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Abstract
Vision transformer (ViTs) models have shown higher accuracy, robustness and large 
volume data processing ability, creating new baselines and references for percep-
tion tasks. However, these advantages require large memory and high-performance 
processors and computing units, which makes model adaptability and deployment 
challenging within resource-constrained environments such as memory-restricted 
and battery-powered edge devices. This paper addresses the model deployment chal-
lenges by proposing a model approximation approach VI-ViT, for edge deployment 
using variational inference with mixed precision for processing multi-modalities, 
such as point clouds and images. Our experimental evaluation on the nuScenes and 
Waymo datasets show up to 37% and 31% reduction in model parameters and Flops 
while maintaining a mean average precision of 70.5 compared to 74.8 of the base-
line model. This work presents a practical deployment approach for approximating 
and optimizing Vision Transformers for edge AI applications by balancing model 
metrics such as parameters, flops, latency, energy consumption, and accuracy, which 
can easily be adapted to other transformer models and datasets.
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1 Introduction

The development of large vision models has improved baseline model performance 
and high-volume data handling capabilities [1]. Vision Transformers (ViTs) have 
shown benchmark performance for tasks such as classification and complex scene 
understanding due to their effective architecture and multi-head attention mecha-
nism, which supports a range of complex perception tasks, including image segmen-
tation and localization [2–6] (a representative architecture and processing pipeline 
of a multi-modality vision transformer is shown in Fig. 1). The fusion of point cloud 
and camera data helps to achieve accurate localization and precise classification in 
use cases such as autonomous vehicles. Combining these two modalities improves 
the model’s understanding of the environment, offering a more robust and accu-
rate perception in diverse conditions [7]. The scaled deployment of these models is 
challenging because of high computational, memory, and energy demands [1, 5, 8, 
9]. The deployment complexity further increases for use cases such as autonomous 
driving and intelligent traffic monitoring systems [5, 10], which require partial data 
processing and computation on the edge (e.g., edge assisted High-definition map 
update) rather than entirely on the cloud [11]. From the communication perspec-
tive, the high data throughput of these models can also result in additional power 
requirements on the edge device [12]. Thus, a balanced deployment using only edge 
or cloud-edge collaboration requires economic and environmental considerations. 
Economically, the cost of operating high-performance computing units in a distrib-
uted environment becomes unsustainable [12]. Environmentally, the high energy 
consumption and resulting carbon footprint require an adaptation of sustainable and 
green AI practices [11, 13].

The transformer model’s dense parameterization requires considerable onboard 
memory for operation, thus requiring a compressed and advanced optimization pro-
cess for efficient model deployment on the edge, which has limited onboard memory 

Fig. 1  Pipeline for multi-modality Transformer [6, 8]



Approximating vision transformers for edge: variational… Page 3 of 25    71 

and compute/processing power, as these devices are customized for efficiency and 
compactness [14, 15]. Popular compression and optimization techniques (a cat-
egorization of these techniques is shown in Fig.  2) such as normalization, model 
pruning, sparsification, and dimensionality reduction have resulted in compressed 
transformer models by reducing model parameters and weights, thereby reducing 
memory and compute demands while training and deploying models [5, 14–19].

Although the above methods produce optimized models with compressed archi-
tectures, they do not directly address issues such as high energy or power consump-
tion from the device. The self-attention mechanisms of transformers still require 
considerable processing power, and latency issues affect real-time data processing 
capabilities [16]. Additionally, compressing models leads to accuracy losses, affect-
ing performance in essential applications like autonomous driving. To address the 
above-mentioned challenges, this paper focuses on balanced trade-off mechanisms 
using variational inference and mixed-precision quantization for developing and 
deploying ViTs in resource-constrained environments (Our targeted optimization is 
also highlighted in Fig. 2). To address real-world complexity, the focus is given to 
multi-modal data processing applications such as object detection and classification 
using point clouds and images. Our research exploration and contributions in VI-
ViT are as follows: 

1. Adaptive variational inference strategy combined with mixed-precision quantiza-
tion to optimize vision transformers for efficient multi-modal data processing.

2. An approximate inference training algorithm for point cloud and image data to 
strike a balance between energy efficiency, accuracy and computing demands.

3. Optimized joint-loss function to balance quantization loss and model performance 
loss, and method evaluation using the multi-distribution mechanism.

Fig. 2  Optimization Techniques for Vision Transformers
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While reducing model parameters and compressing the model, our proposed 
approach1 also improves and balances computational efficiency, energy consump-
tion, and model accuracy. The proposed approach includes an algorithm which com-
bines mixed-precision and variational inference for multiple complex components 
for the transformer model. The method and strategy prove effective in developing an 
optimized lightweight model for edge AI applications. For comparison with base-
lines, we use models such as RangeViT [20], TransFusion [8] and Mobile-ViT [10], 
on the popular nuScenes and Waymo driving datasets by maintaining comparable 
training and testing splits. We use average precision (AP), mean average precision 
(mAP) and intersection-over-union (IoU) for model performance metrics. Flops, 
latency and energy are used as device performance metrics for comparison. We 
use speedup and the model’s respective energy consumption device for model and 
device correlation.

2  Background and related work

Vision Transformers (ViTs) architectures are efficient in capturing long-range 
dependence (LRD) and are capable of handling high-volume data as compared to 
the CNN and DNN models [21]. The architecture is inspired by self-attention mech-
anisms initially proposed for language processing architectures (transformers) to 
address the challenges and problems in the encoder-decoder architectures, which 
were previous baseline architecture [22]. The fundamentals of transformer archi-
tecture include patch embedding and feature extraction using self-attention blocks. 
The architecture divides the input image into patches to form embedded sequences 
for a classification task [21]. The encoder block then processes these embedded 
sequences, using multiple self-attention layers extracting low-level and high-level 
features from the data. A multi-layer perceptron (MLP) generates output prob-
abilities at the final stage. This combination allows ViTs to perform well on tasks 
like object classification, detection, and segmentation [1, 2, 8, 14, 16, 21–24]. To 
improve the performance, hybrid approaches combining ViTs with convolutional 
neural networks (CNNs) have been proposed [1, 16, 22]. These hybrid methods uti-
lize the CNNs and DNNs modules to improve local information processing while 
benefiting from the ViTs’ ability to model long-range dependencies. Such methods 
have resulted in hybrid architectures where transformer blocks are replaced with 
fully connected CNN. Similarly, CNN’s initial layers are modified with attention 
mechanisms to capture global features and enhance overall model performance.

Extending the application of ViTs from image-based tasks to processing point 
clouds introduces memory and computing complexities because of additional 
data processing. Existing transformers in this category include FusionViT [6], 
and Point-BERT [25], which depend on farthest point sampling and the K-near-
est-neighbour algorithm to generate input tokens. Other popular architecture 
using point cloud includes PointTransformer [26] and BridgedTransformer [27], 

1 Project and code can be accessed at: VI- VIT.

https://github.com/dewantkatare/VI-VIT
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which introduces a self-supervised pretraining approach, inspired by the U-Net 
architectures [16, 28]. These models and techniques have introduced new families 
or series of vision transformers capable of processing and fusing multi-modalities 
for applications that require segmentation, localization or detection using multi-
ple types of data.

Datasets like nuScenes and Waymo are standards in the autonomous driving 
domain [29, 30], providing diverse scenarios for rigorous testing and bench-
marking of models. Comparative studies using platforms like OpenPCDet offer 
insights into the performance of various models and techniques in perception 
tasks [31]. Such studies with balanced metrics approximation are essential for 
understanding solutions and identifying improvement areas. These datasets and 
SOTA models (CNN, DNNs) have been comprehensively covered in previous 
works [8, 17, 31–33]. As this paper focuses on ViTs, the following subsections 
discuss compression and optimization techniques for vision transformers, fol-
lowed by variational inference and mixed-precision quantization, which is also 
categorized in Fig. 2. The figure shows strategies for Vision Transformers (ViTs) 
into three main categories, addressing model compression and optimization. The 
first category targets model parameters and complexity, which includes: Patch 
Merging to reduce the number of operations by combining multiple input patches. 
Knowledge Distillation which involves training smaller models to replicate the 
performance of larger, pre-trained models. Pruning to remove less important 
parameters from the model, reducing size while maintaining performance. Effi-
cient Attentions include mechanisms like sparse and low-rank attentions that min-
imize the computational load. Residual Connections which help in the training of 
deep networks by allowing gradients to flow directly through the layers.

The second category is Training Optimization, which includes Batch Nor-
malization to target model inputs, stabilizing learning and accelerating conver-
gence. Gradient Accumulation which supports training with larger batch sizes 
by increasing gradients over multiple steps. Precision Management, which 
depends on techniques like mixed precision and quantization-aware training to 
optimize computational efficiency and model accuracy. The third category is 
techniques targeting energy efficiency, which includes Asynchronous Computa-
tion to increase throughput and reduce latency by performing computations in 
a non-blocking manner. Hardware Acceleration, that uses specialized hardware 
to enhance the efficiency of model computations. Offloading techniques which 
transfer the computation from local (e.g., edge) devices to more powerful servers 
or cloud systems. Software Acceleration to improve software and model process-
ing techniques to efficiently utilize hardware memory and processors; this tech-
nique further includes Approximate Inference to lower computational demands by 
approximating neural network outputs, and Variational Parameters to apply vari-
ational inference for optimizing parameter distribution, reducing power consump-
tion. The figure also covers “Application Specific Optimization Approaches," 
which include hybrid architectures, cross-domain adaptation, and context-aware 
modelling techniques, which can alternatively be used or categorized within the 
above three categories depending on the specific architectural requirements or 
applications.
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2.1  Efficient transformers in perception task

The efficiency of vision transformers can be categorized by their memory, param-
eter, and computational (processor) requirements [14, 15]. These efficiencies can be 
measured or correlated using performance metrics from the model and computing 
device [15, 16, 28]. A key factor contributing to the high memory requirement is the 
multi-headed self-attention mechanisms, bringing an overhead to the memory foot-
print of the model. The large number of parameters in the deep transformer architec-
ture and token embeddings also further increase memory requirements during train-
ing and inference. Similarly, the intermediate results generated during the forward 
pass of the model, such as attention scores and feature maps, need to be stored, add-
ing to the overall memory consumption. To tackle these challenges, computational 
and memory-efficient models such as EfficientViT [15] and TinyViT [2] have been 
proposed for optimized deployment on the edge. These models balance size and 
performance, reducing parameters and GFLOPs while maintaining baseline accu-
racy [2, 15]. Similarly, models such as LeViT and TinyCLIP show the potential to 
achieve computational efficiency and adaptive deployment on embedded platforms, 
which is essential for real-time applications [23, 34]. Another optimization approach 
for ViT’s efficient deployment on edge involves modifying the model’s computa-
tional graph and adapting it for available edge resources. This optimization method 
can be categorized within hardware-aware optimization for application-specific ViTs 
[35].

2.2  Variational inference

Variational inference (VI) provides an approach to reduce model complexity and 
optimizes them through balanced approximations. This approach depends on trans-
forming intractable integration problems, often faced in calculating posterior dis-
tributions in Bayesian inference, into solvable optimization problems [36]. VI 
introduces a simpler, parameterized family of distributions, known as variational 
distributions, which are used to approximate the true posterior distributions of 
model parameters [32]. The objective is to find the best approximation within this 
family by minimizing the divergence between the variational distribution and the 
true posterior, measured using the Kullback–Leibler (KL) divergence.

This transformation is required to convert the problem of Bayesian integration, 
which is computationally expensive, into a more tractable form. By optimizing 
the parameters of the variational distribution, VI simplifies the model’s computa-
tional requirements without trading model performance. For vision transformers, 
which involve complex, high-dimensional data and require substantial computa-
tional power, applying VI allows for efficient posterior approximations [33]. This 
method enhances the scalability of these models and supports real-time applications 
by reducing the computational overhead associated with traditional Bayesian meth-
ods [37]. In practice, when using VI for vision transformers, as seen in methods 
using energy-based priors for salient object detection, the approach involves jointly 
training the variational transformer with the baseline model. This training often uses 
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Monte Carlo-based maximum likelihood estimation, which helps fine-tune the vari-
ational parameters without requiring adversarial or complex variational learning net-
works [19]. The use of VI in this context shows its adaptability and effectiveness 
in handling the substantial computational demands of processing tasks like object 
detection, where maintaining a balance between model accuracy and operational 
efficiency is a priority [38].

Previous implementations of VI have explored in-context learning and Bayesian 
methods to improve the efficiency of posterior approximations. Techniques such as 
Prior-Data Fitted Networks utilize VI by sampling from a prior distribution within 
a supervised classification framework, enabling the learning of probabilistic pre-
dictions from masked label data. This approach speeds up the model convergence 
by following the principles of Gaussian processes, thereby enhancing the Bayesian 
inference process for practical applications in vision tasks [18, 19, 37, 38].

2.3  Mixed precision techniques

AI models such as CNN, DNN or ViTs are developed using several numerical com-
ponents or modules such as a convolutional layer, dense layer, dropout, multi-layer 
perception, multi-head self-attention, feed-forward network, decoders, etc. Depend-
ing on the AI model backbone or architecture, these modules or layers can involve 
computations in different numerical precision (e.g., 16-bit, 32-bit, etc.) and arith-
metic such as floating points or integers [11, 16, 17, 39]. Mixed precision usage in 
these models balances computational efficiency with model performance and has 
often been associated with training speed up, reducing memory requirements. Simi-
larly, in post-model training, when the network weights or model layers are quan-
tized with reduced precision (e.g., 32-bit to 16-bit), the gain can be seen in model 
inference metrics [27, 40, 41]. Such techniques are particularly beneficial in compu-
tational complex models like ViTs, which include multi-precision numerical compo-
nents and modules. Multiple mixed precision training strategies, resulting in faster 
model convergence on single or multiple GPUs, have been previously proposed for 
CNN, DNN and RNN, [40, 42, 43].

For the ViTs, Wang et al. explored mixed precision techniques to optimize model 
deployment on edge devices by achieving a balance between power consumption 
and performance [44]. Post-training quantization of vision transformer, which 
adjusts weights and activations of the network to lower precision format after the 
model is trained, is combined with mixed precision formats to enable efficient 
deployment and inference on resource-constrained devices. In [45], the proposed 
method includes the integration of SmoothQuant with Bias (SQ-b) to address acti-
vation asymmetry and Optimal Scaling Factor Ratio Search (OPT-m) to automate 
quantization parameters while balancing model performance and model compres-
sion efficiency [45].

Another method proposed for efficient model inference includes an adaptive 
attention shrink module for identifying contributing patches and bit-width adjust-
ments [46]. Within a similar scope, a mixed precision quantization using layer-wise 
relevance propagation has been proposed in the post-training optimization category 
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[47]. The proposed method improves quantization performance for ViTs by com-
bining a novel clipped channel-wise quantization method and explainability-based 
mixed-precision bit allocation [47]. Another quantization strategy for faster model 
training and convergence includes quantization-aware training, where quantization 
on weights or layers is directly applied during the model training process to adjust 
model complexity and balance model performance metrics [44, 45]. These tech-
niques are also used for the model fine-tuning process for specific devices or AI 
accelerators. These studies show that mixed precision approximation is valuable for 
enhancing the efficiency of complex models like ViTs, especially in scenarios where 
computational resources are constrained. A comparison of strategies can be seen in 
Table 1.

3  Method

Considering the discussed memory and computational requirements of the multi-
modalities transformers, we aim to reduce the model size and computational com-
plexity of the baseline transformer model (M) using a combination of mixed-pre-
cision quantization and variational inference. The resulting optimized model M∗ 
(also referred to as LiteVit in the following section) will have a favourable trade-off 
between model performance and computational efficiency. However, to obtain the 
optimized model, the following challenges need to be addressed: 

1. Determining optimal values for mixed-precision quantization for two modalities.
2. Assessing the impact of cross-modal bit assignment on overall model efficacy.
3. Achieving balanced metrics (e.g., energy vs accuracy).
4. Combining the optimization factors of variational inference and mixed-precision 

quantization.

The remainder of this section covers the proposed algorithm while discussing the 
above-mentioned challenges in dedicated subsections. The discussion considers 
“RangeVit" as the model that needs to be optimized for multi-modal data containing 
the properties of the nuScenes or Waymo datasets.

3.1  Overview of transformer version

We use Transfusion and RangeViT versions labelled RangeViT-v1, RangeViT-v2, 
and RangeViT-v3 as baseline for our training and testing setup. The versions dif-
fer primarily in channel size, affecting the number of parameters and the model’s 
overall complexity. RangeViT-v1, with a channel size 64, contains approximately 
22.7 million parameters, positioning it as the most lightweight model among the 
three. RangeViT-v2 increases the channel size to 128, raising its parameter count to 
around 23.7 million. Lastly, RangeViT-v3, with the largest channel size 192, con-
sists of approximately 25.2 million parameters. The purpose of using these versions 
is to evaluate how model size and complexity alterations influence computational 
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efficiency and performance, especially in resource-limited settings like edge com-
puting. These versions are concisely summarized in the table below, which details 
their specific configurations regarding channel size, layers, heads, GFLOPs, and the 
total number of parameters. Table 2 provides a clear overview of the architectural 
differences between the versions, which will be foundational in our subsequent anal-
ysis and optimization using mixed-precision quantization and variational inference. 
The use of these versions and configurations is driven by the hypothesis that testing 
and evaluating the model with varying model sizes can impact the performance and 
efficiency of Vision Transformers in constrained environments like edge computing. 
These versions will be the baseline architectures for further optimization using our 
proposed mixed-precision and VI algorithms.

3.2  Mixed‑precision

Mixed-precision allows different model components/blocks to operate at different 
numerical precisions. High-precision calculations are reserved for critical parts of 
the model, while other parts use lower precision without significantly affecting over-
all performance. This strategy reduces the model’s memory footprint and speeds up 
computation, especially beneficial for edge devices with limited memory and com-
pute resources. In our approach, we chose the point cloud processing backbone to 
operate at lower precision due to its inherently large and complex nature, which 
demands substantial computational power. Vision Transformer pipeline handling 2D 
image analysis operates at higher precision to preserve the quality of visual feature 
extraction. This selective precision approach ensures optimal resource utilization 
[42, 45]. The choice of precision levels for different modules/subgroups was based 
on initial empirical analysis and performance evaluation, showing that the precision 
levels effectively balance computational load and accuracy.

1) Principles of Mixed Precision: For multi-modal models, separate precision 
tuning is essential. This step involves identifying distinct model components (sub-
groups) for each data type and tuning their precision levels independently. The opti-
mal bit-width for each subgroup is determined by minimizing the loss function spe-
cific to its modality, as shown in Eq. 1.

Here, M is the model used for optimization(training), S represents a subgroup within 
the model, corresponding to either camera or LiDAR data, and bw represents the 
Bit-width used for quantization of the subgroup. Loss represents the function used 

(1)BitWidth(S) = argmin
bw

Loss(Quant(M(S), bw))

Table 2  RangeVit configuration 
used in this paper

Model Chan Layers Heads GFLOPs Param

v1 64 12 6 21.4 22.7M
v2 128 12 6 25.5 23.7M
v3 192 12 6 27.9 25.2M



Approximating vision transformers for edge: variational… Page 11 of 25    71 

to evaluate the effectiveness of quantization. Quant represents a function that applies 
quantization to the weights of subgroup S at a specified bit-width bw.

2) Implementation with Modalities: In LiTeViT, the point cloud processing 
backbone operates at lower precision to manage computational load, while the Vision 
Transformer segment handling 2D image analysis operates at higher precision to pre-
serve visual feature extraction quality. This selective precision approach ensures opti-
mal resource utilization. Subgroup-based quantization is applied after determining the 
optimal bit-width for each subgroup, as shown in Eq. 2.

Here QuantizedS refers to the quantized version of the weights for subgroup S. M(S) 
represents the weights of subgroup S in the model. Subgroups could be different 
module/blocks (e.g., encoder) of the network that may benefit from varying levels 
of precision, such as layers responsible for processing point cloud data versus layers 
handling 2D image data. scaleS represents factor computed for subgroup S, based 
on the range of weights and the selected bit-width. This factor adjust the range of 
the weight values in subgroup S to a standard scale that aligns with the precision 
level determined for optimal performance. The scaling factor helps in maintaining 
the dynamic range of the original weights after quantization, ensuring that important 
information is not lost due to reduced precision.

3) Cross-Modal bit-assignment: The cross-modal bit-assignment process 
is designed to ensure that adjustments in the quantization of one data modality 
(e.g.,LiDAR) balance the metrics rather than reducing the overall model performance 
metrics. This is achieved through an optimization strategy which considers the joint 
performance metrics of both modalities (also shown in Eq. 3), which is described as 
following:

Here BitA refers to the optimized bit assignments for the subgroups or different 
model components. The Optimize function strategically adjusts these bit assign-
ments by evaluating their impact through the Cross-modal performance (CMP). 
This function specifically measures how changes in bit assignments during train-
ing affect the combined output quality and performance metrics of the camera and 
LiDAR processing pipeline, ensuring that reduction in does not affect overall model 
performance.

4) Loss Function: The total loss function includes multiple independent losses that 
balance the quantization error for both camera and LiDAR data, penalizing individual 
differences in performance between the two modalities. This loss function guides the 
model toward an optimal configuration, as shown in Eq. 4.

Here L is the total loss function. Lquant represents the quantization loss for each 
modality (Camera or LiDAR). � is a hyperparameter balancing the quantization loss 

(2)QuantizedS = round

(
M(S)

scaleS

)

(3)BitA = Optimize(CMP(Cam, Li))

(4)L = Lquant(Cam) + Lquant(Li) + � ⋅ Lreg
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and the penalty term. Lreg represents the penalty term for significant performance 
differences between the camera and LiDAR modalities. As an example of how 
each component of the loss function contributes to the overall model training pro-
cess, ensuring a balanced optimization across different modalities and regulariza-
tion, we show values logged at epoch 16 as Lquant(Cam) = 0.045 , Lquant(Li) = 0.038 , 
Lreg = 0.012 , � = 0.1 . The total loss L for the above values is computed as:

The loss values show an early phase in the training where the model starts to show 
improvements in handling quantization errors while maintaining a balance with reg-
ularization to prevent overfitting. This stage shows the effectiveness of the mixed-
precision and quantization strategies in reducing computational complexity without 
higher loss in model accuracy.

Quantization, by nature, involves non-differentiable operations, posing a chal-
lenge for gradient-based optimization methods. To address this challenge Gradi-
ent approximation techniques such as the Straight-Through Estimator (STE) [39] 
are used. STE allows for the approximation of gradients through non-differentiable 
quantization functions, enabling backpropagation and thus the learning process in 
a mixed-precision setting. This technique is crucial for optimizing the quantized 
model effectively.

Here �L

�QuantWt
 is the gradient of the loss function with respect to the quantized 

weights. STE represents the Straight-Through Estimator, a method used for approxi-
mating gradients through non-differentiable functions and ( �L

�Wt
) represents the gradi-

ent of the loss function with respect to the original (non-quantized) weights.

3.3  Variational inference

Variational inference introduces the Bayesian approach to model training. The 
method allows us to replace deterministic weights with distributions, transforming 
the model into a probabilistic one. By doing so, the model learns not just a single set 
of optimal weights but a distribution of possible weights, offering a robust way to 
gauge model uncertainty and generalize under diverse conditions.

Vision Transformer Compression: In applying variational inference to ViT, 
each weight of the transformer is represented as a Gaussian distribution, charac-
terized by its mean and variance. During training, these distributions are continu-
ally updated, leading to a model that dynamically adjusts its complexity based on 
the certainty of its predictions. This results in a more compact and efficient model, 
as weights with high variance-indicating less impact on the model’s output can be 
pruned or allocated lower precision in the mixed-precision setting.

Loss Function: The variational loss function, known as the Evidence Lower 
Bound (ELBO), is central to variational inference. It is formulated to maximize the 

L = 0.045 + 0.038 + 0.1 × 0.012 = 0.0842

(5)
�L

�QuantWt
= STE

(
�L

�Wt

)
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likelihood of the observed data while simultaneously regularizing the complexity of 
the model, thereby preventing overfitting. The ELBO balances model accuracy and 
compactness, a key requirement for efficient edge deployment.

In this equation, q(�|D) is the variational distribution of the model parameters � 
given the data D. The first term refers to the expected log-likelihood of the data, and 
the second term is the Kullback–Leibler divergence between the variational distribu-
tion and the prior distribution p(�) . This formulation approximates the true posterior 
distribution in a computationally efficient manner.

Implementation: In Vision Transformers, variational inference is implemented 
by treating each weight as a variable drawn from a Gaussian distribution. During 
training, both the mean and variance of these distributions are optimized. This opti-
mization is reflected in the ELBO, where the model learns to balance the fit to the 
data against the complexity of the weight distributions. The outcome is a model that 
effectively captures the uncertainty in its predictions, leading to a more robust and 
generalized performance. Integrating these principles with the previously discussed 
mixed-precision quantization strategy, we achieve a compact and efficient model in 
terms of computational resources and capable of maintaining high accuracy, which 
is essential for edge computing applications.

3.4  Algorithm for approximation using variational parameters

Our proposed algorithm integrates mixed-precision quantization and variational 
inference for training Vision Transformers (ViTs). This approach optimizes compu-
tational efficiency and model accuracy, particularly for data-intensive applications 
using large datasets such as nuScenes and Waymo. The training process begins 
by initializing the Vision Transformer model (M) with variational parameters (V), 
which allows the model to learn a probabilistic distribution of weights. This Bayes-
ian approach enhances the model’s ability to manage uncertainty and generalize 
across diverse conditions. The subsequent steps involve:

• Data Processing: The dataset (D) is divided into camera and LiDAR batches, 
enabling precision-specific processing. This ensures that each data modality is 
handled appropriately.

• Mixed-Precision Quantization: Different precision levels are assigned to vari-
ous parts of the model based on the bit-width range (B), optimizing computa-
tional efficiency. This selective precision approach reduces computational load 
while maintaining predictive accuracy.

• Loss Computation: The training loss ( Ltrain ) and the variational inference loss 
( Lvar ) are computed. The ELBO (Evidence Lower Bound) regularizes the mod-
el’s complexity. The total loss ( Ltotal ) is a weighted sum of these two, balancing 
model accuracy and complexity.

(6)ELBO = �q(�|D)[log p(D|�)] − KL(q(�|D)||p(�))
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The algorithm’s core includes gradient approximation techniques, such as the 
Straight-Through Estimator (STE), which enable effective backpropagation in 
mixed-precision environments. Regular validation on a separate validation set ( Dval ) 
and iterative updates of bit assignments further optimize performance across modal-
ities. Upon completing the training epochs, the final model weights ( �∗ ) are derived 
based on optimized bit assignments ( O∗ ). The model is further refined using vari-
ational inference criteria, resulting in an optimized model ( M∗ ) suitable for real-time 
applications, especially in resource-constrained edge computing environments.
Algorithm 1  Training Transformers with Mixed-Precision and Variational Inference

Optimization for Edge: Deploying LiTeViT models on NVIDIA Jetson Xavier 
NX requires a comprehensive approach that implements model approximation with 
precision optimization for specific hardware adaptations. This subsection discusses 
three systematic methodologies for integrating NVIDIA’s TensorRT with specific 
optimization techniques to enhance the efficiency of LiTeViT on the Xavier NX.

1) TensorRT Integration and Model Optimization: The LiTeViT model is first 
converted into a TensorRT-compatible format using NVIDIA’s TensorRT API. This 
step involves translating the high-level model architecture into an optimized com-
putational graph, which is deployable in the Xavier NX environment. The next step 
is Precision Optimization:. By using the TensorRT’s mixed-precision approach, the 
model configurations are adjusted to FP16 and INT8 precision levels. This precision 
calibration is used for minimizing memory footprint and improving the inference 
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speed. The last step in this method is Layer Fusion:, as the TensorRT’s layer fusion 
feature combine multiple computational layers into fewer and more efficient opera-
tions. This optimization reduces the overhead associated with memory or communi-
cation between layers, thus accelerating the computational throughput and reducing 
latency.

2) Advanced Quantization Techniques: Following the model conversion, another 
approach is to use INT8 quantization to compress the model further. This process 
reduce the model size, allowing for efficient utilization of the memory, which is 
important for maintaining high throughput on memory-constrained edge devices. 
Quantization-aware training can be used to ensure the robustness of the model 
against precision losses introduced by quantization. This technique adjusts the 
model parameters during the fine-tuning phase to accommodate the reduced preci-
sion, thereby preserving the accuracy post-quantization.

3) Dynamic Voltage and Frequency Scaling (DVFS): The third technique is to use 
the inbuilt DVFS to dynamically modulate the operating frequency and voltage of 
the Jetson Xavier NX based on the workload demands. This adaptive scaling man-
ages power consumption and thermal output during compute intensive model infer-
ence tasks. The DVFS settings are aligned with the phases of model execution with 
TensorRT, and this synchronization ensures that the system resources are optimally 
allocated for energy efficiency during computationally intensive tasks. These meth-
odologies improve the deployment of LiTeViT models, by ensuring that they meet 
the Jetson Xavier NX’s computational constraints and deliver optimal performance 
in real-time applications.

4  Setup and experiments

This section covers the architecture and respective fundamental blocks of the Ran-
geViT model, and its versions (also shown in Table 2) are explored in this paper. 
RangeViT [20] processes both 2D image and 3D point cloud data, making it suitable 
for applications such as autonomous driving. It utilizes a dual-data stream approach 
to handle camera and LiDAR data, incorporating the self-attention mechanism of 
transformers to understand complex spatial relationships. A convolutional neural 
network component in RangeViT projects 3D point cloud data into a 2D space, eas-
ing the computational burden while retaining essential spatial details. The fusion of 
2D and transformed 3D data within RangeViT enhances its capacity to form a com-
prehensive understanding.

Hardware Setup: For training the RangeViT and TransFusion models, our train-
ing uses DelftBlue supercomputer configurations. As the nuScenes dataset has a 
high memory requirement, we use a computing configuration which includes Intel 
Xeon high-performance multi-core processor with NVIDIA GPUs V100. The setup 
uses 4 GPUs with 16 GB of VRAM to handle large model sizes and data process-
ing requirements. High-end system memory is required with the configuration to 
accommodate the nuScenes and Waymo datasets and to facilitate efficient data load-
ing or input feature maps. This configuration ensures sufficient computational power 
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for training these complex vision transformer models for segmentation and detection 
using LiDAR-camera fusion for vision applications.

Dataset and Preprocessing: The nuScenes dataset [29], is a comprehensive 
dataset designed for autonomous driving applications (sample frames are shown in 
Fig. 3a). It provides a diverse range of scenarios captured in urban environments, 
encompassing both camera images and LiDAR point clouds. It consists of 1,000 
scenes captured across Singapore and Boston (USA). These scenes are of around 
20 s. It further consists of 16 semantic classes. To train our model, we follow the 
RangeVit method of data preprocessing, modality handling and splitting 28,130 
training and 6,019 validation point cloud scans [20].

Training with Algorithm: The training approach is used to optimize the mod-
els for edge computing, focusing on efficiency and model complexity balance. We 
use the Adam optimizer for training, with settings of �1 = 0.9, �2 = 0.999, and a 
weight decay of 0.0001, with a batch size of 32. We start with 0.1 and increment the 
learning rate using cosine decay in every sequence of epochs. This approach ensures 
a comprehensive optimization of the models. Post-training, each RangeViT (mod-
els with different configurations) is adapted or modified as a LiteViT version with 
reduced model size, balanced computational efficiency, and performance. These 
LiteViT models are then evaluated against accuracy, latency, and energy efficiency 
benchmarks, affirming their effectiveness and adaptability for real-world edge com-
puting applications. The balanced optimization of RangeViT models into more 
efficient LiteViT versions shows the efficiency of the proposed training algorithm, 
highlighting its potential in the model acceleration of vision transformers for edge 
deployment scenarios.

5  Results and evaluation

After obtaining the LiteVit models, we compare the results with models that have 
been benchmarked before on nuScenes and are within the same range of parameters, 
flops, and performance.

Model Evaluation: We observed a variation in performance among different 
models when tested on the nuScenes dataset to capture mIoU, Latency and GFLOPs. 
Table 3 presents these metrics in detail. With fewer parameters and lower GFLOPs, 

Fig. 3  Sample frame from the dataset
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LiTeViT model versions outperform or match the more computationally intensive 
TransFusion and RangeViT models in mean Intersection over Union (mIoU), while 
having lower latency. For instance, LiTeViT-1, with just 10.3M parameters, achieves 
a competitive mIoU of 72.9% at a latency of 122.9 ms, showcasing its suitability for 
resource-constrained scenarios without compromising performance.

We also evaluate the trained model (three-versions) performance on the Waymo 
validation dataset (sample shown in Fig.  3b) using object detection task, specifi-
cally for the vehicles (car) and pedestrians class. The evaluation metrics, as shown 
in Table 4a, present Average Precision (AP) and Average Precision with Heading 
(APH) for both vehicle and pedestrian categories. In evaluation, RangeViT models 
show high performance, with RangeViT-v3 reaching AP scores of 69.4 for vehicles 
and 69.9 for pedestrians. LiteViT versions show balanced efficiency and accuracy, 
with LiTeViT-v3 having an Average Precision (AP) score of 67.4 for vehicles and 
72.4 for pedestrians, alongside Average Precision with Heading (APH) scores of 
67.1 and 70.0, respectively. These results show the LiteViT models’ adeptness in 
balancing computational efficiency with competitive accuracy, showcasing their 
potential for real-world application.

Energy Evaluation: Table 4b compares various models tested on the nuScenes 
validation set. The LiteViT versions, particularly LiTeViT-1 and LiTeViT-3, show a 
balance between accuracy and energy consumption. LiTeViT-1, consuming around 
121.0 mJ, attains a mean Average Precision (mAP) of 70.5%, while LiTeViT-3, 
with an energy usage of 379.6 mJ, shows an mAP of 78.3% among tested models. A 
direct comparison can be seen with the energy-intensive TransFusion model, which 
shows an mAP of 66.8% and requires around 507.4 mJ for processing the same batch 
size. The RangeViT series shows performance improvements in mAP, resulting in 
RangeViT-3’s 78.3% mAP at an energy cost of 502.9 MJ (these power metrics were 
measured using nvpmodel GUI). The approach and results discussed for variational 
inference use a Bayesian methodology in model training, transforming deterministic 
weights into probabilistic distributions. To observe the potential and benefits of the 
training algorithm, this subsection explores the implementation of the Laplace dis-
tribution as an alternative to the Gaussian distribution within transformers, analyz-
ing its impact on model performance and efficiency.

Table 3  Trained model 
evaluation on the nuScenes 
validation set using computation 
and model performance metrics 
(Flops, Latency and mIoU)

Model #Para GFLOPs Latency (ms) mIoU(%)

TransFusion 27.8M 38.3 268.2 69.3
RangeViT-1 21.4M 35.4 188.2 65.1
RangeViT-2 25.5M 38.6 212.5 69.0
RangeViT-3 27.9M 39.4 236.9 74.6
LiTeViT-1 10.3M 24.4 122.9 72.9
LiTeViT-2 16.7M 32.1 145.1 73.8
LiTeViT-3 19.1M 33.7 155.2 74.6
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5.1  Exploring the laplace distribution

Characterized by its mean � and scale parameter b, the Laplace distribution offers 
a unique profile for weight distributions with heavier tails. The probability density 
function (PDF) for the Laplace distribution in our case is defined as:

In our transformer model, weights are represented as variables drawn from this dis-
tribution. The optimization process adjusts � and b to maximize model fit while reg-
ularizing its complexity, as encapsulated by the Evidence Lower Bound:

where q(w|D) is the variational distribution of model parameters w given the data D, 
and p(w) is the prior distribution.

Comparative Analysis: We compare the Laplace distribution against mod-
els using Gaussian variational inference across metrics such as model accuracy, 
GFLOPs, and latency in Table  5. The analysis indicates that using a Laplace 

f (x|�, b) = 1

2b
exp

(
−
|x − �|

b

)
.

ELBOLaplace = �q(w|D)[log p(D|w)] − KL(q(w|D)||p(w)),

Table 4  Results on Waymo and nuScenes dataset with a batch size of 32

Vehicle Pedestrian

 Model AP APH AP APH

(a) Results on the Waymo open dataset
Transfusion 58.4 57.9 56.8 54.3
FusionViT 59.5 58.4 54.6 54.8
RangeViT-v1 64.4 63.7 68.9 57.2
RangeViT-v2 68.1 68.2 71.4 66.0
RangeViT-v3 69.4 69.1 69.9 66.8
LiTeViT-v1 61.3 60.6 65.5 64.1
LiTeViT-v2 63.3 62.9 68.8 56.4
LiTeViT-v3 67.4 67.1 72.4 70.0

Model mAP Car Ped E(mJ)

(b) Energy(mJ) consumption for a batch
TransFusion 66.8 74.1 59.5 507.4
BEVFusion 67.4 71.9 62.9 490.2
VPFNet 62.9 67.1 58.7 495.7
RangeViT-1 74.8 80.3 69.3 416.2
RangeViT-2 75.9 81.7 70.1 480.1
RangeViT-3 78.3 86.2 70.4 502.9
LiTeViT-1 70.5 78.2 62.7 121.0
LiTeViT-2 71.2 76.9 65.5 194.6
LiTeViT-3 78.3 81.8 74.6 379.6
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distribution for variational inference enables the LiTeViT models to maintain com-
petitive mIoU percentages while achieving reductions in GFLOPs and latency. 
These results suggest an effective optimization for resource-constrained edge com-
puting scenarios, balancing performance with computational demand.

In analyzing latency as a function of precision level (Fig. 4), the models shows 
an inverse relationship. Higher precision configuration results in increased latency, 
while lower precision improves processing speed. This pattern shows the advantages 
of precision scaling in critical real-time applications, such as those in autonomous 
vehicles where rapid data processing is essential. LiTeViT-1 and LiTeViT-2 show 
improvements in reducing latency, especially at 8-bit precision, reinforcing the prac-
ticality of using lower precision levels for non-critical components of the models. 
The mixed precision configuration can be considered adaptable to varying computa-
tional demands, ensuring that the models maintain acceptable performance thresh-
olds without unnecessary delays. While these tests are run on general GPU devices, 
as discussed earlier, the potential of proposed techniques can also be explored with 
custom accelerators designed for application-specific tasks.

The memory usage of models in Fig. 5 shows the impact of precision adjustments 
on system resource allocations. As expected from theory, the lower precision levels 
reduce the memory footprint, with LiTeViT-1 and LiTeViT-3 at 8 bits. This reduc-
tion is necessary for edge devices typically constrained by onboard memory (RAM) 
resources. By using lower precision, these models can handle larger datasets or run 

Table 5  Comparative results using Gaussian and Laplace distributions for Variational Inference

Model Distribution #Params GFLOPs Latency (ms) mIoU (%)

TransFusion Gaussian 27.8M 38.3 268.2 69.3
LiTeViT-1 Laplace 10.3M 23.0 120.5 72.4
LiTeViT-2 Laplace 16.7M 30.7 142.8 73.5
LiTeViT-3 Laplace 19.1M 31.9 150.0 74.1

Fig. 4  Latency
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multiple applications simultaneously without significantly compromising overall 
performance. The mixed precision approach further improves this advantage by 
selectively applying precision levels, thus optimizing memory usage without sac-
rificing essential model accuracy. The combination improves operational efficiency 
and extends these models’ applicability to various real-time and memory-sensitive 
environments.

Figure 6 compares energy consumption and precision level across the three ver-
sions of the LiteViT model. As the precision decreases from 32 bits to 8 bits, the 
energy required by the models drops, with the most decrease observed in LiTeViT-1. 
This trend is consistent across all models, showing the efficiency of adopting lower 
precision bits. The implementation of mixed precision (MP) shows a strategic bal-
ancing of lower energy demands while still keeping higher precision in the model’s 
critical components (i.e., affecting accuracy). Overall, these observations confirm 
that strategic precision scaling across model components can lead to improvements 

Fig. 5  Memory

Fig. 6  Energy Comparison
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in energy efficiency, latency, and memory usage, which are essential for the deploy-
ment of deep learning models in resource-constrained edge devices.

5.2  Exploration of quantization depth

Building on our proposed algorithm (Section  3.4) for training transformers with 
mixed-precision and variational inference, this subsection explores the “Quantiza-
tion” step, quantitatively evaluating its impact on computational efficiency and 
model accuracy. The “Quantization” is applied for adjusting bit-width assignments 
across high-precision model components (e.g., FFN and MHSA) to reduce the com-
putational bound without significantly affecting model performance. This process is 
necessary as it enables the precision levels to enhance model efficiency on dedicated 
hardware.

Comparative Analysis: We present a comparative analysis of the LiteViT mod-
els by showing the mixed-precision quantization configurations, a mix of floating 
points and integers in Table 6. The table shows GFLOPs and latency measurements 
for configurations with varying precision levels against the baseline models to high-
light the improvements.

This analysis shows the efficiency gains for LiTeViT-1 under the Mixed Preci-
sion A configuration, which shows a significant reduction in GFLOPs and latency, 
attesting to the approach’s effectiveness in optimizing computational demands while 
preserving a high level of accuracy. The evaluation of our algorithm’s “Apply Quan-
tization" step highlights its role in achieving an optimal balance between compu-
tational efficiency and model performance. Future work will explore the automa-
tion of precision-level assignments and the potential integration of mixed-precision 
quantization with other model optimization techniques to enhance the deployment 
of Vision Transformers in more memory and compute-constrained environments.

Evaluation of the proposed training approach shows improvements in infer-
ence speedup and energy efficiency across all three versions of the LiTeViT model. 
The results, also covered in Table 7, show that each version of the LiTeViT model 
improves speed up and energy saving. The first row is used as a baseline or refer-
ence for comparison (configuration mentioned in Table 5). The second and third row 
shows results by varying the batch size from 32 to 64 respectively. Among the three 
versions, the best performance is seen in the LiTeViT-3 for speedup and energy sav-
ings. As seen in the table, the processing speed and energy saving decrease with 
the data size (batch) increase, which can be further optimized using data processing 

Table 6  Quantization Strategy and Performance Outcomes (MP = Mixed Precision)

Model Configuration Precision (Bits) GFLOPs Latency (ms) mIoU (%)

Baseline (Full Precision) 32 39.4 268.2 79.7
LiTeViT-1 (MP A) Encoder: 16, Others: FP8 20.3 100.7 72.4
LiTeViT-2 (MP B) Encoder: 16, Others: Int8 28.9 118.3 73.1
LiTeViT-3 (MP C) FP 16 29.5 127.5 73.9



 D. Katare et al.   71  Page 22 of 25

mechanisms in the model backbone. The overall results in this table further show the 
effectiveness of applied optimizations, positioning these models as viable solutions 
for performance-critical and resource-constrained environments.

5.3  Summary and key takeaways

The work covers efficient training and inference strategies for high-volume data-
dependent vision transformer models. The key exploration and learning can be 
described as: 

1. Performance Balance: The “lite" versions achieve a balanced trade-off between 
computational efficiency and accuracy. Utilizing our proposed hybrid training 
method, these models maintain robust performance with reduced parameter, high-
lighting their suitability for environments with limited computational resources.

2. Energy Efficiency: The on-device energy evaluations show the capability of 
achieving high accuracy while conserving power. LiTeViT-3 model shows the 
highest accuracy, whereas LiTeViT-2 offers an optimal balance between energy 
consumption and accuracy, making it ideal for sustained deployment in energy-
sensitive applications.

3. Quantization: By implementing mixed precision strategies, the LiTeViT models 
show effective reductions in computational demand and energy usage without a 
significant drop in model performance. Particularly, LiTeViT-2 and LiTeViT-3 
during increased shows speedup and savings compared to the baseline.

6  Conclusion

This paper proposes an optimization approach for ViTs to facilitate their deployment 
within the edge environment by exploring mixed-precision quantization combined 
with variational inference. The paper addresses the challenge of high-performance 
computational requirements arising from complex layers/components in the ViTs. 
These complexities make them computationally expensive and energy-demanding, 
a major challenge for edge deployment. By integrating variational inference and 
mixed-precision quantization, our training and approximation methodology reduce 
computational resource requirements and maintain the accuracy levels necessary 

Table 7  Results for Inference (a batch) Speedup and Energy Saving on models

Speedup ( ×) Energy Saving ( ×)

LiTeViT-1 LiTeViT-2 LiTeViT-3 LiTeViT-1 LiTeViT-2 LiTeViT-3

1.00 1.00 1.00 1.00 1.00 1.00
1.84 1.91 1.95 1.72 1.83 1.90
1.29 1.15 1.61 1.21 1.22 1.58



Approximating vision transformers for edge: variational… Page 23 of 25    71 

for practical applications. To explore the balance between model accuracy and per-
formance metrics, we evaluate our proposed method on the nuScenes and Waymo 
datasets, showing practical optimization strategies of AI models for edge comput-
ing. While recognizing the challenges of environmental variability and the need for 
diverse training datasets, our work can be considered as a step for future research to 
enhance model adaptability and efficiency in real-world scenarios. Progress in this 
research area can lead to optimized AI models that are adaptive towards arithmetic 
and reduced precision, thus aligning the concept of limited computational resources, 
model performance and the need for sustainable solutions.
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