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Abstract

Online customer reviews on products have become a large part of marketing intelligence in recent years.
These documents are a source of information on what aspects of a discussed product can be improved upon.
These aspects are named drivers. CQM, the company in which the internship for which this thesis was written
took place, has developed a tool in which reviews are manually annotated for a fixed set of drivers. The
result is that for each driver, each review can be assigned a driver score. The driver score can be a positive or
negative number, indicating with what sentiment the reviews discusses the driver, or left blank, meaning that
the review does not discuss the driver. The goal of this work is to (partially) automate this process, so that,
given the review, the driver scores can be predicted.

The first step towards achieving this is creating a binary classification problem for every driver, where a binary
variable can, for example, indicate whether a review discusses the driver or not. A step further is multinomial
classification, where one can also distinguish whether a driver is discussed with positive or negative senti-
ment.

The reviews are represented as variables, with every variable representing the use of a word. In this thesis,
different forms for these variables are experimented with. With every variable representing a unique word,
a large number of distinct predictors is offered for the classification problem. Given these predictors, two
types of models are considered to solve the classification problem: Elastic net models and random forests.
Both types of models need to be adapted for the class imbalance before they can be used for the classification
problem of predicting the driver scores. The results of these models are evaluated using the area under the
curve (AUC) and for the multinomial problem a multinomial generalisation, the AUC,,. These measures are
chosen, because they are effective at evaluating the performance of our models in the context of the class
imbalance.

The results were ultimately evaluated for various variable forms and models. For the model we found that a
random forest adapted to use stratified bootstrap samples to grow decision trees gave strong performance,
especially when combined with variables that were given an indicator function form or normalized tf-idf
form.

Keywords: document classification, topic detection, sentiment detection, imbalanced classification prob-
lems.
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Nomenclature

« Elastic net model parameter

A regularization parameter

(pi,j), estimate for (p;;),

(bj), estimate for (p;),

(pij), (pj), for document i

(pj)q probability for class ¢ as outcome for driver j as a stochastic function

Tk the K-simplex

d; ; estimate for d;

Dij  p; for document %

Dj estimate for p;

A misclassification matrix

B number of trees in random forest

C; values attained by d; in the data set

coarsened driver score d; for document ¢

,J
d} coarsened driver score for driver j
di ; driver score d; for document %
d; driver score for driver j
i document
J driver
m number of drivers
n number of documents
P number of classes
Dij p; for document ¢
Dj probability for driver j as a stochastic function
q class
t threshold value
% vocabulary size
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Ti v
T
AUC
FN
FP
FPR
GI

word in vocabulary

z, for document %

variable for word v

area under the curve

false negatives

false positives

false positive rate (= 1—sensitivity)

Gini impurity

LASSO least absolute shrinkage and selection operator

RF
ROC
TN
TP
TPR

random forest
receiver operating characteristic
true negatives
true positives

true positive rate (=sensitivity)
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Introduction

The last decade,giant steps have been made in the world of data science and analytics. With the availability
of big data and fast computers, better and large-scale analyses can be done. For companies, these analyses
are key, as it is believed that lots of information and knowledge can be retrieved from the logged data and
data that is freely available online. The field of applications of big data that this thesis focuses on is marketing
intelligence. That is, using data to gain insights into customer behaviour and opinions. Even marketing
strategies can be tuned based on prediction models such that the strategy is optimal for sales or product
ratings. In the next section, we will dive into the specific questions CQM ! is asked by their clients.

1.1. Annotated reviews

In recent years, companies have asked CQM to investigate what parts of products to improve upon, based on
webshop reviews of these products. In response, CQM has developed an annotation tool. The annotation tool
is a piece of software that requires online reviews of one product, or a group of similar products, and preset
'drivers’ as input. Drivers are subjects discussed in these reviews, and can have an associated sentiment.
Examples of drivers could be 'ease of use’, ‘durability’ or 'cost quality ratio’, and a review can then be positive or
negative about these drivers, or can not discuss them at all. Currently, reading these reviews and annotating
for the drivers is done manually.

Consider a small example of the output of this process. One data set used within this thesis is on shaver
reviews. Part of this data set looks like this:

review_text Accessoiries | Charging_Electronic_power | Design
Works well, shaves closely, just like Braun ... -1.0 NA 1.0
My first ever electric razor, so can't compare.... NA NA NA
Excellent shave once you get used to it. My ... NA 1.0 NA
I'have a 10-year old Braun 7526 that’s still going ... NA NA NA

Figure 1.1: Example of part of the data set on shavers

In the first column, the reviews are shown. All other columns represent the driver scores. Three such columns
are shown here. The driver scores shown in this example are —1, 1 and NA. —1 and 1 indicate negative and
positive sentiment respectively, and NA indicates that the review does not discuss the driver. There may
be more possible driver scores within this and other data sets. Within the data set from Example 1.1 the

1CQM stands for Consultants in Quantitative Methods and is the company in which my internship took place. The department of CQM
in which this thesis is written is specialized in product and process innovation. To better innovate and improve products, insights in
customer opinions are required. Therefore, research is done in extracting overarching themes and opinions from large sets of online
reviews, without having to read every single review.




2 1. Introduction

driver scores —2 and 2, signifying very negative and very positive sentiment, and 0, showing that a driver is
discussed, but in a neutral manner, are for example also used.

1.2. Research Questions

Now, the goal of this thesis is to automate the annotation process. In other words, where the annotation tool
developed by CQM currently requires manual work, reading and annotating the reviews one by one, in this
thesis we aim to predict the driver scores, given the reviews. We want to translate the 'free text’ from a user
review, to useful data that can be used to predict the driver scores. For a start, we will try to predict whether
the driver score is NA (meaning that the review does not contain information relevant for the driver) or not.
Or alternatively, try to predict whether the driver score is positive (meaning that the review mentions the
driver in a positive manner) or not, meaning that the review either mentions the driver in a negative manner,
or not at all. Vice versa for negative driver scores. As we sort the review in either of two classes, we call this
a binary classification problem. Then, we will create a model for the setting where we distinguish between
positive and negative sentiment, and NA. This is called the multinomial classification problem, where we
sort the review in either of three classes. The latter may prove challenging, as the many subtleties in language
may make it hard to distinguish between negative and positive driver scores. We do not necessarily aim to
predict these driver scores correctly one hundred percent of the time. A good guess at how the review should
be annotated would already save a lot of work when using the annotation tool.

Apart from the goal of what we want to predict, we also differentiate in the methods used for prediction.
In this thesis, two different methods will be discussed extensively; Elastic net (including LASSO and Ridge
regression) and random forests. Furthermore, we will discuss how to transform reviews to variables, and the
possibilities we have in how to choose these variables. Aside from the input, we will show how to evaluate the
output of these methods using the AUC and a multinomial generalization of the area under the curve (AUC).
As a conclusion, the following research questions are formulated:

» Using annotated data, can driver presence and sentiment be predicted for new reviews, and if so, what
is the accuracy of these predictions?

— What challenges arise when going from a binary classification to a multinomial classification and
how can these be overcome?

— How do the Elastic net and random forest models function, how are they different, and how do we
compare them?

— How can we maximize the predictive performance of our models and critically evaluate our re-
sults?

— To what extent can we gain insight into which words or which combinations of words in reviews
are relevant for predictions?

1.3. Outline of this thesis

In Chapter 2, we will first briefly introduce the data sets used within this thesis, after which we mathematically
formalize the problem statement of this research. In Chapter 3 it is shown how to process the free text from
reviews to variables. In Chapter 4 we will discuss how to evaluate our results, regardless of the method used.
Chapter 5 will describe the Elastic net models and in Chapter 6 Random Forests will be introduced. In Chapter
7 we will discuss how we can use the methods described in earlier Chapters to obtain results and how we
can compare these results. In Chapter 8 the results will be shown and compared and we will have found
the best model. Then, in Chapter 9 we will zoom in and show how our the obtained models function when
applied to individual reviews. Lastly, in Chapter 10, we will give our conclusions, critical notes and further
recommendations.
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Outcome and prediction models

In the first section of this chapter, we will introduce the data sets used within this thesis, and give some
information about these data sets that will be of use later on. In the rest of the chapter, we formalize the
mathematical problem statement of this thesis.

2.1. Data sets description

Remember the example from the shaver data set that was introduced earlier:

review_text Accessories | Charging_Electronic_power | Design
Works well, shaves closely, just like Braun ... -1.0 NA 1.0
My first ever electric razor, so can't compare ... NA NA NA
Excellent shave once you get used to it. My ... NA 1.0 NA
I have a 10-year old Braun 7526 that’s still going ... NA NA NA

Figure 2.1: Example of part of the data set on shavers

In the first column, the reviews are written. All other columns represent the driver scores. In this thesis, two
data sets have been used. They have been annotated for different drivers. We will discuss the properties of
these data sets in this chapter. This will help us understand some of our results later on, and possibly even
help us achieve better results.

Both data sets contain annotated reviews on shavers. The first set contains 1976 annotated reviews. These
reviews are randomly selected user comments on shavers from various web pages. The reviews are annotated
for 17 drivers. The second data set contains 775 reviews, also on shavers. These reviews have been collected in
such a matter that they are uniformly distributed over the star ratings users submit as part of their review on
the website (1-5 stars scale). This means that the sample is stratified, in that there are as many 1 star reviews
as there are 2 star reviews as there are 3 star reviews etc. This data set is annotated for 15 drivers. We will refer
to the first data set as the 71976 — data set and the second as n775 — data set.

2.1.1. Driver sentiments

The drivers in the data sets are the following:
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0. Shaving (general) 1. Accessories
1. During shaving - speed 2. Charging & Electronic power
2. During shaving — comfort 3. Design
3. After shaving - irritation 4. Features
4. After shaving — closeness 5. Issues & Reliability
5. Cofo 6. Service & Delivery
6. Sound 7. Value for money
7. Ease of use 8. cleaning
8. Cleaning 9. ease of use
9. Smart Clean 10. shaving closeness
10. Service & Delivery 11. shaving comfort
11. Accessories 12. shaving irritation
12. Features 13. shaving rest
13. Charging & electronic power 14. shaving speed
14. Design 15. smart clean
15. Value for money
16. Issues & reliability

Figure 2.2: Drivers for the 71976 — data set (on the left) and for the n775 — data set (on the right).

We see that there are 17 drivers in the n1976 — data set and 15 drivers in the n775 — data set. Note that the
first driver in the 71976 — data set is indexed as 0. This is because it is not really a driver in the same sense as
the others, but its scoring represents the overall sentiment of the review. Nonetheless, it is regarded as being
a driver in this thesis, as it still interesting to see to what extent we can predict it. We treat it the same as all
other drivers.

It is important to note that there is large variance in the number of non-NA driver scores among these drivers.
For example, more reviews address 'Accessories’ than there are reviews that address 'Features’. Distinguish-
ing positive (> 0), negative (< 0) and neutral (= 0) sentiment among the driver scores, gives the following
distributions for the drivers.

1500 -
1000
500

0

0 5 10 15

Figure 2.3: Histogram of the number of driver scores for every driver in the 71976 — data set. In blue the number of positive, in green the
neutral and in red the negative driver scores. The horizontal dashed line gives the total number of reviews in the data set.
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Figure 2.4: Histogram of the number of driver scores for every driver in the n775 — data set. In blue the number of positive, in green the
neutral and in red the negative driver scores. The horizontal dashed line gives the total number of reviews in the data set.

Thus, we see that the reviews in the 71976 —data set are predominantly positive. For the reviews in the n775—
data set the opposite is true; they are predominantly negative, which is most likely a result of these reviews
being a sample of reviews uniformly distributed among star ratings 1-5. There are drivers which contain
more/less positive/negative driver scores than other drivers, probably a result of people being more positive
or negative about certain aspects of the product than about others. Furthermore we see that for every driver
in both data sets, the number of reviews not mentioning the driver is larger than the number of reviews
mentioning it, whatever the sentiment.

2.1.2. Review lengths

Both data sets contain reviews of varying lengths. It may be useful for later analysis to have an idea as to how
long these reviews are.

150 -

100 -

B e = B = I

0 500 1000 1500 2000

Figure 2.5: Histogram of the review lengths of the reviews in the 71976 — data set. Review length is the number of all characters in the
review, including blank spaces. A few outliers of review length up to 6000 are added to the most right stack in the histogram.
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30-

H o [
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Figure 2.6: Histogram of the review lengths of the reviews in the n775 — data set. Review length is the number of all characters in the
review, including blank spaces.

150 -

100 -

50-

B e -

0 500 1000 1500 2000

Figure 2.7: Comparison of the histograms of the review lengths of the reviews in the n775 — data set (dark gray) and the n1976 — data set
(light gray). Review length is the number of all characters in the review, including blank spaces. A few outliers of review length up to 6000
in the n1976 — data set are added to the most right stack in the histogram.

The average length of the reviews for the n1976 — data set is 336 and for the n775 — data set 331 (rounded to
whole numbers). The length of the reviews is similarly distributed among both data sets. Both contain a few
outliers with long review lengths, with the 71976 — data set having a few extreme ones.

2.2. Modelling driver outcomes

In this section, we will introduce the mathematical notation for our problem. Remember the example from
the shaver data set that was already introduced earlier:
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review_text Accessories | Charging_Electronic_power | Design
Works well, shaves closely, just like Braun ... -1.0 NA 1
My first ever electric razor, so can’t compare ... NA NA NA
Excellent shave once you get used to it. My ... NA 1.0 NA
I have a 10-year old Braun 7526 that’s still going ... NA NA NA

Figure 2.8: Example of part of the data set on shavers

The first column contains the written reviews, the other columns represent the driver scores. In the general
context of this thesis, we say that we are given a set of n annotated reviews, and refer to one of these docu-
ments as i € {1, ..., n}, and n is the total number of reviews or documents. The terms 'document’ and review’
are interchangeable within the rest of this thesis. In the rest of this chapter, we will focus on the driver out-
comes. We will not yet discuss how we are going to predict them, but properly define them and discuss how
to evaluate our future predictions.

2.3. Modelling driver outcomes

So, every data set used in this thesis contains drivers, and for each document, every driver has an annotated
value attached. We say that we have driver j € {1,..., m}, in our data set, with m being the total number of
drivers. We introduce d; to denote the score given for a driver j in general. To introduce the actual score for
a driver j for a document i, we introduce d;,;. In the context of our example, we thus see that d; ; = -1.0,
dlyg =NA and d1,3 =1.0.

We will now introduce new variables d; T which we will try to predict. The outcomes of d; i depend directly
d;,j. We will discuss how in the rest of this section.

2.3.1. Binary outcomes

For a start, we transform the driver scores d; ;, and the general form d;, to binary values. Why this? In all
data sets used in this thesis, each driver j attains values in a discrete set of values. Predicting all values exactly
will prove challenging, due to a lack of data. Thus, we split the set of values attained in two, and create the
situation in which our goal is to predict binary data. In this way, we 'coarsen’ or 'bin’ the data. We already
looked at one coarsening of the data: in Figure 2.3 and Figure 2.4 we coarsened the data to 4 levels; positive
sentiment (driver score > 0), negative sentiment (driver score < 0) and neutral sentiment (driver score = 0),
and, although not really shown in the picture, a review not mentioning the driver (driver score = NA). This is
a multinomial coarsening. For now we will look at a binary division.

Note that, in the context of this thesis, it may be desirable to look at multiple ways of coarsening the data.
For example, we may look at predicting whether a driver is discussed or not, which would mean predicting a
value of NA versus any other value. Or, we might only be interested in knowing when the driver is discussed
with positive sentiment, which would come down to predicting whether a value greater than 0 is obtained, or
not, regardless of whether it is a negative, 0 or NA in that case. Formally, we write the following:

Take a driver j. We denote the set of values j attains in the data with C;, and split C; in two disjoint sets; one
set being CJI., and the other C?. Now, for a fixed i € {1,..., n} and fixed j € {1, ..., m}, a new binary variable d;. is

defined as d; =1 ifd; e le. and d; ;=0 ifd; ;e Cj.’. To sum, this up we get the following formulation:

dij€Cj, Vief{l,..,n,Vje(l,...,m} 2.1)
el 0 1 0 _ .
Cj=CjucC], C;nCj=9, Viell,..., m 2.2)
dijeCj == dj;=1, dijeC} <= dj;=0 Vie{l,...,n,Vjell,...,m} 2.3)

We name dl’. i the coarsened or binned driver scores. Colloquially, we will also sometimes simply refer to
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them as driver scores, when it is clear that we do not mean d; ;. In similar fashion, we define d}. as the
transformation of the general form d;, taking only values in {0, 1} in the binary case.

In this thesis we define three types of choices for C! and C?, which are the ones we will mainly use. We refer
to these as different types of sentiment, and let them be defined as

1. Present: C; ={ce Cj:c# NA}, C] ={c=NAj
2. Positive: Cj ={c€Cj:c=0}, C)={ceCj:c<0vc=NA}

3. Negative: Cj ={c€Cj:c<0}, C)={ceCj:c20vc=NA}

Present can be thought of as detecting whether a review mentions a driver or not. It is therefore not really
sentiment, but we will still refer to it as 'present sentiment’ in the rest of this thesis. Positive sentiment refers
to detecting whether a driver scores is greater than or equal to zero, and negative to detecting whether a driver
score is smaller than 0. d; ; = 0 is rare within both data sets (see Figures 2.3 and 2.4), but has been added to
positive sentiment for convenience. Many more choices of le. and C;.) can be thought of, but these are the
choices that will mainly be used within this thesis.

In the rest of this thesis, it will be useful to look at the driver scores for multiple documents at the same time.
Say that we have a subset of documents S < {1,... n}, then we define

dy .
1,j
dg;:=| (2.4)
!

ns, j

Where n; is the size of the set S. To prevent any confusion: the first element of this vector is not necessarily
also the first element of the data set. Furthermore, we will use this notation later in this thesis also for cases
where S is not a subset of of {1,...n}.

2.3.2. Multinomial outcomes

As mentioned earlier, in the data every driver d; takes its values in a discrete set that we name C;. In equation
2.2, we split C; in two discrete sets le. and C?, creating binary variables dl’.’ jas in equation 2.3. Now we will
generalize these formulations and create multinomial outcomes for dl’.’ Iz Consider not dividing the outcomes
in two classes, but in P > 2 classes. We then have that

dij€Cj, Viefl,...,n},Vjell,...,m} 2.5
P

Cj:UlC;’, Vje{l,...,m} (2.6)
p=

C}gﬂC]L-’=(Z5, Vp,g=11,....PLp#q,Vjell,...,m} 2.7)

In a binary case, the possible outcomes for dl( jare two classes 0 and 1. In the multivariate case, we now
extend this to P classes. We say that:

di,jECf@dlf,j:p, di,jECj.’@dg,qu Vp,g=1{1,...,PLViell,...,n,Vjel,...m} (2.8)

In similar fashion, we define d}. as the transformation of the general form d;, taking values in {1,..., P} in the

multinomial case. In this thesis we mainly use one partition of C; in the multinomial setting. In this one, we
define classes {P, N,NA} with

1. Cf={ceCjicz0,c#NA}
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2. CY¥={ceCj:ic<0,c#NA}

3. CM={ceCjic=NA}

Many other partitions of C; can be thought of, but this is the one that we will work with in the multinomial
setting.

2.4. Probabilistic model
2.4.1. Binary model

In this thesis, we assume that the outcome d; ;, and thus by the above also d;y L is generated by a stochastic
function with document i as its input. In the binary setting, this simply means that dl’.’ =1 with a certain
probability based on document i, and dl’ = 0 with one minus that probability. We name the stochastic
function giving this probability p;, so that we have a different function for every driver j.

In the binary setting, this gives rise to the following model:
pj(doc) := P(d; =1ldoc), Viell,..., mh 2.9)
d}|doc~Bem(pj(doc)), Viedl,...,m 2.10)

where Bern is short for Bernoulli distribution and doc represents all information obtained from a review or
document. It immediately follows that

l—pj(doc):zP(d}=0|doc), vje(l,...,m} (2.11)
So for a specific document i we have
pj(doci) = P(dj ; = 1idoc;), Viell,..,nLYjell,...,m} (2.12)
We define the notation
pi,j = pj(doc;) (2.13)

for use later on. Furthermore, we say that d; jldoci is a draw from the distribution Bern ( pi, j).

2.4.2. Multinomial model

In the multinomial case we have P possible outcomes for d; i instead of just two. Thus, we generalize the
probabilistic model and obtain:

(pj)q(doc):P(d}:qldoc), Vgedl,...,PLYjell,..., m} (2.14)

d}ldoc~Cat((pj)l(doc),...,(pj)P(doc)), Vgell,...,PLVjedl,..., m (2.15)

where Cat is short for a categorical distribution. We also define

(pi)--pi),

The categorical distribution is a special case of the multinomial distribution where n = 1. ! Additionally, we
have the constraint that

P

Z(pj)qzl, Vgell,...,PLVjedl,...,m 2.17)
q=1

pj= , viedl,...,m (2.16)

Now, we introduce the simplex.

1The multinomial distribution is generally specified for parameters 7€ N and py,...,p & such that Zle pi =1, where k is the number of
classes and n the number of trials.
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Definition 2.1 (K-simplex)
The K -simplex Ty in RK*1 is the set

K+1
TK:{[xl,...,xKH x>0, 1<k<K+1, Z xkzl}
k=1

As an example, we illustrate T».

¥a

Y1 Y2

Figure 2.9: Ty, the 2-simplex. Corners of the simplex are given by y; = [1,0,0], Yo = [0, 1,0] and y3 = [0,0, 1].

Note that T, is a subset of R3, but due to the restriction that the entries of every element in the set must sum to
1, we can depict T, in two dimensions. When the first two entries of a vector in T, are known, the third entryis
known as well. This is why T is an element of RK*1: we only need the first K entries of a (K + 1)-dimensional
vector, to know the last element of the vector.

Thus, we see that p; is in the (P — 1) -simplex, i.e. p; € T(p_1)- Now, given a document i we have that
(pj) (doc,-):P(dgjzmdocl-), Vgell,..,PLViell,...nVje(l,...m}  (2.18)
g :

We define the notation
(pi,j)q = (Pj)q (doc;) (2.19)

for use later on and we say that p;,; is an element of T(p_;) given by

(2.20)

oo () o)

Furthermore, we say that d;,',j |doc; is a draw from the distribution Cat ((pj)l (docy),..., (pj)P (doci)).

2.5. Estimating probabilities

Now, the functions p; are generally not known. Thus, we will estimate p; in this thesis. We name these

estimates p;, based on the couples (docl, dl,j) Y eees (docn, dn,j).

In the multinomial setting the same procedure is followed and p; becomes a vector of length P with entries
( p j) where g € {1,..., P}, such that Z‘;Zl ( p j) = 1. The entries ( p j) are estimated individually.
q q q

This finishes the introduction of the notation for estimation of the model. Using this notation, we can move
towards the prediction of driver values for future documents.
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2.6. Predictions

Say that we have n annotated documents, meaning that we have the driver scores d; ;, and can thus derive
the coarsened driver scores dlf Iz Now, a new review, say i = n+ 1, comes in. We do not have the driver score

dn+1,j and we want to predict it. Then, we can derive p;, as introduced in the previous section, based on the
n observations we have.

Using p, we will then try to predict the driver scores for the new document. We define

ﬁl’l+l,j = ﬁj(docn+1)y V] € {]-!"-y m} (221)

2.6.1. Binomial predictions

Now, we will make a prediction dAnJr 1,j for dp.1, ;. We will first introduce the concept of a threshold value.

Definition 2.2 (threshold value) R
Given a binary variable d for which we want to make a prediction d and are given a probability p € [0,1], we
say that t € [0,1] is a threshold value when the prediction is chosen as

~ )1, p=t
0, p<t

We say that d is the prediction found by applying the threshold value ¢ to p. In the context of this thesis, this
means that we predict c?nﬂ,j = 1 for a threshold value ¢ when p41,; = £ and c?nﬂ,j =0 when py41,j <t A
logical choice would be to choose ¢ = 0.5. Later in this thesis we will see that in some situations other choices
for t can prove very useful. Implicitly, this means that

pj (doc) = P(d} = 11doc) (2.22)

and
Pij = Pj(doci) = P(dj ; = 1doc;) (2.23)
We will often not be interested in predicting just one new document, but in predicting a set of new documents,

say n+1,..., n+ npew. For future purposes, we define the notation for these sets, their estimated probabilities
and predictions here. We define

Inew:={n+1,...,n+ Npew} (2.24)
[ ﬁn+1,j ]
Phyew.j = : ) vjedl,..., m} (2.25)
_ﬁn+nnew,j‘
[
dn+1,j
7new,,- = : ) vVjeil,...,m} (2.26)
s
_dn+nnew,j‘
and we have that
[Tnew!| = Nnew 2.27)
Ploew,j € [0,1]mew1 (2.28)

dy, ... €10, 13 (2.29)
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2.6.2. Multinomial predictions

Next, we will define our predictions for the multinomial setting. In the multinomial setting the outcome d; i

(pi'j)l""’(pi‘j)[’
(P—1)-simplex, i.e. p;,j € Tp_;. The vertices in the (P — 1) -simplex correspond to the classes {1,..., P}. We
will split Tp_ in P parts, and predict a certain class when the estimate p; ; falls in the part of the correspond-
ing class. To this end, we first introduce the partition matrix.

is a draw from the categorical distribution with parameters p; ; := . pi,j must be in the

Definition 2.3 (Partition matrix)

Let us have a classification problem with P classes, and let two classes be q1,q2 € {1,...,P}. Let AbeaP x P
matrix and let Ay, 4, be the cost of classifying an instance as class q, when its true class is q». Then A is a
partition matrix and defines a partition on the (P — 1) -simplex.

The partition matrix A is to the multinomial setting what the threshold value t is to the binary setting. It
can be shown that the threshold value can be derived from a 2 x 2 partition matrix. Furthermore, it can
be shown that any partition matrix A can be expressed as some matrix A" with A’q’ g =0VYgefl,..., Ptand
A/QI; @ #0,Yq; # g2.[11] A matrix of this form is also referred to as a misclassification matrix. We will use both
terms within this thesis. We say that the partition matrix A induces decision boundaries between the P classes.

Definition 2.4 (Decision boundary)

Let us have a classification problem with P classes with partition matrix A, and let two classes be q, q2 €
{1,..., P}, q1 # go. A decision boundary between class q, and class q», q1 # g, is the hyperplane that separates
the two classes in the (P —1) -simplex. Let p be an element of the (P —1) -simplex and let py,q € {1,...,P},
be entries of p. We can find the decision boundary by using the partition matrix to solve the hyperplane of
solutions that have the same losses with respect to the cost when assigned to class q; as they do when assigned
to class q,. The hyperplane is given by the solutions p for

P

p
Y AqaPg =2 AgqPq (2.30)
q=1 q=1

forqi, g2 €{1,...,PYand q1 # q».

Using the dot product and Ay to refer to the kth row in the matrix A, we can also write the formula as

Ag . p=Ag,-- P (2.31)

A partition matrix has at least one equal risk point, where the losses with respect to assigning a certain class
are the same for all classes[11]. In the (P — 1) -simplex, the equal risk point is shown as the intersection of the
decision boundaries. In this thesis, we will work with 3 different choices for the partition matrix A. We will
introduce these first, and show the decision boundaries they induce between the P classes that divide the
(P -1)-simplex.

In Subsection 2.3.2 we introduced the partition of C; used within this thesis for the multinomial setting. Using
this partition, we have 3 classes, and we will thus let A be a matrix of size 3 x 3. A relatively simple choice for
Ais given in Figure 2.10.
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(0,0,1)
NA
(1/3,1/3, 1/3)
(1/2,0,1/2) / \(0,1/2,1/2)
-
prediction(]), true value (—) ‘ P ‘ N ‘ NA
P 0 1 1
N 1 0 1
P (1/2,1/2, 0) N
NA 1 1 0 (1,0,0) (0,1,0)
(a) Partition matrix A. (b) Partition of the 2-simplex.

Figure 2.10: Example of a partition matrix A and the corresponding partition of the 2-simplex.

In the example in Figure 2.10a, equal cost is given to every misclassification. There is no difference in clas-
sifying a true P as N or NA or vice versa; every misclassification costs 1. Furthermore, Figure 2.10b shows
the corresponding partition of the 2-simplex. The vertices correspond to the classes. The lines between the
3 parts of the 2-simplex are parts of the decision boundaries induces the partition matrix as in Figure 2.10a.
Parts of the decision boundaries, because a decision boundary between two classes as introduced in Defini-
tion 2.4 extend further than the equal risk point (where the decision boundaries meet). Two other choices for
A are introduced at the end of this section.

Now to come to our prediction. Let (Tp_l)q be the part of Tp_; for which, when p; ; is in it, we set cfl’ j=4das
our prediction. Then we have that

(Tpoa), = {pe Tpo1:Ag.-p<Ag.-pYq e {1,...,P}} (2.32)

So that Uszl (Tp_l)q = Tp_; and the intersection of (Tp_l)q and (Tp_l)p is given only by the boundary they

roas:

share, Vp,q €{1,..., P}. We then define our estimate for d, , i

1, (ﬁnﬂ,j)1 €(Tp-1),
. |

S

n+1,j °

(2.33)
P (ﬁn+1,j)P €(Tp1)p

Note that this definition also works for the binary setting. We then have that p; ; € T, where T, is simply
a line split in two parts by the threshold value ¢. In section Chapter 4 we will discuss how we split up the
simplex for higher dimensions.

Similar to how in the binary case we have equation 2.22, the above means implicitly that
(p)) (doc)=P(d} =qidoc] (2.34)
J q J
and that

(ﬁi,j)q = (ﬁj)q (doc;) = P(d;,j = q|d0Ci) (2.35)
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We also introduce notation for predicting driver scores for a set of 7w new documents. We have

Lew:={n+1,...,n+ Npew} (2.36)
Bos) e (o),
Ploew,j = : : : : vjel,..., m} (2.37)
(ﬁn+nnew,j)l (ﬁn+nnew,j)P
~
n+l,j
(i}new,j = : ) Vje{l,...,m} (2.38)
1,1+nnew,j4

and we see that in the multinomial setting we have

[ Inew| = Bnew (2.39)
Ploew,j € [0,1]mew P (2.40)
dl,,..j € 0,11 (2.41)

In Figure 2.10 we introduced one choice for the partition matrix A and showed the induced partition of the
2-simplex. This is a rather simple choice for A. We will now introduce 2 more possible choices. Within the
context of user review classification as in this thesis, our first priority is identifying whether a review discusses
a driver or not, and next, whether we can distinguish positive from negative sentiment. Therefore, we choose
to give a higher cost to classifying a true N or P as NA or vice versa. An example of a choice of A exemplifying
this and the corresponding split of the 2-simplex are given in Figure 2.11.

(0,0,1)
NA
(2/7, 2/7, 477)
(1/2,0,2/2) / N [0,172,1/2)
prediction(]), true value (—) ‘ P ‘ N ‘ NA
P 0 3/5 | 6/5
N 3/5 0 6/5 , w2 1‘/2 o N
NA 6/5 | 6/5 0 (1,0,0) T (0,1,0)
(a) Partition matrix A. (b) Partition of the 2-simplex.

Figure 2.11: Example of a partition matrix A, where higher costs have been assigned to misclassifying a P or N as NA or vice versa, and
the corresponding partition of the 2-simplex.

The misclassification matrix in Figure 2.11a has been chosen such that the cost of misclassifying an N or P
as NA or vice versa is double that of misclassifying an N as P or vice versa. Meanwhile, the matrix has been
normalized such that the sum of all entries in the misclassification matrix stays equal to the sum of all entries
of the misclassification matrix in Figure 2.11a. This, so that we do not change the penalty of misclassifying
in general, but only make it relative to which misclassification it concerns. The corresponding partition of
the 2-simplex is given in Figure 2.11b. The change of A has altered the two of the three decision boundaries
(the decision boundary between the vertices for classes P and N remains unchanged) and the location of
the equal risk point has moved towards the vertice corresponding to the NA class. Note that the decision
boundaries still start in the same point on the exterior of the 2-simplex. This is caused by the symmetry of A.
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For example, classifying a true P as NA still costs the same as classifying a true NA as P, and this is true for all

combinations of classes. Only the way we split up the interior of the 2-simplex has changed.

It is hard to judge whether the increase in cost from 1 to 2 is enough to justify our preference. Therefore we a
third choice for A one could consider is shown in Figure 2.12.

(1/2,0,1/2) /

(0,0,1)
NA

(5/19, 5/19, 10/19)

\ (0, 1/2, 1/2)

prediction(}), truevalue (=) | P | N | NA
P 0 3/11 15/11
N 3/11 0 15/11
NA 15/11 | 15/11 | 0 (o0

(a) Partition matrix A.

(1/2, 1/2, 0)

(b) Partition of the 2-simplex.

(0,1,0)

Figure 2.12: Example of a partition matrix A, where higher costs have been assigned to misclassifying a P or N as NA or vice versa, and

the corresponding partition of the 2-simplex.

In the matrix in Figure 2.12, the difference in costs in misclassification has been further increased, to the point
where the NA misclassifications cost 5 times as much as the misclassifications between the P and N classes.






From reviews to variables

We have already introduced our data sets and the corresponding mathematical notation for the driver scores
and mathematical model. In this chapter, we will discuss how go to from the free text in reviews, to variables
for our models. Remember the example of the raw data introduced in Example 1.1:

review_text Accessories | Charging_Electronic_power | Design
Works well, shaves closely, just like Braun ... -1.0 NA 1.0
My first ever electric razor, so can’t compare ... NA NA NA
Excellent shave once you get used to it. My ... NA 1.0 NA
I have a 10-year old Braun 7526 that’s still going ... NA NA NA

Figure 3.1: Example of part of the data set on shavers

In this chapter we will focus on the first column shown here under review_text and transform the free text
to variables.

3.1. From reviews to tokens

At the end of this chapter, will have multiple options for how to shape the variables obtained from the reviews.
Regardless of which choice we make, we pass all reviews through a process that we call preprocessing, which
is described in the rest of this section.

3.1.1. Bag-of-words model

In this thesis we apply a so called bag-of-words model to turn the reviews into data that can be used in a
model. This simply means that instead of looking at the review as a whole, we look at the collection consisting
of all words used in the review, the bag-of-words. So for the review "Works well, shaves closely, just like
Braun ..." we find the set of words {"Works", "well", "shaves", "closely", "just", "like", "Braun",...}. Note that
any punctuation and word order is thus disregarded in the bag-of-words model. The process of turning a text
into a bag-of-words is also named fokenization, and the resulting words in the set are also called tokens. The

terms 'tokens’ and 'words’ will be used interchangeably within this thesis.

3.1.2. Removing stop words

Now that we have the bag-of-words, we remove any stop words found. Stop words are generally the most
common English words. Research has been done before on removing stop words in the field of sentiment

19
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analysis and sentiment classification, and results have been inconclusive; both increase and decrease in per-
formance has been observed[5][8]. We choose to remove them, as this is common for text analysis in general,
and besides potentially improving accuracy, removing stop words has its benefits regarding computational

cost. Stop words can be simple words like "I", "you" and "he", but also "why", "where" and "when". A full list
of stop words is provided in Appendix A.

3.1.3. Stemming

Stemming is the process of reducing words to their word stem, base or root form. We do this so that certain
groups of words in the bag-of-words are merged so that they become the same word. This is useful, because
in advance we expect these words to have the same informative value for our prediction methods. An ex-
ample of stemming is reducing all of the words 'works’, 'working’ and 'worker’ to the stem 'work’, and thus
having all the same meaning within the bag-of-words. The specific type of stemmer we use is named a Snow-
ball stemmer.[12]

The process of applying the bag-of-words model, removing stop words and stemming is referred to as the
preprocessing of the data.

3.1.4. Notation

Now, we can apply the bag-of-words model, removing stop words and stemming to every review i in our data
set. Name the resulting sets of words, or tokens, W;, and name the elements w;; € W;, where [ € {1, ..., k;} so
that k; is the size of the set W;. We still refer to the elements of w; ; as words or tokens, despite the removal of
stop words and stemming.

Note that it is thus very well possible that w; ; = w;, for I}, I € {1,...,, k;}, and also that w; ; = w;,, for
il, i2 efl,.., n}, l1 efl,..., kil}, lz efl,..., kiz}.

3.2. Matrix forms

3.2.1. Predictors x1,..., Xy

The question still looms: how will we predict d;y i based on the bag-of-words W; ? Given the bags-of-words,
there is still no way to compare the information from one review with another. For a start, we will simply
count how many times each word is used in the document. We define the vocabulary of the entire data set as
the set containing the unique values among the elements of all sets W;, thus for all i € {1,..., n}. Let V be the
size of this set. We create variables xi,..., Xy , one variable for each word in our vocabulary.

Next, we define the x;,...,x; v to be the outcomes of xj,...,xy for a document i. An outcome x;,, v €
{1,..., V}, for document D;, is defined to be 0 if the word associated with x, is not in the set W;. x; , =1 if x,,
occurs once in W, x; , = 2 if it occurs twice in W; etc. We say that x; , = a if and only if the word associated
with x, occurs an @ number of times in W;.

3.2.2. Document term matrix

Thus, our objective is now to predict an outcome d; i based on the outcomes x; 1, ..., x; v. Representing this
again in a matrix form, we get:
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binary_indicator | blunt | close | garbag | good | im | product | shave

0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 3
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 3

Figure 3.2: Example of the document-term matrix.

In literature, the matrix obtained by taking all columns starting from the second column of this matrix is
called the document-term matrix. We added the first column to this. In this matrix, the left column represents
our outcomes dlf, Iz which in the binary case only takes values in {0, 1}, and has more possible classes in the
multivariate case. The other columns in this matrix are the predictors xi,..., Xy, which take a discrete value
=0.

Note that this matrix, where the left column contains data dl’., L is generated for one driver j. When changing
to the multivariate setting, only the leftmost column changes. The rest of the matrix stays the same. Also
changing the definition of d;, Iz meaning changing the collections c]’.] from 2.2 or 2.7, only changes the first
column, and has no effect on the rest of the matrix. The same goes for changing to an entirely different
driver than j. Changing the driver, or coarsened driver scores d;’ j oreven changing from the binary to the
multinomial setting, thus only affects the first column of our document-term matrix. The other columns,
representing predictors xi, ..., Xy, remain the same when changing any of the above.

That does not mean that we cannot take different choices for variables x,...,xy. In the previous part of
this section, the predictor variables x; 1, ..., x; v were introduced as representing the number of times a word
appeared in a document i. i contains words w; ; for € {1,..., k;}. A natural augmentation is to divide the word
counts x; , by k;, the total number of words in a review. We obtain a matrix of the following form:

product | shave

binary_indicator | blunt | close | garbag | good
I

o o oglH
o o oM
oz~ ofl
o o oglH
© o onHE

oo+~ o
o o oglH
- Ble o gleislH

Figure 3.3: Example of a possible mean form matrix.

We name this matrix variant the mean form of the document-term matrix. This form is a natural variation
from the earlier form, because in this form, the use of a word in a short review adds more value than the use
of the same word in a relatively long review.

Another interesting option could be an indicator form document-term matrix. In the standard document-
term matrix and the mean form document-term matrix we use the number of times a word is used in a doc-
ument, which seems like a logical choice. In the indicator form, we abandon this idea, and simply denote a 1
when a word is used, and a 0 when it is not.

binary_indicator | blunt | close | garbag | good | im | product | shave
1 1 1 1 1

O = O =
S O O~

0 0
0 0
0 0

(=N ]

0 0
0 0
0 0

—_— O =

Figure 3.4: Example of a possible indicator form matrix.



22 3. From reviews to variables

Thus we set x; , = 1 if the word x,, is used in review 7, and x; , = 0 if x,, is not used in i. This simple form, and
future results generated using this form, will put to the test whether counting the number of times a word
is used in review i really gives us more information when trying to predict dl’., T than just knowing whether a
word is used or not does.

3.2.3. Tf-idf matrix

As a further augmentation of the document term matrix, we introduce the #f-idf form. Tf-idfis a is a numerical
statistic that is intended to reflect how important a word is to a review in the data set. It can be used to identify
words in a collection of documents that are useful for determining topics in documents[13]. The principal
idea is that given a term in the document set, the significance of that term is expressed as a product of the
probability that it occurs within the document and the amount of information that the use of term gives on
the document. How this is done, is explained in the rest of this section. We will introduce the definition of
this metric and introduce some concepts from the domain of information theory to explain what motivates
its use.

Tf-idf is an abbreviation for term frequency - inverse document frequency, and is obtained by multiplying
the term frequency with the inverse document frequency. The term frequency is the number of times a word
occurs in a document, divided by the length of the document, which is the same value used as in the mean
form document term matrix. Let the term frequency in a document i for term x, be denoted as f; x,. The
inverse document frequency is defined as

idf(x,) = log ——, 3.1
Ny,
where 7 is the number of documents in the dataset, and 7y, is the number of of documents containing the
term x,. Thus we see that the inverse document frequency value for a word is constant within the data set.
Taking the log of the fraction seems a bit odd. The reason for this will become clear when we introduce some
concepts from information theory. Finally, the tf-idf is then obtained by multiplying the term frequency with
the inverse document frequency; i.e.

t-idf (xy,1) = fiy, X 1ogni = tfx idf (3.2)
X,

v

The tf-idf from matrix will then look like this:

binary_indicator | blunt | close | garbag | good | im | product | shave

0 0.56 0.13 0.49 0.13 | 0.53 0.20 0.05
1 0 0 0 0 0 0 0.10
0 0 0 0.31 0 0 0 0

0 0 0 0 0 0 0 0.07

Figure 3.5: Example of a possible tf-idf form matrix. Numbers are rounded down to two decimals.

What we see is that high values are allocated when a term is used often within the document, and not that
often in other documents. The tf-idf value increases proportionally to the the number of times a term is used
within the review and is adjusted for how frequently a word appears in the data set anyway.

Now, the motivation for this choice of metric. We will need to introduce a few concepts from the domain of
information theory. Let x; and y; be two distinct events from finite event spaces X and Y. Assume a joint
probability distribution P (xl-, y j) is given for x; € X and y; € Y. By the definition of the marginal distribution
it is true that

P(x)= Y P(xi,yj) (3.3)
yjeY
P(vi)= X P(x0y)) (3.4)

xieX



3.2. Matrix forms 23

In information theory, a basic entity is the amount of information given by an observation.

Definition 3.1 (Amount of information)
The amount of information given by an event x; from a finite event space X is given by the log of the inverse of
the probability, i.e.

log(1/P (xi)) = ~log P (x;) 3.5)

Generally, we work with random variables in the event spaces. The amount of information expected for these
random variables is called the self-entropy.

Definition 3.2 (Self-entropy)
Let %" be a random variable representing distinct events in X. The self entropy 7 (Z") is then given by

H(X):== ) P(x;)logP(x;) (3.6)

x;€X

Similarly, we have for a random variable % representing distinct events in Y that
H (@)=Y Py)108P ()] 3.7)
ijY

The self-entropy expresses the degree of uncertainty about which event will occur in a future observation.
Note that the self-entropy naturally increases for larger numbers of events with equally likely probabilities.

Definition 3.3 (Pairwise mutual information)
Let x; and y; be two events from probability spaces X and Y. The pairwise mutual information .# (xi, yj) is

then given by

P(x,-,yj)

P () P ()]

M (xi,y;) =1og (3.8)

We see that pairwise mutual information between x; and y; is the difference between the amounts of infor-
mation based on the joint probability P(x;, y;) and the expected probability when the independence of the
two events are assumed. For random variables 2" and ¢/, we introduce the expected mutual information.

Definition 3.4 (Expected mutual information)
Let 2 and % be random variables representing distinct events in X and Y. The expected mutual information
between 2 and % , denoted as ¢ (2';%), is then given by

= % ¥ Plxiy) (%) (3.9)

x€XyjeY

The expected mutual information represents the uncertainty about either .2~ or %" when the other is known.
We can express the expected mutual information in terms of self-entropy. First, we introduce the concept of
conditional entropy.

Definition 3.5 (Conditional entropy)
Let 2" and % be random variables representing distinct events in X and Y . The conditional entropy 7 (X% )
is then given by

H( XY )==> Y, (xi,yj)log% (3.10)
j

yjeY xjeX

Now we show how the we can express the expected mutual information in terms of entropy. This derivation
will also motivate the choice for the definition of conditional entropy as in Definition 3.5.
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=Y ¥ Pluyy)(xy)) (3.11)

x€XyjeY

~ P(x,-,yj)
_X;ijzeyp(xi,yj)logm (3.12)
= Z Z P(x,-,yj)logM (3.13)

xi€eXyjeY P[x-)P(yj)
=y ¥ (xl,y])(logP(xlly] ~logP (x; ) (3.14)

xi€eXyjeY
==Y 3 P(x,-,yj)logP(x,-) (x,,y])logP(x,Iy]) (3.15)
xjeXyjeY x,eijeY
== Y P(x;)logP(x;)+ ¥ P(yj) Y P(x,ly])logP(x,ly]) (3.16)
xi€X yjeYy x;€X
:%(%)—yjzey (vi) 7 (21y)) (3.17)
=H(X)-H(21Y) (3.18)
And thus we see that for the conditional entropy it is true that:
H(2Y)=-Y Y P (xi,yj)logM (3.19)
yj€Y xieX P(yj)
pliin) )
==Y ¥ P(xily)P(y)log——— (3.20)
V€Y xieX P(y])
=-— Z P(yj) Z P(xilyj)logP(inyj) (3.21)
yjeY x;€X

= yj;yp(y,-)%(%yj) (3.22)

where S (3&” ly j) is simply defined as to how we defined self-entropy in Definition 3.2, and where we used
that

v 5 Plmfiselean) =~ 5, Pl s )

xi€X xi€X p (Yj) (3.23)

Now we have established enough knowledge from the domain of information theory. We take a step back to
the world of documents and terms. We have a set of documents {1, ..., n} and a set of distinct terms in these
documents {xy,..., xy}. We will look at the event of selecting a random document i and the event of selecting
arandom term x, in the data set. These two influence each other. 'Niet onafhankelijk, maar wel als je kijkt
naar het voorkomen van een woord in zekere documenten/het voorkomen van documenten met een zeker
woord.’

Let ./ be the random variable over the events of selecting a document from {1, ..., n} and let .2 be the ran-
dom variable over the events of selecting a terms from {x;,..., xy}. Consider the event of looking at a random
term x,. This term only appears in a certain number of the documents

When selecting a document in the data set at random, clearly P(i) = %, for a document i € {1,...,n}. Note
that n represents the total number of documents in the data set here, not the nth document. Then we have
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that for each document, the amount of information calculated is identically given by —log (%) Thus, for the
self-entropy of . 4" we have

H(N)== ) P(i)logP(i)z—n%log%:—log% (3.24)

iefl,...,n}

Now, consider the situation where we are only interested in the subset of documents that contain x,, v €
{1,..., V}. Let the number of documents in this subset be 7,. Then, when selecting a document in this subset
of the data at random, we have for the entropy of .#” given x, that

(N |xy) == > P (ilxy)logP (ilx,) = —nvnilogL = —logi (3.25)

i€{l,..., n:x,€i} v ny ny

Now, look at the event of randomly selecting a term x, from the whole data set. When we have a document
i that contains term x,, we let tf (i,x,,) denote the number of times the term x, occurs in document i. Note
that this is different from the how we introduced tf earlier in this section. Let L denote the sum of the lengths

of all documents {1, ..., n}. The probability that a specific x, is selected is then }_;c(; . M Using this, we
then have for the expected mutual information that

F (N )= A(N)=H(NZ)= L P(x)(H(N)- (A 1x)) (3.26)
XpE{X1,., Xy}
tf (i, x,) ( 1 1
= —[-log— +log—) (3.27)
xue{xl;l,xv} ieu;,n} L n ny
Loy S t(i,x,)log— (3.28)
L Xy€{xy,...xy}i€{l,...,n} ny

Recognize that we are now taking the sum over the tf-idf values. This expression shows that summing the tf-
idf of all possible terms and documents recovers the mutual information between documents and term taking
into account their joint distributions. Each tf-idf value thus conveys a little bit of information attached to the
combination of document and term. Furthermore, the expression can be interpreted as showing the decrease
of uncertainty about the relevant documents as a result of a submitted term. Note that in this expression
tf(i,x,) is only a count of the word x, in document i and this count is not divided by the total number of
words in document i. When we apply tf-idf values in the rest of this thesis, we also divide by the total number
of words in the document to obtain the term frequency. The conclusion of the write up above still holds.

Arguments can be made both in favour and against using the tf-idf values. It as a way to incorporate infor-
mation on the relevance of the use of a term within a document set in the variables used. On the other hand,
there are also reasons to think that a document classifier would perform worse using the tf-idf values. When
doing classification, we will aim to have a model that recognizes which variables are common among a set
of documents. Tf-idf lets variables for the common words shrink and grants higher values to the variables
for those words that make the documents unique. Regardless, the empirical results in Chapter 8 will show us
how the use of tf-idf in our model performs.

Now move back to the tf-idf matrix form. Aside from the regular tf-idf form of the document-term matrix,
we also introduce the normalized tf-idf form. It is found by taking the values found in the tf-idf norm, and
dividing them by the Euclidian norm. lLe., when we let xj i.idf, . .., Xv,-iaf be the variables as found for the
tf-idf form, the variables for the normalized tf-idf form, X} norm-tf-idf> - - - » XV,norm-tf-idf become

Xi tf-idf

2

Vie{l,...,V}
v
z j=1%] tr-idf

Xi norm-tf-idf =

The resulting matrix becomes one of the form
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binary_indicator | blunt | close | garbag | good | im | product | shave

0 0.46 0.1 0.40 0.11 | 0.44 0.17 0.04
1 0 0 0 0 0 0 0.03
0 0 0 0.20 0 0 0 0

0 0 0 0 0 0 0 0.10

Figure 3.6: Example of a possible normalized tf-idf form matrix. Numbers are rounded down to two decimals.

To sum this section up, we have the following options for the forms of our variables x,..., xy:

Document-term matrix form.
Mean matrix form.

Indicator matrix form.

Tf-idf matrix form.
Normalized tf-idf matrix form.

AN

Figure 3.7: The possible matrix forms for variables xi,..., xy

3.3. Word count threshold

When we have obtained the variables in one of the forms as described above, we will still have another choice
to make. When running our models, we will find that we have a rather large number of predictive variables.
To give an indication, after preprocessing of the data and forming the variables (regardless of which form) the
n775-data set gives over 2900 variables and the n1976-data set even gives more than 4000 variables. We have
not yet formally introduced the models that we will run in our analysis but, although we have selected them
such that they are rather well equipped to deal with these numbers of variables, these numbers of variables
will still come with a high computational cost.

To counter this problem, we define the possibility of setting what we call a word count threshold. For each
variable x,, v € {1,..., V}, we check whether it occurs in the data set more often than this threshold. If it does
not, we remove the variable. Reviews that did use the word x, are kept in the data set of course, they just
lose the value they had for the variable. Note that one review using the word x, twice, also counts twice to
reaching the word count threshold. In this thesis, we will experiment with word count thresholds of 1, 6, 11,
16 and 21. In the first case no words are thrown away, in the other words that are used respectively 5 or less
times in the data set, 10 or less, 15 or less and 20 or less times.



Evaluation Methods

In the chapter 2 the probabilities p; ; and predictions d i,j were defined. Now, when we have a model that
can generate these probabilities and predictions, how will we we go about evaluating these results? In this
chapter, we will dive into this question. First, we will briefly discuss how we evaluate using a part of our data
set. Then, some basic evaluation methods will be discussed, and we will see why these do not always suit
the purpose of this thesis. Lastly, we will discuss some more advanced evaluation methods, and discuss why
these better suit the purpose of this thesis.

4.1. Evaluation data

Having predictions implies that we have new data, or in the context of this thesis new documents, coming in
and we have a model trained on our current data set ready to launch on this new data. However, this is not
the case in this thesis. There is data available and we can train models on it, but we do not actively have new
data coming in. So, how can we compute predictions, when there is no new data to predict?

The solution is simple. We take some of our training data and pretend this is the new data coming in. We name
this data Iew. A model is trained using the remainder of the data. We can then use this model to compute
predictions for the documents in I,ey. Because we also have the actual driver scores for the set Iey, We can
use these to measure the performance of our model. This brings us to the process of cross validation.

4.1.1. Estimating performance using our data

Cross validation is a commonly used technique in statistical analyses. When doing a cross validation, a data
set is split into complementary subsets. One subset is removed is removed from the data set and the model
is trained on the part of the data that is left behind. The latter part of the data is named the training set,
the removed subset is named the fest setz. The model is then used to compute predictions for the reviews in
the test set, and the performance of our model is measured. This process is then repeated for every split of
training and test set. The average of the measured performance in each split, becomes our estimated of the
model performance. If n is the number of unique splits made, then we say that an n-fold cross validation was
performed. The following picture illustrates the cross validation.

27
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Fold 1 Test set Train set |::> Measured performance fold 1
Fold 2 Trainset Test set Trainset :> Measured performance fold 2
Fold 3 Trainset Test set Trainset |::> Measured performance fold 3
Fold 4 Train set Test set Train set |::> Measured performance fold 4
Fold 5 Trainset Test set :> Measured performance fold 5
+,/5

Performance after cross validation

Figure 4.1: Illustration of a 5-fold cross validation.

Mathematically speaking, we name the test set I;es; and we name the reviews left in the dataset Iiy,in. A model
is trained on Iir4in, and evaluated using its performance on Iies;. . This is then repeated an k number of times,
k being the number of unique subsets the data set was split in, giving k evaluation results. The average over
these results is taken giving us our estimated model performance. How this evaluation is done is discussed in
the remainder of this chapter.

4.2, Evaluation functions

4.2.1. A logical choice

When thinking of how to evaluate the predictions, one of the first things to come to mind is to simply count
the number of correct predictions, using the ground truths, or equivalently, counting the number of wrong
predictions. We introduce the misclassification error.

Definition 4.1 (Misclassification error)
Letd = [dl, ...,dn] be a vector of n predictions for d = [dl,...,dn
error E is defined as

, Whered is known. Then the misclassification

1
i=1

E(dd)=

di#d;

S|

In the context of this thesis, we assume we have npew predictions, say d Inew,j TOT the values d}ne j Then,
these will look something like this:
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[1] 1

0 0

0 0

0 0

1 1

0 1
L]
hewi  Chnewj

Figure 4.2: Example of data and predictions in the binary setting, for a driver j and documents i € Inew.

And we can compute the misclassification error E by the formula:

1

/ a1
B o @) Ly #a (4.1)

Minew je [y

However, we will not be using the misclassification error extensively in this thesis. Why this? In Chapter
2 we saw the distribution of the driver scores in Figures 2.3 and 2.4. It is clear that when looking at one
driver j, many of the reviews will be annotated as 'NA’ for this particular driver. In the binary setting, we
generally choose our sentiment such that dg‘ i 0 when d; j = NA. This means that there is an imbalance in
the (coarsened) driver scores in our data set, as dl’.’ i will equal 0 for many documents and 1 for only a few. The
same holds for the documents in I,ew, as long as they are not distributed in an extremely different manner
than in the rest of the data set. Say that we have 90% of the documents in I,eyy have a 0 for the coarsened
driver score. A model only giving Os, regardless of what you ask it to predict, will then have a misclassification
error of 0.1 which seems rather good, but we are of course not looking for such a model. We will want a model
that is able to, at least to a certain extent, distinguish the 1s from the 0s. This means that we can even prefer
a model with a higher misclassification error, when it tries to predict 1s.

Note that the misclassification error can also be applied as a measure in the multinomial setting. Unfortu-
nately, the associated problem with the measure does as well. When we work with classes P, N and NA, the
NA-class will dominate the coarsened driver scores, and relatively few drivers will be of the P and N classes.

4.2.2. Handling the class imbalance

A solution to the problem presented by the misclassification error is the so called area under the curve (AUC);
area under the so called Receiver Operating Characteristic (ROC) curve that is. We will introduce the ROC
curve and other concepts required for understanding the AUC in this section, and end with the AUC itself.
The regular AUC measure is only defined for a binary classification and thus, for the rest of this subsection,
we will only work in the binary setting.

Definition 4.2 (confusion matrix)
Let d = [dl,...,dn] be a vector of n predictions for d = |dy,...,d,

{0,1},Vie{l,...,n} and d; € {0,1},Vi € {1,...,n}. Then

, Wwhere d is known and we have d; €

e True Positives (TP) (d, J) =tell,...,n:d;=d; =1}

)

* True Negatives (TN) (d,d) =liell,...,n:d;=d; =0}

)

e False Positives (FP) (d, d) ={iefl,....,n}:d; =0# (Z =1}

)

« False Negatives (FN) (d,d) =lie(l,...n:d;=1#d; =0}

These values are represented in the confusion matrix as
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d;
1 0
1| TP | FP
d; FN | TN

Figure 4.3: The confusion matrix.

Definition 4.3 (Sensitivity and specificity)
Let d = [dl,...,dn] be a vector of n predictions for d = |dj,...,dy

{0,1},Vie{l,...,n} anddAi €{0,1},Vie{l,...,n}. Then,

, where d is known and we have d; €

e

sensitivity(d, d)

TP (d,&) + FN(d, E)

) TN(d, E)

speciﬁcity(d ,d )

FP (d, (i) + TN(d, J)

To place this in the context of this thesis, again assume we have a vector with driver scores d} T and a vector
new»

with predicted values d'r_,,, j- These will be of the following form:

o~ oo o~
>—l»—|OOO>—I‘

~

!/
Inew,Jj dInew,j

Figure 4.4: Example of data and predictions in the binary setting, for a driver j and documents i € Inew.

Having these values, we can compute the TP, TN, FP and FN, and the specificity and sensitivity. Sensitivity
is also know as True Positive Rate and specificity as True Negative Rate. Why are these values important to
us? We will explain. When, in the context of this thesis, a model is created, it gives us a vector of estimated
probabilities py, .., j, and the predictions L?Inew,j are derived from these probabilities by setting a threshold
value .

Now, when looking at the definitions of specificity and sensitivity, and TP, FP, FN and TN, one can see the effect
of changing the threshold value ¢. Lowering the threshold value will lead to more 1’s in the vector cﬂnew i This

means that the values TP and/or FP will increase and FN and/or TN will decrease. Let us illustrate with an
example:
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0.90] 1] 1
0.80 1 1
0.73 1 1
0.62 1 0
0.53 1 1
0.31 0 0
0.31 0 1
0.12 0 0
ﬁlner]' Inew,J }new:j

Figure 4.5: Example of data set, computed probabilities and predictions in the binary setting, for a driver j and documents i € Inew, with
nnew = 8, with a set threshold value of r = 0.5.

In this case, we find a sensitivity of 0.8 and a specificity of 0.67. Note in this case, it does not matter whether
we choose the threshold as ¢ = 0.52 or ¢ = 0.47 or any value in the range [0.32,0.52]; the values for sensitivity
and specificity stay the same when using this choice of Ij,ey. As long as the threshold value stays between the
same two probabilities, there is no change. Now, we decrease the threshold to ¢ = 0.3 and get the following
situation:

0.90] 1 1
0.80 1 1
0.73 1 1
0.62 1 0
0.53 1 1
0.31 1 0
0.31 1 1
0.12 0 0
P 1°]

pInew:j dlnew:j dInew’j

Figure 4.6: Example of data set, computed probabilities and predictions in the binary setting, for a driver j and documents i € Inew, with
Nnew = 8, with a set threshold value of r = 0.3.

In this case, we find a sensitivity of 1 and a specificity of 0.33. We see that as we decrease the threshold value
t, there is a monotonic increase in sensitivity and a monotonic decrease in specificity. The opposite holds as
well; when we increase the threshold value ¢, there is a monotonic decrease in sensitivity and a monotonic
increase in specificity. Thus a (monotonic) increase in either sensitivity or specificity leads to a (monotonic)
decrease in the other. Thus, we see that when we let d be a known function of p,,,, j and t such that

g(ﬁlnew’j’ t) = {i}new:j (42)
then
sensitivity(d}new’j, &}newvj) = sensitivity (d}new,j’ J(ﬁ]new,j, t)) 4.3)
specificity (d}new, t d j) = sensitivity (d}new, j d ( Plnew,j» t)) (4.4)
Or, we will also simply write
sensitivity (d}ner 7 Pl t) (4.5)
specificity (d;newv].’ Ploew j» t) (4.6)

where the use of the function of d as function of the last two arguments is implied. Thus, we see that the sen-
sitivity and specificity are, given a set of documents, functions of the coarsened driver scores and estimated
probabilities for the documents, and the threshold value ¢. This and the earlier mentioned relationship be-
tween the sensitivity and specificity are characterised through the ROC curve.
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4.2.3. The ROC curve

Definition 4.4 (ROC curve)
Letd = [dl, ...,dn] be a known vector of length n whered; € {0,1},Vi€{l,...,n}. Letp = [pl,...,pn
of probabilities, such that0 < p; < 1. Let t, the threshold value, be a variable in [0,1].

be a vector

The Receiver Operating Characteristic (ROC) curve! plots sensitivity against 1—specificity. It is created by com-
puting the sensitivity(d, p, t) and 1-specificity(d, p, t) for all values of t € [0, 1], and then connecting the points
found by plotting these two against each other.

An example of the ROC curve is:

Q
—

05
I

T T T
0.0 0.5 1.0

Figure 4.7: Example of an ROC curve. On the y-axis is depicted sensitivity, bounded between 0 and 1. On the x-axis is depicted
1-specificity, bounded between 0 and 1. The dashed line depicts models that score as good as a random guess.

Note that we have sensitivity on the y-axis and 1—specificity on the x-axis. This is the standard for ROC curves.
The reason for this may not be clear immediately. Note that
|TP|

sensitivity = m , (47)

which shows why sensitivity is also known as the true positive rate. We also have

1 —specificity =1 ITNI = [EP] (4.8)
pectficity = 1= o5 TNl = [FP+ [TN|” :

which shows that 1 —specificity is the false positive rate. Thus, the ROC curve is essentially plotting the proba-
bility of predicting a real positive as a positive versus the probability of predicting a real negative as a positive,
which is also the reason for this being the standard in literature.

In the context of this thesis, the ROC curve is computed using a set of new documents Iew, the probabilities
computed for this set, py,,,,;, and the corresponding real values, d’ it We want the curve to be as close
to the top left as possible, where sensitivity and specificity both equal 1. The ROC curve actually reaching
this point means that we can set a threshold value, within the vector of probabilities py,,,; that gives perfect
distinction between the corresponding true 1’s and true 0’s. This will be very hard or impossible to achieve
when creating models with actual data, but we will try to get as close as possible.

When a model is created that simply guesses, this model will end up as a point somewhere on the straight line
running from the bottom left to the upper right in Figure 4.7. All models that simply guess are on this line,
starting with models always predicting 0 in the bottom left, going to models predicting more and more 1s
and eventually only predicting 1s when being in the top right. It is not impossible for a model to be beneath
this line, but that would mean the model is not performing. It could be that the data on which the model

1The ROC curve was first developed during World War 2, within the context of determining if a blip on a radar screen represented a ship
or an extraneous noise. Radar receiver operators used the ROC curve to set the threshold for military action.
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was trained is very different from the data on which the model was validated, and the found specificity and
sensitivity are, for any threshold, worse than those that would be obtained by a random guess. Of course, it is
always a possibility that the model is beneath the straight line, because it is simply rubbish. In fact, a simple
improvement of a model beneath the straight line would be to always predict the opposite of what the model
predicts, which would give a model running above the straight line.

Remember that earlier we had the misclassification error, which is a relatively simple statistic. We can take
the predictions of a model and the corresponding the true values, compute the misclassification error and
then compare it with the same results for a different model. Now, in the context of the ROC curve, it is clear
that we want to get as close as possible to both a sensitivity and a specificity of 1, but we will still want a way
of expressing this desire in one value as a way to compare models. One way of doing is, is by computing the
area under the curve, abbreviated as AUC.

4.2.4. Summarizing the result in one value

The AUC is defined as the area under the ROC curve, hence the name. This means that the AUC gives us
information about the performance of a model before setting a threshold ¢. This, because every point on the
ROC curve is given by a combination of specificity and sensitivity at a certain value of . When computing the
area under this curve, which is formed for given vectors d and p, you are thus essentially integrating over t.
Before defining the AUC, we need to go back to the concepts of sensitivity and specificity first.

Letd = [dl,...,dn] be a known vector of length n where d; € {0,1},Vi € {1,...,n}. Let p be a vector of n
probabilities. In Definition 4.3 the sensitivity and specificity were introduced as

e |TP|

SenSlthlty = m (49)
e ITN|

spec1ﬁ01ty = m (410)

with TP, FN, TN and FP functions of d and a vector d of predictions. Within this proof, we do not have d fixed
yet, as we have p and are free to choose threshold value ¢ in [0, 1]. Note that, regardless of how we choose ¢,
we have that

|TP| +|FN| = {i(—:{l,...,n}:dizl}‘ (4.11)

|FP| +|TN| = {ie{l,...,n}:di=0H (4.12)
And for a given t, we have that

TP:{iE{l,...,n}:dizll\p;“21‘} (4.13)

FP:{ie{l,...,n}:di=0/\pl’fzt} (4.14)

, where p? is the ith entry of p. Thus, we see that, given vectors d and p, the True Positive Rate (=sensitivity)
and False Positive Rate (=1—specificity) are functions of ¢z, as

{ie{l,...,n}:dl-:l/\p;.“ > t}
TPR () = (4.15)
{ie{l,...,n}:d,- :1}

{ic—:{l,...,n}:di=0Apl’.‘ = t}

FPR(?) = (4.16)

{ie{l,...,n}:dizo}
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Definition 4.5 (Area under the curve)
Letd = [dl,...,dn] be a known vector of length n where d; € {0,1},Vi € {1,...,n}. Let p be a vector of n proba-
bilities. Let the True Positive Rate (TPR), based on d and p, be a function of t. The AUC is defined as

1
AUC(d,p)::f TPR (t)dt (4.17)
0

Thus, for our goal of evaluating our results, the use of the AUC relieves us from the obligation of setting a
threshold ¢, and only d}new:j and py,,,,;j are needed for its computation. When ultimately computing d'y,.,, j,
t will still have to be chosen.

In general, a model with a high AUC value is desirable, and the value is bounded between 0 and 1. When only
considering models better than a random guess, it is bounded between 0.5 and 1. Now, since the AUC equals
the area under the AUC curve, it can be calculated by piecewise integration of this curve. However, there is
another method; it can be shown that the AUC equals the probability of scoring a true 1 higher than a true 0.
In the context of this thesis, scoring means the probability allocated to a document. We will illustrate what
this means.

Again, let p a vector of length n of probabilities, i.e. every entry is bounded between 0 and 1. So far, we have
always seen its entries simply as numbers. Now, we will deviate from this concept, and assume that its entries

are outcomes of random variables p;,i € {1,...,n}. Letd = [dl, o) dn] be a known vector of length n where

d; € {0,1}. We then say that p; is a random variable whose probability density function is f; when d; =1 and
fo when d; = 0. It then holds that

X
P(pisxldizl):f filwdu (4.18)
P(p,-5x|dl~=0)=f fo(w)du (4.19)

Let X; and Xj be independent draws from f; and fj respectively. It then holds that

P(X; > Xp) =f Jo(xo) fi(x1)dx1 dxo (4.20)
—00 J X
- f f Liran D fot) dTde (4.21)

Keep in mind that X; is a draw from p; when d; = 1 and Xj is a draw from p; when dj = 1. We therefore say
that P(X; > Xp) is the probability of scoring a true 1 greater than a true 0. In the context of this thesis, the
density functions fj and f are not given. We will try to approach these densities using the (finite) samples d
and p of size n, for which we compute the AUC. Then, we can show that the AUC approaches this probability
P(Xl > X()).

Theorem 4.1 (AUC)
Letd = dl,...,dn] be a known vector of length n whered; € {0,1},Yi €{1,...,n}. Let p be a vector of n outcomes

of independent random variables p; whose probability density function is fi when d; =1 and f, when d; = 0.
Let X1 and Xy be independent draws from fi and fy respectively. Let the AUC be the area under the ROC curve
formed by d and p, as in Definition 4.4. Then

AUC (d, p) = P(X; > Xo)

We will prove this result in the remainder of this section. We have that

X
P(pi<xld; = l)zf fitwdu (4.22)

X
P(pi<xld; =0) =f fowdu (4.23)
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Given vectors d and p, the TPR and FPR are functions of ¢, as

{i(—:{l,...,n}:di =1Ap; = t}'
TPR(?) =

(4.24)

{ie{l,...,n}:dizl}'

{ie{l,...,n}:di=0Ap;f‘ > t}'

FPR(?) = (4.25)

{iE{l,...,n}Zdl'ZOH

In the following, we will need the strong law of large numbers.

Theorem 4.2 (Strong law of large numbers)
Let X1, Xy, ... be an infinitely long sequence of outcomes of integrable random variables that all have expected

value p and let X, = + (X1 + Xo +...). Then

Xn—u (4.26)

In the setting of our proof we consider
L) =1y, ielie{l,...,n}:d;i=1} 4.27)
Lio(t) =1pr>p, iefiefl,...,n}:d; =0} (4.28)

as the outcomes of random variables and we let I; 1 (£) and I; o (¢) be the sample averages (as X, in Definition
4.2). Using Equations 4.24 and 4.25 we then have that

TPR(£) = I;1 (1) (4.29)
FPR () = I; o(2) (4.30)

Now, we wish to apply the law of large numbers, which means letting n go to infinity. In our context, this
means expanding the vectors p and d. In doing this, assume that the fractions of d; = 0 and d; = 1 in vector
d stay the same, and entries p; are draws from p;, i € {1,...,n}. Since p; is an outcome of the independent
random variable p;, we see that

TPR(8) 22 P(p; = tld; = 1) (4.31)
FPR(t) == P (p; = tId; = 0) (4.32)

as n goes to infinity.

If we then let FPR (t) = x, then ¢ = (FPR -1 (x)). One needs to be careful about defining the inverse function of

FPR here. By Equation 4.25 FPR is a step function, meaning that different values of ¢ can give the same FPR,
i.e. the FPR is a non-injective function. We thus let the inverse be defined as FPR “1(x) =inf ({t :FPR(1) = x}).

We then find that
AUC (d, p) = fo "TPR (FPR—I(x)) dx = f:o TPR(#)FPR(#) dt (4.33)
- _f_: (1 —f_;fl(r) dr) (-fo(n)dt (4.34)
_ ﬁ:ftmfl (@) dr fo(ndr (4.35)

=f f lgsan i@ fo(n)drde (4.36)
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Here, in the first step the transform FPR(#) = x was used, such that TPR (FPR’1 (x)) =TPR (f). Now, say that
we take a draw Xj from f; and a draw X, from f;, we then have that

P(X; > Xp) =f Jo(xo) fi(x1)dx1 dxo (4.37)
—00 J Xp
- f f L=t D folt) dTde (4.38)

We see that Equation 4.36= Equation 4.38, and thus we have that
AUC(d, p) — P (X1 > Xo) (4.39)
Given these, results, we conclude that given n sufficiently large, we have that

AUC(d, p) = P (X1 > Xo) (4.40)

g.e.d.

Theorem 4.1 gives us that the AUC equals the probability of scoring a true 1 greater than a true 0. In this thesis
we will approach this probability, and thus by direct implication the AUC, using results achieved. First, we
introduce an adapted indicator function, say 1, defined as

- 1
1(x):= 1_1{x<0}_5]]-{x:0} (4.41)

Sothatif x> ywehave I(x—y)=1,ifx<ythenI(x-y)=0andif x=y thenI(x-y)=0.5.

Now, in the context of this thesis, say that we have a model and there are npe, documents serving as our test
set. Name this set Inew. Then, for a driver j, we will compute the estimated probability py,,.,,; to base our
prediction for d; jon.

Now, say that for I, = {i € Inew : d} j=1ltand I = {i € Inew: dl’.j =0} and that n, = |I| and n_ = |I_|. Then we
have that

1
AUC=

Y ¥ 1(pij-pij) (4.42)

NN ey, el

So that the AUC is given by the fraction of reviews for which d I 1 that are scored higher than the reviews
for which dl’. i= 0. In the case that we have two reviews, it and i, such that dl’.+ i= 1 and dg_ i= 0, and they

are scored equally, i.e. p;+ ; = p;-,j, the adapted indicator function I returns 0.5 as a compromise between 1
(i* being scored greater) and 0 (i~ being scored greater). A small example with multiple results will illustrate
what this means:

0.90
0.80
0.73
0.62
0.53
0.31
0.31
0.12

O OO O -

pI"Ew’j dIrzew:j

Figure 4.8: Example of data set and computed probabilities in the binary setting, for a driver j and documents i € Iy, With e = 8.

We have that I, = {0.90,0.80,0.73,0.53} and I = {0.62,0.31,0.31,0.12}. Thus, using our result 4.42, we can
compute our estimate of the AUC as

1
AUC=

Y Y 1(pij-pi) (4.43)

nyn- itel i€l

1
= 16 (4+4+4+3)=0.9375 (4.44)
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4.2.5. A multinomial AUC generalization

In the previous section we introduced the concepts of sensitivity and specificity, the ROC curve and the AUC.
The AUC might be an effective measure for the binary setting, but we are still looking for a similar measure
in the multinomial setting. Several articles have been written on multinomial generalizations of the AUC.
The most widely used measure is called the M, introduced by Hand & Till (2001) [16]. In a recent paper by
Kleiman & Page (2019)[14] it is noted that M has its shortcoming though, and a new measure named the
AUC, has been introduced.

The AUC, has been developed such that the properties of the AUC deemed most critical by Kleiman and Page
to its use and interpretation are preserved. These are

Property 1. If a model gives the correct label the highest probability on every example, then AUC=1.
Property 2. Random guessing on examples yields AUC=0.5.

Property 3. AUC is insensitive to class skew (meaning that the class distribution, i.e. having more
instances from one class than another, does not affect the value of the AUC).

These three properties are all met by the AUC estimate as given in Equation 4.42, and we wish to see these
properties also met by the AUC,,. We will demonstrate how the AUC, is constructed.

In the multinomial setting the outcome d; i is a draw from the categorical distribution with parameters

pij = (p,-'j) ,...,(pij ] where p; ; must be in the (P-1)-simplex. In this thesis, we then compute

Pi,j as an estimate for p; ;. A prediction d; i,j for d . is then formulated, based on in which part of the
(P —1)-simplex p;,; is.

In Chapter 2 we introduced the concepts of the partition matrix and decision boundary (Definitions 2.3 and
2.4 respectively). As a quick help, given a misclassification matrix A, the decision boundary between classes
¢1 and ¢ is given by the set of choices p in the(P — 1) -simplex such that

Ag . P=Ag,P (4.45)

, where Ay, . denotes the g;th row of A. Having this, we can look at a way of ranking p in the multinomial
setting. When using the AUC in the binary setting, p is 1-dimensional and the greater it is, the higher it is
ranked. Now to us the task of extending this notion to the multinomial setting. Equation 4.45 describes the
decision boundary as a set of possible choices for p for which the expected cost of labeling a class as g; equals
the expected cost of labeling a class as ¢. Define

Vai,q, *= Aqy, — Agy, (4.46)

Then it holds that the equation of the hyperplane giving the decision boundary is given by vg, 4, - p = 0,
which is an equivalent formulation of Equation 4.45. This decision boundary divides the (P-1)-simplex in
two regions, one region where we label d = g; and one region where we label d = g5. If Vg P is positive,
it is more costly to label d= q1, and when v, 4, - p is negative, it is more costly to label d= g». Thus, we see
that vy, 4, provides a way to rank points in the simplex in terms of their cost difference between assignment
of class g, and assignment of class ¢g,. Note that this means that while we can rank all points in the simplex,
we can so far only do this when given the choice between two classes, ¢; and g».

Having said that, we look at the situation where we are given two documents, say i; and i> and have computed
the estimated probabilities, respectively p;,,; and p;,, ; for driver j. Without loss of generality, let the true
classes be d’ =¢q; and dl2 j= 42 41,92 € {1,...,P}. Let y;,j and y» ; be the vertices in the (P —1)-simplex
for classes q1 and g2 respectively for driver j. Then we have that y;,; = e, and y» ; = e4,, where ey is the
vector of length P with 1 as the kth element, and 0 for all other elements. Then, take vy, 4, = Ag,,.— Ag,, as
the normal vector to the decision boundary. vg, 4, - 1,j and vg, 4, - y2,;j are then the unscaled distances of our
class vertices to the hyperplane.
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These distances provide us the ’correct’ orientation of two points projected onto vy, 4,. Using this, we can
define a correct ranking for p;, j and Py, j. If vg,,4,* 1,/ — Vgr,q0 - ¥2,j > 0, then we say that p;; ; and p;,, ; are
correctly ranked if vg, g, * Pi,j = Vqy1,42 * Pin,j > 0. This concept brings us to the orientation function.

Definition 4.6 (Orientation function)

Let us have a classification problem with P classes with partition matrix A, and let two classes be q, q €
{1,..., P}, q1 # g». Let us have two instances dy,d» for which dy = q, and dy = q» and probabilities py, p» in
the (P —1) -simplex. Let the vertices in the (P — 1) -simplex for q\ and q» be given by y1 and y,. Let vg, g, :=
Ag,, — Ag,,.. The orientation function is then defined as

O(J’lyJ’z, p1, p2, Vm,tiz) = (quz (31 - J’z)) (Uqwz (p1- Pz)) (4.47)

What this means is that the orientation function O, with respect to the earlier introduced definition of correct
ranking, returns a positive when the estimated probabilities are ranked correctly, a negative when they are
ranked incorrectly, and a 0 when they are tied in rank.

To place this in the context of this thesis, let us again have two documents i; and i, with d;l j=|m and

dl’.z, j=aq2as the true classes. We have estimated probabilities p;,,; and pj,,; in the (P —1)-simplex and the
positions of the true classes in the (P —1)-simplex are given by y; j and y» ;. Let A be the partition matrix
associated with the classification problem, from which v, 4, can be derived. The orientation function is

then given by
O(yl,j,yz,j, Piy,j» Diy, j» Uéhﬂz) = (U%QZ ) (J’l,j - J/ZJ)) (Vthvth : (ﬁihj - ﬁizvj)) (4.48)

Now, we will use the orientation function O for the construction of a new adapted indicator function. In
the binary setting, we introduced the adapted indicator function 1 so that we could compute the AUC as
in Equation 4.42. 1 returns 1 for a correct ranking, 0 for an incorrect ranking and 0.5 when two estimated
probabilities are tied in rank. We aim to construct a similar function in the multinomial setting. Given two
instances p;, j, Pi,,j and the true class labels and partition matrix, the orientation function gives a positive,
negative or 0 output. Thus we define

I°O(J’Lj’)’lf’ﬁh,]”ﬁiz,f’ Uﬂl,ﬂz) (4.49)

as the adapted indicator function that indicates whether two classes are ranked correctly for the multinomial
setting. It does this in the same fashion that 1 does for the binary setting; if a 1 is returned, p;, j, Pi,,j are
ranked correctly, if a 0 is returned, they are ranked incorrectly and when 0.5 is returned their rank is tied. This
all with respect to the decision boundary v, 4,, which the simplex between their true labels.

Now to move towards comparing not just two instances of two different classes, but multiple, all still of either
of the two classes. Let I, = {i: dl’.,j =q}, Ig, =1{i: d;,j = g2}, and let ng, = |I4, |, ng, = |I5,|. We introduce the
separability measure, defined as

1 . ~ —~
ng n Z Z loO(yl,j’J/Z,jrpiql,j,piqz,j;Vql,qz) (4.50)

1702 ig €lg, ig,€lq,

NURDE

Note the similarity between the separability measure and the AUC estimate in Equation 4.42. Both take the
average value over an indicator function returning 1, 0 or 0.5 over two sets of classes. In fact, in the binary
setting where there are only 2 classes and one works with probability estimates in the 1-simplex, S is equiv-
alent to the AUC estimate as in Equation 4.42. In the multinomial setting, the separability measure still only
accounts as a way to compare instances from 2 of the P classes. This brings us to the final step. For the multi-
nomial setting with P classes, we now take the average of S over all possible class combinations and define
the AUC, as

AUC, = Y S(q1,92) (4.51)

P(P_l) q1<q2

We can thus regard the AUC, as taking the average of multiple AUC values.



Elasic net models

In chapter 2 we defined our goal of predicting the dg,j' the coarsened driver score for a document i and driver
J, through the use of the probabilistic model and computation of p; ;. In chapter 3 we saw how to turn a
review into meaningful variables x, ..., xy and now, in chapter 5, we will see how we can use these variables
to compute p; ;. We will discuss the so called Elastic net model, of which LASSOis a special case. We will start
with the motivation for this method, explain how the method works and introduce variations of this model.

5.1. Predicting with many variables; motivation for the method

In chapter 3 we arrived at a problem of the following form:

binary_indicator | blunt | close | garbag | good | im | product | shave
1 1 1 1 1

o O = O
S = O =
[l

0 0 0 0
0 0 0 0
0 0 0 0

w o W

Figure 5.1: Example of the document-term matrix.

The first column contains the variables we want to predict, d}, for a driver j in the binary setting and the other
columns are predictors xi,..., Xy. In Equations 2.9 and 2.10 we defined how p; is the underlying probability
influencing the Bernoulli outcomes of d}, i.e. the values dl’.’ i with doc; as input for p;. Since p; is unknown,
we try to estimate it as pj.

One way of doing this, would be to apply maximum likelihood estimation. In doing this, we compute the
likelihood function over the Bernoulli distribution for all documents i, and then maximize it for a certain
choice of parameters. We do not have these parameters yet, but we can introduce them through the use of the
logistic model, which we will explain in this chapter. Maximum likelihood estimation will give us the choice
of parameters that best fits our assumed statistical model, but this will not suffice and we will introduce the
LASSO which adds a penalty parameter. LASSO is a special case of what are called Elasic net models. In the
example above and this little write up, a binary setting was assumed. We will generalize for the multinomial
setting later on in this chapter.

5.1.1. Resembling probability as coefficients

In the logistic model the log odds of the outcomes of a binary variable are modeled as being a linear combi-
nation of one or more independent variables. Every variable gets a corresponding coefficient.

39
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Definition 5.1 (Logistic model)

Consider a model with predictor variables x1, ..., xy and a binary response variable Y. We denotep = P (Y =1).
A linear relationship is assumed between the predictor variables and the log odds of the event that Y = 1. Then
coefficients By, B1, ..., By are introduced and the linear relationship can be written in the following form:

log(%):ﬁo+ﬁ1x1+---+ﬁvxv 6.1

Within this thesis, log is considered as the natural logarithm, meaning the logarithm with base e. Other
choices for the base of the algorithm are possible for a logistic model, but are not considered in this thesis. By
does not correspond to any variable and is named the intercept.

In the context of our problem we have a binary variable d’, and model the log odds of the event d} =1as
a linear combination of independent variables, x,...,xy. For the log odds we will briefly return to how we
defined the odds p; in the first place. From Equation 2.9 we have that

pj(doc) := P(d} = lldOC)

Using this, we apply the logistic model

pi
log(l_Jp.):ﬁO,j+ﬁ1,jx1+"‘+ﬁv,jxv 5.2)
J

Notice that p;, and thus by Equation 2.9 the outcome d’,, depends on the information from the document

through the variables xi, ..., xy and that the coefficients o ;, 81}, ... Bv,;j are independent from the document
and are, in general, different for a different driver j. Now, we rewrite Equation 5.2 and find

pi
1_]p. Zexp(ﬁo,j+,31,jx1+"'+ﬁv,jxv) (5.3)
J
= Pj=(I—Pj)exp(ﬁo,j+ﬁ1,jx1+”'+,5v,jxv) (5.4)
exp(ﬁo_j+,61_jx1+--~+ﬁvvjxv) 5.5
— pj= .
1+exp (,60,]' + ,31,]')61 +-oe 4 ﬁvijv)
1
= pj= (5.6)
1 +exp (—.Bo,j —Prjx1— = ,BV,ij)
= P(d} =1ldoc| (5.7)
Now;, let x and ﬁj be vectors of length V+ defined as
x1 Bu,j
x:=|: ,ﬁj = (5.8)
Xy ﬁV,]
Then we have as a short notation for the expression of p;
exp (ﬁo + E]TE) .
pj= - (5.9)

1+exp (ﬁo +E]T£) 1+exp (—ﬁo _EJTX)

Thus, we have now explicitly expressed p; in terms of coefficients fo j,..., Bv,j and we can look at estimating
these coefficients as a means to estimate p;.
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5.2. Maximizing the likelihood
To estimate the coefficients, we first introduce the likelihood function and maximum likelihood estimator.

Definition 5.2 (The likelihood function and maximum likelihood estimator)

Let y1,...,¥n be observations from n independent and identically distributed random variables drawn from a
probability distribution with probability density function f, which is known to be from a family of distributions
that depend on parameter 0 € ©. O is the parameter space, a finite-dimensional Euclidian subspace containing
all possible choices for 8. The likelihood function, £ is then defined as

L Oy, yn) = F(x1,...,x110) = £ (x110) x f (x2160) x -+ x f(x510)

The maximum likelihood estimator, 8, is defined as the value for 0 that maximizes the likelihood function £,
thus

Gzargr&%xf(elyl,...,yn)

It is often easier to work with the log-likelihood function, which is found by taking the logarithm of Z, i.e.
n
log % (01y1,...,yn) = Zlog(f(x,-l@)) (5.10)
i=1

Since the logarithm is a monotonic function, 6 maximizes Z if and only if 6 maximizes logZ.

Now, we will estimate the coefficients from Equation 5.2 by computing the maximum likelihood estimator.
For this, first look at d}. Remember that, by Equation 2.10 we have that

d}ldoc~Bern(pj(doc)), vje(l,..., m}
and thus we have for the probability mass function of d}, with outcomes in {0, 1}, that

’ 1-d',
f(d}lpj(doc))zpj (doc)® (l—pj (doc)) ! Vjell,...,m} (5.11)

Now to compute the likelihood function. For driver j, take the n pairs of dl’. i and doc;, fill them in in the
probability mass function, and take the product over them to obtain the likelihood function.

od 1-d! . . .

L(prjses Pujld) oo ), docy, .., docy ) = r[lpi'jf(]—pi,j) W, Vie{l,..,mYjell,...,m (5.12)
i=

, where we used the notation p;, ; as defined in Equation 2.13. In Equation 5.6 we found an explicit expression

for p; in terms of coefficients fg j,..., By,j, and now we want to choose these coefficients such that they

maximize Z. It is easier to maximize the log%. For ease of notation, we do not express p; ; in terms of

Bo,j»---» Bv,j yet. We get

noqd. o
log ZL(p1,j,..., Pnjldy j-..,dy, jdoci,...,docy) :log(H p, ;- pip) dw‘]) (5.13)
i=1
d;,j 1-d; .
=) log p,i A=pij) (5.14)
i=1
n
=Zd;,jlog(pi,j)+(1—dl{j)log(1—pij) (5.15)
i=1
n
=y dg,j (log(pi,j) —log(l - pi,j)) +log(1 - pi ]) (5.16)
i=1

_ ’ Pij o
=Y d, (1og(l_—pj))+log(1—pl,]) (5.17)
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Pi.j
1=pij

Now to express this in terms S j,..., By,j. We already found an expression for log( ) in Equation 5.2.

Using Equation 5.5, it is quite easy to express log (1 - pi, j) as well:

exp(ﬁo,j + B, +~--+ﬁv,jXV)

1og(1—pi,j) =log|1- (5.18)

1+exp (ﬁO,j +ﬁ1,jx1 + e +ﬁv'ij)

1

=log (5.19)

1+exp (ﬁO,j +ﬁ1,jx1 + .- +ﬁv'ij)
:—log(1+exp (ﬁo,j+ﬁ1,jxl+"'+ﬁv,jxv)) (5.20)

Thus, using Equations 5.2, 5.17 and 5.20 we find

10g % (Bo,j»-.., Bv,jld] j,....d}, ;,docy,..., doc) (5.21)

n

= Z (dz,‘,j (ﬁo,j + ﬁl,jx,-yl +. ..ﬁv,jxi,v) —log(l +exp (ﬁo,j + ,Bl_jxi,l + ...,vajx,-_v))) (5.22)

i=1
= l;nl (d,f, i (ﬁo + ngzi) —log (1 +exp (ﬁoﬁf&i))) (5.23)

Similar as to how we defined x, x; is here defined to be the vector of length V having x; 1,..., x; v as its en-
tries. Now, we can finally use this function to compute the maximum likelihood estimate for coefficients
Bo,js---» Bv,j. Name these estimates fy,;, ..., Bv,;, and in vector form ﬁj. We say that

n

3 e 1 — ! . . . . . — . . . . .
Ej = argﬁo,pli?elgVﬂ ,gi (di,j (,B(),] + P, X1+ ...ﬁv,]x,,v) log(l + exp (ﬁo,] +P1,jxin+... By x,yv))) (5.24)

n

=arg min - ; (dl'-,j (,Bo +E],T§l.) - log(l +exp (,Bo +EJT§1))) (5.25)

ﬁO:ﬁjERV+1

Notice that we take the minimum over the negative of log.Z, which is the same as taking the maximum.

We have derived the log likelihood, and found a way of estimating §; such that our estimate ,Ej is the most

probable under the statistical model that we assumed. However, we do need do not account for the problem
of overfitting and that is why we move to the LASSO.

5.2.1. The penalty term

Through the use of the log-likelihood function we found our estimates ﬁj by maximizing the likelihood func-

tion, but now these values are overfitted. We only expect a few of the variables xi, ..., xy to possibly influence
pj» and we want to see effect in only a few of the corresponding coefficients y,,..., Bv,;. However, since we
work with only a finite sample, we will see effects in the estimated coefficients that appear because of sheer
coincidence. A larger sample size would help, but the effect of overfitting will persist.

There is a way to combat the problem of overfitting though. We sum a penalty term to the log-likelihood term
we found earlier. The penalty term will be of the form

AlB (5.26)

[I- ]| being a norm that is yet to be chosen, and A being a free parameter greater than 0 that represents the
amount of regularization desired. Therefore, A is called the regularization parameter. The penalty term is
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thus strictly positive. The penalty term then grows with larger coefficients (positive or negative) and decreases
when the coefficients are close or equal to 0.

Before summing the penalty term to the log-likelihood function, we first normalize the variables. We do this,
because when one variable naturally attains smaller values in our data set, it may cause the corresponding
coefficient to grow large, relatively to other coefficients. This will in turn cause the penalty term to grow large.
The effect can occur vice versa for a variable that naturally attains rather large values. Its corresponding
coefficient could become rather small, with a low impact on the penalty parameter. Of course, we want the
penalty to be small in some cases and large in others, but this should be a result of how informative some
variables are for our prediction, not of the distributions of these variables in the data. Thus, we normalize all
variables in the data set. Let x,,, v € {1,..., V} be a variable in our data set, with

_ 1
Xo=— Xiy (5.27)
ni=1
Z(l—l (xi,u - xl/)z
s= ’—T (5.28)

as respectively the sample mean and sample variance. Then, we now redefine x; ,,Vi € {1,...,n} as

Xiy—Xy
Xy = v (5.29)
s
Repeat this for all variables x,,v € {1,...,V}, and we have normalized our predictors. For the rest of this
chapter, we assume that variables x, are normalized. Having done that, we can look at using the penalty
term A||B;|l. Summing it to the log-likelihood and minimizing over the whole entity gives us the following

result

1 n
i - d{-( +pT -)—l 1+ ( + 87 ) +AllB; 5.30
U pyeRvi n L | dij|\Po+ B;x;) ~log| 1+exp|fo+ f x; 181 (5.30)

The estimate, B ., willnow be regularized. This means that, because the use of large positive or negative values

is penalized by the penalty parameter, it will avoid these choices, except if their effect in minimizing the log-
likelihood term is enough to compensate. Notice that we added % as a scale on the log-likelihood because
we do not want to have to adapt the penalty parameter A for the number of documents used to compute
the estimate. The A is for now a free parameter that we can choose. A higher value for A will lead to a more
regularized model, where more coefficients will be similar, and a lower value for A will lead to more of an
(over) fitted model, where more coefficients take seemingly random values.

The use of what norm to use in the penalty term is up for debate. We could use the regular Euclidian norm,
also known as the I, norm, which is defined as

1B, = (5.31)

The use of this form and the resulting minimization problem is known as Ridge regression. In this thesis
however, we are more interested in using the /; norm, which is defined as

\%4
1Bl =Y 1Bu,l (5.32)
- v=1

The resulting minimization problem is known as the LASSO. LASSO is an acronym for Least Absolute Shrink-
age and Selection Operator. The LASSO is a regression analysis method that, besides just regularization, also
performs variable selection.[15] Essentially, the use of the /; norm in the penalty, makes many of the esti-
mated coefficients shrink to 0 and a higher value for A will lead to more coefficients shrinking to 0. The
coefficients that are retained (those that are not 0) are the ones selected by the LASSO for having predictive
value. A lower value for A will lead to fewer coefficients being estimated as 0. In the context of this thesis, this
property can be particularly useful. For a driver j it will select a set of variables (being words) that are impor-
tant for estimating p;. Ridge regression does not have this property, although we could think of alternatives.
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For example, we could only take those variables for which the estimate for the corresponding coefficient is
higher (or lower) than a certain threshold.

Note that we have introduced the A parameter in the penalty term, and so far not discussed how to use it,
only its effect. In the next section, we will discuss how to choose A.

5.2.2. Choosing the regularization parameter

The A parameter will be chosen using k-fold cross validation and the AUC. We choose a range of possible
values for A of which we are almost sure that it will contain the 'optimal’ value for A. First we search for
the upper bound of this range. As mentioned before, higher values for A will lead to more coefficients being
estimated as 0. We compute the minimal value for A such that all coefficients are estimated as being equal to
0. Name this value Aax. Amax can be found as

maXue{l,...,V}Z?zlxi,vf(dl{,j)

Amax = (5.33)
n

where f (d; j) is the class proportion corresponding to d; pleif d; j = litis the total number of 1s divided by
all reviews in the data set (0s and 1s)[7]. That is it for the upper bound Apax. The rest of the range within which
one should search for the optimal A is then based on the number of variables and the number of observations
in the data set. As a rule of thumb, choose

¢ Ifthe number of variables is larger than the number of observations, search in the range of [0.01 A pax, Amax]-

e Ifthe number of observations is larger than the number of variables, search in the range of [0.0001 A ax, Amax]-

The range within which to search for A is also chosen in this manner within this thesis. We then choose 100
values for A in this range. They are chosen such that they divide the log-linear transformation of the range
in equal parts. For each A, we compute the model that is found by the LASSO for that A and estimate its
performance. Performance is estimated using the AUC and k-fold cross validation. The models found for
every A are made using the same training sets and validated on the same test sets. The average is taking over
the results from each fold, and we find an estimate of the model performance for each A. Figure 5.2 shows
the series of 1’s for two different drivers j.
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Figure 5.2: Plot of AUC estimate for models found for 100 different values of A in the LASSO. On the vertical axis the AUC estimate is
shown, on the lower axis the value of log(A). The top axis shows the number of non-zero variables in the model associated with the
corresponding A on the lower axis. The red dots show the values found for A averaged over the k folds, and the brackets around them
give the range of plus one to minus one standard error. A 10-fold cross validation was used. Results were obtained in the binary setting
and the model was made to predict positive sentiment for drivers 8 (left picture) and 10 (right picture) in the n775-data set. The variables
were of document-term matrix form.

The figure shows the dilemma that arises when it comes to the matter of choosing the value of A. In the left
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picture, the left dotted line shows the location of the A for the model that gave the highest AUC estimate.
The right dotted line gives the location of the most regularized model such that the estimated AUC is still
within one standard error from the AUC estimate found by the left dotted line. The standard error is here
defined as ik, where s is the sample variance, as defined in Equation 5.28, of the k AUC estimates we found.
One might prefer this 'one standard error lower-model’ because it is a more regularized model, and thus
less prone to being overfitted, than the model for which we found the highest AUC, but is reasonably close
in its performance. So close, that its estimated performance is within one standard error of the estimated
performance of the best model. In the right picture, there is no such model, and only the location of the
model with the maximum AUC estimate is shown.

5.2.3. Ridge and elastic net options

We already discussed the possibility of applying Ridge Regression earlier. The norm used in Equation 5.30 is
then an /; norm, as given in Equation 5.31. Unlike the LASSO, Ridge regression does not enforce the irrelevant
coefficients in fq j,..., Bv,; to shrink all the way down to 0. For us, this makes Ridge a bit of a less interesting
option, as it does not perform variable selection. Nonetheless, it still has predictive power and is thus an
option we should consider.

It is also possible to combine the options of Ridge and LASSO regression. This is called Elastic net' regulariza-
tion. We split the penalty term of Equation 5.30 in two, part /; norm and part /; norm. This gives the following
minimization problem.

) +1

, where a is a parameter within [0, 1] that has to be chosen. Compare it with Equation 5.30. Note that the
LASSO, only using the I; norm corresponds to a special case of Elastic net where @ = 1. Ridge regression is
also a special case of Elastic net, where a = 0. Note that like LASSO, Elastic net also performs variable selec-
tion, in that it lets many of the parameters shrink to 0.

alljlly + -1l | (5.34

1n
N Py B B
argﬁoygégv+l ”;:Zi i.j|Po+ B x;|~log|1+exp|fo+p x,

Choosing the A parameter is done in the same manner as to how this was done for the LASSO. The only
difference is that in determining A,,x, one has to account for the a parameter. The formula becomes:

maxye1,.., v} L1, xi,vf(dl{,j)

an

(5.35)

Amax =

5.3. Multinomial setting

So far, we have introduced and motivated the use of the LASSO, Ridge and Elastic net regression options in
the binary setting. We now wish to generalize these methods to the multinomial setting.

5.3.1. Multiple sets of coefficients

In the multinomial setting, we assume that we have P classes, and that, as in Equation 2.18, d} assumes one
of these P classes, say class g, with probability ( p j) , such that ZZ=1 ( p j) = 1. We will again apply a logistic
q q

model, but how do we generalize the logistic model from the binary setting to the multinomial setting?

1The elastic net was given its name for its usage as a variable selector, like the LASSO. "It is like a stretchable fishing net that retains ‘all
the big fish’"[18]
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Remember, that in the binary setting the assumption of the logistic model made in Equation 5.2 was

log = o ﬁ (5.36)

(d/ = 1|d0c)

= log———— =0 + (5.37)

(d’ = OIdoc)
aspj=P (d} = 1|doc) and1-p;j=1-P (d} = 1|doc) =P (d; = Oldoc). Here, the outcome 0 functions as the

pivot outcome and there is no need to estimate P (d} = 0|dOC) since it follows from p; by P (d; = 0|doc) =
1-p;j.

Now, in the multinomial setting d} takes values in {1, ..., P} with probabilities (pj) ,q€efl,...,P}. We will run
q
P —1 independent binary logistic models, using the outcome P as the pivot outcome. Since 25:1 (p j) =1,
q

there is also no need to estimate (p j)P when we already have estimates for (p j)l Veey ( p j)P - Thus we aim

to regress the outcomes {1,..., P — 1} independently against outcome P. Furthermore, every outcome get its
own series of coefficients. This means that we get the following series:

[#),

(21),

Where E;J, is a vector of length V defined as

log (ﬁo q) +B7 x, vgell,...,P—1) (5.38)

—a4,j=

),

b= : (5.39)
(ﬁ V'q) j

This makes it that in the multinomial setting f . becomes a matrix of size P x V, such that the gth row is the
—J
vector ,B _ containing the coefficients for class g, but not the intercepts. Now, exponentiating both sides of

Equation 5.38 and moving the probability in the denominator of the fraction to the right side, we get
(pj)q:(pj) exp((ﬁoq) +/3 x) Vgell,...,P-1} (5.40)

And since we know that summing the probablities over 1 must equal 1, we can the express ( p j)P:

:XP:—I

=1

_1(pj)q: 1_67
1

e (5.42)
( ])P 1+y0- leXp((ﬁO"’)j+E;’j£)

q

[b),=1-'%

=1

(Pj) eXp((ﬁOq) +ﬁ x) (5.41)

Q
Q

And now, combining this result with Equation 5.40, we get the following expression for the other probabilities

),

P ((ﬁ 0"’)1 +é§,j£)

Vgeil,...,P-1} (5.43)

(v1), =

In this expression, we have now found a series of V coefficients for every class, except for class P. In this
thesis, we however wish to obtain a form where we find coefficients for every class, including P. We do this in

1+ ZP 1 €Xp ((ﬁo’p)j +E;j£)
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the following manner: First, introduce a Pth series of V coefficients for class P and let it be the null vector, i.e.

ﬁpj = 0. Also, introduce an intercept for class P and let it be 0, i.e. (,60, p) i= 0. Then, introduce P new series

of V coefficients and name these ﬁ’q It geil,...,P}. We let these relate to ,Bq j by

P, =P, ~Bp =B, +P

A 1,...,P 5.44
—q,j Bj —q,j —PRj ﬁ qet Y ( )

So that ﬁ = 0 as introduced earlier and ﬁ is generally unequal to 0 (although it can be). Using the same

procedure, we also introduce P new 1ntercepts ( ﬁo,q) ,q€fl,..., P}, for which we say
j

_ 1 _(p ! — 1
(ﬁo,q)j = (ﬁo,q)j (ﬁo,p)j And (ﬁo,q)j + (ﬁO,P)j (ﬁo,q)j; Vqgell,..., P} (5.45)
Using these new series of coefficients and the intercepts, we can rewrite the form from Equation 5.43 as
eXp((ﬁo,q) +B] 5) eXp((ﬁo p) +py )eXp((ﬁo q) +B; &)
i =i _ —q.J (5.46)

1+YP- lexp((ﬁop) +p! x) exp((ﬁop) BT )Zizlexp((ﬁo_p)]_+ég’j£)

eXp((,Boq) ﬁ,T ) ( ) ( :
= i 5.47
xpen(() 0T

So that we have now obtained a way of expressing ( p j) ,q €{l,..., P}, such that we have coefficients for all P
q

classes that are not necessarily 0. One could argue that it is in fact the beauty of the form in Equation 5.43 that
it shows that there is no need for a set of coefficients for the outcome P, since (p j)P follows from the other

entries of p;. Because in this thesis we deem it more valuable to gain a series of non-zero coefficients for all
P classes, we choose the form found in Equation 5.47.

We used the original coefficients ﬁ and intercepts (ﬁo q) ,qe€{l,..., P} to give rise to new coefficients ﬁ’q j

and intercepts (ﬁo q) L,qE {1,...,P} and obtain the form found in Equation 5.47. In the remainder of this
]

chapter, we no longer use the original coefficients and write

Boq) +B" x
(pj)qz Pexp(( 067)] —q,]j) (5.48)
ZP:IeXp((ﬁO’”)j+Ep.j£)

So that ﬁ and (ﬁo q) ,q €{1,..., P} now denote the intercepts and coefficients such that ,6 (,60 p) are not

necessanly 0.

5.3.2. Maximizing the likelihood

Now to derive the log likelihood for the multinomial setting. In the multinomial setting, d} is a draw from the
Categorical distribution with parameter p; (doc) = [(p j)l (doc),..., (p j)P (doc)]. The corresponding proba-
bility mass function is

P 1, _

£ (), pj(doc)) = 1 ((Pj) . (dOC)) o (5.49)

q=1

Using this, we can compute the likelihood function. For every driver j, we have n pairs of doc; and d’ . Thus,
we take the product over the likelihood functions with our entered data and find

ld/ =4
f(pl,j,...,pn'jld{,j, dn],docl,...,docn) ]_[11_[1((;7,])) (5.50)
i=1q=
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Now, take the expression for ( p j) found in Equation 5.48 and place it in the expression for £.
q

Ly

ol 2 |

=q

n P
g(ﬁl .)--.,ﬁp.|d{']’y..-,d;,L'j,dOCh...,dOCn): l_[ l_[ (551)
e Mol
p=1 p X
Now, we take the log over it to find the log £. We derive
n P eXP((ﬁo,q) +E;,j£) ']
log:’f(élj,...,Epjld{’j,...,d;yj,docl,...,docn):1og H H (5.52)
i=1q=1 Zi_lexp((ﬁop) +ﬁp]_)
n P P
- la; - 5% ! ) 5.53
izlz;I 4= ('Bovq)j_f—ﬁq,jﬁ o8 I;Z::lexp((ﬁo’p)j+ép,jﬁ ( )
n P P p
= 1, _ =+ Tx)— 1 _ 10 ex ( + Tx) 5.54
i=1|4=1 d"'f_q((ﬁo'q)j Bk q; 4,,=9 8 = b (ﬁo”’)j B, % (5.54)
n P P
- la, = 5% 1 r ) 5.55
i; qX::l diyj_q((ﬁo'q)j—'_éq,jﬁ) 0g qZIeXp((ﬁO,q)j"'éq’jﬁ (5.55)

In the last step, we used that 25:1 1y -4 =1. Now that we have derived the log likelihood for the multino-
L]

mial setting, we can add a penalty parameter and find expressions for the LASSO and Elastic Net and Ridge
Regression options.

5.3.3. Penalizing and Elastic net models

Now how do we choose the penalty parameter in the multinomial setting? Remember that for the binary
setting, for the LASSO we chose in Equation 5.32 a penalty parameter that sums the absolute values of the
entries of ;. We wish to do the same in the multinomial setting, but §; is a matrix now. Thus, we have

P PV
1Bjlls = Y 1B, M= Y. Y 1(Bua) (5.56)
£ g=1

|
q=1v=1 J
for the multinomial setting. The formula giving estimates ,Ej for §; using the LASSO then becomes
R 12 P T P T
= in —— 1, _ + i1 + ||+ AlB; 5.57
T LYV T 0 R |

Using this technique, the LASSO will perform variable selection, in the multinomial setting, which it also did
in the binary setting. Now for the Ridge regression and Elastic net options, we need the /;-norm for the matrix
form of §;. We set

P P VvV 2
1Byl = X 18, = 3 l};((ﬁy,q)j) (5.58)

The formula for estimating §; using elastic net then becomes

3. . L& & T . T
éj.—arg min —;i; q;ldl’.'j_q((ﬁo,q)fréq,jﬁ)—log(%exp((ﬁo,q)j+Eq,jﬁ)) +/1(06||ﬁ||11+(1—06)||&||12

BjeRP*V+1

(5.59)
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For a € [0, 1], such that @ = 1 corresponds to a LASSO and « = 0 corresponds to Ridge regression.

Choosing the value for A is done in the same manner as in the binary setting, as discussed in 5.2.2. The range
in which to search for values for 1 is chosen in the exact same way, comparing the number of observations to
the number of variables, and the values are then chosen such that they divide the log-linear transformation
of this range in equal parts. For every value of A the corresponding model is generated, and evaluated. The
difference between the binary setting and multinomial setting is here. In the binary setting we used the AUC,
and in the multinomial setting we use the AUC,,, as described in Equation 4.2.5. We can get then obtain the
same plots as shown in Figure 5.2, but for the multinomial setting. Examples are shown in Figure 5.3.
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Figure 5.3: Plot of AUC, estimates for models found for 100 different values of A using the LASSO. On the vertical axis the AUC, estimate
is shown, on the lower axis the value of log(A). The top axis shows the number of non-zero variables in the model associated with the
corresponding A on the lower axis. The blue dots show the values found for A averaged over the k folds, and the brackets around them
give the range of plus one to minus one standard error. A 5-fold cross validation was used. Results were obtained in the binary setting and
the model was made to predict for drivers 6 (left picture) and 9 (right picture) in the n775-data set. The variables were of document-term
matrix form.






Random forests

In chapter 5 we discussed how we apply Elastic net regression, including LASSO and Ridge regression, as
possible methods to solve our problem of estimating ofj In this chapter, we will introduce a different method
called random forests. In this thesis random forests are used as a classification technique that operates by
creating a multitude of decision trees and giving the mode of the classes predicted by the trees as output. In
this chapter, we will discuss how these random forests work and how we will apply them in the context of this
thesis.

6.1. Decision trees

In this section we will give an example and the definition of a decision tree, or rather classification tree in
the context of this thesis. A classification tree is a type of decision tree, specifically for the application in
a classification problem, as is the case in this thesis. When creating a decision tree we aim at creating a
flowchart-like structure which can take the attributes of an object, in our case the values x;,...,x;y for a
document i with the aim of predicting a certain outcome, dlf' i in this case.

To explain the concept of a classification tree, let us look at a simplified example of what could be our data
set, and create a decision tree model that could describe this data set.

binary_indicator | blunt | close | garbag ‘ good‘
0 1 1 1

S O o+

1 1 1 2
0 1 0 1
1 0 1 0

Figure 6.1: Example of the document-term matrix, for a data set with n = 4 documents and V = 4 unique words.

Based on this data set, we can construct a decision tree model. Many different decision trees are possible.
One possibility is presented here:

51
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\H/ ‘close’ = 1?

r
dj = O/
good’ +1
df
/

Figure 6.2: Possible decision tree based on the example from 6.1. Variables are xj, ..., x4, where variable x; is named 'close’ and variable
x4 is named 'good), the predictions are made for d}.

The two places where a choice based on the value of the variables for 'close’ and 'good’ is made are called
nodes. In this decision tree, two branches exit from every node. The decision tree in this example ends in 3
leaves, the places where either d;. =0or d}. =1.

Note that not all variables from the example were used in this decision tree. Not all variables need to be used
in a decision tree, nor is a decision tree restricted in the number of variables used. We will now explain how
we use data to grow decision trees for the construction of a Random forest model.

6.1.1. Growing the decision tree
First, we need to introduce a new concept.

Definition 6.1 (Gini impurity)
Let{y;},i € {1,...,n} be a set of values such that y; € {1,...,P},Vi € {1,...,n} where P is the number of distinct
classes. Let q be aclass, i.e. g€ {1,...,P}. Define

ll’l
Pai=, X1y

So that pq is the fraction of y; that are labeled as class q. The Gini impurity, GI, of the set {y;} is then given by

P
GI({yiziell,...,m})=1-) p
g=1

Let us have data of the form (y, x) where y € {1,..., P} such that P is the number of classes, and x = [xl, . xM]

being a vector of M variables. Assume we have a data set I = { (yi,gi) ,iefl,..., n}}.

Given this, we we will construct the nodes. The first node will partition I in two sets, say I; and I, with sizes
n; and n,. Name the first node S, and say that the partition is made based on variable x,,, m € {1,..., M}. Let
s then be an indicator function for which we say that if s (x; ,,) = 1, we have (y;, x,) € I, and if s (x; ) = 0, we
have (y;,x;) € I;, Vie{l,...,n}, ie.

Il = {

—

yi,gi),ie{1,...,n}:s(x,-,m)=0} 6.1)
Virki) i€l mhis (xim) = 1) 6.2)

~
<
Il
—_—A
—_—



6.1. Decision trees 53

We use S(I) = (I}, 1) as notation for the partition of I as a result of passing through node S. I; and I, are again
partitioned by other nodes, say S; and S;, and the process starts over again. The following figure gives a brief
overview.

L%
7NN7 N

Figure 6.3: Figure representation of growing a decision tree.

When growing a decision tree, we do not choose the variable x,, and function s at random of course. We
use the Gini impurity to choose these. x,, is to be chosen among the M variables. We restrict s to a certain
set of possible indicator functions. These are relatively simple functions. In the decision tree given in Figure
6.2 we saw two examples of indicator functions. These functions checked whether the incoming variable,
in the first node ’'close’ and in the second node 'good’, equalled 1 or not. Another common choice for the
indicator functions is one that checks whether a variable is greater than a certain fixed value or not. Then, for
all possible choices of x,; and s we can compute I; and I, the sets we have after the partition in node S. We
compute the Gini impurity for I; and I, and we aim to have a lower Gini impurity after node S than before.
With this goal in my mind, we weigh the Gini impurities of the sets according to the the set sizes, n, and n;.
This means that we have

GI({y,- : (y,-,gi) € 1}) 6.3)

as the Gini impurity before node S. After node S, we say

WGI({y,- : (y,-,gi) € 1,},{y,- : (y,-,gi) € 1,}) = (%)GI({yi : (y,-,gi) € 1,}) + (%)GI({yi : (yl-,gi) € 1,}) 6.4)

where WGI stands for Weighted Gini impurity. We choose x;,;, and s such that the Gini impurity before S, given
by 6.3, minus the Gini impurity after S, given by 6.4, is minimal.

We have established how to choose x;,;, and s for the first node of the tree. For all other nodes, just repeat this
process iteratively. For example for S;, take I; as I and repeat the process above. This can be done continu-
ously until we reach the leafs. The leafs are reached, when no partition on the data can be made such that
the partition gives a decrease in Gini impurity in every leaf we have sets for which all y; are the same class.
This can happen when all instances in a set are of the same class (as the Gini impurity than equals 0), but
this is certainly not always the case. The data can also be composed such that, with the given variables, no
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more splits leading to a decrease in Gini impurity can be made, despite the fact that there are still instances
of different classes in the leaf. Having established how to grow a tree, we can move on to the random forest
model.

6.2. Random forests

The idea of 'Random decision forests’ was first proposed in 1995[6], but in 2001 Breiman introduced random
forests proper [1]. Random forests operate by constructing a multitude of decision trees and, when used for
classification, then taking the mode of the classes predicted by the individual trees. Breiman also describes
random forests for regression, with a continuous output, which are obtained by taking the mean prediction
of the individual trees. Furthermore, Breiman describes out of bag error estimates and variable importance
measures. In this section, we will describe the random forests as used for classification problems and how we
make use of aforementioned measures in the context of our problem.

Definition 6.2 (Random Forest)
Let us have data of the form (y, x) where y € {1,..., P} such that P is the number of classes, and x = [xl, e xM]

being a vector of M variables. Assume we have a data set I = { (y,-,ﬁi) ,iefl,..., n}}.

Let0 < Mp < M, Mp € N. In the random forest, we will grow a number of decision trees using the Gini impurity
(this methods was described in the previous section). Name this number B. For every b € {1,..., B}, sample
Mp variables from x, without replacement. Name this sample x,. Also, for every b draw n samples from
I, with replacement. We name these samples the bootstrap samples. Name the bootstrap samples I, and let
{yi*, x;*},i €{1,..., n} be the elements of I,. Now, let Dy, be the decision tree grown using the set I,, with only
Mp variables from x,,.

Now, we have B decision trees in our random forest model. Let x, ., be a new instance coming in, for which
Vn+1 IS to be predicted. x, ., is then sent through every decision tree Dy, in the forest. The random forest then
takes the mode of the predictions of all the individual trees as the outcome of the entire model. In this way, the
decision trees 'vote’ for the final prediction of the random forest.

The result of sampling n times with replacement, is that about 2/3 of the unique instances in the data set
are fed to each decision tree. The other 1/3 of the instances are duplicates. This can be shown with a small
calculation. Let N = {1,...,n} be a collection from which we draw n times with replacement. Let Y be the
number of unique elements drawn from N, and let X; be a variable for i € N such that X; = 1 when i is drawn
at least once, and X; = 0 when i is not drawn. Then

ElX;]=P(X;=1)=1-P(X;=0) (6.5)

n
Note that when drawing 7 times P (X; = 0) = (an1) . Then, to find the expectation of Y, take the sum over all

i € N of the expectation of X;.

n n n n n— 1 n (n _ l)n
E[Y]=E|) X; =Z[E[Xi1=Zl—P(Xi=0)=Zl—( ) =n- (6.6)
i=1 i=1 i=1 i=1 n n
To find the proportion of unique i € N drawn, divide by n. We find that as n goes to infinity, we have
E[Y] (n—-1" 1\" 1
=1- =1-{1-—| —-1--=0.6321.... (6.7)
n n" n e
In the last step, we used that
, " -1\ 1
Iim(l-—| =lim(1+—| = " =- (6.8)
n—00 n n—oo n e

Of course, n does not go to infinity in our context, but 7 is sufficiently large that the proportion of unique
instances drawn will be about 2/3.
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Given a data set and our desire to construct a random forest model as described in Definition 6.2, we have
two parameters that we still need to choose: Mp and B. For Mp, it is generally recommended to choose

Mp = {\/MJ [17]. Within this thesis, we will also choose Mp, in this manner.

For choosing B we need to introduce the concept of out-of-bag samples and out-of-bag error estimate. We
showed that every decision tree is grown using about 2/3 of the unique instances in the data set. The other
1/3 of the instances are called the out-of-bag (OOB) samples. To compute the out-of-bag error estimate for a
random forest, first compute the prediction for every instance in the data set using only those decision trees
where the instance was OOB in construction. Naturally, this is in about 1/3 of the trees. This prediction is
found by sending the instance down these trees, and then taking the mode of the found predictions. Then,
doing this for every instance and matching the prediction against its true class, gives the OOB error estimate.
The OOB error estimate can be computed using only the first few decision trees in the forest, then one more,
another one and so forth. This gives the following picture.
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Figure 6.4: Plot of the OOB error rate for a random forest in the binary setting. In red the OOB error rate for the 1s, in blue the 0s and in
black the overall OOB error rate. On the y-axis is the OOB error rate, on the x-axis the number of trees. Results were obtained running a
random forest with 500 trees for present sentiment for driver number 12, "shaving irritation", in the n775-data set. The indicator matrix
form was used as input. The word count threshold was set to 11.

In this case, we ran a random forest model for driver number 12 in the n775-data set with present sentiment
in the binary setting, so all instances are labeled as class 1 or class 0. In the plot, the OOB error rate for all
instances, i.e. the overall error rate, is plotted in black. We have also plotted in red the OOB error rate for
the instances with 1 for its true class, and in blue the OOB error rate for the instances with 0 for its true class.
For driver number 12 with present sentiment, we have 73 1s and 702 0s in the data set, so there is a large
imbalance. This explains why the black and blue line (for overall error rate and Os error rate respectively) are
so similar in shape. Furthermore, the error rate for the Os is low (close to 0) and the error rate for the 1s is high
(around 0.9).

The OOB error rate can be used as an indication of the accuracy of the model. Furthermore, the plot of the
OOB error rate versus the number of trees is used in literature as a way to determine B[17]. The number of
trees where the error rate stabilizes is used as an indication of how many trees to grow in the random forest.
An indication, because it is generally safe to grow more trees. There is no real downside to growing more
trees, aside from the additional computational cost. The random forest does not suffer from overfitting when
growing more trees. The error rate stays stable. However, it seems that the behaviour of the OOB error rate
is somewhat strange here, and the imbalance of our data set is likely the cause of this. We have a model
predicting almost only 0s, and thus the OOB error rate grows stable rather rapidly. It does not seem fair to
base our choice for B, the number of trees to grow on this. In the rest of this section, we will show how to
overcome this imbalance in our data. We will offer 2 adaptions of the standard random forest method and
explain how they overcome the problem of class imbalance. The first adaption is relatively simple and relies
on adapting the threshold of the fraction of votes needed for an instance to be predicted as the minority class.
The second adaption is somewhat more advanced, and tries to overcome the class imbalance by feeding
stratified samples instead of random samples to the decision trees.
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6.2.1. Adapting the random forest for class imbalance

In Figure 6.4 we saw that the OOB error rate for instances with 0 for their true class is low and for instances
with a 1 as their true class it is rather high. Why does this happen? Every decision tree in the forest is trained
on a random bootstrap sample from the data set. Since the class distribution in the data set is imbalanced,
this will generally also be the case for the bootstrap samples used to grow the decision trees. When a decision
tree is trained on imbalanced data, it will also predict the majority class (0) more often than not, because
it has been trained on more instances from this class than of the minority class (1). Let us assume you are
looking at an OOB sample with true class 1. Then, when taking the mode of the predictions of all decision
trees where the instance was OOB, it is still unlikely that the prediction is a 1, unless the instances that have
1 for its true class are perfectly separable from the instances with true class 0. This is generally not the case
though, and also not in this thesis. Thus, the predictions for the OOB samples will far more often be a 0 than
a 1. This explains the large difference between the red and blue line in Figure 6.4.

This problem does not only occur when computing the OOB error rate. If we were to use the random forest
to predict a new instance, the same effect will occur. More often than not, a majority of the decision trees will
predict a 0, and thus the random forest will predict a 0, also when the instance is in fact a 1. So far we have
discussed the problem of imbalance for random forests only for the binary setting. The problem also occurs
in the multinomial setting, where (in the context of this thesis) the NA class dominates the P and N classes.
We aim to overcome this problem by not only predicting the minority class (1 in the binary setting, P or N in
the multinomial setting) when a majority of the decision trees predict this class, but already when just a few
do this.

Go back to the problem setting of this thesis. For a driver j, we aim to predict d} through the use of variables
X1,..., Xy, where d} is a class that takes values in {1,..., P}. Let x = [xl, e xv] be the vector of length V with
the variables as entries. For every driver j, we then have a data set { (d; j,doci) ,iefl,..., n}} or the equivalent

{ (dl’ j,gi) ,iefl,..., n}}. Now to use this data for the construction of a random forest.

In Chapter 2 we described how dl’.’ i is assumed to be the outcome of a stochastic function. We assume that
there is an underlying probability p; giving the distribution from which d}. is drawn. We aim to estimate
p; with p;. In Chapter 5 we did this by estimating the coefficients created by the assumption of the logis-
tic model. However, we have not introduced any probability p in the use of random forests. The estimate

oﬁ i is found sending x; j,..., x; v through the decision tree, and the class that wins the majority of the votes

becomes the prediction. This is where we now make a change.

Let p; be the proportion of votes cast by the decision trees. This means that we count the number of votes
cast for each of the classes and divide them by B, the number of trees in the random forest. In the binary
setting, p; is only the fraction of votes cast for class 1. In the multinomial setting, p; is a vector of length
P. This is in line with how we introduced p; in Chapter 2. Formally we write: let RF be a random forest

constructed using { (dl’ L doc,-) ,iefl,..., n}} as the training data and B as the number of decision trees grown.
Then pj (doc) = [ pi1(doc),..., pp (doc)] is our estimate for pj, where py (doc) is the number of decision trees
predicting c;l; = g divided by B when doc is given as input. In the binary setting, we let p; (doc) be the number

of decision trees predicting ci; =1 divided by B. We will also call this the proportion or fraction of votes.

Then, say that we have a new document, e.g. n+ 1, coming in and we have trained our random forest for

driver j on the first 7 documents. In the binary setting, we then predict d), 41,738
77 17 ﬁVH-l,j =1
n+1,j = (6-9)

Ov ﬁI’H—Lj <t

where t is a threshold value that is to be set. In the random forest method as introduced in Definition 6.2

c;l\;l 1, Was determined through the majority of the votes of the decision trees. This corresponds to ¢ = 0.5. In

. . . =
the multinomial setting, d ,

described in Chapter 2. The misclassification matrix imposes a partition on the (P — 1) -simplex. Choosing A

i is determined from pj,+1,; through the use of a misclassification matrix A, as
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as a matrix imposing equal cost on all misclassifications corresponds to taking the mode of the votes of the
decision trees, as is done in the random forest method described in Definition 6.2.

This establishes how we compute p; in both the binary and the multinomial setting and how we can adapt the
threshold value (in the binary setting) or misclassification matrix (in the multinomial setting) to influence a
prediction 67] given by the random forest. In the binary setting, we want to lower the threshold to compensate
for the imbalance between the 1s and 0s. A possible choice for ¢ is the total number of 1s in the data set,
divided by the total number of reviews in the data set, 0s and 1s. Using the example introduced in Figure 6.4,
this gives ¢ = 0.10. This same threshold value can be used when calculating the OOB error rate. Choosing this
threshold than means that, as only than 10% of the votes from the OOB decision trees are needed to predict
a 1, almost 90% of the votes from the OOB decision trees are needed to predict a 0. Let us plot the OOB error
rates against the number of trees again, but now with the lowered threshold value.
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Figure 6.5: Plot of the OOB error rate for a random forest in the binary setting, where the threshold value ¢ was set equal to the fraction of
instances labeled as 1 (as opposed to 0). In red the OOB error rate for the 1s, in blue the 0s and in black the overall OOB error rate. On the
y-axis is the OOB error rate, on the x-axis the number of trees. Results were obtained running a random forest with 500 trees for present
sentiment for driver number 12, "shaving irritation", in the n775-data set. The indicator matrix form was used as input. The word count
threshold was set to 11.

We see that the OOB error rate for both the instances whose true class is 1 and the instances whose true class
is 0 are now around 0.25. The error rate also stabilises at a higher number of trees. This is caused by the
random forest not predicting almost exclusively 0s anymore. Furthermore, this has also caused an increase
in the overall OOB error rate. The OOB error rate is also an indicator for the accuracy of the model, so this
increase does not seem like a good thing. In this thesis we are however not too interested in the model with
the highest accuracy, if that means that it predicts (almost) only 0s. We are interested in finding a model that
is able to distinguish 1s from the 0s. That is, for an instance i we are interested in the relation between p; ;
and dlf, j» ot so much ciz Iz To this end, we compute the AUC (in the binary setting) and the AUC, (in the
multinomial setting) for the models. In Chapter 7 we will discuss how we compute these for random forests
using a cross validation. By Equations 4.42 and 4.51 in Chapter 4 it is clear though that we need the true labels,
ie. d}, and the probability estimates p; for this. The true labels we have in our data set and in the previous
part of this chapter we have established how we can find p;.

We have stated our desire to choose B such that the OOB error rate is stable. Earlier, we chose ¢ as the fraction
of 1s in the data set, looked at the effect this choice had on the development of the OOB error rate as the
number of trees increased. Let us take a look at a few more plots of the OOB error rate, to get an idea of what
number of trees to grow.
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Figure 6.6: Plots of the OOB error rate for a random forest in the binary setting, where the threshold value ¢ was set equal to the fraction
of instances labeled as 1 (as opposed to 0). In red the OOB error rate for the 1s, in blue the 0s and in black the overall OOB error rate.
On the y-axis is the OOB error rate, on the x-axis the number of trees. Results were obtained running a random forest with 500 trees for
various choices of sentiment, matrix form and word count threshold. The n775-data set was used.

We see that the error rate for the instances whose true class is 1 can sometimes still be quite high. However,
this is not too important too us. What we see in this picture is that, also with the lowered threshold, choosing
B =500 as the number of decision trees to grow in our random forest models seems like a safe choice. In all
examples shown here, the error rate stabilizes long before this number of trees is reached. Thus we conclude
that one method that solves the problem of class imbalance is running the random forest with a lowered
threshold value for the predictions. We choose B = 500 as the number of trees to grow. Note that with regard
to the computation of the AUC and the AUC,,, we have not changed anything. The choice of a lower threshold
value ¢ (or different misclassification matrix A in the multinomial setting) only serves to give us confidence
in our choice of B.

6.2.2. An alternative for dealing with class imbalance

Besides adapting the threshold value ¢ (for the binary setting) or partition matrix A (for the multinomial
setting), there is an additional method of dealing with the class skew. What causes a random forest to dispro-
portionately allocate probability to for example class 0 (in the binary setting) is that decision trees are trained
with bootstrap samples that contain a large number of instances of class 0. This, because these bootstrap
samples are sampled randomly from the data set, where we have the same imbalance.

A different way to overcome this problem is to use stratified sampling. In this context, stratified sampling
means that, given a data set with classes {1,..., P}, we sample the same number of instances for every class
q € {1,..., P}. Formally we write that when we make use of stratified sampling with sample size ngat, We

sample, for every class g, nggar times from {{ (dlf,j,gi)} : dl’.,j =q,iefl,..., n}}, with replacement. For the

binary case, we sample ngyq¢ times, with replacement, from {{ (d; T L)} : dl’. i= 1,ie{l,..., n}} and Rggrat
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times from {{ (dlfj,gi) } : dgj =0,i€ {1,...,n}}.
Generally, it is safe to have ng, be more or less equal to the the number of instances that are available for
the least common class. So when g is the least common class in the data set, and n, is the the size of the

set {{ (d; j,gl.)} : dl’. i= q,i €{1,...,n};, then we let ngrar = ny. Take nsyar too large, and the decision trees

will be more similar which causes the risk of overfitting. Take ngyq; too small, and the decision trees will
be extremely different, and we will then need a huge number of trees to still have an effective model. Since
Nsirar < 1 @ consequence of stratified sampling is that the trees are grown using a lower number of data points.
Because we want our model to use all the data that we have, we choose to greatly increase the number of trees
we grow. We set B =4000.
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Figure 6.7: Plot of the OOB error rate for a random forest in the binary setting, with a threshold value of ¢ = 0.5. Stratified sampling was
applied in sampling instances to grow the trees. In red the OOB error rate for the 1s, in blue the 0s and in black the overall OOB error rate.
On the y-axis is the OOB error rate, on the x-axis the number of trees. Results were obtained running a random forest with 4000 trees for
various choices for driver, sentiment, matrix form and word cont threshold in the n775-data set. The indicator matrix form was used as
input.

We used the same combinations of driver, sentiment, matrix form and word count threshold as in Figure 6.6.
We see that the OOB error rate for the instances with 1 for their true class stays at a higher level than the OOB
error rate for the 0s. This does not necessarily concern us. We will judge the performance of the model later
using the AUC. What we take away from Figure 6.7 is that B = 4000 is enough trees, because the OOB error
rate stays stable.

Now we have seen two methods of implementing random forests for our problem. These are are:

1. adapting the threshold ¢ (in the binary setting) or partition matrix A (in the multinomial setting). In
this way, we do not compute c?] through majority vote, but set our own cut-off on the votes. We refer
to this as the 'default option’, because it is not a change to the default version of the random forest with
regard to how we estimate p;.
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2. using stratified sampling for growing our decision trees. We drastically increase the number of trees
grown and set B = 4000. We refer to this as the ’stratified option.’

6.3. Variable importance

We have established how the random forests work, and how we will use them in the context of this thesis.
On top of that, we wish to gain some insight in the variables (words) deemed important by the random forest
method for predicting the driver scores. In Chapter 5, we saw how the coefficients estimated as non-zero
by the Elastic net models (with @ # 0) can be used, and we can shift the value of A to get more/less non-
zero coefficients. For the random forests, we have variable importance as a method to give us these, well,
important variables.

In the previous section, we discussed the out of bag (OOB) instances and how we can use them to obtain
the OOB error rate. The OOB instances are also used for the variable importance. When running the OOB
instances down the decision trees, a number of correctly labeled instances is found. Let x,,v € {1,...,V}
now be the variable for which we wish to compute the variable importance. Only a limited number of the
classification trees in the random forest are built using variable x,. For the OOB cases of these trees, randomly
permute the values of variable x,. Then, run the OOB cases down the tree again. A different number of OOB
instances labeled correctly is found. Take the difference of these two numbers, and then take the average of
these differences among all trees that are built using variable x,. We name this number the raw importance
score for variable x,.

Doing this repeatedly for all variables xj, ..., xy, we find importance scores for all variables in our data set. We
can then rank these and either set a threshold value or choose, for example, the 10 highest ranked variables.
In this way, we can gain insight into which variables are important for the random forests when predicting
the driver scores. Note though that this technique does not compensate for class imbalances, while it is
influenced by it. AUC based variable importance measures have also been proposed, and shown to give
better results for imbalanced data sets [3]. These are however not considered in this thesis.



Methodology

In this chapter, we will show how we apply the methods introduced in this thesis to obtain result. We will
explain and motivate the choices made in this process and how we we can interpret these results.

7.1. Method

We have seen two types of methods in Chapters 5 and 6. In Chapter 5 we introduced the Elastic net models
(including LASSO and Ridge regression), and in Chapter 6 we discussed the option of using Random Forests.
Both these methods take annotated data as input to produce a predictive model for future reviews. In Chapter
3 we discussed the possible forms of document-term matrices as input for the Elastic net and Random Forest.
In Chapter 4 we discussed how we can evaluate the performance of these models.

Now that we want to obtain our results, there are many choices to make. One has to choose which form to use
for the variables, which model to use, how to evaluate the results et cetera. In this thesis the results are always
obtained using a k-fold cross validation, regardless of which model is used. Note that this is a different cross
validation than the one to determine A in the Elastic net models. An example of a set of results could be:

driver number | AUC estimate

1 0.92
2 0.86
15 0.87

Figure 7.1: Results obtained for all 15 drivers using the n775-data set for present sentiment in the binary setting. Parameter were chosen
as document-term matrix form, word count threshold set to 1 and a LASSO model (with a 5-fold cross validation to determine A). Results
were obtained using a 5-fold cross validation.

These are estimates for the AUC for all 15 drivers in the n775-data set. Say that we now change the matrix
form, and compute the AUC estimates again. We get 2 sets of results.

61
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driver number | AUC estimate driver number | AUC estimate
1 0.92 1 091
2 0.86 2 0.87
15 0.87 15 0.84
(a) document term matrix form. (b) mean matrix form.

Figure 7.2: Results obtained for all 15 drivers using the n775-dataset for present sentiment in the binary setting. Parameter were chosen
as word count threshold set to 1 a LASSO model (with a 5-fold cross validation to determine 1) and various choices for the matrix form.
Results were obtained using a 5-fold cross validation.

We change one part of our method and found different results. To see the influence of this change, we want
to compare this two. But how do we do this? In this chapter, we will summarize the choices that have to be
made in creating our model, and how to compare results obtained using one method with results obtained
using another. Figure 7.3 gives an overview of how we obtain our results and illustrates all possibilities that
we can vary.
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Figure 7.3 gives us an overview of the choices that have to be made when generating results. First of all, we
have to determine what we want to predict. What data set are we going to use and, in the binary setting, what
type of sentiment are we looking for? In the multinomial setting it is also important to set the misclassifi-
cation matrix A. Which misclassifications do we consider costlier than others? We name these choices the
application choices. They are determined by what one is looking to predict when applying the work of this
thesis. From a modellers point of view, one cannot influence this. Given choices for these options, it is up to
us to produce the best model. The application choices for these are shown in the table underneath.

\ # of options options ‘
data set 2 n1976-data set and n775-data set.
sentiment 3 present, positive and negative (in the binary setting)
Misclassification matrix 3 Only in the multinomial setting

Figure 7.4: All application choices that are to be set.

The different data sets and choices for sentiment have been discussed in Chapter 2. The different choices
for the misclassification matrix will be discussed later. Within the data set, we run models for the individual
drivers, but drivers has not been added as a factor in Figure 7.4. This, because when comparing models in
this thesis, we will always look at average performance over all drivers in the data sets. We will look at the
performance of our models for the individual drivers in the data sets later, but then it is out of interest in the
differences between the drivers, not because we want to compare models.

Then, we move on the technical choices that we have to make. There are 3 that we will actively vary. We name
these the parameters in our model. These have been numbered 1, 2 and 3 in Figure 7.3. The different choices
for the parameters are summarized in the table underneath. The challenge is to find the 'optimal choice’ for
these parameters, i.e. the choice that gives us the best model.

Parameter | #ofoptions | options \
matrix form 5 standard, mean, indicator, tf-idf, normalized tf-idf
word count threshold 5 1,6,11,16,21
model 6 Elastic net for a € [0,0.5,0.75, 1], two options for random forest

Figure 7.5: All parameters that we will actively vary with when obtaining our results.

The choices for the matrix form and word count threshold have been discussed in Chapter 3. The choice for
model in Chapters 5 and 6.

Figure 7.3 gives the impression though that there are many more things that can be varied. And rightfully so,
because there are a lot more options that we can play around with. We name these options the redundant
parameters. Redundant, because we will show though that actively varying these options does not interest us.
Either because varying them has no influence on our results, or because it is already clear to us varying them
will have be useless, as we have already made our choice. These redundant parameters are given in Figure
7.6.

k in the k-fold cross validation

How to choose the A for Elastic net models.

number of folds used in determining the A for Elastic net models
Evaluation measure

Ll S

Figure 7.6: The redundant parameters

The [-times repeated part of Figure 7.3 has not been discussed so far in this thesis. We will come to this later
in this chapter, when discussing the variability of our results. In this chapter, we will show how we choose
these redundant parameters and explain why we do not actively vary them. First, we will introduce the use of
effects plots in this chapter and, discuss the variability of our results and then introduce the option of using
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I times repeated computations. Then, we will show how to analyze the variance of our results. Lastly, using
some of this theory, we will show why we do not actively vary the redundant parameters listed in Figure 7.6.

7.2. Effects plots and analysis of variance

What is interesting to us is the effect the use of the parameters, and up and till now also the use of the redun-
dant parameters, has on the performance of our model. Which combination of parameter settings gives the
most predictive power? And how do we effectively compare them? Given the number of options, it will be a
lot of manual work to compare the results of every possible combination manually.

Take the example introduced in Figure 7.2 and combine the two tables into one.

matrix form (—),
. document term | mean
driver number(})
1 0.92 0.91
2 0.86 0.87
15 0.87 0.84

Figure 7.7: Results obtained for all 15 drivers using the n775-dataset for present sentiment in the binary setting. Parameter were chosen
as word count threshold set to 1 and a LASSO model (with a 5-fold cross validation to determine 1) and 2 different choices for the matrix
form, document term and mean matrix form. Results were obtained using a 5-fold cross validation.

So, how will we compare these results? For some drivers the result has slightly improved, for some it has de-
creased and for others it stayed the same. Figure 7.7 gives the impression that there are 2 factors influencing
these AUC outcomes: the matrix form and the driver number. There is another matter of influence though:
randomness. The results are always obtained using a k-fold cross validation. Furthermore, when the chosen
model is an Elastic net model, as is the case in Figure 7.7, a different k-fold cross validation is used to deter-
mine the A parameter for the model. The folds in the cross validations are sampled at random, and this is
where the randomness comes in. This makes that when computing the AUC estimate for one of the drivers
as in Figure 7.7, the probability of obtaining the exact same result twice is close to zero, also when the exact
same model was used. We thus not only have the question of how to compare the results, but also how to deal
with the randomness in the results.

A solution to the first part of the question is found in the average values. The mean of all AUC values in Figure
7.71s 0.815. We expect deviations from this mean among the results to be caused by the driver number and/or
matrix form. Meanwhile, we have to think of the randomness in our results, as was discussed earlier. This is
the foundation of the Analysis of Variance (ANOVA) model, which we will use to interpret our results.

In the ANOVA model, we assume that we have a set of outcomes, such as the AUC values in Figure 7.2. Let
these outcomes be y;, i € {1,...,n} and let ¥ be the mean of these samples, i.e. y := %Z?:l yi. We assume
that y; are outcomes of random variables Y;, whose distribution has mean u. We assume that the variance
of y; around p is caused by a number of known factors and a random error. Let these factors be variables
X1,...,Xm, meN, and let x; ; be the outcome of variable X; for outcome y;. In Figure 7.2 we for example
had the factors matrix form, X, and driver number, X, and had x;,; = document term and x;» = 1. The
assumption now made in the ANOVA model is that, given the outcomes of the factors, Y;, or now Y;|x; 1, X; 2,
is distributed as

Y; N«/V(#Jfﬁl (xin) + B2 (xi,z),Uz) (7.1)
where o2 > 0 is the variance. Alternatively, we can write
Vi =p+ P (xin) + B2 (xi2) +e€; (7.2)

where €; ~ N (0, 02) ii.d. for all i. This is the ANOVA model with only the main effects of the factors X; and

X,. Itis assumed that the main effects are additive. The main effects in Equation 7.1 can be estimated using
our data. For example, we find that the mean value of the AUC values found when using the document term
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matrix is 0.821 and when using the mean matrix form it is 0.808. Thus, the estimate of the main effect of
the document term matrix form is 31 (document term) = 0.821 —0.815 = 0.6 and of the mean matrix form is
31 (mean) = 0.808 — 0.815 = —0.7 (these differences should be each other’s opposites, the difference is due to
rounding errors). The same can be done for the main effects of the driver numbers and this gives us a model
that, given x;1, x; » can predict y; as

P =7+ B (xi1) + B2 (xi2) 7

. When using the ANOVA model, three assumptions are made about the probability distribution of the re-
sponses. These are

1. The observations are independent.
2. The distributions of the residuals are normal.
3. The variance of the data within groups should be the same.

Let us briefly discuss if these assumptions apply. In our example and in the rest of this thesis, all responses
are independent, so the first assumption is met.

The second assumption poses a slight problem to us. The residuals are y; — j;. Use of the ANOVA assumes
that the distributions of the residuals are normal. This is tricky. The AUC scale of is not totally linear. First,
the AUC values cannot be larger than 1. Imagine if in Equation 7.1 g+ 1 (x;,1) + B2 (xi,2) would be extremely
close to 1. If the residuals are normally distributed, the outcome of the error term could make that a draw
from the distribution might be higher than 1. Our results, here and in the rest of this thesis, are never that
close to 1 though. Furthermore, we do not expect that the distribution of the residuals is centred around
the mean. There will be more outliers below than above the mean of the residuals, and the ones below the
mean will also be distanced further from the mean than those above. This because on the AUC scale it is
’harder’ to increase the performance of a model from for example 0.7 to 0.8 than it is to increase it form 0.6 to
0.7. Therefore we expect that the residuals of the AUC estimates of the models will not evenly be distributed
around the mean. For now, we accept that the assumption that the distributions of the residuals are normal
is not entirely justified.

Then the third and last point. The assumption is that the variance among all groups is the same. A group is
all observations that have the same value for one or multiple factors. However, we expect that the variance
among can be different for for example different drivers and different types of sentiment. We will later address
this in further detail. For now, we accept this and choose to apply the ANOVA model.

7.2.1. Sums of squares

This model is not perfect, and we are interested in the difference between our model and the observations.
Decomposing the difference between the our observations y; and the mean y can give some insight in this.
We decompose into an explained part, meaning explained by our model, and a residual part, build up of
variance from the random error and model lack of fit. This last term will be explained later. For the decom-
position, we look at 17" (yi- 7)2, the so called sum of squares. Let €; be y; — ¥;, then

> (-3 =Y. (i-T+yi- 7 (7.4)

=Y (-7 + 2 (7 -9)+ @) 7.5

=Y (P Y @) 2 Y a (- 76)

=Y (-7 Y @ 2 36 (74 B xea) + Baxiz) -7 @
=Y (-7P+ X @) r2 Y e () +2 3 6B (xi2) @9

=Y (7i-7)°+ i (@) (7.9
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The last step follows, because by design we have that }.7" | €; = X1, y; — ¥; = 0[10]. In short, this is because
the estimates Bl and ,32 are chosen as means for the factors over the data y;. So when we sum over i =1 to
i = n the difference between 7; =y + f1 (xi1) + B2 (xi2), the result is 0.

This was done for an ANOVA model with 2 factors of which only the main effects were incorporated, as in the
example from Figure 7.7. It holds for any m number of factors though, including any interaction or higher
order effects. We introduce these effects later.. Y., (i —7)2 is called the explained sum of squares, abbre-
viated as SSeyp|, and Z;’zl (?,-)2 the residual sum of squares, abbreviated as SSyes. To distinguish it from the
other two, Y7 | (yi —?)2 is also called the fotal sum of squares, abbreviated as SSiyta. We thus have that
SStotal = SSexpl + SSres.

Furthermore, we introduce the group sum of squares, abbreviated as SSgroup. As an example, take the fac-
tor X; from our example, matrix form. There are two groups within this factor, document term’ and 'mean’.
Let ny, np be the number of observations y; obtained with a document term or mean matrix form respec-
tively(these numbers are the same in our example). Let y; ; be the mean of all observations obtained using a

document term matrix form, y; , be the mean of all observations obtained using a mean matrix form. Then
2

the group of sum of squares for the matrix form, SSgroup (Xl), is calculated as 212':1 n; (?L i~ ?) . In the ANOVA

model, we often work with the means of groups. Plotting the means for all groups for our 2 factors, gives us

the plots in Figure 7.8.

0.90
0.85
\
e

0.80
0.75
0.70

doc_term mean 01 02 03 05 06 07 08 09 10 11 12 13 14 15

matrix from driver number

(a) Effect of matrix form. (b) Effect of driver number.

Figure 7.8: Example of the main effects plots for matrix form and driver number, using the results from Figure 7.7. The dashed line gives
the mean of all observations.

We name these plots the main effects plots. Judging from this picture, it seems that the effect of the driver
number is larger than the effect of the mean. A different choice of driver number can lead to a much larger
deviation from the overall mean than a different choice of matrix form. It is clear that SSgoup (Xz), the group
sum of squares for the driver number factor, wil be larger than SSgroup (Xl) Do not be too quick to draw any
other conclusions from this observation though. We have not accounted for the variance, or SS¢ in general
yet.

Earlier, we showed that SSigal = SSexpl + SStes. If we were to remove a factor, say matrix form, from our model
(so that in our example, we would model y; as being only influenced by driver number and noise), SSexpi
would decrease and SSes would increase, so that SS¢g¢,) stays the same. The number by which SSeyp, decreases
equals SSgroup (Xl) for the factor of matrix form. The factor is no longer in our model, and the variance in our
results is no longer explained by it. SS;s is thus not only build up by variance of the noise, but also by the
model lack of fit, factors not included in our model.
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In our example, we only varied with matrix form and driver number. There lack of fit is not caused by the
influence of another parameter not discussed so far, but there is another factor we can introduce. This factor
is the interaction effect between the matrix form and driver number, denoted as 31,2. This is what is named
two-way ANOVA. The assumption from the one-way ANOVA from Equation 7.1 is changed to include the
interaction effect.

Yi~AN (.U + B (xi1) + B2 (xi2) + B2 (xi,1, %i2), 02) (7.10)

We can also compute the sum of squares for the interaction effect. Let a and b be the number of groups
formed by X; and X; respectively and let ;. j be the average of the n;, j observations where X; =i and X, =
J,i€fl,...,a},jell,...,b}. Note that in our example n; ; = 1 Vi, j, meaning that 71-,]- is the ’average’ of 1
observation. We will be in the situation where n;,; > 1 when we come to the results in Chapter 8. Furthermore,
let y; . be the overage over all observations where X; = i and y. ; the average over all observations where
X, = j. The sum of squares for the interaction effect is then computed as

—_ _ _ _\2
(J’i,j—yi,~—J’.,j+y) (7.11)
i=1j=1

This idea can be expanded to having m main effects; there are then m (m — 1) /2 interaction effects. We can
also plot these interaction effects. We name these figures the interaction effects plots. For our example, we
get:

01 02 03 05 06 07 08 09 10 11 12 13 14 15
driver number

matrix_type w= doc_term == mean

Figure 7.9: Example of the interaction effects plot for the interaction between matrix form and driver number, using the results from
Figure 7.7. The dashed line gives the mean of all observations.

Note that any point in this graph is simply one of the results from Figure 7.7. It is thus no longer an average
of multiple results. We say that we have now fully specified our model. Any variation in the outcomes not
explained by the main effects of the matrix form and driver number, is explained by the interaction effect. This
means that we now have y; = j;, thus that SSpes (= X7, (yi— )7,-)2) equals 0, which means that SSgta1 = SSexpl-
This means that this model is not too good of a model, because, as mentioned earlier, there is some variance
in each result from Figure 7.7, due to randomly sampling of the folds. To illustrate this effect, take a look at
Figure 7.10.
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Figure 7.10: Histogram of 60 results obtained in the binary setting using the n775-data set. Result is the AUC value found using a LASSO
with 5-fold cross validation to find A. The aim was prediction of positive sentiment for driver 1, 'Charging Electronic Power’. The other
parameters used were document-term matrix form for the variables, using a word count threshold of 1.

What we see is a histogram of 60 results for a specific choice of parameters. We see that the results range
from an AUC of lower than 0.60 to higher than 0.75. A higher number of folds could help, but we run into a
different problem then. Having a higher number of folds in our cross validations could negate this effect, but
then a different problem comes up. We must have a sufficient number of instances from every class in our
test set. A large increase in the number of folds will lead to very few 1s in the test set, or worst case none. An
AUC estimate based on a test set without 1s is not possible, and with only one, will be extremely volatile, and
for some drivers we have quite a limited number of reviews annotated as 1. A possible way to overcome this
problem would be to repeat our entire computation / > 1 times, and then take the average of the outcomes.
This comes at a computational cost though. Therefore we will often simply run / = 1 time for the analysis of
our results, but we will have to be cautious about drawing any conclusions, because we know of the variability.

In the example from Figure 7.7 that we have used so far, we only varied driver number and matrix form and
created a two-way ANOVA model based on these two factors and the interaction factor. In the results as
discussed in Chapter 8, we will also vary the sentiment, word count threshold and model, and create two-
way ANOVA model using these factors and their interaction factors. It is then also possible to model 3rd
order interaction, or even higher order interactions, but we will not do that within this thesis. Note that with
the introduction, the two-way ANOVA model will no longer be fully specified, as interaction effects of order
higher than 2 are not taken into account. Every point in an interaction plot as in Figure 7.9 will be the average
of all outcomes given by the unique combination of the two factors depicted in the plot. This will give us
some more confidence in the effects shown in these plots. Up to us to determine whether the difference in
effects is significant, i.e. that one point being higher than another is the result of the change in factor values,
or insignificant, meaning that the variability in these points makes that we cannot draw any conclusions.

7.2.2. Variance and significance

To find whether the effect of a factor is significant or not, we will conduct an F-test. To explain how, we do
this, we will first need to introduce the concepts of degrees of freedom and mean square. We will also use these
to estimate the variance of Y;.

When we look at a factor, say X; we say that the degrees of freedom of this factor, DF (X;) equals the number
of groups in this factor minus 1. In the example of Figure 7.7 we find that the factor matrix form has2-1=1
degree of freedom and the factor driver number has 15— 1 = 14 degrees of freedom. The degrees of freedom
of an interaction factor is found by multiplying the degrees of freedom of the corresponding main effects. In
case of our example, the degrees of freedom for the interaction between X; and X» thus becomes 14. We also
associate a value to the degrees of freedom of the entire model. We name this DFeyp. This is found by the
summing the degrees of freedom of all factors, both for the main effects as well as for the interaction effects.
For example, the fully specified model as in Equation 7.10 has 1 + 13 + 13 = 27 degrees of freedom. Lastly, the
degrees of freedom for the residuals is the number of degrees the model would have when it is fully specified,
minus the number of degrees it actually has. The residual in the one-way ANOVA model as in Equation 7.1
for example has 27 — 13 — 1 = 13 degrees of freedom (= the degrees of freedom the factor for the interaction
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between X; and X, has). We name the residual degrees of freedom DFg.

The mean square, MS of a factor is found by dividing the sum of squares of a factor by its degrees of freedom.
Thus, for a factor X we would then have,

_ SSgoup ()

MSgroup (X) I~ (X) (7.12)

We not only introduce the mean square for the factors and their interactions, but also for the whole model
and the residuals. We then have

SS
Msexpl = expl (7.13)
DFexpl
SS
MSes = DFM (7.14)
res

MS,s is then an estimate for o2 [10], the variance introduced in Equation 7.1. Since this variance is assumed
to be the same among all Y;, we have that the variance within each group is the same. MS;¢s can thus be re-
garded as measuring the variation within groups, whereas MSgroup (X) measures variation among the groups.
In Chapter 8, we will be looking at the means of groups. Since the variation is equal in each group, the stan-

dard error of the mean of a group, can then be computed as / rl\l/;rs:j; » Ngroup being the number of observations
within the group.

Now we introduce the F-test. For a factor X, the F-statistic is computed as

_ MSgroup (X)

(7.15)
MS;es

The null-hypothesis is that there the populations representing the groups of factor X are the same, i.e. the
outcomes from both groups are draws from the same distribution. In case that there is no difference, we have
that E (Mngup (X)) =E (MSres (X)), and thus that the F-statistic will be about 1. Under the null-hypothesis,
the F-statistic then has an F-distribution. The F-distribution is specified by two degrees of freedom. In our
case, these are DF (X) and DFe. When we have computed the F-statistic, we can compute the p-value,
the probability of observing the value found or a greater value when we think of it is a draw from the F-
distribution with DF (X) and DFye as the degrees of freedom. We need to set a significance level a, such that
we reject the null-hypothesis when ¢ < a. Within this thesis, we will generally choose a = 0.05. Rejection of
the null-hypothesis then means that the groups (or, in case of an interaction effect, unique combinations of
groups) are not from the same population. We then say that the effect of the factor is significant. Performing
the F-test for all factors gives what is known as the ANOVA table. For the one-way ANOVA model of our
example, we construct the following ANOVA table:

Df SumSq MeanSq Fvalue Pr(>F)

matrix_type 1 0.00 0.00 4.44 0.0552
driver number 13 0.12 0.01 31.13  0.0000
Residuals 13 0.00 0.00

The columns represent, in order from left to right, the degrees of freedom, SSgroup O SSres, MSgroup O MSes,
F-statistic, p-value. The first two rows give the statistics for the factors in the one-way ANOVA model, the last
row for the residuals.

7.2.3. Generating results

In the example from Figure 7.7 we had 2 factors, driver number and matrix form. When we will generate
results in Chapter 8, we will have 3 more factors: sentiment, word count threshold and model. The matrix
form, word count threshold and model are the parameters, as described earlier in this chapter in Figure 7.5.
The Figure is reprinted here:
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Parameter | #ofoptions | options \
matrix form 5 standard, mean, indicator, tf-idf, normalized tf-idf
word count threshold 5 1,6,11,16,21
model 6 Elastic net for a € [0,0.5,0.75, 1], two options for random forest

Figure 7.11: All parameters that we will actively vary with when obtaining our results.

For sentiment, we have present, positive and negative sentiment. For the driver numbers, we always generate
AUC values for all drivers in the data set used, unless this is not possible. When it is not possible, this due to
a lack of data for that driver, there need to be enough 1s (or, for the multinomial setting, Ps and Ns) to be
able to compute an AUC estimate without the variance of this estimate being too volatile. We say that the
number of 1s needed (or, for the multinomial setting both Ps and Ns) is twice the number of folds used in the
cross validation. What this means that in the binary setting there are 3 x 5 x 5 x 6 = 450 unique combinations
for these 3 parameters and sentiment, and we thus obtain 450 columns of results like the 2 we had in Figure
7.7. This also further clarifies why repeating computations (choosing / > 1) and taking the average becomes
computationally too expensive.

We will then plot the results of the effects of the parameters. This, because we are interested in creating the
model that on average performs best for all choices of sentiment and driver number. We could theoretically
create separate models, for every type of sentiment, driver number, or even every unique combination of the
two, but this would require / > 1 computations again, and would furthermore be a lot of manual analyzing
for this thesis. Thus, we create a two-way ANOVA model using these 5 factors and plot the main effects and
interaction effects plots for the parameters. An example of these interaction plots is given in Figure 7.12.

0.800

R

0.725

o1 06 11 16 21 01 06 11 16 21 doc_term indicator mean tf_idf tf_idf_norm
word_count_threshold word_count_threshold matrix_type

elastic_net_alpha = 0 = 0.5 » 075 w 1 matrix_type w= doc_term w= indicator w= mean w= tf_idf == tf_idf_norm elastic_net_alpha = 0 = 05 = 0.75 w 1

(a) Interaction effect of word count (b) Interaction effect of word count (c) Interaction effect of matrix form vs
threshold vs. Elastic net model. threshold vs matrix form. Elastic net model.

Figure 7.12: Interaction effects plot for the effect of the matrix form, word count threshold and Elastic net @. On the y-axis is the AUC
value, on the x-axis the first varying parameter for its respective effects plot. The displayed confidence intervals are calculated as 1.96 x
SE. Results were obtained using the n1976-data set running the models for all sentiments. Results were obtained using a 5-fold cross
validation. [ = 1 computation was run.

These figures were obtained by applying the discussed procedure, using the 71976-data set and only using
Elastic net models, no random forests. These Figures also show how we can easily gain insight in these large
numbers of results. From these plots, and those of the main effects, we can easily deduce which models are
performing better and which worse. For example, it is easy to see that wen looking at the interaction of word
count threshold and model, the best performance seems to be achieved by a word count threshold of 6 and
the elastic net models with @ = 0.5 or a = 0.75. Beware of the uncertainty of the results though. We have
plotted confidence intervals, calculated as 1.96x standard error. These standard errors are computed using
MS;.s as an estimate for the variance, as explained in the previous section. We can also compute the earlier
introduced ANOVA table for all factors for the main and interaction effects.

We see that in this case all factors and their interactions are deemed significant, except the interaction be-
tween the Elastic net model and the word count threshold. This means that the choice of Elastic net model
and word count threshold certainly have an effect on the outcome, but the choice of Elastic net model has no



72 7. Methodology

Df SumSq MeanSq Fvalue Pr(>F)

matrix_type 4 0.80 0.20 143.99 0.0000
driver_number 14 20.40 1.46 1046.09 0.0000
elastic_net_alpha 3 0.35 0.12 83.32  0.0000
sentiment 2 3.50 1.75 1255.86 0.0000
word_count_threshold 4 0.18 0.05 32.79 0.0000
matrix_type:driver_number 56 0.33 0.01 4.19 0.0000
matrix_type:elastic_net_alpha 12 0.27 0.02 16.45 0.0000
matrix_type:sentiment 8 0.14 0.02 12.71  0.0000
matrix_type:word_count_threshold 16 0.20 0.01 9.01 0.0000
driver_number:elastic_net_alpha 42 0.86 0.02 14.64 0.0000
driver_number:sentiment 28 8.19 0.29 209.92 0.0000
driver_number:word_count_threshold 56 0.14 0.00 1.84 0.0002
elastic_net_alpha:sentiment 6 1.13 0.19  135.07 0.0000
elastic_net_alpha:word_count_threshold 12 0.02 0.00 1.08 0.3742
sentiment:word_count_threshold 8 0.07 0.01 6.66 0.0000
Residuals 4228 5.89 0.00

influence on the effect of the word count threshold and vice versa. When discussing the results in Chapter
8, we will not continuously print the ANOVA table, but only mention the interesting observations we make
from these tables. First, we will discuss the redundant parameters as given in Figure 7.6, and show why we
consider them redundant, sometimes with the help of some effects plots.

7.2.4. Criticism

Earlier in this chapter, we stated that the assumptions of the ANOVA model were not fully met. We stated that
the residuals are probably not normally distributed and the suspected that the variance of the data within
groups is not the same for all groups. We suspect that this variance may be dependent on the driver number
and sentiment. The assumption made in the ANOVA model that the observations are drawn from distribu-
tions that all have the same variance o2 can then be questioned. We make boxplots for the residuals for all
unique combinations of driver and sentiment from the ANOVA model built earlier in this section. The results
are shown in Figure 7.13.

Regarding the distribution of the residuals, we do, as expected, see more negative outliers than positive ones.
Fortunately these seem to be outliers. the distributions themselves do not seem to be too far tilted to under-
mine the ANOVA model.

Then we have the variance assumption. The variance of the residuals is most certainly affected by the choice
of both driver number and sentiment. For example, we see that there is generally more variance in the residu-
als for driver number 9 and the variance in the residuals seems larger for negative sentiment than for positive
or present sentiment.

Despite these concerns, we still apply the ANOVA model and we will use effect plots as the one in Figure
7.12 to compare the effects of the parameters. The results from the boxplots in Figure 7.13 warn us though
that the assumption of equal variance o, and thus by direct implication the standard error and the plotted
confidence intervals, has to be taken with a grain of salt.
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Figure 7.13: Boxplots of the residuals of the observations compared to the group mean for all unique combinatons of sentiment and

driver.
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7.3. Redundant parameters

7.3.1. Choice of k, number of folds.

We validate our results using a cross validation. Note that this is a different cross validation from the one
used in the Elastic net models for determining the value of 1. We can run a cross validation, within which
our model is trained using a train set, evaluate its performance on the test set, and average the results for the
multiple folds in the cross validation. This cross validation could be done for both 5 and 10 folds. A problem
occurs though. In the binary setting we use the AUC as the evaluation measure and in the multinomial set-
ting we use the AUC,,. These are computed as in Equations 4.42 and 4.51. To compute these measures, there
need to be sufficient data of each class in the test fold. In the binary setting, we cannot compute the AUC
when there are only 0s in the test fold, and in the multinomial setting, we cannot compute the AUC, when
N or P are not present as classes in the test fold. Thus, we need to sample the test sets and train sets in the
cross validation in a stratified manner. We make them such that the proportion of classes within the sets is
the same as in the data set.

Now back to actually choosing k. We choose to take k = 5 when obtaining our results. We say that we want
at least 2 instances from the minority class in the test fold. We will see in Chapter 8 that this is not possible
for all drivers in the data sets, due to a lack of instances from the minority class. Taking a higher number for
k would therefore lead to a problem with the stratified sampling of the test and train set. When taking k = 10
in the binary setting for example, we would sample 0.1 from the total number of 1’s in the data set for the test
set. For some driver numbers in the data set, this leads to so few 1’s that the AUC estimate based on the test
set becomes impossible to make, because of a shortage of 1’s. That is why we keep k = 5.

7.3.2. Choosing A for Elastic net models

In both the binary and multinomial setting, Elastic net models use a cross validation to determine the A
parameter. The number of folds used in this process has to be set. Furthermore, as discussed in chapter 5,
there is some discussion to be had on which A from a series of 100 to choose after the cross validation. In
the results presented in this thesis, we choose the A with the highest AUC (in the binary setting) / AUC,, (in
the multinomial setting) value. This, as opposed to choosing a model with a higher value for A that is thus
more regularized. We will illustrate this choice. Let us print series of 1’s for a number of different models. The
results are shown in Figure 7.14.

Note that the number of non-zero coefficients stays the same for the Elastic net models where a = 0. This
corresponds to Ridge regression, meaning that either all coefficients are non-zero or non of them. Now take
a look at the models given by values of A close the the value that gives the model with the maximum AUC
estimate. The estimated AUC is lower, of course, but close the the highest estimated AUC we find. A model
with a value for A that is more regularized and whose estimated performance is still within one standard
error from the maximum AUC model, can not always be found. In Figure 7.15 we have done the same thing
for the multinomial setting. Here, we measured AUC,,. The same observation as in the binary setting holds.
Therefore, choosing the A that gives the highest AUC or AUC,, estimate becomes our standard procedure for
when we use Elastic net models.
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Figure 7.14: Plot of AUC estimates for models found for 100 different values of A for various Elastic net models. On the vertical axis
the AUC estimate is shown, on the lower axis the value of log(A1). The top axis shows the number of non-zero variables in the model
associated with the corresponding A on the lower axis. In all cases, a 5-fold cross validation was used and all results were obtained using
the n775 data set. Results are shown for various options for: driver number, sentiment, matrix form , elastic net a (@) and word count
threshold. An Elastic net model with a =1 is a LASSO, with a = 0 is a Ridge regression.
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(a) driver 6, normalized tf-idf matrix (b) driver 13, normalized tf-idf matrix (c) driver 9, indicator matrix form, a =
form, a = 0.5, word count threshold form, a = 0.75, word count threshold 1, word count threshold 21.
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Figure 7.15: Plot of AUC, estimates for models found for 100 different values of A for various Elastic net models. On the vertical axis
the AUCy, estimate is shown, on the lower axis the value of log(A). The top axis shows the number of non-zero variables in the model
associated with the corresponding A on the lower axis. In all cases, a 5-fold cross validation was used and all results were obtained using
the n775 data set. Results are shown for various options for: driver number, matrix form, elastic net @ (a) and word count threshold. An
Elastic net model with @ = 1 is a LASSO, with a = 0 is a Ridge regression.

7.3.3. Number of folds used in determining 1

As mentioned in chapter 5, a cross validation is used to determine the value of A used in LASSO and other
Elastic net models (including Ridge regression). The number of folds used in this cross validation can be
varied, but common choices are a 5-fold or 10-fold cross validation. Use more folds, and your test sets become
extremely small, which can lead to unrepresentative results. Use fewer folds, and you are using a relatively
small part of your data to train on, not using your model to its full potential. Regardless of which performs
better, we need to choose the 5-fold though, because of the same problem that occurred when discussing the
choice of the k. When performing the 10-fold cross validation, there are not for all drivers enough 1s (or Ps
and Ns) for every test fold. Then it is not possible to use a 10-fold CV to train the Elastic net models.

This is quite a shame though. If we run all 4 Elastic net models with a 10-fold CV to determine the A for all
choices of word count threshold and matrix form, we find that use of the 10-fold CV gives better performing
models. This can be seen by running for both 5-fold and 10-fold cross validations, for only those drivers for
which we can obtain results using both methods. If we then plot the main effect and interaction effects, we
find:
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Figure 7.17: Interaction effects plots of the number of folds with word count threshold, matrix form and Elastic net model. On the y-axis
is the AUC value. On the x-axis is displayed the (first) varying parameter. The displayed confidence intervals are calculated as 1.96 x SE.

We thus see that it seems that it seems generally better to use a 10-fold cross validation. However, we will then
not be able to obtain results for as many drivers as we do when using a 5-fold cross validation to determine A.
Because we consider it more important to use as many drivers as possible in our analysis, we choose for the
5-fold cross validation to determine A anyway.

7.3.4. Evaluation measure

Now that we have dismissed the possibility of using different numbers of folds to determine the A in Elastic
net models, we use this moment to dismiss another factor. For the evaluation of our results, we introduced
the AUC (in the binary setting) and AUC,,. In chapter 4, we also briefly discussed the misclassification error
as a possible evaluation method. In determining the A, we have always sought for the model found using the
A that gives the highest AUC value. We could also choose the A that does not necessarily give the highest AUC
value, but does give the lowest misclassification error. Let us train a set of models using both the AUC and the
misclassification error, using the same parameter settings. We find the following results:
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Figure 7.18: Effects plots of the type of evaluation measure (AUC and misclassification error) used in determining the A in the LASSO
model. On the y-axis is the AUC value. On the x-axis in the first plot we have the evaluation measure used. In the second plot, we have
the driver numbers on the x-axis. The displayed confidence intervals are calculated as 1.96 x SE. The red line describes the models
trained using the AUC, the blue line using the misclassification error. Result was obtained using the n775-data set, predicting present,
positive and negative sentiment. Parameter settings used are document-term matrix form, indicator form and mean form and word
count threshold 1.

Of course, models trained on the misclassification error have a lower AUC value than models trained on the
AUC (the difference is 0.093). No surprises there. The reason for adding the second plot, is to understand
what is really happening here. For some driver numbers, the measured AUC value is fairly close for both
the models trained on AUC and the models trained on misclassification error. For other driver numbers the
difference is rather large. The reason for this is the imbalance between 1’s and 0’s in the data set. For some
combinations of driver and sentiment this imbalance is more severe than for others, but for none is there
anything close to a 50-50 balance.

By letting the model train on misclassification error, the A parameter for the model is chosen such that the
model gives the most correct predictions when setting a certain threshold ¢. Take driver number 3, "Design",
for example. Out of the 775 reviews in the data set, 33 reviews mention the driver, of which 16 with posi-
tive sentiment and 17 with negative sentiment. Let us aim to predict positive sentiment. When training on
misclassification error one of two things will happen. The first option: a value for A gets chosen such that
the model predicts only 0’s, which yields 1 — % = 0.98 as the rate of correct predictions. The AUC value will
be 0.5 and the model cannot distinguish 1’s from 0’s. The second option: The reviews mentioning 'Design’
with positive sentiment are so distinct from the other reviews in the data set, that the 0.98 correct rate can be
beaten by a model that effectively distinguishes 1’s from 0’s. As one might guess, the last option is not realistic.
By letting the model train on AUC, a different A and thus different model is selected, where the chosen A is
the one in the series giving the model that yields the highest AUC value. This model may not give the high-
est fraction of correct predictions, but it will actively try to distinguish 1’s from 0’s. As we are not interested
in models predicting mostly 0’s, the AUC is preferred in this thesis. Note that the measured AUC value for
the models trained for driver number 3 using misclassification error do not actually score an average AUC of
0.5 though. Note that the point is an average over the different sentiments, including present in which case
there is slightly less imbalance in 0’'s and 1’s. Apparently the reviews discussing 'Design’ can actually stand out
enough to sometimes be predicted as a 1, even when the model has been trained on misclassification error.

For driver number 10, 'shaving closeness’, models trained using the misclassification error score just as well
as models trained using the AUC. The reason for this is again found in the number of reviews discussing
this driver. Out of the 775 reviews in the data set, 270 mention 'shaving closeness’, of which 158 with posi-
tive sentiment and 112 with negative sentiment. Thus, when training a model on the misclassification error,
i.e. searching for a A such that the resulting model gives the highest fraction of correct predictions at a cer-
tain threshold value, only predicting 0’s does not give such a high fraction of correct predictions as it did for
driver number 3. In this situation, a value of A gets picked such that the resulting model does actively try
to distinguish 1’s from 0’s. A model trained on AUC will also try to do this, and thus the model trained on
misclassification error and the model trained on AUC will be close in their performance, and possibly even
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be the same model (i.e. in both cases the same value was chosen for the A parameter).

Because we in general do suffer from this class imbalance, we opt to train all elastic net models in the rest
of this thesis using the AUC. For the same reason as why we reject the models trained on misclassification
error, we will also not use the misclassification error to evaluate models after they are trained (both Elastic
net and random forests); we are more interested in models that distinguish 1’s from 0’s (and thus give a high
AUC value), than those that give the most correct predictions. These models can be similar of course, but this
is generally not the case.

Thus concludes our discussion of the redundant parameters. We have discussed how we choose them, and
we will use these same choices when computing the results in Chapter 8.






Results

In this chapter, we will show and discuss the obtained results. In Chapter 7 we discussed how these results are
obtained (see Figure 7.3) and how we evaluate and compare them. We have three parameters in our model
that we actively vary. These are:

Parameter \ # of options \ options ‘
matrix form 5 standard, mean, indicator, tf-idf, normalized tf-idf
word count threshold 5 1,6,11,16,21
model 6 Elastic net for a € [0,0.5,0.75, 1], two options for random forest

Figure 8.1: All parameters that we will actively vary with when obtaining our results.

We will apply our model and generate results for all combinations of these 3 parameters. Then we still have
2 different data sets, one containing 15 and the other containing 17 drivers. Furthermore we differentiate
between the binary setting and the multinomial setting. In the binary setting, we have 3 different types of
sentiment (present, positive and negative) whereas in the multinomial setting we have only 1 partition of
the data set. Then again, we do have different choices of the misclassification matrix A to consider in the
multinomial setting.

Our main interest is which combination of the parameters in Figure 8.1 gives us the best model. Furthermore,
for a possible application of these models it is very useful to know which type of sentiment is easier to predict.
The same holds for the question as to which drivers are the easiest to predict. We cannot really influence these
from a modelling point of view, but we do this out of interest of applying our model and gaining insight into
our data sets.

We will first discuss the results for the binary setting, and then for the multinomial setting.

8.1. Results for the binary setting

We will first discuss the results for the Elastic net models and then for the random forest models. After that, we
will compare their performance. Results for the n775-data set and n1976-data set will be analyzed separately.

8.1.1. Elastic net models

We try four different Elastic net models: a = 0 (Ridge regression), a = 0.5, @ = 0.75 and a = 1 (LASSO). All
combinations of the parameters for matrix form and word count threshold are run. We run the models for
present, positive and negative sentiment. This means that, for the n1976-data set, we run a total of 3 types of
sentiment x 4 models x 5 word count thresholds x 5 matrix forms = 300 columns of results for 15 drivers sim-
ilar to the results we saw in Chapter 7 (as in Figure 7.7). 15 drivers despite the 1n1976-data set containing 17
drivers, because for driver numbers 4 and 12 there are not enough non-NA annotated documents to generate
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representative results for all 3 types of sentiment. Therefore, these are left out of this analysis. An ANOVA
model is built around the results, and an estimate of the variance is obtained from this model to build confi-
dence intervals around the values that we will plot. We will further supplement the number of AUC estimates
on which plotted values are based, to give the reader more of an idea what they are looking at. Statistics ob-
tained through ANOVA are not mentioned, unless there are insignificant factors or insignificant interactions
between factors.

Thus, we can now look at the results obtained using the n1976-data set. We first discuss the main effects plots
(plotted in Figure 8.2) and then the interaction effects plots (plotted in Figure 8.3).
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(a) Effect of word count threshold. (b) Effect of matrix form. (c) Effect of Elastic net model.

Figure 8.2: Effects plot for the effect of the matrix form, word count threshold and Elastic net @. On the y-axis is the AUC value, on the
x-axis the varying parameter for its respective effects plot. The displayed confidence intervals are calculated as 1.96 x SE. Results were
obtained using the n1976-data set running the models for all sentiments. Results were obtained using a 5-fold cross validation. [ =1
computation was run.

When it comes to the variability of these points, the points in Figures 8.2a and 8.2b are averages over 300 x
15/5 =900 AUC estimates (and again, these are the result of a 5-fold cross validation), and the points in Figure
8.2c are averages over 300 x 15/4 = 1125 AUC estimates.

In Figure 8.2a we see that a threshold of 6 performs best. Thus, we see that we give less variables, compared
to a word count threshold of 1 (i.e. no threshold), to the models and they perform better. An hypothesis that
would explain this is that we are basically further regularizing the model by removing uncommon words from
the data set. By removing words that appear so infrequently, we are preventing the models from overfitting on
these infrequently used words. The hypothesis for why a word count threshold of 6 performs better than one
of 11 (or higher) would then be that at that point we are throwing too many actually informative variables,
leading to a lower AUC value.

In Figure 8.2b we see that for matrix form the indicator form, where variables xi,..., xy take values 1 (if a
review uses the word) or 0 (if it does not), performs best. A possible reason for the low performance of the
mean and the tf-idf form, and to a lesser extent the normalized tf-idf form, is the long length of some of the
reviews in the data set. Let us illustrate with a small example. Say that we are trying to predict whether a
review mentions the driver ‘shaving irritation’ or not (i.e. present sentiment) and we use a LASSO model.
The model estimates coefficients f, ..., By and lets many shrink to 0. One coefficient that is non zero and is
estimated as being fairly large is 8, the coefficient rash’ (as in, an irritation of the skin), and is thus considered
as having predictive value for predicting whether or not a review mentions ‘shaving irritation’ Let i be a review
containing the word 'rash’ such that x; , # 0 and let i contain a large number of words. When the value for
x; r is then determined through the use of the mean or tf-idf matrix form, the value found will be fairly low,
because we divide by the total number of words in i which we assumed is high. The result is that, despite §;
being estimated as non-zero, the low value for x; , makes the estimated probability of document i mentioning
'shaving irritation’ rather low. The document matrix form and indicator form do not suffer from this problem,
and this may be why we find higher AUC values for these forms. In this we assumed a LASSO was used for
variable selection. Elastic net with @ = 0 (i.e. Ridge regression) does not let the estimates for coefficients
shrink to 0 when they are considered irrelevant, but would still give 'rash’ a higher estimated coefficient than
others, thus the above hypothesis also generalizes to Ridge regression.
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Lastly, we see in Figure 8.2c that an Elastic net model with a@ = 0.5 performs best, while @ = 0 (Ridge regres-
sion) performs worst. The latter is in line with what we expect. Ridge regression does not perform variable
selection, and we expect only a few of the variables to actually be relevant for predicting the driver scores.
Thus Ridge is expected to perform worse. Why does Elastic net perform better for @ = 0.5 than for @ = 0.75 or
a =1 (LASSO) though? This is a hard question to answer from the theory. All these options perform variable
selection and are suited to deal with large numbers of variables. Zou and Hasty mention though that Elastic
net often outperforms the LASSO in terms of prediction accuracy. [18]. Then between, ¢ = 0.5 and a = 0.75,
we say that one should outperform the other. Equal performance is almost an impossibility. We will now look
at the interaction plots.
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Figure 8.3: Interaction effects plot for the effect of the matrix form, word count threshold and Elastic net a. On the y-axis is the AUC
value, on the x-axis the first varying parameter for its respective effects plot. Results were obtained using the 71976-data set running the
models for all sentiments. Results were obtained using a 5-fold cross validation. / = 1 computation was run.

When it comes to the variability of these points, the points in Figure 8.3b are averages of 300 x 15/(5 x 5) = 180
AUC estimates, and the points in Figures 8.3a and 8.3c are averages of 300 x 15/(5 x 4) = 225 AUC estimates.

In Figure 8.3b we see that indicator matrix form performs best at all word count thresholds. Even more inter-
esting, is that it seems to perform slightly better at word count thresholds 11 and 16 than it does at 6. They
are really close though, so it may not be enough to conclude that they perform better (as we have to think of
the variability in the estimates), but the performance is at least similar. For the document-term matrix form,
we also see that it performs better at word count threshold 11 and 16. The tf-idf and normalized tf-idf clearly
perform worse for word count thresholds higher than 6. Even more interesting, the normalized tf-idf matrix
form, that performs worse at all other word count thresholds, performs almost as good as the indicator matrix
form at a word count threshold of 6.

For the elastic-net models, we see that at all word count thresholds, the @ = 0.5 model performs best, and the
performance is best at a word count threshold level of 6. What is interesting is that the performance of the
a = 0.75 model reaches nearly the same performance at that point.

When it comes to the interaction between the matrix form and the Elastic net models, we see that the a = 0.5
model dominates the others with the @ = 0.75 model coming really close. Interesting is that when using the
indicator matrix form, @ = 0 (Ridge regression) gives the same performance as a = 0.5, but its performance
utterly collapses for the mean and tf-idf matrix forms. Up to us the task of finding an explanation for this
behaviour.
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Now that we have had the main effects in Figure 8.2 and the interaction effect plots in Figure 8.3 for the
n1976-data set, we compute the same figures using the n775-data set and compare. We run a total of 3 types
of sentiment x 4 model x 5 word count thresholds x 5 matrix forms = 300 columns of results for 14 drivers. 14
drivers, because driver number 4 in the data set does not contain enough non-NA annotated reviews to build
generate representative result for all 3 types of sentiment. Therefore, this driver is left out of the analysis. The
results for the main effects are shown in Figure 8.4.
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(a) Effect of word count threshold. (b) Effect of matrix form. (c) Effect of Elastic net model.

Figure 8.4: Effects plot for the effect of the matrix form, word count threshold and Elastic net @. On the y-axis is the AUC value, on
the x-axis the varying parameter for its respective effects plot. The displayed confidence intervals are calculated as 1.96 x SE. Results
were obtained using the 775-data set running the models for all sentiments. Results were obtained using a 5-fold cross validation. [ =1
computation was run.

When it comes to the variability of these points, the points in Figures 8.4a and 8.4b are averages over 300 x
14/5 = 840 AUC estimates (and again, these are the result of a 5-fold cross validation), and the points in Figure
8.4c are averages over 300 x 14/4 = 1050 AUC estimates.

Comparing these with the results from Figure 8.2, where the n1976-data set was used, we see that here are
hardly any differences. Some effects attain a different average AUC value of course, but this is to be expected.
A different data set with different drivers was used. All values for the parameters are ranked in the same order
in each effect plot, which is what matters most to us. The relative differences between some parameter set-
tings show slight differences. Relative to other choices for the word count threshold, a word count threshold
of 21 performs better in the results obtained for the 71976 data set than it does for the n775 data set for ex-
ample. This effect can also be explained. The n1976 data set contains more reviews, and thus after all words
get thrown away that are used 20 or less times, the 71976 data set has more variables that are retained. Still,
this is only a slight difference. We move on to the interaction plots in Figure 8.5.
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Figure 8.5: Interaction effects plot for the effect of the matrix form, word count threshold and Elastic net a. On the y-axis is the AUC
value, on the x-axis the first varying parameter for its respective effects plot. The displayed confidence intervals are calculated as 1.96 x
SE. Results were obtained using the n775-data set running the models for all sentiments. Results were obtained using a 5-fold cross
validation. [ = 1 computation was run.

When it comes to the variability of these points, the points in Figure 8.3b are averages of 300 x 14/(5 x 5) = 168
AUC estimates, and the points in Figures 8.3a and 8.3c are averages of 300 x 15/(5 x 4) = 210 AUC estimates.

Now, look at the interaction plots in Figure 8.5. Overall, we see that the indicator matrix form dominates the
other matrix forms at all word count thresholds in the top picture. In the bottom two pictures, Elastic net
with a = 0.5 performs better at every word count threshold level and for every matrix form. This is the same
result as we saw in the results obtained for n1976-data set. When we look further, there are some differences
though.

For example, for the n1976-data set, we saw in Figure 8.3 that the performance of the normalized tf-idf matrix
form was very close to the performance of the indicator matrix form at a word count threshold level of 6
(which was the best at that threshold). In the top picture of Figure 8.5 we see that this is not the case, and
the normalized tf-idf is outperformed by the mean matrix form and document-term matrix at a word count
threshold of 6. Furthermore, we see in the same top picture in Figure 8.3 that for example the document-term
matrix seems to perform only better as the word count threshold increases in the 71976-data set, whereas this
does not seem to be the case here for the n775-data set.

All in all, we can conclude that to a large extent the effect of changing the parameter settings is the same
between the n1976-data set and the n775-data set, only considering Elastic net models.
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8.1.2. Random forest models

We run two different types of random forest models, the 'default option’ and the ’stratified option’, as de-
scribed in Chapter 6. All combinations of the parameters for matrix form and word count threshold are run.
We run the models for present, positive and negative sentiment. This means that, for the n1976-data set, we
run a total of 3 types of sentiment x 2 models x 5 word count thresholds x 5 matrix forms = 150 columns of
results for 15 drivers. As we did for the Elastic net models, we will first discuss the main effects plots and then
the interaction effects plots.
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Figure 8.6: Effects plot for the effect of the matrix form, word count threshold and random Forest models. On the y-axis is the AUC value,
on the x-axis the varying parameter for its respective effects plot. The displayed confidence intervals are calculated as 1.96 x SE. Results
were obtained using the n1976-data set running the models for all sentiments. Results were obtained using a 5-fold cross validation.
[ =1 computation was run.

When it comes to the variability of these points, the points in Figures 8.6a and 8.6b are averages over 150 x
15/5 = 450 AUC estimates (and again, these are the result of a 5-fold cross validation), and the points in Figure
8.6c are averages over 150 x 15/2 = 1125 AUC estimates.

In Figures 8.6a and 8.6b we see that for the main effects of the word count threshold and matrix form we have
a similar effect using the random forest models as we found for the Elastic net models, for the 7n1976-data set
(Figures 8.2a and 8.2b). At first sight, a word count threshold level of 6 and an indicator matrix form perform
best. From Figure 8.6c, we get the first hand impression that the random forest with the stratified adaption
performs best. Let us move to the interaction plots in Figure 8.7, and see if these can shed a different light on
the results.
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Figure 8.7: Interaction effects plot for the effect of the matrix form, word count threshold and random forest model. On the y-axis is the
AUC value, on the x-axis the first varying parameter for its respective effects plot. The displayed confidence intervals are calculated as
1.96 x SE. Results were obtained using the n1976-data set running the models for all sentiments. Results were obtained using a 5-fold
cross validation. / = 1 computation was run.
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When it comes to the variability of these points, the points in Figure 8.7b are averages over 150x 15/(5x5) =90
AUC estimates and the points in Figures 8.7a and 8.7c are averages over 150 x 15/(5 x 2) = 225 AUC estimates
(and again, these are the result of a 5-fold cross validation).

In Figure 8.7a we see an interesting difference between the usage of the default option random forest and the
stratified option. For the default option, the effect of the word count threshold shows the same pattern as to
what we saw earlier for the Elastic net models (Figure 8.3a, and also Figure 8.5a for the n775-data set). For
these models, a word count threshold of 6 gave the best performance of the models, which then repeatedly
went down for larger values of the word count threshold. For the stratified option, this seems different. The
performance stays more or less the same and even seems to increase a bit for word count thresholds of 11
and 21. The difference is small though, thus given the limited number of AUC estimates these numbers are
based on we cannot draw the conclusion that the effect of further increasing the word count threshold is truly
beneficial. We can state though that there does at least not seem to be a decrease in the performance of our
models, as a result of increasing the word count threshold levels beyond 6 when using the stratified option
random forest models. It seems that when using the stratified option the loss of information from increasing
the word count threshold, which would explain the earlier results, is nullified with regards to predicting the
driver scores.

In Figure 8.7b we see the same pattern as we saw earlier using the Elastic net models (Figure 8.3b, and also
Figure 8.5b for the n775-data set). The indicator matrix form performs best at all word count threshold levels.

In Figure 8.7c we again see an interesting difference between the usage of the default option random forest
and the stratified option. For the default option, the indicator matrix form performs best and the tf-idf matrix
form performs worst. We observed the same pattern when analyzing the Elastic net models (Figure 8.3c, and
also Figure 8.5¢ for the n775-data set). However, the stratified options behaviour is different. The indicator
matrix form still performs best, but the performance of the others is very close. Especially the performance
of the normalized tf-idf matrix is almost equal to that of the indicator matrix form.
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We now move on to the results obtained by applying the random forest methods to the n775-data sets. We
run a total of 3 types of sentiment x 2 models x 5 word count thresholds x 5 matrix forms = 150 columns of
results for 14 drivers. The main effects plots are shown in Figure 8.8.
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(a) Effect of word count threshold. (b) Effect of matrix form. (c) Effect of option for random forest.

Figure 8.8: Effects plot for the effect of the matrix form, word count threshold and Random Forest models. On the y-axis is the AUC value,
on the x-axis the varying parameter for its respective effects plot. The displayed confidence intervals are calculated as 1.96 x SE. Results
were obtained using the n775-data set running the models for all sentiments. Results were obtained using a 5-fold cross validation. / =1
computation was run.

When it comes to the variability of these points, the points in Figures 8.8a and 8.8b are averages over 150 x
14/5 = 420 AUC estimates (and again, these are the result of a 5-fold cross validation), and the points in Figure
8.8c are averages over 150 x 14/2 = 1050 AUC estimates.

To a large extent, we see the same effects occur as we did for the n1976-data set (as in Figure 8.6). We see
that, again, on average the stratified option outperforms the default version and the word count threshold of
6 performs and indicator matrix form perform best. The main effect of varying the word count threshold for
the n775-data set, is quite different to the effect we saw when using random forest methods for the 71976-
data set (as shown in Figure 8.6a). We saw the same difference in effect occur between the data sets for the
elastic net models though (see Figures 8.2a and 8.4b) and we explained the difference by the size of the data
set. Let us look at the interaction effect plots in Figure 8.9.
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Figure 8.9: Interaction effects plot for the effect of the matrix form, word count threshold and random forest model. On the y-axis is the
AUC value, on the x-axis the first varying parameter for its respective effects plot. The displayed confidence intervals are calculated as
1.96 x SE. Results were obtained using the n775-data set running the models for all sentiments. Results were obtained using a 5-fold
cross validation. / = 1 computation was run.

When it comes to the variability of these points, the points in Figure 8.9b are averages over 150x 14/(5x5) = 84
AUC estimates and the points in Figures 8.9a and 8.9c are averages over 150 x 14/(5 x 2) = 210 AUC estimates
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(and again, these are the result of a 5-fold cross validation).

Analyzing Figure 8.9a, we see something odd. The performance of the stratified option for a word count
threshold of 6 has slightly gone down compared to word count thresholds of 1 and 11, while the performance
of the default option reaches its peak there, such that the performance of both random forest methods is
more or less equal. The default option displays the regular’ behaviour (the effect also occurs for the 71976-
data set in Figure 8.7a and is also visible in the elastic net models as shown in Figures 8.3a and 8.5a). The
behaviour of the stratified option is much out of the ordinary though. We have not seen a similar effect in
earlier results, for random forest or elastic net models, in either of the data sets. It is particularly strange that
the performance of the stratified option does not reach a peak, but is about equal for word count thresholds
of 1 and 11. We expect, also in an interaction plot, that a low word count threshold may lead to overfitting
on the data, and a high word count threshold may lead to throwing away valuable information, meaning that
there is an optimum for the word count threshold somewhere in the middle. However, this does not seem to
be the case here. Of course, we always have to think about the fact that there is some randomness in these
points, but it seems too easy to blame this strange effect entirely on that.

Figure 8.9b also reveals some interactions we have not seen before. All of a sudden, the document term matrix
form and especially the normalized tf-idf matrix form perform much better than the indicator matrix form
at a word count threshold value of 6. It looks like the indicator matrix form performs worse at a word count
threshold value of 6 than it does at word count threshold values of 1 and 11 (the same effect as the stratified
option seems to be suffering from), however the document term and normalized tf-idf matrix forms do not
seem to suffer from this problem, and achieve their peak performance.

Lastly, there is another quite interesting interaction in Figure 8.9c. We see that the for the stratified option, the
normalized tf-idf matrix achieves a higher average AUC value than the indicator matrix form. In the results
for the random forests using the n1976-data set (see Figure 8.7c) we also saw the normalized tf-idf matrix
form achieve fairly good results, and to a lesser extent we also saw this for the elastic net models (Figures 8.3c
and 8.5c). The combination of the normalized tf-idf and the stratified random forest, seems to be enough to
now 'push’ the results a little further up, giving good results in both Figures 8.7c and 8.9c.
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8.1.3. Comparing random forest and Elastic net models

Given our previous results, we select the Elastic net with @ = 0.5 and the random forest with the stratified
option as the two most promising models from the set of elastic net and random forest models respectively.
We compute the effects plots as before. Let us start with the n1976-data set. The main effects plots are shown
in Figure 8.10 and the interaction effects plots in Figure 8.11.
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(a) Effect of word count threshold. (b) Effect of matrix form. (c) Effect of model.

Figure 8.10: Effects plot for the effect of the matrix form, word count threshold and stratified option random forest and Elastic net with
a = 0.5 as models. On the y-axis is the AUC value, on the x-axis the varying parameter for its respective effects plot. The displayed
confidence intervals are calculated as 1.96 x SE. Results were obtained using the 71976-data set running the models for all sentiments.
Results were obtained using a 5-fold cross validation. / = 1 computation was run.
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Figure 8.11: Interaction effects plot for the effect of the matrix form, word count threshold and stratified option random forest and Elastic
net with @ = 0.5 as models. On the y-axis is the AUC value, on the x-axis the first varying parameter for its respective effects plot. The
displayed confidence intervals are calculated as 1.96 x SE. Results were obtained using the n1976-data set running the models for all
sentiments. Results were obtained using a 5-fold cross validation. / = 1 computation was run.

When it comes to the variability of the points in the main effects graphs, the points in Figures 8.10a and 8.10b
are averages over 150 x 15/5 = 450 AUC estimates (and again, these are the result of a 5-fold cross validation),
and the points in Figure 8.10c are averages over 150 x 15/2 = 1125 AUC estimates. For the interaction effects
graphs, the points in Figures 8.11a and 8.11c are averages over 150x 15/(5x2) = 225 AUC estimates (and again,
these are the result of a 5-fold cross validation), and the points in Figure 8.11b are averages over 150 x 15/(5 x
5) =90 AUC estimates.

First Figure 8.10. We have seen the effects described by Figures 8.10a and 8.10b before. From Figure 8.10c we
observe that overall the stratified random forest model performs better than the Elastic net with @ = 0.5. Now
take a look at the interaction effects.
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In Figure 8.11a, we see that the stratified random forest performs better than the Elastic net model with a = 0.5
at all word count thresholds. The interaction between the stratified model and word count threshold is inter-
esting, but has been discussed before (see Figure 8.7a and corresponding discussion). In Figure 8.11b we see
the normalized tf-idf matrix form for a word count threshold of 6 perform best. This is interesting, because
we did not see this happen in earlier results, when looking at all Elastic net or random forest models (Figures
8.3b and 8.7b). Apparently, at least one or maybe even both of these models (the stratified random forest and
Elastic net with a = 0.5) perform well for the combination of tf-idf matrix and a word count threshold of 6.
This analysis is based on a rather small number of points though. In Figure 8.11c, we see that the stratified
option random forest outperforms the elastic net model with a = 0.5 for all matrix forms. We will now look at
the results obtained using the n775-data set.
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Figure 8.12: Effects plot for the effect of the matrix form, word count threshold and stratified option random forest and Elastic net with
a = 0.5 as models. On the y-axis is the AUC value, on the x-axis the varying parameter for its respective effects plot. The displayed
confidence intervals are calculated as 1.96 x SE. Results were obtained using the n775-data set running the models for all sentiments.
Results were obtained using a 5-fold cross validation. / = 1 computation was run.
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Figure 8.13: Interaction effects plot for the effect of the matrix form, word count threshold and stratified option random forest and Elastic
net with @ = 0.5 as models. On the y-axis is the AUC value, on the x-axis the first varying parameter for its respective effects plot. The
displayed confidence intervals are calculated as 1.96 x SE. Results were obtained using the n775-data set running the models for all
sentiments. Results were obtained using a 5-fold cross validation. / = 1 computation was run.

When it comes to the variability of the points in the main effects graphs, the points in Figures 8.12a and 8.12b
are averages over 150 x 14/5 = 420 AUC estimates (and again, these are the result of a 5-fold cross validation),
and the points in Figure 8.12c are averages over 150 x 14/2 = 1050 AUC estimates. For the interaction effects
graphs, the points in Figures 8.13a and 8.13c are averages over 150 x 14/(5x2) = 210 AUC estimates (and again,
these are the result of a 5-fold cross validation), and the points in Figure 8.11b are averages over 150 x 14/(5 x
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5) = 84 AUC estimates.

We see the same effect occur as that we see for the n1976-data set. The stratified random forest model per-
formance is better than that of the Elastic net model with a = 0.5 in all cases. We thus regard the stratified
random forest as the superior model for the problem discussed in this thesis. Breiman, one of the first no-
table contributors to the study of random forests, has stated in later research that use of stratified sampling,
as was done in this thesis, is a powerful technique to improve performance of random forest methods when
having imbalanced data sets[2]. Explaining why the random forest than also performs better than the Elas-
tic net model is a hard nut to crack though. The Elastic net model with a = 0.5 is also a variable selection
technique, whereas the random forest is not. This would imply that dropping the requirement of variable se-
lection causes an increase in performance. However, one could argue that in a scenario as ours, where many
variables play no role of importance, variable selection is actually required. Ridge regression, which is also
not a variable selection technique, has a significantly lower performance than the other Elastic net models.
This remains a difficult, but nonetheless interesting debate. For now, we conclude that the stratified random
forest is the superior model.

From these plots, we can conclude that given the choice between the Elastic net with a = 0.5 model and the
stratified option random forest model, the latter seems preferable when looking at the resulting AUC values.
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8.1.4. Effect of sentiment and driver number

Now take a step back to what we are trying to predict; driver scores for different sentiments. Positive senti-
ment may be easier to predict than negative sentiment, or the other way around. Furthermore, this can of
course be different for every driver: for one driver positive sentiment might be easier to predict, and for an-
other negative sentiment could be the easiest. We compare for both the 71976-data set and the n775-data set
and create the effects plots. We do not visualise the error bars in these plots. This, because the scale on the
y-axis will be such that the error bars will be hardly visible.

In Figure 8.14 we see the effects plots for for the n1976-data set. We see that within this data set, present
sentiment is generally the easiest to predict, after that positive sentiment and then negative sentiment. For
an explanation for this, we take a look back at Figure 2.3. It has been reprinted in Figure 8.15. We see that
there are also more positive reviews than negative reviews in the n1976-data set. Thus, there is more data
from the positive class to train on, and predicting for positive sentiment will generally give a more accurate
result. Using this same reasoning, present sentiment gives the most accurate result. When detecting present
sentiment, we aim to distinguish the non-NA driver scores from the NA driver scores. When detecting positive
or negative sentiment, we aim to distinguish a subset of these non-NA driver scores from the rest, and there
is thus less data in the minority class than when detecting present sentiment. Thus, the model generally
performs worse when aimed at detecting negative sentiment.

Looking at the effects plot for the driver numbers, we also see some large differences. For some we reach an
average AUC value of around 0.85, whereas for other we reach one far below 0.7. To an extent this also the
result of the number of reviews discussing said driver available in data set as training data. For some this is
not true at all though. For the driver number 0, there is alot of data available but it has the lowest average AUC
value of all driver numbers. In Section 2.1 we discussed though that this driver is odd, in that it characterises
the general sentiment in the entire review, and is thus quite unlike the other drivers. Despite this, we still
conclude that not all drivers adhere to the earlier described effect. For driver number 11 for example, there is
quite a limited number of reviews discussing it available in the data set, but it scores quite high in AUC value.
Apparently, reviews discussing driver 11 use words distinct enough from reviews that do not discuss driver 11,
such that the models are able to score high AUC values for driver number 11. In the end, the case is different
for every driver of course. Note that for some drivers no AUC value has been printed. As can be seen in Figure
8.15, there are drivers where the number of reviews discussing them is extremely limited. These have been
removed from the analysis, as an effective AUC value could not be computed for these drivers.

In Figure B.8a. We see that generally, we obtain lower AUC values for negative sentiment than we do for
positive and present sentiment. Note that when there is more balance between the number of negative and
positive reviews, the results are generally similar. Driver number 1 is an example of this effect. Generally there
is an imbalance though. What part of the effect of positive sentiment being easier to predict than negative
sentiment is caused by class imbalance and what part by the actual words/language? In the end, this is hard
to judge. The results give a strong indication though that some drivers are inherently easier to predict than
others (because of the language used), while other drivers are easier to predict merely because there are more
reviews discussing them in the training data.
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Figure 8.14: Effects plot for the effect of the sentiment and driver number and their interaction effects plot. On the y-axis is the AUC
value, on the x-axis the varying parameter for its respective effects plot. Confidence intervals are not displayed. Results were obtained
using the n1976-data set running elastic net models for all levels of a and both random forest options at all word count thresholds for all
matrix types. Results were obtained using a 5-fold cross validation. / = 1 computation was run.

When it comes to the variability of the points, the points in Figure 8.14a are averages over 450 x 15/3 = 2250
AUC estimates, the points in Figure 8.14b are averages over 450 AUC estimates, and the points in Figure 8.14c
are averages over 450 x 15/(15 x 3) = 150 AUC estimates.
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Figure 8.15: Histogram of the number of driver scores for every driver in the 71976 — data set. In blue the number of positive, in green
the neutral and in red the negative driver scores.
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Figure 8.16: Histogram of the number of driver scores for every driver in the n775 — data set. In blue the number of positive, in green the
neutral and in red the negative driver scores.

The same analysis that we did for the sentiment and driver numbers in the n1976-data set can be done for
the n775-data set. Results are shown in Figure 8.17. Here we see the opposite result when it comes to sen-
timent that we saw for the n1976-data set. Negative sentiment is predicted more accurately than positive
sentiment. A reason for this can be found in the same hypothesis that was used to explain the difference in
the n1976: looking at Figure 8.16, we see that the we simply have a lot more negative reviews than positive
reviews available. For the average AUC estimates for the individual drivers we also come to the same con-
clusion. Generally, we see that drivers for which more training data is available perform better. This is not
always the case though. For driver number 1 there are not too many reviews available, but it still performs
better than all others. This shows that the difference in results is not always caused by just the imbalance of
the number of reviews annotated as a 1 versus the number of reviews annotated as a 0. Some drivers seem
to be inherently easier to predict. A possible hypothesis for this is found in the fact that our models use the
individual words written in the reviews as variables. Maybe people tend to use a smaller set of unique words
when talking about topics related to certain drivers than they do when talking about topics related to others.
The smaller the set of unique words used, the easier it is for our models to find the pattern of words used and
driver (and sentiment) discussed. Looking at the interaction, we see that when there is no imbalance in sen-
timent for a review, positive sentiment can also perform well. This is for example the case for driver number
8.
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Figure 8.17: Effects plot for the effect of the sentiment and driver number and their interaction effects plot. On the y-axis is the AUC value,
on the x-axis the varying parameter for its respective effects plot. Confidence intervals are are not displayed. Results were obtained using
the n775-data set running elastic net models for all levels of @ and both random forest options at all word count thresholds for all matrix
types. Results were obtained using a 5-fold cross validation. [ = 1 computation was run.

When it comes to the variability of the points, the points in Figure 8.17a are averages over 450 x 14/3 = 2100
AUC estimates, the points in Figure 8.17b are averages over 450 AUC estimates, and the points in Figure 8.17c
are averages over 450 x 14/(14 x 3) = 150 AUC estimates.
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8.1.5. Effect of data set size

Another factor of interest is to us the size of data set. We generally presume that when given more data, our
models perform better. Let us see if we can confirm this hypothesis, and if so, find out how large the effect of
increasing the size of the data set can be. We have 1976 reviews in the n1976. We take this to be the maximum
number of reviews we experiment, and we will also experiment with sampled subsets of these 1976 reviews
of sizes 500 and 1000.

Normally, we choose a type of sentiment, matrix form, model, driver et cetera and run the model to find our
result. Doing this repeatedly for all choices gives us the results as discussed in this Chapter. Thus, we also
do this for the 3 different data set sizes. We did not experiment with the word count threshold and kept it
constant at 11. We ran the model for all elastic net and random forest models and all matrix forms. It is
important to note that given our choice of sentiment and driver, we did make sure that there were enough
reviews being annotated as a 1 in the sampled subset of size 500/1000. Furthermore, we re-sampled the
subsets repeatedly, not only for different drivers and sentiment, but also for different choices of matrix form
and the model. This, to minimize the impact of the variance in sampling these subsets on our result.

The effects that interest us are of course the overall effect of increasing the size of the data set, but also the
interactions between the size of the data set and the matrix form and model. Furthermore, we hypothesized
before that some drivers are inherently easier to predict because of the language used when discussing them,
and other drivers had more "profit’ of having more reviews discussing them in the training data. Thus, the
effect of the data set size vs. individual drivers in particular is interesting to observe.
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Figure 8.18: Effects plots of the main effect of the data set size and interactions between the data set size and model and data set size
and matrix form. On the y-axis is the AUC value, on the x-axis the (first) varying parameter for its respective effects plot. The displayed
confidence intervals are calculated as 1.96 x SE. Results were obtained using the n1976-data set running elastic net models for all levels
of a and both random forest options at a word count threshold of 11 for all matrix types. Results were obtained using a 5-fold cross
validation. [ = 1 computation was run.

So it is clear that the performance increases as the size of the data set increases, both in general, when we
look at the average over all models and matrix forms, as well as when we look at the models/matrix forms
individually. Note though that the x-axis is non-linear, as 500, 1000 and 1976 are the ticks on the axis. There
are some subtle differences between models though. For example, the Elastic net model with @ =0, i.e. Ridge
regression, performs the worst among all models, but the difference in AUC-value seems to be larger when
the size of the data set is smaller. In general though, we see the same effect occur among all models and
matrix forms. Also note that the difference in performance between 500 and 1000 seems to generally be the
same as between 1000 and 1976. This is interesting, as in both cases it is roughly a doubling of the data set
size. One would intuitively expect the curve of the AUC value would have a logarithmic form, but the first
"2’ of the set size has seemingly the same effect as the second ’x2’. This means that either the curve does not
have alogarithmic form but alinear one, or, we are really only at the start of the curve of the logarithmic form.
In both cases, this means that there is potential for our models to perform better, if more data was available.
The 'promise of big data’, more data leading to more accurate predictions, seems to hold here!
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Now for the interaction between data set size and the individual drivers.

0.9
0. Shaving (general)
1. During shaving — speed
2. During shaving — comfort
3. After shaving — irritation
08 4. After shaving — closeness
5. Cofo
6. Sound
7. Ease of use
07 8. Cleaning
9. Smart Clean
10. Service & Delivery
11. Accessories
06 12. Features
13. Charging & electronic power
8888386583832 23338 14. Design
driver 15. Value for money
set_size == 0500 == 1000 == 1976 16. Issues & reliability

(a) Effects plot for the interaction between driver number (b) Drivers corresponding to the driver numbers in the ef-
and data set size. fect plots.

Figure 8.19: Effect plot of driver vs. data set size. On the y-axis is the AUC value, on the x-axis the (first) varying parameter for its
respective effects plot. The displayed confidence intervals are calculated as 1.96 x SE. Results were obtained using the n1976-data set
running elastic net models for all levels of @ and both random forest options at a word count threshold of 11 for all matrix types. Results
were obtained using a 5-fold cross validation. / = 1 computation was run.

What we see is that overall, the effect of an increase in the size of the data set is beneficial for all drivers. For
some more than for others though. For driver 8. Cleaning the performance seems to be equal for all data
set sizes. A possible explanation for this is found in the fact that our models use a certain set of words to
determine whether driver 8 is discussed (or for positive and negative sentiment, driver 8 is discussed with a
certain sentiment). The vocabulary used when talking about 'Cleaning’ might be limited to such a small set of
words, that these words are present in sufficient numbers when using a data set size of 500, and there is thus
no further benefit to using larger data set sizes. Overall, this seems to be exceptional though. For all drivers
except drivers 8 and 9 we see a clear benefit to the use of a larger data set size.
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8.2. Results for the multinomial setting

Now we come to the results for the multinomial setting. Again, we will first discuss the Elastic net models,
then the random forest models and then compare them. We will then also show the performance on an indi-
vidual driver level. Because the 3 types of sentiment are incorporated into 1 model in the multinomial setting,
rather than 3 separate models in the binary setting, we cannot compare performance for separate sentiments
here. Once again, we will first discuss results using the n1976-data set, and then using the n775-data set.
Note that, different to the binary setting, we do not work with different types of sentiment in the multinomial
setting. Thus, for the multinomial setting we produce 5 types of matrices x 5 word count threshold levels x 4
Elastic net models = 100 sets of results for 15 drivers.

There is another choice that has to be made for the multinomial setting though. The misclassification matrix
A has to be chosen, in order to compute the AUC,, as introduced in Chapter 4. We need it both to evaluate
our results and as the measure to train the Elastic net models on, as discussed in Chapter 5. We will choose
the matrix A as

prediction(}), true value (—) ‘ P ‘ N ‘ NA

p 01
N 1|0 1
NA 1|1

Figure 8.20: Choice of matrix A

We will first extensively discuss all results obtained using this choice of A. Later in this chapter, we will discuss
results obtained using a different choice of A will be discussed.
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Figure 8.21: Main effects plots and interaction effects for the effects of the matrix form, word count threshold and Elastic net models. On
the y-axis is the AUC,, value, on the x-axis the (first) varying parameter for its respective effects plot. The displayed confidence intervals
are calculated as 1.96 x SE. Results were obtained using the n1976-data set. Results were obtained using a 5-fold cross validation. / =1
computation was run.

When it comes to the variability of the points, the points in Figures 8.21a and 8.21b are averages over 100 x
15/5 =300 AUC estimates, the points in Figure 8.21c over 100x15/4 = 375 AUC estimates, the points in Figures
8.21d and 8.21f over 100x 15/(5x4) = 75 AUC estimates and the points in Figure 8.21e over 100x 15/(5x5) = 60
AUC estimates.

In Figure 8.21a, we see that the Elastic net models perform best at a word count threshold of 11 or 16, or
maybe 21. This is contrary to the binary setting, where a word count threshold of 6 performed best (Figure
8.2a). Figure 8.21d shows that the effect occurs for all Elastic net models except when a = 0 (Ridge regression).
Furthermore, Figure 8.21e shows that for the indicator matrix form, the best performing among the matrix
forms, a word count threshold of 6 performs best. It is for all others that a higher word count threshold gives
the same or a higher average AUC value. Given the confidence intervals in Figure 8.21e, we have to be careful
with his last statement though. For the binary setting, we see in Figure 8.3b performance of the indicator
matrix form is also more or less the same at word count thresholds 6, 11 and 16.

Furthermore, what stands out from Figures 8.21e, 8.21f and 8.21c in general is the severe under-performance
of Ridge regression in the multinomial setting. In the binary setting we also saw Ridge regression perform
worse than the other Elastic net models, but less so. From these same figures, we see that the other 3 Elastic
net models perform equally good at all word count threshold levels and for all matrix forms. This effect was
there in the binary setting as well (Figures 8.3a and 8.3c), but less profound.



8.2. Results for the multinomial setting 101

0.77 - -
0.76 - -
0.75 - -

o1 6 11 16 21 doc_term indicator mean tf_idf tf_idf_norm 0 05 0.75 i
word_count_threshold matrix_type elastic_net_alpha

(a) Effect of word count threshold. (b) Effect of matrix form. (c) Effect of Elastic net model.

0.78 - H\

\
0.76 - / \'\\'
0.74 B .
oL 06 11 16 21 01 06 11 16 21 doc_term indicator mean tf_idf tf_idf_norm

word_count_threshold word_count_threshold matrix_type

elastic_net_alpha » 0 = 05 » 0.75 = 1 matrix_type w= doc_term w= indicator w= mean w= tf_idf == tf_idf_norm elastic_net_alpha » 0 = 05 = 0.75 w 1

(d) Effect of word count threshold vs. (e) Effect of word count threshold vs. (f) Effect of matrix form vs. Elastic net
Elastic net model. matrix form. model.

Figure 8.22: Main effects plots and interaction effects for the effects of the matrix form, word count threshold and Elastic net models. On
the y-axis is the AUC,, value, on the x-axis the (first) varying parameter for its respective effects plot. The displayed confidence intervals
are calculated as 1.96 x SE. Results were obtained using the n775-data set. Results were obtained using a 5-fold cross validation. { =1
computation was run.

When it comes to the variability of the points, the points in Figures 8.22a and 8.22b are averages over 100 x
14/5 =280 AUC estimates, the points in Figure 8.22c over 100x 14/4 = 350 AUC estimates, the points in Figures
8.22d and 8.22f over 100 x 14/(5 x 2) = 140 AUC estimates and the points in Figure 8.22e over 100 x 14/(5x 5) =
56 AUC estimates.

To a certain extent we see the same effects occur here, in the multinomial setting, as we saw in the binary
setting when applying Elastic net models for the n775-data set (Figures 8.4 and 8.5). What stands out is the
good performance of the normalized tf-idf matrix form as seen in Figure 8.22b, which we did not see in Figure
8.4a. Also when looking at the interaction plots in Figures 8.22e and 8.22f, we see this good performance of
the normalized tf-idf matrix form occur at all word count threshold levels and for all Elastic net models except
a =0 (=Ridge regression).

To an extent, we also saw this effect happen when applying Elastic net models in the multinomial setting for
the n1976-data set, in Figure 8.21. The performance of the normalized tf-idf matrix form equaled that of the
indicator matrix form at best, but given that the indicator matrix form was the best everywhere, this is already
an achievement in itself. It seems that the Elastic net models gain more value from using the normalized tf-idf
values as input in the multinomial setting than they do when using these (exact same) values in the binary
setting.
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8.2.1. Random forest models
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Figure 8.23: Main effects plots and interaction effects for the effects of the matrix form, word count threshold and Elastic net models. On
the y-axis is the AUC,, value, on the x-axis the (first) varying parameter for its respective effects plot. The displayed confidence intervals
are calculated as 1.96 x SE. Results were obtained using the n1976-data set. Results were obtained using a 5-fold cross validation. I =1
computation was run.

When it comes to the variability of the points, the points in Figures 8.23a and 8.23b are averages over 50 x
15/5 = 150 AUC estimates, the points in Figure 8.23c over 50 x 15/2 = 375 AUC estimates, the points in Figures
8.23d and 8.23f over 100 x 15/(5 x 2) = 150 AUC estimates and the points in Figure 8.24e over 100 x 15/(5 x5) =
60 AUC estimates. Furthermore, the confidence intervals here may at first glance seem larger than the ones
we saw when looking at the results for the Elastic net models, but one should note that the scale on the y-axis
has also changed, so they are quite comparable.

For these results, the ANOVA results for the interaction effects in Figures 8.23d, 8.23e and 8.23f are particularly
interesting:

Df SumSq MeanSq Fvalue Pr(>F)

matrix_type:rf form 4 0.00 0.00 1.33  0.2591
matrix_type:word_count_threshold 16 0.00 0.00 0.62 0.8712
rf_form:word_count_threshold 4 0.00 0.00 1.05 0.3825

All three interaction effects that we plotted have a p-value > 0.05, and are thus considered insignificant. Con-
sidering the confidence intervals around the plotted points, it is also hard to observe more from the interac-
tion plots than that overall the stratified random forest model still performs better than the default option, as
was also the case in the binary setting (Figures 8.7a and 8.7c). Furthermore, similar as to what we saw for the
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Elastic net models, we see in Figure 8.23b that in the multinomial setting the normalized tf-idf matrix form
can compete with the indicator matrix form.
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Figure 8.24: Main effects plots and interaction effects for the effects of the matrix form, word count threshold and Elastic net models. On
the y-axis is the AUC,, value, on the x-axis the (first) varying parameter for its respective effects plot. The displayed confidence intervals
are calculated as 1.96 x SE. Results were obtained using the n775-data set. Results were obtained using a 5-fold cross validation. / =1
computation was run.

When it comes to the variability of the points, the points in Figures 8.24a and 8.24b are averages over 50 x
14/5 = 140 AUC estimates, the points in Figure 8.24c over 50 x 14/2 = 350 AUC estimates, the points in Figures
8.24d and 8.24f over 100 x 14/(5 x 2) = 140 AUC estimates and the points in Figure 8.24e over 100 x 14/(5x 5) =
56 AUC estimates.

When it comes to the ANOVA values, the interaction between word count threshold and matrix from from
Figure 8.24e is considered insignificant, with a p-value of 0.96. Unlike to the results for the 71976-data set as
shown in Figure 8.23, the other two interactions displayed here in Figures 8.24d and 8.24f can be considered
significant, although it is rather close with p-values of 0.04 and 0.01 respectively. The results are very similar
to what we saw happen in the binary setting when using random forests for the n775-data set in Figures 8.8c
and 8.9. The good performance of the the stratified option random forest at a word count threshold of 6 is
odd, but we saw the same thing happen in the binary setting when using the n775-data set. In conclusion,
when comparing the results of using the random forests in the multinomial setting for the n1976-data set
(Figure 8.23) and the n775-data set (Figure 8.24), we see subtle differences in the effect of the word count
threshold and the matrix form. These differences are the same as we saw when comparing the use of random
forests for these two data sets in the binary setting though.

What stands out is that the normalized tf-idf matrix seemingly performs better than the indicator matrix
form, or at least as good. For the n1976-data performance seemed about equal, and also when using the
n775-data set the difference is too small to say it with confidence, but, if were asked to choose a matrix form
when applying a (stratified) random forest on an arbitrary data set, we would choose the normalized tf-idf
matrix form over the indicator matrix form, based on these results.
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8.2.2. Comparison random forest and Elastic net models
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Figure 8.25: Main effects plots and interaction effects for the effects of the matrix form, word count threshold and Elastic net models. On
the y-axis is the AUC,, value, on the x-axis the (first) varying parameter for its respective effects plot. The displayed confidence intervals
are calculated as 1.96 x SE. Results were obtained using the n1976-data set. Results were obtained using a 5-fold cross validation. [ =1
computation was run.

When it comes to the variability of the points, the points in Figures 8.25a and 8.25b are averages over 50 x
15/5 = 150 AUC estimates, the points in Figure 8.25c over 50 x 15/2 = 375 AUC estimates, the points in Figures
8.25d and 8.25f over 100 x 15/(5 x 2) = 150 AUC estimates and the points in Figure 8.25e over 100 x 15/(5 x 5) =
60 AUC estimates.

The interaction effects of the word count threshold and model (Figure 8.25d) and word count threshold and
matrix form (Figure 8.25e) are considered insignificant, with p-values of 0.19 and 0.91 respectively. Compar-
ing the results in Figure 8.25 with their equivalent in the binary setting (Figures 8.10 and 8.11), we see no
large differences. Of interest to us is the slightly better performance of the normalized tf-idf matrix form here.
Furthermore, it is important to note that, also in the multinomial setting, the stratified random forest model
performs better than the Elastic net model with & = 0.5.
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Figure 8.26: Main effects plots and interaction effects for the effects of the matrix form, word count threshold and Elastic net models. On
the y-axis is the AUC,, value, on the x-axis the (first) varying parameter for its respective effects plot. The displayed confidence intervals
are calculated as 1.96 x SE. Results were obtained using the n775-data set. Results were obtained using a 5-fold cross validation. / =1
computation was run.

When it comes to the variability of the points, the points in Figures 8.26a and 8.26b are averages over 50 x
14/5 = 140 AUC estimates, the points in Figure 8.26¢ over 50 x 14/2 = 350 AUC estimates, the points in Figures
8.26d and 8.26f over 100 x 14/(5 x 2) = 140 AUC estimates and the points in Figure 8.26e over 100 x 14/(5x 5) =
56 AUC estimates.

Once again, the ANOVA results reveal that the interaction effects of the word count threshold and model
(Figure 8.26d) and word count threshold and matrix form (Figure 8.26e) are considered insignificant, with p-
values of 0.11 and 0.94 respectively. When comparing the results in Figure 8.26 with those obtained using the
n775-data set in the binary setting in Figures 8.12 and 8.13, we see that the effect of the word count threshold
seems slightly different here. As the word count threshold increases, the average performance of models using
word count threshold greater than 6 seems to reduce further here, in the multinomial setting, than it does in
the binary setting. Given the confidence intervals around the means, this judgement has to be taken with
a grain of salt though. Using these results and those from Figure 8.25, the conclusion from the comparison
between the (stratified) random forest model and the Elastic net model with a = 0.5, is that the performance
of the random forest is higher than that of the Elastic net model. This makes it our preferred choice of model.
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8.2.3. Driver results

As for the binary setting, we will look at the performance of the models for the individual drivers. In the binary
setting, we also looked at models for different types of sentiment. As we no longer have different models for
different sentiments in the multinomial setting, but rather have one model that incorporates them, we only
look at the drivers. We start with the results for the results for the n1976-data set.

0.85 0. Shaving (general)
1. During shaving - speed
2. During shaving — comfort
3. After shaving — irritation
0.80 .
4. After shaving — closeness
5. Cofo
6. Sound
0.75 7. Ease of use
8. Cleaning
9. Smart Clean
10. Service & Delivery
070 11. Accessories
12. Features
13. Charging & electronic power
0.65 14. Design
00 01 02 03 04 06 07 08 10 11 13 14 15 16 15. Value for money
driver 16. Issues & reliability
(a) Effect of driver number. (b) Drivers corresponding to the driver numbers in the ef-
fect plots.

Figure 8.27: Effects plot for the effect of driver number. On the y-axis is the AUC, value, on the x-axis the varying parameter for the driver
number. A list of drivers corresponding to the driver numbers is provided. Results were obtained using the n1976-data set running elastic
net models for all levels of @ and both random forest options at all word count thresholds for all matrix types. Results were obtained using
a 5-fold cross validation. [ = 1 computation was run.

When we compare these results with the results we found in the binary setting (Figure 8.14), we find that
they are very comparable. Generally, it are the same drivers that perform well in the multinomial setting
that do well in the binary setting. The relative ranking of the performance of the drivers has changed a bit
though. For example, driver 06. - Sound performs better than driver 03. After shaving - irritation according
to the results in Figure 8.27. In the binary setting, we saw in Figure 8.14 the opposite: 06. - Sound performed
worse than 03. After shaving - irritation, also for different types of sentiment. Of course it is not strange that
this occurs to some extent. The multinomial models are different from the binary models, and the we have a
different value that is measured. Nevertheless, the fact that when we zoom out and look at the grand scheme
of driver performance, we see the same drivers perform well as that we see in the binary setting, gives us
more confidence that the AUC, is well chosen as a measure for the multinomial setting. The reasons why our
models perform better for some drivers than for others, is therefore the same hypothesis that we formulated
in the binary setting. It seems that for some drivers it is true that the number of reviews discussing them in
the training data is relevant, while for others it seems that they are inherently easier to predict.

In Figure 8.28 we have also displayed the results for the drivers in the n775-data set. Generally, the same ob-
servation as for the n1976-data set holds. When comparing with the binary setting (Figure 8.17) we generally
see the same drivers perform well and the same drivers perform poorly. There are differences, but the general
trend has remained the same.
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fect plots.

Figure 8.28: Effects plot for the effect of driver number. On the y-axis is the AUC, value, on the x-axis the varying parameter for the driver
number. A list of drivers corresponding to the driver numbers is provided. Results were obtained using the n775-data set running elastic
net models for all levels of & and both random forest options at all word count thresholds for all matrix types. Results were obtained

using a 5-fold cross validation. / = 1 computation was run.
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8.3. A different misclassification matrix

Now, we also generated results using a different choice of misclassification matrix A. Figure B.1 shows how
A was chosen. This choice of A was used because it increased the cost of misclassifying a P/ N as NA or vice
versa, which is considered the more grievous error.

prediction(]), true value (—»)‘ P ‘ N ‘NA

p 0 |3/5]6/5
N 3/5| 0 | 6/5
NA 6/5|6/5| 0

Figure 8.29: Choice of matrix A

The results of using this misclassifcation matrix are rather disappointing though. They are very similar to
the results using a matrix A chosen such that all misclassifcation cost are equal. As an example, look at the
interaction plots for the Elastic net models using the n1976-data set.
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Figure 8.30: Interaction effects for the effects of the matrix form, word count threshold and Elastic net models. Plotted for models using
two choices of misclassification matrix A. Results for A as in Figure 8.20 on top, for A as in Figure 8.29 on the bottom. On the y-axis is the
AUCy, value, on the x-axis the (first) varying parameter for its respective effects plot. The displayed confidence intervals are calculated as
1.96 x SE. Results were obtained using the n1976-data set. Results were obtained using a 5-fold cross validation. / = 1 computation was
run.

As one can see, the results are very similar, if not the same considering the error bars. The results of using the
matrix A as in Figure 8.29 are therefore not discussed in this thesis. They are are printed in Appendix B.






Application

We have discussed the more technical results in Chapter 8, where we discussed how different choices of pa-
rameters influenced the performance of our models. In this chapter, we will use these models to zoom in on
the performance of some of our models in the binary setting. We will first look at how the driver scores for a
review can be predicted using our models. Then we will take a closer look at how the coefficients in the Elastic
net model influence the prediction of a review and show how these can be compared to important variables
in a random forest model.

9.1. Example of review annotation

Say that we have trained a model, and use it to predict a new review. An example of a new review is:

“I'have been extremely pleased with this shaver. It shaves close, is fast, and is relatively quiet compared with
the previous electric shaver that I had. Would highly recommend this product.”

Figure 9.1: Example of a review in the n1976-data set.

This particular review is part of the n1976-data set. It is annotated for the 17 drivers in this data set as

Shaving During shaving During shaving After shaving After shaving Cofo
(general) - speed - comfort —irritation — closeness

2 2 NA NA 2 NA

Servi
Sound Ease of use cleaning Smart Clean ervice Accessories

& Delivery

1 NA NA NA NA NA

Charging & . Issues &
Features electronic power Design Value for money reliability
NA NA NA NA NA |

Figure 9.2: Annotated driver scores for the review in Figure 9.1

Say that we have build a model as we have done in this thesis for prediction of present sentiment, i.e., whether
a review discusses a given driver or not, and the review from Figure 9.1 was not used to train the model.
When we give the review from Figure 9.1 as input for the model, we obtain a set of estimated probabilities,
Pil1.--»Di17, i being the index of the review. In the case of an Elastic net, these estimated probabilities are
found using the estimated coefficients (from the logistic regression) and in the case of the random forest it is
the fraction of votes from the decision trees.

111
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Shaving During shaving During shaving After shaving After shaving Cofo
(general) —speed — comfort —irritation — closeness

0.4829714 0.19303905 0.037321740 0.03907520 0.6510615 NA

Sound Ease of use cleaning Smart Clean Serv.lce Accessories
& Delivery

0.42506108 0.03540277 0.02524224 0.005827753 0.014796885 0.02777489

hargi I
Features ¢ areing & Design Value for money ssues &
electronic power reliability
NA 0.038897240 |  0.03446941 0.1129507 0.04584707 | |

Figure 9.3: Annotated driver scores for the review in Figure 9.1

This particular example was obtained using an Elastic net model with a = 0.5 trained on 80% of the 1n1976-
data set with a word count threshold of 6 and and indicator matrix form. The review from Figure 9.1 was
part of the 20% of the n1976-data set not used, the test set. Probability estimates were not noted in Figure
9.3 for 2 drivers, because, as discussed before in this thesis, there are not enough reviews discussing these
drivers to build an effective model. Now we still only have probability estimates though. We will have to set
a threshold value ¢ on these probabilities to get the estimates for the driver scores. How will we choose these
thresholds though? With the goal of a (semi-)automated annotation tool in our mind and armed with the
fact that there generally is a large imbalance between the number of 1s and 0s in our data set, we aim to set
threshold such that we will at least predict a certain fraction of those 1s correctly. This means that we aim for
a certain sensitivity (= true positives / (true positives + false negatives). How do we set this threshold then?
First, it is important to understand that we will need to set a different threshold value for every driver. Let
us illustrate this with a couple of histograms of the estimated probabilities for the 20% test set of which the
review from Figure 9.1 was a part.
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Figure 9.4: Overlaying histograms of the estimated probabilities for reviews annotated as a 1 (red) or 0 (gray) in the test set for drivers
0.Shaving (general), 4.After shaving — closeness and 13.Charging & electronic power in the data set. On the x-axis is the estimated prob-
ability between 0 and 1.

Driver 0. Shaving (general) is the odd one out here, as was noted earlier in this thesis. There are many reviews
for which it is annotated as non-NA, and is annotated as representing the general sentiment in a review. It
is by far not always annotated in the data set though, so when predicting present-sentiment as we are doing
now, there are still plenty of 0s and not only 1s to predict. We also see that there is a lot of overlap between the
estimated probabilities for the 1s and the 0s for this driver. For 4.After shaving — closeness and 13.Charging
& electronic power this is much less so the case. Reviews corresponding to a 1, also seem to generally have a
higher estimated probability. This makes us think of how the AUC can be interpreted as being the probability
that a 1 is ranked higher than a 0, as was shown in Chapter 4. When computing the AUC values using the
results from this test set, we find an AUC value of 0.65 for 0. Shaving (general), 0.88 for 4.After shaving —
closeness and 0.92 for 13.Charging & electronic power.

We move back to searching the threshold value ¢ to go from the estimated probabilities to the actual predic-
tions for the driver scores. In Figure 9.4 it becomes clear that setting the same threshold value ¢ for all drivers,
leads to large differences in the accuracy of these predictions. Specifically, we are interested in the relation
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between the sensitivity and specificity at a certain threshold. What one desires will depend on the applica-
tion, but a logical choice in our opinion would be to aim for at least a certain specificity, so that you detect
at least a certain number of 1s. Plotting ROC curves for the drivers can help to see what level of sensitivity
can be achieved, without the specificity being too low. We plot the ROC curves corresponding to the results

in Figure 9.4.
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(a) 0.Shaving (general)

00 05

(b) 4.After shaving — closeness

T
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(c) 13.Charging & electronic power

Figure 9.5: ROC curves of the estimated probabilities for reviews annotated as a 1 (red) or 0 (gray) in the test set for drivers 0.Shaving
(general), 4.After shaving — closeness and 13.Charging & electronic power in the data set. On the x-axis is 1-specificity, on the y-axis the

sensitivity..

Doing this for all drivers, we set thresholds for different levels of specificity and sensitivity.

Shaving During shaving During shaving After shaving After shaving Cofo

(general) —speed — comfort —irritation — closeness

r=0.442 t=0.176 t=0.045 £=0.059 £=0.230
sensitivity= 0.65 sensitivity= 0.80 sensitivity= 0.85 sensitivity= 0.85 sensitivity= 0.85 NA
specificity= 0.57 specificity=0.71 specificity= 0.75 specificity= 0.82 specificity=0.77

. Servi .
Sound Ease of use cleaning Smart Clean ervice Accessories
& Delivery
t=0.039 t=10.048 t=0.223 t=10.008 t=0.101 t=0.038

sensitivity=0.90
specificity= 0.97

sensitivity=0.75
specificity= 0.74

sensitivity= 0.90
specificity= 0.89

sensitivity= 0.95
specificity= 0.76

sensitivity= 0.65
specificity= 0.95

sensitivity= 0.85
specificity= 0.86

hargi I
Features c areing & Design Value for money ssues &
electronic power reliability
1=0.282 t=0.036 t=0.134 t=0.065
NA sensitivity= 0.90 sensitivity=0.75 sensitivity=0.78 sensitivity=0.72

specificity= 0.86

specificity=0.68

specificity= 0.82

specificity= 0.68

Figure 9.6: Annotated driver scores for the review in Figure 9.1

If we then apply these threshold values to the review we introduced in Figure 9.1, we get our predictions for
the driver scores, dz, and can compare these with true values d;.

Shaving During shaving During shaving After shaving After shaving Cofo
(general) - speed - comfort —irritation — closeness
T T T T 7
d}: d%:l d%:() dz}:() d?:l NA
d =1 d,=1 d;=0 d,=0 d5—.1
Sound Ease of use cleaning Smart Clean Serv.lce Accessories
& Delivery
J _ _ _ _ 7 _
dz— dé—o dé—O diO—O d}1— diz—O
d; = d8:‘0 dyg=0 di,=0 dy; =0 dy,=0
Features Chargmg & Design Value for money Issue‘s &
electronic power reliability
o T _ I T
NA d}4—0 d}s_o d}B—O dV_O
d,=0 di5=0 dig=0 di;=0

Figure 9.7: Predicted and actual (coarsened) driver scores for the review in Figure 9.1
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So we see that for this particular review, we have reached a particularly good result with our chosen thresh-
olds, as the predictions for all drivers are correct. It is not always the case that our predictions turn out so well
though.

9.2. Selected words and reviews

Let us take a closer look at one driver and a few reviews. We take driver 12. ’shaving irritation’ from the n775-
data set and train an Elastic net model with @ =1 (i.e., a LASSO) on 80% of the n1976-data set with a word
count threshold of 11 and the indicator matrix form. Let us first look at for which variables the coefficients
are estimated as non-zero.

variable | estimated coefficient
neck 0.0652
irrit 3.31
skin 1.10
star 0.120
face 0.838
pai 0.890
recharg 0.747
left 0.907
rash 3.08
burn 1.85
forev 0.380
self 0.00211

Figure 9.8: Estimated non-zero coefficients for driver 12. 'shaving irritation’.

We see that the larger coefficients, that stand out among the others, are "irrit), 'skin’ and 'rash’; words that we,
as regular who happen to speak English, associate with skin irritation after shaving. Let us now apply the
model on the 20% of the reviews that we have left. Let us look at a few reviews that receive a relatively high
estimated probability p. Because some reviews are very long, sometimes only relevant excerpts are printed.

“...Itwas quick but not a great shave so as I got older, switched to blades. Seeing the ads and these reviews I
thought to try the 'new’ shaving experience and went with the top of the line model.Well, I had to press hard
and go over areas so many times that every little raised imperfection in the skin was irritated.The trouble
spots on the neck just did not get a close shave and I found myself going over them with a blade any way. I
consistently got a rash and burn. ...”

(a) Review for which p = 0.99
“I have never got on with electric shavers, they have always irritated my skin, so having filled out a survey
saying I don't use an electric shaver I was surprised to be selected for the trial and I was sent this product for
free. I have used other electric shavers and my neck and jaw line turn into a red rash almost immediately, I
have been using the Braun Series 9 9296cc shaver for a week now and my skin is great. Now the razor itself is
stylish and looks great, it’s easy to use and it’s 10-D Flex head that gently adapts to your skin contours...”"

(b) Review for which p =0.99

“...doesn’t shave me well. It leaves random (and visibly noticeable) patches of stubble on my face and
random hairs (both stubble length and long). The only way to get rid of these stubble patches is to literally
shave in every direction whilst pushing super hard onto my skin. Because of this my skin got really red and

irritated everywhere and left me not wanting to shave ...”

(c) Review for which p =0.96

Figure 9.9: Reviews extracted from the 20% subset of the reviews.

And indeed we see in the excerpts printed in Figure 9.9 that all discuss skin irritation, and use the relevant
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coefficients, hence why they are assigned a rather high probability. What is odd though is that, where the
reviews of which excerpts are shown in Figures 9.9a and 9.9c are annotated in the data as discussing driver
12. ’shaving - irritation’, the review of which an excerpt is shown in Figure 9.9b is not: there is an NA filled in
for its driver score. This is odd. Both the model and anyone reading the review would say it discusses skin
irritation, but in the actual data it is not annotated as such. We can only conclude that there are sometimes
mistakes in the data set, which can of course happen when manually annotating 775 of these reviews.

Two more examples of reviews and their estimated probabilities are given in Figure 9.10.

“...Thankfully this model was able to use all the parts from my old one. Pros: - The least irritating electric
shave I've experienced over the last 20+ years...”

(a) Review for which p=0.73
“I'was fed up of my hubby looking like he had just had a fight with the cat, with bits of tissue sticking to his
neck where he had nicked himself with the wet razor. He wasn’t convinced that anything could be better
than a wet shave ...”

(b) Review for which p =0.12

Figure 9.10: Reviews extracted from the 20% subset of the reviews.

For the review in Figure 9.10a, we see that the review uses the word ’irrititating’, but not in the context of
irritated skin. Hence, the review is not about shaving irritation, and is also not annotated as such in the data.
Since the stem ’irrit’ is one of the coefficients of our model, this causes p to be relatively high.

The review in Figure 9.10b is about skin irritation, and is also annotated as such. However the words used to
describe shaving irritation do not correspond to the coefficients of our model, hence the low value for p. The
reviews on which the model was trained may not have used language such as ’bits of tissue’ when discussing
irritation, and therefore the value of p is rather low for this review. This does not mean that we cannot predict
it correctly. With a low enough threshold value ¢, this review can still be predicted correctly. This would also
mean that one has to accept a lower level of specificity though.

Let us take a look at another driver. We take driver 9. 'ease of use’. Where our model for 12. 'shaving irritation’
had a relatively high AUC, the model for driver 9. 'ease of use’ has a rather low one (see Figure 8.17 in Chapter
8). The coefficients for this model are:

variable | estimated coefficient
hold 1.10
on 0.252
place 0.197
love 0.127
work -0.0223
come 0.250
awkward 1.25
lubric 0.414
heavi 1.05
light 0.303
button 1.27
handl 0.773
easi 1.52
sideburn 1.01
nose 0.387
grip 0.837
sore 0.507

Figure 9.11: Estimated non-zero coefficients for driver 9. 'ease of use’.

We see that words that stand out and receive a relatively large coefficient are 'hold’, 'easi’, 'sideburn’,’awkward’
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and 'grip’. Not all these are words that we necessarily naturally associate with 'ease of use’. Let us take a look
at the reviews that received the highest estimated probabilities. Note that while these probabilities might not
seem high, the distribution of the estimated probabilities is for this driver such that these 3 are the highest in
our 20% subset of the data.

“very nice and smooth. I love the way t holds and it has great battery life. The only thing I didn’t like was that
there was no room in the case for the beard trimmer which I thought was brainless. Easy to clean. The shave
could...”

(a) Review for which p = 0.52
“Works the best of all the electric razors I have ever had. Close shave, long lasting battery, easy to hold with
lots of shaving choices. Now for the real important info, my wife likes to use it on her legs. Which means its
gentle enough for her and that saves me money on buying a separate razor for her. If I had to pick...”

(b) Review for which p = 0.48

“...returning the razor if you are not satisfied. I like the Smart Clean system. It works well the but the on
button is sometimes sensitive to touch if you are holding the unit when you insert the razor. Good product
for the money. As far as some commenting about the shaver not having a pop up trimmer that is not a big
deal. It makes this shaver lighter in weight when shaving.”

(c) Review for which p =0.48

Figure 9.12: Reviews extracted from the 20% subset of the reviews.

We observe that the coefficients of the model are used in these reviews, and therefore our model gives them
a high probability. The first two reviews, in Figures 9.12a and 9.12b, are also annotated as discussing driver 9.
‘ease of use’. The third one, in Figure 9.12c, is not. What really is 'ease of use’ though? The first two reviews
both mention that the shaver is ’easy to clean), the third one mentions that the reviewer likes "the Smart Clean
system’. So does ’easy to clean’ mean that the shaver is easy to use? Another driver in the n775-data set is 8.
"Cleaning’. Should these reviews be annotated for either driver 8 or driver 9, or both of them? Another review
annotated in the data as discussing driver 9. ’ease of use’ is given in Figure 9.13.

“Great powerful, lightweight shaver and I am delighted with its performance! I've not felt the need or desire
to use this in its wet format although I'm sure it work just as well wet!!”

Figure 9.13: Review extracted from the 20% subset of the reviews for which p = 0.06.

It is granted a really low p and in this case, bringing the threshold value ¢ this far down would mean that we
predict all of the reviews in the 20% subset as discussing driver 9. 'ease of use’. It is also not naturally clear
why this driver would discuss "ease of use’. Because it is says that shaver is lightweight?

In the end, our conclusion for what we see here is that part of the annotation of reviews will always remain
subjective. Anyone applying the models proposed in this thesis should ask him- or herself critically: when do
we say that a review discusses driver A and when do we say it discusses driver B? Critical annotation of the
reviews that are used to train a model is a large factor of influence for its performance.

9.3. Variable importance

When using a random forest method, we do not these have variables selection that the Elastic net models
with a > 0 offer. We do have the option of using variable importance though. We build a random forest model
using the same 80% train set used to build the Elastic net model earlier in this chapter. We then compute the
variable importance for all variables for this model. Ordering them and taking the variables deemed most
important gives us the following result.
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variable | importance
skin 0.0072
face 0.0071
irrit 0.0052
hair 0.0022
leav 0.0017
rash 0.0014
burn 0.0013
without 0.0013
neck 0.0012
panason 0.0011
g0 0.0011
well 0.0011

(a) Random forest model

variable | estimated coefficient
neck 0.0652
irrit 3.31
skin 1.10
star 0.120
face 0.838
pai 0.890
recharg 0.747
left 0.907
rash 3.08
burn 1.85
forev 0.380
self 0.00211

(b) Elastic net model

Figure 9.14: Most important variables for the random forest model and estimated non-zero coefficients for the Elastic net model for

driver 12. 'shaving irritation’.

So we see that the variables deemed important more or less correspond to the variables for which the coeffi-
cients were estimated as non-zero in the Elastic net model. We see that for both types of models we can gain
insight into what words play an important role in predicting the driver outcomes.

Furthermore, note that the results shown in this chapter are all obtained in the binary setting. Results can
also be obtained for models in the multinomial setting. Instead of setting a sensitivity and specificity level,
we then work with the concepts of precision and recall. Setting levels for these is also equivalent to setting a
misclassification matrix A. Furthermore, the Elastic net models produce a set of coefficients for each class
in the multinomial setting. The random forest method will on the other hand not make this distinction, and
compute variable importance for all variables as it normally does.
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Conclusions and recommendations

The main goal of this thesis is to investigate whether we can predict driver presence and sentiment using an-
notated reviews. This was done both in the setting of a binary classification problem as well as a multinomial
classification problem. We showed how reviews can be rewritten as a set of variables, representing words, and
how to apply Elastic net and random forest models. Furthermore, research was done in how to evaluate the
predictions of these models using AUC values, and how to generalize this measure to the multinomial setting.

10.1. Conclusion

The reviews in the data sets used within this thesis had been (manually) annotated for sets of drivers, where
drivers represent topics. We converted the resulting driver scores to 1s and 0s to create a binary classification
problem for every driver. Expanding on that, we created a multinomial classification problem by binning the
driver scores into three sets, namely positive, negative and NA, where NA represents absence of the given
driver.

The vocabulary in the data sets was used to create variables, where each variable represented a unique word
within the data set. We thus created large numbers of variables. Reviews were then expressed as combinations
of outcomes of these variables. Various function representations for these variables were considered and
tested within this thesis. These include using indicator functions as a variable, giving a 1 when a review uses
the corresponding word and a 0 when it does not, and also more complex metrics such as tf-idf values. We
found that generally the indicator form and sometimes the normalized tf-idf form generated the best results.

We applied Elastic net and random forest models to the classification problem posed by each driver. The
models were trained on generally imbalanced data sets. We showed how both types of models could be
adapted to overcome the potential problems this brought. Furthermore, both models were expanded for
a multinomial classification problem. From empirical results, we concluded that the random forest, specifi-
cally with our stratified sampling adaption, gave the best performance among the models evaluated.

The imbalance of our data set also posed a challenge as to how to evaluate our models. We would generally
have class-imbalanced data set,s with the far larger number of reviews not discussing a driver, let alone with
a specific type of sentiment. We showed how the AUC can be used as a measure to evaluate the results for
the models in the binary classification problem. We then also introduced the AUC,, as a generalisation of the
AUC in the multinomial setting. These measures were used to evaluate the performance of our models in
class-imbalanced settings, and results were verified in a k-fold cross validation process.

An approach was formulated to build an ANOVA model around the results, so that the results could be com-
pared using (interaction) effects plot. Through the use of these plots, we uncovered which models performed
best for the problem of this thesis. It was shown that the random forest model, specifically with our strati-
fied sampling adaption, performed best, in combination with either and indicator or normalized tf-idf matrix
form performed best.

In the end, how good we were able to predict driver scores is dependent on the application in multiple ways.

119
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For predicting the driver scores, one needs to determine what levels of sensitivity and/or specificity are ac-
ceptable when applying the model. Then, the performance of the model is very dependent on the driver
and sentiment one is looking for, and how many reviews discussing these drivers were available. For certain
drivers performance can be rather poor, but generally we found our models to perform rather well, with a
few extremely good outliers for certain drivers. Of course, 100% accuracy remains near impossible and is not
achieved with our models, but nevertheless, we are satisfied with our results. We have managed to reach the
goal with which this work was started: predicting driver presence and sentiment for reviews. We were able to
quantify the performance of our models, and gained insight into how these models worked and what influ-
enced their performance. This was done on both a large scale, looking at the number of reviews annotated
for different driver and sentiment combinations, and a micro scale, looking at individual words in reviews
and observing how their use influenced the model performance.

10.2. Discussion

In this section, we will discuss the various choices made in this thesis and the potential routes for further
research regarding them. We will discuss the processing of the documents to variables, the use of evaluation
measures, the models applied, how we compared our results and lastly, the data sets used.

10.2.1. Representing reviews as variables

In this thesis, we applied a bag-of-words model and furthermore removed stop words and stemmed words
to the base, before converting the free text to variables for our model. In this process, the right choice of
stop words and for the stemming process can be critical for any potential results. For example, in this thesis
the choice was made to include 'not’ as a stop word, but this choice is controversial. There is a difference
in the meaning of 'good’ and 'not good’, but by removing 'not’ from all reviews they become the same thing.
On the other hand, many people may use the word 'bad’ instead of 'not good’, and the use of the word 'not’
may ultimately only contribute as noise for a model. For the stemming process, choosing the right stemming
algorithm can also be quite a challenge. For example, think about 'do’, 'doing’ and ‘doings’. For our problem,
we probably want these three to all mean the same thing. So remove ’-ing’ and ’-ings’ for the second and
third case respectively. Now think of ’air’, ’airing’ and ’airings. When discussing tv-shows, ’airing’ could be
interpreted as the moment of going live, something else than the ’air’ that we breath. Thus, we may not want
the same stemming here, as in the first example. Both the choice of stop words and stemming algorithm can
be made a study on its own, and improvement here is therefore most certainly possible.

We used various forms for the variables. A direction for further research would be to expand this set of pos-
sible matrix forms. Many variations of the tf-idf matrix form that we applied can be thought of. Alternatives
can be found for both the term frequency and inverse document frequency parts of tf-idf. Results can then be
generated in the same manner as was done in Chapter 8 of this thesis, and compared with our matrix forms.

Furthermore, when it comes to the variables, the whole bag-of-words model can be considered a point of
discussion. In language, the message of a whole review is often not fully expressed in one or multiple words.
While they may give a good indication of this message, the order of the words and the punctuation used is of-
ten also important for this. Our model does not account for this. It could be extended to include punctuation
(the number of exclamation marks used may for example be a strong indication of positive sentiment). Fur-
thermore, one can think of ways of forming the variables by means other than one-to-one creating a variable
for every word. A different technique known in the world of text analysis is called Word2vec([4], and forms a
way of expressing a word as a numerical vector in a finite dimensional space. In this space, words can then be
compared. This logic could be extended to mapping reviews to a finite dimensional space, and then we find
a variable representation for our reviews again.

10.2.2. Evaluation measures

In this thesis, we used the AUC as a way to measure the performance of our models in the binary setting.
In Chapter 4, we generalised the AUC to the AUC, for the multinomial setting. The AUC,, as introduced in
this thesis is a relatively recent adaption of an older measure that was named the K. Both measures attempt
to generalise the idea that the AUC, in the binary setting, is the probability of scoring a 1 greater than a 0.
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Another way to compute an AUC-like measure in the multinomial setting would be to compute a volume
under the surface (VUS), instead of an area under the curve. This idea is not new, and has been written about
before[9]. However, the proposers of the AUC, note that it is computationally cheaper and retains more
properties of the (binary) AUC than the common VUS approaches. This remains subjective though, and the
use of a different measure than the AUC,, for the multinomial setting could be explored as a part of future
research.

10.2.3. Models applied

Elastic net and random forest models have been applied in this thesis, and both have been adapted to com-
pensate for the class imbalance we generally had in our classification problems. A point of criticism is how we
determined the number of trees to grow for our random forests though. As explained in Chapter 6, we used
the number of trees for which the out-of-bag error stabilises as a measure to be sure that we were growing
enough trees, and often we grew far more. While this is also customarily the way to determine the number of
trees to grow, we noted that use of the majority vote is not the right course of action when using the random
forests for an imbalanced classification problem. We also compensated for this by lowering the threshold,
and thus not using majority vote, when using the default option random forest method. We did not do this
for the stratified random forest options. The error rates were always stable for the number of trees grown,
but the plots revealed that the minority class would sometimes have an extremely high error rate. This does
not necessarily concern us, as we are ultimately interested in the AUC and AUC,, values given by the mod-
els, but we want to be sure that we are actually growing enough trees, and our method to see if we do seems
flawed. One way of doing this, could be to use the out-of-bag votes to compute an out-of-bag AUC, or out-
of-bag AUC, in the multinomial setting, and see at which number of trees that stabilizes. This would be a
more elegant way to determine whether the number of trees grown is sufficient. When the AUC stabilizes, the
out-of-bag error rate will also be stable. The other way around works does not work; the error rate may have
stabilized, but at that point we do not know if that is also true for the AUC.

As another direction for future research, one could consider using models different than the Elastic net and
random forest models. One could consider the use of a neural network or support vector machine model.
Not all models may lend themselves immediately for the problem statement in this thesis, for we need a
probability as an outcome, so that we can compute an AUC. One could then (attempt to) adapt these models
such that they can.

10.2.4. Data sets

We used two data sets of internet reviews in this work. In Chapter 9 it was shown that there are inconsistencies
in how reviews are annotated. One way to improve the results would be to remove any such inconsistencies
from the data set beforehand. How a review should be annotated is subjective though, making one hundred
percent consistency an impossibility. Furthermore, it was shown in Chapter 8 that the performance of models
increased significantly as we increased the size of the data set. Lastly, our analysis was now carried out using
data on shavers. It could be that when this analysis is performed for data sets in a different domain, the results
change as well, due to a change in the vocabulary and characteristics of the review.

10.3. Further recommendations

The goal of this thesis, predicting driver scores for reviews, has to some extent been achieved. 100% accu-
racy is an impossibility, but with our models we can give a rather good guess. One question that remains
is whether the models can be used to automate the annotation tool the annotation process itself. For this
application, one would have to further specify the models, by setting threshold values ¢ or choosing misclas-
sification matrices A. The predictions generated could then help the annotation process by functioning as
a proposition for how the review should be annotated. This could already significantly speed up annotation
of the reviews, as it becomes a matter of accepting and rejecting predicted driver scores. Additionally, words
deemed relevant for the prediction of drivers could be highlighted in the review text. This would give the per-
son annotating reviews insight into why a proposition for a driver score is made, and show the person where
in the review to look for the relevant piece of text.
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Note though that the driver scores in the data (usually) range from -2 to 2 (with a negative score meaning
negative sentiment, and a positive score meaning positive sentiment), or are NA. Our models have only gone
as far as being able to predict positive sentiment, negative sentiment or NA. Thus an implementation of the
model in the current annotation tool could only function as a means to give an indication to someone anno-
tating reviews. This, or the annotation tool could be adapted to only distinguish positive sentiment, negative
sentiment and NA for each driver. Then, our model could give the predictions fully automated, although it
would make mistakes of course. Further research into better models using ideas from the discussion could
be done to tackle this. In the end, how to continue from here on depends on the wishes of a potential appli-
cation.
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Results using a different misclassification
matrix

Matrix A is chosen as

prediction(}), truevalue (=) | P | N | NA

p 0 3/5 | 6/5
N 3/5 0 6/5
NA 6/5 | 6/5 0

Figure B.1: Choice of matrix A
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.
Elastic net models
0.78 R B
0.77 - -
0.76 R B
0.75 - -
0.74 R B
0.73 - -
01 06 11 16 21 doc_term indicator mean tf_idf tf_idf_norm 0 0.5 0.75 1
word_count_threshold matrix_type elastic_net_alpha
(a) Effect of word count threshold. (b) Effect of matrix form. (c) Effect of Elastic net model.
0.78
0.76
0.74
0.72
0.70 = =
01 06 11 16 21 01 06 11 16 21 doc_term indicator mean tf_idf tf_idf_norm
word_count_threshold word_count_threshold matrix_type
elastic_net_alpha == 0 == 05 == 0.75 == 1 matrix_type == doc_term == indicator == mean w= tf_idf == tf_idf_norm elastic_net_alpha == 0 == 0.5 == 0.75 = 1

(d) Effect of word count threshold vs. (e) Effect of word count threshold vs. (f) Effect of matrix form vs. Elastic net
Elastic net model. matrix form. model.

Figure B.2: Main effects plots and interaction effects for the effects of the matrix form, word count threshold and Elastic net models. On
the y-axis is the AUC, value, on the x-axis the (first) varying parameter for its respective effects plot. Results were obtained using the
n1976-data set. Results were obtained using a 5-fold cross validation. / = 1 computation was run.
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Figure B.3: Main effects plots and interaction effects for the effects of the matrix form, word count threshold and Elastic net models. On
the y-axis is the AUC,, value, on the x-axis the (first) varying parameter for its respective effects plot. Results were obtained using the
n775-data set. Results were obtained using a 5-fold cross validation. / = 1 computation was run.



128 B. Results using a different misclassification matrix

Random forest models
0.81 - -
N ]/{\{/H 7 ‘/l\‘\(/’ 7
0.79 - -
0.78 -
01 06 11 16 21 doc_term indicator mean tf_idf tf_idf_norm default stratified
word_count_threshold matrix_type rf_form
(a) Effect of word count threshold. (b) Effect of matrix form. (c) Effect of Elastic net model.
0.82 R .
0.81
0.80
0.79
01 06 11 16 21 01 06 11 16 21 doc_term indicator mean tf_idf tf_idf_norm
word_count_threshold word_count_threshold matrix_type
rf_form == default == stratified matrix_type == doc_term == indicator == mean w= tf_idf == tf_idf_norm rf_form == default == stratified

(d) Effect of word count threshold vs. (e) Effect of word count threshold vs. (f) Effect of matrix form vs. Elastic net
Elastic net model. matrix form. model.

Figure B.4: Main effects plots and interaction effects for the effects of the matrix form, word count threshold and Elastic net models. On
the y-axis is the AUC, value, on the x-axis the (first) varying parameter for its respective effects plot. Results were obtained using the
n1976-data set. Results were obtained using a 5-fold cross validation. / = 1 computation was run.
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Figure B.5: Main effects plots and interaction effects for the effects of the matrix form, word count threshold and Elastic net models. On
the y-axis is the AUC,, value, on the x-axis the (first) varying parameter for its respective effects plot. Results were obtained using the
n775-data set. Results were obtained using a 5-fold cross validation. / = 1 computation was run.
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Figure B.6: Main effects plots and interaction effects for the effects of the matrix form, word count threshold and Elastic net models. On
the y-axis is the AUC, value, on the x-axis the (first) varying parameter for its respective effects plot. Results were obtained using the
n1976-data set. Results were obtained using a 5-fold cross validation. / = 1 computation was run.
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Figure B.7: Main effects plots and interaction effects for the effects of the matrix form, word count threshold and Elastic net models. On
the y-axis is the AUC,, value, on the x-axis the (first) varying parameter for its respective effects plot. Results were obtained using the
n775-data set. Results were obtained using a 5-fold cross validation. / = 1 computation was run.
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Figure B.8: Effects plot for the effect of driver number. On the y-axis is the AUC value, on the x-axis the varying parameter for the driver
number. A list of drivers corresponding to the driver numbers is provided. Results were obtained using the 71976-data set running elastic
net models for all levels of @ and both random forest options at all word count thresholds for all matrix types. Results were obtained using
a 5-fold cross validation. / = 1 computation was run.
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Figure B.9: Effects plot for the effect of driver number. On the y-axis is the AUC value, on the x-axis the varying parameter for the driver
number. A list of drivers corresponding to the driver numbers is provided. Results were obtained using the n775-data set running elastic
net models for all levels of & and both random forest options at all word count thresholds for all matrix types. Results were obtained

using a 5-fold cross validation. / = 1 computation was run.
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