𝑒−𝑗𝜔𝑛𝑡 cos(𝜔𝑡)𝑑𝑡

= 0 for 𝑛 ≥ 2

2 = ∫

𝜋
𝜔

0
𝑒−𝑗𝜔𝑛𝑡 sin(𝜔𝑡)𝑑𝑡

= 0 for 𝑛 ≥ 2

ence,

𝑠𝑠𝑛 =
𝜔𝐶𝑅
2𝜋

(𝐼1 + 𝐼2)for 𝑛 ≥ 2

=
𝜔𝐶𝑅
2𝜋

[𝛤𝑟(𝜔) − 𝛬−1(𝜔)]𝜔𝐵𝑅(𝐴 − 𝑅 − 𝑗𝜔𝑛𝐼)−1

× [1 − 𝑒
𝜋
𝜔𝐴𝑅 (−1)−1 + 𝑒

𝜋
𝜔𝐴𝑅 − 𝑒−𝑗𝜋𝑛]

he last term of the above equation is 0 for even values of 𝑛 indicating
hat the steady-state output  is an odd function of time. Rewriting
his,

𝑠𝑠𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜔2𝐶𝑅
𝜋 (𝐴𝑅 − 𝑗𝜔𝑛𝐼)−1𝛥(𝜔)[𝛤𝑟(𝜔) − 𝛬−1(𝜔)]𝐵𝑅

for odd𝑛 ≥ 2
0

for even𝑛 ≥ 2

The linear part of the reset controller comprising purely of the 𝐷𝑅
matrix does not affect the harmonics (𝑛 ≥ 2). However, it does affect the
first harmonic. Combining these parts, the complete HOSIDF equations
can be written as in (13). Hence, proved.

From Fig. 5, it can be seen that the parallel interconnection used to
model  is also extended to include  . However, although  is linear,
the branch associated with the 𝐻𝑛(𝜔) of  has a sinusoidal input of
frequency 𝑛𝜔. Hence, the frequency response at 𝑛𝜔 should be used.
6

Corollary 3.1.1. For the reset controller  and linear plant  , the
open-loop HOSIDF is obtained as

𝐿𝑛(𝜔) =

{

𝐻𝑛(𝜔)(𝑛𝜔) for odd 𝑛
0 for even 𝑛

(16)

3.3. Visualization of HOSIDF

The development of HOSIDF for  and the analytical Eqs. (13)
allow for quick calculation and accurate representation of the frequency
domain behaviour. The HOSIDF for a Clegg integrator are obtained and
plotted in Fig. 6 with the 𝑥-axis representing the input signal frequency.
Hence the corresponding point on the 𝐻𝑛 line plot represents the
magnitude or phase of the 𝑛th harmonic, i.e., 𝑎𝑛 and 𝜃𝑛 respectively in
Fig. 5. It can be seen that while |𝐻odd 𝑛≥2(𝜔)| is lesser than |𝐻1(𝜔)| ∀ 𝜔,
𝐻1(𝜔)| is not significantly higher and does not dominate allowing for
he exclusive use of DF for analysis.

Similarly, the HOSIDFs of FORE are plotted in Fig. 7. For a FORE,
t low frequencies, the phase lag between the state of FORE 𝑥𝑅 and
he input 𝑒 is close to 0 for frequencies significantly below the cut-
ff 𝜔𝑟. Hence, the resetting action is negligible and this is seen in
he low value of |𝐻odd 𝑛≥2(𝜔)|. Correspondingly, for frequencies well
bove 𝜔𝑟, |𝐻odd 𝑛≥2(𝜔)| has large values and mirrors that of the Clegg
ntegrator. For FORE, since the ratio of |𝐻odd 𝑛≥2(𝜔)| to |𝐻1(𝜔)| is not
onstant at all 𝜔, there must exist frequency ranges where the DF is
ore reliable and others where the DF is less so, especially from the

ontext of predicting closed-loop performance.
As a final visualization, the open-loop HOSIDFs corresponding to

he DF plotted in Fig. 3 are plotted for 𝑛 = 3, 5 in Fig. 8. This shows
hat although the DFs were well-matched with very small differences,
here is a greater difference in the HOSIDFs explaining the step re-
ponse variation seen in Fig. 4. Additionally, it should be noted that
ue to Corollary 3.1.1, the resonance of the plant is left-shifted in 𝜔
esulting in the 5th harmonic dominating the 3rd in a small range of
requencies. The HOSIDF tool provides a clear graphical visualization
f the frequency response behaviour of the open-loop  and can be
sed to explain the difference in closed-loop behaviour of  with
ame or similar DF.

. Sensitivity functions

The core of loop-shaping in controller design is the relation between
pen-loop and closed-loop frequency behaviour. Through this, closed-
oop requirements such as good reference tracking and disturbance
ejection can be translated to high open-loop gain; and noise rejection
ranslated to low open-loop gain. Additionally, Nyquist plots allow
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Fig. 6. HOSIDFs of a Clegg integrator. ∠𝐻𝑛>1(𝜔) = 0◦ ∀𝜔 ∈ R.
Fig. 7. HOSIDFs of a FORE with 𝜔𝑟 = 1.
for stability analysis. While no literature can be found for frequency
domain based stability analysis of , the lack of sensitivity functions
to go from open-loop to closed-loop even when stability is guaranteed
hinders the use of loop-shaping with reset control. In this section,
with clearly noted assumptions, the  is modelled such that DF
and HOSIDFs can be used to predict the closed-loop behaviour and
in essence allow for translation of open-loop DF and HOSIDFs to
closed-loop DF and HOSIDFs.

4.1.  With virtual harmonic generator and separator

First, consider the modelling of the  of Fig. 1 to include the
virtual harmonic generator as shown in Fig. 9 to enable the inclusion
of the HOSIDFs developed in the previous section in predicting the
response of  to external inputs 𝑟, 𝑑 or 𝑛. It is clear that since each
armonic of 𝑒 could potentially result in multiple additional harmonics,
straight-forward assessment is cumbersome and potentially impos-

ible. Hence, through some assumptions noted next, the closed-loop
odel is simplified.
7

Assumption 1:  is input-to-state convergent.
 is assumed to be convergent in the sense defined in Pavlov

et al. (2005) for the purpose of output prediction. Results presented
in literature from practice indicates this to be true (Saikumar et al.,
2019a; Saikumar, Valério et al., 2019). Additionally, Beker et al. (2004)
provides conditions for BIBO stability and Beker, Hollot, and Chait
(2000) provides conditions under which a sinusoidal input excitation
results in a periodic response. Further, the local stability of this condi-
tion is proven in Beker (2002) with additional comments about global
stability. However, currently, no mathematical proof for the same can
be found in literature. Since the new sensitivity functions are developed
to provide a more accurate prediction of the response and for improved
controller design techniques, this is considered to be a reasonable
assumption.

With this assumption, now in Fig. 9, for any sinusoidal input excita-
tion, according to Pavlov et al. (2005), 𝑦, 𝑒 and 𝑢𝑅 are periodic with the
same fundamental frequency as that of the excitation. Hence, similar to
what is shown in Section 3, they can be written as the summation of
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𝑢

Fig. 8. HOSIDFs of open-loop for 𝑛 = 3, 5 corresponding to the DF plotted in Fig. 3.
m

harmonics as below. Since a sinusoidal input sin(𝜔𝑡) is an odd function,
the even harmonics in the output are also zero.

𝑦(𝑡) =
∞
∑

𝑛=1
|𝑌𝑛| sin(𝑛𝜔𝑡 + ∠𝑌𝑛) (17)

𝑒(𝑡) =
∞
∑

𝑛=1
|𝐸𝑛| sin(𝑛𝜔𝑡 + ∠𝐸𝑛) (18)

𝑅(𝑡) =
∞
∑

𝑛=1
|𝑈𝑛| sin(𝑛𝜔𝑡 + ∠𝑈𝑛) (19)

Additionally, let each harmonic be defined in the form 𝑦𝑛(𝑡) = |𝑌𝑛|
sin(𝑛𝜔𝑡+∠𝑌𝑛). As seen above, from here on, uppercase letters are used to
indicate the frequency-domain components, while lowercases are used
for time-domain as per convention.

Assumption 2: Reset times 𝑡𝑘 occur 𝜋∕𝜔 apart and result in two
resets per time period.
If 𝑒 is represented as above, it can cross the zero line multiple times in
a single period of the sine wave (2𝜋∕𝜔). Additionally, from the results
provided in Beker (2002) and others like in Saikumar et al. (2019a,
2019b), it is known that this assumption is not true. However, this
assumption is considered for the following reason. In Beker (2002),
conditions to achieve periodic output is provided which shows that
in the case of multiple resets (more than 2), the interval between
successive resets is not constant. Additionally, the DF used in 
analysis till date and HOSIDFs developed in Section 3 relies on two
reset instants. Hence, while this assumption can result in prediction
inaccuracies, it is also necessary for the utilization of open-loop DF and
HOSIDFs for prediction.

Assumption 3: Only the first harmonic of the error 𝑒 (𝑒1) results in
resets and hence the creation of higher-order harmonics (𝑛 > 1) in 𝑢𝑅.
Since DF and HOSIDFs are developed for a single sinusoidal excitation,
it is assumed that (|𝐸𝑛|∀ odd 𝑛 > 1) ≪ |𝐸1|. Again, it is noted that
this assumption results in errors, but also that it is unavoidable for DF
and HOSIDF based simple prediction methods. To accommodate this
assumption within the  model, the concept of a virtual harmonic
separator is introduced which exclusively allows passage of only the
first harmonic to create resets. In essence, it behaves like a high-order
anti-notch filter.

With the above assumptions,  is modelled as in Fig. 9 to include
both the virtual harmonic generator and the newly introduced virtual
harmonic separator. The following conclusions can be drawn for a
single sinusoidal excitation input.
8

1. The virtual harmonic generator creates higher-order harmonics
exclusively for 𝑒1. The virtual harmonic separator ensures that
only 𝑒1 enters the virtual harmonic generator.

2. The harmonics generated for 𝑒1 are passed through the parallel
interconnection of blocks 𝐻1 to 𝐻𝑛 as in Section 3.

3. The DF (𝑛 = 1) behaviour of  is desired, while the higher-order
harmonics and their effects are undesired. Hence the output of
blocks 𝐻𝑛(∀ 𝑛 > 1) are modelled as disturbances entering the
system.

4. The virtual harmonic separator ensures that the higher-order
harmonics of 𝑒 do not influence the resetting action. Hence these
harmonics are influenced by the base-linear system of  and not
by any of the blocks 𝐻1 to 𝐻𝑛. This is represented as 𝑏𝑙 in
Fig. 9. 𝑏𝑙 can be represented by (1) without the second line
(jump equation).

The use of the virtual harmonic generator along with the virtual
harmonic separator creates exclusive paths with linear blocks for the
transmission of harmonic signals through the closed-loop system and
enables through simplification; an easier analysis of each harmonic
individually.

4.2. Open-loop to closed-loop

With the assumptions and the closed-loop HOSIDF representation
of Fig. 9, the sensitivity functions to go from open-loop to closed-loop
for  can be developed. The following notations are defined for
convenience.

𝐿𝑛(𝜔) = 𝐻𝑛(𝜔)𝑃 (𝑛𝜔) (20)

𝑆𝑙𝑛(𝜔) =
1

1 + 𝐿𝑛(𝜔)
(21)

𝐿𝑏𝑙(𝜔) = 𝑏𝑙(𝜔)𝑃 (𝜔) (22)

𝑆𝑙𝑏𝑙(𝜔) =
1

1 + 𝐿𝑏𝑙(𝜔)
(23)

Theorem 4.1. With Assumptions 1–3, the sensitivity S (𝑟 to 𝑒), comple-
entary sensitivity T (𝑟 to 𝑦) and control sensitivity CS (𝑟 to 𝑢𝑅) DF and

HOSIDFs can be provided as below

𝑆1(𝜔) =
𝐸1(𝜔)
𝑅(𝜔)

= 𝑆𝑙1(𝜔) (24)

𝑆𝑛>1(𝜔) =
𝐸𝑛(𝜔)

𝑅(𝜔)
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Fig. 9. Representation of Higher-order sinusoidal-input describing function of reset controller  in closed-loop.
= −𝐿𝑛(𝜔)𝑆𝑙𝑏𝑙(𝑛𝜔)(|𝑆1(𝜔)|∠(𝑛∠𝑆1(𝜔))) (25)

𝑇1(𝜔) =
𝑌1(𝜔)
𝑅(𝜔)

= 𝐿1(𝜔)𝑆𝑙1(𝜔) (26)

𝑇𝑛>1(𝜔) =
𝑌𝑛(𝜔)
𝑅(𝜔)

= 𝐿𝑛(𝜔)𝑆𝑙𝑏𝑙(𝑛𝜔)(|𝑆1(𝜔)|∠(𝑛∠𝑆1(𝜔))) (27)

𝐶𝑆1(𝜔) =
𝑈1(𝜔)
𝑅(𝜔)

= 𝐻1(𝜔)𝑆𝑙1(𝜔) (28)

𝑆𝑛>1(𝜔) =
𝑈𝑛(𝜔)
𝑅(𝜔)

= 𝐻𝑛(𝜔)(1 − 𝐿𝑏𝑙(𝑛𝜔)𝑆𝑙𝑏𝑙(𝑛𝜔))

× (|𝑆1(𝜔)|∠(𝑛∠𝑆1(𝜔))) (29)

Proof. The exogenous input 𝑟 in this context only consists of the first
harmonic. The closed-loop path for this first harmonic only consists of
the virtual harmonic separator, virtual harmonic generator, 𝐻1 and  .
From this,

𝐸1(𝜔)
𝑅(𝜔)

= 1
1 +𝐻1(𝜔)𝑃 (𝜔)

= 𝑆𝑙1(𝜔)

𝑌1(𝜔)
𝑅(𝜔)

=
𝐻1(𝜔)𝑃 (𝜔)

1 +𝐻1(𝜔)𝑃 (𝜔)
= 𝐿1(𝜔)𝑆𝑙1(𝜔)

𝑈1(𝜔)
𝑅(𝜔)

=
𝐻1(𝜔)

1 +𝐻1(𝜔)𝑃 (𝜔)
= 𝐻1(𝜔)𝑆𝑙1(𝜔)

rom Assumption 3 and conclusions, 𝑒1 results in the generation of
igher-order harmonics. The 𝑛th order harmonic frequency component
9

generated for input 𝑒1 is given by

𝑈𝑛𝑑 (𝜔) = 𝐻𝑛(𝜔)(|𝑆1(𝜔)|∠(𝑛∠𝑆1(𝜔)))𝑅(𝜔)

𝑈𝑛𝑑 represents the part of the harmonic generated by the nonlinearity
of the controller  to the input 𝑒1, which then can be modelled
as an input disturbance signal. Since 𝑒1 and the generated harmonic
have different frequency components, the amplitude and phase of
the generated harmonic are determined as above. Note that while
the higher-order harmonics 𝑈𝑛𝑑 are modelled as disturbance, in re-
ality, they are components of 𝑢𝑅 and hence must be included in the
harmonics of 𝑢𝑅.

The exclusive path for each harmonic 𝑈𝑛𝑑 is through the  , virtual
harmonic separator and 𝑏𝑙. Note here that the harmonic frequency is
𝑛𝜔 and hence the plant behaviour must be considered at this frequency
and not 𝜔. From this,
𝐸𝑛(𝜔)
𝑅(𝜔)

=
−𝑃 (𝑛𝜔)

1 +𝑏𝑙(𝑛𝜔)𝑃 (𝑛𝜔)
𝑈𝑛𝑑 (𝜔)

=
−𝑃 (𝑛𝜔)𝐻𝑛(𝜔)

1 +𝑏𝑙(𝑛𝜔)𝑃 (𝑛𝜔)
(|𝑆1(𝜔)|∠(𝑛∠𝑆1(𝜔)))

𝑌𝑛(𝜔)
𝑅(𝜔)

=
𝑃 (𝑛𝜔)

1 +𝑏𝑙(𝑛𝜔)𝑃 (𝑛𝜔)
𝑈𝑛𝑑 (𝜔)

=
𝑃 (𝑛𝜔)𝐻𝑛(𝜔)

1 +𝑏𝑙(𝑛𝜔)𝑃 (𝑛𝜔)
(|𝑆1(𝜔)|∠(𝑛∠𝑆1(𝜔)))

𝑈𝑛(𝜔)
𝑅(𝜔)

=
𝑈𝑛𝑑 (𝜔)
𝑅(𝜔)

+
−𝑃 (𝑛𝜔)𝑏𝑙(𝑛𝜔)
1 +𝑏𝑙(𝑛𝜔)𝑃 (𝑛𝜔)

𝑈𝑛𝑑 (𝜔)
𝑅(𝜔)

= 𝐻𝑛(𝜔)(|𝑆1(𝜔)|∠(𝑛∠𝑆1(𝜔)))

(

1 −
𝑃 (𝑛𝜔)𝑏𝑙(𝑛𝜔)

1 +𝑏𝑙(𝑛𝜔)𝑃 (𝑛𝜔)

)

This concludes the proof.
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Theorem 4.2. With Assumptions 1–3, the sensitivity Sd (𝑑 to 𝑒),
omplementary sensitivity Td (𝑑 to 𝑦) and control sensitivity CSd (𝑑 to 𝑢𝑅)
F and HOSIDFs can be provided as below

𝑆𝑑1(𝜔) =
𝐸1(𝜔)
𝐷(𝜔)

= −𝑃 (𝜔)𝑆𝑙1(𝜔) (30)

𝑆𝑑𝑛>1(𝜔) =
𝐸𝑛(𝜔)
𝐷(𝜔)

= −𝐿𝑛(𝜔)𝑆𝑙𝑏𝑙(𝑛𝜔)(|𝑆𝑑1(𝜔)|∠(𝑛∠𝑆𝑑1(𝜔))) (31)

𝑇𝑑1(𝜔) =
𝑌1(𝜔)
𝐷(𝜔)

= 𝑃 (𝜔)𝑆𝑙1(𝜔) (32)

𝑇𝑑𝑛>1(𝜔) =
𝑌𝑛(𝜔)
𝐷(𝜔)

= 𝐿𝑛(𝜔)𝑆𝑙𝑏𝑙(𝑛𝜔)(|𝑆𝑑1(𝜔)|∠(𝑛∠𝑆𝑑1(𝜔))) (33)

𝐶𝑆𝑑1(𝜔) =
𝑈1(𝜔)
𝐷(𝜔)

= −𝐿1(𝜔)𝑆𝑙1(𝜔) (34)

𝐶𝑆𝑑𝑛>1(𝜔) =
𝑈𝑛(𝜔)
𝐷(𝜔)

= 𝐻𝑛(𝜔)(1 − 𝐿𝑏𝑙(𝑛𝜔)𝑆𝑙𝑏𝑙(𝑛𝜔))

× (|𝑆𝑑1(𝜔)|∠(𝑛∠𝑆𝑑1(𝜔))) (35)

Theorem 4.3. With Assumptions 1–3, the sensitivity Sn (𝑛 to 𝑒), comple-
mentary sensitivity Tn (𝑛 to 𝑦) and control sensitivity CSn (𝑛 to 𝑢𝑅) DF and
HOSIDFs can be provided as below

𝑆𝑛1(𝜔) =
𝐸1(𝜔)
𝑅(𝜔)

= −𝑆𝑙1(𝜔) (36)

𝑆𝑛𝑛>1(𝜔) =
𝐸𝑛(𝜔)
𝑅(𝜔)

= −𝐿𝑛(𝜔)𝑆𝑙𝑏𝑙(𝑛𝜔)(|𝑆𝑛1(𝜔)|∠(𝑛∠𝑆𝑛1(𝜔))) (37)

𝑇 𝑛1(𝜔) =
𝑌1(𝜔)
𝑅(𝜔)

= 𝑆𝑙1(𝜔) (38)

𝑇 𝑛𝑛>1(𝜔) =
𝑌𝑛(𝜔)
𝑅(𝜔)

= 𝐿𝑛(𝜔)𝑆𝑙𝑏𝑙(𝑛𝜔)(|𝑆𝑛1(𝜔)|∠(𝑛∠𝑆𝑛1(𝜔))) (39)

𝐶𝑆𝑛1(𝜔) =
𝑈1(𝜔)
𝑅(𝜔)

= −𝐻1(𝜔)𝑆𝑙1(𝜔) (40)

𝐶𝑆𝑛𝑛>1(𝜔) =
𝑈𝑛(𝜔)
𝑅(𝜔)

= 𝐻𝑛(𝜔)(1 − 𝐿𝑏𝑙(𝑛𝜔)𝑆𝑙𝑏𝑙(𝑛𝜔))

× (|𝑆𝑛1(𝜔)|∠(𝑛∠𝑆𝑛1(𝜔))) (41)

The paths of the harmonics are as noted before. The explanation is
omitted for sake of brevity. In all cases the time domain signal can be
obtained from (17)–(19). Current literature on reset controllers relies
on the exclusive use of DF for error prediction and hence all equations
in the presented theorems related to the harmonics are neglected and
only the equations pertaining to the first harmonic are used. The theo-
rems presented allow for the calculation of closed-loop DF and HOSIDFs
based on open-loop DF and HOSIDFs. The time-domain signals for 𝑦, 𝑒
and 𝑢𝑅 can then be plotted using (17)–(19) respectively.

Next, the use of this simplified model to predict the response of 
when the exogenous input consists of multiple sines or when multiple
exogenous inputs are present is looked into shortly.

4.3. Prediction with superposition

The validity of superposition for linear systems allows for an easy
analysis of systems using the sensitivity functions in the presence of
multiple inputs or inputs which can be represented as a sum of multiple
sinusoids or both. While this is not possible with , the use of
Assumption 2 and 3 can also be extended in this case to predict the
error under certain additional conditions.
10
Corollary 4.3.1. If 𝑤1, 𝑤2 ⋯ ⋅ 𝑤𝑛 are external excitation signals to
 with 𝑤𝑖 = 𝐴𝑖 sin(𝜔𝑖𝑡 + 𝜙𝑖),∀𝑖 = 1, 2,⋯ 𝑛 and |𝐸1𝑖 | are the first

harmonic error magnitudes as obtained through (24) to (36), the error can
be predicted under the simplified model if |𝐸1𝑗 | ≪ |𝐸1𝑘 |,∀𝑗 = 1, 2,⋯ 𝑛, 𝑗 ≠
𝑘, with 𝑤𝑗 handled by 𝑏𝑙.

Assumptions 2 and 3 are valid for single sinusoidal signal excitation
when the magnitude of error created due to harmonics 𝐸𝑛>1 is small
compared to |𝐸1|, hence not resulting in multiple resets and also
not significantly affecting the DF and HOSIDFs. This concept can be
extended to the presence of multiple external signals. If the above
condition related to 𝐸1𝑖 is met, then the virtual harmonic separator
ensures that the exclusive closed-loop path for signals 𝑤𝑗 is through
𝑏𝑙. In this case, error due to 𝑤𝑘 is predicted using (24) to (37). The
additional error and related signals due to 𝑤𝑗 inputs are predicted as
below.

𝑆𝑗 (𝜔) =

⎧

⎪

⎨

⎪

⎩

𝑆𝑙𝑏𝑙(𝜔) 𝑤𝑗 is part of 𝑟
−𝑃 (𝜔)𝑆𝑙𝑏𝑙(𝜔) 𝑤𝑗 is part of 𝑑
−𝑆𝑙𝑏𝑙(𝜔) 𝑤𝑗 is part of 𝑛

(42)

𝑇𝑗 (𝜔) =

⎧

⎪

⎨

⎪

⎩

𝐿𝑏𝑙(𝜔)𝑆𝑙𝑏𝑙(𝜔) 𝑤𝑗 is part of 𝑟
𝑃 (𝜔)𝑆𝑙𝑏𝑙(𝜔) 𝑤𝑗 is part of 𝑑
𝑆𝑙𝑏𝑙(𝜔) 𝑤𝑗 is part of 𝑛

(43)

𝐶𝑆𝑗 (𝜔) =

⎧

⎪

⎨

⎪

⎩

𝑅𝑏𝑙(𝜔)𝑆𝑙𝑏𝑙(𝜔) 𝑤𝑗 is part of 𝑟
−𝐿𝑏𝑙(𝜔)𝑆𝑙𝑏𝑙(𝜔) 𝑤𝑗 is part of 𝑑
−𝑅𝑏𝑙(𝜔)𝑆𝑙𝑏𝑙(𝜔) 𝑤𝑗 is part of 𝑛

(44)

Since 𝑤𝑗 is handled by the 𝑏𝑙, no additional harmonics are created.

5. Validation

The accuracy of the proposed method in predicting the error 𝑒 and
control input 𝑢𝑅 for different inputs is tested in both simulation and
practice in this section. For this purpose, a precision positioning setup
is used as explained below.

5.1. Precision positioning setup

The precision positioning stage ‘Spider’ shown in Fig. 10 capable of
planar positioning (3 DOF) is used for validation. Since reset controllers
 is defined for SISO cases, only one of the actuators (A1) is used to
position the mass M1 rigidly attached to the same. All the controllers
are implemented on a NI compactRIO system with FPGA capabilities
to achieve real-time control at a sampling frequency of 10 kHz. Linear
current source power amplifier is used to drive the voice coil actuator
(1A) with a Mercury M2000 linear encoder providing position sensing
with a resolution of 100 nm. With additional over-sampling introduced
on the FPGA, this resolution is increased to 3.125 nm. The FRF of the
stage is obtained as shown in Fig. 11 and this shows that the plant
behaviour is similar to that of a collocated double mass–spring–damper
with additional dynamics at frequencies much higher that of the first
resonance. In line with the industry standard, the design of controllers
and prediction is carried out using this data. However, for the sake of
simulation as well as stability analysis using Theorem 2.1, the transfer
function is estimated with a single eigenmode as given in (10) (earlier
used in Section 2.5 to show the problem of exclusive use of DF).

5.2. Controller designs

Different controller designs with variation in the reset element used,
phase lead obtained by the linear part of the controller and phase lead
from the reset part are considered for validation. All controllers are
designed to achieve an open-loop gain cross-over frequency (𝜔𝑐) of
150Hz (942.48 rad∕s). The specifications of the various controllers are
described next.
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Fig. 10. Planar precision positioning ‘Spider’ stage with voice coil actuators denoted
as A1, A2 and A3 controlling the three masses (indicated as M1, M2 and M3) and
constrained by leaf flexures. The central mass (indicated by Mc) is connected to these
3 masses through leaf flexures and linear encoders (indicated by Enc) placed under
masses M1, M2 and M3 provide position feedback.

5.2.1. Reset controllers  with CI
The structure of these controllers is given below.

𝐶𝐼 = 𝐾

(

1

��⌃
𝛾

𝛼𝑠

)

⏟⏟⏟
Reset

(

𝑠 + 𝜔𝑖
𝑠
𝜔𝑓

+ 1

)( 𝑠
𝜔𝑑

+ 1
𝑠
𝜔𝑡

+ 1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Non-reset

(45)

Three controllers are designed with same values of 𝜔𝑖 = 15Hz, 𝜔𝑑 =
50Hz, 𝜔𝑡 = 450Hz and 𝜔𝑓 = 1500Hz. The difference between the
ontrollers is in the chosen value of 𝛾 = {0.2, 0.0,−0.2}. The value

f 𝐾 is corrected to ensure that DF of open-loop has a cross-over of

11
𝑐 = 150Hz. 𝐿1(𝜔) and 𝐿3(𝜔) plots shown in Fig. 12 indicate that the
hange in 𝛾 value results in a change in PM as well as |𝐿3|. It should

also be noticed that in the 4−5Hz range, |𝐿3| > |𝐿1| ensuring that pure
DF based analysis cannot be carried out.

5.2.2. Reset controllers  with PCI
A PCI reset filter can be designed by replacing the integrator within

the PI configuration. While in the previous case, 1∕𝑠 integrator is in the
resetting part of , in this case, the complete PI filter is included in the
resetting part.

𝑃𝐶𝐼 = 𝐾

(

�
�
�>

𝛾
𝑠 + 𝜔𝑖
𝛼𝑠

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Reset

(

1
𝑠
𝜔𝑓

+ 1

)( 𝑠
𝜔𝑑

+ 1
𝑠
𝜔𝑡

+ 1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Non-reset

(46)

Three controllers are again designed with the same values provided as
in the case of 𝐶𝐼 with their 𝐿1(𝜔) and 𝐿3(𝜔) plots shown in Fig. 13.

5.2.3. CgLp-PID reset controllers
The case of the CgLp-PID controllers is unique in the sense that the

CgLp element can provide phase lead (𝜙𝐶𝑔𝐿𝑝) with minimal changes to
the gain behaviour in DF as seen in Section 2.5. The structure of these
controllers for design using FORE is given below.

𝐶𝑔𝐿𝑝 = 𝐾

(

1

����⌃
𝛾

𝑠
𝛼𝜔𝑟

+ 1

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Reset

( 𝑠
𝜔𝑟

+ 1
𝑠
𝜔𝑓

+ 1

)(

𝑠 + 𝜔𝑖
𝑠

)( 𝑠
𝜔𝑑

+ 1
𝑠
𝜔𝑡

+ 1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Non-reset

(47)

As noted in Section 2.5, since CgLp-PID controllers provide a large
number of tuning values with which the same 𝐿1(𝜔) and PM can be
achieved, several different 𝐶𝑔𝐿𝑝 controllers with changes in the value
of 𝛾, PM, 𝜙𝐶𝑔𝐿𝑝 are designed for validation as well as an analysis of the
prediction errors. The details of the designed controllers are provided
in Table 1.

𝐿1(𝜔) and 𝐿3(𝜔) plots provided in Fig. 14 compare systems which
all have same PM as well as 𝜙𝐶𝑔𝐿𝑝. The different values of 𝛾 among
these controllers results in variations in 𝐿3 with almost no noticeable

variation in 𝐿1. While the variations in 𝐿3 appear small in open-loop,
Fig. 11. Frequency response data of plant as seen from actuator ‘A1’ to position of mass ‘M1’ attached to same actuator.
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Fig. 12. 𝐿1(𝜔) and 𝐿3(𝜔) plots for three 𝐶𝐼 controller (refer (45)) based  with 𝛾 = {0.2, 0.0,−0.2}.
Fig. 13. 𝐿1(𝜔) and 𝐿3(𝜔) plots for three 𝑃𝐶𝐼 controller (refer (46)) based  with 𝛾 = {0.2, 0.0,−0.2}.
Table 1
𝐶𝑔𝐿𝑝 controller details with 𝜙𝐶𝑔𝐿𝑝 indicating the phase lead provided by the nonlinear reset CgLp element. The common
values for all the controllers are for 𝜔𝑖 = 15Hz and 𝜔𝑓 = 1500Hz. 𝐾 is adjusted in all cases to achieve gain cross-over at
𝜔𝑐 = 150Hz.
𝐶𝑔𝐿𝑝 PM 𝜙𝐶𝑔𝐿𝑝 𝛾 𝜔𝑟 𝛼 𝜔𝑑 𝜔𝑡

(◦) (◦) (Hz) (Hz) (Hz)

01 50 30 0.0 76.08 1.27 80.17 280.65

02

50 20

0.2 98.93 1.12

64.05 351.27
03 0.1 114.83 1.14
04 0.0 129.24 1.16
05 −0.1 142.64 1.18
06 −0.2 153.33 1.21

07 50 10 0.0 230.42 1.07 49.09 548.29
08 60 10 0.0 230.42 1.07

34.97 643.4009 70 20 0.0 129.24 1.16
10 80 30 0.0 76.08 1.27
12
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their effect in closed-loop can be large as seen in Section 2.5. The plots
provided in Fig. 15 compare systems with same value of 𝛾, but with
ifferent PM and 𝜙𝐶𝑔𝐿𝑝, resulting in variation in both 𝐿1 and 𝐿3.
Comparison metrics: Since signals 𝑦, 𝑒 and 𝑢𝑅 defined by (17),

(18) and (19) for any sinusoidal excitation (𝑟, 𝑑 or 𝑛) is the sum of
harmonics, RMS (𝐿2 norm indicated as ‖.‖2) and maximum value (𝐿∞

norm indicated as ‖.‖∞) at steady-state are used as metrics to compare
the prediction and measurements in both simulation and practice. The
first is a popular metric used in literature and when applied to error
results in integral squared average error (ISAE), while the latter is
critical for precision motion control applications since the peak error
determines performance in lithography applications, AFMs etc. The
discontinuous nature of resetting action results in spikes in 𝑢𝑅 and can
lead to saturation in many practical applications. Hence, the 𝐿∞ norm
is mainly used for analysing 𝑢𝑅.

5.3. Simulation results

Simulations are run on MATLAB-Simulink for the 16 different reset
controller-based  for sinusoidal excitation 𝑟 and 𝑑 with normalized
amplitudes separately for a broad range of frequencies. Since  does
not have any amplitude-dependent nonlinearity, the amplitude of the
exogenous signals has a linear effect on the error 𝑒 and the control input
𝑢𝑅. The errors are also predicted using Theorems 4.1 and 4.2. Error is
predicted in the existing literature by the exclusive use of DF and this
is also calculated for comparison.

𝐶𝐼 and 𝑃𝐶𝐼 : The results obtained from the 𝐶𝐼 and 𝑃𝐶𝐼 based
s are analysed first. The sensitivity plots created using the 𝐿2 and
𝐿∞ norms of the error along with the control sensitivity plot created
with the 𝐿∞ norm for input 𝑟 are shown in Fig. 16 for all three 𝐶𝐼
based . The same is plotted for input 𝑑 in Fig. 17. These plots are
also provided for all three 𝑃𝐶𝐼 based  in Figs. 18 and 19. The
open-loop DF and HOSIDF open-loop plots for these systems in Figs. 12
and 13 clearly show that the large |𝐿3| especially with |𝐿3| dominating
|𝐿1| in certain frequency ranges invalidates the exclusive use of DF for
prediction. This is validated in the sensitivity plots where a massive
difference between simulated and exclusive DF predicted values is
seen. On the other hand, HOSIDF based prediction is significantly
more accurate. However, it is also noticed that ‖𝑒‖∞ prediction is
significantly better than that of ‖𝑒‖2 at low frequencies. This is because
resetting of the integrator results in limit cycles as noted in Baños and
Barreiro (2011), and hence several resets within a single period of the
sinusoidal input and a violation of both Assumption 2 and 3.

02 to 06 - 𝐶𝑔𝐿𝑝: In the case of all the 𝐶𝐼 and 𝑃𝐶𝐼 based ,
while the |𝐿1| plots have almost no noticeable difference, the PM is
different in all cases. Hence, now the 𝐶𝑔𝐿𝑝 based  systems where
the |𝐿1| as well as PM is the same for 02 to 06 based systems are
compared. The plots as provided previously are provided for 04 in
Fig. 20. In the case of 𝐶𝑔𝐿𝑝 controllers, the magnitude of the higher-
order harmonics is always lower than that of the first harmonic. Hence,
it can be seen that the DF based prediction method is also accurate
in predicting the performance, especially at low frequencies. While
there is a clear difference in the estimation of control input 𝑢𝑅, this
is not clear in the case of error 𝑒. To visualize the prediction difference
between the two methods, a different metric (as given below) is used.
Since the objective of the proposed method is to more accurately pre-
dict the response of  to an exogenous input, the error between the
predicted value and the measured value is compared to the predicted
value to obtain the percentage deviation.

Prediction error ratio (PER) = |Measured - Predicted|
|Predicted| (48)

PER plots are provided for ‖𝑒‖∞ for all 02 to 06 based systems in
igs. 21 and 22.
01, 04, 07 to 10 - 𝐶𝑔𝐿𝑝: Additional plots comparing perfor-

mances of the different groups of 𝐶𝑔𝐿𝑝 based  systems whose
open-loop plots are given in Fig. 15, are provided in Fig. 23. Plots of
 F
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‖𝑒‖2 and ‖𝑢𝑅‖∞ are not provided for sake of brevity. These clearly show
the huge difference in accuracy between the novel HOSIDF and existing
DF based method.

As noted in Section 2.5, the main motivation for HOSIDF and the
subsequent use of the same for error prediction is for optimal tuning.
The proposed method must be capable of predicting differences in
performance while the existing DF based method cannot, especially in
the case of 𝐶02 to 𝐶06 controller based systems, although from PER
plots, it is clear that Assumptions 2 and 3 leads to inaccurate prediction.
This along with additional measurements from the practical setup are
presented in the next subsection.

5.4. Practical results

The results presented in the previous subsection are derived from
simulations. The nonlinear nature of reset controllers which involves
the requirement of information on the zero-crossing of the error for
simulation can result in slightly different results based on the sim-
ulation settings. More importantly, practical implementation requires
discretization and involves quantization of the sensed output 𝑦 (position
in the case of the Spider stage) and control input 𝑢𝑅 (voltage output
of NI DAC), with the design of controllers achieved using FRF. Hence,
additional results from practice are provided in this section to validate
the method as well as to validate the results of simulations. Additionally
as noted, the ability to predict the trend in error for different controller-
based reset systems is tested. However, due to the time-consuming
nature of measurements, limited results are provided in this case.

The measured
‖𝑒‖∞
‖𝑟‖∞

values for both reference tracking and distur-
bance rejection are provided in Table 2 for 𝑃𝐶𝐼 based . Since all
three systems have the same |𝐿1| as seen in Fig. 13 with small variations
in the phase, the DF predicted error has very small difference between
the systems. However, from Table 2, large changes in the measured
‖𝑒‖∞
‖𝑟‖∞

is seen. Although the novel HOSIDF based estimation does not

match the measured values in all cases, the trend in
‖𝑒‖∞
‖𝑟‖∞

values

(increasing or decreasing with change in 𝛾) is captured. This trend is
also checked for 02 to 06 based , as these controllers provide
the best overall performance. The trends are mainly checked for at
frequencies where the maximum PER values are seen in Figs. 21 and 22
and these values are tabulated in Table 3. As expected, while the novel
HOSIDF method does not completely accurately predict the error values
at all frequencies, the trend in the

‖𝑒‖∞
‖𝑟‖∞

values is captured which

allows for a HOSIDF estimation based optimized controller tuning for
these family of controllers.

Finally, Corollary 4.3.1 related to the use of superposition with
the concept of the virtual harmonic separator is verified in practice
with the use of two exogenous inputs. According to Corollary 4.3.1,
if the error seen independently with one of the inputs (say 𝑤1) is
quite small compared to the error seen independently with the other
(say 𝑤2), then the first input 𝑤1 is handled by the base-linear system.
Several trials are conducted with 𝑤1 as reference and 𝑤2 as disturbance
for different amplitudes. Within each trial, the error is obtained for
independent application of 𝑤1 and 𝑤2 and tabulated in the second
and fourth columns of Table 4 respectively. Additionally, the error
is also obtained for the base-linear system (by setting 𝛾 = 1) for
both inputs independently and tabulated in the third and fifth columns
respectively. And finally, both 𝑤1 and 𝑤2 are simultaneously added to
btain the overall error as tabulated in the last column. An analysis
f these numbers indicates that for trials 1,2 and 3, the measured
𝑒‖∞ follows Corollary 4.3.1 with the values closely matching the
eventh column, where the second input 𝑤2 is handled by the base-
inear system. Similarly, with trails 7, 8 and 9, 𝑤1 is handled by the
ase-linear system, with the values closely matching the eighth column.
or trails 4 and 6, as the error by each source becomes comparable,
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Fig. 14. 𝐿1(𝜔) and 𝐿3(𝜔) plots for five 𝐶𝑔𝐿𝑝 controller (refer (47)) based . 02 to 06 based systems provide same phase lead 𝜙𝐶𝑔𝐿𝑝 of 20◦ and same overall PM of 50◦, but
with different values of 𝛾.

Fig. 15. 𝐿1(𝜔) and 𝐿3(𝜔) plots for six 𝐶𝑔𝐿𝑝 controllers (refer (47)) based . {01 ,04 ,07} based systems have same PM with different 𝜙𝐶𝑔𝐿𝑝, while each group {01 ,10},
{04 ,09}, {07 ,08} based system provides same 𝜙𝐶𝑔𝐿𝑝 but different PM. All controllers have same value of 𝛾 = 0.0.

Fig. 16. Sensitivity plot
‖𝑒‖∞
‖𝑟‖∞

,
‖𝑒‖2
‖𝑟‖2

along with control sensitivity
‖𝑢𝑅‖∞
‖𝑟‖∞

plotted for the three 𝐶𝐼 controller (refer (45)) based .
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Fig. 17. Process sensitivity plot
‖𝑒‖∞
‖𝑑‖∞

,
‖𝑒‖2
‖𝑑‖2

along with control sensitivity to disturbance
‖𝑢𝑅‖∞
‖𝑑‖∞

plotted for the three 𝐶𝐼 controller (refer (45)) based .
Fig. 18. Sensitivity plot
‖𝑒‖∞
‖𝑟‖∞

,
‖𝑒‖2
‖𝑟‖2

along with control sensitivity
‖𝑢𝑅‖∞
‖𝑟‖∞

plotted for the three 𝑃𝐶𝐼 controller (refer (46)) based .
Fig. 19. Process sensitivity plot
‖𝑒‖∞
‖𝑑‖∞

,
‖𝑒‖2
‖𝑑‖2

along with control sensitivity to disturbance
‖𝑢𝑅‖∞
‖𝑑‖∞

plotted for the three 𝑃𝐶𝐼 controller (refer (46)) based .
the system moves away from Corollary 4.3.1 and this is even more
clearly seen with trial 5. From these preliminary experiments, it appears
that Corollary 4.3.1 holds reasonably well for peak error by one signal
being up-to half the peak error of an additional signal. However, more
experiments are required for verification. Additionally, it must be noted
that the use of the same frequency for 𝑤1 and 𝑤2, albeit one added
as reference and one as disturbance, along with the fact that the peak
error of each signal matched in phase meant that the peak errors could
be directly added and verified. Else, the phase of the individual error
harmonics must be considered and added to obtain an estimate.
15
6. Analysis for loop-shaping

6.1. Validity of assumptions

The sensitivity functions including HOSIDFs has been achieved in
this paper in Theorems 4.1–4.3 based on the assumptions stated in
Section 4.1. The validity of these assumptions is critical to the pre-
diction accuracy of the proposed method. From the simulation and
practical results presented, it is clear that some of these assumptions are
violated. Select time domain error responses obtained in the practical
implementation are plotted in Fig. 24 for analysis of the assumptions.
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Fig. 20. Sensitivity plot
‖𝑒‖∞
‖𝑟‖∞

,
‖𝑒‖2
‖𝑟‖2

, control sensitivity
‖𝑢𝑅‖∞
‖𝑟‖∞

, process sensitivity
‖𝑒‖∞
‖𝑑‖∞

,
‖𝑒‖2
‖𝑑‖2

and control sensitivity to disturbance
‖𝑢𝑅‖∞
‖𝑑‖∞

plotted for 04 based . Solid

ines - ‘Simulation’, Dashed lines - ‘HOSIDF based prediction’, ‘Dotted lines’ - DF based prediction’.
Fig. 21. Prediction error ratio plots of 02 to 06 based systems for input 𝑟 based on 𝐿∞ norm for the existing DF based and novel HOSIDF based methods. All systems have same
|𝐿1| and PM.
Assumption 1: While input-to-state convergence has not been
proven mathematically, the error responses shown indicate towards
convergence of the system towards a steady-state response. This conver-
gence of the system in the presence of constant or periodic exogenous
inputs has been noted in several previous works.

Assumption 2: The error responses at higher frequencies where
the magnitude of the higher-order harmonics is larger compared to
the fundamental harmonic are shown in Fig. 24 for 𝑟 at a frequency
of 70Hz and for 𝑑 at a frequency of 60Hz. While the error response
16
still indicates convergence, it is clear that there are 6 resets per period
instead of 2. The effect of this violation is the increase in the value of
PER. However, from the obtained simulation results, it is clear that even
with the violation of this assumption, the proposed method is better at
prediction compared to the conventional DF based method.

Assumption 3: The validity of this assumption and the effect of
its violation can be seen from the results provided in Table 4, where
two separate exogenous signals are simultaneously added to the sys-
tem. From the superposition results, it is clear that only one of the
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Fig. 22. Prediction error ratio plots of 02 to 06 based systems for input 𝑑 based on 𝐿∞ norm for the existing DF based and novel HOSIDF based methods. All systems have same
|𝐿1| and PM.

Fig. 23. Prediction error ratio plots for inputs 𝑟 and 𝑑 using 𝐿∞ norm of  whose open-loop DF and HOSIDF plots are shown in Fig. 15.

Fig. 24. Normalized time domain error response of  for a select few controllers and select exogenous inputs.

17
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Table 2
Trends in measured and predicted

||𝑒||∞
||𝑟||∞

(provided in dB) for 𝑃𝐶𝐼 based  which all have the same

|𝐿1| (resulting in same error values estimated by DF) and a slight difference in PM. 𝑟 after the frequency
indicates reference tracking, with 𝑑 indicating disturbance rejection.

Freq (Hz) 𝛾

0.2 0.0 −0.2

Measured 1 (r) −31.8839 −29.8651 −28.1686
HOSIDF estimated −31.0563 −29.3309 −28.3264

Measured 5 (r) −34.0689 −32.3537 −31.4112
HOSIDF estimated −35.6872 −34.3471 −33.7416

Measured 10 (r) −41.5930 −40.1398 −39.7321
HOSIDF estimated −45.0022 −44.4342 −43.8006

Measured 1 (d) −30.7441 −28.7310 −27.0149
HOSIDF estimated −29.9202 −28.1948 −27.1903

Measured 5 (d) −31.8163 −30.0488 −28.9385
HOSIDF estimated −33.2784 −31.9383 −31.3328

Measured 10 (d) −34.0161 −32.4751 −31.8186
HOSIDF estimated −36.7009 −36.1330 −35.4993
Table 3
Trends in measured and predicted

||𝑒||∞
||𝑟||∞

(provided in dB) for 02 to 06 based  which all have the same |𝐿1| (resulting in

same error values estimated by DF) and PM. 𝑟 after the frequency indicates reference tracking, with 𝑑 indicating disturbance
rejection.

Frequency (Hz) Controller

02 03 04 05 06

Measured 40 (r) −17.3230 −17.4016 −17.4046 −17.4296 −17.3886
HOSIDF estimated −16.0769 −16.1814 −16.2313 −16.2482 −16.2418

Measured 80 (r) −2.4686 −2.4413 −2.3448 −2.2517 −2.1694
HOSIDF estimated −3.3724 −3.3559 −3.3407 −3.3252 −3.3086

Measured 90 (r) −0.8981 −0.7066 −0.4927 −0.3170 −0.1486
HOSIDF estimated −1.9025 −1.8473 −1.8040 −1.7673 −1.7348

Measured 80 (d) −31.4922 −31.4759 −31.4759 −31.4434 −31.1353
HOSIDF estimated −33.2106 −33.1941 −33.1789 −33.1634 −33.1468

Measured 90 (d) −32.2791 −32.0045 −31.8095 −31.6889 −31.3640
HOSIDF estimated −33.8384 −33.7833 −33.7399 −33.7033 −33.6707

Measured 100 (d) −32.8365 −32.7575 −32.6404 −32.4487 −32.0411
HOSIDF estimated −34.6218 −34.5437 −34.4827 −34.4325 −34.3895
Table 4
Validation of Corollary 4.3.1 with two inputs 𝑤1 as reference at frequency of 40 Hz and 𝑤2 as disturbance at frequency of 40 Hz, both independently given as input and also
ombined. ‖𝑒‖∞ is provided in units of 0.1 μm and is also measured for the base-linear system.
Trial RCS (𝑤1) BLS (𝑤1) RCS (𝑤2) BLS (𝑤2) Measured
no. ||𝑒||∞ (r) ||𝑒||∞ (r) ||𝑒||∞ (d) ||𝑒||∞ (d) ||𝑒||∞

𝑋1 𝑋2 𝑋3 𝑋4 𝑋1 +𝑋3 𝑋1 +𝑋4 𝑋2 +𝑋3 𝑋2 +𝑋4

1 16.7031 15.5312 3.9531 3.1406 20.6562 19.5625 19.4843 18.3906 19.8281
2 16.7031 15.5312 4.5781 3.8437 21.2812 20.5468 20.1093 19.375 20.5781
3 16.7031 15.5312 8.8437 7.9218 25.5468 24.625 24.375 23.4531 24.5312
4 16.7031 15.5312 11.0468 9.9531 27.75 26.6562 26.5781 25.4843 27.4062
5 16.7031 15.5312 17.0781 15.1718 33.7812 31.875 32.6093 30.7031 35.7968
6 8.6875 7.6718 17.0781 15.1718 25.7656 23.8593 24.75 22.8437 24.1875
7 6.0937 5.4062 17.0781 15.1718 23.1718 21.2656 22.4843 20.5781 22.6093
8 4.4062 4.0625 17.0781 15.1718 21.4843 19.5781 21.1406 19.2343 21.25
9 3.6875 3.5 17.0781 15.1718 20.7656 18.8593 20.5781 18.6718 20.5937
frequency components of the error signal is responsible for the creation

of harmonics while the rest are handled by 𝑅𝑏𝑙 if the amplitude of

said frequency component is higher than the rest of the frequency

components by some margin. This is true irrespective of whether these

frequency components are created by an additional exogenous input

or through the internally generated harmonics. Hence, the validity of

this assumption can be determined to a fair degree by studying the

magnitudes of the harmonics as determined by Theorems 4.1–4.3.
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6.2. For loop-shaping

From the elaborate simulation results as well as additional results
from practice, it is clear that (i) existing DF based prediction is in-
accurate to the extent that it cannot be used to optimally tune these
controllers for performance (ii) proposed novel HOSIDF based method
while not completely accurate, is still capable of predicting difference
in performance and is more suited for analysis. In this section, some
remarks regarding the accuracy of the prediction method as well as
some general tuning guidelines are provided.

While the PER plots of Figs. 21 and 22 show a very close match in
the prediction error of the different controllers, this is not the case in
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Fig. 25. Sensitivity plots 𝑆𝑙1 as defined by (21) and 𝑆𝑙𝑏𝑙 as defined by (23) for 02 based .
ig. 23, where the prediction accuracy is vastly different. This trend is
ot only true for the PER plots of HOSIDF based prediction, but also DF
ased one. These can both be explained by an analysis of Theorems 4.1–
.3. In all the cases, while the 𝐸1(𝜔) is dependent on 𝑆𝑙1(𝜔), 𝐸𝑛≥2(𝜔)
re dependent on 𝑆𝑙𝑏𝑙(𝜔). While the first term is the sensitivity function

purely based on DF, the second is based on the base-linear system.
Since reset controllers are designed to increase the PM, the peak of
sensitivity is higher for the second as seen in Fig. 25. From Table 1,
it can be seen that while 10 and 01 have the same 𝜙𝐶𝑔𝐿𝑝 resulting in
comparable relative higher-harmonic magnitudes, the PM is different
resulting in a huge difference in peak of 𝑆𝑙𝑏𝑙. Since the larger peak
results in larger magnitudes of 𝐸𝑛≥2, this results in a large deviation
in the PER plots of DF based prediction. Additionally, the same large
magnitudes of harmonics in error also influence the extent to which
Assumptions 2–3 are violated resulting also in large prediction errors.
This explains the large PER values for 01 compared to 10 in Fig. 23.

From the perspective of tuning and performance, the aim is to
achieve the performance indicated by DF with appropriate suppression
of the harmonics. Apart from 𝑆𝑙𝑏𝑙(𝑛𝜔), the harmonics are dependent on
𝐿𝑛(𝜔) = 𝐻𝑛(𝜔)𝑃 (𝑛𝜔). It is trivial that a reduction of 𝐻𝑛 would result in
better performance. Using this, the following guidelines are provided
below.

• Given a stable base-linear system wherein a CgLp compensator
has to be designed for optimal performance, choose the CgLp with
the lowest 𝐻𝑛 at the required frequency.

• In general, since controllers are not designed for optimal perfor-
mance at a single frequency, a weighted matrix can be used to
calculate the CgLp configuration which is best matched. This can
be considered for future work.

• The PM of the base-linear system determines the peak of 𝑆𝑙𝑏𝑙
and hence a larger PM for the base-linear system results in better
prediction and lower PER values. Hence, unlike retaining the
given base-linear system as noted in the first point, if this can
also be redesigned, i.e., linear part of  can be designed, then
𝑆𝑙𝑏𝑙 has to also be considered and added to the optimization cost
function.

7. Conclusions

Reset controllers have shown great promise in overcoming the
limitations of linear control and providing significant performance
improvement. However, existing describing function (DF) based loop-
shaping and prediction cannot be used for precision control. Hence,
(i) the extension of DF in the form of higher-order sinusoidal-input
19
describing function (HOSIDF) of reset controllers for accurate analysis
in open-loop; and (ii) a novel prediction method based on the HOSIDFs
with the introduction of the concept of a virtual harmonic separator
for these systems are presented in this work. The prediction accuracy
of the new method is seen to be significantly better and the capability
to predict trends as seen with the practical results shows the potential
of this method to be used for optimal tuning. Additionally, based on the
results and the novel method developed, tuning guidelines for manual
tuning of this family of controllers are provided.

To further improve these prediction methods, in the next step,
estimation of the accuracy of prediction based on the magnitude of
the harmonics and the extent to which Assumptions 2 and 3 are
violated will be investigated. Additionally, while some basic guidelines
for tuning are provided in this work by taking the HOSIDFs into
consideration, the current work also allows for future investigation of
new architectures capable of providing required DF in open-loop with
suppressed HOSIDFs for improved performance. The presented methods
while not perfect, provide a significant step forward for the design
and analysis of these systems and moves towards ensuring greater
utilization of these controllers in the high-tech industry setting.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work was supported by NWO, The Netherlands, through OTP
TTW project #16335.

References

Akyüz, E., Saikumar, N., & HosseinNia, S. H. (2019). Reset control for vibration
disturbance rejection. IFAC-PapersOnLine, 52(15), 525–530.

Baños, A., & Barreiro, A. (2011). Reset control systems. Springer Science & Business
Media.

Baños, A., & Vidal, A. (2007). Definition and tuning of a pi+ hdd reset controller. In
2007 european control conference (ECC) (pp. 4792–4798). IEEE.

Beker, O. (2002). Analysis of reset control systems (Ph.D. thesis), University of
Massachusetts Amherst.

Beker, O., Hollot, C., & Chait, Y. (2000). Forced oscillations in reset control systems. In
Proceedings of the 39th IEEE conference on decision and control (Cat. No. 00CH37187),
Vol. 5 (pp. 4825–4826). IEEE.

http://refhub.elsevier.com/S0967-0661(21)00085-X/sb1
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb1
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb1
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb2
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb2
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb2
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb3
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb3
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb3
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb4
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb4
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb4
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb5
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb5
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb5
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb5
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb5


N. Saikumar, K. Heinen and S.H. HosseinNia Control Engineering Practice 111 (2021) 104808
Beker, O., Hollot, C. V., & Chait, Y. (2001). Plant with integrator: an example of reset
control overcoming limitations of linear feedback. IEEE Transactions on Automatic
Control, 46(11), 1797–1799.

Beker, O., Hollot, C., Chait, Y., & Han, H. (2004). Fundamental properties of reset
control systems. Automatica, 40(6), 905–915.

Bode, H. W., et al. (1945). Network analysis and feedback amplifier design. van Nostrand
New York.

Chen, Q., Chait, Y., & Hollot, C. (2001). Analysis of reset control systems consisting of
a fore and second-order loop. Journal of Dynamic Systems, Measurement, and Control,
123(2), 279–283.

Chen, L., Saikumar, N., Baldi, S., & HosseinNia, S. H. (2018). Beyond the waterbed
effect: Development of fractional order crone control with non-linear reset. In 2018
annual american control conference (ACC) (pp. 545–552). IEEE.

Chen, L., Saikumar, N., & HosseinNia, S. H. (2019). Development of robust
fractional-order reset control. IEEE Transactions on Control Systems Technology.

Clegg, J. (1958). A nonlinear integrator for servomechanisms. Transactions of the
American Institute of Electrical Engineers, Part II: Applications and Industry, 77(1),
41–42.

Guo, Y., Wang, Y., & Xie, L. (2009). Frequency-domain properties of reset systems
with application in hard-disk-drive systems. IEEE Transactions on Control Systems
Technology, 17(6), 1446–1453.

Hazeleger, L., Heertjes, M., & Nijmeijer, H. (2016). Second-order reset elements for
stage control design. In American control conference (ACC), 2016 (pp. 2643–2648).
IEEE.

Horowitz, I., & Rosenbaum, P. (1975). Non-linear design for cost of feedback reduction
in systems with large parameter uncertainty. International Journal of Control, 21(6),
977–1001.

HosseinNia, S. H., Tejado, I., & Vinagre, B. M. (2013). Fractional-order reset control:
Application to a servomotor. Mechatronics, 23(7), 781–788.

Krishnan, K., & Horowitz, I. (1974). Synthesis of a non-linear feedback system with
significant plant-ignorance for prescribed system tolerances. International Journal of
Control, 19(4), 689–706.
20
Li, H., Du, C., & Wang, Y. (2011). Optimal reset control for a dual-stage actuator system
in hdds. IEEE/ASME Transactions on Mechatronics, 16(3), 480–488.

Narendra, K., & Gallman, P. (1966). An iterative method for the identification of
nonlinear systems using a hammerstein model. IEEE Transactions on Automatic
control, 11(3), 546–550.

Nuij, P., Bosgra, O., & Steinbuch, M. (2006). Higher-order sinusoidal input describ-
ing functions for the analysis of non-linear systems with harmonic responses.
Mechanical Systems and Signal Processing, 20(8), 1883–1904.

Palanikumar, A., Saikumar, N., & HosseinNia, S. H. (2018). No more differentiator in
pid: Development of nonlinear lead for precision mechatronics. In 2018 european
control conference (ECC) (pp. 991–996). IEEE.

Panni, F. S., Alberer, D., & Zaccarian, L. (2012). Set point regulation of an egr valve
using a fore with hybrid input bias estimation. In 2012 american control conference
(ACC) (pp. 4221–4226). IEEE.

Pavlov, A., van de Wouw, N., & Nijmeijer, H. (2005). Convergent piecewise affine
systems: analysis and design part i: continuous case. In Proceedings of the 44th IEEE
conference on decision and control (pp. 5391–5396). IEEE.

Saikumar, N., & HosseinNia, H. (0000). (n.d.), Generalized Fractional Order Reset
Element (GFrORE). In 2017 european nonlinear dynamics conference (ENOC).

Saikumar, N., Sinha, R., & Hoseinnia, S. H. (2019a). ‘Constant in gain lead in
phase’ element-application in precision motion control. IEEE/ASME Transactions on
Mechatronics.

Saikumar, N., Sinha, R. K., & HosseinNia, S. H. (2019b). Resetting disturbance observers
with application in compensation of bounded nonlinearities like hysteresis in
piezo-actuators. Control Engineering Practice, 82, 36–49.

Saikumar, N., Valério, D., & HosseinNia, S. H. (2019). Complex order control for
improved loop-shaping in precision positioning. arXiv preprint arXiv:1907.09249.

Samad, T., Mastellone, S., Goupil, P., van Delft, A., Serbezov, A., & Brooks, K. (2019).
Ifac industry committee update, initiative to increase industrial participation in the
control community. In Newsletters april 2019. IFAC.

Valério, D., Saikumar, N., Dastjerdi, A. A., Karbasizadeh, N., & HosseinNia, S. H. (2019).
Reset control approximates complex order transfer functions. Nonlinear Dynamics,
97(4), 2323–2337.

Wu, D., Guo, G., & Wang, Y. (2007). Reset integral-derivative control for hdd servo
systems. IEEE Transactions on Control Systems Technology, 15(1), 161–167.

Zheng, Y., Chait, Y., Hollot, C., Steinbuch, M., & Norg, M. (2000). Experimental
demonstration of reset control design. Control Engineering Practice, 8(2), 113–120.

http://refhub.elsevier.com/S0967-0661(21)00085-X/sb6
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb6
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb6
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb6
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb6
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb7
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb7
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb7
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb8
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb8
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb8
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb9
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb9
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb9
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb9
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb9
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb10
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb10
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb10
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb10
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb10
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb11
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb11
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb11
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb12
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb12
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb12
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb12
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb12
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb13
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb13
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb13
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb13
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb13
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb14
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb14
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb14
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb14
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb14
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb15
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb15
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb15
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb15
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb15
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb16
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb16
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb16
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb17
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb17
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb17
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb17
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb17
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb18
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb18
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb18
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb19
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb19
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb19
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb19
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb19
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb20
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb20
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb20
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb20
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb20
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb21
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb21
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb21
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb21
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb21
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb22
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb22
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb22
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb22
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb22
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb23
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb23
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb23
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb23
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb23
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb25
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb25
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb25
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb25
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb25
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb26
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb26
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb26
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb26
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb26
http://arxiv.org/abs/1907.09249
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb28
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb28
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb28
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb28
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb28
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb29
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb29
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb29
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb29
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb29
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb30
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb30
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb30
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb31
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb31
http://refhub.elsevier.com/S0967-0661(21)00085-X/sb31

	Loop-shaping for reset control systems
	Introduction
	Preliminaries on reset control
	Definition of reset controller
	Describing function (DF)
	Reset elements
	Generalized Clegg integrator (GCI)
	Generalized FORE (GFORE)
	Generalized SORE (GSORE)

	Stability of reset control systems
	CgLp-PID design and the problem of describing function

	Higher-order Sinusoidal-input Describing function (HOSIDF) for reset controllers
	Virtual harmonic generator
	DF and HOSIDF
	Visualization of HOSIDF

	Sensitivity functions
	RCS With virtual harmonic generator and separator
	Open-loop to closed-loop
	Prediction with superposition

	Validation
	Precision positioning setup
	Controller designs
	Reset controllers R with CI
	Reset controllers R with PCI
	CgLp-PID reset controllers

	Simulation results
	Practical results

	Analysis for loop-shaping
	Validity of assumptions
	For loop-shaping

	Conclusions
	Declaration of competing interest
	Acknowledgements
	References


