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SUMMARY

Garments, one of the human basic needs, were customized and handmade before the In-

dustrial Revolution. After the realization of mass production, the cost of a piece of cloth-

ing became lower, but some disadvantages arose. Garments were no longer made to

measure and overproduction caused environmental problems. The new developments

in digital garment design and digital customization target addressing these limitations.

Garments are mainly made from two types of fabrics, namely woven and knitted fab-

ric. Woven fabric, which is constructed with straight threads, is made into garments

by cutting and sewing. Knitting warps a single yarn as loops and the interlaced loops

form a fabric. Knitting a garment has several advantages over the cutting-and-sewing

method. Instead of fabricating sheets that are later cut into patterns, knitting can di-

rectly manufacture clothing with significantly less waste, which resembles the advantage

of additive manufacturing over subtractive methods. Multiple materials can be knitted

in varied patterns by machines automatically. The 3D shape of knits can also be highly

customized by machines with less human labor compared to woven garments. These

advantages make knitting more suitable for digital customization compared to cutting-

and-sewing.

The computational design of knitting attracted increased attention in recent years.

In this dissertation, we consider the customized design and fabrication of 3D and 4D

garments as knitwears. The 3D knitwear fits the target human body, and the 4D knitwear

also considers comfort during body movement. The main research question (RQ) is:

How to design customized 3D and 4D knitwear and generate instructions for a digital

knitting machine?

The main research question is answered by studying three sub-questions (RQ1–3),

the first one of which is (RQ1) How to design a knitwear and its machine knitting in-

structions for a given 3D shape?

We start with a flattening-based design, which is closely related to the method used

by garment designers. Designers generate 3D (non-planar) garments from planar fab-

rics by sewing some folded/cut-out parts, which are referred to as darts, to tailor the

garment to the wearer’s shape. The placement of darts has a big influence on the 3D

shape of garments. Thus we pose the guiding question “Where to put darts?” to direct

the development of this approach. We add darts by analyzing the distortion of flattening,

i.e., compression or stretching, and considering the knittability constraints. The distor-

tion is reduced after adding more darts. We convert the flattened shape to valid knitting

instructions, which are arranged as a grid of stitches. Rows and columns in the grid in-

tersecting with the darts are named short-rows and short-columns respectively. They are

knitted with short-row and short-column (stitch transfer) techniques to close the darts

in the knitting process. However, the accuracy and usability of this approach are limited.

We were encouraged to develop more in-depth approaches to address accuracy and us-

ability.

ix
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short-rows short-column

stitch mesh with

plain stitches (quadrangles)

shaping stitches (triangles)

a 3D knitting structure

Towards a more automated approach compared to

the flattening-based design, we developed the direct

3D design approaches by stitch mesh generation, to

further study RQ1. The stitch mesh represents the

knitting structure as a polyhedral object on which each

polygonal facet corresponds to a knitting stitch. It ap-

proximates the target shape using plain stitches and

shaping stitches. The shaping stitches include the be-

ginning and ending stitches of short-rows and short-

columns. Shaping stitches are crucial for the fabric’s

curvature while pure plain stitches only generate pla-

nar fabrics. Then the guiding question is Where to put

shaping stitches? The shaping stitches are correspond-

ing to the 3D knitting techniques, i.e., short-row and

short-column knitting. We generate knittable stitch

meshes with the help of governing fields. When using

a geodesic distance field as the governing field, only

short-rows are generated. When using a Laplacian-

based time field, the stitch mesh can consist of both

short-rows and short-columns of stitches. Short-row

knitting is simple but may generate some seams that

need to be sewn afterwards. Physical fabrication for

a short-column of stitches is based on a technique

that transfers the loops of stitches between needle-

beds at the rows of its beginning and ending stitches

(called transfer stitches). This transfer technique, how-

ever, can often lead to manufacturing problems such

as miss-transfer, yarn stretching, yarn abrasion, etc.

Therefore, the number of transfer stitches needs to be minimized for reliable knitting.

We tackle this challenge by formulating it as a field optimization problem with boundary

conditions as variables. We argue that a field with optimized divergence (more parallel

column curves) will become a governing field with fewer transfer stitches. We developed

a modified stitch mesh generation algorithm that is coupled with governing fields more

tightly, and Bayesian optimization is employed to implement the computation frame-

work. We propose a graph-based algorithm to place shaping stitches on columns and

generate knittable stitch meshes that can accurately capture the 3D shape of a garment.

The performance of our approach for generating reliable knitting plans has been demon-

strated in physically knitted examples.

Next, we present a new computational pipeline for designing and fabricating 4D gar-

ments as knitwear that considers comfort during body movement, which answers the

second research question (RQ2): How to design a motion-aware 4D knitwear and gen-

erate its machine instructions? Compared to 3D garments tailored for body shape, the

additional dimension in 4D garments is the time-variant effect of garments during mo-

tion. This is achieved by careful control of elasticity distribution to reduce uncomfort-

able pressure and unwanted sliding caused by body motion. Basically, flexible structures
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at body joints will reduce pressure, and firm structures at limbs will reduce sliding. The

guiding question is Where to put elastic structures? We exploit the ability to knit pat-

terns in different elastic levels by single-jersey jacquard with two yarns with different

elasticities. We design the distribution of elasticity for a garment by physics-based com-

putation, the optimized elasticity of the garment is then converted into instructions for a

digital knitting machine. A tiling algorithm assigns jacquard patterns on the stitch mesh

to realize the designed distribution of elasticity. The effectiveness of our approach is

verified by simulation results and physical specimens fabricated by knitting machines.

Now we have prepared the knitwear design methods for the intended 3D shapes and

4D motion sequences. The third research question (RQ3) is How to capture an individ-

ual’s body models in different poses for 3D/4D knitwear customization? Traditionally,

people measure body dimensions for garment customization. However, complex body

shapes and motions can not be accurately captured by a few measurements. We study

three types of digital human body modeling methods using different sensors.

• A photogrammetry approach using an expensive multi-camera system.

• A simple setup of a pair of depth sensors (Kinect).

• An artificial intelligence (AI) based approach using a single RGB image.

We can extract the human body information for knitting, using one of these approaches.

4D motion can be obtained by registering a sequence of 3D postures. At last, we apply

the developed knitwear design methods to the captured human bodies.

In this dissertation, we researched computational knitwear design methods. We con-

sidered not only 3D fitting but also comfort during motion (4D). Our research can be ap-

plied in garment production (especially mass customization) or other knitting applica-

tions. Garment designers and other industrial designers can use the proposed methods

to generate knitting instructions for free-form 3D surfaces. Our 4D design method helps

designers place elastic or other varied knitting structures while keeping the intended 3D

shape. This dissertation presents new perspectives on computational approaches to ex-

isting manufacturing techniques. It also provides enough details to further develop such

design systems to be applied in practice.





SAMENVATTING

Kleding, een van de basisbehoeften van de mens, werd vóór de industriële revolutie met

de hand en op maat gemaakt. Na de totstandkoming van massaproductie werden de

kosten van een kledingstuk lager, maar ontstonden er ook nadelen. Kleding op werd niet

meer op maat gemaakt en er ondstond overproductie met grote gevolgen voor het mi-

lieu. Nieuwe ontwikkelingen in digitaal ontworpen en digitaal geproduceerd maatwerk

van kleding richten zich op het aanpakken van deze beperkingen.

Kledingstukken worden voornamelijk gemaakt van twee soorten stoffen, namelijk

geweven en gebreide stof. Geweven stof, die is opgebouwd uit rechte draden wordt door

knippen en naaien tot kledingstukken gemaakt. Bij breien wordt een enkel garen ver-

vormd tot lussen die in elkaar verstrengelt een stof vormen. Breien heeft verschillende

voordelen ten opzichte van de knip- en naaimethode van geweven stof. In plaats van

het vervaardigen van vlakke stoffen die vervolgens in patronen worden geknipt, biedt

breien de mogelijkheid om kleding te vervaardigen terwijl aanzienlijk minder afval wordt

geproduceerd. Dit lijkt op de voordelen van additieve productie ten opzichte van sub-

tractieve methoden. Meerdere materialen kunnen door machines automatisch in ver-

schillende patronen gebreid worden. De 3D geometrie van de breisels kan ook op maat

worden gemaakt met minder handarbeid vergeleken met gewoven kledingstukken. Deze

voordelen maken breien geschikter voor digitaal maatwerk vergeleken met de knip- en

naaimethode.

De afgelopen jaren heeft computationeel ontwerpen van breiwerk steeds meer aan-

dacht gekregen. In dit proefschrift behandelen we maatwerk voor ontwerp en fabricage

van 3D- en 4D-breiwerk. 3D-breigoed is op maat gemaakt op de lichaamsvorm van de

gebruiker, terwijl 4D-breigoed ook rekening houdt met comfort van de gebruiker tijdens

beweging. De centrale onderzoeksvraag (RQ, research question) is: Hoe kunnen we op

maat gemaakt 3D- en 4D-breigoed ontwerpen en machineinstructies genereren voor een

digitale breimachine?

De hoofdvraag van het onderzoek wordt beantwoord door drie deelvragen (RQ1–3) te

bestuderen, waarvan de eerste is (RQ1) Hoe kunnen we een breiwerk en de machinebrei-

instructies voor een bepaalde 3D-vorm ontwerpen?

We beginnen met op afvlakking gebaseerd ontwerp, dat nauw verwant is aan de me-

thode die door kledingontwerpers wordt gebruikt. Ontwerpers genereren niet-vlakke

3D-kledingstukken van vlakke stoffen door gevouwen of uitgeknipte delen aan elkaar te

naaien, die figuurnaden worden genoemd. De plaatsing van figuurnaden heeft een grote

invloed op de 3D-vorm van de kleding. Dus stellen we de begeleidende vraag “Waar

moeten we figuurnaden plaatsen?” om de ontwikkeling van deze aanpak te sturen. We

voegen figuurnaden toe door het analyseren van de verstoring van afvlakking, dat wil

zeggen, compressie of uitrekken, en rekening houdend met de beperkingen van het brei-

proces. De verstoring wordt verminderd na het toevoegen van meer figuurnaden. We

zetten de afgeplatte vorm om in geldige brei-instructies, die gerangschikt worden als een

xiii
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raster van steken. Rijen en kolommen in het raster die met de figuurnaad kruisen wor-

den respectievelijk verkorte rijen en verkorte kolommen genoemd. Ze worden gebreid

met een verkorte rij- en verkorte kolomtechniek (steekoverdracht) om de figuurnaden

te sluiten tijdens het breiproces. De nauwkeurigheid en bruikbaarheid van deze aanpak

zijn echter beperkt. We waren aangemoedigd om de volgende aanpakken te ontwikkelen

om de nauwkeurigheid en bruikbaarheid te addresseren.

verkorte

rijen

verkorte

kolommen

steek-mesh met

reguliere steken (driehoeken)

vormgevende steken (vierhoeken)

3D-breistructuur

Voor een meer geautomatiseerde aanpak in verge-

lijking met het op afvlakking gebaseerde ontwerpen,

hebben we directe 3D-ontwerpbenaderingen ontwik-

keld die gebruik maken van een steek-mesh RQ1. De

steek-mesh vertegenwoordigt de breistructuur als een

veelvlakkig object waarop elk veelhoekig facet over-

eenkomt met een breisteek. Deze mesh benadert de

doelvorm met reguliere steken en vormgevende ste-

ken. De vormgevende steken omvatten de eerste en

laatste steken van verkorte rijen en kolommen. Vorm-

gevende steken zijn cruciaal voor de kromming van de

stof, terwijl reguliere steken alleen altijd vlakke stoffen

genereren. Dan is de begeleidende vraag Waar moe-

ten we vormgevende steken plaatsen? De vormgevende

steken komen overeen met de 3D-breitechnieken, dat

wil zeggen, breien van verkorte rijen en kolommen.

We genereren breibare steek-meshes met behulp van

referentievelden. Bij het gebruik van een geodetisch

afstandsveld als referentieveld worden alleen verkorte

rijen gegenereerd. Bij gebruik van een Laplaciaans

tijdveld kan het steek-mesh bestaan uit zowel verkorte

rijen als verkorte kolommen van steken. Breien met

korte rijen is eenvoudig, maar kan enkele naden ge-

nereren die achteraf moeten worden genaaid. Fysieke

fabricage voor een verkorte kolom van steken is geba-

seerd op een techniek die de lussen van steken over-

brengt tussen naaldbedden aan de rijen van eerste

en laatste steken (overdrachtssteken genoemd). Deze

overdrachtstechniek leidt echter regelmatig tot fabri-

cageproblemen zoals het verkeerd overbrengen, het uitrekken van garen, schuren van

garen, enz. Daarom moet voor de betrouwbaarheid van het breiden het aantal over-

drachtssteken geminimaliseerd worden. We pakken deze uitdaging aan door het te for-

muleren als een veldoptimalisatieprobleem met randvoorwaarden als variabelen. We

beargumenteren dat een veld met geoptimaliseerde divergentie (meer parallelle kolom

curven) een referentieveld met minder overdrachtssteken zal worden. We hebben een

aangepast algoritme ontwikkeld voor het genereren van steek-mesh dat beter is gekop-

peld aan de referentievelden, en Bayesiaanse optimalisatie wordt gebruikt om het bere-

keningskader te implementeren. We stellen een op grafen gebaseerd algoritme voor om

vormgevende steken op kolommen te plaatsen en breibare steek-meshes te genereren
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die de 3D-vorm van een kledingstuk nauwkeurig kunnen vastleggen. De prestaties van

onze aanpak voor het genereren van betrouwbare breiplannen zijn aangetoond in fysiek

gebreide voorbeelden.

Vervolgens presenteren we een nieuwe computationele workflow voor het ontwer-

pen en vervaardigen van 4D-kledingstukken als breigoed dat rekening houdt met com-

fort tijdens lichaamsbeweging. Dit beantwoord de tweede onderzoeksvraag (RQ2): Hoe

kunnen we 4D breigoed ontwerpen dat rekening houdt met lichaamsbeweging en de bij-

behorende maachineinstructies genereren? Vergeleken met 3D-kledingstukken die zijn

afgestemd op de lichaamsvorm, is de extra dimensie in 4D-kledingstukken het tijdvari-

ante effect van kledingstukken tijdens het bewegen. Dit wordt bereikt door zorgvuldige

controle van de elasticiteitsverdeling om ongemakkelijke druk en ongewenst schuiven

veroorzaakt door lichaamsbeweging te verminderen. Kortom, flexibele structuren bij

lichaamsgewrichten zullen de druk verminderen, en stijvere structuren bij ledematen

zullen glijden verminderen. De begeleidende vraag is Waar moeten we elastische struc-

turen plaatsen? Wij maken gebruik van de mogelijkheid om patronen te breien met ver-

schillende elastischiteiten door middel van single-jersey jacquard met twee garens. Wij

ontwerpen de verdeling van elasticiteit voor een kledingstuk door op fysica-gebaseerde

berekeningen, de geoptimaliseerde elasticiteit van het kledingstuk wordt vervolgens om-

gezet in instructies voor een digitale breimachine. Een algoritme voor betegeling wijst

jacquardpatronen aan op de steek-mesh om de ontworpen verdeling van elasticiteit te

realiseren. De effectiviteit van onze aanpak is geverifieerd door simulatieresultaten en

fysieke proefstukken die door breimachines zijn vervaardigd.

Nu hebben we de breigoed ontwerpmethoden voor de beoogde 3D-vormen en 4D-

bewegingssequenties voorbereid. De derde onderzoeksvraag is (RQ3) Hoe kunnen we de

lichaamsmodellen van individuen in verschillende poses vastleggen voor het personali-

seren van 3D/4D breigoed? Traditioneel meten mensen lichaamsafmetingen voor het

aanpassen van kleding. Complexe lichaamsvormen en bewegingen kunnen echter niet

nauwkeurig worden vastgelegd met enkele metingen. Er worden drie soorten methoden

voor het modelleren van het menselijk lichaam bestudeerd.

• Een fotogrammetrie-aanpak met behulp van een duur multi-camera systeem.

• Een eenvoudige opstelling van twee diepte-sensoren (Kinect 2).

• Een op kunstmatige intelligentie (KI, of artificiële intelligentie, AI) gebaseerde aan-

pak met behulp van een enkel RGB-beeld.

We kunnen de menselijke lichaamsinformatie voor breien, met behulp van een van deze

aanpakken extraheren. 4D-beweging kan worden verkregen door een reeks 3D-houdingen

te registreren. Tenslotte passen we de ontwikkelde breisels toe op de vastgelegde men-

selijke lichamen.

In dit proefschrift hebben we computationele methodes ontwikkeld voor het ontwer-

pen van breisels. We hebben niet alleen gekeken naar 3D-fitting maar ook naar comfort

tijdens het bewegen (4D). Ons onderzoek kan worden toegepast in de productie van kle-

ding (vooral massamaatwerk) of andere breitoepassingen. Kledingontwerpers en andere

industriële ontwerpers kunnen de voorgestelde methoden gebruiken om breiinstruc-

ties te genereren voor 3D-oppervlakken met complexe en organische vormen. Onze
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4D-ontwerpmethode helpt ontwerpers om elastische of andere gevarieerde breistruc-

turen te plaatsen met behoud van de beoogde 3D-vorm. Dit proefschrift presenteert

nieuwe perspectieven op computationele aanpakken voor bestaande maaktechnieken.

Het biedt ook voldoende details om zulke ontwerpsystemen verder te ontwikkelen om

toegepast te worden in de praktijk.



GLOSSARY

3D Three dimensional; non-planar.

3D garment A garment that fits the 3D shape of the wearer’s body.

4D garment Four-dimensional garment. It is a fitting 3D garment that also considers

the wearer’s comfort during body motion. The additional dimension is the time-

variant effect of garments during motion.

Course A row of knitted stitches.

Dart A fold sewn into the fabric to take in ease and provide shape to a garment.

Polygon mesh (or mesh) A discrete representation of surfaces. It is a polyhedral object

composed of polygonal facets.

Polyline A discrete representation of curves. It is a connected series of line segments.

Shaping stitches Special stitches that contribute to the 3D shaping of knitted fabrics.

They are the ends of short-rows or short-columns that locate in the fabric interior.

Short-column knitting A knitting technique to produce 3D (non-planar) fabrics. In a

short-column, at least one of its ends locates in the fabric interior.

Short-row knitting A knitting technique to produce 3D fabrics. In a short-row, at least

one of its ends locates in the fabric interior.

Stitch The repeated element in knitting.

Stitch mesh A representation of knitting structures. It is a polygon mesh on which each

facet represents a stitch.

Wale A column of knitted stitches.
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0
INTRODUCTION

0.1. RESEARCH PROBLEM AND MOTIVATION

Humans have a long history of knitting yarns into fabrics. Today, this technology is

used for the mass production of garments using computerized knitting machines. Cus-

tomized manufacturing has several advantages compared to mass production. It re-

sponds to customer needs [93] and creates value for customers. It reduces overpro-

duction and has the potential to be more sustainable. Moreover, in the context of the

recent worldwide pandemic of coronavirus disease 2019 (COVID-19), customized man-

ufacturing and on-demand manufacturing can help companies respond rapidly to local

demands and reduce reliance on global sources [183].

Knitting is one of the textile-making techniques, among weaving, crocheting, braid-

ing, knotting, tufting, and non-weaving [81]. Garments are usually made from woven

fabrics and knitted fabrics because they are more affordable for large-scale automation.

The knitting method has several advantages over garment fabrication which uses wo-

ven fabrics. For 3D shaping, woven garments require cutting and sewing to construct

darts. In this process, the cutting wastes materials and the sewing is labor-intensive. For

multi-material garments, such as the 4D garments using materials with different elas-

ticities, woven garments also require sewing patches from different materials. In both

cases, knitting is much simpler. It minimizes material waste and maximizes the automa-

tion level in fabricating complex shapes with one or more types of materials, resembling

additive manufacturing techniques [43], while cutting-and-sewing belongs to subtrac-

tive manufacturing. Moreover, the materials of knitting have the potential to be more

sustainable than woven fabric [187, 60, 199, 198]. In summary, knitting requires much

less human intervention and is more environment-friendly. Besides knits and woven

fabrics, garments can also be made of non-woven fabrics, for example, in medical appli-

cations. The non-woven fabrics are usually planar, which are made into garments using

the cutting-and-sewing process as woven fabrics, thus sharing the same limitations.

For customized garment design, an important question is to design for the target

shape, such as the customer’s body shape [201]. Garments that fit an individual’s 3D

1
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(a) (b) (c) (d)

(e) (f) (g)

Figure 0.1: Comparison between garment making by weaving (top row, (a–d)) or knitting (bottom row, (e–g)).

Woven fabrics (b) constructed with threads (a) are cut (c) and sewn into garments (d). The gray regions in (c)

are wasted. Using a computerized knitting machine (f), yarns are knitted into knitwears more directly, with

less material waste and less human intervention. Structures of weaving and weft knitting are shown in (d) and

(g) respectively.

body shape are referred to as 3D garments. It should be body-tight and provide uniform

stress. Furthermore, garments that not only fit an individual’s body but also fit the body

motion are studied, we refer to as 4D garments by taking the motion (i.e., the time-varied

3D body pose) as 4D information. 4D garments consider the user’s comfort during mo-

tion by designing the distribution of knitting structures with different elasticity levels.

Nowadays, most knitting machines used in industry are computer-controlled and

could allow on-demand manufacturing of custom knitwear. However, some essential

steps in the workflow are still lacking. The research question (RQ) is how to design cus-

tomized 3D and 4D garments and generate the machine instructions? The advantages

of 3D/4D garments and machine knitting encourage us to develop the design tools for

this question. This research is also aligned with Industry 4.0 [94], which requires digi-

tal modeling of the physical fabrication (cyber-physical systems), adaptation to human

needs (but not adapting human needs to manufacturing systems), and corporate social

responsibility (sustainability and resource-efficiency).

This dissertation aims to develop 3D and 4D knitting design methods for garment

designers and other industrial designers. The methods can be used to accurately and

robustly knit other free-from 3D surfaces besides garments. The 4D elastic structure

placement method allows placing other varied knitting structures without distorting the

intended shape. The proposed computational design methods will enrich the designers’

toolbox to realize their idea and provide some new perspectives beyond trial-and-error.

Henry Ford, the chief developer of the assembly line technique of mass production, once

said “Any customer can have a car painted any colour that he wants so long as it is black”

[50]. With the customized 3D and 4D garment design techniques for machine knitting,

the envisioned future will be: The customers can have garments with any style they want,

as long as it is knitted.
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0.2. RELATED WORK

Researchers have been studying knitting from different perspectives. Materials scien-

tists study the properties of the fibers and yarns for knitting as well as the effect of knit

structures [5] and finishing treatments [152]. Mechatronics engineers develop knitting

machines for efficient manufacturing [120]. They also develop wearable smart devices

using knitting. Knitwear designers create knitted fabric from the view of fine arts and

fashion. Spencer, 2001 [177] is a comprehensive textbook covering different aspects of

knitting technology. Au, 2011 [5] and Maity et al., 2022 [118] discussed more recent ad-

vancements in knitting technology and its applications. There are also research works

on the business model of on-demand knitting or mass customization [93].

This dissertation develops computational design tools, which belong to the domain

of computer-aided design (CAD) and computer graphics (CG). This work mostly relies

on the geometric computing tools developed by the CAD and CG communities. Besides

geometry, physical simulation tools are also used (Chapter 4). Meanwhile, we consider

manufacturing constraints throughout the research. Related works from different as-

pects are reviewed below.

DIGITAL 3D KNITTING

Igarashi et al., 2008 [65] and Igarashi et al., 2008 [66] are two of the earliest computa-

tional knitting design methods for an input 3D model, which generate hand knitting in-

structions. The thesis of Underwood, 2009 [192] comprehensively studied the machine

knitting techniques for 3D shaping, especially the implementations on Shima Seiki’s

WholeGarment® machines. The name of stitch mesh was first proposed by Yuksel et al.,

2012 [221] to build yarn-level models of complex knitted garments. Narayanan et al.,

2018 [134] presented the first computational approach that can transform 3D meshes

into instructions for a computer-controlled knitting machine. The interactive method

presented in Wu et al., 2019 [215] can generate stitch meshes that are ensured to be knit-

table by hand. Some of the representative works are reviewed here. More details will be

discussed in Chapter 3.

INTERACTIVE DESIGN SYSTEMS

Some interactive design systems were also developed for digital knitting, including a

general visual programming interface for creating 3D objects with complex surface fin-

ishes (Narayanan et al., 2019 [135]), a system allowing the composition of knitted shapes

and stitch patterns (Kaspar et al., 2019 [82]), a method to design periodic yarn-level knit-

ting patterns (Leaf et al., 2018 [95]), and an interface that provides coupled knitting code

and topological visualization of the knitting design (Yu and McCann, 2020 [220]). Kaspar

et al., 2021 [84] developed a design tool inspired by traditional garment making based on

cutting and sewing.

Knitwear design tools need to support multi-structure (like ribs) and multi-color

knitting so that they can be effectively used by designers. Some design systems [80, 61,

129] enable knitting varied textures by varying stitch structures or yarns with different

colors. In the knitting industry, Shima Seiki and Stoll, the two largest knitting machine

manufacturers, have their own software suites [165, 179] that provide rich capabilities of

knitting design.
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PHYSICAL SIMULATION OF KNITTED FABRICS

Given a knits design, it is straightforward to generate the interlocking relation (i.e., the

topological relation) between its stitches. However, predicting the realistic geometry of

the warped yarn requires physical simulation. Such methods are described in [123, 77,

221]. Among them, [77] accurately predicts the curling phenomenon on the edges of

single-jersey knitting structures. Besides the local behavior of stitches, physical simula-

tion methods [137, 178] also study the knits as fabrics and garments.

0.3. KNOWLEDGE GAP

Existing works proposed different approaches to knitting 3D fabrics automatically us-

ing digital knitting machines. However, there are still several major challenges to real-

izing accurate, reliable 3D knitting and motion-aware 4D knitting, despite the growing

research in related areas. These issues defined the gap to be filled.

First, the knitting result may not reproduce the intended 3D shape. The stitches gen-

erated by existing design methods are usually deformed: in general, it is difficult to de-

sign a knitting pattern that lies on the target shape and keeps every stitch identical to its

rest shape, while complying with the knittability constraints at the same time. There is

some distortion between the intended shape and the design’s rest shape (without exter-

nal force applied), which should be reduced to generate perfect-fit 3D garments.

Second, there is a need to study the reliability of generated machine knitting instruc-

tions in the design process. Stitch transfer, a type of knitting machine operation, is not

stable in some cases. The yarn stretching and abrasion harm the knitting process and

the fabric quality. However, this operation is necessary for short-column shaping for 3D

fabrics. Therefore, reliability should be studied when stitch transfer is heavily involved.

Third, garment stress and sliding affect the wearer’s comfort during body motion.

It has not been studied to consider this time-varying issue for knitwear design in the

existing literature. This raised the question of how to design knitwear with locally varying

elasticity to control garment stress and sliding, i.e., 4D garments.

These questions are tackled in this dissertation.

0.4. DISSERTATION ORGANIZATION

The following chapters of this dissertation are organized as below. Chapter 1 presents

the background knowledge of knitting and the data representations for computational

knitting design. Chapters 2 and 3 present the customized 3D knitwear design methods,

which answer the first research (sub-)question (RQ1): how to design a knitwear and its

machine knitting instructions for a given 3D shape. Chapter 4 presents the 4D knitwear

customization method, which answers the second research question (RQ2): how to de-

sign a motion-aware 4D knitwear and generate its machine instructions. Chapter 5 uses

body modeling methods to capture the body shapes of individuals and applies the de-

veloped knitwear design methods accordingly, which answers the last research question

(RQ3): how to capture an individual’s body models in different poses for 3D/4D knitwear

customization. Chapters 2–5, as a whole, answer the main research question (RQ): how

to design customized 3D and 4D garments and generate the machine instructions? At last,

Chapter 6 summarizes the research findings of this dissertation. The relation between
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Ch 1: background of

knitting

Ch 2: design by 3D to

2D flattening

Ch 3: direct 3D design

Ch 4: 4D design

Ch 5: body capture for

knitwear design

Ch 6: conclusion and

implications

Figure 0.2: Overview of chapters 1–6. The background of knitting presented in Chapter 1 is fundamental to

developing the computational design methods in the following chapters. Chapters 2–4 present different knit-

ting design methods consecutively. Chapter 5 captures human body models for individuals and customizes

knitwears using the design methods developed in previous chapters. Chapter 6 is the conclusion and implica-

tions.

these chapters is visualized in Fig. 0.2. Human body modeling is indispensable for ac-

curate garment customization. However, its method is distant from the knitting design

methods, thus it is presented after knitting design.

The structural engineer and architect Robert Le Ricolais said “The art of structure

is how and where to put holes” [122]. The question “where to put holes” describes the

structure design problem concisely, which is a good guiding question. The topics cov-

ered in Chapters 2, 3, & 4 are established as guiding questions in this style, supplement-

ing the main research question (RQ) and sub-questions (RQ1–3).

• Chapter 2 presents a flattening-based 3D knitwear design method. Given the tar-

get 3D surface, we flatten it onto 2D to generate the knitting instruction. The key

method to reduce the distortion of flattening is adding darts, like what garment

designers do. Thus the guiding question of this chapter is where to put darts.

• Chapter 3 presents direct stitch mesh generation methods for given 3D surface.

On stitch meshes, special stitches that provide intrinsic curvature to the mesh

are named shaping stitches. The proposed methods place shaping stitches on the
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mesh while considering the distortion, knittability, and reliability. Thus this chap-

ter is about where to put shaping stitches.

• Chapter 4 presents the 4D knitwear design method that considers the garment’s

stress and sliding during body motion. We knit jacquard patterns with different

elasticity levels on the garment. The soft pattern reduces stress and the firm pat-

tern reduces sliding. Thus this chapter is about where to put elastic patterns.



1
BACKGROUND OF KNITTING

STARTING FROM 1D YARNS

In this chapter, let us start with the most basic knitting concepts and then come to

the 3D shaping of knitting. I present several representations of knitting structures and

the conversion methods between them. The principles of manufacturing to implement

the knitting structures are described afterward. Visualization is important for conveying

knitting structures. I put it in the appendix section 1.A of this chapter.

This chapter provides the preliminary of computational knitting. Most parts are ei-

ther existing knowledge or their direct applications. The main contribution of this chap-

ter is presenting a practical way of representing 3D knitting structures. Related contents

can be found in the theses of Wu [212], Narayanan [133], and Kaspar [81]. Here I mainly

consider knitting a sheet with one yarn piece, not knitting tubular shapes.

1.1. FUNDAMENTALS OF KNITTING

Human has a long history of producing fabrics from yarns, using different manufactur-

ing methods, such as weaving, warp knitting, and weft knitting. A typical weft knitting

structure is shown in Fig. 1.1. A single yarn is warped to form loops. A row of loops is

named a course. Courses of loops are interlocked together to form a fabric. Loops in-

terlocked consecutively in the same column form a wale. Interlocked loops are named

stitches. These are the basic concepts of knitting a 2D fabric surface with a 1D yarn.

The knitting process is performed bottom-up in a zigzag manner. Repeating this pro-

cess will knit a rectangular fabric. We may change the width of each course to generate

curved boundaries of the fabric. However, the fabric is still flat, i.e., geometrically devel-

opable.

Several paragraphs of this chapter have been published in [109]: Z. Liu, X. Han, Y. Zhang, X. Chen, Y.-K. Lai,

E.L. Doubrovski, E. Whiting, and C.C.L. Wang. Knitting 4D garments with elasticity controlled for body motion,

ACM Trans. Graph., 40(4), 2021. doi: 10.1145/3450626.3459868. They have been enriched compared to the

original published text.
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(a)

(b)

(c)

Figure 1.1: Three representations are used to illustrate the knitted stitches: (a) a yarn-level model which depicts

the stitches faithfully, (b) a stitch mesh as an abstract representation at the fabric level where each triangle /

quadrangle corresponds to a stitch in the yarn-level model, and (c) the knitting map as a 2D grid which actually

provides the knitting instructions – rows with brighter blue cells are knitted from left to right and darker blue

rows are the opposite. Gray cells correspond to collapsed regions in short-rows or short-columns.
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3D shaping is crucial for designing knitwears that fit the target human bodies. There

are two existing knitting techniques for 3D shaping. The first one is knitting short-rows.

As shown in Fig. 1.1, some courses are knitted partially without reaching the left and/or

right boundary of the fabric. These courses are named as short-rows [58]. The second

one is increasing/decreasing by starting a new wale or ending a wale in the fabric interior.

In this dissertation, these inserted or ended wales are named as short-columns. The

same as short-rows, ‘short’ here means partial, not about the length. With these two

techniques, 3D knitting is enabled.

1.2. REPRESENTATIONS

Three types of representations are used here to describe knitting structures. They are

yarn models, stitch meshes, and knitting maps, as shown in Fig. 1.1. Each representation

has its advantages and disadvantages.

• Yarn models depict the stitches by curves faithfully. They have realistic appear-

ances but are difficult to design directly – users need to manipulate the 3D posi-

tions of vertices to realize desired interlocking relations of curves.

• A stitch mesh is an abstract representation on the fabric level where each trian-

gle/quadrangle corresponds to a stitch. It is suitable for computational design but

requires specific 3D modeling software interfaces to edit.

• A knitting map is a 2D grid that provides the knitting instructions (or knitting code,

which can be used to instruct the knitting process). It is difficult to predict the

knitted result for common users but easy to edit with widely used spreadsheet ap-

plications.

The concept of stitch mesh for knitting is proposed in [221]. It has been used in most

research works on computational knitting [214, 145, 135, 215, 104, 216] and generalized

to represent crochet [55], another fabrication technique that creates fabric surfaces from

yarn by interlacing loops.

Besides stitch mesh, the other two representations, the yarn model and knitting map,

have been widely used in the knitting industry. ISO 23606:2009 [71] sets two types of

methods as the standards for representing weft-knitted fabrics. The first type is the

yarn path representation. Line drawings of loop structures, like the yarn models here

(Fig. 1.1(a) and Fig. 1.2(a)), belong to this type. This type also includes yarn paths drawn

on rows of dots (Fig. 1.2(b)), in which the dots represent needles on needle beds. This

method can represent both the structure of the knitted fabric and the working process

of machine knitting, as demonstrated in Underwood, 2009 [192]. The second type is

the two-dimensional representation (Fig. 1.2(c)), representing patterns on 2D grids, each

grid cell for a stitch type. The knitting map used by us is similar to this type. This type is

suitable for representing varied patterns, thus widely used in the knitter community [53].

Apart from these three types, there are some other representations. The stitch map

proposed by Briar [21] is another representation for hand knitters. It gets rid of grids

and aligns stitch symbols on the curved 2D domain, which is different from traditional

knitting charts contained in grids. This method is similar to a flattened stitch mesh,
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(a) (b) (c)

Figure 1.2: Other knitting structure representations: loop structure (a), yarn path (b), and chart (c).

illustrating the relaxed shape of a knitted flat fabric. TopoKnit [79] is a process-oriented

representation for modeling the topology of yarns in weft-knitted textiles.

1.2.1. DATA STRUCTURES

Here are the data structures that describe the three knitting representations. This is pre-

liminary for the upcoming rigorous discussion and computation. In this dissertation,

the first knitting row goes from left to right.

A yarn model is a one-dimensional manifold curve segment. It is accompanied by a

direction to indicate the knitting direction. A discrete model, polyline, is used to organize

it digitally.

A stitch mesh is a manifold polygon mesh model. Each face belongs to one of the fol-

lowing face/stitch types:

• Quadrilateral (quad): for a regular stitch (or plain stitch).

• Left triangle: for the left end stitch of a short-row.

• Right triangle: for the right end stitch of a short-row.

• Bottom triangle: for the bottom stitch of a short-column, the position of an inside

increasing stitch.

• Top triangle: for the top stitch of a short-column, the position of an inside decreas-

ing stitch.

Each face f is accompanied by a direction, indicating the face f is knitted from left to

right or the opposite. Then it is easy to find the next stitch of f taking advantage of

the half-edge data structure [19, 18]. We can also traverse all of f ’s neighboring faces

to determine if they belong to the same row as f or the same column. Among all five

stitch types, those four triangular ones are named shaping stitches collectively, without

which the fabric can only be planar. They are corresponding to the turnings of short-

rows (left and right triangles), splittings of short-columns (bottom triangles), and merg-

ings of short-columns (top triangles)
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Figure 1.3: Long floats will be formed when discontinuity occurs in the same course (shown in yellow) and

between courses (shown in purple). Both can lead to unstable knitting with incorrect stitches formed.

A knitting map is a rectangular grid, of which the row/column indices start from the

bottom-left corner. Each of its cells belongs to one of the stitch types given above or one

of the following two additional types:

• Collapsed cell: representing collapsed positions on the knitted fabric.

• Empty cell: representing cells outside of the knitted fabric.

Each non-collapsed/non-empty cell on a knitting map corresponds to an element on the

stitch mesh, which means the knitting map is a flattened stitch mesh defined on a grid.

1.2.2. KNITTABILITY CONSTRAINTS

A knitting design represented by one of the data structures above may not be knittable,

or can not be knitted robustly. A stitch mesh should satisfy the following constraints to

represent a weft knitting fabric sheet knitted with a single yarn.

• Topological Constraint: none of the rows/columns can form cycles or helixes.

• Continuity Constraint: all stitches should be connected with ‘one-stroke’ following

the knitting direction defined on each stitch. Specifically, we have

– In-row continuity: all stitches in the same row should be neighboring con-

nected.

– Between-row continuity: the last stitch of the current row should be neigh-

boring the starting stitch of the next row.

Fig. 1.3 illustrates the situation if the stitch mesh is not ‘continuous’.

• Shaping Constraint: the shaping stitches (triangles) should comply with the fol-

lowing additional constraints:

– No boundary apexes. Each shaping stitch has a specific vertex, named apex,

representing the very end of that short-row or short-column. The apexes
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can not appear on the boundary. Otherwise, the shaping stitch should be

replaced with a regular stitch since it reaches the boundary.

– Successive shaping stitches are usually not stable. If two bottom triangles are

neighboring in the same row, it means there are two neighboring increasing

stitches, which are difficult to be knitted due to yarn stretching (see Section

1.4.2). The case of two neighboring top triangles may cause three or more

loops held by the same needle, which is not stable. Short-row ends (left/right

triangles) always appear in pairs. However, four neighboring short-row end

triangles in the same column will cause knitting difficulty when reducing the

small holes at the short-row ends with tuck stitches (see Fig. 4.3 of [192]).

These constraints are defined on stitch meshes. To check if a knitting map is valid,

we may check the knittability of the stitch mesh converted from it, using the conversion

method that will be presented next. These constraints are concluded empirically. An

axiomatic system will make the knittability easier to understand, but it is not developed

in this dissertation.

1.3. CONVERSION BETWEEN REPRESENTATIONS

Yarn Model

Stitch Mesh Knitting Map

Sec. 1.3.1

Sec. 1.3.2

Sec. 1.3.3

Figure 1.4: We are going to develop methods for the conversion between three types of knitting representations.

Now we have seen three types of knitting representations. Due to their advantages

and disadvantages, we may use different representations in different scenarios. The con-

version between them is necessary when switching from one scenario to another. For

example, after drawing a 2D knitting map, the knitwear designer wants to see the 3D

shape of the design. Then the conversion from knitting map to stitch mesh is required.

The 3D model with yarn-level details will be desired if the designer wants to present the

design to the customers. In another case, computational design methods generate stitch

meshes directly (Chapter 3). We need to convert the stitch meshes as knitting maps to
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execute them on knitting machines. The conversion methods are summarized in Fig. 1.4.

Details will be presented in this section.

1.3.1. FROM STITCH MESH TO KNITTING MAP

Each element on the stitch mesh, either quadrangular or triangular, has at most four

neighbors. It is straightforward to determine the relation of their row and column in-

dices between neighboring face elements. After collecting the order relation between

them, we use topological sorting to arrange the rows/columns. Then the knitting map is

generated. The outline of this procedure is given in Algorithm 1.1.

Algorithm 1.1 Conversion from stitch mesh to knitting map

1: procedure mesh_to_map(S)

2: Gr ← construct_in_row_graph()

3: m ← find_connected_components(Gr )

4: Dr ← construct_between_row_graph()

5: topological_sorting(Dr )

6: Gc ← construct_in_column_graph()

7: n ← find_connected_components(Gc)

8: Dc ← construct_between_column_graph()

9: topological_sorting(Dc)

10: Mm×n ← generate_knitting_map()

11: fill_non_stitch_cells(M)

12: return M

13: end procedure

Firstly, we construct an undirected graph Gr to represent the in-row relation. Each

face in the stitch mesh S is represented as a node in Gr . If two neighboring faces belong

to the same row, these two nodes are connected by an edge. This step is finished after

traversing all face-face connections of S .

After that, we find the connected components of Gr . For each face fi , the component

containing it is determined, denoted as R( fi ). The number of connected components m

is the number of rows in the target knitting map.

Then we find the order relation between rows, by constructing a directed graph Dr ,

taking m components obtained in the last step as nodes. For each pair of neighboring

faces fi , f j belonging to the same column, if fi is knitted before f j , then the row R( fi ) is

knitted before R( f j ). In Dr , a directed edges is added from R( fi ) to R( f j ).

Now we conduct topological sorting on Dr . The resulting sorting S(·) maps a node in

Dr to an index, such that if there is an edge from R( fi ) to R( f j ), then S(R( fi )) < S(R( f j )).

In this case, S(R( fi ))+1 = S(R( f j )) is not always true, since short-rows may be inserted

between R( fi )) and R( f j ).

Similar processes are applied to the in-column relation between faces until getting

the topological order of n columns (lines 6–9 in Algorithm 1.1). The only difference is

that the topological order of rows is unique, but not for the columns. Since the fabric

is knitted continuously by a yarn, the order between rows can be obtained by tracing

the knitting sequence of the stitch mesh faces. The traced order is the unique solution
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of the topological sort of Dr . But for the column, if two disconnected short-columns

are inserted between two neighboring ‘long’-columns, then the order of that two short-

columns is ambiguous, resulting in different sorting solutions.

After getting the sorted row/column index of each face, we create a m ×n grid and

place the type of each face on the corresponding cell. Finally, we check all of the face

neighboring relations on the mesh again. If two neighboring faces on S are not neigh-

boring on the knitting map, then all cells between them are assigned as collapsing.

1.3.2. FROM KNITTING MAP TO STITCH MESH

Given a valid knitting map (Fig. 1.5(a)), the order of stitches is definite. We construct

the stitch mesh topology by adding faces in the knitting sequence. The construction is

a coarse simulation of the knitting process. Then a relaxed shape is computed to give a

stitch mesh with plausible geometry.

When adding a new stitch face, we should maintain the manifoldness of the stitch

mesh. For each vertex on the new face, we determine if it should be merged with an

existing vertex on the stitch mesh.

After adding all faces, we get the 2D initial shape, lying in the xy-plane (Fig. 1.5(b)).

The topology is correct, but the geometry (vertex locations) is not plausible. We deform

the 2D initial shape to 3D with proper element shapes. We denote all vertices of the

3D stitch mesh as V, and the vertices of the i -th face fi as {v j } j∈ fi
, i = 1, . . . ,m. The

face {v j } j∈ fi
has an objective shape {v′

j
} j∈ fi

, which is determined by its stitch type. The

transformation between {v′
j
} j∈Fi

and {v j } j∈ fi
should be as-rigid-as-possible (ARAP, [2, 64,

175]). Therefore the objective function is

min
V

m
∑

i=1

wi

∑

j∈ fi

∥

∥

∥Ri v′j + ti −v j

∥

∥

∥

2

2
, (1.1)

in which (Ri ,ti ) is the best-fitting rigid transformation (Ri for rotation and ti for transla-

tion) from {v′
j
} j∈ fi

to {v j } j∈ fi
that minimizes the inner sum, and wi is the area of {v′

j
} j∈ fi

for weighting.

The solution is not unique because the fabric we are modeling is physically flexible.

Eq. (1.1) is solved with Shape-Up [20, 40]. Shape-Up solves optimizations independently

for each coordinate. If the z-coordinates of all vertices are zeros, then the result still lies

in the xy-plane, as shown in Fig. 1.5(c). Therefore, the initial shape is warmed up with

a z-direction displacement (Fig. 1.5(d)). The final result obtained with warming-up is

shown in Fig. 1.5(e). The warming-up displacement is not unique.

1.3.3. FROM STITCH MESH TO YARN MODEL

There are five types of stitches. I designed the polyline yarn model of each basic stitch

type manually, named canonical yarn models. A canonical yarn model of the corre-

sponding type is deformed to fit a stitch mesh facet. All deformed yarn models are finally

connected to form the final yarn model of the whole fabric.

In this dissertation, I generate the yarn model of a 3D stitch facet by deforming the

canonical yarn models. The deformation problem can be formulated as an interpola-

tion. Interpolation, which is ubiquitous in computational applications, can be achieved
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(a) (b)

(c) (d)

(e)

Figure 1.5: Convert a knitting map (a) to a stitch mesh (e). Firstly, convert the map (a) to a topologically correct

mesh (b). Then, use the Shape-Up method [20] to predict the relaxed 3D shape. If Shape-Up starts from (b)

directly, the 2D result (c) is produced, due to Shape-Up’s axis-independent manner. Therefore, a z-direction

displacement should be applied (d). At last, the 3D saddle surface (e) is obtained.

by (generalized) barycentric coordinates [225], or by solving differential equations [31].

Solving differential equations also produces a type of generalized barycentric coordi-

nates, i.e., Harmonic coordinates. This reveals the connection between these two ap-

proaches of interpolation. The method in Yuksel et al., 2012 [221] uses mean value coor-

dinates [49], which belong to generalized barycentric coordinates. The idea used here is

also similar to deformation transfer [181].

Let us take the regular (quadrangular) stitch as an example (Fig. 1.6). The standard

stitch quadrangle is defined as the unit square with vertices si = (0,0,0), (0,1,0), (1,1,0),

(1,0,0). Its canonical yarn model is a polyline composed of vertices p j , j = 1,2, . . . ,k. For

a quadrangular facet {ti , i = 1,2,3,4} on a stitch mesh, p j is deformed to T (p j ) to fit {ti }.

For p j = (x j , y j , z j ), it is deformed to

T (p j ) =
4

∑

i=1

wi ti + z j n, (1.2)

in which wi is the bilinear interpolation weight related to x j , y j ; n is the facet normal of

{ti }. This transformation has the interpolation property that T (si ) = ti . From the view-

point of deformation transfer, the deformation between si and ti is transferred to p j . For

other triangular stitch types, I use triangle barycentric coordinates for the interpolation

and keep the other parts the same.

Besides the five basic stitch types, there are some special boundary stitches to pre-

vent unraveling. They are casting on, binding off, outside increasing, and outside de-

creasing. The above method can also deform them to appropriate positions.
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Figure 1.6: Converting stitch mesh to yarn model. A canonical (left) is deformed to fit a facet on the stitch mesh

(right). The knitting map of this fabric is shown in Fig. 1.5.

1.3.4. FINAL REMARKS

Now we finished the conversion indicated by solid arrows in Fig. 1.4. In the applications,

we can generate either a knitting map or a stitch mesh. Then the other representations

are available.

In this dissertation, yarn models are not converted to other representations. The

work presented by Kaspar et al., 2019 [83] is related, which synthesizes machine instruc-

tions from images of knitted fabrics with neural networks. This method can be adapted

when it is necessary to convert yarn models to knitting maps by rendering yarn mod-

els into images and treating knitting maps as substitutes for machine instructions. We

only have a limited number of stitch types, which are distinguishable when rendered

from proper views. Then the conversion from yarn models to stitch meshes is implied.

Thereafter, the directed graph of three nodes in Fig. 1.4 is strongly connected.

1.4. KNITTING 3D FABRICS

A central factor of knitwear customization is to knit the intended 3D shape. Short-row

and short-column knitting are used in this dissertation for 3D shaping. Here are the

advantages and disadvantages of them, from the perspective of manufacturing.

3D Shaping methods for knitting can be classified into three categories [177]:

1. varying the number of stitches in each row,

2. changing the structure of stitches,

3. altering the size of stitches.

Techniques in the second and the third categories are in general hard to provide pre-

cise shape control, thus not studied in this dissertation. There are two different ways to
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(a)

(b)

Figure 1.7: Two different strategies to knit the same 3D shape: (a) short-row shaping and (b) short-column

shaping, where increasing / decreasing stitches between courses takes more operations on a machine with

two needle-beds. For this example, knitting by only using short-row shaping can improve the knitting speed

by 39.5% on the same machine.

change the number of stitches in different rows: short-row and short-column knitting,

which will be discussed in this section.

1.4.1. SHORT-ROW KNITTING

Short-row shaping is also known as partial knitting, suspended stitches, held stitches,

and fléchage [192]. The short-row shaping technique is as simple as suspending knitting

the current row in the fabric interior and turning the carriage direction to knit the next

row. The process is illustrated in Fig. 1.2(b), from which one can see why it is partial,

suspended, and held. It can be realized on a single needle-bed of a knitting machine.

Due to its simplicity, it is faster than short-column shaping (Fig. 1.7).

1.4.2. SHORT-COLUMN KNITTING AND THE STABILITY

In this dissertation, the term short-column knitting refers to knitting with stitch transfer.

Stitch transfers can be classified into boundary transfer and interior transfer, according

to the position of the transferred stitch. Boundary stitch transfer is often used to widen

(or narrow down) the knitted fabric by introducing / terminating columns on the left /

right boundary of the fabric. In contrast, interior stitch transfer contributes to the fabric

curvature. In [70], the effect of boundary transfer is described as in-plane shaping and

interior transfer as out-of-plane shaping.

To realize interior stitch transfer automatically on a knitting machine, the machine

needs to have at least two needle-beds (named front- and back-beds as illustrated in

Fig. 1.8). To increase one stitch in the interior of a row, all stitches at the left (or right) of

the location to insert a new stitch are transferred to the back-bed. Then, the back-bed

racks one pitch (i.e., the distance between neighboring needles on a needle-bed). After

racking, the stitches with positions shifted by one pitch are transferred back to the front-

bed. At the end of these operations, an empty needle is left in the current row, which is

allowed to insert a new stitch in the next row – the starting stitch of a new short column.

This process is illustrated in Fig. 1.8 by using the knitting notations as that of Fig. 1.2(b)

and [192].

As presented in the process of stitch transfer (see Fig. 1.8(c)), steps 1-5 are for gener-
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Figure 1.8: The illustration of interior stitch transfer for increasing / decreasing shaping process on a knitting

machine with two needle-beds (B & F), where (a) the knitting map and (b) the corresponding stitch mesh are

present to show locations of the starting stitch (purple) and the ending stitch (orange). Solid black arrows

indicate the knitting directions of different rows (i.e., movements of the carriage), and the dashed black arrows

are for the racking directions (i.e., movements of the back-bed). The processes of stitch transfer for increase /

decrease are respectively shown in Steps 1-6 and Steps 7-12 of (c).

ating an empty needle on row 0 so that a new stitch (the purple one) can be inserted in

row 1 as shown in Step 6. Steps 7-11 are employed to explain the stitch transfer between

front- and back-beds on row 2 to merge the loop of orange stitch to its right neighboring

stitch – i.e., two stitches are looped on the same needle after stitch transfer. As a result,

the number of stitches can be reduced by one on row 3 (see also Step 12 of Fig. 1.8(c)).

Note that although the racking direction illustrated is toward the left for the starting

stitch and toward the right for the ending stitch, it can also be racking toward an in-

verse direction. This is why there are two increasing operations (increase left / increase

right) and two decreasing operations (decrease left / decrease right) described in [135].

A knitting planning algorithm can choose one according to different scenarios. A simple

heuristic is to choose according to the location of stitches – i.e., the left or right portion

of the needle-bed.

According to the process of stitch transfer conducted on a knitting machine as dis-

cussed above, we can find that there are some limitations of stitch transfer as summa-

rized below:

• Stretching: When stitch transfer is applied to generate space for inserting a new

stitch, both the yarn and the needles are stretched. When many new stitches are

inserted at the same location, large stretching forces are generated and the needles

have the risk to be broken. Therefore, it is common to only allow a small number

of new stitches to be inserted at one location.

• Miss-transfer: When large stretching forces are presented during the stitch trans-

fer, the loop of a stitch winded on the hook of a needle may be stretched away. As

a result, an existing stitch can disappear during stitch transfer – i.e., miss-transfer

occurs.

• Abrasion: When loops of stitches are repeatedly transferred between needles on
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front- and back-beds, abrasion on yarns may make them broken. This problem

can become very serious when multiple new stitches are inserted or merged on

the same row.

• Speed: In general, the short-column shaping involves much more operations than

the short-row shaping technique. It is much more time-consuming as shown in

Fig. 1.7.

In the literature, [84] shows the problem of miss-transfer; [102] studies the efficiency

of stitch transfer.

1.4.3. FABRICATION

In this dissertation, we mainly use a Shima Seiki knitting machine [164] for fabrication.

Our design can also be performed on other machines or by hand.

Shima Seiki provides KnitPaint as its major design interface, as a part of its design sys-

tem SDS-ONE APEX [165]. We use KnitPaint to convert our knitting instruction to Shima

Seiki’s machine code, then transfer the machine code to the knitting machine for fabri-

cation. KnitPaint is a bitmap-based programming environment. Its knitting instruction

representation is very close to the knitting map. Our knitting map can be converted with

an element-wise substitution, with the help of packages. However, KnitPaint is not pub-

licly available. Some information can be in academic publications like [192, 83].

As we have seen, multiple machine operations should be performed to knit a course

with increasing or decreasing. Shima Seiki developed the knitting instruction represen-

tation method with packages. Using such a method, each row in the compressed map

represents a course on the fabric, but its exact operations are encoded in another bitmap

with multiple rows, named a package. The packages are similar to function-like macros

in the C programming language, which will be expanded before executing. They simpli-

fied the knitting instruction generation process. Packages used in 3D sheet knitting are

collected in Fig. 1.9.

Besides Shima Seiki, Stoll is another leading manufacturer of knitting machines. Stoll

uses its own design software M1plus. Some of its information can be found in [194] (in-

cluding its appendix). There are also some inexpensive automatic knitting machines,

like [153, 86]. In the academic community, some machine-independent knitting ma-

chine programming methods are proposed [121, 26]. The easy-to-acquire hardware and

software help the community with the research of knitting.

Besides the computerized machines mentioned above, we can also use hand knitting

or manual machines. Hand knitting (Fig. 1.10(a)) has the best flexibility in knitting fancy

structures [58], but it is slow, inaccurate, and has low scalability.

We can also execute the machine knitting instructions by hand on a manual machine

[23, 168]. A Brother KH868, which has a single needle bed, requires extra hand tools to

perform stitch transfers. The manual machine is more efficient than hand knitting.

1.A. VISUALIZATION OF KNITTING STRUCTURES

Visualization helps to understand the result of computational design. The rendering of

knitwear and other types of textiles are surveyed in [27]. Different methods of knitwear
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Figure 1.9: A collection of Shima Seiki packages used for 3D sheet knitting. The packages for interior increasing

are collected in a 6×6 matrix, in which the (i , j ) cell contains the package for increasing i stitches on the left

and increasing j stitches on the right. The interior decreasing matrix is the same. Packages for boundary

decreasing, binding-off, and casting-on are presented on the right.

(a) (b)

Figure 1.10: Illustrations of knitting by hand (a) and manual machine (b). Please note that the manual machine

exposes the back side of the fabric outwards.

rendering have been proposed in the last two decades [218, 30, 228, 229]. Wu and Yuksel

[213] proposed a real-time rendering method with details of fiber, ply, and yarn.

The yarn and stitch mesh rendering methods presented here mainly depend on tex-

ture mappings. Compared to other advanced techniques, these methods can be easily

deployed on a wide range of platforms, including WebGL™ for web browsers and Unity®

for virtual reality devices (e.g., HTC Vive). A vector graphics converting method is also

presented here to illustrate yarn models in the style of technical drawings.
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1.A.1. YARN MODEL RENDERING

This method converts the polyline yarn model to a smooth tube mesh, then uses a dis-

placement map to realize ply-level details.

Firstly, a twisted n-gonal prism (Fig. 1.11(a)) and its texture image with n repeated

stripes (Fig. 1.11(b)) are constructed. The texture image is designed to be the displace-

ment map. Thus each stripe is a side view height map of a cylinder. We use n = 6 to

model a yarn with six plies.

Then the polyline model is converted to a Bézier curve and the textured prism is

placed repeatedly along the curve. The repeated prism forms a tube mesh. Its displace-

ment map provides the ply-level details (Fig. 1.11(c)).

(a) (b) (c)

Figure 1.11: Render yarn model with a displacement map. The twisted hexagonal prism (a) with displacement

map (b) is placed repeatedly along the yarn model of the knitting design. The rendering result (c) shows ply-

level details enabled by the displacement map. The knitting map and stitch mesh of this fabric is shown in

Fig. 1.5.

The final result is rendered by Blender [14]. It is possible to further improve the real-

ism by neural style transfer [113].

1.A.2. CONVERTING YARN MODELS TO VECTOR GRAPHICS

Vector graphics (Figs. 1.1(b–c)) has multiple advantages over raster images. They appear

clean and exact at any size, thus suitable for scientific visualization. There are different

methods of converting 3D meshes to 2D vector graphics. One type of method is trac-

ing image feature curves [67] from rendered raster images (including shaded/shadeless

images and depth/normal maps). Such methods suffer from ambiguity and inaccu-

racy. Another type of method is to extract geometric feature curves from the mesh di-

rectly [10, 45, 46]. The method adopted here belongs to this type.

Given a camera and a collection of 3D meshes (e.g., the rod meshes generated from

yarn models) that are oriented, triangulated, manifold, intersection-free, and colored by

connected components, the objective vector graphics should include boundary curves,

occluding contours [10] observed from the given camera, and polygonal regions filled

with correct colors.

Boundary curves of a manifold mesh are well-defined and easy to be extracted. An

occluding contour is the projection of a curve on the mesh surface that separates locally

visible and invisible regions, i.e., front- and back-facing regions. Thus they can be ex-

tracted by checking the normal of each face on the mesh. Part of a contour curve, either

a boundary curve or an occluding contour, might be occluded by the surface. Because
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(a) (b) (c)

(d) (e) (f)

Figure 1.12: Converting a 3D scene to vector graphics. Given the scene in a view frustum (a), it is converted to

the NDC space (b) and then the contour curves are detected (c). The projection of all contour curves forms a

2D arrangement (d). The invisible edges are removed by ray tests (e) and the final vector graphics is obtained

(f).

both ends of an occluded curve segment can only be intersecting points between con-

tour curves, we can get the curve segments from the arrangement [211] of all curves.

Then the visibility of each curve segment is checked by ray tests. A region to be colored

must be enclosed by visible contour curves. Hence the final color is determined by eval-

uating the arrangement faces.

Algorithm 1.2 Converting 3D mesh to 2D vector graphics

1: procedure mesh_to_vector_graphics(M, C)

2: M′ ← NDC_transformation(M, C)

3: M f ← back_face_removal(M′)

4: B← trace_boundary(M f )

5: A← compute_2D_arrangement(B)

6: A′ ← check_visibility(A, M f )

7: coloring(A′, M f )

8: end procedure

Steps of this procedure are given in Algorithm 1.2 and demonstrated in Fig. 1.12.

First, the whole scene M is transformed into the camera C’s normalized device coor-

dinates (NDC) space (Fig. 1.12(a–b)), which is also known as the canonical view volume

[119]. Then all projections are orthographic, thus easy to compute. Next, all back-facing

faces are removed from the scene by checking the z-coordinate of face normal vectors in

the NDC space (Fig. 1.12(c)).

Now we have a collection of front-facing mesh pieces M f . Their boundary curves
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are exactly the contour curves of the original scene, including both original boundaries

and occluding contours. The boundaries are traced and projected to the xy-plane. After

computing the 2D arrangement [211] of the projection (Fig. 1.12(d)), the image space is

segmented into non-overlapping regions (arrangement faces). The region boundaries

(arrangement edges) are composed of two types of points, i.e., projections of contour

curve points and intersections of contour curve projections.

The visibility of each arrangement edge is determined by ray tests (Fig. 1.12(e)). A 2D

edge should be included in the final vector graphics if it is projected from a visible 3D

curve segment on M f . I used the ray test implementation in trimesh [37]. If an invisible

edge is removed, arrangement faces on its two sides are merged, forming a new polyg-

onal region. Finally, all polygonal regions are colored by ray tests again (Fig. 1.12(f)). A

triangle is retrieved using ray tests to get the color. The color of a region is unique since

it is projected from a single connected component of M.

The input mesh M is required to be intersection-free. Actually, it is already sufficient

if mesh M f , the mesh after back face removal, is intersection-free. Intersections in the

canonical yarn models are avoided in the design stage. Generally, intersections can be

resolved using methods like [32].

1.A.3. STITCH MESH RENDERING

Figure 1.13: Displacement map of

a regular facet on the stitch mesh.

The stitch mesh can be rendered with yarn-level details,

even if the yarn model is not constructed. Firstly, the

depth maps of the canonical yarn models are rendered

from an orthographic camera. Then, each facet of the

stitch mesh is textured with the corresponding yarn model

depth map (e.g., Fig. 1.13) for displacement mapping. In

my experiments, the polygon number of a yarn model is

500 times as large as the stitch mesh. Rendering the stitch

mesh saves time and computer memory.





2
3D TO 2D KNITTING DESIGN BY

FLATTENING

WHERE TO PUT DARTS?

2.1. INTRODUCTION

A knitting map is a flattened form of the stitch mesh, which inspires us to design knitting

maps by flattening the 3D target shape to 2D. Since the 3D surfaces are usually non-

developable, they are cut to reduce the distortion of flattening. The cuttings are referred

to as darts in sewing garment design, which also applies to knitting. To design body-

fitting garments using the flattening-based method, one of the most important problems

is where to put darts since darts are crucial for 3D shaping.

(a) (b) (c) (d) (e)

Figure 2.1: Sewing patterns with darts: front bodice (a–d) and back bodice (e). All patterns are adapted

from https://freesewing.org, originally licensed under CC BY 4.0 (https://creativecommons.org/

licenses/by/4.0/).
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Darts are commonly used in garment design. Some example sewing patterns with

darts are presented in Fig. 2.1. This dissertation starts by generating knitting maps from

the darts placing approach, which is directly related to what designers and tailors use.

The proposed computational design method analyzes the distortion of flattening and

gives users hints to place darts. This chapter tackles the first research question (RQ1):

how to design a knitwear and its machine knitting instructions for a given 3D shape. This

method, which is preliminary to further research on more automatic methods, requires

user interaction to place the darts.

The flattening is closely related to the parameterization of surface meshes. There

have been numerous works on minimizing the parameterization distortion when the

cutting seams are fixed. Some parameterization methods, e.g., [99], optimize both the

flattening distortion and the seams. However, the flattened results, named 2D patterns,

usually have irregular boundaries, making them difficult to be knitted. Some works, e.g.,

[227], consider manufacture constraints by controlling the seam lengths after flattening

so that the seams can be sewn together without miss matching. Among the parame-

terization methods, cone flattenings [173] are automatically seamless. Some other ap-

proaches [125, 39, 161, 146, 68] approximate curved geometries with piece-wise devel-

opable surfaces, which can also be used for fabricating 3D shapes with planar materials.

Our method will consider the knittability constraints when placing darts, which is not

studied in existing works.

In this chapter, we first analyze the types of darts (Section 2.2). Then we flatten the

3D shapes to 2D (Section 2.3.1) with the knittability constraints considered. Next, we

generate knitting maps from the 2D patterns (Section 2.3.2). Further discussions and

conclusions are presented at last (Section 2.4).

2.2. TYPES OF DARTS

Darts can be categorized by shape and knitting method, respectively.

2.2.1. CLASSIFYING BY SHAPE

As we have seen in Fig. 2.1, the shapes of darts may be triangle-like (a–d) or diamond-

like (e). They are named one-end darts and two-end darts, respectively. These two types

classified by dart shape are related to the Gaussian curvature of the 3D target and the

distortion of flattening.

On a dome-like shape, the Gaussian curvature is positive. When the shape is flat-

tened, the center is compressed, and the boundary is stretched. The material will shrink

to reduce the stretching if we cut it on the boundary. Therefore one-end darts are added

to the boundary (the top row of Fig. 2.2). Similarly, the Gaussian curvature on a saddle

shape is negative. When it is flattened, the boundary is compressed, and the center is

stretched. We need cutting in the center to reduce stretching. Therefore two-end darts

are added in the center (the bottom row of Fig. 2.2). On a developable surface with zero

Gaussian curvature everywhere, darts are not needed. In Figs. 2.2(b–d), the distortion of

each local flattening map is decomposed as scaling (compression or stretching) in a pair

of orthogonal directions. The details are given in Section 2.A.1.
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(a) (b) (c) (d)

Figure 2.2: There are two types of darts according to their shape: one-end darts (the hemisphere on the top

row) and two-end darts (the monkey saddle surface on the bottom row). Flattening the 3D shapes (a) to 2D

(b), the distortion is visualized with color maps (blue for compression and red for stretching). We add one-end

darts if the center is compressed (top) and two-end darts if the center is stretched (bottom). Adding more darts

further reduces the distortion (c–d).

2.2.2. CLASSIFYING BY KNITTING METHOD

This dissertation considers two types of knitting strategies for 3D shaping: short-row and

short-column. They correspond to two types of darts, horizontal darts and vertical darts,

respectively.

O

P1

P2

α1

α2

Figure 2.3: Constraints on horizontal darts. In

the upper dart, two notches P1 and P2 have

the same x-coordinate. The angle α1 between

two dart legs OP1, OP2 is so large that there are

neighboring short-row ends (marked red) in the

knitting map. The lower dart is knittable with-

out neighboring short-row ends.

We rasterize the 2D patterns as knitting

maps on grids. The rasterized map should sat-

isfy the knittability constraints (Section 1.2.2).

We reformulate the constraints to assist the dart

design. If a horizontal dart is knittable with

short-rows, the constraints on it are roughly:

1. Alignment Constraint: two notches have

the same x-coordinate. Then two dart

legs will be knitted together without mis-

alignment. The lengths of two dart legs

may be different.

2. Angle Constraint: the angle between two

dart legs should be less than a limit.

This constraint avoids successive short-

row ends in the same column (see Shap-

ing Constraint in Section 1.2.2). However,
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the angle is difficult to evaluate since the dart legs are not straight in general. A

large angle indicates adding more darts. The exact knittability still needs to be

verified after generating the knitting map.

These constraints are illustrated in Fig. 2.3. If a vertical dart is knittable with short-

columns, then:

1. Alignment Constraint: two notches have the same y-coordinate for boundary align-

ment.

2. Angle Constraint: the dart leg angle here is also constrained, to avoid neighboring

increasing / decreasing in the same row.

Two-end darts should also comply with similar constraints. Again, it should be noted the

exact knittability should be examined on the final knitting map.

2.3. KNITTING DESIGN BASED ON FLATTENING

The flattening-based knitting design method consists of two steps. The first step is to

flatten a 3D mesh to 2D with some darts added. The next step is to generate a valid

knitting map from the flattened 2D pattern.

2.3.1. FLATTENING 3D SURFACE WITH KNITTABLE DARTS

The flattening method should minimize the distortion of the flattened mesh, measured

relative to the original 3D mesh. Thus we enforce the deformation of each triangular

face to be as-rigid-as-possible (ARAP, [2, 64, 175]). Given a 3D mesh with m faces, the

optimization objective is

min
V

m
∑

i=1

wi

∑

j∈ fi

∥

∥

∥Ri v′j + ti −v j

∥

∥

∥

2

2
, (2.1)

in which {v′
j
} j∈ fi

is the collection of points on the i -th original 3D face fi , {v j } j∈ fi
is the

flattened 2D face, (Ri ,ti ) is the best-fitting rigid transformation from {v′
j
} j∈ fi

to {v j } j∈ fi

(see Section 2.A.2), and wi is the face area for weighting.

We use Shape-Up [20, 40] to optimize it iteratively. In each iteration, we first estimate

the best-fitting (Ri ,ti ) to project {v′
j
} j∈ fi

to {v j } j∈ fi
for each face independently; then we

solve a linear system reconciling all projected vertex positions in a least-squares sense.

If all vertices on the initial shape have zero z-coordinates, then the flattened shape is

optimized within the xy-plane in the subsequent iterations, since Shape-Up solves opti-

mizations independently for each coordinate (as discussed in Section 1.3.2). The Shape-

Up iterations start from an initial flattening obtained by the barycentric mapping [19].

After flattening, we visualize the distortion as directions and scales of compression or

stretching (see Section 2.A.1). Different types of darts are added to regions with large dis-

tortion. The shapes with darts will be flattened again. This design process is performed

in iterations.

The dart notches should be aligned (see the alignment constraints in the last section)

to make the dart knittable. In the flattening process, we set two notches of a dart as the
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(a) (b) (c) (d)

(e) (f) (g)

sewn seam

knitted dart

Figure 2.4: The triple-peak mesh (a) can be flattened as the 2D pattern (b). After adding one, three, and five

darts, the flattening distortion is reduced in sequence, as shown in (c–e). The dart angles in (e), marked black,

exceed the knitting constraint of horizontal darts, which are treated as boundaries during knitting and sewn

afterward. The flattened pattern (e) is converted to the knitting map (f). The knitted result (g) is presented on

a laser-cut support shape. The sewing seams are indicated. Only half of the patterns are shown in (c–f) for

compactness.

same vertex. Then the coordinates of the two notches are the same after flattening. We

translate the 2D patterns in y-direction to resolve the overlapping of one-end horizontal

darts. The x-coordinates of notches will be kept the same. Vertical darts are flattened in

the same way.

The flattening method is demonstrated with the triple-peak model shown in Fig. 2.4.

If we flatten the original shape Fig. 2.4(a) without any darts, the peaks are extremely com-

pressed (b). After cutting a horizontal dart across all peaks, the shape is flattened as (c).

The upper part of the flattened 2D pattern is the same as the lower part, thus it is faded

out for compact representation. More darts are added in highly distorted regions in (d)

and (e). The knitting map and the knitted result are shown in (f) and (g) respectively.

2.3.2. KNITTING INSTRUCTIONS FROM 2D PATTERNS

The flattened 2D patterns are rasterized to knitting maps as the knitting instructions.

The continuity constraints should be satisfied in the results. Inspired by [134, 104], we

adjust the rasterized 2D patterns to realize the continuity of knitting.

Given the stitch size sw × sh , we first rasterize the 2D pattern as a bitmap with the

pixel size sw × 2sh . Next, we split each row i is split into two rows 2i and 2i + 1. Then

the right-end of row 2i is aligned with the start of the next row, i.e., the right-end of row

2i +1. We extend some rows to make sure continuity at the left ends. Around two-end

darts (see the waist region on the top row of Fig. 2.5), each row contains two short-rows.

We process all right-side short-rows first and then jump to the left-side short-rows.

To stabilize the casting-on and binding-off, we add long rows at the bottom and the
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(a) (b) (c) (d) (e)

Figure 2.5: Flattening a mannequin surface to generate the knitting maps. The mannequin mesh is first split

into the front bodice and back bodice (a). Each patch is flattened once (b) and again after adding darts in

distorted regions (c). The 2D patterns (c) are rasterized as bitmaps in (d) and finally converted to knittable

knitting maps (e) that comply with the continuity constraints. The flattened front bodice patterns are shown

on the top row. The bottom row is the back.

top of the knitting maps when necessary. If the knitting map starts with a row shorter

than the following ones (see bottom of the front bodice in Fig. 2.5(d)), there will be some

outside widening when knitting. The fabrication might be unstable because of lacking

pull-down force when knitting the widened columns. Therefore, we add a row at the

bottom and produce two one-end darts (Fig. 2.5(e)). The knitting process is more stable

after casting on such a long row. Knitting with branches will also be complex and unsta-

ble, like the top of both bodices in Fig. 2.5(d). We add long rows on top of them so that

they can be knitted with a single yarn and the binding-off is more stable. The bottom of

the back bodice in Fig. 2.5(d) is processed similarly.

Using the conversion methods presented in Chapter 1, we can convert a 2D knitting

map to a 3D stitch mesh and align it with the target 3D shape. The distortion of stitch

mesh can be evaluated on each face, as shown in Fig. 2.6(d), using the method presented

in Section 2.A.2.

2.4. DISCUSSIONS AND CONCLUSIONS

This chapter presents a knitting map generation method based on flattening the 3D tar-

get shapes into 2D patterns. We add darts by analyzing the flattening distortion (com-

pression or stretching) and considering the knittability constraints. The distortion is

reduced after adding more darts. We convert the flattened shapes to valid knitting in-

structions. Both 3D knitting techniques, i.e., short-row and short-column knitting, are
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(a) (b) (c) (d) (e)

Figure 2.6: The saddle surface in Fig. 2.2 is flattened with darts (a) and converted to a bitmap (b). A knittable

map (c) is obtained by adjusting the continuity in (b). After converting it to stitch mesh and aligning it with the

target shape, the distortion can be evaluated (d). The knitted result is (e).

(a) (b) (c)

(d) (e)

cutting seam

Figure 2.7: After flattening the sock mesh (a) to 2D, we find the toe and heel regions are compressed (b). The

distortion is still large even if adding many darts (c). If the mesh is cut (d), the flattening distortion will be

reduced (e).

employed to knit closed darts directly.

This approach has several failure cases. Using the flattening-based method, the knit-

ting designs of triple-peak (Fig. 2.4) and sock (Fig. 2.7) need sewing after knitting. After

flattening, the triple-peak has large darts that can not be knitted. The flattening dis-

tortion of the sock needs to be further reduced by cutting a seam, which will be sewn

afterward. In a more challenging case, the skullcap (Fig. 2.8), there are some flipped tri-

angles (fold-overs) caused by the alignment constraint for knittable darts. More complex

darts should be added to overcome these limitations.

There are several directions to extend the current flattening-based method for knit-

ting map generation. Now we can add multiple non-intersecting darts to the shape. It

is interesting to design intersecting darts. We generate knitting maps by rasterizing 2D

patterns, implying that the 2D patterns are traversed with grid-aligned paths. Flexible

knitting directions, i.e., spatial-varying direction fields, should also be possible, like [84].

Then we may knit darts in general orientations other than horizontal or vertical. In ad-
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boundary

Figure 2.8: Given the skullcap model with disk-like topology, its flattening distortion is large even if adding

many darts of the same orientation.

dition, the current design approach requires the manual placement of darts. A more au-

tomatic method is valuable. Anyway, we will see that all of these extensions are realized

with the direct 3D design approach by stitch mesh generation, which will be presented

in the next chapter.

2.A. DISTORTION ANALYSIS USING SVD
In this chapter, we analyzed the distortion of 2D flattening and the distortion of stitch

meshes. Both used singular value decomposition (SVD) but in different ways.

2.A.1. DISTORTION OF FLATTENING

We add darts in regions with large flattening distortion. The distortion is obtained by

SVD of the linear mapping between each pair of 3D-2D triangles, the same as [172].

(a) (b) (c) (d) (e)

p1

p2

p3

p′
1

p′
2

p′
3

p′′
1

p′′
2

p′′
3

q1

q2

q3

Figure 2.9: The SVD of a local mapping in mesh flattening. The 3D triangle {pi } (a) is rotated to the xy-plane

rigidly by R (b). Then we rotate it in the plane by UV⊤ (c). At last, it is scaled in a pair of orthogonal directions

by σ1,σ2 (d–e). The scaling directions are two columns of U, illustrated by line segments in (d–e), with the

lengths representing scaling factors.

Given a 3D triangle mesh M, we pick one of its faces and denote its vertices as pi , i =

1,2,3. After flattening M onto the xy-plane, pi are mapped to qi respectively. This local

mapping can be described as a linear transformation, as illustrated in Fig. 2.9. Firstly,

there is a rotation matrix R that maps the 3D triangle {pi } to the xy-plane rigidly (Fig. 2.9

(a–b)). We have the 2D points p′
i
= R pi , removing its last dimension. Then there is a 2×2
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matrix T such that

T
(

p′
2 −p′

1, p′
3 −p′

1

)

=
(

q2 −q1, q3 −q1

)

. (2.2)

Taking the SVD of T, T = UΣV⊤, we have two orthogonal matrices U, V and a diagonal

matrix Σ= diag(σ1,σ2). Now we see the distortion comes from the scaling in a pair of or-

thogonal directions with the factors σ1,σ2 (Fig. 2.9 (d–e)). All the other transformations

are rigid rotations without any distortion (Fig. 2.9 (a–c)).

Since we are analyzing the shape distortion, the translations are ignored in this pro-

cess. We may choose different 3D-to-2D rotation matrices R and different linear com-

binations of edge vectors to compute the linear map T. It does not change the results

of |σ1|, |σ2|. The singular values σ1,σ2 are used to define various distortion metrics for

mesh parameterization [172].

2.A.2. DISTORTION OF STITCH MESHES

Each stitch type has an ideal shape represented by a polygon pi , i = 1, . . . ,n, defined by

the calibrated stitch size. After projecting the stitch mesh onto the target shape, an ideal

stitch {pi } is distorted to {qi }. Before evaluating the distortion, we need to align {pi } to

{qi } rigidly.

According to [176], there is a rotation matrix R and a translation vector t such that

(R,t) = argmin
R∈SO(3), t∈R3

n
∑

i=1

∥

∥(R pi + t)−qi

∥

∥

2
. (2.3)

The centers of two triangles are p̄ =
∑n

i=1
pi /n, q̄ =

∑n
i=1

qi /n. Then we have the 3× 3

matrix S = PQ⊤, in which P3×n takes (pi − p̄) as columns and the similar is Q. Using the

SVD S = UΣV⊤, we have the solution of Eq. (2.3)

R = VU⊤ and t = q̄−R p̄. (2.4)

The rigid transformation defined by (R,t) aligns {pi } to {qi } optimally in the least squares

sense.

This method of computing best-fitting rigid transformation is widely used for mesh

deformation (known as as-rigid-as-possible, ARAP [175, 20]) and point cloud registration

[191]. In this dissertation, we have used it in the conversion from knitting map to stitch

mesh (Section 1.3.2) and the 3D shape flattening (Section 2.3.1). Point cloud registration

will be used for 3D scanning (Section 2.C.1).

In this section, both methods for distortion computing used SVD. It should be noted

that their objectives are different. The estimated rotation matrices are also generally

different.

2.B. ALGORITHMS OF MESH SPLITTING

In this chapter, input meshes are cut along curves to generate darts. Such a curve is a

polyline path connecting two vertices on the mesh. Points on the polyline path are not

necessarily vertices of the mesh but usually the points dividing some edges. We first split

the mesh along the polyline, then cut the mesh along the polyline constructed by mesh
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vertices. The splitting method is presented here and implemented in MeshUtility [106].

The cutting method is available in libigl [73], which is not discussed here.

In this scenario, we cut the meshes with geodesic paths. Each face is cut by a geodesic

path at most once. Otherwise, the path segment on this face is not straight, not even the

shortest. Consequently, the mesh can be split using Algorithm. 2.1.

Algorithm 2.1 Simple mesh splitting

Input Mesh M and the polyline path. Vertex i on the path divides edge (ei 0,ei 1) in

ratio ri .

1: procedure mesh_splitting_simple(M, (ei 0,ei 1,ri ) for i = 0,1, . . . ,n −1)

2: L ← empty list ⊲ Indices of the path after splitting.

3: for i = 0,1, . . . ,n −1 do

4: if ei 0 = ei 1 then

5: Append ei 0 into L. ⊲ The path passes a mesh vertex.

6: else

7: Add vertex q ← (1− ri )ei 0 + ri ei 1.

8: Split edge (ei 0,ei 1) with q .

9: Append the index of q into L.

10: end if

11: end for

12: return M, L ⊲ Resultant mesh and path vertex index list.

13: end procedure

This simple method works for the at-most-once splitting thanks to the following rea-

sons. Firstly, it keeps the mesh triangular, although it changes the mesh topology by

edge splitting, i.e., removing two faces and adding four faces (line 8). Secondly, it adds

new vertices but does not change the indices of existing vertices. Thus the vertex indices

defined in the input (ei 0,ei 1) are always valid.

(a) (b) (c) (d)

Figure 2.10: Split the mesh (a) with given paths. If each face is split at most once, like the dotted path in (b),

we can split faces directly using Algorithm 2.1. If a face is split multiple times, like the dashed red path in (c),

Algorithm 2.2 becomes necessary. We split edges first and generate a polygon mesh (c). Then we split polygon

faces using the path segments and triangulate the remaining mesh at last (d).
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In general, a face may be split by a path multiple times. We need the complete mesh

splitting method, Algorithm 2.2. In this case, we add path segments explicitly (line 8) to

make sure all path segments appear as mesh edges in the result. To do so, we keep poly-

gons after edge splitting, without triangulating them immediately, as shown in Fig. 2.10.

In the final triangulation step, degenerated triangles should be avoided.

Algorithm 2.2 Complete mesh splitting

Input Mesh M and the polyline path. Vertex i on the path divides edge (ei 0,ei 1) in

ratio ri .

1: procedure mesh_splitting_complete(M, (ei 0,ei 1,ri ) for i = 0,1, . . . ,n −1)

2: for each edge e of M do

3: Collect all path vertices qi on e. ⊲ For simplicity, sort qi before splitting.

4: Split e with all qi . ⊲ But do not split any face.

5: end for

6: L ← indices of path vertices on the mesh.

7: for each segment (qi , q j ) of the splitting path do

8: Add (qi , q j ) as an edge of M by splitting the face containing both vertices.

9: end for

10: Triangulate M.

11: return M, L ⊲ Resultant mesh and path vertex index list.

12: end procedure

2.C. NOTES ON 3D SHAPE ACQUISITION AND FABRICATION

The target shapes used in this chapter are obtained from various sources. Before de-

signing the knitting plans, the target shapes are converted to triangular meshes as our

algorithms require. After knitting, we use 3D shapes to support the flexible fabrics. In

these steps, several geometry processing techniques and fabrication practices are ap-

plied, which are presented in this section.

2.C.1. RIGID 3D OBJECT SCANNING

Figure 2.11: Pairwise registration and global align-

ment. Slices are shown in the zoom-in view.

The 3D model of the mannequin in Fig. 2.5

is scanned by a structured light system.

This system provides frames of point clouds.

We registered the frames together manu-

ally using the iterative closest point (ICP)

method implemented in [34]. SVD is used

in ICP to obtain rigid transformations be-

tween frames. Pairwise registration needs to

be globally optimized (Fig. 2.11) to improve

the alignment. We used [231]’s implementa-

tion of Choi et al., 2015 [33] for this. Finally,

the complete oriented point cloud is converted to a mesh model with Poisson surface

reconstruction [85].
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2.C.2. SURFACE OF EXPLICIT FUNCTIONS

The triple-peak model (Fig. 2.4) and the monkey saddle (Fig. 2.2) are generated from

explicit functions. Their processing procedures are similar.

The triple-peak model is the surface of z = f (x, y), x ∈ [−1.5,1.5], y ∈ [−1,1], in which

f (x) = w
∑

i=0,1,2

exp

(

−
‖x−ci‖

2

σ2

)

. (2.5)

The parameter values are: the coordinates of ci s (0,0), (1,0), and (−1,0); w = 1.2; and

σ2 = 0.1.

Given the explicit function of the surface, we generate the mesh model using the in-

cremental isotropic remeshing framework (Algorithm 2.3). Details of this algorithm, in-

cluding the boundary/feature preserving rules, are described in [19], and implemented

in [106]. In the projection step (line 7), we keep the x, y-coordinates of each vertex and

set the z-coordinate as the function value f (x, y). For general shapes without explicit

mathematical expression, the AABB (axis-aligned bounding box) tree in libigl [73] can be

used for the projection.

Algorithm 2.3 Incremental isotropic remeshing

1: procedure remesh(M, l , n)

2: for i ← 0,1, . . . ,n −1 do

3: split_long_edges(l)

4: collapse_short_edges(l)

5: equalize_valences()

6: tangential_relaxation()

7: project_to_surface()

8: end for

9: end procedure

We scale the mesh uniformly so that the x-axis length is 15cm. Such a mesh is ready

to be used for knitting design.

We fabricate a support shape, i.e., a solid object to support the knitted fabric. Then a

solid mesh should be prepared. We add a rectangle as the base. The original shape and

the base are connected with a graph-based tessellation method, a simplified version of

Fuchs et al. [51].

The boundaries of the original shape and the base are two polyline loops. We denote

them as ΛA = (ai )i=1,...,m and ΛB = (bi )i=1,...,n respectively. In the loop ΛA , ai and ai+m

are the same point; ai and ai+1 are connected with a segment. Loop ΛB is the same. The

directions of ΛA and ΛB should be the same. The objective is to connect ΛA and ΛB ,

i.e., to fill the region between them. Firstly, we compute the pairwise distance matrix

Dm×n = (‖ai −b j ‖)i , j and find its smallest value Di0, j0 . Then we treat two loops as non-

loop curves, i.e., Λ′
A = (ai )i=i0,...,m+i0 and Λ

′
B = (bi )i= j0,...,n+ j0 . Filling the region between

Λ
′
A and Λ

′
B is tessellating triangles between them. Two types of triangles can be used:

• A-advance: triangle ai ai+1b j , in which i0 ≤ i ≤ m + i0 −1, j0 ≤ j ≤ n + j0.
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Figure 2.12: Graph-based tessellation to fill the region between two curves (ai ) and (bi ). Candidate bridges are

drawn in blue in (a). The directed graph Γ (b) includes the bridges as nodes and two types of edges: A-advance

(red) and B-advance (green). The shortest path in Γ corresponds to the tessellation result in (c). This method

is applied to connect two components at the top of (d). The directions of the two boundary curves are aligned

as the arrows indicate. The bottom of (d) is the watertight mesh after tessellating the gap.

• B-advance: triangle ai b j b j+1, in which i0 ≤ i ≤ m + i0, j0 ≤ j ≤ n + j0 −1.

Now we have numerous ways to arrange the candidate triangles. We formulate the

problem of finding an optimal tessellation as a shortest-path problem on a directed

graph [51]. For each bridge ai b j , we treat it as a node on a directed graph Γ. An A-

advance triangle is a directed graph edge from ai b j to ai+1b j in Γ. A B-advance triangle

is an edge from ai b j to ai b j+1. Finally, each tessellation is corresponding to a path on

Γ from node ai0 b j0 to node ai0+mb j0+n . We add weights on each edge of Γ. Each A/B-

advance edge creates a triangle by adding a new bridge, ai+1b j or ai b j+1, next to its

predecessors. The edge’s weight is defined as the length of the new bridge, as we have

computed in the matrix Dm×n . We find the shortest path on the weighted graph Γ as the

optimal tessellation, i.e., the one with the least total edge length. The process is illus-

trated in Fig. 2.12. For simplification, we can remove some long bridges exceeding some

length tolerance τ, if not corrupt the connectivity of Γ.

The shortest path problem here can be seen as a discrete optimization task that can

be solved using dynamic programming, of which the idea is to divide the problem into

simpler sub-problems in a recursive manner. Given the stripe region to tessellate, from

ai0 b j0 to ai1 b j1 , we denote the minimal cost as C (i0 j0, i1 j1). Then

C (i0 j0, i1 j1) =















‖ai1 b j1‖, i0 +1 = i1, j0 = j1;

‖ai1 b j1‖, i0 = i1, j0 +1 = j1;

min
i0≤i2≤i1, j0≤ j2≤ j1

C (i0 j0, i2 j2)+C (i2 j2, i1 j1), otherwise.

(2.6)

The tessellation from a0b0 to ambn with minimal cost can be found by solving the sub-

problems. Dijkstra’s algorithm for the shortest path problem is a special case of dynamic

programming.
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The monkey saddle model is part of the surface

z = x3
−3x y2, (2.7)

with x2 + y2 ≤ 1. We convert the explicit function to a surface mesh by remeshing and

scale it to 10cm×10cm×10cm.

For fabrication, the open surface is converted to a solid by thickening. We create

an opposite surface by inverting the face orientation of the original surface. All ver-

tices of the opposite surface are moved by t in their normal directions, in which t is

the target thickness. At last, the original surface and the opposite surface are connected

with the graph-based tessellation method presented before. For this simple case, this

method works well without leading to self-intersections. For general meshes, the thick-

ening method proposed by Wang and Chen [202] is more stable.

2.C.3. ALPHA SHAPE OF THE FOOT MODEL

Figure 2.13: Foot model with toes and sock-like α-shape.

The foot mesh in Fig. 2.7 is extracted

from the base model of MakeHu-

man [188]. As we are not knit-

ting socks with separate toes, the

foot mesh is converted to the sock

mesh by computing its alpha shape

(α-shape), a generalization of the

convex hull but envelopes the input

tightly, as shown in Fig. 2.13. I used

[36] for it. The effect of α-shape is

similar to morphological closing, i.e., dilation followed by erosion, the 2D version of

which is common in image processing. It can be achieved by mesh offsetting.

2.C.4. SUPPORT SHAPE FABRICATION

The support objects are fabricated to provide rigid support for the knitted flexible fabrics.

Two fabrication methods, fused filament fabrication (FFF) 3D printing and laser cutting,

are used in our project. We used Raise3D’s ideaMaker to perform slicing for 3D printing

and Autodesk®’s Slicer for Fusion 360 [6] to generate laser cutting plans. The accuracy

of 3D printing is much higher than that of the coarse laser cutting results. Nevertheless,

laser cutting takes much less time and material costs.
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DIRECT 3D KNITTING DESIGN BY

STITCH MESH GENERATION

WHERE TO PUT SHAPING STITCHES?

3.1. INTRODUCTION

Figure 3.1: Illustration of a typical de-

sign of leggings. This is a 3D design

composed of at least five fabric pieces.

Right is an exploded view.

In the last chapter, I presented the 3D knitwear design

method based on flattening, by placing knittable darts.

This approach relies on user interactions and has diffi-

culty generating complex darts (intersecting darts). In

this chapter, I will present two 3D design methods that

generate stitch meshes directly: one uses only short-

row shaping, and the other uses both short-row and

short-column shaping. These two direct design meth-

ods are more automatic and produce complex ‘darts’

to fit the target shapes. This chapter, together with the

previous one, answers the research question (RQ1):

how to design a knitwear and its machine knitting in-

structions for a given 3D shape.

In the garment industry (sewing), designers have

gone beyond darts for 3D shaping. Multiple fabric

panels are used to approximate the non-developable

3D surface of the human body. This method has been

applied not only in custom tailoring [206] but also in mass production (Fig. 3.1). Us-

ing knitting, we can also produce more accurate 3D shapes compared to the dart-based

Sections 3.1 and 3.2 of this chapter have been published in: Z. Liu, X. Han, Y. Zhang, X. Chen, Y.-K. Lai, E.L.

Doubrovski, E. Whiting, and C.C.L. Wang. Knitting 4D garments with elasticity controlled for body motion, ACM

Trans. Graph., 40(4), 2021. doi: 10.1145/3450626.3459868. A few small corrections and/or clarifications have

been made to the original published text.

39

https://doi.org/10.1145/3450626.3459868


3

40 3. DIRECT 3D KNITTING DESIGN BY STITCH MESH GENERATION

approach. There will be less material waste from cutting and less post-processing of

sewing.

There are several existing works on direct knitting design for an input 3D surface.

Igarashi et al., 2008 [65] is one of the earliest works, which only uses the short-column

shape technique. Narayanan et al., 2018 [134] is the first automatic system to convert a

3D model into machine knitting instructions, which includes algorithms of field-guided

remeshing, stitch tracing, and machine needle scheduling. Liu et al., 2020 [104] pro-

posed a knitting design method for topologically disk-like surfaces with only short-rows,

in which the knittability is achieved by face-shifting operations like [134]. Wu et al., 2019

[215] have proposed algorithms to convert a stitch mesh [221] into a knittable one. Their

recent work Wu et al., 2022 [216] can convert a target surface into a topological disk by

introducing a set of cuts, and valid knitting instructions are generated thereafter. How-

ever, none of these approaches exploit the shape distortion on knitted clothes caused by

different numbers of stitches between rows. Details will be discussed in this chapter.

Stitch mesh generation is related to quadrangulation [17] since the stitch meshes

used for knitting are quad-dominant. Wu et al., 2018 [214] adopt a quadrangulation

method for stitch meshing. The results are applicable for rendering and animation, but

they are not knittable. The quad meshing method in Lai et al., 2010 [92] can convert

a mesh to a Celtic knot model, another type of textile structure. Manufacturing con-

straints are not considered in this work. As we have seen in Section 1.2.2, the knittable

stitch mesh is a special subset of quad-dominant mesh complying with multiple con-

straints. Therefore, specially designed methods are required to generate knittable stitch

meshes with low geometric distortion.

In this chapter, I will first present a short-row-only shaping approach. Then we will

find its limitations. Then I will present an approach using both short-row and short-

column shaping.

3.2. DISTORTION-CONTROLLED SHORT-ROW KNITTING

As we have seen in Section 1.4.2, the short-column shaping by stitch transfer has some

limitations of being time-consuming and unstable. We will start with a short-row-only

approach for its simplicity. The knittability constraints (Section 1.2.2) especially the con-

tinuity constraints are considered in the algorithm design.

Given the per stitch constant height sh and width sw , we need to ideally generate a

stitch mesh on the given 3D surface M using quadrangles of size sw × sh and triangles

as the end of short-rows. To achieve this goal, we first generate wale curves with equal

distance sw , which are sampled into segments with length sh . The final stitch meshes

are constructed by connecting neighboring wale curves with optimized quadrangles /

triangles.

3.2.1. GENERATION OF WALE CURVES

Given an input 3D surface M that is homeomorphic to a 2D disk, the geodesic distance

field F (·) is first computed from the user-defined source (point or curve) on the input

surface (see the left of Fig. 3.2(a)). Wale curves are generated from F (·)’s isocurves that

are evenly distributed with distance sw .
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(a) (b)

(c) (d) (e)

F (·)

Source

Closed Loop

n̂

∇F
d

Figure 3.2: Steps for generating knittable stitch meshes on a given surface: (a–b) Isocurves of a geodesic

distance-field F (·) are used as wale curves with segments having nearly equal length. The input mesh will be

cut if there are closed wale curves. The resultant wale curves are sorted according to their values of F (·). (c) Op-

timal quadrangles/triangles are constructed between neighboring wale curves. (d) Courses are traced out and

sorted on a stitch mesh to generate the final knitting map. Complex ‘darts’ are observed on the map. (e) The

physical knitting result can be generated by following the knitting map, where the stitch size is 3.5mm×2.8mm

in this example.

A valid wale cannot be a closed curve, which has been presented as the Topologi-

cal Constraints in Section 1.2.2. Therefore, if the source is a point, it should lie on the

boundary of M. If the source is a curve, it should be a curve cutting M into two pieces

or a curve completely laying on M’s boundary. In our project of garment design, pieces

of an input garment usually have reflectional symmetry. The axial curve of symmetry

that goes through the input mesh is adopted as the geodesic source. However, isocurves

can still form closed loops in some extreme cases (see Fig. 3.2(a) for an example), which

should be split. Inside a closed isocurve, there is a point p containing the local maxi-

mum of F (·). We can split the closed loop by computing the shortest path from p to the

surface’s boundary and cutting the surface along the path (see Fig. 3.2(a) for such a cut).

This process is repeated until no closed loop is found on wales.

All wale curves generated in this way can be easily sorted by their geodesic distances,

where the sign of distance can be assigned when the source curve separates an input

surface into two regions – i.e., one side positive while the other side as negative. The di-

rection of a wale curve can be determined as n̂×∇F with n̂ being the surface normal (see

d shown in Fig. 3.2(a)). Vertices of a stitch mesh are generated on wale curves by sam-

pling them into segments with length sh . In the following step of mesh generation, quads

and triangles are always constructed in pairs to ensure knittability (see details in Section

3.2.2). Therefore, an even number of segments is required for each wale. To achieve this,

a wale curve’s two ends are slightly extended when odd segments are obtained.
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3.2.2. CONSTRUCTING MESHES BETWEEN WALE CURVES

Given two neighboring wale curves, there are numerous ways to connect the sampled

points on them to form a stitch mesh. However, not all are knittable. We propose a

graph-based algorithm to determine an optimized mesh that is knittable (Fig. 3.2(b)).

By using the short-row shaping technique, a knitting machine produces fabric pieces

course-by-course from bottom to top in a zigzag manner while meeting both the in-

course continuity and the continuity between courses. Without loss of generality, we

assume the yarn carrier goes from left to right on courses with even indices (e.g., gray

courses in Fig. 3.2) and from right to left on odd courses (e.g., blue courses in Fig. 3.2).

Then, we impose the constraints of short-row knitting by defining where and how quads

and triangles are presented in a stitch mesh.

A triangle defines the interior end (either head or tail) of a short-row, which is only

located in the interior of a stitch mesh. After imposing the constraint of between-course

continuity, triangles always appear in pairs and are one of two types:

• Left-End Pair: the lower triangle serves as the tail of a right-to-left knitting course

while the upper one is the head of a left-to-right knitting course.

• Right-end pair: the lower triangle in the pair is the tail of a left-to-right knitting

course and the upper one is the head of a right-to-left course.

Operators are defined below to ensure that triangles are only present in one of these two

configurations. Similarly, quads are also constructed in pairs in our algorithm to ensure

the knitting directions and the continuity of courses.

We employ a graph-based method to generate the mesh between neighboring wale

curves, inspired by [51, 203] (Please refer to Section 2.C.1 for this approach in a simple

scenario). Constructing a wale mesh is equivalent to finding the set of bridge edges (or

simply called bridges) that connect vertices between two wale curves. Given two wale

curves A and B that are sampled into 2na and 2nb segments, our algorithm computes

the optimal and knittable bridges connecting their vertices {ai } (i = 0,1, . . . ,2na) and {b j }

( j = 0,1, . . . ,2nb). At initialization (see Fig. 3.3(a)), we define candidate anchor bridges

between wale vertices with even indices, where the bridge length is less than λ. A large

threshold λ will increase the computational complexity. We chose λ = sw + 2sh in our

implementation. Our graph-based method represents the anchor bridges as nodes on a

graph Γ (see Fig. 3.3(c)). We then generate a knittable stitch mesh by finding an optimal

path that connects a selected set of nodes via operators.

Four different operators are defined to insert intermediate bridges between the an-

chors:

• AB-advance: Two quadrangles are formed between nodes a2i b2 j and a2i+2b2 j+2

by adding two new bridges a2i+1b2 j+1 and a2i+2b2 j+2. This operator is illustrated

as E AB in Fig. 3.3(b).

• A-advance: Two triangles are constructed between a2i b2 j and a2i+2b2 j by adding

a right-end pair (see E A in Fig. 3.3(b)).

• B-advance: The purpose of this operator is to add two triangles as a left-end pair.

However, as a left-end pair of triangles can only start from an odd course, we
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Figure 3.3: Graph-based generation of knittable stitch meshes between wale curves. (a) Points are sampled

on two wale curves (even indices shown in black, odd indices in gray). Candidate anchor bridges connecting

the wale curves are illustrated by line segments. (b) Four operators are introduced in our algorithm to form

the mesh. These operators insert intermediate bridges (dashed lines) to construct pairs of triangles and quads

between consecutive anchor bridges (solid lines). (c) The graphΓ shows all possible configurations to tessellate

the two wale curves. Anchor bridges are represented as nodes of Γ and operators are denoted by edges of Γ

(different colors denote different types). The problem of finding an optimized tessellation between two wale

curves is converted to finding the shortest path on Γ (i.e., the bold arrows). (d) The resultant mesh tessellation

corresponding to the shortest path on Γ.
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add one quad, two triangles, and the other quad altogether between a2i b2 j to

a2i+2b2 j+4 (see EB shown in Fig. 3.3(b)).

• BB-advance: While right-end pairs can be consecutively presented in the stitch

mesh by repeatedly applying the A-advance operator, consecutive left-end pairs

cannot be realized by the B-advance operator. We define a new operator by adding

one quad, four triangles, and the other quad between a2i b2 j to a2i+2b2 j+6 (see

EBB shown in Fig. 3.3(b)). Consecutive short-row ends are sometimes necessary

to make the graph connected, though the knitting may form small holes.

Each operator defines a directed edge in Γ with the weight defined as the total length of

newly added bridges. If the length of any bridge introduced by an operator is longer than

λ, we exclude its corresponding edge from Γ.

Given a source node and a target node, an optimal mesh can be generated by com-

puting the shortest path between them on the graph Γ (see Figs. 3.3(c) and (d)). Dijkstra’s

algorithm is employed. By using the bridge’s length as weight (i.e., the metric to evaluate

the quality of mesh), quads and triangles with less distortion can be generated (ref. [51]).

When the wales are located near the boundary of an input surface, the lengths of two

wale curves can have a significant difference. We then determine the source and the tar-

get nodes by the following method. Two vertices a2i and b2 j are considered a bijective

pair if b2 j is a2i ’s closest neighbor on B and vice versa. The first and the last bijective

pairs are selected as the source and the target nodes in our approach, which results in

stitch meshes with quads of good quality even on highly curved surfaces (e.g., the result

shown in Fig. 3.2(c)). The graph-based algorithm introduced here can always generate a

knittable stitch mesh after applying it to all the strips between wale curves, which is guar-

anteed by the four carefully defined operators. There may be cases where no path exists

on Γ connecting the source and target nodes when using a very conservative threshold

λ. We can incrementally enlarge λ by 10% until a path can be found.

As discussed in Section. 2.C.2, the shortest path problem can be seen as a dynamic

programming task, which is more general.

3.2.3. DISTORTION CONTROL BY APEX DIFFUSION

Besides the shape of elements, we observe another source of distortion on stitch meshes

– that is the location of triangles. As discussed in Chapter 1, each triangle in physical knit-

ting is in fact formed by collapsing the corresponding stitch at the end of each course. If

there are many triangles placed together, the distortion errors generated by this collapse

are accumulated and can lead to significant distortion in the global shape of the knitted

patch. For example, in the top row of Fig. 3.4, the global distortion of the hemisphere

can be clearly observed from the results of the FEA simulation and also the physical fab-

rication.

To solve this problem, we introduce a diffusion term for the weight of an edge in the

graph Γ. This term will penalize the triangle close to each other. We use the distance

between apexes to measure the distance between triangles. The ideal shape of each tri-

angle is an isosceles triangle defined by three edge lengths sw , sw , and sh . The apex is the

vertex where two edges of equal length meet. For an operator introducing triangles, the

weight on its corresponding edge in the graph is defined as L +µexp(−D2) to penalize
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0 max

Figure 3.4: Knitted hemisphere. (Left-to-right) Knitting map, stitch mesh (before relaxation), 3D shape of knit-

ting result simulated by FEA (i.e., relaxed), and the physical result of knitting. (Top row) The knitted hemi-

sphere is distorted when the triangles (red elements) are crowded together. The color map visualizes the shape

approximation error between the simulation result and the input 3D surface in terms of the hemisphere’s ra-

dius r (max = 0.15r ). (Bottom row) After applying the diffusion term onto the triangle apexes, the global shape

error is significantly reduced. Note that the geometry of support for physical results is shown in the top-right

corner. Stitch size calibrated in physical knitting is 3.2mm×2.2mm. The fabrics curl at their boundaries due

to the nature of the knitting structure [77].

large L and small D with L being the total length of the newly added bridges and D being

the distance between the newly added apex and the apexes already existing while tessel-

lating previous wales. A larger µ will make the apexes more diffused, but adding longer

bridges and more irregular stitch elements before relaxation. We selected µ = 100sw to

reflect the influence of stitch size sw . With the help of this diffusion term, scattered dis-

tribution of apexes will be generated when constructing meshes between wale curves.

The distortion errors caused by triangles are therefore diffused into different regions. As

a result, the 3D shape of input model can be better preserved on the knitting result (see

the bottom row of Fig. 3.4).

POST-PROCESSING OF STITCH MESH

After generating the wale curves by a geodesic distance field and constructing the stitch

mesh between wale curves by a graph-based algorithm, a knittable stitch mesh can be

obtained. To make it perfect at the boundary, two more operators are introduced for

post-processing the stitch mesh.

• The first one is to correct pairs of triangles with their apex vertices located at the

boundary of a patch (as illustrated in Fig. 3.5(a)). During physical knitting, regular

stitches will be formed in these regions. To make the stitch mesh consistent with

the knitting result, we replace triangles in these cases by quads.

• The second one is to correct the discontinuity between courses at the boundary of

a patch (as illustrated in Fig. 3.5(b)). If the end of a boundary course is not aligned

with the beginning of the next course, we add a few support stitches as accessory

into the next course to avoid the long float.



3

46 3. DIRECT 3D KNITTING DESIGN BY STITCH MESH GENERATION

Both operators are only applied to the boundary, which will not influence the interior

global shape of a knitted patch.

(a) (b) (c)

Figure 3.5: Two operators of boundary correction: (a) A pair of triangles is replaced by quads if their apex vertex

is located on the boundary (denoted by red dots and circles in dash lines), and the triangles will remain when

their apex vertex is in the interior (denoted by green dots). (b) The discontinuity between courses is corrected

by adding support stitches as quads (displayed in orange) in the course next to a boundary course.

3.2.4. KNITTING MAP GENERATION

The knitting map can be extracted from a stitch mesh assigning each quad / triangle with

its corresponding wale and course indices. The wale index of an element can be easily

obtained from the indices of wale curves, which have been sorted. Now the problem is

how to assign the course index for each element on a stitch mesh.

Considering elements adjacent to the same wale curve, two elements belong to the

same course if and only if they share an edge on the wale curve. We determine elements

in the same course by a flooding algorithm. After that, the course indices are determined

by 1) converting neighboring courses into connected nodes on a graph and 2) applying a

topological sorting algorithm on the graph to determine the order of courses in knitting.

TOPOLOGICAL SORTING OF COURSES

A topological sorting algorithm is employed in our implementation to determine the

order of courses in knitting process by considering the between-rows continuity.

Two elements belong to the same course if and only if they share an edge on the

wale curve. First, we determine elements in the same course by a flooding algorithm.
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Figure 3.6: Given a mesh with courses determined by flooding (left), each course is represented as a node on

a directed graph (middle). The order of courses can be determined by topological sorting. After sorting, the

stitch mesh can be converted into a knitting map (right).
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After that, graph-based topological sorting is used to find the order of courses. A directed

acyclic graph (DAG) can be constructed by defining each course as a node on the graph

(see Fig. 3.6 for an example). Directed edges are defined between two courses only when

they have any neighboring elements, being the same as the stitch mesh to knitting map

conversion in Section 1.3.1. The edge direction is the same as the wale curve’s direction.

If the fabric can be knitted with a single yarn, the topological order is unique. In some

cases like Fig. 3.6, we sort the courses greedily. When a node has multiple predecessors

or successors, we connect it to the nearest one, i.e., connect e with d and connect h to j .

The edge c → e is removed because d is closer to e. The edge h → i is removed similarly.

The edge e → h is excluded from the result because of f and g .

Note that, two post-processing operators introduced in Fig. 3.5 are applied to the

boundary of a stitch mesh after the DAG-based course sorting. The second operator (in

Figs. 3.5(b-c)) fixes the discontinuity only when

1. there is no other course connected to the second course in the graph, and

2. the first course has not been connected to any other course.

For example, it cannot be applied to connect h and i in Fig. 3.6 unless the courses j

and l do not exist (i.e., prevented by the first condition mentioned here). Similarly, the

operator cannot be applied to connect c to e according to the second condition. In short,

we never form any tree in the graph.

3.2.5. RESULTS AND DISCUSSION

We tested the performance of the short-row based 3D shaping technique proposed here.

The source code is publicly available 1. When generating knitting maps for production,

a common industrial approach is to flatten 3D surfaces into 2D panels and then gener-

ate grids of stitches on the 2D panels. To flatten regions with high curvature, darts are

added manually during the flattening step (see Fig. 3.7(a)). Different from clothes made

by sewing, darts on knitwear will automatically be knitted together. However, the sur-

face flattening process still introduces shape distortion errors. The result obtained from

our short-row based 3D shaping technique shows significant improvement in fit – see

Fig. 3.7(b), with the most pronounced difference in the waist region. When the central

front/back lines are selected as the source to compute the geodesic distance-field F (·),

the stitches generated by our approach are nearly symmetric.

As demonstrated in Fig. 3.4, we control the distortion of knitting a 3D surface by dif-

fusing the apexes on the stitch mesh. We also verified our distortion control method

on real garments like the skull cap shown in Fig. 3.8. The knitting map generated by

short-row approach without apex diffusion produces many unwanted bumps (top row

of Fig. 3.8), which can be completely eliminated by using the apex diffusion (bottom row

of Fig. 3.8). A few pre-processing steps are applied to generate the stitch mesh and the

knitting map for the skull cap. First, the topology of the original design with eye hole is

not homeomorphic to a disk. It is unwrapped by adding a seam from the nose to neck.

In both cases, the intersection curve between the model and its symmetrical plane is

used as the geodesic source. Closed-loops are found on the isocurves generated from

1https://github.com/zishun/KnittingShortRows2021

https://github.com/zishun/KnittingShortRows2021
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Figure 3.7: Comparison of knitting maps generated from the flattened 2D panels with manually added darts

(a) vs. from the 3D surface with the help of geodesic distance-field (b). The same set of pinholes is used for the

two tests. The physical knitting results show the advantage of our approach with the improved fit of the final

garment. Note that the 2D panel results are generated by ARAP flattening without applying the constraints on

darts presented in Chapter 2.

Seam

Figure 3.8: Knitted skull cap. (Top) Without apex diffusion: bumps form when the shape approximation er-

rors at triangles are accumulated together (see red circles). (Bottom) With apex diffusion: the bumps can be

completely eliminated. Accessory seams are added from the top of the ear to canthus to open the closed-loops

formed on isocurves of the geodesic distance-fields.
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this geodesic source; therefore, the method presented in Section 3.2.1 is applied to open

closed-loops by adding new seams (see the ones from ear to canthus). Moreover, to make

it easier to take on / off, a highly elastic yarn is employed to knit the neck part.

In extreme cases of complex shapes (e.g., the triple-peak in Fig. 3.2), topology with

closed loops may be formed by the isocurves of the geodesic distance-field (although this

was not found in our garment examples). Additional seams will need to be introduced,

which may not be acceptable in specific applications. Models must also have disk topol-

ogy, potentially requiring conversion using additional seams [224]. The triple-peak is

originally designed to demonstrate the necessity of cutting closed loops. However, we

can avoid the cutting (i.e., avoid the local maxima in the distance field) by rotating the

source curve by 90 degrees. If the target shape is a 3×3-peak, the cutting will be neces-

sary and the method presented in this section still works.

Besides closed isocurves, the isocurves may also have sharp corners (around the cen-

tral peak of the triple-peak in Fig. 3.2), which are also not suitable for knitting. Because

the knitted wales can hardly produce sharp corners. Both the closed isocurves and the

un-smoothness of isocurves are caused by cut locus [42] of geodesic distance fields. A

cut locus is a point on the surface that has multiple geodesic paths connected to the

source of the geodesic distance field.

In the thesis of Narayanan [133], a sampling-based method is presented to generate

short-row-only knitting maps, which are named transfer-free patterns. The implemen-

tation of that approach is more complex than ours.

There can be several interesting extensions on the hemisphere example (Fig. 3.4). We

may knit the map twice to get a sphere. We can also knit a series of hemispheres with the

radius gradually reduced to get a solid ball after rolling the small end into the core.

3.2.6. CONCLUSION

In this section, we propose a method to generate machine knitting code by only using

the short-row shaping strategy. The method is more automatic and accurate compared

to the flattening-based method. The continuity is achieved by a graph-based tessellation

method. The distortion is controlled by a diffusion term.

Compared to short-column shaping, the short-row-only shaping is more efficient

(Section 1.4.2). Moreover, the barrier of short-row shaping is much lower while the in-

crease/decrease shaping strategy requires knitting machines equipped with more needle

beds and more complicated mechanical structures. In the next section, we will present a

knitting method for complicated surfaces by using increase/decrease shaping together

with short-row shaping.

3.3. RELIABLE SHORT-COLUMN KNITTING BY OPTIMIZATION

3.3.1. INTRODUCTION

Short-row and short-column shaping are two important techniques for 3D knitting. Only

using the short-row shaping technique for knitting instruction generation has some lim-

itations, which can be explained by using the short-row shaping methods presented in

the previous section. Isocurves on a geodesic distance field are extracted with a con-

stant step distance to generate curves with a constant width as the boundaries of wales.
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These curves are later subdivided into line segments with similar lengths, and the seg-

ments on two neighboring column curves are tessellated into knittable stitch meshes.

The first problem of this method is the possibility of generating close-loops that can-

not lead to valid wales in knitting. Additional seams need to be added, which will need

manual operations to be sewed back – i.e., contradicting the principle of automatic ma-

chine knitting. Secondly, the smoothness of isocurves generated by this method is not

guaranteed (i.e., sharp turns are formed). Unfortunately, sharp turns cannot be formed

by wales on the physically knitted fabrics. A knitting plan with sharp turns in wales will

result in unwanted distortion between the input shape and the physical knitting result.

Both cases are shown in Fig. 3.2.

Modern knitting machines support both short-row and short-column shaping tech-

niques to overcome these difficulties. Specifically, when highly distorted isocurves are

generated, short-columns can be inserted to ‘straighten’ the isocurves (i.e., the wales

of stitches). The physical realization of short-columns on the digital knitting machine

is based on a technique that transfers the loops of stitches between needle-beds at the

courses of its beginning and ending stitches (called transfer stitches). This transfer tech-

nique however can often lead to manufacturing problems such as miss-transfer, yarn

stretching, yarn abrasion, etc. Another minor disadvantage of stitch transfer is that a

knitting process with more stitch transfer operations is more time-consuming than those

processes with only short-row shaping (see Section 1.4.2). Details of 3D shaping by using

transfer stitches are given in Section 1.4.2.

To obtain machine instructions that result in reliable knitting, industrial practice is to

test different knitting strategies by trial-and-error until finding one with a small number

of transfer stitches. The problem to be solved in this work is how to effectively generate

a stitch mesh with a minimized number of transfer stitches in an automatic way. We

propose a field-based method to tackle this challenge by 1) minimizing the divergence-

based metric on a governing field and 2) generating stitch meshes tightly aligned with

the governing field.

RELATED WORK

Computational Knitting Although computational knitting has been developed rapidly

in recent years, the reliability of machine knitting caused by short-column shaping has

not been considered and discussed in prior research. A field optimization-based ap-

proach is developed in our work to tackle this problem.

Scalar / Vector Fields on Mesh Scalar fields and vector fields are widely used in geo-

metric computing. The governing field employed in our work is scalar. We optimize it via

the divergence of its normalized cogradient field, which is a vector field. Vaxman et al.,

2017 [197] and de Goes et al., 2016 [38] reviewed the theories, methods, and applica-

tions of vector field processing on meshes. Vector fields have been widely used to guide

quad-mesh generation. Stitch meshes generated for digital knitting are in general quad-

triangle mixed meshes with additional manufacturing constraints. Our field-governed

stitch mesh generation is a variant of [134] but more tightly aligned with the isocurves of

the field.

There are some other field generation methods related to our work. Stripe patterns
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(a) (b)

(c)

(d)

(e)

Figure 3.9: Overview of our stitch mesh generation method. (a) We optimize the Dirichlet boundary conditions

on the boundary of a given surface M to determine an optimized scalar field, where the color maps provide

the field-values f (x) (∀x ∈ M) and blue / red dots define the endpoints of boundary regions with Dirichlet

conditions – i.e., f (x) = 0 between blue dots and f (x) = 1 between red dots. (b) The ‘best’ field is determined by

minimizing the divergence-based metric I ( f ), distributed values of which are given as maps next to the scalar

field. (c) Wale curves are extracted by an algorithm as a variant of the course extraction algorithm presented

in [134]. (d) Stitch mesh can be generated by knittability-ensured tessellation between wale curves (Section

3.2.2). (e) The final knitting instruction can be obtained from the stitch mesh and is represented as a bitmap

to fabricate the physical result.

research conducted in [89] can generate short-column like patterns on meshes, which

however is not knittable in general. Sharp et al. [162] computed parallel transport to

generate the ‘most parallel’ vector fields. Vector fields with controlled smoothness and

singularity are generated in [88]. All of these approaches need initial fields or predefined

boundary conditions to be given, thus not fully automatic. In this work, we optimize

a governing field without any predefined initial or boundary conditions. Moreover, the

field optimized by our method can be used as the input of the other methods when other

specific properties are preferred.

Several methods have been suggested in [134] for giving the boundary conditions to

compute a governing field. For closed surfaces without boundaries, they suggested using

local extrema of the mesh curvature as starting and ending points to effectively capture

mesh features. However, when knitting a 3D surface with disk-like topology, the start-

ing and ending courses/wales must be located on the boundary. They also suggested

using the Fiedler vector [97], a low-order eigenvector of the mesh Laplacian, as the guid-

ance field. However, such a field has local extrema in the interior region in some cases –

leading to closed wale curves that are invalid for knitting.

Optimization Numerical optimizations are widely used in geometric modeling prob-

lems. Most methods rely on derivatives of the objective function. However, analytical

derivatives are difficult to be obtained in some problems. The differentiation is also dif-

ficult to be approximated when the evaluation of the objective is very expensive. Black-

box optimization or derivative-free optimization is useful in these situations.

Genetic algorithms, as a derivative-free method, have been used for shape registra-

tion [167] and structure generation [193]. Simulated annealing is used for 3D shape cor-

respondence [63] and furniture arrangement design [219]. We employ Bayesian opti-
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mization [47] in this work because of its good performance in hyper-parameter opti-

mization for machine learning models that have been proved recently. Our problem

involves a very expensive black-box function and also has variables with relatively low

dimensions. These properties fit well with Bayesian optimization.

OUR METHOD

We propose a field-based method to tackle the problem of reducing the number of trans-

fer stitches for reliable knitting. An overview of our method is presented in Fig. 3.9. Akin

to [134], a scalar field f (x) is computed on a given mesh surface M in disk-like topology

and the isocurves f (x) = const (∀x ∈M) are employed to generate the basic structures

of a stitch mesh for M. The field f (x) is determined by solving a Laplacian equation on

M with Dirichlet boundary conditions imposed on ∂M. The structure generated by our

algorithm is dual to [134], which uses isocurves to generate courses. Differently, we use

isocurves as guidance to form wales.

As illustrated in Fig. 3.9(a), different governing fields can be generated when impos-

ing different Dirichlet boundary conditions as regions Rs ⊂ ∂M with f (x) = 0 (∀x ∈ Rs )

and Re ⊂ ∂M with f (x) = 1 (∀x ∈ Re ). In Fig. 3.9(a), the boundary between two blue dots

(as corner of ∂M) is for Rs and the boundary between two red dots is for Re . We pro-

pose to optimize the field f by adjusting the position of these four corner points – i.e.,

different scalar fields can be obtained as shown in Fig. 3.9(a).

It is not straightforward to directly predict the number of transfer stitches by giving

the governing field f (x) and the stitch size. Evaluating the number of transfer stitches by

generating all wale curves is time-consuming when including it as a step in the iteration

of optimization. Instead, we propose a new divergence-based metric defined on f (x)

(Section 3.3.2), the value of which is nearly monotonic to the number of transfer stitches.

Bayesian optimization, a derivative-free method, is employed to find the ‘best’ field that

minimizes the number of transfer stitches (details are provided in Section 3.3.5). Com-

putational results demonstrate that this method works well in practice. An optimization

result is given in Fig. 3.9(b) together with the wale curves and the corresponding stitch

mesh.

Our method for generating wale curves and knittable stitch mesh is an extension of

the graph-based tessellation method presented in Section 3.2.2, where isocurves from

geodesic fields are employed and no wale curves for short-columns will be generated.

Differently, the extension presented in this section can work for a wide range of scalar

fields – the requirements are discussed in Section 3.3.3). Wale curves for short-columns

are generated automatically by our algorithm (Section 3.3.4). Study shows that stitch

meshes generated by our method can align with the isocurve structure of governing

fields better than [134] and no shifting operation is needed. See Figs. 3.9(b) and (c) for

the stitch mesh and its corresponding knitting map generated by our method.

In summary, we make the following technical contributions:

• A field optimization-based framework to generate stitch meshes with a minimized

number of transfer stitches;

• A new divergence-based measurement as an objective function of the optimiza-

tion framework for knitting code generation;
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• An enhanced algorithm for extracting wale curves so that they can better align with

the isocurves of a governing field.

Field optimization has not been considered in the literature on digital knitting yet. The

pipeline proposed in this section has been tested by a variety of examples presented in

Section 3.3.6. Physical knitting is conducted on both a high-end digital knitting machine

and a household manual machine to verify the performance of our approach.

This section is organized as follows. We first introduce the divergence-based metric

for field optimization in Section 3.3.2. After discussing the method to compute a valid

governing field f (x) (Section 3.3.3), we present the algorithm for extracting wale curves

that are closely aligned with its isocurves (Section 3.3.4).

3.3.2. METRIC FOR FIELD EVALUATION

Given M as a triangular mesh surface in disk-like topology, we can generate a scalar

field f (x) on M without any local extrema to serve as the governing field for stitch mesh

generation. A metric I ( f ) is defined below to work as an approximate measurement for

the number of transfer stitches to be generated – i.e., according to the analysis of knitting

reliability (see also Section 1.4.2), the smaller the better.

For f (x), we normalize its gradient g =∇ f into a unit vector field denoted by ĝ. Here

the operator v̂ is defined for any non-vanishing vector field onM. We define the rotation

operator J : v 7→ n×v with n being the surface normal at the location where the vector v

is located. A rotated gradient field Jg is also referred to as the cogradient in [197].

Jĝ as the normalized Jg defines the tangential direction of isocurves on a field. Given

a non-boundary point x on M, we can extract an isocurve of f passing x, a small neigh-

borhood of x, and sample two points x+,x− in the neighborhood but located on two sides

of the isocurve satisfying f (x+) > f (x) > f (x−).

1. If both Jĝ defined on x+ and x− are pointing to the isocurve, it means that the

distance between neighboring isocurves tends to become smaller. This indicates

the merging of wale curves as the end of a short-column.

2. If Jĝ on x+ and x− are pointing away from the isocurve, the distance change be-

tween neighboring isocurves has a trend to be larger. An additional column needs

to be inserted here – the beginning of a short-column.

Both of these two cases relate to the divergence of the vector field Jĝ, where the first case

gives a negative divergence and the latter case has a positive divergence. The relation-

ship between f (x), its isocurves, and the divergence of its normalized cogradient field Jĝ

has been illustrated in Fig. 3.10.

We propose to use the following metric as an approximate measurement of the num-

ber of transfer stitches that appeared on the stitch mesh generated under the guidance

of f (x).

I ( f ) =

∫

M

∣

∣div Jĝ
∣

∣ dA (3.1)

For vector fields defined on a local manifold region X , we can have the following formula

derived from the Stokes theorem (ref. [197]):
∫

X
div v dA =

∫

∂X
〈v,N〉 ds (3.2)
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negative divergence

positive divergence

Figure 3.10: The illustration to explain the relationship between a scalar field f (x), its isocurves (left), and the

divergence of its cogradient field Jĝ (right).

x

v

x

v N

Figure 3.11: An infinitesimal region bounded by the solid circle (gray & blue) around a point x on the manifold

is deformed by the vector field v. Its image is the gray & red region (bounded by the dashed circle) after an

infinitesimal time step. The right-hand side of Eq. (3.2) is the area difference (red minus blue), which is directly

related to the divergence.

where N is the outwards normal vector defined on the boundary of the region X . The

value of div v in fact measures the rate of area change under the flow generated by v

(ref. [186]), which is also illustrated by Fig. 3.11. Positive divergence indicates the in-

crease of area, the region is widened so that new columns should be inserted. Negative

divergence indicates the decrease of area, the region is narrowed where some columns

should be terminated.

For the metric defined in Eq. (3.1), the divergence on the normalized vector field Jĝ

instead of Jg is evaluated. This is because the transfer stitches only happen in the regions

with area change caused by the direction change of cogradient field. In other words, the

area change caused by the magnitudes of vectors should be eliminated. To penalize both

the increasing (i.e., div Jĝ > 0) and decreasing (i.e., div Jĝ < 0) of short-columns, a field

with nearly zero divergence is demanded. As the absolute value is used in Eq. (3.1), we

cannot directly evaluate I ( f ) by using the right of Eq. (3.2) to compute integral on the
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boundary.

On Geodesic distance field For vector fields defined on manifolds, the curl is closely

related to the divergences (ref. [197]) as

curl v =−div Jv. (3.3)

It reveals the connections between this approach and the previous methods based on

the geodesic distance field (e.g., Section 3.2 and [104]). If f is a geodesic distance field

without local extrema, that gives ‖∇ f ‖ = 1 and therefore ĝ = g. This leads to

div Jĝ = div Jg =−curl g =−curl ∇ f = 0 (3.4)

where value zero is obtained as a gradient field is in general curl-free. By Eqs.(3.1) and

(3.4), we know that I ( f ) ≡ 0 on a geodesic distance field. This reflects that no short-

column is generated when using a geodesic distance field as a guide to generate wale

curves.

Evaluation in discrete form A discrete form of the divergence evaluation on an input

mesh M is necessary for numerical computation. Here we use the face-based repre-

sentation of a vector field [38] so that the gradient of a field inside a triangle △i j k is a

constant vector gi j k defined by the scalar-field value defined on its three nodes. We can

also obtain vi j k = Jĝi j k in each triangular face.

Using Eq. (3.2) and the 1-ring face neighbors of a non-boundary vertex i as the region

X , we can have

[div v]i =

∑

△i j k∈N (i )

〈

vi j k , Jek j

〉

∑

△i j k∈N (i ) Ai j k
(3.5)

with N (i ) defining the faces adjacent to the vertex i . Jek j = ni j k × ek j is an outwards

vector defined as N for ∂X in Eq. (3.2), and Ai j k is the area of the triangle △i j k adjacent

to the vertex i . With this discretization, the metric in Eq. (3.1) can be evaluated by

Ī ( f ) =
∑

i∈M\∂M

Āi

∣

∣[div v]i

∣

∣, (3.6)

where Āi defines the Voronoi area of the vertex i .

3.3.3. HARMONIC FIELD AS GUIDANCE

The automatic machine knitting method presented in [134] computes a Harmonic field

on a given model M as guidance to generate knitting courses. The boundary condition

is specified by user interaction in their method. In short, given the Dirichlet boundary

condition as Rs and Re specified on ∂M, the Laplacian equation below is solved.

∆ f = 0 (3.7)

s.t. f (x) = 0 (∀x ∈ Rs )

f (x) = 1 (∀x ∈ Re )

The result is a harmonic field defined on M. Harmonic functions on a topologically

disk-like mesh have the following advantages.
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Figure 3.12: Comparison of wale curves generated from the boundary-aware field (top) vs boundary-unaware

field (bottom). The given shape is a flat disk.

• Firstly, there is no interior local extrema on the resultant field f (x) as Laplacian at

a local extremum cannot be zero. This ensures that no close loop (such as the one

shown in Fig. 3.5) will be formed by the isocurves of f (x).

• Secondly, harmonic functions are boundary aware – i.e., the isocurves of f (x) are

either coincident with or orthogonal to the boundary ∂M (see Fig. 3.12 for an il-

lustration). When this boundary-aware property is not preserved, the stitch mesh

generated from the governing field may contain wales starting from the left / right

boundary but not from the starting course of knitting. The outside widening op-

eration [192] is needed to knit such wales, which could fail if insufficient dragging

force is applied to the already knitted stitches.

Different types of scalar fields, other than harmonic functions, can also be employed

as guidance for stitch mesh generation as long as there is no interior local extrema. The

divergence-based metric defined in Eq. (3.1) can also be applied to find a ‘best’ boundary

condition for these fields.

3.3.4. KNITTABLE STITCH MESH GENERATION

Wale curves are first generated by following the isocurves of an optimized scalar field

f (x). Note that the distance between wale curves is determined by the required width

of stitches. After dividing the wale curves into line segments according to the required

height of stitches, the knittable stitch meshes are constructed between wale curves by

the graph-based tessellation (Section 3.2.2).



3.3. RELIABLE SHORT-COLUMN KNITTING BY OPTIMIZATION

3

57

Algorithm 3.1 Wale curve extraction

1: procedure WaleCurveExtraction( f : x 7→ [0,1], sw × sh)

2: Va ← {x : f (x) = 0} ⊲ active vertices

3: Ca ← the curve formed by Va . ⊲ active curve

4: while Ca 6= ; do

5: τ← maxx∈Va f (x) ⊲ isovalue of the reference isocurve

6: d(·) ← geodesic distance field sourced from the active curve Ca .

7: Cut the mesh along the isocurve on the geodesic distance of isovalue d(·) = sw .

8: Remove the region with d(·) < sw . Add new boundary vertices into the active

vertex set Va .

9: Call Alg. 3.2: Ca ← UPDATEACTIVECURVE(Va ,τ)

10: end while

11: end procedure

Algorithm 3.2 Update active curve

1: procedure UpdateActiveCurve(Va ,τ)

2: Ca ← the curve formed by Va .

3: if τ< minx∈Va f (x) then

4: return Ca ⊲ the active curve is in front of the reference isocurve

5: end if

6: if found s ⊂Ca and SEGMENTACCEPTABLE(s)=True then

7: return Ca ← s ⊲ found a segment as a short curve

8: else

9: return Ca ⊲ cannot find an acceptable segment

10: end if

11: end procedure

12: procedure SegmentAcceptable(s)

13: return if (τ> maxx∈s f (x) and length(s) > 2sh )

14: end procedure

Wale Curve Extraction The wale curve extraction algorithm presented here is based

on an extension of the algorithm introduced in [134], where the course curves (actu-

ally cycles) are generated with additional short-row courses by following the isocurves

of a governing field. Differently, we adopt it here to generate wale curves so that short-

columns are formed.

The main idea is as follows. Starting from the minimal value boundary of a govern-

ing field f (x), the wale curves are extracted one after another, and the neighboring wale

curves should have a nearly fixed distance according to the required width of stitches.

The reference isocurve of a wale curve is defined by the maximal isovalue among all

points on its previous wale curve. The region between a wale curve between its reference

isocurve needs to be filled by short wale curves (see Fig. 3.13 for illustration). Pseudo-

code of this algorithm can be found in Algorithm 3.1 and Algorithm 3.2.

However, such a method, which is basically the same as [134], may fail if the region
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Algorithm 3.3 Update the reference τ

1: procedure UpdateReference(Va ,τ)

2: x∗ ← argminx∈Ca
f (x)

3: d(·) ← geodesic distance field sourced from x∗

4: Sτ ← τ-isocurve on f

5: if maxx∈Sτ d(x) > sw then ⊲ A large region should be filled with short wales. The

reference τ should be smaller.

6: Sw ← sw -isocurve on d(·)

7: return τ← maxx∈Sw f (x)

8: end if

9: return τ ⊲ Do not need to update.

10: end procedure

between a wale curve and its reference isocurve radically becomes very big (as illustrated

in the top row of Fig. 3.13). We improve this algorithm by developing an additional step

to determine a finer reference value for the wale curve generation, which is realized by

a method presented in Algorithm 3.3. When calling Algorithm 3.3 between Step 8 and

9 in Algorithm 3.2 before calling Algorithm 3.2, the resultant wale curves can align with

the isocurves of a governing field more tightly. The difference for the algorithms without

vs. with this refinement step of reference values (i.e., Algorithm 3.3) can be found by the

progressive results shown in Fig. 3.13.

Wale Mesh Generation After extracting the wale curves, we uniformly sample vertices

on them using the stitch height. An even number of segments are sampled on each wale

curve for the sake of simplicity. Then wale meshes are constructed using the graph-

based method presented in Section 3.2.2. The difference is that the starting and ending

elements of short-columns need to be considered specially.

Lastly, the following post-processing steps are applied to the stitch mesh.

• Triangles are corresponding to the ending stitch of a short row. When their apex

vertices are located at the boundary of a patch, they need to convert into quadran-

gles to reflect the real stitch that can be formed at the boundary.

• The graph-based tessellation method can ensure the continuity between courses

at the interior region and the right boundary of stitch mesh. However, the discon-

tinuity between courses can still happen at the left boundary of its resultant mesh,

which needs to be fixed by adding new stitches.

Both cases have been illustrated in Fig. 3.5.

3.3.5. OPTIMIZATION

To generate a knitting stitch mesh with minimized number of transfer stitches on an in-

put model M, we compute an optimized harmonic field f (x) by changing the Dirichlet

boundary conditions on ∂M (defined in Eq. (3.7)). The objective function of this opti-

mization is Ī ( f ) (see Eq. (3.6)), which is a discrete form of the metric defined in Eq. (3.1).
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Figure 3.13: Wale curve extraction results generated by an algorithm akin to [134] (top row) and its improve-

ment after adding Algorithm 3.3 to refine the isovalue of reference curve (bottom row). Progressive results are

given here to show the major difference before vs. after this improvement – i.e., how to fill the gap between a

wale curve and its reference isocurve, which is illustrated as the hatched region in the top row. Obviously, the

result obtained in the bottom row is better aligned with the isocurves of the governing field (top-left). Note

that the distance between the wale curves shown here is larger than a normal stitch width for giving a clearer

visualization.

VARIABLES FOR OPTIMIZATION

We first introduce the parameterization of variables for optimization. The domain M is

a topological disk with one boundary loop. We parameterize the boundary loop into the

[0,1) interval anticlockwise. As discussed before, the Dirichlet boundary condition to be

applied in this work are defined in two regions Rs ,Re ⊂ ∂M and Rs ∩Re =; as:

f (x) = 0 (∀x ∈ Rs ) and f (x) = 1 (∀x ∈ Re ).

The location of these two regions can be parameterized as a 4D vector b = (b0,b1,b2,b3)

defined on the boundary of ∂M (see also the illustration in Fig. 3.14). Rs and Re are

represented by the intervals [b0,b1] and [b2,b3] respectively.

To ensure valid regions are defined, the variables bi should meet the following con-

straints

0 ≤ b0 ≤ b1 < b2 ≤ b3 < 1+b0 < 2 (3.8)

Note that when bi > 1, it represents the same point as (bi −1) by winding. These con-

straints define the feasible space Ω for searching optimal fields.

In the discrete settings, we choose bi s by using vertices on the boundary of the input

mesh surface. The values of {bi }s satisfying the constraints given in Eq. (3.8) may result
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Figure 3.14: Corner points of the boundary conditions are used as variables for optimization, where the loca-

tions of corner points are parameterized on ∂M.

in 2, 3, or 4 distinct points, since b0 = b1 and b2 = b3 are allowed. Degeneration happens

when all distinct points fall in the same triangle. This leads to singularity in numerical

computation, to resolve which we need to move one point out of this triangle.

CONSTRAINED OPTIMIZATION

The objective function Ī ( fb) is difficult to be differentiated with respect to the variables

b, where fb is the harmonic field determined by the boundary condition b. A numerical

scheme based on Bayesian optimization (BO), a derivative-free method, is employed by

incorporating the constraints presented in Eq. (3.8). Generally, BO fits a surrogate model

using samples of the objective, and an acquisition function is used to suggest the next

location of samples. In this work, we use the trust region BO (i.e., TuRBO [47]), which

can model local regions of the objective more accurately compared to the schemes that

fit a global surrogate model on the whole search space. The surrogate models employed

in TuRBO are Gaussian process models. The acquisition function returns the point that

approximately minimizes the surrogate model in each step.

The feasible search space is constrained by Eq. (3.8). In the initialization step, we

sample all points in the feasible space. During the iteration of optimization, the acqui-

sition function may suggest evaluating the value of the objective function at a point b

outside the feasible space Ω. Then we evaluate the objective at a point b′, which is

b′
= argmin

β∈Ω

‖β−b‖2. (3.9)

The constraints presented in Eq. (3.8) are 6 independent linear constraints. Finding a

feasible b′ is a standard quadratic programming problem with linear constraints, solving

which is much faster than determining the harmonic field (or evaluating the divergence)

on the whole domain M. If a point b is outside Ω, we solve Eq. (3.9) to obtain b′ and

obtained a feasible sample point pair (b′, Ī ( fb′ )). The pair (b, Ī ( fb′ )+exp(‖b′−b‖2)) will

be employed to penalize the infeasible region. Both pairs are fed into the optimizer for

the later iteration.
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Figure 3.15: Optimization process by imposing the requirement of symmetry – i.e., only 2 degree-of-freedoms

are allowed for boundary condition b now. Black dots are initial samples. Stars are found by the optimizer in

the later steps. The red star indicates the finally determined point, which is corresponding to the optimized

governing field shown on the right. Note that the model is cut from nose to neck for giving a disk-like topology.

We apply this numerical scheme of optimization to all examples presented in this

section and can effectively obtain the optimized results (see Fig. 3.9 for the result ob-

tained on a freeform surface). More examples can be found in Section 3.3.6.

EXTENSIONS

Many target shapes of knitting are axially symmetric. The knitting map aligned with the

governing field is also preferred to be symmetric to produce symmetric knitwear. We can

impose this requirement of symmetry on the boundary condition by reducing the vari-

able b from 4D to 2D. The same BO-based scheme can still be applied to compute the op-

timized governing field, and the computation becomes faster as the optimization is con-

ducted in a lower dimensional space now. The progress of optimization and the result

of imposing this symmetry requirement on the skull cap model are shown in Fig. 3.15.

Note that only samples in the upper-triangle of the 2D domain are feasible by ensuring

the constraints presented in Eq. (3.8).

Because the harmonic fields are boundary aware, optimized Dirichlet regions are

usually found between sharp corners on the boundary ∂M. It is possible to search the

optimized value of b among the vertices with sharp angles. Then the optimization space

is reduced and the results can be obtained with shorter computing time. Nevertheless,

we did not use this strategy in our tests in order to keep the generality of our method for

cases without significant sharp angles.

3.3.6. RESULTS AND DISCUSSION

IMPLEMENTATION DETAILS AND HARDWARE

The computation method proposed in this section has been implemented by Python to-

gether with C++. Since we usually only need to compute geodesic distance around a wale

curve in a small band region, a maximal propagation distance is imposed for the consid-
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eration of efficiency. For Bayesian optimization, we used the source code provided by

the authors of TuRBO [47]. The computation of all examples presented in this section

can be completed within 1-10 minutes, which is much shorter than the physical knitting

time which could be up to 1.5 hours. Scalar field visualization in this section is based on

Polyscope [163].

We have tested our computational pipeline to design and fabricate a variety of exam-

ples with different 3D shapes. Two knitting machines are used to fabricate the examples

given in this section to show the generality of our method. One One is Shima Seiki Mach

2XS153 [164] – a fully computerized knitting machine, which is an industrial-level ma-

chine having four needle beds with 15 needles per inch. Note that only two beds out

of that four are used throughout our knitting process as models considered in this sec-

tion all have the disk-like topology. The stitch size knitted by the Shima Seiki machine

is 1.4 mm × 1.3 mm. The saddle model in Fig. 3.9, the skull cap in Fig. 3.19, and the

sock in Fig. 3.20 are all knitted by the Shima Seiki machine. The knitting maps gener-

ated by our method can also be used to supervise the knitting operations on a Brother

KH868 household machine [23] in a semi-automatic manner. The stitch size knitted by

the Brother machine is 3.5 mm × 2.8 mm. The triple-peak shown in Fig. 3.21 is knitted

by the Brother machine.

DIVERGENCE-BASED METRIC

A hemisphere example is employed to demonstrate the correlation between our metric

defined by field divergence and the actual number of required transfer stitches. In this

experiment, we sampled 100 different boundary conditions randomly, and run through

the whole pipeline by each boundary condition to generate stitch meshes for counting

the number of transfer stitches. The results are shown as the scatter points plotted in

Fig. 3.16, which clearly show an approximately linear relationship. This result indicates

that the divergence-based metric defined in our work is a good estimation of the required

transfer stitches.

ROBUSTNESS TO RESOLUTION

In our approach, the harmonic field is computed by solving a Laplacian equation, which

is less sensitive to the mesh resolution. Using cotangent discretization of the Laplace-

Beltrami operator, the differential equation is discretized as a linear system. The dis-

cretization of the divergence operator is also less sensitive to the mesh resolution. We

evaluate the robustness of the whole pipeline for computing the divergence-based met-

ric by giving boundary conditions. As shown in Fig. 3.17, the skull cap model is meshed

into 7 different levels of details. Ten random boundary conditions are given to evaluate

the values of divergence-based metrics on these 7 resolutions, and the result for each

boundary condition is plotted as a curve of the chart with the triangle number as the

horizontal axis in the logarithmic scale. Ten curves are generated, from which we can

conclude that the divergence-based metric is robust to the mesh resolution. As a con-

sequence, we can perform the optimization on a low-resolution proxy of the mesh for

better efficiency.
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Figure 3.16: The chart on a hemisphere model shows the relationship between the divergence-based metric

(the horizontal axis) and the number of required transfer stitches (the vertical axis).

MULTIPLE LOCAL MINIMA

The objective function of our optimization is non-convex. The optimizer may find mul-

tiple local minima. We usually pick the best one among them. However, some of the

others are also valuable as the candidates to inspire more design of different knitting

plans (see Fig. 3.18 for an example).

SEAM REMOVAL

When only using the short-row shaping to knit the skull cap model, the seam cuts still

need to be added even after cutting along the seam from nose to neck to make it homeo-

morphic to a disk (see the left of Fig. 3.19). After using both short-row and short-column

shaping techniques, the skull cap can be knitted without additional seams as the right

of Fig. 3.19. Similar conclusions can be made from examples such as the sock (Fig. 3.20)

and the triple-peak models (Fig. 3.21). Wale curves in closed loops can be effectively

avoided when stitch transfer is applied.

DISTORTION REDUCTION

Although stitch meshes generated by geometric computing can give a good approxima-

tion of the target shape, the knitted fabrics are still distorted [221]. This is caused by the

fact that the stitches as elements in a stitch mesh are often not identical to their ideal

shapes, i.e., rectangles or isosceles triangles. In this study, we compute the rest shape of

a designed stitch mesh by using the geometry processing method presented in [20]. We

evaluate the rotation-invariant distortion of each polygonal element on the stitch mesh.

Colormap of the per-element distortion is shown in Fig. 3.21. As wale curves with sharp

angles can be avoided after using the short-column shaping, the distortion is effectively

reduced.
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Figure 3.17: Study of the metric’s robustness to the mesh resolution. The horizontal axis is a sequence of

meshes in different resolutions. The vertical axis gives the value of metric defined in Eq. (3.1) normalized

by the total area. The robustness is tested on 10 randomly generated boundary conditions, each of which is

plotted as a curve.

DISCUSSION AND FUTURE WORK

Thanks to the generality of our optimization framework, it is possible to extend this work

in several directions. For example, the L1 norm is currently employed in our objective

function. It will be interesting to study how the effectiveness of optimization can be

changed by using other general Lp norms.

It is challenging to find the exact constraint for the maximally allowed number of

transfer stitches. First of all, it is influenced by many factors, including the machine con-

figurations, the elasticity of yarn, the structures/patterns to be knitted, the tension of the

machine (the carriage and the pull-down system), and the original width of the fabric,

etc. Secondly, conducting a trial experiment reaching the limit of a knitting machine may

lead to mechanical damage (e.g., breaking the needles). One possible future research is

to study the manufacturing constraints caused by stitch transfer systematically.

3.3.7. CONCLUSION

To generate reliable 3D digital knitting maps by using both short-row and short-column

shaping, we present a field optimization method to minimize the number of transfer

stitches that are considered the major sources of manufacturing problems such as miss-

transfer, yarn stretching, yarn abrasion, etc. Locations of Dirichlet boundary conditions

are formulated as the variables for optimization. It is impractical to directly include the

module of stitch mesh generation in the loop of optimization. Alternatively, we define

a new metric based on the divergence of cogradient field, which can indirectly measure

the number of transfer stitches. Moreover, we also develop a modified stitch mesh gen-
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Figure 3.18: The optimizer TuRBO is able to find multiple local minima of the non-convex objective. Besides

the one gives minimal value for the objective function (the left one), some other local minima also provide

meaningful design – see the right one, which is a plan commonly employed in industry.

eration algorithm that can generate wale curves more tightly aligned with the isocurves

of a governing field.

The results obtained in experimental tests are very encouraging. Our computation

framework requires very little manual operations and therefore can significantly improve

the level of automation in digital knitting. By being able to automatically search a ‘best’

governing field, this method can effectively reduce the distortion on the knitted 3D fab-

rics.

3.3.8. EXTENSIONS OF THIS WORK

I have extended the reliable 3D knitting design method from sheet knitting (e.g., disk-

like topology) to tube knitting, concurrent with the writing of this dissertation. The main

extensions are summarized below.

For tube knitting, courses of the stitch mesh are aligned with the isocurve directions

of the governing field, being the same as AutoKnit [134] but different from the methods in

Sections 3.2 & 3.3. Therefore, the divergence measurement is applied on the normalized

gradient vector field ĝ, instead of the cogradient field Jĝ. For the normalized gradient

field, the measurement is still an effective estimation of the transfer stitch number, veri-

fied by both theory and numerical experiments. A special case is a divergence-free field

corresponding to transfer-free knitting. If the normalized gradient of a governing field f

totally equals the cogradient of a smooth geodesic distance field, then the induced knit-

ting map should be transfer-free (for the same reason as Eq. (3.4)). The same conclusion

can be drawn from the relation between the geodesic curvature [42] of isocurves and

the divergence of normalized gradient (see [41]). If the target shape is a surface of revo-

lution, then there is a transfer-free governing field, in which the isocurves are identical
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Figure 3.19: The skull cap model knitted by using (left) only short-row shaping and (right) both short-row and

short-column shaping techniques. Both the stitch meshes and the knitted results are presented here. It can

be observed that the additional seams at the corners of the eyes are not necessary anymore when the short-

column shaping is allowed to use.

Figure 3.20: The sock example can be seamlessly fabricated by digital knitting using the stitch mesh (left)

generated by our field-based optimization approach. The knitting result (right) perfectly fits the input shape

of the feet which is 3D printed. The stitch mesh circled by dash-lines is a result generated by only using short-

row shaping – therefore an additional seam is needed.

to the meridians (rotations of the generating curve). Surfaces isometric to a surface of

revolution also have transfer-free governing fields.

By analyzing the field divergence, some intuitive choices of the initial governing field

can be found. One may find the Fiedler vector of the mesh’s Laplacian to approximate

the shape’s ‘diameter direction’. Another option is to find the field orthogonal to the ‘di-

ameter direction’, imitating the geodesic distance field on a surface of revolution. The

initial fields are optimized by modifying their boundary conditions. The initial bound-

ary conditions are usually defined on distinct vertices. They are extended as several

curve segments to reduce the divergence-based metric. Users may design the govern-

ing field manually, during which the divergence-based metric can indicate unreliable

regions with high divergence values.

Once a scalar governing field is optimized, a stitch mesh aligned with the field is gen-

erated. Firstly, the whole shape is decomposed into several simple components along

field isocurves according to the singularities of the field. Each component is either home-

omorphic to a disk or a tube. Then isocurve segments of the scalar field are extracted

uniformly according to the gradient norm of the field (not according to the field value).

In regions with smaller gradient norms, the field value varies slowly and the isocurves
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(a)

(b)

Figure 3.21: The result of triple-peak example by using (a) only short-row shaping and (b) both short-row

and short-column shaping techniques. Colormaps are presented to illustrate the per-element distortion. The

knitting results are also given.

are extracted more densely. After that, regions between neighboring isocurve segments

are tessellated with quad-dominant meshes. Columns, including short-columns, are

formed by tracing elements on these meshes. At last, the column curves are resampled

uniformly. Regions between neighboring column curves are tessellated considering the

knittability constraints. Shape components homeomorphic to disks are tessellated with

the same graph-based method as this section. Those components homeomorphic to

tubes are tessellated with a greedy graph search method. Experiments show that both

cases are processed successfully.

This extension refined the work of this section. It considered the problem of gov-

erning field design as embedding the shape into a compact set in R
1. The embedding’s

objective is defined as a divergence-based metric, which plays a similar role as the met-

rics defined for 2D embeddings, i.e., planar parameterization [172]. Lots of work have

been conducted on 2D embeddings while 1D embedding still needs further research.

3.4. CONCLUSION

In this chapter, we presented two stitch mesh generation methods: one uses only short-

row shaping and the other uses both short-row and short-column shaping. By using the

short-column technique, the distortion is reduced and some sewing seams are avoided,

though it is slower when short-columns are involved.

Compared to the flattening-based method in the previous chapter, these two direct

methods are more automatic and thus easier to use. Users may pick boundary condi-

tions to generate the governing field or just rely on the automatically optimized bound-

ary conditions. The graph-based stitch mesh generation method guaranteed knittability.

The complicated continuity adjustment steps, like that of the flattening-based method,
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are largely reduced.

Compared to the other methods in the literature, our method is the first to control

distortion using a diffusion term to make shaping stitches scattered instead of gathered.

Our short-column knitting method is also the first to consider knitting stability by opti-

mizing the knitting direction governed by a field. Transfer stitches, the main causes of

knitting instability, are reduced after optimization. The proposed method can also be

generalized from sheet knitting to tubular knitting, as discussed in Section 3.3.8.

3.A. ALGORITHM DETAILS

In Section 3.2, geodesic distance fields are computed on triangular meshes with polyline

sources. In Sections 3.2 and 3.3, isocurves are extracted on scalar fields defined on tri-

angular meshes. Some details are presented here. The source code of both algorithms is

available in MeshUtility [106].

3.A.1. POLYLINE-SOURCED GEODESIC DISTANCE

A polyline-sourced geodesic distance field computation method is proposed in [16] by

extending the vertex-sourced MMP (Mitchell, Mount, and Papadimitriou) method [126]

of the exact shortest path algorithm on triangular meshes. We use a subdivision-based

method that is easy to realize by using Danil Kirsanov’s implementation of [126].

Figure 3.22: To approximate the geodesic distance

on a triangular mesh (solid lines) from a polyline

source (dashed), we subdivide the mesh by adding

splitting edges (dotted).

Given a triangular mesh with an edge

collection C on it, we approximate the

geodesic distance field sourced from C. We

subdivide the edges in C to simulate the

geodesic distance from the interior points

of the edges. It is clear to see the approxi-

mation error is bounded by the source edge

length after subdivision, using the triangle

inequality. Each edge can be subdivided

into more segments to reduce the error. An-

other solution is to compute multiple dis-

tance fields while moving the subdivision

points along the edges. For each vertex on the original mesh, the minimum value on

all fields is the desired result. If two edges of a triangle belong to C, we first split the face

by adding a vertex before splitting the edges, like the bottom-right triangle in Fig. 3.22.

Fast-marching is an approximate method supporting polyline-sourced computation

by nature. A recent survey paper Crane et al. [35] reviews different types of geodesic

distance computation methods comprehensively.

3.A.2. ISOCURVE EXTRACTION

Given a scalar field defined on a surface, an s-isocurve is the curve composed of all points

with field value s on the surface. It is also referred to as isoline, contour, or level set. With-

out the loss of generality, we extract the 0-isocurve of a piece-wise linear scalar field f de-

fined on triangular mesh M. The extracted isocurve should be a 1D manifold whenever



3.A. ALGORITHM DETAILS

3

69

it is possible, to benefit the downstream applications, such as splitting the mesh along

the extracted isocurve (Section 2.B). Our algorithm consists of the following rounds for

robustness:

1. Vertex round: checking each vertex v if f (v) = 0. We use a user-defined tolerance

for this checking. All vertices on 0-isocurve are indexed.

2. Edge round: checking each edge if it intersects 0-isocurve in its interior. All inter-

sected edges are indexed. Cases covered in the last round are skipped.

3. Face round: extracting the 0-isocurve on each face, by connecting the points in-

dexed in the last two rounds.

f1

f2 f3

f4

f5

f6

f7

Figure 3.23: Possible situations of triangles intersecting an isocurve (the dashed line). Among three vertices of

a triangle, there may be zero ( f1,2), one ( f3,4,5), or two ( f6,7) vertices located on the isocurve.

In the last round, the situation of each triangle vi (i = 0,1,2) can be denoted as a

triplet T = (t0, t1, t2) , in which ti ∈ {+,−,0}, representing f (vi ) >,<, or = 0 respectively.

All possible situations of a triangle are classified according to the number of its vertices

on 0-isocurve. Examples of each type are shown in Fig. 3.23. Now we treat T as order-

independent for simplicity.

• No vertex on isocurve.

– T = (−,−,+) or (−,+,+): extract a segment on this face ( f1 and f2 in Fig. 3.23).

– T = (−,−,−) or (+,+,+): empty.

• One vertex on isocurve.

– T = (0,−,+) extract a segment ( f3 in Fig. 3.23).

– T = (0,−,−) or (0,+,+), empty ( f4 and f5 in Fig. 3.23).

• Two vertices on isocurve.

– T = (0,0,−) or (0,0,+), extract the edge connecting two on-curve vertices ( f6

and f7 in Fig. 3.23).

• Three vertices on isocurve: T = (0,0,0). All three edges of the triangle are isocurve

segments. The solution of this special case should be adjusted based on the end

goal of the isocurve.



3

70 3. DIRECT 3D KNITTING DESIGN BY STITCH MESH GENERATION

All segments are connected in the last. Since we have indexed all isocurve vertices

on mesh vertices or mesh edges, duplicate vertices will not be generated. The connected

polyline may not be manifold if it passes a saddle point of the scalar field.



4
4D KNITWEAR DESIGN FOR BODY

MOTION

WHERE TO PUT ELASTIC STRUCTURES?

4.1. INTRODUCTION

Designing clothing that considers the movement of the body is an age-old problem in

the garment industry. Computer graphics research has advanced many aspects of gar-

ment design, enabling perfect-fit 3D garments for varied body shapes (e.g., [24, 127]).

Physics-based optimizations have also been employed to support both aesthetic design

and comfort. Recently, the apparel industry has introduced innovations to vary elasticity

in knitwear allowing customization for body motion, which is referred to as 4D garment

design. However, existing methods mainly rely on experience and intuition. Our work

presented in this chapter enables the computational design and fabrication of 4D gar-

ments as knitwear. It tackles the research question (RQ2): how to design a motion-aware

4D knitwear and generate its machine instructions. In industry, the quality of a garment

can be evaluated as the perfect-fit between the cloth and body. According to interviews

with garment experts, relative sliding is the most direct measurement when garments

under motion are considered. As explained in Fig. 4.1, the stress in the garment and the

sliding of the garment over the body need to be controlled to achieve desired comfort

and perfect-fit. On the one hand, large stresses in the garment caused by firm materials

can lead to uncomfortable stretch and compression. On the other hand, when using soft

materials, sliding of the garment over the body can lead to unwanted wrinkles. We in-

troduce a computational pipeline to control stress and sliding on clothes by distributed

This chapter has been published in: Z. Liu, X. Han, Y. Zhang, X. Chen, Y.-K. Lai, E.L. Doubrovski, E. Whiting,

and C.C.L. Wang. Knitting 4D garments with elasticity controlled for body motion, ACM Trans. Graph., 40(4),

2021. doi: 10.1145/3450626.3459868. A few small corrections and/or clarifications have been made to the

original published text.
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(a) (b)

(c)

max

0.0

Figure 4.1: During the body motion of swinging arms, a perfect-fit 3D garment can have: (a) large stress when

using firm materials – leading to uncomfortable pressure or (b) large sliding when using soft materials – re-

sulting in unwanted wrinkles. Both factors are considered in an integrated way on a knitwear with optimized

distribution of elasticity as a 4D garment (c) that minimizes the stress and controls the maximal sliding during

body motion. Stresses and displacements are visualized as color maps and black arrows respectively, where

the maximal stress is 40.75kPa. Our work enables a computational framework for designing 4D garments and

automatically fabricating them on digital knitting machines. A knitwear as 4D garment is physically fabricated

by knitting different ‘percentages’ of firm and soft yarns in different regions. We make the regions of differ-

ent elasticity visible by using firm yarns in light-blue and soft yarns in white. Sliding trajectories on physical

specimens are evaluated by a vision-based method and displayed as black curves.

elasticity for improving the comfort in motion, with a focus on the challenging case of

tight fitting garments.

Compared to conventional 3D garment production techniques (sewing), digitally

knitted clothes show the following advantages:

• The capability to generate garments with numerous ‘darts’, which are automat-

ically ‘sewed’ together on knitted clothes and therefore fabricate garments with

complex 3D freeform surfaces (Chapter 3).

• The capability to use mixed yarns in different regions that can locally control the

level of elasticity to absorb deformations on human bodies in motion (see Fig. 4.1).

In our approach, we utilize these two capabilities to produce 4D garments.
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4.1.1. OUR METHOD

To enable the design and fabrication of knitwear with controlled elasticity distribution,

we first precisely fabricate the designed 3D shape by digital knitting, and then realize the

elasticity variation in different regions by single-jersey jacquard (or jacquard for short. It

is also referred as fair isle) with two yarns. These two components are strongly coupled.

Specifically, without a fabrication method to perfectly realize the designed 3D shape, the

garment will deform when worn on the body. In our work, we aim for the default pose

to have uniform stresses (achieved by 3D shaping); then the elasticity assignment is only

concerned with stresses and deformations that arise from motion. The stitch meshes

generated by our algorithm use only the short-row knitting strategy to form 3D geome-

try, which can be executed on a knitting machine more efficiently. A tiling algorithm is

employed to assign jacquard patterns on the stitch mesh to realize the designed distri-

bution of elasticity.

In summary, we present the following technical contributions in this chapter:

• A method to generate machine knitting code for 3D garments with locally varying

levels of elasticity, using different jacquard patterns with two yarns (one soft and

one firm).

• An iterative algorithm to assign different levels of elasticity in different regions of

a garment so that the deformation under body motion can be optimized. We con-

sider reduced stress and controlled sliding to achieve 4D garment design.

To our knowledge, this is the first approach to simultaneously optimizing the comfort

(reducing stress) and the perfect-fit (avoiding wrinkles caused by large sliding) under

motion by tuning the elasticity of knitwear that can be automatically fabricated by digital

knitting machines.

4.1.2. RELATED WORK

CLOTH SIMULATION AND GARMENT DESIGN

After the pioneering work of simulating 3D clothes as deformable objects [200], many

computational methods have been developed in the computer graphics community to

simulate the physical behavior of clothes on human bodies in motion (e.g., [8, 52]). The

method of [11] can parse patterns made by professional designers and automatically

generate virtual fitting results. With the help of these simulation and forward design

techniques, inverse design of garments can be generated by optimizing the planar pan-

els to achieve the desired effect of clothes fitting [100, 9, 190]. In another aspect, the

so-called design transfer function [24, 124, 205] can be realized by generating the same

fitting results when applied to human bodies in different 3D shapes and poses [4]. Lim-

ited by the means of fabrication, these methods often compute planar panels as the out-

come. When sewn back into 3D garments, the elasticity is not tailor-made. In contrast,

our approach enables programmable elasticity on 3D knitwear which can be digitally

fabricated.

In order to simulate the physical behavior of knitted fabrics more precisely, compu-

tational models have been developed to simulate knitted cloth at the yarn level [137, 77].

The concept of the stitch mesh is introduced by [221] to provide a canvas-like abstraction
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Figure 4.2: Sleeve gusset and crotch gusset (gray regions) are inserted into a seam to add breadth or reduce

stress from tight-fitting clothing.

of the yarn model although it is not guaranteed to be knittable. With the help of these

two techniques, [95] developed an interactive tool for designing yarn-level patterns for

both knitted and woven cloth. Although these computational tools at the yarn-level are

available in the literature, we, however, simulate garments with distributed elasticity at

the level of triangular meshes for the sake of computational efficiency, where the or-

thotropic material properties are calibrated experimentally (ref. [207]) and assigned to

each triangular element. The cloth simulator, ARCSim [132], embedded with the func-

tion of adaptive anisotropic remeshing [131, 130] can capture physical behavior in more

detail while using a relatively coarse mesh as input. In our algorithm of inverse design,

we modify the simulator to enable the assignment of different elasticity on different tri-

angular elements.

Skintight garments applied to human bodies with tight-fitting clothing have been

widely used in casual fashion, sportswear and medical treatment applications [127, 91,

204]. The work of [91] has considered aesthetic factors to develop an evolution process

for inverse design of panel layout on 3D human bodies, which can be fabricated from

planar panels generated by flattening algorithms (e.g., [206]). Physics-based computa-

tion is introduced in [204] to generate optimized 2D panels according to prescribed pres-

sure distribution on a 3D body shape. Recently, [127] proposed a physics-based method

to compute 2D panels of skintight garments by incorporating body deformation in mul-

tiple poses, pressure distribution, and seam traction into design objectives. Differently,

our method does not have restrictions of 2D panels, enabling more accurate capture of

the 3D shape. Moreover, we optimize the distribution of fabric elasticity based on phys-

ical simulation of garments during body motion, and propose a computational pipeline

to enable automatic fabrication on digital knitting machines.

In the garment industry, designers insert a triangular or rhomboidal piece of fabric

into a seam to add breadth or reduce stress from tight-fitting clothing. The inserted piece

is named as gusset. A sleeve gusset and a crotch gusset are shown in Fig. 4.2. The gusset

is folded and unfolded during body motion, which provides more flexibility. This is a

simple realization of 4D garments. If the inserted gusset is never folded under motion, it

only contributes to the 3D shaping, like the design in Fig. 3.1. Then it is not a 4D garment
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for motion. Gussets are the places we add materials, which is dual to darts, where we

remove materials.

COMPUTATIONAL FABRICATION OF KNITWEAR

Related work of computational design of knitting have been discussed in the previous

chapters. Among these related works, the interface developed in [82] allows users to

specify both the knitting primitives and the stitch patterns. Different stitch patterns

are designed in a way like image editing. However, the difference in elasticity observed

on different knitting patterns has not been adopted for functional usage. No prior re-

search has been performed to enable the programmable tailor-control of elasticity on a

knitwear. Note that 4D garments mentioned in this work are different from the soft ac-

tuated garments [1] and self-folding textiles [87], where the deformation is generated on

clothes by knitted actuators and residual strains, respectively.

INVERSE DESIGN OF DEFORMABLE OBJECTS

Designing distributed elasticity on garments is related to a wider range of inverse design

applications that consider structural strength and deformation behavior of deformable

objects. An inverse design approach was proposed in [116] for garments made from

non-flat rest shape. Combinations of different materials and therefore tailor-made elas-

ticity were adopted as design variables in [12, 169, 217] to achieve a desired deforma-

tion behavior. Besides multiple materials, structural strength [142, 29], cellular micro-

structures [160, 138] and composite silicone [222] have also been inversely designed for

desired deformation in prior research. Because of complex physical phenomena that

are difficult to simulate accurately, the properties of physical models are often captured

by a data-driven methodology in these approaches (e.g., [12, 160, 138, 226, 222]). The

same strategy is employed in our approach to capture the elasticity of different jacquard

patterns by knitting two yarns – one soft and the other firm.

Elasticity on woven fabrics has been employed in applications of computational fab-

rication. Small structures [56] and layouts of inextensible polymer [143] are 3D-printed

on stretched fabrics to form desired shapes after releasing stretch. Planar panels of fab-

ric containers inflated by pressurized air [170] and pressures of injected viscous fluid are

inversely designed using orthotropic material properties of fabrics. The same material

model is employed in our physics-based inverse design, where the material parameters

are measured from physically fabricated jacquard patterns.

4.2. ELASTICITY BY SINGLE-JERSEY JACQUARD

We adopt the jacquard technique to generate distributed elasticity for the same reason

that we use short-row 3D shaping: efficiency and feasibility on low-cost machines (i.e.,

even for those with only one needle-bed). Jacquard is a technique to knit two or more

yarns together when moving the carrier horizontally. Specifically, two yarns with dif-

ferent elasticity levels (soft and firm) are employed in our approach. The soft and firm

yarns are led at different heights by the carrier, and the needle hooks are shifted to their

corresponding height to determine which yarn is used to form the loop.

When altering the arrangement of the two yarns, different elasticities can be formed

by changing the periodic pattern. See Fig. 4.3 for three example patterns that result in
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Figure 4.3: Different from stretching a fabric knitted by using a single jacquard pattern (a), different elongations

can be observed when using three different jacquard patterns (b). Yellow denotes soft yarns and blue is used

for firm yarns. Three different jacquard patterns represented by yarn-level models and their corresponding

strain-force curves (in horizontal and vertical tensile tests) are given in (c). When designing different jacquard

patterns, floats are controlled within the lengths allowed by reliable machine knitting. The average stitch sizes

of different jacquard patterns are also given.
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Inverse Design(a) (b)
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Jacquard Patterns

n̂
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Stress Field

Inverse Shape

Material Distribution

M̃

Figure 4.4: Our computational design and fabrication pipeline to produce 4D knitwear with elasticity con-

trolled for body motion: (a) data-driven material tests of jacquard patterns and the geodesic distance-field

F (·) on a garment M for assigning orientations for knitting stitches and orthotropic material simulation, (b)

progressive updating of the soft / firm material distribution, (c) knittable stitch mesh generated on the in-

verse geometry, (d) jacquard patterns assigned on the stitch mesh and (e) the resultant knitting map. Note

that, after computing the inverse geometry M̃ of the garment to compensate for the variation of shrinkage ra-

tios, the orientation of each triangle in orthotropic material simulation is re-evaluated on an updated geodesic

distance-field F̃ (·). Collapsed cells are not marked as gray on the knitting map. So are the other knitting maps

in this chapter.

different strain-force curves. In single-jersey jacquard fabrics, the same knitting map

can still be used to govern the machine operation. A remaining problem is how to assign

the jacquard information to a knitting map. We present a tiling algorithm in Section 4.3.4

for this purpose.

When starting to knit a new course, loops in the previous course are taken off the

hooks of the needles. Although the distances between neighboring needles are constant,

loops formed by different yarns will shrink into different sizes. The elasticity control

on a knitted garment needs to take this variation of shrinkage into consideration. We

compute the inverse geometry of a 3D surface for incorporating this factor (see Section

4.3.3).

The three jacquard patterns in Fig. 4.3 are selected out of 13 patterns. More patterns

with controlled float lengths can be designed to realize more elasticities. However, their

strain-force curves may be intersecting. More importantly, if more patterns are used in

the knitwear design, the region of each pattern on the garment will be smaller. Since we

measure the homogenized physical properties of the jacquard structures, the structure

areas should be significantly larger than a repeat unit of the patterns. Therefore, only

three patterns with distinct elasticities are used here.



4

78 4. 4D KNITWEAR DESIGN FOR BODY MOTION

4.3. DESIGN AND FABRICATION OF 4D KNITWEAR

Given a 3D garment M, the shape of which is designed around the human body H in a

static pose, we evaluate the performance of M under a prescribed body motion of H for

comfort on a physical simulator. Specifically, for comfort evaluation the maximal stress

σmax is measured on M among all elements at all time steps during the motion. The

maximal sliding dmax between M and H in a user-specified region Ω is also detected

during the whole motion sequence. The computational design and fabrication problem

to be solved here is 1) to find a distribution P of elasticity that minimizes σmax while

controlling the allowed maximal sliding distance as dmax ≤ d̄ , and 2) to determine a knit-

ting map K that can realize P by jacquard patterns with two yarns. d̄ is a user-defined

threshold.

We tackle the problem by first computing the distribution of elasticity Pe at the el-

ement level according to predefined jacquard patterns and then generating the knit-

ting map K that can realize Pe by these jacquard patterns. The pipeline is illustrated

in Fig. 4.4.

4.3.1. INVERSE DESIGN OF DISTRIBUTED ELASTICITY

The physical properties of elasticity that can be realized by jacquard patterns are deter-

mined by a data-driven method similar to [207]. Our flat sheets knitted from uniform

jacquard patterns are simulated effectively by an orthotropic fabric model with physical

properties measured as in [207]. The first step of our computational pipeline determines

the orientation of knitting structures for each piece of a garment M. A base line that in-

dicates the knitting direction is defined by the user. The base line can be selected from

the feature curves of the garment (e.g., the central line of a front / back piece) or speci-

fied according to a desired direction of knit stitches. A geodesic distance-field F (·) of the

base line is computed to determine the orientation of stitches by assigning 1) the weft

direction as the gradient of F (·), ∇F , and 2) the wale direction as n̂×∇F with n̂ being

the surface normal. With these assigned weft / warp directions (see the illustration in

Fig. 4.4(b)), the material orientation in the orthotropic model can be determined and

used in the physical simulation below.

The elasticity distribution is determined on M at the triangular element level by a

greedy algorithm.

1. First, two simulations are conducted with the soft and the firm materials to obtain

their corresponding maximal stress and sliding as (σs
max,d s

max) and (σ
f
max,d

f
max)

respectively.

2. We then initialize with a uniform distribution of firm material by assigning the

material level as 0. Here we adopt different material levels as: 0-firm, 1-medium,

2-soft.

3. Regions with large stresses are progressively assigned into soft and medium by us-

ing the following steps (see Fig. 4.4(b)).

• Regions of the designed domain with stress value larger than 90% of the cur-

rent maximal stress are assigned as soft using material level 2.
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• The filtering step is applied to perform 5 iterations of Laplacian smoothing

on the material levels as floating-point values on all triangular elements.

• Quantization is conducted by rounding the material level from floating-point

value back to integer as {0, 1, 2}, to generate a new material distribution in

discrete levels.

4. After updating the material distribution, the simulation is run again to obtain the

updated σmax and dmax.

5. Go back to (3) or stop the iteration when dmax > d̄ .

4.3.2. ENABLING MACHINE KNITTING

Given a distribution of elasticity Pe assigned on M, we compute the knitting map K in

four steps to realize this 4D garment.

1. Inverse geometry computation. To compensate for the variation of shrinkage ra-

tios among different jacquard patterns, an inverse geometry of M is computed as

M̃ (see Fig. 4.4(c)). Computing stitch meshes on the inverse shape M̃ will then in-

corporate the pattern-specific shrinkage ratio on the rest shape M (Section 4.3.3).

As the geodesic distance-field on M̃ is changed to F̃ (·), this step is also included in

the routine of inverse design to re-assign the material orientation of each triangle.

2. Knittable stitch meshes are computed on the inverse geometry M̃ by using the

geodesic distance-field F̃ (·) (see Fig. 4.4(c)). Quadrangles / triangles of a stitch

mesh (short-row-only) are constructed between F̃ ’s isocurves by optimizing the

shape of facets and repulsing the location of triangles, which is formulated as find-

ing a shortest path on a graph. The algorithm is presented in Section 3.2.

3. Jacquard patterns are assigned to the knittable stitch meshes to realize the dis-

tributed elasticity (see Fig. 4.4(d)). A flooding algorithm is employed to determine

the local row / column indices of tiling. An algorithm based on minimal spanning

tree (MST) is developed to minimize the discontinuity in Section 4.3.4.

4. The knitting map that can be executed on a machine is generated from a stitch

mesh (see Fig. 4.4(e)). The location of each stitch (quadrangle or triangle) on a

knitting map can be determined by assigning it with the sorted indices of course

and wale (see Chapters 1 & 3).

The knittable stitch mesh and knitting map generation method have been presented

in previous chapters. Next, we present how jacquard patterns can be realized on the

stitch meshes. A method to compensate for the variation of stitch sizes is first intro-

duced. After that, we present a tiling algorithm that minimizes the discontinuity while

assigning jacquard patterns.

4.3.3. STITCH-SIZE COMPENSATION

As analyzed in Section 4.2, stitch size is not uniform on jacquard fabric. The variation of

stitch sizes is not negligible if two jacquard patterns with different elasticity are knitted

on the same fabric (as illustrated in Fig. 4.5). Similar to the strategy of homogenization
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(a)

(b)

Input Shape

Rest Shape

Inverse Shape

Rest Shape

Figure 4.5: Caused by the different average stitch sizes presented on the knitted regions with different elasticity,

unwanted wrinkles can be observed on both the physical knitting result and the rest shape obtained from

simulation (a). The problem can be solved by computing an inverse shape to generate the stitch mesh and the

knitting map – see (b) for the improved physical and simulation results.

applied for evaluating the elasticity on different jacquard patterns, we measure their av-

erage stitch sizes on the physical specimens. The size variation is compensated on the

input triangular mesh M by computing an inversely deformed shape M̃. The basic idea

is that a region should be enlarged when it is assigned with a pattern having stitch-size

smaller than the standard size sw × sh . Inversely, the surface area should be reduced if

the assigned pattern’s stitch-size is larger than the standard size. In our implementation,

the standard size is obtained by measuring the average of stitches on a knitted fabric us-

ing completely firm material. Note that, the stitch size variation of jacquard patterns is

orthotropic, i.e., it could be larger than the standard size along one direction but smaller

along the other direction.

By assigning the required elasticity (i.e., the corresponding jacquard pattern) to each

triangle f ∈M, f ’s shape on the inverse geometry M̃ can be determined as f̃ . When the

average stitch-size of jacquard pattern assigned to f is s̃w × s̃h , the scaling ratio sw /s̃w

is applied to obtain f̃ . A global shape of M̃ can be obtained by blending these scaled

triangles and following the Shape-Up iteration routine [20]. The source curve of geodesic
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distance-field is obtained on M̃. Then, an updated geodesic distance-field F̃ (·) can be

computed on M̃. The isocurves are extracted as wale curves using the constant width

sw . We sample an even number of segments on each curve. The segment length on

f̃ ∈M̃ is s̃h sw /s̃w , so that the stitch size on f̃ is (s̃w sw /s̃w )×(s̃h sw /s̃w ). That is to say the

stitch size on f ∈M is s̃w × s̃h , the same as the design target, if we undo the scaling.

There is another method that does not require inverse shape computing for stitch-

size compensation. We can use different propagation speeds to get the distance field

F on M. The propagation speed ‖∇F‖ is constantly 1 when computing the geodesic

distance field. If ‖∇F‖ = sw /s̃w on face f , we can still extract isocurves using width sw .

Then the geometric wale width on f is s̃w . The distance field can be computed by fast-

marching using the implementation in [106].

(b)

(c)

(a) (d)

L̄ = 5.19L̄ = 147 L̄ = 38.7

L̄ = 1.79

Figure 4.6: Tiling the designed jacquard patterns onto a stitch mesh. Tiling by direct flooding ((a) & (b)), where

the order of flooding has been illustrated as green paths shown on the patch in (b). The bold black curves

illustrate the boundaries of neighboring stitches with incompatible jacquard patterns – discontinuity. To re-

duce the length of incompatible curves, we compute them by constructing a minimal spanning tree (MST) to

connect all apexes (shown as red points in (b) & (c)) and use all boundary nodes as a common virtual node (see

the blue point shown inside the circles of (c)). As a result, the discontinuity can be significantly reduced (see

the tiling result shown in (d)). The jacquard pattern shown in Fig. 4.3 is employed in (a) and (d) to demonstrate

the discontinuity. The total length of incompatible boundary curves L̄ is also given for every model.

4.3.4. TILING OF JACQUARD PATTERNS

The designed jacquard patterns are tiled on the stitch mesh to realize the designed dis-

tribution of elasticity in physical fabrication. First, the stitch mesh is segmented into

different regions according to the assigned patterns. After that, each region with the

same jacquard pattern is tiled independently.

To tile a jacquard pattern with dimension m×n onto a region of a stitch mesh is to de-
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termine a pattern coordinate (ī , j̄ ) for each stitch Fi , j in the region, where (i , j ) denotes

the course and the wale indices for a stitch. A proper tiling of a local neighborhood on

the stitch mesh should be identical with neighborhood on the jacquard pattern. For two

stitches Fi , j and Fp,q that are edge-neighbor to each other, the difference between their

course-wale indices should be consistent with their pattern coordinates (by considering

the winding). Specifically, the following conditions should be satisfied:

p − i ≡ p̄ − ī ( mod m), q − j ≡ q̄ − j̄ ( mod n). (4.1)

When these are not satisfied, the pattern coordinates assigned to Fi , j and Fp,q are con-

sidered as incompatible. All the boundaries of incompatible neighbors (see the bold

black curves shown in Fig. 4.6) form a seam of tiling, where the discontinuity of pat-

terns will lead to errors in elasticity and thus needs to be minimized. Source of the tiling

incompatibility is the irregular vertices at the apexes, where the number of adjacent el-

ements is not four. Moreover, the incompatibility at one apex will also propagate to 1)

the boundary of a patch or 2) the other apexes (see the black curves shown in Figs. 4.6(a)

and (b). Therefore, it cannot be entirely eliminated when apexes are present in a stitch

mesh.

A flooding algorithm can be employed to assign the pattern coordinate of each stitch

progressively by incorporating the above condition of compatibility. The order of flood-

ing can be either breadth-first search (BFS) or any other orders that ensure to visit ev-

ery stitch once. However, randomly determined order (and also BFS) can generate long

seams (see Fig. 4.6(a) for an example).

Study shows that the incompatibility is caused by apexes and propagated along some

seams into other apexes or the surface boundary. To reduce the incompatibility on a

stitch mesh, we introduce an algorithm based on minimal spanning tree (MST) to mini-

mize the length of seams. First of all, a graph Υ is constructed by considering every apex

as a node. All boundary vertices of the region to tile are considered as a common virtual

node in Υ. An edge between two nodes on the graph Υ is constructed by computing the

shortest path between them that travels along the edges of the stitch mesh. The length

of this path is employed as the weight of the graph edge. The MST computed on Υ gives

a tree of connected paths with minimal total length. When applying the flooding algo-

rithm while avoiding crossing the paths determined by the MST tree, the total length

of seams is minimized (see Figs. 4.6(c) and (d)). In fact, Steiner trees will produce the

shortest seams by definition. The MST here is an approximation of the Steiner tree.

4.4. RESULTS AND DISCUSSION

4.4.1. HARDWARE AND IMPLEMENTATION DETAILS

We have tested our computational pipeline to design and fabricate a variety of examples

with controlled elasticity. All examples presented in this section are knitted on a fully

computerized Shima Seiki SVR093SPSV machine, which is a widely used industrial level

machine having two needle beds with 14 needles per inch. Two different yarns – 40S

cotton yarn (firm) and 75D rubber yarn (soft) are employed to realize different elasticity

by jacquard patterns on the Shima Seiki machine. We generated the jacquard patterns

manually considering the maximally allowed float length – that is less than 12 stitches on
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(a) Firm material (b) Soft material (c) Progressive updates to soft region

max

0.0

Figure 4.7: Designing leggings with elasticity controlled for squat motion: (a) result by using firm material –

with large stresses but small displacements, (b) the result by only using soft material – with small stresses but

large displacements, and (c) progressive results by enlarging the soft region to reduce stresses while keeping

small displacements. Stresses are displayed as a color map in all results (max = 3.9464kPa), and the displace-

ments are visualized as a vector field in which the magnitudes are rendered as arrows with different lengths.

d̄ = 2.2cm is employed as the terminal threshold of inverse design.

the Shima Seiki machine we used. We tested 13 patterns and selected the A-B-C patterns

in Fig. 4.3 to give maximal, medium and minimal elongation in the course direction.

When all stitches are knitted by 40S cotton yarn, we obtain the standard stitch size as

sw = 1.25mm and sh = 1.00mm. The average stitch sizes of different jacquard patterns

can be found in Fig. 4.3.

When designing the distribution of elasticity, the cloth simulator ARCSim [132] that

supports anisotropic materials, is employed to evaluate stresses and displacements dur-

ing the whole sequence of body motion. We modify their code to permit assignment of

different material properties at the triangle level, which enables the simulation of clothes

with distributed elasticity. Accurate friction is difficult to model since aside from contact

forces, it is also affected by skin roughness, local curvature, etc., and may vary in dif-

ferent regions for the same person. For example, elbows may produce higher friction

than upper arms. We used the Coulomb friction model [22] (provided within ARCSim)

to approximate the friction between cloth and human body. Specifically, we adopted a

ball draping experiment to calibrate friction, thickness, density, bending and stretching.

The friction coefficient remains unchanged during simulation. The homogenized mate-

rial properties of different jacquard patterns can be obtained by the data-driven method

presented in [207].

Motion data of mannequins, i.e., the long-sleeve example in Fig. 4.1, is captured by

using markers for registration [110]. The legging example in Fig. 4.7 is extracted from the

deformable human body in SMPL [111].
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Figure 4.8: The knitting map for the back piece of the 4D garment shown in Fig. 4.1. The zoomed-in views

show the tiled jacquard patterns in different regions. The knitting machine used in physical fabrication is also

shown.

4.4.2. KNITWEAR AS 4D GARMENT

We present results for our proposed method on controlled distribution of elasticity to

produce 4D garments. We first apply the inverse design algorithm presented in Section

4.3.1 on an example of leggings. As shown in Fig. 4.7, when fabric with a single material

is applied, the motion of a half squat either 1) results in large stresses in the hip and knee

regions when using firm material (see Fig. 4.7(a)) – causing discomfort in these regions;

or 2) generates large sliding in the thigh region when applying uniformly soft material

(see Fig. 4.7(b)) – thus forming unwanted wrinkles by friction. These simulation results

are very close to our daily experience. Starting from the region with large stress, our in-

verse design algorithm progressively enlarges the area of soft material while controlling

the maximally allowed sliding (displacements) during the body motion. The progressive

results of our algorithm are shown in Fig. 4.7(c).

Similar progressive results to generate 4D garments are shown for a long sleeve gar-

ment (see Figs. 4.1 and 4.4). The deformation caused by lifting the right arm is prop-

agated from the arm to a large area on the back when single soft material is used for

the whole garment. After using different elasticity in different regions, the deformation

decays within a smaller region. Using soft material in the shoulder region also helps to

reduce the stress and therefore makes the garment more comfortable. The knitting map
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4D Soft

firm material

soft material

Figure 4.9: One-shoulder knitted top with prescribed material distribution to achieve a desired shape. Firm

material on the shoulder produces a stiff style, while soft material on the torso ensures comfort. From the

simulation, it can be found that the style cannot be achieved using a uniformly soft material.

with tiled jacquard patterns for this garment is given in Fig. 4.8.

Fig. 4.9 shows a one-shoulder top design. The distribution of elasticity is specified

by a designer, who adopts firm material in the shoulder region for styling purposes. Our

pipeline provides a useful tool for designers to enable their ideas, achieving both the de-

sired shape and the desired comfort. See the simulation and physical fabrication results

in Fig. 4.9. Knitting maps for all 4D examples can be found in Fig. 4.10.

4.4.3. DISCUSSION

The main limitation of our approach is the simplification of conducting physical simu-

lation at the triangular mesh level instead of the yarn level (i.e., homogenization is ap-

plied). As a consequence, we cannot optimize the distribution of elasticity at the yarn

level. The distribution is also updated by heuristically assigning soft material at regions

with large stresses instead of sensitivity analysis, which relies on the fast and accurate

computation of physical models. Moreover, the orientation of orthotropic materials

used in the simulation is assigned according to the geodesic distance-field F (·). After as-

signing different elasticities and computing the inverse geometry, the geodesic distance

field will be changed. Therefore, the orientations of triangles in the material space can

also change. In short, the fabric orientation in simulation and the varied inverse geom-

etry caused by different distributions of elasticity are coupled. This is the other reason

why we can only use the simulator to ‘validate’ a distribution of elasticity (the greedy

method in Section 4.3.1) rather than conduct an optimization based on sensitivity anal-

ysis. It will be interesting to explore the technique of homogenized yarn-level simulation
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One-shoulder (Front)

One-shoulder (Back)
Legging (Right)

Figure 4.10: Knitting maps of 4D examples: leggings and one-shoulder top. For the symmetric pair of leggings,

only the right part is given here.
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[178] in future work.

When controlling the shape approximation error of a 3D knitted fabric, we intro-

duced a heuristic to generate scattered apexes. Possible future work is to incorporate

physical simulation in the loop of stitch mesh generation so that the locations of apexes

can be optimized to further reduce the shape approximation error. Moreover, a simple

friction model was employed in our simulation cycle. We plan to explore whether more

precise prediction of sliding is possible when sophisticated friction models such as AR-

GUS [98] are used.

Constrained by float length, the maximal tile size used in our framework is 12×12.

Within this range, the tile sizes are allowed to change freely in our pipeline as the varia-

tion is very small compared to the dimension of a full-size garment. Strong deformation

is not observed at the discontinuous boundary of tiles. However, it has significant influ-

ence on the appearance and increases the chance of generating floats longer than the

maximally allowed length.

4.5. CONCLUSION

We present a computational pipeline to enable the design and fabrication of 4D gar-

ments as knitwear with elasticity controlled for body motion. A distribution of elasticity

that can be realized by jacquard patterns using two yarns is computed by a physics-

driven method. The optimized elasticity on the garment is converted into a knitting

map to be executed on digital knitting machines. We have developed new algorithms

for this computational pipeline, including distortion-controlled 3D knitting by a short-

row shaping technique, tiling to generate jacquard patterns with higher continuity, and

shape compensation for incompatible stitch sizes. We verified the performance of our

approach on a variety of examples in both simulation and physical experiments. The

results are encouraging: both the large stresses that cause pressure and the large sliding

that can lead to discomfort are significantly reduced on the 4D garments produced by

our pipeline.
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5.1. INTRODUCTION

(a) (b) (c) (d) (e)

Figure 5.1: The pipeline of scanning to knitting. Using different sensors (a), 3D body shapes and poses (b)

can be captured. After analyzing the body model (c), knitting maps (d) can be generated and knitwears (e) are

fabricated.

Capturing the customer’s body shape is crucial for garment customization. Tradi-

tionally, tailors take the measurements by hand. Nowadays, different sensors, e.g., cam-

eras and 3D scanners, can be used. In this chapter, I first present three types of body-

capturing methods for individuals. Then knitwear designs are generated using the meth-

ods developed in the previous chapters. This chapter tackles the last research question

(RQ3): how to capture an individual’s body models in different poses for 3D/4D knitwear

customization.

The human body capturing methods are categorized according to the input data:

The knitted sock in this chapter has been published in: Z. Liu, X. Han, Y. Zhang, X. Chen, Y.-K. Lai, E.L.

Doubrovski, E. Whiting, and C.C.L. Wang. Knitting 4D garments with elasticity controlled for body motion,

ACM Trans. Graph., 40(4), 2021. doi: 10.1145/3450626.3459868.
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• Multiview RGB images captured by a multiview system.

• A pair of depth images captured by two depth sensors, e.g., Kinects.

• A single RGB image captured by common cameras, including smartphones.

The multiview system is expensive but gives the highest accuracy among these three

methods. 3D reconstruction from a single RGB image is an ambiguous problem. We

predict the 3D shape with machine learning techniques. The accuracy is the lowest.

The price and accuracy of the Kinect-based method are in the middle of the other two

approaches.

Relevant human body modeling methods using these sensors have been studied in

existing works. The multiview system is easy to use. However, the scanned human body

needs to be analyzed for garment making or other downstream applications. In Sec-

tion 5.2, a template-fitting method is presented to segment the regions of interest from

the scanned mesh, which is simple and easy to implement. In Section 5.3, a dual-Kinect

calibration method is presented, which only relies on a planar board without any mark-

ers. The single-image based reconstruction method in Section 5.4 estimates hair and

garment details that other works, like [78, 196], fail to.

Given the target body shape, we can design both body-tight garments and loose gar-

ments (Section 5.5). Body-tight garments can be extracted from the 3D body model di-

rectly. Loose garments are designed by style transferring given a template garment de-

sign and the corresponding reference body model.

5.2. BODY MODELING BY A MULTIVIEW SYSTEM

A multiview system (also referred to as a scanner, Fig. 5.2) captures RGB photos from

different views covering the human body. The 3D human body can be reconstructed

from these photos using the photogrammetry method. The workflow is briefly described

below.

1. Photo capturing from different views.

2. Image feature extraction and matching. Feature points are extracted from photos

and described as feature vectors (e.g., using [107]). Corresponding points from

different views are matched taking advantage of the feature vectors.

3. Sparse reconstruction. If a feature point is observed in multiple photos, then it is

possible to recover its 3D coordinates. Even if the camera’s intrinsic parameters

are unknown, a 3D structure, that differs from the truth up to a transformation,

can be reconstructed [59]. A sparse 3D point cloud and camera parameters are

obtained in this step. This step is referred to as structure-from-motion (SfM).

4. Dense reconstruction. A dense 3D point cloud can be generated using the photos

and estimated camera parameters. This step is named multi-view stereo (MVS).

5. Surface reconstruction. A surface mesh is reconstructed from the dense point

cloud.

Understanding the pipeline and photogrammetry principles benefits the scanning.

For example, all cameras in the scanner should be synchronized to capture the human
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Figure 5.2: Inside of botscan PRO S. More than 70 digital single-lens reflex (DSLR) cameras capture the scene

(e.g., a human) inside the scanner from different viewpoints. This is a stitched panorama photo with distor-

tions.

body at the same time. Otherwise, the structure-from-motion step will be inaccurate if

the body moves between the captures of different cameras. A physical point can be re-

constructed if it is observed from multiple cameras. Therefore the cameras should cover

different viewpoints while overlapping their neighboring cameras. A physical point can

be reconstructed if its projections are detected as feature points in multiple images. Thus

regions with uniform colors or glossy material are difficult to reconstruct. The scanning

quality will be improved if the person to be scanned wears diffuse material clothes. More

details are available in the tutorial [144]. Numerous works have been done in this area,

which will not be discussed here.

The term photogrammetry is used to describe the reconstruction workflow, which

implies 3D measurements from photographs. It also covers other techniques like photo-

metric stereo. In this section, we mainly used SfM and MVS.

We used the botscan PRO S1 system, as shown in Fig. 5.2. Its cameras are well-

designed for view coverage and overlapping. It is equipped with four DLP projectors

to project feature patterns, which can be used when scanning 3D objects or human bod-

ies with uniform colors. The scanner has fiducial markers (TRIP [112]) as ground control

points for metric reconstruction [59]. Photos are exported to commercial photogram-

metry software RealityCapture2 for reconstruction. In our experiments, the open-source

software COLMAP [158, 159] is also practicable.

5.2.1. TEMPLATE FITTING

The multiview system reconstructs the human body as a surface mesh with textures.

Semantic information, like the positions of the neck, shoulder, and waist, is necessary for

garment design. I use template fitting for this purpose. Given an articulated human body

1https://www.botspot.de/
2https://www.capturingreality.com/

https://www.botspot.de/
https://www.capturingreality.com/
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(a)

(b) (c) (d) (e)

Figure 5.3: The template fitting process. 2D keypoints are detected on the rendered views (a) of the scanned

3D mesh. We reconstruct 3D keypoints (dark yellow balls in (b)) from the 2D views. An initial template model

(an instance of SMPL, wireframe mesh in (c)) is estimated using the 3D keypoints. After the gradient-free

optimization, the SMPL model (d) is better aligned with the scan (see the left arm and the right chest). The

optimization iterations take around one minute. Finally, we project all SMPL vertices to the scanned mesh (e).

Predefined information, such as the segmentation in (e), can be projected to the scanned mesh. Images in (a)

are blurred to protect privacy. The scanned mesh is semi-transparent in (b–d).

template (like SMPL [111]) with pre-defined body keypoints, we can fit the template onto

the scanned mesh to get the body keypoints on the scan.

SMPL (Skinned Multi-Person Linear model [111]) is a parametric human body tem-

plate with a fixed mesh topology. Given a set of parameters Θ including body shape

parameters, joint rotations, and the global translation, SMPL generates a meshS(Θ) rep-

resenting a corresponding human body shape. For each human body keypoint (like the

belly button, eyes, and joints), the indices of relevant vertices are fixed since the mesh

topology is fixed. The keypoint information helps both template fitting and garment

design.

Given a scanned mesh M of a minimally-clothed body, the template fitting objective

is to find the optimal SMPL parameter Θ such that

Θ= argmin
Θ

∑

pi∈S(Θ)

wi d2
(

pi , M
)

, (5.1)

in which d(p,M) is the nearest distance from point p to mesh M. For this non-convex

optimization, a gradient-based method is proposed in BodyNet [196]. We use the (1+1)

evolutionary algorithm [44] implemented in [147] to optimize the problem in a gradient-

free manner, which is simple yet effective.
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In the objective function Eq. (5.1), we use weights wi to adjust the importance of the

vertices on the SMPL model. They are the Voronoi area of each vertex on the default

shape of SMPL. In our optimization, the distances in the head, hands, and feet regions

are not important. The weights of those vertices are set as zeros. The indices of those

vertices are directly retrieved using the predefined body-part information.

The template-to-scan distance is used in Eq. (5.1) to measure the fitting error. We

may also use the inverse direction, i.e., the scan-to-template distance, or both direc-

tions. The advantage of template-to-scan distance is that some spatial data structures,

like an AABB tree, can be constructed from the static scan to accelerate the distance

query in optimization iterations. The scan mesh can also be simplified (or decimated)

for acceleration.

The initial correspondence between the scan and template is crucial in the optimiza-

tion. Wrong correspondence means a template point p is projected to a distant point

on scan M, e.g., an arm point projected to the torso. To obtain a good initial template

(SMPL parameter), we estimate 3D body keypoints from 2D body keypoints, thanks to

the robust off-the-shelf 2D body keypoint detection tools [25]. Given the textured mesh

M of a standing person, we render it as images (Fig. 5.3) from multiple views sampled

around M. On each image, we detect 2D body keypoints using OpenPose [25]. For a 3D

keypoint, its 2D projection on each view constrains it on a 3D line based on the view’s

projection matrix. Multiple view projections formulate the sum of squared point-to-line

distances as a least-squares problem, from which the 3D keypoint locations are esti-

mated. Details of this part are given in Section 5.A. We estimate the initial SMPL param-

eter from the solved 3D keypoints, using VPoser (the variational human body pose prior)

proposed in [141]. In this step, a conversion from SMPL-X [141] to SMPL is involved.

5.3. BODY MODELING BY A DUAL KINECT SETUP

Some depth cameras (or range sensors), such as Microsoft Kinect and Intel RealSense,

have been developed for gesture-based user interfaces, for example, video games. They

capture the depth information through structured light or time of flight. Researchers use

Kinect as a 3D scanner since it has a millimeter-level accuracy and the price is even lower

than a DSLR camera.

The output of each Kinect is a depth image, on which each pixel is corresponding to a

3D point. Thus we treat the depth image as a point cloud. The coordinates of the points

are defined in the Kinect’s camera space, i.e., a coordinate frame rigged with the camera.

Same to the multiview RGB image-based method, it is better to use multiple Kinects at

the same time, instead of moving a Kinect around the person being scanned. Scanning

static 3D objects other than the human body is easier. The rigid point cloud registration

methods (Section 2.C.1) can be used to align them together.

I propose to use the dual Kinect setup as shown in Fig. 5.4. There are two Kinects

K1 and K2 facing each other, with a distance of around 2m. The person being scanned

stands in the middle and faces K1. Then K1 scans the front side and K2 scans the back

side. Two Kinects are triggered at the same time, producing two frames of point clouds.

If the relative position between two Kinects is calibrated, two frames of point clouds can

be merged together using the calibrated transformation matrix. The calibration result

works for all scans thereafter if the setup is not moved.
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Figure 5.4: Setup of the dual Kinect capturing system. A board is scanned for calibration. The blue/red point

clouds are scanned by two Kinect separately. (3D models of the Kinect and the tripod are downloaded from

GrabCAD.com, uploaded by Tommi Sintonen and Casey Rayback respectively.)

5.3.1. CALIBRATION

Two Kinects are facing each other. The point clouds captured by them have little overlap.

Thus ICP type registration methods can not be used. We use a board for the calibration.

Each Kinect captures one side of the board. Two planes captured by two Kinects are par-

allel. When we rotate the board several times, the transformation between two Kinects

is estimated. The board should be flat with a uniform thickness. Both sides of it should

be easy to capture by Kinects, i.e., they can not be dark, shiny, or transparent.

Usually, boards with chessboard patterns or ArUco markers are used for calibration.

In [90], a polyhedron with markers is used. However, these patterns are captured by

the RGB camera on Kinect, of which the location is different from its depth sensor. Our

calibration process only relies on the depth sensor, although it takes time to rotate the

board.

The calibration process is to find a transformation matrix that converts the points in

the camera space of K2 to K1. First, we measure the thickness of the board c. Then, we

hold the board in the middle of two Kinects and capture it. This step is repeated for k ≥ 3

times with the board rotated. In a valid new scan, the board can not be parallel with any

of the previous poses. Next, we detect the planes of the board in the point clouds.

Now we have k pairs of planes: n1,i · (x−p1,i ) = 0 in K1 and n2,i · (x−p2,i ) = 0 in K2,

for i = 1, . . . ,k. Plane normals n j ,i are unit vectors pointing outward the planes. Consid-

ering the virtual middle plane of the board, it is n j ,i · (x− (p j ,i − (c/2)n j ,i )) = 0. Denoting

p̂ j ,i = p j ,i −(c/2)n j ,i , we have that n2,i ·(x−p̂2,i ) = 0 and n2,i ·(x−p̂2,i ) = 0 are actually the

same mid-plane defined in two camera spaces of K1 and K2. There exists a rigid trans-

formation (R |t) that converts planes in space K2 to K1. The rotation block R maps plane

normals from K2 to K1, i.e.,

R
(

n2,1 n2,2 · · · n2,k

)

=−
(

n1,1 n1,2 · · · n1,k

)

. (5.2)

A linear system is obtained by transposing both sides of the equation. When k > 3, the

linear system is over-determinant, which can be solved in the least-squares sense. The

GrabCAD.com
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matrix obtained from the solution may not be orthogonal. We use SVD again to ensure

R is a valid rotation matrix. Next, we solve for the translation block t. We have known

that the points p̂2,i in K2 can be mapped to R p̂2,i + t in K1. The mapped point is on the

mid-plane, i.e.,

n1,i · (R p̂2,i + t− p̂1,i ) = 0. (5.3)

This is another linear system by taking all i = 1, . . . ,k, from which the only variable t is

solved.

Now we finished the computation for calibration. Two Kinects cover most regions on

the body, which is sufficient for garment design.

5.3.2. TEMPLATE FITTING

The point cloud captured by the dual Kinect setup is fitted with a template (SMPL [111])

for garment design. The basic idea of the fitting is the same as that of the last section. We

optimize SMPL parameters to minimize

Θ= argmin
Θ

∑

pi∈C

wi d2
(

pi , S(Θ)
)

, (5.4)

The weights can be wi = 1 constantly after a uniform sampling. A downsampling of

point cloud C also accelerates the optimization. For some point p ∈ S(Θ), the point-to-

cloud distance (p to C, like that in Eq. (5.1)) might be large if p’s corresponding point is

not captured in C. Therefore the inverse direction, cloud-to-template distance, is used in

the objective function. The gradient-free optimizer still works in this task. 3D keypoints

can still be used to estimate an initial template. At last, the fitted SMPL template can be

used for garment design, being the same as the previous section.

5.4. BODY MODELING FROM A SINGLE IMAGE BY DUAL DEPTH

REPRESENTATIONS

5.4.1. INTRODUCTION

In this work, we propose a machine learning based method to predict the 3D shape of

human bodies in general poses from a single RGB image, which can greatly simplify the

means to create 3D models for knitwear design and other downstream applications. For

example, the predicted 3D mesh model can be used to generate human bodies in differ-

ent shapes and poses after rigging with a parametric model, as shown in Fig. 5.5. This

enables a more user-friendly interface for the application of virtual clothes try-on – i.e.,

generating appearance images of a user’s body shape in target clothes with customized

poses.

Recently, several methods have been proposed to tackle the problem of reconstruct-

ing 3D human bodies from single images. Some works, such as Bogo et al. [15], Kanazawa

et al. [78], applied template parametric models, like SMPL [111], to predict a 3D body

shape and also the pose parameters from an input image. With a strong prior of body

shape, these approaches can often produce reasonable results but have difficulty in cap-

turing details like hair and cloth. To overcome this difficulty, Varol et al. [196] use a

voxel-representation to predict the 3D shape of human body through Deep Neural Net-

works (DNNs), which is more flexible to capture the geometric details. However, the
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(a) (b) (c) (d) (e)

Figure 5.5: By using a single RGB image (a) as input, our approach is able to predict a complete 3D human body

(b) together with textures (c). The predicted 3D model can be further integrated with the parametric human

model – SMPL [111] to easily change the shape (d) and the pose (e) of a human body in applications such as

virtual try-on and reenactment.

voxel-representation used in their training pipeline has a lot of redundancy – i.e., only

boundary voxels are contributing to the shape description. As a result, memory con-

sumption is very high. This hinders the management of datasets with high resolution

in DNNs. Some other works, like [196], represent the human body with voxels, which is

more flexible to model details. However, voxel grid representations are redundant. Only

voxels at the shape boundaries are informative, whose distribution is sparse. Differently,

depth images that are more memory efficient than voxels are employed in [232] to rep-

resent 3D human bodies. However, a depth image only partially represents the 3D shape

of a human body (e.g., front-view), which does not provide enough information for the

aforementioned applications.

In this work, we propose to represent the 3D shape of a human body by a pair of

depth images – named as Dual-Depth Representation (DDR), which contains two chan-

nels resembling two frames scanned from two opposite views (see Fig. 5.6 for an illustra-

tion). The 3D geometry of a human body is almost completely described by DDR (Sec-

tion 5.4.3), except for those occluded regions or the regions tangential to the viewing

directions. As already proved in [103], the surface of a human body can be successfully

reconstructed from two scans when proper viewing directions (e.g., front and back) are

selected.

Generating the DDR of a 3D human body from a single image can be considered an

image-to-image translation problem when considering DDR as two additional channels

of an input image viewing the human body along the same direction. Benefiting from

DDR’s compatibility with a 2D image, we can formulate the problem of DDR generation

in the framework of a conditional Generative Adversarial Network (cGAN) – pix2pix [72].

However, it is observed that directly predicting DDR from RGB by a single cGAN may

miss an essential part of a body if there is severe self-occlusion. Therefore, we enrich

our framework by feeding it with the image-model pairs together with 2D keypoints of

skeletons that are pre-estimated from 2D images (ref. [25]). When the input image is
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taken along a direction different from the front-view, the missed region on a predicted

DDR could be relatively large. A DNN is trained to repair the missed region by viewing

the DDR along other viewing directions. Details of DDR prediction and missed region

repairing can be found in Section 5.4.4. As a result, very accurate predictions of 3D hu-

man bodies can be generated from input 2D images – we observe an average error of

3.2cm per pixel per channel on our test set.

5.4.2. RELATED WORK

3D shape representation for deep learning: In recent years, a lot of research has been

carried out in the area of deep learning for 3D models. Different from 2D images, it

is not trivial to find a representation for 3D shapes that is not only suitable for neural

network architecture but also able to encode geometry details. The most straightfor-

ward approach is to represent its occupancy on regular 3D grids as a 3D tensor (i.e.,

voxels [196, 108]). Voxel-based representations are memory expensive. As non-zero el-

ements in voxel grids are usually sparse, several methods are proposed to compress the

volumetric representation. Octree based approach [149, 185, 209] is one of the compres-

sion strategies, which fits into deep learning architectures with improved data structures

for fast access. Another strategy is proposed in [151], which uses 6 orthogonal depth

maps from 6 sides of the voxel grid to reduce memory consumption.

Besides voxels, point cloud [48, 75] and mesh [208] have also been used for deep

learning. These methods are more flexible to represent geometry details, but the opera-

tions are also more expensive because the structures of these geometric representations

are not as good as regular grids. Recent effort has been made to develop graph-based

convolutional networks that can be directly computed on a triangular mesh [208]. Fur-

thermore, it has also been proposed to represent 3D shapes as 2D images captured from

multi-views [180, 101], which is suitable for shape recognition but not for the applica-

tions of reconstruction as the 3D information, like correspondence between views, is

discarded.

Human body reconstruction from 2D images: For reconstructing the 3D human body

from a single RGB image, although the approaches for general shapes (like [184, 48, 185,

208]) can be used, the state-of-the-art results are usually achieved with a method specifi-

cally developed for the articulated human bodies. A lot of methods have been developed

by using human body templates. SCAPE [4] is one of the human body templates which

represent human shape and pose with a set of parameters. Several reconstruction meth-

ods, such as [7, 54], are developed based on SCAPE. In [111], a more accurate and simple

template SMPL is proposed. Many recently proposed methods [15, 78, 140] are based

on fitting body shape and pose parameters of SMPL. These methods usually can pro-

duce reasonable results by taking advantage of the template and a prior of parameters

to avoid self-intersection and impossible joint angles. Differently, [196] proposed to re-

construct a volumetric human model together with 2D/3D keypoints estimation within

a multi-task framework.

Researchers also tried to reconstruct 3D human bodies from multi-view images. A

multi-view reconstruction method is proposed in [3], where the SMPL template with

offset is used. The template with offset method is more flexible compared to the pure
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min

max

maxmincolor

(a) (b) (c) (d)

Figure 5.6: Dual-depth representation of a 3D human model: When a 3D model is projected onto the image

(a), a set of points on the 3D shape is projected at the same pixel (b). Points that have the minimum/maximum

depth are stored in the min/max channels of the dual-depth image respectively – see (c). The dual-depth

representation of a human model can be easily converted into a point cloud as shown in (d), which imitates

the two pieces of point clouds scanned from opposite directions of a human body – i.e., front and back views.

template, but still not able to generate geometric shapes that are far different from the

template, such as long open hair or skirts. In another multi-view approach, [189], a vol-

umetric representation is used.

Conditional image synthesis: Recently, conditional generative adversarial network (or

cGAN) has been demonstrated to synthesize high fidelity images [72, 233] under the

conditions of target image style and/or content. A general cGAN framework pix2pix is

proposed in [72] for image-to-image translation when paired training data is available.

Many problems of image processing and computer vision can fit into this framework,

such as denoising, inpainting and super-resolution. Conditional GAN has also been used

for view generation, especially clothed human view synthesis in [117, 166].

In this work, we adopt the pix2pix framework [72] for predicting the 3D shape of a

human body based on a newly proposed dual-depth representation. Moreover, cGAN

can be trained without paired supervision [233] , and can generate images with a high

resolution up to 1024×2048. [210]. Our framework of 3D body shape prediction from

a single RGB image is compatible with these features due to the properties provided by

DDR.

5.4.3. DUAL-DEPTH REPRESENTATION

A depth image I can be considered as the projection of a 3D model M onto the image

plane along the viewing direction. Each pixel of the image plane stores the minimum

distance between the pixel and its corresponding 3D points on the projected model. In

other words, a depth image only records the visible points from the viewpoint, which

results in a partial 3D representation of the 3D model.

In this work, we proposed to represent the 3D shape with a dual-depth image Dd

according to a viewing point d, which has two channels Dd = (Imin,Imax) storing both

the minimum distance (denoted by Imin) and the maximum distance (denoted by Imax)

along each projection line on a pixel (see Fig. 5.6). Imin covers all the points that are

visible at the viewing point d. Imax stores the points that are hidden ‘behind’ M but

ideally will be visible by viewing M from its ‘back’. With these min-max depth-channels,
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the 3D geometry of M can be better captured except 1) the regions that are occluded

from both the ‘front’ and the ‘back’ views and 2) the surfaces that are tangential to the

viewing direction.

For the purpose of predicting the 3D shape of a human body from a single RGB image

input, the dual-depth representation shows the following properties for supporting the

computation in the framework of cGAN:

• Completeness: First, it provides a more complete 3D representation compared to

a conventional depth image (i.e., with only Imin). In our experiments, DDRs cover

around 70% of surface areas, which is twice as much as the conventional depth

image.

• Compactness: Second, DDR is more compact than the voxel representations (ei-

ther binary voxel-sets or signed distance fields). The compactness makes both

the memory effectiveness and the computational complexity of the 3D prediction

problem similar to the other 2D image-to-image translation task. Therefore, it is

possible to achieve 256× 256 or higher resolutions on a normal hardware setup

(e.g., 512×512 on a single graphics card with 11GB memory).

• Compatibility: Third, DDR is well aligned with the input RGB image. The pixel-

wise correspondence, disregarding the blurry boundaries, helps to capture some

details that template-based representations can not handle. Moreover, this pixel-

wise structure of DDR is very compatible with the operators used in GAN frame-

works.

While compactness and compatibility can be concluded from analysis, we conduct ex-

periments to further verify the completeness of DDR below.

To study the capability for the geometric representation of DDR, a ratio of area cov-

erage is used for the quantitative evaluation. Given a watertight polygon mesh M and a

viewing point d, a DDR can be obtained and denoted by Dd(M). We define the area cov-

erage ratio r (Dd(M)) as the area of regions covered by Dd(M) to the total visible surface

area of M from any viewpoints outside M. The cumulative distribution of r (Dd(M))

for all Dd(M) in our dataset S (details will be explained in Section 5.4.5) is plotted as the

upper curve in the chart shown in Fig. 5.7, which provides statistical information about

the percentage (horizontal axis) of a representation’s coverage ratio above a given value

(as a point on the curve). Specifically, for a point (p̄, r̄ ) on the curve of DDR, it defines

that

p̄ =
#{Dd(M) ∈S , r (Dd(M)) ≥ r̄ }

#{Dd(M) ∈S}
(5.5)

with #{· · · } indicating the number of elements in a set. Three example DDRs at different

coverage ratios are selected and visualized as point clouds in Fig. 5.7. The DDR at the

left has a coverage ratio of 0.85, on which the missed parts are only caused by under-

sampling in the surface regions tangential to the viewing direction. The coverage ratio

of the DDR in the middle is 0.67, which can still express the overall 3D geometry. In our

test dataset S , 80% of DDRs covers areas more than this case. The worst case of DDR in

S is shown at the right of the figure with a ratio of 0.50. In this extreme case, almost the

full area of the model’s left arm is tangential to the viewing direction. In addition, the
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Dual-depth
Min-depth

Figure 5.7: Area coverage distribution of the dual-depth Dd(M) vs the minimal-depth image Id
min

(M) in our

dataset S . For the point on a curve corresponding to a representation, given the point’s vertical coordinate as

the coverage ratio r , the point’s horizontal coordinate indicates the percentage of models in the test dataset

satisfies this coverage ratio.

inside parts of both legs are missed due to occlusion. For models in such orientations,

keypoints indicating the skeleton of a human model are needed to successfully predict

the 3D shape of a human body from a single RGB input image. And the geometry of

missed regions can be recovered with the help of a view-based refinement network, the

detail of which can be found in Section 5.4.4.

As a comparison, the distribution of coverage ratio by using only the min-depth im-

ages is also plotted in Fig. 5.7, where the point on the curve can be obtained by replacing

Dd(M) in Eq. (5.5) by Id
min

(M). In summary, we can see that DDR makes a trade-off be-

tween completeness and compactness – i.e., offering a new representation that is suit-

able for single image based human body modeling.

5.4.4. FRAMEWORK FOR 3D PREDICTION

We propose a framework, as illustrated in Fig. 5.8, for predicting the 3D shape of a human

body from a single RGB image. The framework is mainly based on a conditional GAN for

DDR prediction. As an option, for a predicted DDR with a large area missed, a view-

based refinement module based on a deep neural network is conducted to complete the

occluded and tangential surface regions.

As a pre-processing step, 2D keypoints of a human model are estimated from the in-

put RGB image with resolution: w ×h. All the 2D keypoints on both the training and the

test images are generated by the off-the-shelf estimator, OpenPose [25]. The 2D coordi-

nates of 18 keypoints are generated for each image, including 13 body joints and 5 face

landmarks.
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Figure 5.8: Framework for 3D prediction of human bodies: Given pairs of RGB images with 2D keypoints and

DDR of ground-truth 3D models, a conditional generative adversarial network is trained. As an option, a view-

based refinement network can be used to further improve the predicted DDR from other viewpoints. Note

that, all models are scaled into the range of depth value at [−1,+1], and the centers of pelvises are placed at the

plane with zero depth value.

DDR PREDICTION

We now present the cGAN framework for predicting DDR of a human body from a single

RGB image and the 2D keypoints computed from the RGB image in the pre-processing

step. For each pair of 2D-3D image correspondence, we have a 3-channel input RGB im-

age, denoted as x1, an 18-channel of 2D keypoints, denoted as x2, and a 2-channel dual-

depth image, denoted as y . Note that, each 2D keypoint is stored as a w ×h heatmap,

i.e., a small-deviation Gaussian kernel located at the 2D keypoint. For illustration, all 18

channels of 2D keypoint heatmaps are composited as a gray-scale image and shown in

the top-left of Fig. 5.8. Now we need to train a mapping from this 21-channel image x to

a 2-channel image y , in which x is concatenated as (x1, x2).

Fitting the mapping from x to y is naturally an image-to-image translation problem.

We adopt the cGAN framework pix2pix [72] to solve it. In this cGAN, a generator G :

(x, z) 7→ y produces DDR output from the input information together with the random

noise z. A discriminator D is trained to detect the generator’s ‘fakes’. Adversarially, the

generator G is trained to predict DDRs that cannot be distinguished from the ground-

truth DDRs by the discriminator D . That is to say, G tries to minimize the loss function

below while D tries to maximize it,

LcGAN(G ,D) = Ex1,y [logD(x1, y)]+

Ex,z [log(1−D(x1,G(x, z))].
(5.6)

In addition to the above GAN loss, an L1 loss below is used to encourage the output
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G(x, z) to be close to the ground-truth y ,

LL1(G) = Ex,y,z [‖y −G(x, z)‖1]. (5.7)

Different from the output RGB images in other applications (such as photo synthesis

in [72]), the output images as DDR in our framework have very clear geometric meanings

to present a solid model, the surface of which must be smooth and regular. To impose

this constraint on the outcome of our cGAN, another L1 term defined in the gradient

domain below is added to encourage more smooth results.

L∇(G) = Ex,y,z [
∥

∥(∇h +∇v )
(

y −G(x, z)
)∥

∥

1], (5.8)

in which operators ∇h and ∇v are gradients along the horizontal and vertical directions

respectively.

After incorporating all these terms, the final objective of our cGAN is formulated as

G∗
= argmin

G
max

D
LcG AN (G ,D)+

λ1LL1(G)+λ2L∇(G).
(5.9)

Note that, the same as [72], the noise z appears in the form of dropout in generator G at

both training and testing time. The values of λ1 and λ2 are picked empirically. We use

λ1 = 0.03 and λ2 = 0.06 in this framework for DDR prediction.

In our dataset, foreground pixels of DDR, i.e., pixels representing the human body,

are normalized into the range of [−1,+1] and the pelvis center depths of human models

are placed at the plane with zero depth value. At background pixels, the values are filled

with extrema ±1 as a result of the z-buffer algorithm [119]. This leads to a jump between

the foreground and background depths at the boundary of foreground regions. As a re-

sult, the performance of DDR prediction will be mainly influenced by the foreground-

background boundary, instead of the interested region (i.e., foreground), because of its

large variance in depth value. To solve this problem, a background centering compensa-

tion is used, which is similar to the commonly used data pre-processing method of zero

centering [96]. We assign the depth values of all background pixels (no matter in Imin

or Imax) to be zero. After this, the network in our prediction framework is easier to be

trained, and the foreground and background pixels are easy to be distinguished.

VIEW-BASED REFINEMENT

After predicting the DDR from a single RGB image, the overall 3D shape of a human

body is well captured when the input image is taken along a proper viewing direction

(e.g., the front view as shown in Figs. 5.6 (c) & (d). However, the occluded and the tan-

gential regions are missed in general. To complete these missed regions, we propose

a view-based refinement step to predict the missed regions from a DDR predicted by

the aforementioned cGAN. The view-based refinement is realized on a general encoder-

decoder DNN, which is fed by the rotated 3D point cloud from a predicted DDR. The

output is a repaired point cloud with the missed regions repaired from the input point

cloud.
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(a) (b) (c)

Figure 5.9: View-based refinement of the lowest

coverage case. Input RGB image (a), predicted dual-

depth representation (b), refinement from four

other views (c).

Given a predicted DDR Dd, we first ex-

tract the foreground pixels of Dd by remov-

ing all other pixels with their depth value

between ±1cm. The foreground pixels are

then converted to 3D points. Next, the point

cloud is rotated around the vertical axis with

an angle φ, and the point cloud is rendered

as a new min-depth image Ir ot . Lastly, Ir ot

is fed into the refinement network. Then,

the repaired min-depth image Îr ot can be

obtained as the output of the network. Gen-

erally, the view-based refinement network

serves as a virtual scanner that ‘acquires’ 3D

depth image of a model from a new viewpoint. The training of this network is based on

paired data generated from the dataset of 3D models (detailed in Section 5.4.5).

In our experiments, four new views that are ±45◦ and ±135◦ from the current viewing

directions are used to refine the predicted models in DDR. The refined depth images are

converted into 3D points and fused into a single point cloud, as shown in Fig. 5.9. Pois-

son surface reconstruction [85] is employed to generate the mesh model for a predicted

3D human body.

5.4.5. EXPERIMENTS

DATASET

Our dataset S used for training the DDR prediction network and the view-based refine-

ment network is generated by using textured 3D human models. Part of the models is

from the Pose-Varying Human Model (PVHM) dataset, which is a collection of synthetic

human models released in [232]. PVHM contains 22 models with various appearances.

Each of them is deformed into up to 1,200 different poses, resulting in 10,200 textured

human models represented by polygon meshes. As models in PVHM are synthesized 3D

models, which in general lack realism when being rendered into 2D RGB images. To en-

rich our training dataset, we collected 688 additional human models from Trimble 3D

Warehouse3 – examples of which are presented in Fig. 5.10. Other widely used human

body datasets either have limited appearance types (e.g., Human3.6M [69]) or lack ge-

ometry details of hair and cloth (e.g., SURREAL [195]). We split all 3D models randomly

with a proportion of 70% for training (ST ), 10% for validation (SV ) and 20% for evalua-

tion (SE ).

Human models in ST are rendered to obtain ground-truth 2D (RGB) and 3D (DDR)

pairs for training. All models are posed to standing on the x-y plane with upright orien-

tation placed along the z-axis. The virtual camera for rendering is set at 6 meters away,

facing the center of the model horizontally. The focal length is fixed at 800 pixels. All 2D

RGB images are rendered in the resolution of 264×284 to be prepared for random crop-

ping in training. Each model in PVHM is rotated randomly 20 times along the z-axis,

while each model from 3D Warehouse is rotated 100 times for each. Camera settings

3https://3dwarehouse.sketchup.com/

https://3dwarehouse.sketchup.com/
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Figure 5.10: Example data collected from Trimble 3D Warehouse.

are the same for both the color and the DDR rendering. Different background colors,

floor textures, and light settings are used in color rendering to obtain more realistic and

diverse RGB images.

The dataset S is also used to train the view-based refinement network. Training of

the refinement network is conducted after the DDR prediction network is ready to use

after cGAN training. Input-output pairs for training the refinement network are prepared

as described in Section 5.4.4.

RGB images from the in-shop clothes retrieval benchmark of DeepFashion [105] are

used in our tests to evaluate the effectiveness of our method on real photos. All the im-

ages have a resolution of 256×256 pixels. Example results of DDR prediction are shown

in Fig. 5.11. It demonstrates that our approach can successfully reconstruct the 3D shape

of a human body from single images with varying viewpoint, pose, cloth, hair, and back-

ground.

IMPLEMENTATION DETAILS

Our networks are implemented with PyTorch [139]. The training and inference are per-

formed on a PC with a single GTX 1080 Ti GPU. When training the DDR prediction net-

work as a cGAN, we use the random cropping from 264×284 to 256×256 together with

the random horizontal flipping for the data augmentation. The batch size was set as 4,

and the network was trained for 4 epochs. Each epoch takes around 160 minutes. And

we set the learning rate at 10−4 for the first two epochs and 10−5 for the last two epochs.

For the view-based refinement network, the batch size and the number of epochs are the
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Figure 5.11: Example dual-depth images as the results of prediction. It is easy to find that dressed 3D human

bodies in a variety of body shapes and poses can be successfully ‘reconstructed’ from input RGB images.

same as above. Similar learning rates are used in the epochs, but the training takes much

shorter time than cGAN (i.e., around 50 minutes per epoch).

Our network architectures are akin to [72]. The DDR prediction network is a condi-

tional generative adversarial network (cGAN) consisting of a generator and a discrimi-

nator.

The generator has an encoder-decoder architecture based on U-Net [150], which is

given by

• encoder: C64-C128-C256-C512-C512-C512-C512-C512,

• decoder: CD512-CD1024-CD1024-C1024-C1024-C512-C256-C128.

In this generator, the input has 21 channels, and the output has two channels. Sizes of

input and output are both 256×256. Each encoder layer downsamples by a factor of 2

while each decoder layer upsamples by the same factor of 2. A Ck layer is a convolutional

layer with k filters, followed by batch normalization (BatchNorm), except as otherwise

noted. All convolutions have kernel size 4, stride 2, and padding size 1. A CDk layer is a

Ck layer with a dropout rate 0.5 after BatchNorm. Activations are applied between the

convolutional layers. All activations in the encoder are leaky ReLUs, with a negative slope

of 0.2, while ReLUs in the decoder are not leaky. Activation in the last layer of the decoder

is a Tanh function. BatchNorm is not applied to the first C64 layer of the encoder.

The encoder-decoder has a U-Net architecture, in which each layer i in the encoder

is concatenated to layer n − i in the decoder, where n = 16 is the total number of layers.

Discriminator of the cGAN is applied on 70× 70 patches, of which the architecture

is given by: C64-C128-C256-C512. Notations for the layers are the same as that for the

generator. A Sigmoid function is used after the last layer to predict a one-dimensional

value between 0 and 1 for the input patch. The other activations are leaky ReLUs with a

negative slope of 0.2. BatchNorm is not applied to the first C64 layer.
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VIEW-BASED REFINEMENT NETWORK

The view-based refinement network has only an encoder-decoder architecture, which is

the same as the generator for DDR prediction, except that its input has 19 channels, and

the output has 1 channel.

LOSS FUNCTION

We use the dataset SE to evaluate the functionality (i.e., loss function) of our DDR pre-

diction network. Three metrics are used for the evaluation: the average error of an image

(EI), the average error per point (i.e., per pixel per channel, EP), and the average error of

gradient image (EG). Specifically, we have

EI =
1

N

N
∑

i=1

∥

∥

∥D
d
i −D

d∗
i

∥

∥

∥

1
, (5.10)

EP =
1

N

N
∑

i=1

1

2Mi

∥

∥

∥D
d
i −D

d∗
i

∥

∥

∥

1
, (5.11)

EG =
1

N

N
∑

i=1

∥

∥

∥(∇h +∇v )
(

D
d
i −D

d∗
i

)∥

∥

∥

1
, (5.12)

where N is the number of DDRs in the test set, and Mi is the number of foreground pixels

in the i -th DDR. All metrics are evaluated as L1 errors on foreground pixels only.

The evaluation results of the loss function in our DDR prediction network are shown

in Table 5.1. Different from the pix2pix implementation, the loss function used in our

network has an additional L1 term of gradients. It has been experimented to remove

this term (w/o gradient term), i.e., λ2 = 0 in Eq. (5.9). It can be found that the EI error

was slightly reduced when the gradient term was removed. However, the error in the

gradient domain increases by 16% at the same time. That means the gradient term can

significantly improve the output gradient while almost achieving the same L1 loss. Sim-

ilar results were also observed to achieve better results after adding the gradient term

in [136].

EI EP (cm) EG

w/o gradient term 278.770 3.061 206.016

w/o bg. centering 310.443 3.412 263.467

full loss 287.818 3.167 182.074

Table 5.1: Test error of DDR prediction networks trained with variants of the loss function on the testing set

SE .

The effectiveness of background centering is also verified by comparing it with the

result trained on the same data without the process of background centering (w/o bg.

centering) but keeping everything else the same as when using the full loss function.

When background centering is dropped, the L1 error (EI) increases by 10%. At the same

time, the other two errors (EP and EG) also increase significantly. Without the pre-

process of background centering, the network was trained to fit the variance coming

from the jump between foreground and background.



5.4. BODY MODELING FROM A SINGLE IMAGE BY DUAL DEPTH REPRESENTATIONS

5

107

(a) (b) (c) (d) (e) (f)

(g) (h)

Figure 5.12: Step-wise result of DDR-based reconstruction and reenactment (a – f). The second row shows our

result (g) compared to the result of [166] (h).

ADVANTAGE OF 3D APPROACH

The downstream applications (such as reenactment) can be benefited by the 3D recon-

structed human model. As shown in the first row of Fig. 5.12, we first fit the reconstructed

point cloud (b) to the deformable parametric model SMPL [111] by using the extended

SMPLify [196] method. In this step, the reconstructed point cloud is rigged with the

SMPL model (c). When a new set of SMPL parameters is given (d), the rigged point cloud

will be deformed to the target pose and shape (e). After that, the triangular mesh of a

human model can be reconstructed for the deformed point cloud (f).

For the application of reenactment (i.e., person image generation), our 3D approach

is compared to a 2D approach [166] as shown in the second row of Fig. 5.12. Benefiting

from the reconstructed 3D structure, our method can easily handle out-of-plane rotation

and occlusion between body parts. However, [166] has the advantage of synthesizing

unseen regions. It will be an interesting future work to combine the 2D approach with

our reconstruction method.

GEOMETRY DETAIL AND ALIGNMENT

Single image based human body reconstruction results of our DDR-based approach are

compared with HMR (Human Mesh Recovery) [78] and BodyNet [196] (see Fig. 5.13).

Thanks to the flexibility of DDR and the newly collected dataset, our approach can suc-

cessfully reconstruct hair and loose cloth while the other two methods cannot. The HMR
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(a) (b) (c) (d)

Figure 5.13: With an input image shown in (a), the results from HMR [78] (b), BodyNet [196] (c), and our DDR

approach (d) are compared.

method recovers a SMPL mesh, which is more suitable for deformation manipulation

but fails to reconstruct the details. Second, DDR has a pixel-wise correspondence with

the input RGB image by nature, which results in a reconstruction well-aligned with the

image (although some error is introduced in the surface reconstruction step). The Bo-

dyNet approach is not aligned as well as ours because its voxel representation does not

ensure such correspondence, as shown in the bare regions in the second example of

Fig. 5.13.

QUANTITATIVE EVALUATION

We measure the errors of point-to-surface distance and compare with the results of the

multi-view approach [3] evaluated on BUFF dataset [223] (listed in Table 5.2). The point-

to-surface error is plotted in Fig. 5.14. Errors at the extremities of the body are larger than

in the other regions because of the ambiguity in estimating the articulated pose from a

single view. It can also be observed that the back depth map does not show a significantly

larger error than the front depth map.

We trained the view synthesis model [184] with the source code released by the au-

thors4. The model was trained on our dataset for 400,000 iterations using the default

setting in the source code. Given a single RGB image rendered with a body mesh from

the BUFF dataset [223], depth maps from 0◦ and 180◦ views are synthesized with the

trained model. We evaluated this result and ours with point-to-surface error. The color-

coded error is plotted in Fig. 5.15. The view synthesis model recovers the overall shape of

4https://github.com/lmb-freiburg/mv3d

https://github.com/lmb-freiburg/mv3d
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Subject ID Multi-view [3] Single-view (ours)

t-
sh

ir
t,

lo
n

g
p

a
n

ts

00005 0.51±0.54 1.22±0.98

00032 0.48±0.53 1.42±1.01

00096 0.56±0.65 1.55±1.25

00114 0.42±0.51 1.63±1.37

03223 0.49±0.48 1.03±0.86
so

c
c

e
r

o
u

tfi
t

00005 0.54±0.67 1.52±1.33

00032 0.80±0.86 1.36±1.09

00114 0.50±0.58 1.41±1.17

03223 0.55±0.57 1.33±1.11

Table 5.2: Quantitative evaluation on BUFF dataset [223] with ground truth 3D mesh surface. We report the

average point-to-surface distances in centimeters for every subject.

0 cm

5 cm

Figure 5.14: Color-map for illustrating the error distribution of our results comparing to the ground truth of

BUFF dataset [223]. Each color-map is shown from two different views.

View Synthesis [184] Ours

Figure 5.15: Comparison with the view synthesis approach [184].
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a human body. The two predicted views are also compatible with each other. However, it

can be observed that our result is more smooth compared to theirs. The reason is, firstly,

a view synthesis network needs to solve three problems: front view depth estimation,

view rotation, and novel view synthesis. In contrast, correspondences between two op-

posite views are straightforward with dual-depth representation. Our model only needs

to learn front-view depth estimation and pixel-wise corresponding back-view synthe-

sis, which are relatively easier to be solved. Secondly, background centering helped to

reduce the data variation and improved estimation accuracy. Lastly, the view synthesis

network was implemented to accept 128×128 input images, while ours takes 256×256

images, which also increases the difference.

5.4.6. CONCLUSION AND FUTURE WORK

In this work, a dual-depth representation (DDR) is proposed to enable the reconstruc-

tion of a 3D human body from a single RGB image. DDR is flexible to represent detailed

geometry, compact to reach a high resolution, and compatible to fit into novel image

generation frameworks. Also, it is advisable for the single view reconstruction task as

it has pixel-wise correspondence with the input RGB image. On our testing dataset, an

average error of 3.2cm (with reference to 176cm as the body height) was achieved. The

limitation of DDR is that it can not cover occluded or tangential regions very well. Our ex-

periments show that those regions can be repaired by a view-based refinement network.

After mesh reconstruction, the resultant 3D human models are ready for applications

such as virtual cloth try-on and augmented reality [148].

One limitation of our approach is its dependency on the pre-processing step for gen-

erating 2D keypoints. Recently developed end-to-end frameworks such as [196] can train

different modules including 2D keypoint estimation and 3D shape prediction as a whole.

Multiple modules are then tuned to collaborate with each other. This is a valuable direc-

tion to further investigate for improving our work.

There are several potential directions to further improve our framework. First, it is

possible to train the 3D estimation network in an end-to-end manner to further improve

the performance of prediction and make the system more user-friendly. Furthermore,

we can integrate our geometry prediction approach with the techniques of texture com-

pletion (e.g., [117, 166]) to generate fully textured human models from single RGB im-

ages. It is also worth investigating the DDR-based 3D shape prediction method for gen-

eral objects.

Artificial intelligence (AI) and machine learning are developing rapidly in recent years.

A lot of papers have been published after the finish of this section’s work in March 2019.

Two more recent works, PiFU [154] and PiFUHD [155], generate the fully textured hu-

man body mesh from single images using an implicit neural representation. The THu-

man dataset presented in [230] contains approximately 7000 real-world human models,

which is much more valuable than the dataset we collected in this work. Our dataset can

be augmented with the deformation synthesis method proposed in [157].
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5.5. KNITWEAR FOR INDIVIDUALS

In this section, we will apply the 3D and 4D knitwear design methods to scanned human

bodies.

5.5.1. 3D KNITWEAR

Given a designed knitwear template and a body shape, existing works can customize a

3D knitwear accordingly [182, 76]. Here we present our approach that generates body-

tight garments directly from the scanned mesh or generates loose garments (like a dress)

by style transfer.

(a) (b)

Figure 5.16: The scanned body mesh is fitted with the

SMPL template, on which segmentation is pre-defined

as the garment regions (a). The body-tight shirt and leg-

gings are knitted for these regions (b).

A body-tight 3D garment can be

designed by applying our 3D stitch

mesh generation methods to the mesh

extracted from the scanned 3D body

model. After template fitting (Sec-

tion 5.2.1), regions of the garments

are segmented directly (Fig. 5.16(a)).

The knitted garments are presented in

Fig. 5.16(b).

Loose garments are designed by

style transferring from a garment de-

sign rigged with a template body model

(SMPL) to the deformed body template

fitted by the scanned body model. Given

the garment mesh M design for a tem-

plate SMPL body model S(Θ) and a de-

formed body template S(Θ′) fitted by the scan, we will generate the garment design M′

that fits S(Θ′). We rig each vertex v on M with a triangular face f on S(Θ) and write v as

v = f0 +w1 (f1 − f0)+w2 (f2 − f0)+w3 n, (5.13)

in which fi s are three vertices of f and n is the face normal. This decomposition is unique

since f1 − f0, f2 − f0, and n are linearly independent if f is not a degenerated face. On

the deformed body templated S(Θ′), which is almost identical to the scan, we have the

corresponding face f′, which defines the deformed v using the same coefficients wi . In

practice, we rig vertex v with multiple faces (the 1-ring faces of v’s closest vertex on S(Θ))

to make the deformed M′ smoother. This process is referred to as style transfer since it

regards the garment M as a stylized body shape S(Θ) and transfers the style to S(Θ′) as a

customized garment design M′. The transfer relies on the vertex-wise correspondence

between S(Θ) and S(Θ′).

The style transfer method is the same as the yarn model generation method (the de-

formation transfer method [181] in Section 1.3.3) in essence, which deforms the canon-

ical yarn model rigged with a regular stitch to a deformed stitch. This method can also

be used for the training data augmentation for the AI-based human body reconstruction

(Section 5.4) by treating the 3D body meshes as garments and deforming them by the

fitted body templates.
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(a) (b) (c) (d)

Figure 5.17: Given a dress designed for a template body model (a), we transfer the design to a scanned half-

body mannequin (red in (b)) using its fitted template (semi-transparent in (b)). The transferred design (c) fits

the target shape of the mannequin while some artifacts appear because of the legs’ small deformation between

the body templates in (a) and (b). The stitch mesh is colored by its columns (d).

soft

medium

firm

(a) (b) (c) (d)
max

0.0

Firm Soft 4D

Figure 5.18: Sock with distributed elasticity: (a) geodesic distance field for generating the stitch mesh, (b)

simulation of 3D knitting with firm material, (c) simulation of 3D knitting with soft material, (d) resulting 4D

design with simulation and physical experiments. Both the stresses and the displacements have been signif-

icantly reduced. The maximal stress in this example is 0.6602kPa. In this example, d̄ = 0.8cm is employed as

the terminal threshold of inverse design.

5.5.2. 4D KNITWEAR

The 4D knitwear design method proposed in Chapter 4 is applied to the scanned human

body.

Fig. 5.18 shows a 4D sock design for a scanned foot. The distributed soft, medium,

and firm elasticity is achieved by jacquard patterns. When comparing with the 3D de-

signs using a single elasticity, both the stresses and the amounts of sliding (in terms of

displacements) have been significantly reduced. Note that, although the sock shape is

homeomorphic to a disk, we still add a cutting line at the back to make it easier to knit.

In industrial practice, socks are usually knitted by courses in loops. The tubular knit-

ting design method in Section 3.3.8 can be used to generate such a 4D garment without

any cutting lines. The stitch-size compensation and jacquard pattern tiling methods in

Chapter 4 should be applied.
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5.6. CONCLUSION

In this chapter, we reconstruct human body shapes and customize knitwears for recon-

structed individuals.

Three human body modeling methods are presented, using different equipment.

The multiview system reconstructs the human body using the photogrammetry method,

which takes a long time but provides better accuracy compared to the other methods.

The dual Kinect system captures two point clouds from two opposite views (front and

back of the human body). The calibration method guarantees the alignment between

two point clouds. After calibration, the frame rate of capturing and the accuracy are de-

termined by the depth cameras, i.e., the Kinects. The dual depth representation (DDR)

helps reconstruct the human body from a single RGB image using AI-based methods.

This is a fast and rough estimation, which is suitable for interactive applications (like

virtual try-on) but not accurate enough for garment customization.

At last, the 3D and 4D garment design methods developed in the previous chapters

are applied to the reconstructed human bodies. By template fitting, we can segment

the human body into regions corresponding to garments. We can not only design body-

tight garments extracted directly from the scanning, but also transfer an existing design

of loose garments (like a dress) to the target human body.

5.A. 3D KEYPOINT ESTIMATION FROM MULTIVIEWS

3D body keypoint (especially joint) locations play an important role in the initial estima-

tion of template fitting. Here is the detailed method to estimate 3D keypoints from its

multiview projections.

We render the 3D human body from n sampled views. 2D coordinates of keypoints

are detected by OpenPose [25] on the views. Each view constrains a keypoint on a 3D

line. The 3D locations of keypoints are estimated are minimizing the sum of squared

point-to-line distances. This method requires each keypoint to be observed in at least

two views out of all n views.

Given a view’s projection matrix (R |t) and a 2D keypoint (u, v) detected on it, a 3D

keypoint x∗ should project to (u, v). The projection error can be minimized by bundle

adjustment. Differently, we can consider the 3D line on which x∗ should be located. The

3D line is given by d× (x−a) = 0, in which R a =−t and R d = (u, v,1)⊤. The line direction

d is normalized for simplicity. Then the point-to-line distance is given by ‖d× (x−a)‖.

For all n views, we need to find the minimizer

x∗ = argmin
x

n
∑

i=1

∥

∥di × (x−ai )
∥

∥

2
. (5.14)

There are two methods to solve this problem. One is to expand Eq. (5.14) with ‖p×q‖2 =

‖p‖2‖q‖2−(p·q)2 and find the objective’s stationary point by setting the gradient as zero.

The result is given by a 3×3 linear system, as shown in the online post 5. Another method

is to solve Eq. (5.14) as a least-squares problem by writing each cross product as the

5https://stackoverflow.com/a/48201730

https://stackoverflow.com/a/48201730
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product of a skew-symmetric matrix and a vector, i.e.,

di ×x = [di ]× x =





0 −di z di y

di z 0 −di x

−di y di x 0









xx

xy

xz



 . (5.15)

The least-squares problem is to minimize
∥

∥M x−b
∥

∥, in which

M =













[d1]×
[d2]×

...

[dn]×













3n×3

and b =













a1 ×d1

a2 ×d2

...

an ×dn













3n×1

. (5.16)

The solution is given by solving M⊤M x = M⊤ b, which is exactly the same linear system

as the first method.
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CONCLUSION

In the final chapter, the contributions of this dissertation are summarized, including

what has been done explicitly and how it may help the research community and society.

At last, some possible future research directions are proposed.

6.1. ANSWERS TO THE RESEARCH QUESTIONS

This dissertation tries to answer the main research question (RQ) “How to design cus-

tomized 3D and 4D knitwear and generate machine instructions?” This main research

question is divided into three research questions and answered by corresponding ap-

proaches.

The first research question (RQ1) is how to design a knitwear and its machine knitting

instructions for a given 3D shape. Since the body shape of every person is different, we

need to customize knitting patterns for different 3D shapes. Therefore, knitting design

methods for general 3D shapes are studied.

A flattening-based method is first proposed (Chapter 2). The target 3D surface is

flattened onto the 2D plane to generate the knitting instructions. Darts are cut to reduce

the distortion since the target 3D surfaces are usually non-developable. Therefore the

guiding question “where to put darts” is studied. Darts are opened in regions where the

flattening distortion is large. After cutting darts on the 3D mesh, it is flattened again

while considering the manufacturing constraints, to generate valid knitting instructions.

This approach demonstrates knitting’s advantage in closing darts without sewing.

The flattening-based approach relies on user interactions and has difficulty gener-

ating complex darts for perfect fitting. To overcome the limitations, direct stitch mesh

generation methods are proposed (Chapter 3). On stitch meshes, special stitches that

provide intrinsic curvature to the mesh are named shaping stitches. Thus a guiding ques-

tion is “where to put shaping stitches”. The proposed methods place shaping stitches on

the mesh while considering knittability, distortion, and reliability.

The second research question (RQ2) is how to design a motion-aware 4D knitwear
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and generate its machine instructions. The method is presented in Chapter 4, which

considers the garment’s stress and sliding during body motion. We knit jacquard pat-

terns with different elasticity levels on the garment. Basically, the soft pattern reduces

stress and the firm pattern reduces sliding. Physical simulations are involved to answer

the guiding question “where to put elastic patterns”. This approach takes knitting’s ad-

vantage in combining different structures automatically without cutting pieces from dif-

ferent fabrics and sewing them together.

The third research question (RQ3) is how to capture an individual’s body models in

different poses for 3D/4D knitwear customization. Three methods are presented us-

ing different equipment: (1) using the photogrammetry method to reconstruct 3D body

shape with a multiview system, (2) reconstructing from point clouds captured by a cal-

ibrated dual Kinect setup, and (3) predicting the body shape from a single photo using

artificial neural networks. A sequence of 3D body shapes can be registered for 4D design.

After obtaining the body shape or sequence, the 3D and 4D knitwear design approach

developed in the previous chapters can be used, as shown in Chapter 5.

6.2. IMPLICATIONS

This dissertation does not only answer research questions in this area but also has im-

plications for other domains including other research areas, the related industry, and

society.

6.2.1. IMPLICATIONS FOR KNITTING DESIGN

The presented methods provided new design tools for knitting design. Using these meth-

ods, knitwear designers can design perfect-fit garments like leggings and also design

body-tight garments with elasticity controlled for body motion. More work will be at-

tracted to realize the 3D and 4D knitwears in the industrial context. The knitwears de-

signed by our methods are more complex compared to common garments, which will

decrease the stability and efficiency of manufacturing. Especially, the knitting machine

parameters need to be tuned carefully when using rubber yarns for 4D garments, to pre-

vent damage to yarns or needles. Also, the rubber yarns increased the weight of gar-

ments, which is not favored by the wearers. A main concern of garment manufacturers

is profit. More studies are necessary to improve the design such that more customers

would like to pay for it. These factors can be studied in the knitting industry.

Besides garments, our methods can also design other objects like toys and even vi-

sualization media (or data physicalization) [171, 128].

This research encourages further development of knitting design software packages.

The software should consider supporting stitch mesh for computation and visualization.

Several advantages of stitch mesh have been verified. It can show the 3D structure but

the 2D knitting map can not. Compared to yarn models, the complex interlocking rela-

tion of yarns is categorized as several neighboring relations between stitch types. Then

the knittability checking is simplified as checking the compatibility between polygonal

facets. The design process is also simplified. It also supports fast simulation of the knit-

ting process and the final result at a coarse level. The 3D and 4D design approaches
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can also be provided in the existing design software. The current research-oriented im-

plementations are publicly available online, as a reference for further development. It

still requires a lot of software engineering work to convert these prototypes into software

packages that are friendly to designers or common users.

6.2.2. IMPLICATIONS FOR OTHER MANUFACTURING TECHNIQUES

This dissertation contributes directly to the computer-aided manufacturing (CAM) of

knitting. The developed methods may also inspire other digital fabrication like 3D print-

ing. Knitting and 3D printing can be compared since they create objects by adding mate-

rials (yarns or filaments), instead of subtracting. In general, the manufacturing process

defines the structure, which defines the product’s properties (Chapter 2 of [43]). The

similarities between manufacturing methods induce the similarities in structures and

properties. Some similarities between knitting and 3D printing are listed below.

• Both methods should comply with (semi-)continuity constraints. Breaking the

continuity constraints may harm the knitting process, while continuous 3D print-

ing paths benefit the printing.

• The starting procedures of both processes should be carefully treated, i.e., the

casting-on of knitting and the initial layers of 3D printing.

• Both methods require extra material to provide the necessary structural support.

Knitting waste yarn provides pull-down force for outside widening. Supporting

structures in 3D printing help to fabricate overhangs.

• The manufacturing orientation changes the process and the properties of prod-

ucts.

• Elastic structures can be used in both methods ([160] and our 4D knitwear).

These similarities inspire us to generalize the computational design methods from one

manufacturing technique to another.

6.2.3. IMPLICATIONS FOR OTHER RESEARCH DISCIPLINES

The 3D and 4D knitting design methods presented in this dissertation rely heavily on ge-

ometric computation techniques developed in CAD and CG areas. The knitting methods

prompt more research in these areas. Especially, several algorithms are used repeatedly.

They are fundamental and versatile.

• The remeshing method is used for 3D shape generation (Sec. 2.C.2) and mesh qual-

ity improvement.

• The graph-based tessellation method is used for wale stitch mesh generation (both

with or without short-columns) and solid shape generation (filling holes or gaps

on meshes, Sec. 2.C).

• The Shape-Up deformation method is used for relaxed shape simulation of knit-

ting structures (Sec. 1.3.2), stitch-size compensation (Sec. 4.3.3) in 4D design, and

flattening-based design (Sec. 2.3.1).
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• The deformation transfer technique is used for yarn model generation (Sec. 1.3.3),

style transfer in garment design (Sec. 5.5), and training data augmentation for AI-

based body modeling (Sec. 5.4).

Besides geometric computing, physical simulation is also used in this work. It plays

an important role in the 4D design approach. The new applications of physical simu-

lation provide more motivation for developing more accurate and efficient simulation

tools.

6.2.4. IMPLICATIONS FOR SOCIETY

The methods presented in this dissertation can be used in the knitting industry. In the

age of industry 4.0, there are increased demands for short development periods, indi-

vidualization on demand, flexibility, decentralization, and resource efficiency [94]. Our

methods for customized design provide more tools to realize these improvements with

the help of computer-controlled knitting machines. The stitch mesh in our works can

be used to model knitting processes, which is potentially a digital twin of the knitting

machine. The yarn models in our works can also be used in the metaverse as a type of

visual media.

Our works generalized the existing garment design methods used by designers. De-

signers fold darts (Fig. 2.1) to produce 3D shapes from planar fabrics. We convert darts to

knitting instructions. Complex ‘panels’ have been used in normal (not luxury) garments

for better fitting (Fig. 3.1). We realize better 3D fitting by direct stitch mesh generation.

Designers consider body motion by adding gussets (Fig. 4.2) in highly stretched regions,

like the region under the arms or between the inner thighs. We generalize to 4D gar-

ments by knitting structures of different levels of elasticity in different regions, which is

more flexible to control and more automatic to manufacture. These direct generaliza-

tions minimized the gaps between the garment industry and academic research.

The knitting design methods developed in this dissertation help fulfill people’s need

for knitwear customization. The growth of people’s needs usually increases the pressures

on the planet’s natural resources and ecological systems. The knitting technology has the

potential to be more sustainable since the yarns may be more recyclable [187, 60].

6.3. LIMITATIONS AND FUTURE WORK

The current work has several limitations. There are some interesting directions for fur-

ther research.

The 3D knitting design aims for perfect fitting, thus the distortion should be mini-

mized. We reduced the distortion in the 3D design of knitting, which uses a diffusion

term to generate scattered short-row ends heuristically. A user-specified parameter con-

trols the diffusion. A more systematic method will be valuable, for example, involving

relaxed shape simulation in optimization iterations for the stitch mesh design.

The knitting reliability is considered by minimizing the number of transfer stitches.

Yarn-level simulations will help us better understand this problem, such as the stretch-

ing of yarn when loops are transferred multiple times. Our stitch mesh already encodes

the knitting process. Thus the process-aware yarn models have been ready to use. A

future research direction is to apply yarn-level physical simulation to them.
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Our 4D design approach considered the garment sliding during body motion. Be-

sides movement-related comfort, there are also other factors of garment comfort and

ergonomics, including moisture, thermal comfort, and sensorial (related to textile-skin

contact) comfort [174, 13]. We may study the role of geometry and material on these

comfort factors.

In the current 4D design framework, the elastic patterns are assigned incrementally.

Typical structure or meta-material design works use sensitivity analysis, which relies on

fast and accurate physical simulations. We may optimize the elastic pattern distribution

in this direction, which is more generic.

Knitting has been applied to fabricate different wearable devices [62, 1, 156, 115, 114,

74]. It will be interesting to employ our 3D and 4D design methods in those applications.

For example, the distortion of 3D shaping should influence the performance of the knit-

ted sensors. Quantitative evaluations of the distortion’s effect will justify the value of our

work on distortion control in 3D knitting.

Material choice has a significant influence on manufacturing. Knitting is no excep-

tion. In this research, we used yarns made of cotton, nylon, or rubber. Other materials

may enrich the applications of knitting. For example, conductive yarns can be knitted

as wearable sensors. Natural yarns (like jute) can produce eco-friendly fabrics. Knitting

stiff yarns are not as simple as flexible yarns. One should be careful with the damage

to yarns or machine needles. The knitted preforms can be reinforced by inlaid carbon

fibers, using a modified mechanized knitting machine [70].

Our design methods can be generalized to other textile manufacturing techniques.

The current focus is weft knitting. It will be interesting to study the method’s application

on warp knitting. 3D shapes knitted with our methods can also be reinforced with inlay,

as just mentioned, the results of which are named biaxial weft knitted fabrics [70] or co-

weaving-knitting fabrics [28]. In the literature, the 3D textile sometimes refers to a solid

3D shape composed of multi-layers [70], instead of the single-layer 3D surface in this

work. We can study combining our approach with these methods.

New research opportunities will evolve along with the advance of knitting machines

designed for either large companies or individuals. There will be plentiful applications

of knitting due to the improved accessibility of knitting machines [153, 86], regarding the

explosive growth of 3D printing thanks to the expansion of 3D printers in the last decade.

The experience of technicians from the knitting industry will also inspire new re-

search. In the communications with technicians, I learned that there are different de-

signs for sleeves and shoulders (e.g., raglan sleeve and set-in sleeve) with different ap-

pearances. Meanwhile, their knitting stability and efficiency are also different. It is worth

studying these practical experiences with quantitative research methods. The research

will also improve technicians’ understanding and effectiveness of their work.
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