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1 Introduction

1.1 Background

1.1.1 Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is an x-linked recessive neuromuscular disorder affecting 1
in 3,500-5,000 new-born males [1]. DMD is caused by absence of functional dystrophin, a protein
expressed in muscle [2], and is characterized by progressive muscle weakness, where muscles show
progressive damage and degeneration [3]. First symptoms due to muscle weakness become apparent
before the age of 6 [4]. As muscle weakness progresses, DMD patients lose the ability to walk
independently and become bound to a wheelchair in their early teens [1]. Death usually occurs in
the third or fourth decade of their lives resulting from cardiorespiratory impairment [1].

Muscles of DMD patients become increasingly susceptible to damage over time and undergo
several structural and compositional changes, including inflammation, edema and fiber necrosis.
Ultimately, muscle tissue is irreversibly replaced with fibrous tissue and fatty deposit, which can be
visualized with magnetic resonance imaging (MRI) [5, 6]. Interestingly, muscles of DMD patients
are not equally affected since differences in muscle fat fractions, which quantify the ratio between
healthy, contractile muscle and fat replacement, are evident [7–9], as illustrated in Figure 1.

Figure 1: Different signal intensities are evident from a T1-weighted and Dixon MR image of the upper
and lower right leg. T1-weighted (a,d), Dixon water (b,e) and Dixon fat (c,f) image of upper and lower
leg muscles of an eleven year old DMD patient. Upper leg muscles: rectus femoris (RF), vastus lateralis
(VL), vastus intermedius (VI), vastus medialis (VM), sartorius (SAR), adductor longus (AL), adductor
magnus (AM), gracilis (G), semimembranosus (SM), semitendinosus (ST), biceps femoris long head (BFL)
and biceps femoris short head (BFS). Lower leg muscles: tibialis anterior (TA), tibialis posterior (TP),
flexor digitorum longus (FDL), extensor digitor longus (EDL), flexor hallucis longus (FHL), extensor hallucis
longus (EHL), peroneus (PER), soleus (SOL), gastrocnemius medialis (GCM) and gastrocnemius lateralis
(GCL). Adapted from Wokke et al. (2014) [10].
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Despite a large amount of literature on the responsible gene and its product, dystrophin, the
process leading from absence of functional dystrophin to muscle degeneration, and ultimately fat
replacement, is still not well understood [3, 11]. To this date, several hypotheses coexist, such as
mechanical and signaling deficits and impaired calcium homeostasis in muscle tissue [11]. Remaining
ambulant as long as possible is important for DMD patients, since remaining functionally indepen-
dent and socially engaged increases the quality of their lives [12]. Besides, sedentary behavior is
known to accelerate the process of muscle atrophy and induces other health risks like increased fat
mass, diabetes, heart disease and more [13]. The question remains to what extent muscle use is ben-
eficial for preservation of muscle tissue in DMD patients [14]. Aerobic exercise interventions showed
delayed functional decline in some muscular dystrophies, including DMD [13]. On the other hand,
adverse effects of exercise include muscle damage due to structural fragility or signaling deficits [3].
As such, understanding of a possible mechanical role in muscle degeneration, and ultimately fat
replacement, may result in strategies to prolong muscle function.

Therefore, the aim of this study is to explain differences in fat replacement among muscles
of DMD patients by mechanical factors. Musculoskeletal simulation provides a method to estimate
individual muscle contributions during daily activities that are otherwise unable to acquire [15]. In
the next section, an overview of studies describing muscle fat replacement in DMD is presented, after
which background information regarding a role of dystrophin-absence in muscle damage and force
loss is presented. Next, a preliminary study that used musculoskeletal simulation to predict muscle
fat replacement is discussed [16]. The introduction is concluded with a study design to investigate
a possible mechanical role in explaining differential muscle fat replacement in DMD.

1.1.2 Muscle fat replacement

Muscle fat replacement is associated with disease progression and correlates with functional outcome
measures like peak force production [17–19]. Muscle fat fraction, the ratio between healthy, con-
tractile muscle and muscle fat replacement, can be quantified with MRI (qMRI). The accumulation
of muscle fat replacement is age-dependent and follows an ‘S-shaped’ curve [20, 21]. Individual leg
muscles are affected at different stages and with variable progressions, but ultimately result in a
more or less consistent successive pattern of fat replacement [17].

Fat fractions of individual leg muscles of a population of 16 DMD patients can be ordered
from highest to lowest fat fraction, as illustrated in Figure 2. An order starting with the adductor
magnus, followed by the quadriceps and hamstrings muscles and relative sparing of the sartorius
and gracilis muscles can be observed in the upper leg. Lower leg muscles are generally affected later,
which is in line with a proximal-to-distal gradient in the progression of muscle weakness [10].
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Figure 2: Box-and-Whisker plot of the fat fractions per muscle in the upper and lower leg of DMD patients
(n = 16, age = 11.4 ± 2.2) and healthy controls (n = 11, age = 10.7 ± 2.1). Fat fractions are shown for
DMD patients in the upper leg (white) and lower leg (grey) and for healthy controls (black). Values shown
as median (-) and mean (·) ± interquartile range and standard deviation. The muscles are ordered by mean
values [10].

In order to summarize the order of fat fractions derived from different studies, a color-scale
of the order of individual leg muscles was created to show similarities between studies, listed in
Table 1. In the first 7 studies qMRI was used to acquire fat fractions. Other studies used semi- or
non-quantitative evaluation. In these studies, MR images were scored with the Mercuri scale (semi-
qMRI) [9], or were visually scored (non-qMRI). To quantify robustness of the positions of muscles
in the order fat fractions, the positions in the order were numbered for each study separately, after
which the root mean square error (RMSE) of the position was calculated for each muscle as follows:

RMSE=
√∑

w(Pi −Oi)2/
∑

w (1)

where Pi represents the predicted position based on minimizing the sum of all RMSE values, Oi the
observed position and w the weight of the error. It was chosen that w = 3 for qMRI, w = 2 for semi-
qMRI and w = 1 for non-qMRI. The resulting summary of the orders of fat fractions among studies
is shown in Figure 3, in which the muscles are ranked based on predicted position (PGmax = 1).
If the FF or position of the Gmax was not reported in a study, the predicted position of the AM
shifted to 1, et cetera. The numbers of the studies in the first column of the table correspond to the
first column numbers in the figure.
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Table 1: Authors, number of participants, number of analyzed muscles, field strength and scoring technique
for each included DMD study.

authors participants muscles B field scoring

1 Akima et al. (2010) [17] n=28 12 1,5/3T qMRI
2 Barnard et al. (2018) [19] n=136 8 3T qMRI
3 Gaeta et al. (2012) [7] n=22 8 1,5T qMRI
4 Mankodi et al. (2016) [22] n=13 6 3T qMRI
5 Ponrartana et al. (2015) [23] n=13 16 3T qMRI
6 Wokke et al. (2014) [10] n=16 18 3T qMRI
7 Yin et al. (2019) [8] n=32 11 3T qMRI
8 Godi et al. (2012) [24] n=26 20 3T semi-qMRI
9 Polavarapu et al. (2016) [25] n=50 19 1,5T semi-qMRI
10 Kim et al. (2010) [26] n=34 13 1,5T semi-qMRI
11 Li et al. (2015) [27] n=170 13 1,5/3T semi-qMRI
12 Marden et al. (2005) [28] n=10 8 1,5T non-qMRI

Figure 3: Color-scales representing the order of muscle fat fractions from twelve different studies, in which
the ranks of the muscles are based on minimizing the sum of RMSE values. The row numbers correspond
to the studies and details listed in Table 1. Included muscles: gluteus maximus (Gmax), adductor magnus
(AM), gluteus medius (Gmed), biceps femoris, long head (BFL), rectus femoris (RF), vastus lateralis (VL),
vastus intermedius (VI), vastus medialis (VM), peroneus (PER), semimembranosus (SM), gluteus minimus
(Gmin), adductor longus (AL), gastrocnemius lateralis (GCL), semitendinosus (ST), gastrocnemius medialis
(GCM), biceps femoris short head (BFS), soleus (SOL), sartorius (SAR), tibialis anterior (TA), gracilis (G)
and tibialis posterior (TP).

From Figure 3, it can be seen that the order of muscle fat fractions in DMD patients is
generally agreeable between studies. Early involvement of the gluteus maximus (Gmax), adductor
magnus (AM) and gluteus medius (Gmed) is obvious from all studies, as well as relative sparing of
the sartorius (SAR), gracilis (G), tibialis anterior (TA) and tibialis posterior (TP). Positions of some
of the other muscles differ somewhat between studies. Higher RMSE values, found in the gluteus
minimus (Gmin), semimembranosus (SM) and biceps femoris, short head (BFS), indicate insecurity
regarding the position in the order.
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1.1.3 Dystrophin-absence and muscle damage

Dystrophin connects cytoskeletal γ actin to extracullar matrix via a group of proteins in the surface
membrane, the dystrophin-associated glycoprotein complex (DGC), as illustrated in Figure 4 [2, 29].
Together with additional cytoskeletal proteins, the DGC forms rib-like lattices on the sarcolemma
called costameres [30]. Costameres act as mechanical couplers to distribute contractile forces gener-
ated in the sarcomere laterally through the sarcolemma [31]. Based on its structure and location, it
is suggested that the main function of the DGC is to mechanically stabilize the sarcolemma during
muscle contraction [11].

Figure 4: The dystrophin associated glycoprotein complex (DGC) consists of cytosolic proteins, transmem-
brane proteins, and extracellular proteins that link the myofilaments to the extracellular matrix through
cytoskeleton filaments. In the DGC, Z-lines are linked to dystrophin through γ actin cytoskeletal filaments.
Adapted from Feher (2017) [32].

Absence of dystrophin causes the DGC to be functionally impaired, making the sarcolemma
more susceptible to damage when subjected to mechanical stress. Breaches in the sarcolemma cause
inhomogeneous sarcomere activation due to leaking calcium channels [11]. Combined with a lack of
lateral force transmission [31], this leads to concentrated forces on the remaining longitudinal path-
way of muscle fibers [33]. During eccentric contraction, the muscle-tendon complex lengthens while
contracting, thereby absorbing energy generated by external loads [34]. This type of contraction is
especially harmful for dystrophin-absent muscle in mdx mice, a commonly used animal model for
DMD [35, 36], since the eccentric loading is to be absorbed predominantly by the contractile proteins
and titin, which acts as a molecular spring in muscle [33, 37].

Peak force production is decreased in mdx muscle and is further decreased after eccentric con-
traction induced muscle damage [38]. The work done to lengthen muscle fibers is strongly related to
the magnitude of damage in mdx muscle [39]. Dystrophin is normally abundant at the myotendinous
junction, the interface between muscle and tendon, as well as at the neuromuscular junction, the
area of synaptic contact between muscle and nerve [40]. Dystrophin-absence at the myotendinous
junction may result in fiber detachment and thus decreased force transmission between muscle and
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bone [33], while dystrophin-absence at the neuromuscular junction may result in structural abnor-
malities that impair excitation-contraction (EC) coupling [41]. Fiber branching, in which a fiber
splits, such that it composes of multiple continuous strands, may also play a role in decreased peak
force in mdx muscle, since asynchronous contraction causes extra stress on the branch points [42].
Interestingly, malformed fibers are especially found in longer mdx muscle fibers, which seem to be
more susceptible to damage [43].

In humans, eccentric contraction is also associated with muscle damage [44, 45]. Furthermore,
structural abnormalities resulting from eccentric contraction induced muscle damage are thought to
also occur in DMD, since it was found that the time delay between the onset of fascicle motion and
force production is progressively increased in the biceps brachii of DMD patients [46, 47].

1.1.4 Simulation of DMD muscle loading

Hu and Blemker (2015) used 3-dimensional musculoskeletal simulation (OpenSim) to test for a re-
lation between muscle fat replacement and normalized negative work of 22 muscles during one gait
cycle. Normalized negative work was calculated by taking the time-integral of normalized negative
power, such that:

Wneg,norm =
∫ F ·vneg

Fmax·L (1)

where F represents the active force, Fmax the maximal isometric force, vneg the lengthening ve-
locity (i.e., eccentric contraction) and L the instantaneous fiber length of the muscle [16]. Similarly,
positive work was calculated by replacing vneg with vpos to quantify concentric contraction. Nor-
malization of work was done to account for variations in fiber length and differences in physiological
cross-sectional area (PCSA), which is strongly associated to force production [48]. Gait analysis
was chosen because walking is one of the most common daily activities, albeit not an activity that
generates the largest amount of negative work in muscles [16].

Linear regression between fat percentages and negative work values were performed for the
upper and lower leg separately, as illustrated in Figure 5. Negative work was highly correlated to fat
fractions, only except for the adductor magnus and peroneus, two hallmark muscles that show the
highest fat fractions in the upper and lower leg, respectively. Excluding these two muscles yielded
significant relations in both the upper and lower leg muscles, suggesting an association between
eccentric contraction and different progressions of muscle fat replacement in DMD [16].
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Figure 5: Negative work was highly correlated with fat fraction for both upper and lower leg muscles
separately, except for the adductor magnus in the upper leg and the peroneus in the lower leg. Copied from
Hu and Blemker (2015) [16].

A limitation of this study is that the used model was based on an unimpaired adult man
walking at self-selected speed [49, 50], while DMD patients never develop a typical, mature gait
pattern [51–54]. Furthermore, negative work values were normalized to PCSA and fiber length.
Both fiber length as well as the interaction of PCSA and fiber length are associated with muscle fat
replacement in DMD [55]. Therefore, analyzing the individual effects of negative work, PCSA and
fiber length on fat replacement may yield additional insight regarding a mechanical role in explaining
differential fat replacement among leg muscles of DMD patients.

1.2 Study design

1.2.1 Simulating gait in children

Musculoskeletal simulation is widely used to predict kinematics, dynamics and energy consumption
of gait and improve the functional performance during rehabilitation, to increase sports performance
or discover strategies to prevent injuries [15, 49, 56]. By prediction, musculoskeletal modelling al-
lows insight into physiological mechanisms involved with movement that are otherwise unable to be
measured, such as joint loading, neural control and detailed individual muscle contributions [15].

In the study presented in section 1.1.4, Hu and Blemker (2015) analyzed one gait cycle, illus-
trated in Figure 6, of an unimpaired adult man walking at self-selected speed [16]. Gait kinematics
(joint angles) of children are similar to those of adults by 3,5-4 years of age [57]. However, kinetics
(internal joint moments) differ from adults until at least 7 years of age [58]. Before reaching adult-
like kinematics during gait, children especially show decreased plantarflexion moments in the ankle
[59]. It is suggested that children lack neuromuscular maturity to produce ankle power patterns
similar to those of adults until 9 years of age [57, 59], and rely more on hip power during stance
[60]. As gait in children has matured, kinematic and kinetic differences with adult gait, as well as
differences in EMG patterns, can mainly be attributed to differences in normalized walking speed
[61, 62].
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Figure 6: The gait cycle, beginning and ending with right heel strike. The stance phase, in which the right
leg has contact with the ground, accounts for 62% of the gait cycle. The remaining 38% accounts for swing
phase, in which the right leg is off the ground. HS = heel strike; CTO = contralateral toe off the ground;
CHS = contralateral heel strike; TO = toe off. Copied from Cheung et al. (2016) [63]

In this study, gait simulation was applied to compute muscle contributions in multiple gait
cycles of a small cross-sectional sample of unimpaired children. This way, differences between par-
ticipants as well as differences within participant was compensated for. Furthermore, the eccentric
loading, i.e. negative work, resulting from the simulations was used to predict differences in muscle
degeneration, quantified by the order of muscle fat replacement among individual muscles. In order
to do so, the method of the study performed by Hu and Blemker (2015) [16] was applied to gait
of multiple children, after which an extension of their analysis was performed. Furthermore, in the
extended analysis, negative work was not normalized to fiber length and PCSA, such that muscle
architecture and total negative work are separated into two independent variables that both predict
the dependent variable, muscle fat replacement.

1.2.2 Research question

The following research question was formulated:

Is eccentric contraction during gait associated with muscle fat replacement in individual leg
muscles of Duchenne Muscular Dystrophy patients?

In order to answer this research question, the following goals were defined. The first goal
was to apply the method of Hu and Blemker to gait of children [16]. Specifically, for each gait cycle,
normalized negative and positive work was calculated for each individual muscle in one leg. Further-
more, linear regressions between normalized negative and positive work and fat fraction values were
computed for upper and lower leg muscles separately. Upper and lower leg muscles were separated
in this analysis to explain why upper leg muscles generally show higher fat fractions than lower leg
muscles, while normalized negative work values were similar. If the findings of Hu and Blemker
(2015) are generally true, similar or better trends should be found in children.

The second goal was to extend the analysis by (1) evaluating effects of leg part of the muscle
(upper or lower) on fat replacement and (2) to analyze individual effects of muscle architecture and
total negative work on muscle fat replacement. If upper leg muscles are more strongly associated to
muscle fat replacement than lower leg muscles, we should see a significant effect of the interaction
between leg part and normalized negative work on muscle fat replacement. Furthermore, if muscle
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architecture is an independent factor associated to muscle fat replacement, a strong effect should
be found in a multiple regression model, which also applies for the other independent factor, total
negative work. It was hypothesized that both eccentric contraction as well as muscle architecture
are associated to muscle fat replacement in DMD. Furthermore, it was hypothesized that normalized
negative work during gait in upper leg muscles is not more strongly associated to fat replacement
than in lower leg muscles. In the next section, the study method is outlined.
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2 Materials and method

2.1 Materials

2.1.1 Subjects

Five unimpaired children were included for this study. No girls were included because only males
are affected by DMD. The five youngest subjects were selected from a group of fifteen (age 8.8 ±
2.5) because their kinematics during gait should differ most with respect to adults [58]. The onset of
symptoms due to muscle weakness in DMD is earlier than the ages of the included subjects. There-
fore, gait patterns of younger children are thought to be more similar to those of DMD patients
than older children or adults. More specifications of the included subjects are listed in Table 2 be-
low, where we normalized walking speed according to an equation proposed by Hof et al. (1996) [64]:

v∗=
v√
g·Lleg

(2)

where v∗ represents normalized walking speed, v walking speed, g the gravitational acceleration
constant and Lleg the leg length.

Table 2: Specifications of the included subjects.

Specifications Mean (standard deviation)

Gender Male: 5
Age (years) 7.16 (0.994)
Weight (kg) 23.5 (4.08)
Height (cm) 1.25 (0.0785)

Normalized walking speed 0.529 (0.0612)

The sole inclusion criterion for the subjects was that they should not have any neurological
or neuromuscular problems. All measurements were performed at the Clinical Motion Analysis
Laboratory of the University Hospital of Pellenberg (CMAL-Pellenberg) [65, 66].

2.1.2 Data collection

Gait kinematics, kinetics and muscle activities were collected as participants walked barefoot over
a 10 meter level walkway at self-selected walking speed. A set of 15 markers with 14-millimeter
diameter of the lower limb Plug-in-Gait (PiG) model was used and markers were tracked with a 10
to 15-camera VICON system (Nexus 1.8.4. Vicon-UK, Oxford, UK) at a sample frequency of 100
Hz. Ground reaction forces were collected with two force plates embedded in the walkway (AMTI,
Watertown, MA, USA). Muscle activities of the gluteus maximus, rectus femoris, vastus lateralis,
medial hamstrings, medial gastrocnemius, soleus and tibialis anterior were recorded with surface elec-
tromyography (sEMG) bilaterally with a 16-channel telemetric system (Zerowire, Cometa, Italy) at
1000 or 1500 Hz. The sEMG electrodes were attached according to SENIAM recommendations
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[65, 66].
Muscle fat fractions of 16 DMD patients (age 11.4 ± 2.2) reported by Wokke et al. (2014)

were used for this study. Another set of muscle fat fractions was pulled from the LUMC database
to append to the dataset presented by Wokke et al. (2014), such that a more complete set of fat
fractions was generated. The appended set of fat fractions were pulled from 16 DMD patients (age
10.1 ± 2.6) and included the rectus femoris (RF), vastus lateralis (VL), vastus intermedius (VI),
vastus medialis (VM), biceps femoris long head (BFL), biceps femoris short head (BFS), semitendi-
nosus (ST), semimembranosus (SM), adductor magnus (AM), adductor longus (AL), gracilis (GR)
and sartorius (SAR) in the upper leg. Fat fractions of lower leg muscles included the gastrocnemius
lateralis (GCL), gastrocnemius medialis (GCM), soleus (SOL), tibialis anterior (TA), tibialis pos-
terior (TP), extensor digitorum longus (EDL) and peroneus (PER). The fat fraction of the gluteus
maximus (Gmax) was calculated with the z-score, which was acquired by taking fat fractions of 15
muscles acquired by Ponrartana et al. (2015) [23], such that:

ZGmax=
GmaxFF−µFF

σFF
(3a)

where GmaxFF is the fat fraction of the gluteus maximus, µFF the mean fat fraction of all in-
cluded muscles except Gmax and σFF the standard deviation of the fat fractions of all included
muscles except Gmax. The z-score of the Gmax was then used to calculate the mean fat fraction
of the Gmax in the dataset used in this study, such that:

GmaxFF=µFF + ZGmax · σFF (3b)

Fat fractions of the extensor hallucis longus (EHL), flexor digitorum longus (FDL), flexor
hallucis longus (FHL) were calculated similarly, using fat fractions reported by Wokke et al. (2014)
[10]. Mean fat fractions and standard deviations of upper and lower leg muscles of the total group
of 32 DMD patients (age 10.8 ± 2.4) are illustrated in Figure 7 below.
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Figure 7: Fat fractions (means and standard deviations) of upper and lower leg muscles: gluteus maximus
(Gmax), adductor magnus (AM), biceps femoris long head (BFL), rectus femoris (RF), vastus medialis (VM),
vastus lateralis (VL), vastus intermedius (VI), semimembranosus (SM), biceps femoris short head (BFS),
peroneus (PER), gastrocnemius lateralis (GCL), semitendinosus (ST), gastrocnemius medialis (GCM), ad-
ductor longus (AL), soleus (SOL), sartorius (SAR), tibialis anterior (TA), extensor digitorum longus (EDL),
gracilis (GR), flexor hallucis longus (FHL), extensor hallucis longus (EHL), flexor digitorum longus (FDL)
and tibialis posterior (TP).

The order of fat fractions (FF) from Figure 7 is highly agreeable to the order presented in
Figure 3, in which the FF order was summarized from twelve studies. A difference is that the posi-
tion of the biceps femoris short head (BFS) is several ranks higher than predicted. As mentioned,
the BFS has a high RMSE, indicating insecurity regarding its position in the FF order. Also, the
gastrocnemii (GCL and GCM) and semitendinosus (ST) have higher FFs than the adductor longus
(AL), in contrast to the predicted order. The ranks of these four muscles were more or less inter-
changeable in the position of the FF order without having a large effect on the sum of the RMSE
values. Lastly, the extensor digitorum longus (EDL), extensor hallucis longus (EHL), flexor digito-
rum longus (FDL) and flexor hallucis longus (FHL) were not included in Figure 3 since only one of
the twelve studies reported FF values of these muscles [10].

Muscle architecture parameters PCSA and optimal fiber length (Lf ) were extracted from
Ward et al. (2009) [67]. The reported PCSA values took pennation angle of the muscles into ac-
count in order to relate PCSA to force, such that:
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PCSA=
mass[g]·cos(θ)

fiber length[cm]·ρ[ g

cm3 ]
(4)

where θ represents the pennation angle (degrees). In this study, ”classical” PCSA values were
used, representing cross-sectional areas perpendicular to the muscle fibers. Therefore, the reported
PCSA values were divided by the cosine of the pennation angles as reported in the same study.

2.1.3 Data processing

Kinematic and kinetic data were extracted from C3D files, the standard file format in motion capture,
and filtered with a 6 Hz second order low-pass Butterworth filter. Virtual markers in the pelvis were
added to the original kinematic files, such that the pelvis could be scaled in three dimensions. EMG
data were filtered with a recursive, second order Butterworth bandpass filter between 30 and 300
Hz before rectification and filtering with a 6 Hz second order low-pass Butterworth filter. EMGs
were normalized to the highest signal value found for each muscle during the trial. Subsequently, a
time delay of 40 milliseconds was added to the EMGs to correct for electromechanical delay between
surface EMG signal and force production [68]. For each participant, at least three representative gait
cycles from initial contact to initial contact, containing accurate foot placement on the embedded
force plates, were selected for further analysis.

2.2 Method

2.2.1 Musculoskeletal simulation

A scaled model of each participant was created using OpenSim (version 4.1) [15]. The gait2392 model
[50], a generic model containing 23 degrees of freedom and 92 musculotendon units, representing
76 muscles in the lower extremities and torso, was used. Fiber lengths and PCSA values of the
gait2392 model were extracted from Wickiewicz et al. (1983) [69] or Friederich et al. (1990) [70]
and scaled to approach muscle parameters of a 26 year-old instead of an elderly cadaver. Using
the scaling tool in OpenSim, body segments, musculotendon units and its parameters were linearly
scaled by matching the model’s virtual markers to the participant’s experimental markers during
a static pose. Body mass was scaled proportionally over the body segments to maintain mass
distribution. Virtual markers at joint centers are calculated by software associated with the PiG
model by VICON. Maximal marker errors were minimized by increasing the weight of markers at
bony landmarks. The resulting static pose of the model is illustrated in Figure 8 and was verified
by checking associated videos of the participants.
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Figure 8: Front view (A), rear view (B) and static pose (C) of a scaled model showing errors between
virtual model markers (pink) and experimental markers (blue). Musculotendon units were hidden in A and
B to expose markers.

When maximal marker errors of below 10 millimeters were achieved, the inverse kinemat-
ics tool was used to track marker positions during gait. It was evaluated if the scaled model also
showed low maximal marker errors during gait. In most cases, maximal RMSE values of below 10
millimeters was achieved (18/20 analyzed gait cycles), half of which showed maximal marker errors
of below 10 millimeters (9/20 analyzed gait cycles), indicating an anatomically accurate model of
the participant. The maximal isometric force (MIF) of the musculotendon units were subsequently
scaled according to the following formula [71]:

MIFnew=MIFmodel·( massnew
massmodel

)
2
3 (5)

Joint angles resulting from inverse kinematics were visually compared to existing literature of
typically developing children [61], after which the inverse dynamics tool was used to calculate joint
moments, using inverse kinematics and associated ground reaction forces as input. Ground reaction
forces (GRFs) as well as hip abduction/adduction, hip flexion/extension, knee flexion/extension and
ankle dorsiflexion/plantarflexion moments were normalized by body mass and compared to existing
literature as well [61]. Figure 9 shows joint angles resulting from inverse kinematics of one gait cycle
and Figure 10 shows the corresponding joint angle moments resulting from inverse dynamics. A
more detailed comparison to reference literature is found in Appendix A.
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Figure 9: Joint angles resulting from inverse kinematics of one representative gait cycle.

Figure 10: Joint angle moments resulting from inverse dynamics of one representative gait cycle.
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After inverse dynamics, dynamic inconsistencies were reduced to allow more accurate force
calculations. Dynamic inconsistencies between kinematics and GRFs can occur from marker data
processing errors and are associated with lower simulation quality. The residual reduction algorithm
(RRA) tool alters torso mass center of the model and allows for small kinematic deviations to reduce
dynamic inconsistencies.

To calculate muscle forces and activations, the static optimization (SO) or computed muscle
control (CMC) tool can be used. SO resolves joint angle moments resulting from inverse dynamics
into individual muscle forces at each time instant by minimizing the sum of the squared muscle
activations. The CMC tool is an extension of SO, in which muscle excitations that drive the sim-
ulation to a desired kinematic trajectory are predicted. Specifically, muscle excitations resulting in
specific joint angles, joint angular velocities and associated muscle states (activations and lengths)
are computed using a combination of proportional-derivative (PD) control and SO (Figure 11). Since
accurate muscle states were needed to compute muscle power, the CMC tool was best suited for this
study.

Figure 11: Schematic of the Computed Muscle Control algorithm applied to gait simulation [72].

2.2.2 Computed muscle control analysis

Muscle activations resulting from CMC simulations were compared to associated EMG signals, which
were also compared to EMGs from existing literature [61, 68]. Oftentimes, muscles showed activation
peaks at initial heel contact and toe off. These peaks may be related to a lack of accurate modeling
of short range stiffness (SRS) in muscles, which is the relatively high stiffness muscles exhibit just
after length change over a short time interval [73]. Underestimation of the SRS could cause the
musculotendon unit to overestimate the activation needed to generate the force needed to absorb
external loading. The activation peaks are probably also associated with spikes in hip and knee
flexion moment resulting from remaining dynamic inconsistency. Especially muscles associated with
these types of moments, like the gastrocnemius and hamstrings muscles for knee flexion and the
rectus femoris for hip flexion, showed such activation peaks. To overcome this, these muscles were
constrained from excitation in parts of the gait cycles where EMGs did not show activation, as
illustrated in Figure 12. Constraining muscles affects power, and thus negative and positive work,
as illustrated in Figure 13.
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Figure 12: Spikes in hip and knee flexion moment during toe off cause activation peaks in several muscles.
Constraining them (CMC constr) results in higher agreement with EMG. The striped vertical lines indicate
gait cycle events, from left to right: contralateral toe off (CTO), contralateral heel strike (CHS) and toe off
(TO).

Figure 13: Constraining (CMC constr) the rectus femoris (RF), biceps femoris long head (BFL), semimem-
branosus (SM) and gastrocnemius medialis (GCM) affects power and thus work. Power of the first 10% was
taken from double stance of the contralateral leg. The striped vertical lines indicate gait cycle events, from
left to right: contralateral toe off (CTO), contralateral heel strike (CHS) and toe off (TO).
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Since only two force plates were embedded in the floor, GRFs of the contralateral foot were
missing during the first double stance phase, as illustrated in Figure 14. Since this causes the CMC
tool to fail, muscle states of the first part of each gait cycle were missing, accounting for approxi-
mately 10%. Therefore, the muscle force and states of the contralateral leg during double stance,
approximately between 50-60% of the gait cycle, were added to the force and states of the main an-
alyzed leg. Further analysis was performed with Matlab (The Mathworks Inc., Natick, M.A., 2020a).

Figure 14: GRFs of one foot were missing during the first part of each gait cycle. Taken from
https://contemplas.com/en/motion-analysis/gait-analysis/.

2.2.3 Data analysis

Similarities between muscle activations from CMC and EMGs were quantified with the normalized
cross-correlation function [74]:

R =

∑
xiyi

(
∑

x2
i )

1
2 (
∑

y2i )
1
2

(6)

where xi represents the normalized value of the EMG signal between 0 and 1 and yi the nor-
malized value of the muscle activation between 0 and 1. When timing and shape of the two signals
correspond well, higher values of R are found. Generally, if R = 0.70 or higher, the correlation was
considered strong and 0.50 < R < 0.70 was considered moderately strong [75]. Constraining usually
resulted in R > 0.50, except for some cases where timing between the signals was off.

Two sets of results were generated. The first set includes normalized positive and negative
work, calculated in the same manner as Hu and Blemker (2015) [16]. The second set of results in-
cludes total positive and negative work, and was calculated without taking maximal isometric force
and fiber length into account:

Wneg,tot =
∫
F · vneg (7)

The two sets of results were averaged over the gait cycles of each participant, and subse-
quently averaged over the subjects. Standard deviations were pooled with the following formula:
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SDpld =

√
(n1−1)·s21+(n2−1)·s22+...+(nk−1)·s2k

n1+n2+...+nk−k (8)

where n1 represents the number of analyzed gait cycles of subject 1, s1 the standard deviation
of a certain muscle of subject 1 and k the number of included subjects.

2.2.4 Statistics

In the first part of the results, the method of the study of Hu and Blemker (2015) [16] was applied to
multiple gait cycles of multiple children. Therefore, a linear regression model was built for upper and
lower leg muscles separately, where positive and negative normalized work was analyzed separately.

The second part of the results is an extension of the study of Hu and Blemker (2015) [16].
Since the accumulation of age-dependent muscle fat replacement follows an ‘S-shaped’ curve rather
than a linear relationship [20, 21, 55], a logit transform was applied to the fat fractions in this
analysis to establish a linear relationship between age and fat fractions:

logFF = ln( FF
1−FF

) (9)

This transformation also causes the predicted fat fraction values to be bounded between 0 and
1. This analysis included all leg muscles, and analyzed if the relation between normalized negative
work and fat fractions differs between upper and lower leg muscles. The multiple-regression model
that was built for this purpose is shown in equation 10:

logFF = β0 + β1 ·Wneg,norm + β2 ·Part + β3 ·Wneg,norm ·Part (10)

where Part is a tag that defines whether a muscle is found in the upper or lower leg, and Wneg,norm ·
Part represents an interaction term. Furthermore, a linear model was built to test for an association
between logFF and normalized negative work for all leg muscles simultaneously.

In the third part of the results, a multiple-regression model was built that included both
muscle architecture and total negative work. First, multiple-regression between logFF and muscle
architecture parameters optimal fiber length (Lf ) and PCSA was analyzed to validate results from
Veeger et al. (2021), in which a significant association between interaction term Lf · PCSA and fat
replacement was shown [55]. A total of twenty-three muscles are analyzed in the multiple-regression
analysis. To minimize the number of independent variables in the model, Lf and PCSA, taken from
Ward et al. (2009) [67], were multiplied to acquire muscle volume (Vmus). The models built for this
purpose are defined in equations 11 and 12:

logFF = β0 + β1 · Lf + β2 · PCSA + β3 · Lf · PCSA (11)

logFF = β0 + β1 ·Wneg,tot + β2 ·Vmus + β3 ·Wneg,tot ·Vmus (12)

The models and associated graphs were built using R (R Core Team, version 4.1.1) and
associated libraries ggplot2, plotly and visreg. Multiple-R2 and p-values were used to quantify
variance and significance respectively, both of which computed in R. Significance level was set at
p < .05.
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3 Results

In the first part of this section, the method of the study of Hu and Blemker (2015) [16] was applied
to multiple gait cycles of multiple children. The second part of the results was an extension of
this study, in which the separate effects of normalized negative work on muscle fat replacement for
upper and lower leg muscles are shown. Also, the association between normalized negative work and
muscle fat replacement of all muscles was analyzed. In the third part of the results, separate effects
on logFF of two individual predictors, muscle architecture and total negative work, were evaluated.

Similarities between average EMG signals and average muscle activations resulting from CMC
simulation are illustrated in Figure 15.

Figure 15: Similarities between average EMG signals and average muscle activations resulting from CMC
simulation. The striped vertical lines indicate gait cycle events, from left to right: contralateral toe off
(CTO), contralateral heel strike (CHS) and toe off (TO).

Cross-correlations between EMGs and activations resulting from CMC were computed for
eight muscles to quantify similarities in timing and shape, as illustrated in Figure 16.
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Figure 16: Cross-correlations (means & pooled standard deviations) between EMG signals and muscle
activations resulting from CMC simulation, including the soleus (SOL), gastrocnemius medialis (GCM),
semimembranosus (SM), tibialis anterior (TA), vastus lateralis (VL), gluteus maximus (Gmax), biceps
femoris long head (BFL), rectus femoris (RF), semitendinosus (ST).

A threshold for R-values that indicate a ‘strong’ cross-correlation was set at 0.70 [75]. In that
regard, all muscles show strong cross-correlations between EMGs and muscle activations, except for
the R-values of the rectus femoris and semitendinosus, which can be considered moderately strong.

3.1 Differences with Hu and Blemker (2015)

3.1.1 Normalized negative work values

Figure 17 shows a correlation between normalized negative work values of upper leg muscles of this
study and Hu and Blemker (2015). The rectus femoris (RF) and adductor magnus (AM) show
the highest amounts of normalized negative work in this study, and the adductor longus (AL),
semitendinosus (ST), sartorius (SAR) and gracilis (GR) show relatively low amounts of normalized
negative work. The gluteus maximus (Gmax) was not included in this graph, its normalized negative
work value can be found in Appendix B.

One difference between results is that the average normalized negative value of the included
upper leg muscles was approximately twice as high in our study (0.050 versus an estimated 0.024).
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Furthermore, the rectus femoris (RF) is the muscle with the highest normalized negative work value
in this study, far exceeding the values of other muscles, while it was ranked fifth in the study of
Hu and Blemker (2015). The biggest difference is the position of the adductor magnus (AM) in
the order of normalized negative work values, which is ranked second in our study and ninth in the
study of Hu and Blemker (2015). Apart from these two differences, the order of normalized negative
work values shows a moderately strong correlation between studies for upper leg muscles (R2 = 0.40,
p < .05∗).

Figure 17: Correlation between normalized negative work values of upper leg muscles between this study
and Hu and Blemker (2015). Included muscles: rectus femoris (RF), adductor magnus (AM), vastus lateralis
(VL), vastus intermedius (VI), vastus medialis (VM), semimembranosus (SM), biceps femoris long head
(BFL), biceps femoris short head (BFS), adductor longus (AL), semitendinosus (ST), sartorius (SAR),
gracilis (GR).

Figure 18 shows a correlation of normalized negative work values of lower leg muscles between
this study and Hu and Blemker (2015). The gastrocnemius medialis (GCM) shows the highest value
and five muscles, the peroneus (PER), extensor hallucis longus (EHL), tibialis posterior (TP), flexor
hallucis longus (FHL) and flexor digitorum longus (FDL) show relatively low amounts of normalized
negative work.

Again, a difference between results is that the average normalized negative work values of the
included lower leg muscles is approximately twice as high in this study (0.043 versus an estimated
0.023). Apart from that, the order normalized negative work values correlates very strongly between
studies for lower leg muscles (R2 = 0.96, p < .001∗∗∗).
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Figure 18: Correlation between normalized negative work values of lower leg muscles between this study
and Hu and Blemker (2015). Included muscles: gastrocnemius medialis (GCM), soleus (SOL), gastrocnemius
lateralis (GCL), tibialis anterior (TA), extensor digitorum longus (EDL), peroneus (PER), extensor hallucis
longus (EHL), tibialis posterior (TP), flexor hallucis longus (FHL) and flexor digitorum longus (FDL).

3.1.2 Linear regression analysis

Linear regressions between normalized negative work and fat fractions are visualized in Figure 19A.
Regressions published by Hu and Blemker (2015) are visualized in Figure 19B [16]. For upper leg
muscles, normalized negative work during gait was strongly correlated to fat fractions (R2 = 0.63,
p < .01∗∗). A moderately strong correlation between normalized negative work was observed for
lower leg muscles, albeit not significant (R2 = 0.46, p = .060). The regression was subject to a large
bias due to the peroneus, which, in line with the study of Hu and Blemker (2015), has a high fat
fraction value and a low amount of normalized negative work during gait [16]. In contrast to Hu
and Blemker (2015), the correlation was significant without excluding the adductor magnus in the
upper leg from the analysis [16]. Generally, higher fat fractions are observed in muscles showing
higher values of normalized negative work during gait.
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Figure 19: A: linear regression between normalized negative work and fat fraction values for upper and
lower leg muscles separately. Slopes of the linear regression line are indicated with β. B: linear regression
between normalized negative work and fat fraction values, adapted from Hu and Blemker (2015) [16].

A moderately strong correlation can be observed between normalized positive work and fat
fraction values for upper leg muscles (R2 = 0.46, p < .05∗), as illustrated in Figure 20A. This is
in contrast with Hu and Blemker (2015), where no significant correlations were found between nor-
malized positive work and fat fraction values for both upper and lower leg muscles, as illustrated
in Figure 20B [16]. For lower leg muscles, a weak yet insignificant correlation between normalized
positive work can be observed (R2 = 0.10, p = 0.36).

Figure 20: A: linear regression between normalized positive work and fat fraction values for upper and
lower leg muscles separately. Slopes of the linear regression line are indicated with β. B: linear regression
between normalized positive work and fat fraction values, adapted from Hu and Blemker (2015) [16].

From Figure 19, similarities in average normalized negative work values between upper and
lower leg muscles can be observed. Average normalized positive work values are higher for lower leg
muscles than for upper leg muscles, as can be observed from Figure 20. Still, fat fraction values are
generally higher in upper leg muscles.
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3.2 Extension Hu and Blemker (2015)

In this section, the logit transform of the fat fractions (logFF ) was used in the linear models, see
equations 9 and 10. An association between normalized negative work and logFF was observed,
with higher normalized negative work values corresponding to higher logFF values (Table 3). The
effect of leg part on logFF was highly significant, indicating a higher predicted fat fraction for upper
leg muscles than for lower leg muscles. The interaction Wneg,norm · Part was not significantly asso-
ciated to logFF , which showed that the association between normalized negative work and logFF
was not significantly stronger for upper leg muscles than for lower leg muscles and vice versa.

Table 3: Output multiple-regression model of normalized negative work versus logFF : upper leg muscles
versus lower leg muscles (eq.10).

Estimate (β) SE β 95% CI p-value

Wneg,norm 13.456 4.943 3.768 - 23.144 .014∗

Part 0.786 0.162 0.468 - 1.104 <.001∗

Wneg,norm · Part 0.306 6.117 -11.683 - 12.295 .961

The effect of normalized negative work on logFF for both upper and lower leg muscles is
shown in Figure 21, where logFF was transformed back to fat fraction values.

Figure 21: Normalized negative work was significantly associated with logFF when upper and lower leg
muscles are not separated. logFF was transformed back to fat fraction values in the graph.
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No significant association was observed between normalized positive work and logFF (Table
4). In agreement with the previous analysis, the effect of leg part on logFF was significant. The
interaction Wpos,norm · Part was not significantly associated to logFF , which shows that the as-
sociation between normalized positive work and logFF is not significantly stronger for upper leg
muscles than for lower leg muscles and vice versa. The effect of normalized absolute work, the sum
of normalized negative and positive work, on logFF is found in Appendix C.

Table 4: Output multiple-regression model of normalized positive work versus logFF : upper leg muscles
versus lower leg muscles.

Estimate (β) SE β 95% CI p-value

Wpos,norm 7.940 5.582 -3.000 - 18.881 .191
Part 1.281 0.244 0.803 - 1.759 <.001∗

Wpos,norm·Part 8.287 8.523 -8.418 - 24.992 .343

3.3 Muscle architecture and negative work

Significant associations between both muscle architecture parameters (Lf and PCSA) and logFF
were observed. The interaction Lf · PCSA was also significant, which indicates that the effect of
Lf on logFF was stronger if PCSA was larger (Table 5). Individual effects of PCSA and Lf on
logFF are visualized in Figure 22, where logFF was transformed back to fat fraction values.

Table 5: Output multiple-regression model of muscle architecture versus logFF (eq.11).

Estimate (β) SE β 95% CI p-value

Lf 0.098 0.030 0.039 - 0.157 .004∗

PCSA 0.076 0.020 0.037 - 0.115 .001∗

Lf ·PCSA 0.015 0.005 0.005 - 0.024 .005∗

Figure 22: Both fiber length (Lf) and PCSA are associated with logFF .
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Since the interaction Lf ·PCSA was significantly associated with logFF , Lf and PCSA were
multiplied to acquire muscle volume (Vmus). An association between total negative work and logFF
was observed (Table 6). The interaction Vmus·Wneg,tot was also significant, which indicates that the
effect of total negative work on logFF was weaker if Vmus was larger.

Table 6: Output multiple-regression model of total negative work versus logFF (eq.12).

Estimate (β) SE β 95% CI p-value

Vmus 0.011 0.002 [0.007, 0.014] <.001∗

Wneg,tot 0.195 0.090 [0.019, 0.371] .043∗

Vmus·Wneg,tot -0.012 0.003 [-0.018, -0,006] <.001∗

The individual effects of Vmus and Wneg,tot on logFF are visualized Figure 23, where logFF was
transformed back to fat fraction values.

Figure 23: Both muscle volume (A) and total negative work (B) were significantly associated with fat
replacement. logFF was transformed back to fat fraction values in the graph.

Figure 24 shows the different effects of total negative work on logFF for different in muscle
volumes: small muscle volume (Fig. 24A), intermediate muscle volume (Fig. 24B) and large muscle
volume (Fig. 24C). The effect of total negative work on logFF was stronger if muscle volume was
lower. For large muscle volumes, a negative association between total negative work and logFF was
observed.
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Figure 24: Different effects of total negative work on muscle fat fractions for: A) small muscle volumes,
B) intermediate muscle volumes and C) large muscle volumes. logFF was transformed back to fat fraction
values in the graph.
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4 Discussion

4.1 Eccentric contraction during gait is associated with fat replacement
in DMD

The results of this study show that eccentric contraction is associated with fat replacement in leg
muscles of DMD patients. Two goals were defined in this study. The first goal was to apply the
method of Hu and Blemker (2015), in which linear regressions between fat fractions and normalized
negative and positive work values were analyzed for upper and lower leg muscles separately to
multiple gait cycles of multiple children [16]. A large difference in average normalized work values
was found between studies, where the values of this study were on average almost twice as high.
This difference may partly be explained by increased normalized walking speed of the subjects, since
it affects joint power and muscle activity [61, 62]. In this study the normalized walking speed was
0.53, which can be considered fast [61]. The non-normalized walking speeds of this study were on
average already higher than the reported walking speed of the subject analyzed by Hu and Blemker
(2015) (1.45 versus 1.36) [16]. Therefore, average normalized walking speed was certainly higher in
this study. Since differences in normalized work values are so large between studies, it is likely that
they are partly caused by scaling of muscle fiber length and maximal isometric force, which directly
affect normalized work values.

The order of normalized negative work values was generally agreeable between studies, except
for the rectus femoris and adductor magnus. Various gait parameters and muscle activity patterns
respond differently to increasing walking speed. As such, the rectus femoris is said to be essentially
non-active at slower walking speeds, while activation rapidly increases for faster walking speeds
[61], which explains why it showed the highest normalized negative work value in this study, in
contrast to Hu and Blemker (2015) [16]. Interestingly, in the study of Hu and Blemker (2015) the
adductor magnus was excluded to find a significant correlation between normalized negative work
values and fat fractions. A similar sensitivity to normalized walking speed may also apply for the
adductor magnus, although quantification of its contribution during gait is relatively understudied
[76]. However, one study found that the adductor magnus was already one of the most active muscles
during gait at comfortable walking speed, as quantified by volumetric uptake of a glucose analog
[77].

To find a significant correlation between normalized negative work and fat fraction values in
the lower leg, Hu and Blemker (2015) excluded the peroneus from the regression analysis. Although
the position of the peroneus in the order of normalized negative work values was different in this
study, its inclusion still did not result in a significant correlation due to a high fat fraction value
and a low amount of normalized negative work during gait. Therefore, an explanation for the high
fat fraction of the peroneus was not found in this study, although another study observed increased
activity of the peroneus for very slow walking speeds, which indicates that the activity of this
muscle is associated to achieving postural stability rather than to achieve locomotion [78]. As young
children learn to stand up, this is initially associated with postural instability. Furthermore, postural
instability is even more present in DMD, and it will remain to be in the rest of their ambulant lives.
Therefore, early involvement of the peroneus in DMD may be related to increased loading of this
muscle as children learn to stand up and maintain balance.

To summarize the first part of the results, both normalized negative and positive work showed
significant correlations with fat fractions for upper leg muscles. A relation between normalized
positive work and fat replacement was not expected since it is believed that eccentric contraction,
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not concentric contraction, is especially harmful for dystrophin-absent muscle. Also, this result was
not expected since it is in contrast to Hu and Blemker (2015) [16]. No significant relation was
observed between normalized negative work and fat fractions for lower leg muscles, except when
the peroneus was excluded from the analysis, which is in line with Hu and Blemker (2015) [16]. As
expected, no significant relation between normalized positive work and fat fractions were observed
for lower leg muscles. Furthermore, although upper and lower leg muscles showed similar average
values of normalized negative and positive work, fat fractions were generally higher in upper leg
muscles.

The second goal of this study was to extend the analysis by evaluating the effect of leg part
(upper or lower) on fat replacement and (2) to analyze separate effects of muscle architecture and
total negative work on fat replacement. In the second section of the results, normalized negative work
was significantly associated with logFF , where higher normalized negative work values corresponded
to higher logFF . In contrast, no significant association between normalized positive work and
logFF was found. The effect of leg part was highly significant, which indicates that upper leg
muscles are stronger predictors for fat replacement than lower leg muscles. This is in line with a
frequently observed proximal-to-distal gradient of muscle weakness in DMD. However, the interaction
Wneg,norm · Part was not significant, suggesting that the effect of normalized negative work on logFF
was not stronger for upper leg muscles than for lower leg muscles. A possible explanation why upper
leg muscles are affected earlier in DMD, and thus have higher fat fractions, is that decreased ankle
power is observed in children < 7 years old [57], which is compensated for by increased hip power
[60]. It is hypothesized that such kinetic differences in children of age < 7 reflect neuromuscular
immaturity. In other words, proximal muscles associated with generating hip power may be subject
to relatively higher amounts of negative work than distal muscles associated with generating ankle
power in young children. The crawling phase may also play a role in a proximal-to-distal gradient
of muscle weakness in DMD, since larger hip flexion/extension angles are found during this motion
than during gait [79], which arguably results in relatively larger hip moments and thus power of
muscles associated with this motion. Similarly, other physical activities than gait, such as stair
walking or running, may contribute to a proximal-to-distal gradient in muscle weakness as well.

Significant associations were observed between logFF and muscle architecture parameters Lf

and PCSA. Furthermore, in agreement to Veeger et al. (2021), the interaction Lf · PCSA was
significantly associated with logFF [55]. Therefore, muscle architecture parameters Lf and PCSA
were multiplied to calculate muscle volume, which, along with total negative work (Wneg,tot), was
used as independent variable in the subsequent analysis to predict fat replacement. Total negative
work was significantly associated to logFF , which indicates that although muscle architecture is
strongly associated with fat replacement, eccentric contraction contributes to fat replacement as
well. A negative association between the interaction Vmus · Wneg,tot and logFF was observed,
indicating that the effect of total negative work on logFF is weaker for muscles with larger muscle
volumes. This was expected since muscles with larger volumes are able to generate more power, and
are therefore less taxed than muscles generating the same amount of power with less volume.

A negative association between total negative work and logFF was observed for muscles with
large muscle volumes (Figure 24C), which was not expected. This effect was based on only five
muscles with large volumes, the gluteus maximus, vastus lateralis, adductor magnus, soleus and
vastus medialis, in which especially one observation, the soleus, resulted in the observed negative
association. In mdx mice, it was found that especially muscles consisting of fast-twitch fibers are
susceptible to eccentric contraction induced damage, whereas the soleus consists primarily of slow-
twitch fibers [42]. One study found that the dystrophic pathology in the soleus muscle is diminished
due to overexpression of the neuronal nitric oxide synthase (nNOS) transgene, thereby providing
nitric oxide as anti-inflammatory molecule [80]. Another study demonstrated that the slow-twitch
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soleus muscle in mdx mice is no more susceptible to eccentric contraction induced damage than
for age-matched controls, showing reduced amounts of branched fibers than in other muscles [81].
Fiber type compositions are more complex in humans than in mice [82], although with an average of
80%, the human soleus predominantly contains slow-twitch fibers as well [83]. Such findings suggest
that the soleus, at least in mdx mice, is designed to regenerate better after damage than other leg
muscles.

4.2 Limitations

This study is an extension of the preliminary study published by Hu and Blemker (2015) [16]. Some
of the study limitations that they addressed have been resolved, but not all.

One limitation they addressed was that the gait analysis was based on an unimpaired adult
man, while DMD patients never develop a healthy adult gait pattern. Furthermore, although walking
is one of the most common daily activities, other types of physical activities may also contribute to
muscle degeneration [16], which were neglected in this study. For this study it was chosen to analyze
gait of unimpaired young children, since their muscle contributions reflect best which muscles are
initially affected by eccentric contraction in DMD. The mean age of this cross-sectional sample of
children was slightly above 7, while the mean age would have been preferred to be lower, such that
the kinetics would reflect those of relatively unimpaired DMD patients. Gait of one DMD patient
was analyzed to explore differences in muscle contributions due to gait deviation, which resulted in
small differences in normalized work values, as illustrated in the graphs found in Appendix D.

Another limitation of this study is the fact that the same musculoskeletal model was used as
Hu and Blemker (2015) [16, 50]. While this was a logical choice in order to compare results when their
method was applied to multiple gait cycles of multiple children, it would also be meaningful to explore
possible effects of using a different, scientifically valid model to calculate muscle contributions. Model
parameters can be slightly different in bone geometry, muscle architecture and alignment, and they
may use a different muscle model, all of which affect the predicted work of muscles during gait.
Furthermore, the Vicon Plug-in-Gait model was used to process the data, which contains numerous
simplifications with regard to calculating joint centers, introducing both random and systemic errors
[84]. For example, hip joint centers are derived from regression equations, with coefficients obtained
from using imaging techniques on living adult males or direct measurements of cadavers [85].

Also, the muscle models used in this study were based on a healthy population and highly
simplified [86]. Detailed stress-strain distributions within muscles can therefore not be simulated
with high detail, as already addressed by Hu and Blemker (2015) [16]. To accurately model DMD
gait and calculate associated muscle contributions, a model with subject-specific anthropometrics
and muscle mechanical properties should be developed.

Lastly, fat fraction values were extracted from the LUMC database and from Wokke et al.
(2014) [10], and were subsequently added together to acquire fat fraction values of 32 DMD patients.
A golden standard to quantify fat fractions has not yet been established. Therefore, the order of
muscle fat fractions used in this study is probably not totally accurate. Moreover, fat fractions in
DMD are not solely dependent on fat replacement, since muscles of DMD patients show changes in
cross-sectional area (CSA). For example, atrophy of the contractile CSA of the adductor magnus
[8, 17, 28], quadriceps [10, 17, 24], biceps femoris [10, 17, 24] and gluteus muscles [24] has been
reported. In contrast, hypertrophy of the contractile CSA of the gracilis [24, 28], sartorius [24, 28],
and triceps surae [10, 24] is frequently seen. Therefore, the amount of fat replacement may in some
cases be overestimated for atrophied muscles, or underestimated for hypertrophied muscles.
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4.3 Future work

Future recommendations include analyzing other physical activities of unimpaired children than
gait, such as crawling, stair walking or running. It may be that certain types of activities result in
relatively higher amounts of (normalized) negative work in upper leg muscles with respect to lower
leg muscles. Higher fat fractions are generally found in proximal muscles, while average normalized
negative work values were similar between upper and lower leg muscles. Therefore, in this study
no explanation was found for the differences in fat fractions between upper and lower leg muscles.
Similarly, an explanation of the high fat fraction of the peroneus in the lower leg was not found,
while it was mentioned that its activity increases for very slow walking speeds [78]. Therefore, it is
also recommended to analyze very slow walking speeds or balancing tests.

Furthermore, accurate models of DMD patients with subject-specific anthropometrics and
muscle mechanical properties that reflect muscle contraction patterns of dystrophic muscles should
be developed. This way, pathological changes that reflect the different progressions of muscle de-
generation can be validated. That is, if subject-specific longitudinal muscle MRI data and 3D gait
analysis data are available, along with muscle models that can accurately reflect altered mechanical
properties related to the structural and compositional changes observed in muscles of DMD patients.

Also, as addressed by Hu and Blemker (2015), finite element 3D muscle models that reveal
stress-strain distributions within muscles should be incorporated into simulation. This way, the effect
of different muscle architecture and geometry on non-uniform stress distributions within muscles can
be evaluated [16]. Elevated stress-strain concentrations are usually found near the myotendinous
junction, where dystrophin is normally abundant [40, 87]. Muscle fat replacement also develops
non-uniformly, with higher fat fractions found near the myotendinous junction with respect to the
muscle belly [88]. Also, the same type of contraction may result in different levels of stress-strain
concentrations among muscles. Taken together, incorporating detailed finite element muscle models
in gait simulation may provide insight regarding varying degrees of muscle damage in DMD after
eccentric contraction.

4.4 Conclusion

In conclusion, the results of this study show that eccentric contraction during gait is associated
with muscle fat replacement in DMD patients. Accounting for the effect of muscle architecture, the
effect of negative work on muscle fat replacement was still significant. However, the fact that fat
fractions in upper leg muscles are generally higher than in lower leg muscles cannot be explained
from these results. The high fat fraction of the peroneus also remains a matter to be resolved in
future studies. More insight regarding the proximal-to-distal gradient of muscle degeneration in
DMD may be generated if gait of an even younger cross-sectional sample of unimpaired children is
analyzed, or if other activities than walking are simulated. Further understanding of the process
of muscle degeneration in DMD may be established if models with subject-specific anthropometrics
and biomechanics are developed, and if finite element 3D muscle models are incorporated into
musculoskeletal simulation. Ultimately, they can potentially generate more insight into effects of
various types of exercise on muscle damage in DMD. The effect of exercise on prolonged muscle
function preservation remains controversial, but in agreement with most of the literature, exercises
including eccentric contraction should be avoided.
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Appendix A: Inverse kinematics and inverse dynamics versus
reference literature

Figure 25: Mean joint angles of subjects analyzed in this study (left) versus reference literature (right)
[61].
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Figure 26: Mean joint angular moments of subjects analyzed in this study (left) versus reference literature
(right) [61].
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Appendix B: Work values

Normalized negative work: effect of constraining muscles

Figure 27: Effect of constraining upper leg muscles on normalized negative work.

Figure 28: Effect of constraining lower leg muscles on normalized negative work.
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Normalized positive work: effect of constraining muscles

Figure 29: Effect of constraining upper leg muscles on normalized positive work.

Figure 30: Effect of constraining lower leg muscles on normalized positive work
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Total work

Figure 31: Total negative work values for upper leg muscles.

Figure 32: Total negative work values for lower leg muscles.
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Figure 33: Total positive work values for upper leg muscles.

Figure 34: Total positive work values for lower leg muscles.
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Appendix C: Absolute work versus muscle fat replacement

Figure 35 shows correlations between normalized absolute work (positive work + negative work) for
upper and lower leg muscles separately. A strong correlation was observed for upper leg muscles
(R2 = 0.85, p < .001 ∗ ∗∗). Since both normalized negative and positive work showed significant
correlations with fat fractions, this was expected. A moderately strong, yet insignificant correlation
was observed for lower leg muscles (R2 = 0.33, p = .08), which is weaker than the correlation
between normalized negative work and fat fractions.

Figure 35: Linear regression between normalized absolute work and fat fraction values for upper and lower
leg muscles separately. Slopes of the linear regression line are indicated with β.

An association between normalized absolute work and logFF was observed, as was expected.
The association with logFF is not stronger for normalized absolute work than for normalized neg-
ative work. The effect of normalized absolute work on logFF is shown in Figure 36.

Table 7: Output multiple-regression model of normalized absolute work versus logFF : upper leg muscles
versus lower leg muscles.

Estimate (β) SE β 95% CI p-value

Wabs,norm 6.60 2.45 1.80 - 11.40 .014∗

Part 1.12 0.15 0.83 - 1.41 <.001∗

Wabs,norm · Part 5.07 3.41 -1.61 - 11.75 .15
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Figure 36: Normalized absolute work was significantly associated with logFF when upper and lower leg
muscles are not separated. logFF was transformed back to fat fraction values in the graph.

Individual effects of normalized positive and negative work, as well as their interaction, were
also computed in the following multiple-regression model:

logFF = β0 + β1 ·Wneg,norm + β2 ·Wpos,norm + β3 ·Wneg,norm ·Wpos,norm

The results are shown in Table 8 below. As can be observed, normalized positive work does not
significantly contribute in the association between normalized absolute work and muscle fat replace-
ment.

Table 8: Output multiple-regression model of normalized work versus logFF : positive versus negative
work.

Estimate (β) SE β 95% CI p-value

Wneg,norm 17.0 4.60 7.98 - 26.0 .0015∗

Wpos,norm -5.76 4.34 -14.3 - 2.75 .20
Wneg,norm · Wpos,norm 5.33 176 -341 - 351 .98
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Appendix D: gait analysis DMD

The work values from Figures 37-40 resulted from analyzing four gait cycles of one DMD patient. The
results are generally agreeable, apart from some obvious differences in work values. More subjects
should be analyzed to draw conclusions regarding these differences. Interestingly, in contrast to the
results presented in this report, the correlation between normalized negative work and fat fractions
of lower leg muscles was significant (R2 = 0.41, p = .045). No further differences in statistical
significance were found using these work values.

Normalized negative work: unimpaired vs DMD

Figure 37: Normalized negative work values of upper leg muscles of one DMD patient compared to the
values obtained from unimpaired subjects.
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Figure 38: Normalized negative work values of lower leg muscles of one DMD patient compared to the
values obtained from unimpaired subjects.

Normalized positive work: unimpaired vs DMD

Figure 39: Normalized positive work values of upper leg muscles of one DMD patient compared to the
values obtained from unimpaired subjects.
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Figure 40: Normalized positive work values of lower leg muscles of one DMD patient compared to the
values obtained from unimpaired subjects.
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