FROM DEFINITION TO APPLICAT

Mohammad Abolhassani

TR Y0220

Stellingen

behorende bij het proefschrift

BUSINESS OBJECTS:
FROM DEFINITION TO APPLICATION

Mohammad Abolhassani

1. Het onderbrengen van objecten in vijf hoofdcategorieén geintroduceerd in dit
proefschrift is een duidelifke en welgedefinieerde categorisatie van objecten in
informatiesystemen.

2. Het definiéren van Business Objects op basis van de in de eerste stelling genoemde
categorisatic levert een degelijk uitgangspunt voor een universeel aanvaardbare
definitie van Business Objects.

3. Het toewijzen van elke (macro-)functionaliteit van (business) softwaresystemen aan
een afzonderlijk(e) deel (laag) heeft voordelen voor het modelleren en realiseren van
deze systemen. De lagen kunnen betrekking hebben op de User Interface,
Presentation Logic, Business Logic, Information Logic en Data Source.

4. Standaardisatie is een hoofdkenmerk en voordeel van Business Objects vergeleken
met andere (objectgeoriénteerde) methoden voor het modelleren van (business)
systemen en het realiseren van (business) softwaresystemen.

5. Het ontdekken van de analogie tussen verschillende gebieden van de wetenschap en
technologie is een interessante en behulpzame ervaring.

6. Wetenschap gaat over het kennen van de “werkelijke wereld” en technologie gaat
over het veranderen van de “werkelijke wereld” in de "ideale wereld”. Hoewel, er is
maar één “werkelijke wereld” maar er zijn veel “ideale werelden”.

7. Op basis van de bestaande prestaties van wetenschap en technologie zou de wereld er
veel beter uit kunnen zien.

8. Mensen zijn geen, en horen niet behandeld te worden als, “’business objects”.

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd door de
promotor: Prof.dr.ir. J. L. G. Dietz.

Propositions

attached to the thesis

BUSINESS OBJECTS:
FROM DEFINITION TO APPLICATION

Mohammad Abolhassani

1. Dividing objects into the five main categories introduced in this dissertation is a clear
and well-defined categorization of objects in information systems.

2. Defining Business Objects based on the in the first proposition mentioned
categorization provides a solid basis for a globally acceptable definition of this
concept.

3. Assigning each (macro) functionality of (business) software systems to a separate part
(layer) leads to advantages in modelling and realizing these systems. The layers can
be related to the User Interface, Presentation Logic, Business Logic, Information
Logic and Data Source.

4. Standardization is a main characteristic and advantage of Business Objects compared
to other (Object-Oriented) approaches in modelling (business) systems and realizing
(business) software systems.

5. Discovering the analogy between different areas of science and technology is an
interesting and helpful experience.

6. Science is about knowing the “real world” and technology is about changing the “real
world” to the ideal world”. However, there is only one “real world” but there are
many “ideal worlds”.

7. On the basis of the existing achievements in science and technology, the world could
be a much better place.

8. People are not, and should not be treated as, “business objects”.

These propositions are considered defendable and as such have been approved by the
supervisor: Prof.dr.ir. J. L. G. Dietz.

\ f N

Yooy
BUSINESS OBJECTS: 7885 y

}”/’{zf'fﬁ

FROM DEFINITION TO APPLICATION
TR 4022

BUSINESS OBJECTS:

FROM DEFINITION TO APPLICATION

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op dinsdag 11 maart 2003 om 16:00 uur
door Mohammad ABOLHASSANI
informatica ingenieur
geboren te Teheran, Iran

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. J. L. G. Dietz

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof.dr.ir. J. L. G. Dietz, Technische Universiteit Delft, promotor
Prof.Dr.—ing. habil W. Gerhardt, Technische Universiteit Delft

Prof.dr. H. Koppelaar, Technische Universiteit Delft

Prof.dr.Ir. M. Looijen, Technische Universiteit Delft

Prof.Dr. V. Repa, University of Economics Prague
Prof.Dott.—ing. R. Zicari, J.W. Goethe Universitat Frankfurt am Main
Dr.ir. E. J. H. Kerckhoffs, Technische Universiteit Delft

ISBN 90-9016609-2

Copyright © 2003 by Mohammad Abolhassani

All rights reserved. No part of the material protected by this copyright notice may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying,
recording or by any information storage and retrieval system, without written permission of the
author.

Printed in The Netherlands by Sieca Repro BV, Delft.

To my dear parents
Ebrahim and Mahin-Banou

Contents

INTRODUCTION

1.1 THE RATIONALE
1.2 THE RESEARCH QUESTIONS
1.3 THEMETHOD
14 THEOUTLINE.

DEFINING BUSINESS OBJECTS

21 OBJECTS e

22 OBJECTCATEGORIES.

23 BUSINESSOBJECTS
23.1 LITERATURE
2.3.2 DEFINITION
2.3.3 MAIN ADVANTAGES

LOCATING BUSINESS OBJECTS

3.1 BASIC ARCHITECTURES
3.1.1 MONOLITHIC
3.1.2 CLIENT/SERVER

3.2 THREE-LAYER ARCHITECTURE

3.3 FIVE-LAYER ARCHITECTURE

1

10
10

13
14
16
17
18
21
22

CONTENTS

3.4 MULTI-TIER ARCHITECTURE 32
3.5 POSITION OF BUSINESS OBJECTS 33
3.6 BUSINESS OBJECTS AND COMPONENTS 35
3.6.1 COMPONENTS 35
3.6.2 BUSINESS OBJECT COMPONENTS 37
CREATING BUSINESS OBJECTS . 39
41 MAINISSUES 40
4.2 DEVISING BUSINESS OBJECTS 41
4.3 BUILDING BUSINESS OBJECTS 45
4.4 STANDARDIZATION OF BUSINESS OBJECTS 48
441 DEVISING STANDARDS 51
4.4.1.1 ABSTRACTION LEVELS 51

4.4.1.2 CONCEPTS - ORGANIZATIONAL UNITS . 52

4.4.1.3 ASSOCIATIONS 54

4.4.2 COMPLYING WITH STANDARDS 55
4.4.2.1 CONCEPTUAL ADAPTATIONS. 55

4.4.2.2 TECHNICAL ADAPTATIONS 56

4.5 CATEGORIZATION OF BUSINESS OBJECTS o7
4.5.1 THE BASIC CATEGORIES 59
4.5.2 THE OTHER CATEGORIES 62
4.5.2.1 SEMANTICAL CRITERIA 62

4.5.22 STRUCTURAL CRITERIA 63

USING BUSINESS OBJECTS 65
51 GENERALISSUES. 65
52 SYSTEMLAYERS 66

5.21 USERINTERFACE 67

CONTENTS 3
5.2.2 PRESENTATION LOGIC 68
5.2.3 BUSINESS LOGIC 68
5.2.4 INFORMATION LOGIC. 69
52.5 DATA SOURCE 70

5.3 OPTIONS AND PERSPECTIVES 70
531 OPTIONS 70
5.3.1.1 LEGACY/NEW 70

5.3.1.2 PERSISTENT/TEMPORAL 71

5313 ONE/MORE 72

5.3.2 PERSPECTIVES 72
5.32.1 DATA 72

5.3.2.2 APPLICATION 73

5323 REALWORLD................. 73

6 STATE-OF-THE-ART 75
6.1 GENERALISSUES. 75
6.2 ASSESSMENT CRITERIA 76
6.2.1 ARCHITECTURAL ASPECTS 77
6.2.1.1 SYSTEM CONSTITUENTS 77

6.2.1.2 COMMUNICATION MEANS 78

6.2.2 CONSTRUCTION ASPECTS 79
6.2.2.1 TECHNICAL 79

6.2.22 CONCEPTUAL 80

6.3 ENABLING TECHNOLOGIES 80
631 CORBA 80
6.3.1.1 ARCHITECTURAL ASPECTS 81

6.3.1.2 CONSTRUCTION ASPECTS. 82

632 ACTIVEX 84

4 CONTENTS
6.3.2.1 ARCHITECTURAL ASPECTS 84

6.3.22 CONSTRUCTIONAL ASPECTS 86

633 JAVA 86
6.3.3.1 ARCHITECTURAL ASPECTS 87

6.3.3.2 CONSTRUCTION ASPECTS. 87

6.3.4 EXTENDED C-++o 88
6.3.4.1 ARCHITECTURAL ASPECTS 89

6.3.4.2 CONSTRUCTION ASPECTS. 89

6.4 SYSTEM ENVIRONMENTS 90
6.4.1 SANFRANCISCO 90
6.4.1.1 ARCHITECTURAL ASPECTS 90

6.4.1.2 CONSTRUCTION ASPECTS. 91

642 R/3 . .. 92
6.4.2.1 ARCHITECTURAL ASPECTS 92

6.4.2.2 CONSTRUCTION ASPECTS. 93

7 CASE STUDY 95
71 BACKGROUND 96
72 THEGRIPSYSTEM 97
721 STRUCTURE. 97
722 PRODUCTION 100
723 USAGE 100
7.24 THEORETICAL ASPECTS 101

7.3 THE LENDING ADMINISTRATION MODULE 101
731 DESCRIPTION 101
7.32 REQUIREMENTS 103
7.3.3 THEORETICAL ASPECTS 103

7331 OPTIONS., 103

CONTENTS

7.3.4

7.3.3.2 PERSPECTIVES.
REALIZATION o ..
7341 DESIGN
7.3.4.2 IMPLEMENTATION

74 CONCLUSIONS,

8 ILLUSTRATIVE EXAMPLES (I)
8.1 THE HEALTH-CARE DOMAIN

3.1.1

8.1.2

BACKGROUND
81.1.1 HISTORY
8.1.1.2 GENERAL REQUIREMENTS
APPLYING BUSINESS OBJECTS
8121 RATIONALE
8.1.22 EXAMPLE CASES

8.2 THE BANKING DOMAIN

8.2.1
8.2.2

BACKGROUND
APPLYING BUSINESS OBJECTS
8.2.2.1 RATIONALE
8222 EXAMPLECASE

9 ILLUSTRATIVE EXAMPLES (II)
9.1 SIMULATIONo,

9.11

9.1.2

BACKGROUND
9.1.1.1 SIMULATION ELEMENTS
9.1.1.2 REALIZING SIMULATION
EXAMPLE CASE
9.1.2.1 BUSINESS OBJECT MODELS
9.1.2.2 SIMULATION MODELS

104
108
108
110
111

113
113
114
114
117
118
118
122
138
138
139
139
140

CONTENTS

9.2 SYSTEM INTEGRATION 161
9.21 BACKGROUND 161
9.2.2 ARCHITECTURAL SYSTEM INTEGRATION 162

9.22.1 CATEGORIES 162

9.222 METHODS 163

9.22.3 POSSIBILITIES 166

9.2.3 BENEFITS OF BUSINESS OBJECTS 170

10 CONCLUSIONS 171

10.1 DEFINITION 171

10.2 LOCATION 172

103 CREATION 173

104 USAGE 174

10.5 STATE-OF-THE-ART 175

106 APPLICATION 175

Chapter 1

INTRODUCTION

Basic research is what | am doing when | don't know what | am
doing.

[Wernher von Braun]

1.1 THE RATIONALE

Around the mid-seventies, Object-Oriented technology began to be used for
modelling systems and realizing software systems, and since the beginning
of the nineties, it has found widespread acceptance. Subsequently, over the
last years, the term "Business Objects (BOs)" frequently appeared in the
literature of information systems, software engineering and the related fields.
This term is used to represent different ideas and is associated with various
topics. As such, basic knowledge about the core concept that is (or should be)
represented by this term is advantageous (or even requisite). This knowledge
should indicate and clarify the role of the concept of Business Objects in
information systems and its value for software engineering. The goal of this
research work is to provide and present such knowledge.

In order to provide such knowledge, one should study all different aspects
related to the concept of Business Objects and discuss these aspects together
with the relationship they have with one another. Only in this way the
(supposed) added value of Business Objects for software engineering in re-
alizing information systems can be comprehended and realized. Therefore,

7

8 CHAPTER 1. INTRODUCTION

the main purpose of this research work has been: providing a comprehensive
and integrated image of Business Objects.

As such, this research work aims to identify the core concept of Business Ob-
Jects by elaborating on various of its aspects and providing a logical coherence
between them.

However, to achieve the mentioned goal one has to deal with the aspects
concerned at an abstract level. This is necessary in order to be able to clarify
the connections between those aspects, while guaranteeing general validity of
the discussed issues. Moreover, the resulting knowledge is useful for studying
literature that deals with specific issues.

1.2 THE RESEARCH QUESTIONS

In order to provide a comprehensive and integrated view on Business Ob-
jects, we should discuss and deal with the aspects concerned in an organized
manner with respect to the (supposed) added value of this concept for soft-
ware engineering in realizing information systems. Therefore, we formulate
the fundamental research question as follows:

How can the concept of Business Objects contribute to the im-
provement of the field of information systems engineering?

Accordingly, the research should be concentrated on the concept of Business
Objects based on its relationship with development and maintenance of soft-
ware systems. It should be investigated if by applying Business Objects we
can improve system development and reduce system maintenance efforts.

The way of achieving the research goal can be further organized by formulat-
ing a number of key questions which can be derived from the main research
question. The research sub-questions should, on the one hand, address the
main issues discussed in the literature and, on the other hand, address those
issues that are not discussed (adequately).

Therefore, in accordance with its rationale, this research work focuses on
answering the following questions:

What are Business Objects?

The definition of the concept of Business Objects should serve as the starting
point of the work, and hence should form the basis of any discussion about

1.2. THE RESEARCH QUESTIONS 9

any aspect of this concept. Therefore, this definition should show the role
of Business Objects in information systems adequately, unambiguously and
expressively.

Where is the place of Business Objects?

Defined based on their role in information systems, the place of Business
Objects with respect to the existing architectures should be determined. The
basic types of architectures should be surveyed and the location of Business
Objects with respect to them should be assessed.

How can Business Objects be created?

Obviously Business Objects are, in the first place, "objects". As such, for
the creation of Business Objects we can rely on the existing methods in the
area of modelling, design and implementation of "objects". However, the
creation of Business Objects as a specific kind of "objects" may not expose
the specific features of this concept adequately. Therefore, for the creation of
Business Objects we should also take their specific traits into consideration.
The main aspects of the creation of Business Objects should be recognized.

How can Business Objects be used?

The use of Business Objects with respect to their location and creation should
be discussed. The main issues of using Business Objects should be recognized
and the solutions should be elaborated on.

What are the resources and tools for Business Objects?

The relationship of the concept of Business Objects, as established in this
research, with the existing resources and tools should be assessed. This
means that we should study a number of representative resources and tools.

How can Business Objects be applied?

The application of Business Objects should be demonstrated through repre-
sentative examples. The examples should show how Business Objects can be
applied in practice, and how they can be taken advantage of for specific and
general goals.

10 CHAPTER 1. INTRODUCTION

1.3 THE METHOD

Before trying to find the answers to the above questions, we give the following
hypotheses:

e A globally acceptable definition of Business Objects can be formulated.

* Business Objects can be advantageous for realizing information sys-
tems.

® The concept of Business Objects can form the central point for a par-
ticular discipline in software engineering. This discipline can be formed
around a group of architectural and constructional concepts and aspects
concerned with information systems.

In order to accomplish the research goal, formulated by the research ques-
tions, and to test the hypotheses, we should apply the appropriate method(s).
There are several methods for this purpose, such as literature study, case
study and field experiment. [Yin 1994] calls these methods "research strate-
gies", where each strategy represents a different way of collecting and analysing
(empirical) evidence, follows its own logic and possesses peculiar advantages
and disadvantages. The type of the research question is one of the main
factors that distinguish the research strategies.

Due to the nature of this research topic, expressed by the research main
question and sub-questions, both literature study and case study are the
appropriate methods.

1.4 THE OUTLINE

The structure of this thesis is based on the research questions mentioned
above. Since the questions are formulated according to the research goal, in
order to provide a comprehensive and integrated view on Business Objects,
their answers represent the research work appropriately. F urthermore, as the
questions are ordered according to the inherent logic of the research subject,
the order of the chapters follows the order of the questions.

Accordingly, the outline of this thesis is as follows:

1.4. THE OUTLINE 11

e Chapter 2 aims to answer the question "What are Business Objects?"
by discussing the existing definitions of Business Objects and their
shortcomings. It supplies a new definition and outlines the main ad-
vantages of Business Objects.

Chapter 3 aims to answer the question "Where is the place of Busi-
ness Objects?" by discussing the existing architectures, the position of
Business Objects and their relationship to the concept of components.

Chapter 4 aims to answer the question "How can Business Objects be
created?" by discussing the main aspects of the creation of Business
Objects that includes devising and building Business Objects, as well
as standardization and categorization of Business Objects.

Chapter 5 aims to answer the question "How can Business Objects be
used?" by discussing the main issues of using Business Objects based
on an architectural viewpoint.

Chapter 6 aims to answer the question "What are the resources and
tools for Business Objects?" by assessing the architectural and con-
structional issues of representative enabling technologies and system
environments for Business Objects.

Chapters 7, 8 and 9 aim to answer the question "How can Business
Objects be applied?".

— Chapter 7 presents a case study carried out within the framework
of the realization of an information system in a company.

— Chapter 8 discusses the use and advantages of Business Objects
for the health-care domain and the banking domain.

— Chapter 9 discusses how Business Objects can be used for simu-
lation and system integration.

e Chapter 10 draws conclusions on the basis of the issues discussed in
the preceding chapters.

12

CHAPTER 1. INTRODUCTION

Chapter 2

DEFINING BUSINESS
OBJECTS

Every now and then the computer industry gets swept up in a wave
of enthusiasm for some new Silver Bullet that's apparently going to
solve everyone's problems overnight. Actually, these days the wild
surges of millennial euphoria seem to come at annual intervals. Usu-
ally the technology in question actually is a step forward, able to solve
real problems better or faster than was possible before. However, as
word spreads about the power of the new technique some people will
inevitably try to apply it to the wrong problems. It's a bit like the en-
thusiasm for microwave ovens when they first became cheap enough
for anyone to buy; one could buy microwave cookbooks explaining
how to use them to cook everything from a complete Christmas din-
ner to a soufflé. Fortunately, after a while sanity returned, and people
now use microwaves for what they're best at, and go back to making
toast in the toaster or roasting the turkey in the oven, just as they
always did, because they're the best tools for the job.

[CORBA and XML; conflict or cooperation?, Andrew Watson,
Object Management Group]

In the last years, the term "Business Objects" frequently turned up in the
literature of information systems, software engineering and the related fields.
In general, this term represents applying Object-Oriented technology in mod-
elling business systems and realizing business software systems (in distributed

13

-

14 CHAPTER 2. DEFINING BUSINESS OBJECTS

environments). However, a brief look at the literature shows that there are
many different definitions for this term, with many differences and even con-
tradictions, and a clear and widely accepted definition of Business Objects
is missing. This shortcoming forms a barrier to research about, as well as
to the use of Business Objects. This chapter addresses this shortcoming and
aims to define Business Objects in an unambiguous and descriptive way.

The chapter begins with a discussion about the concept of "object", using a
few basic definitions. This is followed by a categorization of objects based on
their roles in information systems. Subsequently, the concept of "Business
Objects" is discussed. First a number of representative statements about the
definition of this concept and its relationship with other object categories
are surveyed, and their shortcomings are addressed. Then the concept of
Business Objects is defined, and its main advantages are pointed out!.

2.1 OBJECTS

The term "object" represents a computational? entity which is a combination
of data (attributes) and procedures (operations) that may have associations
(relationships) with other ones, and can represent an entity of a universe of
discourse. The Object Management Group (OMG)? [OMG] defines "object"
as follows [OMG 1997-1]:

An object is an identifiable, encapsulated entity that provides one
or more services that can be requested by a client.

[An object is| a combination of a state and a set of methods that
explicitly embodies an abstraction characterized by the behaviour
of relevant requests.

An object models a real-world entity and is implemented as a com-
putational entity that encapsulates state and operations (inter-

!The background of this chapter can be found in [Abolhassani 1999).

2Here "compute" denotes its generic meaning in the area of computer science and
technology.

3The Object Management Group (OMG), formed in 1989, is an institute that aims to
develop standards for a platform-independent technological infrastructure for the Object-
Oriented programming paradigm.

2.1. OBJECTS 15

nally implemented as data and methods) and responds to requests
for services.

A basic characteristic of an object is its distinct object identity,
which ts immutable, persists for as long as the object exists and
is independent of the object’s properties or behaviour.

In the area of database systems the definitions of an object are basically the
same, although it is more transparent to reflect the structure of the entities
of the universe of discourse. The Object Data Management Group (ODMG)*
[ODMG] states [Cattel and Barry 1997]:

The state of an object is defined by the values it carries for a
set of properties. These properties can be attributes of the object
itself or relationships between the object and one or more other
objects. Typically the values of an object’s properties can change
over time.

The behaviour of an object is defined by the set of operations that
can be executed on or by the object. Operations may have a list
of input and output parameters, each with a specified type. Each
operation may also return a typed result.

As the above-mentioned definitions describe different aspects of the concept
of "object" and do not contradict each other, with respect to our discussion
they are all acceptable.

Furthermore, there are widely recognized advantages associated with the
utilization of objects®. The three main characteristics of objects, which are
commonly considered as the major advantages of working with objects, are:

e Encapsulation: To hide the (implementation) details of objects.
e Inheritance: To found objects on more general objects.

e Polymorphism: To respond to the same requests in different ways by
(different) objects.

4The Object Data Management Group (ODMG), formed in 1991, is an institute that
aims to develop standards for an object data model, as well as object database languages.
A discussion of these advantages is beyond the scope of this work.

16 CHAPTER 2. DEFINING BUSINESS OBJECTS

2.2 OBJECT CATEGORIES

Objects can be considered as building blocks for constructing information
systems®. By determining the major roles that objects can/should play in
information systems and by dividing objects into different categories based
on those roles we can recognize and define different types of objects, including
Business Objects.

In general, one can apply objects in information systems in order to:

¢ Reflect semantics of real-world concepts.

Interact with end-users.

Provide complementary facilities and required services.

e Make connection with other constituents of the system.

Provide programming constructs.

Accordingly, we divide objects into five main categories, defined as follows:

Reflection Objects (ROs) are those objects that reflect semantics
of real-world concepts. They are related to the most evident ex-
ploitation of the concept of "object" and are often meant thereby,
by default. Besides, they are the only objects that come into play
during the analysis process. For example "person", "purchase" and
"reception" belong to this category.

Interaction Objects (IO0s) are those objects that deal with interac-
tion with end-users. They are concerned with presenting data to,
and obtaining data from end-users. For example "button", "box"
and "icon", as well as "table", "form" and "report" belong to this
category. :

Completion Objects (COs) are those objects that provide com-
plementary facilities and required services. For example objects

6 An information system is a system which manipulates data and normally serves to col-
lect, store, process and exchange or distribute data to users within or between enterprises
or to people within wider society [Sim 1996].

2.3. BUSINESS OBJECTS 17

that supply facilities and services offered by operating systems,
database management systems and object request brokers belong
to this category.

CoNnection Objects (NOs) are those objects that connect con-
stituents of the system, including objects, to each other. For ex-
ample the objects that take care of conversions, transformations
and communications belong to this category.

ConStruction Objects (SOs) are those objects that provide pro-
gramming constructs. They are offered by programming languages
and environments. For example "real", "integer" and "character"
belong to this category.

These categories make a clear distinction between the different tasks that
objects can carry out in information systems. Therefore, they can help us to
prevent confusions and contradictions in defining specific object types and
assigning objects to specific groups’.

2.3 BUSINESS OBJECTS

Although Object-Oriented technology has been used for various disciplines
for a long time, it was not applied for "business" until recently [Casanave 1995|
and [Marshall 1997]. In fact, the term "business" in itself has a wide and
generic meaning, and many have the habit of referring to almost every ac-
tivity in the world using this term. For instance [Cummins 1996] notes:

What do we mean by "business"? Generally the intent is to com-
prehend any kind of enterprise including academic, governmental
or charitable. The name has marketing value and should not be
narrowly interpreted.

Anyhow, the use of Object-Oriented technology for realizing "business sys-
tems" has been growing very fast. By virtue of this growth, the use of the
term "Business Objects" has also grown rapidly. It seems that there is a

"In practice, however, an object may have characteristics of more than one category.
Familiar examples of this are objects that deal with both real-world concepts and user
interface issues.

18 CHAPTER 2. DEFINING BUSINESS OBJECTS

tendency to refer to any "object" with the term "Business Object". Conse-
quently, there is much confusion about this concept. Besides, not everybody
is familiar with the term. [Hung et al. 1998] presents an interesting survey
in this respect.

2.3.1 LITERATURE

Of the different definitions of Business Objects, the definitions presented by
OMG are more (generally) accepted than the others. The OMG Business
Object Management Special Interest Group (BOMSIG)® defines Business
Objects as follows [OMG 1995):

A Business Object is a representation of a thing active in the busi-
ness domain, including at least its business name and definition,
attributes, behaviour, relationships and constraints. A Business
Object may represent, for example, a person, place or concept.
The representation may be in a natural language, a modelling
language or a programming language.

Later on, the OMG Business Objects Domain Task Force (BODTF)?, pointed
to the following categories in addition to Business Objects [OMG 1997-2]:

Application Objects (computer simulated representations of real-
world objects) are presented to end-users as objects that can be
manipulated in a way that is similar to the manipulation of the
real-world objects.

The Application Objects part of the architecture represents those
application objects performing specific tasks for users. One appli-
cation 1s typically built from a large number of basic object classes,
partly specific for the application, partly from the set of Common

8The Business Object Management Special Interest Group (BOMSIG) of OMG was in
charge of dealing with issues concerning Business Objects.

9The Business Objects Domain Task Force (BODTF) of OMG replaced BOMSIG in
January 1996. The role of BODTF is to deal with a wide range of architecture and business
engineering issues, including development and deployment of Business Objects, as well as
the cooperation and interoperation among Business Objects.

2.3. BUSINESS OBJECTS 19

Facilities. New classes of application objects can be built by mod-
ification of existing classes (inheritance) as provided by Object
Services. The multi-object class approach to application develop-
ment leads to combine and configure their applications.

Common functionality in different applications (such as storage
and retrieval of objects, mailing of objects, printing of objects, cre-
ation and deletion of objects, or help and computer-based train-
ing) is realized by common shared objects leading to a uniform
and consistent user interface.

The Common Facilities component provides a set of generic ap-
plication functions that can be configured to the requirements of a
specific configuration. Examples are printing facilities, database
facilities and electronic mail facilities.

However, these categories do not help in finding the position of Business
Objects in information systems. Besides, the Application Objects can em-

brace different categories, like those mentioned in the following categorization
[Shelton 1995]:

Business Objects are objects that represent a person, place, thing
or concept in the business domain. They package business proce-
dures, policy and controls around business data. Business Objects
serve as a storage place for business policy and data, holding to-
gether in a coherent unit the right business policy with the right
data and ensuring that data is only used in a manner semantically
consistent with the business intent...

Technology objects represent a programming or technology con-
cept, and thus are the building blocks of applications and imple-
mented Business Objects. They are components of the informa-
tion systems and applications environment. Eramples of tech-
nology objects include GUI components like windows and push
buttons, programming constructs like integer and string classes
and application frameworks...

Application objects are programs which present information and
manage interaction with human users, process information and
produce reports. They are solutions to specific business problems,

20 CHAPTER 2. DEFINING BUSINESS OBJECTS

and take the form of control panels, which operate [on] a specific
set of Business Objects to perform a specific task. Ezamples in-
clude: Order Entry, Quarterly Report, Reservation and Ticketing

This categorization considers Business Objects as an object category in itself,
and is (almost) in agreement with the following statements [Casanave 1995):

Business Objects can be distinguished from programming objects
such as arrays and I/O channels or from user interface objects
such as buttons and windows. Business Objects can also be dis-
tinguished from system objects such as your word-processing pro-
gram...

The difference between the above-mentioned technology and application ob-
Ject categories is not very clear. Furthermore, to be of any use, the term
Business Objects should refer to a more specific concept, and therefore Busi-
ness Objects should not be considered as a category of objects at the general
level.

Later, BODTF defined Business Objects as follows [OMG 1999]:

A Business Object [is] an object which represents a corresponding
entity in the real world of the business. A Business Object has an
identity that corresponds to the identity of the real-world entity.
Business Objects are (usually) persistent and recoverable. Op-
erations on Business Objects are in a transactional context that
assures concurrency control and supports commit and rollback op-
erations.

Except being identifiable, transactional and persistent, Business Objects can
also have state, attributes, operations, relationships and events, according to
BODTF.

The above-mentioned definitions emphasize the structural aspects of Business
Objects and do not provide a clear distinction between Business Objects and
other objects. The following statements refer to the role of Business Objects
as representing elements of enterprise, but emphasize their role as application
building blocks [Cummins 1996]:

2.3. BUSINESS OBJECTS 21

A Business Object is an object used to represent elements of the
enterprise as described here. This is not a definition that always
provides a clear distinction.

What is important technically, is that a Business Object is an
abstraction that hides the technical details of implementing the
computer representation of a problem and allows the application
developer to focus on the business problem to be solved.

Finally, in the literature much confusion also arises from the term "Business
Objects" itself. Some mix up the term "Business Objects" with other terms,
such as "Core Business Objects" and "Common Business Objects", others
use the terms "Business Objects", "Process Business Objects" and "Entity
Business Objects" interchangeably, or use different names for the same con-
cept, such as "Task-Process Objects" and "Common Business Processes" for
"Process Business Objects".

As Business Objects are supposed to provide a suitable means for commu-
nication with (the expert) people in different (business) domains by using
familiar terms [Casanave 1995|, the term Business Objects itself should not
be a source of such confusion.

All in all, we can conclude that a clear, strict and generally accepted definition
of Business Objects is missing. Therefore, in order to supply a basis for our
discussion about different aspects of this concept, we should invent a new
definition.

2.3.2 DEFINITION

The categorization of objects and the definition of Reflection Objects, given

in {2.2}, can offer a good basis for an appropriate definition of Business
Objects.

As mentioned before, Reflection Objects are those objects that reflect the
semantics of real-world concepts. They neither deal with user interface is-
sues, nor provide any general-purpose functionality. They can be built based
on (other) Reflection Objects and Construction Objects, can use services
provided by Completion Objects and can participate in relationships with
(other) Reflection Objects and Interaction Objects.

22 CHAPTER 2. DEFINING BUSINESS OBJECTS

Consequently, Business Objects can be considered as those Reflection Ob-
Jects that should serve as a means for modelling (business) systems and for
realizing (business) software systems based on specified rules and conven-
tions. Accordingly, Business Objects should give (a necessary and sufficient
description of) the functionalities, properties, associations and features of
business facets, in a clear and unambiguous manner.

Furthermore, Business Objects can be related to a particular (business) do-
main, cross (business) domain boundaries and be concerned with different
interoperating (business) domains or be involved in all (business) domains.

In order to be able to provide any added value for modelling (business)
systems and realizing (business) software systems, Business Objects should
represent standards and guarantee openness of systems and interoperability
among systems.

Business Objects can be devised using any medium, such as human language,
modelling language and programming language, and can be built using any
programming code, language and platform.

Finally, Business Objects can be defined as follows:

Business Objects (BOs) are those Reflection Objects that represent
standard real-world (business) concepts, are related to different
(business) domains and give (a necessary and sufficient descrip-
tion of) the functionalities, properties, associations and features of
those concepts, in a clear and unambiguous manner, for modelling
(business) systems and realizing (business) software systems.

2.3.3 MAIN ADVANTAGES

In general, Business Objects can offer a comprehensive and disciplined means
for modelling (business) systems and realizing (business) software systems:

o Comprehensive, because they (should) cover all of the (main) real-world
(business) concepts of the domain concerned.

e Disciplined, because they are based on the concept of "object" and
hence can result in organized (software) elements.

2.3. BUSINESS OBJECTS 23

With respect to the modelling of (business) systems, Business Objects can
(potentially) offer an efficient and effective means for:

e Concentrating on the essential real-world (business) concepts, and leav-
ing out of consideration any other aspect.

e Communication between people, including software and (business) do-
main experts, through the use of the same terminology and business
jargon.

With respect to the realizing of (business) software systems, Business Objects
can (potentially) offer an efficient and effective basis for:

e Using different user interfaces.
e Using different data sources.

e Interoperation between different systems and platforms in distributed
and heterogeneous environments.

e Utilization of off-the-shelf components.

Other (potential) advantages of using Business Objects are that they provide
reusability, flexibility, extendibility and scalability, and prevent redundancy,
improve maintainability and offer a global view on the whole system.

Accordingly, as standardized Relation Objects, Business Objects do not only
provide the advantages of Object-Oriented technology, but they can also
enhance and extend these advantages for modelling (business) systems and
realizing (business) software systems.

24

CHAPTER 2. DEFINING BUSINESS OBJECTS

Chapter 3

LOCATING BUSINESS
OBJECTS

Form ever follows function.

[Louis Henri Sullivan]

The previous chapter defined Business Objects based on the role they (should)
play in information systems. To make this role more specific, we should de-
termine the place of Business Objects in the existing architectures. There-
fore, we should survey the basic types of architectures and should assess the
location of Business Objects with respect to them.

Broadly speaking, there are two basic types of architectures, Monolithic and
Client/Server. The first section describes these architectures. The Three-
Layer Architecture can be considered as a particular type of the Client/Server
architecture. The second section describes this architecture and its main
characteristics. The Five-Layer Architecture extends the Three-Layer Archi-
tecture in order to deal with its shortcomings. The third section explains this
architecture and its main features. The Multi-Tier Architecture is described
in the fourth section. Subsequently, the fifth section indicates the position
of Business Objects with respect to the Five-Layer Architecture, along with
other objects that can be applied for each layer. Finally, the sixth section
first describes the concept of "component" and then discusses the relationship
between the concept of Business Objects and this concept, and consequently
defines the concept of Business Object Components.

25

26 CHAPTER 3. LOCATING BUSINESS OBJECTS

3.1 BASIC ARCHITECTURES

3.1.1 MONOLITHIC

In this architecture, the whole system consists of a single, autonomous and
independent body, possibly divided into different interrelated parts. There is
no distinguishable part of the system that can present or represent a specific
(macro) functionality with a clear interface to the (other parts of the) system,
so that it can be (re-)used in more than one system.

Although this architecture can lead to efficient systems, any modification
to any part/functionality of the system may require and result in intrusive
changes to the whole system.

3.1.2 CLIENT/SERVER

In this architecture, the whole system is divided into two main parts. Each
part is concerned with one or more specific (macro) functionality. There is a
clear interface between the two parts, and one of the parts, Client, uses the
functionality of the other, Server. In this way, the functionality of the Server
can be used for more than one Client.

This architecture can lead to efficient systems, and modifications to one of
the two parts of the system do not affect the other part.

3.2 THREE-LAYER ARCHITECTURE

In general, business software systems can be considered to consist of three
main parts that each has a (macro) functionality:

e User Interface
¢ Business Logic

e Data Source

3.2, THREE-LAYER ARCHITECTURE 27

Where the User Interface (UI) takes care of interaction with user, the Data
Source (DS) stores and retrieves data and Business Logic is defined as follows:

Business Logic (BL) is the collection of real-world business concepts
and their manipulation according to business rules and constraints.

In fact, Business Logic can be observed as that part of a Client/Server archi-
tecture that completes the data model in such a manner that a comprehen-
sive and realistic representation of the real world is established. Accordingly,
systems based on the Client/Server architecture can belong to one of the
following categories:

e Fat Client/Server: Client consists of User Interface and Business Logic,
and Server consists of Data Source.

e Semi-Fat Client /Semi-Fat Server: Client consists of User Interface and
(part of) Business Logic, and Server consists of (part of) Business Logic
and Data Source.

e Client/Fat Server: Client consists of User Interface, and Server consists
of Business Logic and Data Source.

While the Fat Client /Server category limits the code reuse capacity for main-
taining applications with different user interfaces, the Client/Fat Server cat-
egory limits the usage of logic constructs and complex data types, like arrays
and pointers, and reduces the Data Source performance by checking rules.

Placing each of the three above-mentioned parts having a different (macro)
functionality at a separate location (layer) leads to the Three-Layer Archi-
tecture (TLA) [Orfali and Harkey 1997], shown in figure 3.1.

28 CHAPTER 3. LOCATING BUSINESS OBJECTS

RN R

Business Legic

Figure 3.1: Three-Layer Architecture.

This architecture is a particular type of the Client /Server architecture, where
the User Interface is a client for the Business Logic, and the Business Logic
is, in turn, a client for the Data Source. Accordingly, those who look at
each separate layer as a tier refer to this architecture as the Three-Tier
Client/Server architecture[Edwards 1997].

Furthermore, in order to provide the whole functionality required for main-
taining complete systems, one needs additional facilities and services. For
Object-Oriented systems these facilities and services include management of
life cycle, transaction, state and session, as well as security, authorization
and load balancing. These can be taken care of by Control Logic, defined as
follows:

Control Logic is a collection of facilities and services, including
management of life cycle, transaction, state and session, as well as
security, authorization and load balancing. It offers the comple-
mentary functionality of the system.

3.3. FIVE-LAYER ARCHITECTURE 29

Consequently, System Logic can be defined as follows:

System Logic is the composition of Business Logic and Control
Logic.

3.3 FIVE-LAYER ARCHITECTURE

It is not easy to realize user-friendly user interfaces when the Business Logic
layer is located remotely and has no knowledge about user interfaces of the
User Interface layer. Nor is it easy to maintain Business Logic when the Data
Source layer consists of different data sources.

In fact, there are certain gaps between the layers of the Three-Layer Archi-
tecture. After all, this fact stems from the very nature of this architecture,
where a clear distinction between the three layers is assumed.

If the definition of the Three-Layer Architecture in general and that of Busi-
ness Logic in particular is applied rigorously, some (basic) functionalities
cannot be carried out?, including:

Reading/writing data from/to different data sources.

Checking data sent to/got from Business Logic.

Extracting and acquiring the desired (subset) of data by combining and
splitting data, etc.

Converting and transforming data.

However, as the borders between the layers are not always considered to be
as strict as they should be, and, in practice, some of the tasks concerned are
assigned to Control Logic, the existence of gaps between the layers has not
attracted much attention. Nevertheless, attempts to deal with this problem
and to fill these gaps have resulted in architectures that are (mainly) based
on the Three-Layer Architecture.

!Certain general functionalities, such as maintaining communications and caching data,
can be taken care of by the environments embracing each layer.

30 CHAPTER 3. LOCATING BUSINESS OBJECTS

For instance, [Schmid et al. 1998] suggests that the field-related consistency
checks are a responsibility of the "presentation layer" (User Interface layer),
because the user should rapidly get feedback when he has entered a wrong
input field, and [Fowler 1997] suggests an "application logic" tier (layer) in
addition to the presentation tier (User Interface layer) and domain tier (Busi-
ness Logic layer). It describes the application logic tier as:

A selection and simplification of the domain model for an applica-
tion. Contains no user interface code but provides a set of facades
of the domain tier for the user interface.

Furthermore, another motive for thinking up a new architecture can be the
desire to improve the development and performance of systems: one may
wish to facilitate the design of the User Interface layer, or provide a fast
response to user input.

To comply with the principles of the Three-Layer-Architecture, provide the
missing functionalities, and improve the development and performance while
maintaining robustness, one can use the Five-Layer Architecture (FLA),
shown in figure 3.2. This architecture consists of the following layers:

e User Interface

e Presentation Logic

Business Logic

Information Logic

Data Source

Where Presentation Logic and Information Logic are defined as follows:

Presentation Logic (PL) is the collection of functionalities for inter-
operation with Business Logic, including reading, writing, extract-
ing and checking data and converting data to the desired form.

Information Logic (FL) is the collection of functionalities for inter-
operation with different data sources, including reading, writing,

3.3. FIVE-LAYER ARCHITECTURE 31

extracting and checking data and converting data to the desired
form.

Note that, although the checking of data can be considered as applying busi-
ness rules and constraints, there is no contradiction between the definition
of Business Logic and the definitions of Presentation Logic and Information
Logic. Presenting and maintaining business concepts, rules and constraints
is the only role of Business Logic, while Presentation Logic and Information
Logic can apply (a subset of) business rules and constraints as a (small)
portion of their task.

User Interface

Bnsiness Lagic

Tafwrmotion Lagic

Duto Sewrce

Ay

Figure 3.2: Five-Layer Architecture.

Furthermore, Core Logic can be defined as follows:

32 CHAPTER 3. LOCATING BUSINESS OBJECTS

Core Logic (CL) consists of Presentation Logic, Business Logic and
Information Logic.

Confusing Business Logic with Core Logic is a common mistake. Moreover,
in this respect, the following points are noteworthy:

e Presentation Logic can be used for a particular group of applications
based on the Five-Layer Architecture or similar architectures.

e Business Logic can be of general use for systems based on the Five-
Layer Architecture or similar architectures.

e Information Logic can be of general use for systems based on the Five-
Layer Architecture or similar architectures, as well as for other archi-
tectures.

Consequently, System Logic can be (re-)defined as follows:
System Logic is the composition of Core Logic and Control Logic.

The common general architecture of computer systems can be considered
as an analogy for the Five-Layer Architecture. From this point of view,
the major parts of a computer system and their corresponding parts in the
Five-Layer Architecture are as follows:

e Applications <=> User Interface

e Operating System Shell <=> Presentation Logic

e Operating System Kernel <=> Business Logic

e Basic Input Output System (BIOS) <=> Information Logic

e Devices <=> Data Source

3.4 MULTI-TIER ARCHITECTURE

The layers of a Five-Layer Architecture, as well as those of a Three-Layer
Architecture and its different versions, can exist at separate locations. More-
over, each layer in itself can consist of different parts divided over different

3.5. POSITION OF BUSINESS OBJECTS 33

locations. In this case, the architecture concerned can also be referred to as
the Multi-Tier Architecture (MTA).

However, the term Multi-Tier Architecture can also be used for referring to
different kinds of architectures that include at least three layers in general.

3.5 POSITION OF BUSINESS OBJECTS

Business Objects can indeed be used for systems based on Monolithic and
Client/Server architectures. They can form the basis of the Business Logic
(macro) functionality, albeit interwoven with other functionalities.

By separating the whole functionality of a system into loosely coupled layers
and tiers, architectures based on multiple layers and tiers, that is, Multi-Tier
Architectures, can offer a more suitable basis for distributed and hetero-
geneous environments, and can make system development and deployment
more efficient and effective. Accordingly, they can provide a more appropri-
ate basis for deploying the concept of Business Objects.

However, for the sake of completeness and clearness, the Five-Layer Archi-
tecture is the preferred basis for describing the location of Business Objects.

In the Five-Layer Architecture, the Business Logic layer can be based on an
information model. In order to control the rules and constraints that govern
the manipulation of data related to the business in question, this model
should be able to reflect the reality of the business in question. Besides,
interaction with the user, as well as storage and retrieval of data should be
left out of the consideration of the Business Logic layer. Since we defined
Reflection Objects and accordingly Business Objects in such a way that they
only reflect real-world concepts, and leave any other (macro-)functionality
to other system constituents, Business Objects can be the proper means for
realizing the Business Logic layer.

Furthermore, in order to provide a system based on the Five-Layer Architec-
ture, we can use Object-Oriented technology to provide objects, in addition
to Business Objects, for other parts of the system. These objects include
Presentation Objects and Information Objects defined as follows:

Presentation Objects (POs) are those Connection Objects that take
care of interoperation between Interaction Objects and Business

34 CHAPTER 3. LOCATING BUSINESS OBJECTS

Objects by providing the required functionality, including reading,
writing, extracting and checking data and converting data to the
desired form.

InFormation Objects (FOs) are those Connection Objects that take
care of interoperation between Business Objects and data sources
by providing the required functionality, including reading, writing,
extracting and checking data and converting data to the desired
form.

In addition, in case we use an Object-Oriented database as Data Source,
we can call the corresponding objects - which can belong to the Reflection
Objects or Connection Objects categories - Data Objects (DOs).

Devising these conventions, that is, defining other object categories than
Business Objects for the other parts of system, can provide us with better
means, in terms of clearness and robustness, to discuss different parts and
aspects of system and their relationship with Business Objects.

In this way, a system based on the Five-Layer Architecture can consist of the
following objects:

¢ Interaction Objects for User Interface

Presentation Objects for Presentation Logic

Business Objects for Business Logic

e Information Objects for Information Logic

Data Objects for Data Source

where Completion Objects maintain Control Logic.

Figure 3.3 shows a simplified example of applying these conventions for the
concept "Person".

3.6. BUSINESS OBJECTS AND COMPONENTS 35

Intaractiss Ohjoct
(X_Persen)

Infourmation Dhjact
{F_Parsan)

Figure 3.3: A simplified example of applying the system object conventions to
the concept "Person".

Obviously, objects, including Business Objects, can be distributed over dif-
ferent locations in order to be able to take advantage of different software

and hardware resources for storage, processing, communications, etc., and to
deal with issues such as performance, authorization and security.

3.6 BUSINESS OBJECTS AND COMPONENTS

3.6.1 COMPONENTS

There is a lot of discussion about, and there are many definitions of, the con-
cept of Components, such as the definitions presented by [Orfali et al. 1996],
[Orfali et al. 1999], [Heineman and Councill 2001] and [Stacey 2001]. An in-
teresting description of components that focuses on their role in software

36 CHAPTER 3. LOCATING BUSINESS OBJECTS

systems is the one of [Orfali et al. 1999], which draws an analogy with the
role of Integrated Circuits (ICs) in hardware systems:

A component is what Brad Coz calls a "software IC". "Applica-
tion frameworks"” are boards, or containers, into which we plug
these components. The object bus provides the back plane. Fami-
lies of software ICs that play together are called "suites”. You
should be able to purchase your software ICs, or components,
through standard part catalogues.

Having given an idea what components are, we can now give a definition of
components that is appropriate for our discussion about their relationship to
Business Objects:

A Component is a reusable and replaceable software element with
a known and clear functionality and interface. The interface must
specify the outputs and services provided by the component, as
well as the inputs and services required by the component.

Furthermore, a component can be:
e Atomic or composite, that is, consist of other components as sub-
components.
e Fine-grained or coarse-grained. /
e Opaque or transparent.

¢ Dedicated to specific environments or customisable through configura-
tion specifications that deal with their development environments, as
well as their execution environments?.

Applying Object-Oriented technology and providing components as objects
is common practice. In fact, the concept of objects in the (distributed)
Object-Oriented technology is closely related to the concept of Components.

2The environment within which the components run is called "container". Container
can be a (sub) system or an application program that takes care of different management
issues involved.

3.6. BUSINESS OBJECTS AND COMPONENTS 37

Accordingly, there is a substantial and ongoing discussion about the relation-
ship between components and objects [Szyperski 1998].

In general, the use of components can promote standardization. Components
can be used as building blocks for realizing software systems and enable the
notion of software plug and play. Their characteristics make them suitable
for distributed environments and evolving systems. In addition, components
can ease interoperability between different systems and offer the possibility
of integration of legacy systems.

In particular, components are suitable for realizing systems based on the Five-
Layer Architecture. Each layer can then be considered as a (coarse-grained)
component or system part, which consists of (ﬁne—grained) components.

3.6.2 BUSINESS OBJECT COMPONENTS

As an essential part of the Five-Layer Architecture, Business Logic can also
be built using components. Correspondingly, Business Objects can also be
embodied in components.

By getting the characteristics of the concepts of both Business Objects and
components, we can define the concept of Business Object Components as
follows:

Business Object Components (BOCs) are reusable and replaceable
software elements with a known and clear functionality and inter-
face. Their interface specifies the outputs and services provided by
them, as well as the inputs and services required by them. They
represent standard real-world (business) concepts, related to dif-
ferent (business) domains, and give the functionalities and features
of those concepts for realizing (business) software systems.

The use of Business Object Components can, among others, have the follow-
ing advantages for the realization of software systems:

e Reusability as the existing elements can be deployed for new applica-
tions.

¢ Flexibility during the design, development and deployment, as we deal
with well-defined elements.

38 CHAPTER 3. LOCATING BUSINESS OBJECTS

e Scalability as well-defined elements can be added or removed with no
or little effect on the other parts.

e Openness through a well-defined functionality and an interface that is
based on standards.

However, the choice between Business Objects and Business Object Compo-
nents depends on the resources, possibilities and requirements. In general,
Business Objects are more flexible and suitable for use in limited environ-
ments, while Business Object Components are more efficient and suitable for
use in broad environments.

Chapter 4

CREATING BUSINESS
OBJECTS

Before the first useful IC was built, engineers had had decades to
discover the useful patterns that crop up in system after electronic
system. In software, by analogy, we must make sure that the classes
that we develop are based on sound, robust, handy abstractions.
Classes such as "Customer" and the loveable, furry old "Stack" are
likely to receive standing ovations; classes such as "Egabragrettu"
are more likely to be dumped at the edge of town.

[Fundamentals of Object-Oriented Design in UML, M. Page-Jones,
Addison-Wesley|

Business Objects should be created in accordance with their intended charac-
teristics and advantages, as well as their location with respect to information
systems; only then they can help us in modelling (business) systems and re-
alizing (business) software systems efficiently and effectively. The first three
sections discuss the basic aspects of creating Business Objects.

The first section mentions the main issues that should be taken into consider-
ation when we create Business Objects. The second section discusses how we
can devise Business Objects. It presents an algorithm that can be applied for
this purpose. The third section discusses how we can build Business Objects.
It elaborates on building the (devised) Business Objects as objects and com-
ponents, and introduces the concepts of Business Object Blocks, Business
Core Components and Business Core Blocks.

39

40 CHAPTER 4. CREATING BUSINESS OBJECTS

Furthermore, to benefit fully from Business Objects in order to model (busi-
ness) systems and realize (business) software systems, one should take some
additional aspects into consideration as well. These aspects have to do with
standardization and categorization of Business Objects.

Standardization is one of the main characteristics of Business Objects. In
fact, it is one of the main distinguishing features of Business Objects, and one
of the advantages of this concept over the other (Ob ject-Oriented) approaches
for realizing software systems. The forth section discusses standardization of
Business Objects.

Categorization is a beneficial practice, which is applied in many fields of sci-
ence and technology. It can be applied to the concept of Business Objects
as well. The fifth section discusses categorization and its relevance to Busi-
ness Objects. In this way, the benefits of categorization for the realization
of software systems using Business Objects are mentioned, the basic cate-
gories of Business Objects are defined and some example criteria for further
categorization of Business Objects are suggested.

4.1 MAIN ISSUES

Obviously, the differences and contradictions between the definitions of Busi-
ness Objects have consequences for their creation. As a result, in the litera-
ture, taking care of interaction with the user, as well as storage and retrieval
of data are also considered as functions that should be accomplished by Busi-
ness Objects. For instance, [Bonar 1997] assigns tasks such as initialisation of
underlying persistent store, backup, restore, update and recovery to Business
Objects.

Furthermore, although, in principle, Business Objects should be created in
order to reflect real-world concepts, this does not mean that all real-world
concepts should be (directly) embodied in Business Objects. In fact, some
real-world concepts cannot, should not or may not need to be reflected (by
Business Objects) for different reasons.

In addition, when creating Business Objects, one must take into account
factors such as complexity, flexibility and efficiency as well.

In reflecting the real-world concepts, one should try to restrict the complexity
of the structure of, as well as the semantics represented by, Business Objects.

4.2. DEVISING BUSINESS OBJECTS 41

One way to decrease the complexity is leaving details to other constituents
(objects) than Business Objects. Besides, as the (business) concepts of the
real world are continuously changing, and systems based on Business Objects
should be able to adapt to the changes, Business Objects should be flexible.
One way to increase the flexibility is reducing the dependencies between
the concepts. For instance, [Herzum and Sims 1998] advocates using the
concept of "minimal dependencies" not only at run-time but also throughout
the development. As such, extracting the associations (relationships) from
the related concepts and treating them as separate concepts can be helpful.
Moreover, reducing the volume of exchanged data and information can reduce
the complexity, improve flexibility and result in efficiency.

In brief, while creating Business Objects one should find the answers to the
following questions:

e To what extent should the real-world concepts be reflected?

e Which of those real-world concepts should be reflected by Business
Objects?

e To which abstraction levels should those Business Objects belong?

4.2 DEVISING BUSINESS OBJECTS

In the first place, Business Objects should be the "right" means for modelling
(business) systems. That is, they should be efficient and effective means for
concentrating on the essential real-world (business) concepts, and a means for
communication between the people involved. Moreover, the devised Business
Objects should offer the "right" means for providing the information model
for Business Logic.

For instance, [Eeles and Sims 1998] emphasizes the role of Business Objects
as a concept that does not (merely) represent a software constituent:

A Business Object is generally seen as being a "concept”, not a
lump of software. As such, it’s useful in the requirements-capture
and analysis stages of development because they’re undertaken
with the business domain in mind.

42 CHAPTER 4. CREATING BUSINESS OBJECTS

Business Objects can be devised using the existing approaches for Object-
Oriented analysis and design, such as those presented by [Rumbaugh 1991,
[Jacobson et al. 1992], [Booch 1994], [Cook and Daniels 1994], [Larman 1998]
and [Oestereich 1999]. However, as Business Objects are at a higher concep-
tual level than objects in the general sense, additional directives can/should
be adopted for devising them. There are a number of specific directives
for devising Business Objects in the literature, such as those presented by
[Hertha et al. 1995], [Ramackers and Clegg 1995|, [Sutherland 1995], [Hung
and Patel 1997 and [Eeles and Sims 1998]. Although these approaches are
based on different definitions of Business Objects, rule of thumb, such as the
directives suggested in [Sullo 1994] can always be applied. Accordingly, it
can be assumed that:

e Nouns should be represented by "objects", which stand for concepts,
including people, places, things, documents, etc.

¢ Adjectives should be represented by "attributes", which stand for en-
tities and descriptive characteristics.

e Verbs should be represented by "operations", which stand for processes,
functions and actions.

In addition, to devise Business Objects, one can apply the following algo-
rithm. This algorithm looks at the (main) real-world (business) concepts as
belonging to one of the three categories: Entity, Process and Event!.

1. Define the domain as accurately as possible. The area of the domain
concerned can be as big as a whole business domain, or as small as
a specific unit of a section of a department of a specific branch of a
business domain.

2. Study the domain as exhaustively as possible using literature and avail-
able documents.

3. Find the people responsible for or (highly) involved in the domain.

4. Provide a list of the people (mentioned in 3).

!Categorization of Business Objects is discussed in {4.5}.

4.2,

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

DEVISING BUSINESS OBJECTS 43

. Interview the people on the list (mentioned in 4).

. Try to acquire as much domain knowledge as possible through the in-

terviews.

. Edit the interviews and study them carefully.
. Underline the key concepts.

. Provide the interviewed (and other involved) people with the edited

interview results, and get feedback.
If the results are (still) not satisfactory, go to 5.

If new people are found or introduced in the interviews, add them to
the list and go to 5.

Make a list for each category, i.e. Event, Process and Entity.

Try to assign each concept to one of the three categories according to
its rough characteristics.

Discuss each Event and summarize the related information.

Find out which Events can/should be merged and which Events can should

be split.
Find out the hierarchies in the structure of the Events.

Find out the associations (relationship, inheritance, etc.) within Events.
Think of chains of events, time orders, etc.

Based on each Event provide a scenario including different Events, Pro-
cesses and Entities.

Discuss each Process and summarize the related information.

Find out which Processes can/should be merged and which Processes
can/should be split.

Find out the hierarchies in the structure of the Processes.

44

22

23.
24.

25.
26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

CHAPTER 4. CREATING BUSINESS OBJECTS

Find out the associations (relationship, inheritance, etc.) within Pro-
cesses. Think of preconditions and postconditions of each process with
respect to the other processes, activity sequences, etc.

Discuss each Entity and summarize the related information.

Find out which Entities can/should be merged and which Entities
can/should be split.

Find out the hierarchies in the structure of the Entities.

Find out the associations (relationship, inheritance, etc.) within Enti-
ties. Think of ownerships, collaborations, etc.

Find out the associations between the Processes and Events. Think of
activities triggered by events, events caused by activities, etc.

Find out the associations between the Events and Entities. Think of
changes in states as a result of events, events as a result of changes in
states, etc.

Find out the associations between the Entities and Processes. Think
of actors participating in activities, activities initiated by actors, etc.

If any new concept is recognized, go to 13.

Find out the attributes of each Event. Think of characteristics, associ-
ations, etc.

Find out the operations of each Event. Think of manipulation of at-
tributes, activities, etc.

Find out the attributes of each Process. Think of characteristics, asso-
ciations, etc.

Find out the operations of each Process. Think of manipulation of
attributes, activities, etc.

Find out the attributes of each Entity. Think of characteristics, asso-
ciations, etc.

Find out the operations of each Entity. Think of manipulation of at-
tributes, activities, etc.

4.3. BUILDING BUSINESS OBJECTS 45

In addition, one can use a hypermethod, namely a combined top-down and
bottom-up method. That is, the analysis methods can be put at the top and
the definitions of the three categories at the bottom. Then a compromise
between these two can be sought from both ends.

Furthermore, to devise Business Objects, one can take advantage of other
(non Object-Oriented) methods for analysing the business in question. The
applied method should make it possible to extract the characteristics and
requirements of the business concerned, and present the results in suitable
models. The resulting models can then be applied as input for the devising
process.

An appropriate method for this purpose is the Dynamic Essential Modelling
of Organizations (DEMO) [Dietz 1999] and [DEMO]. DEMO is a method for
modelling business processes (in its general sense) that considers organiza-
tions as systems consisting of people with specific roles who act according to
specific responsibilities and coordinate their actions by means of communica-
tion. This method can help one to identify the essential activities performed
in the business concerned and describe these activities in a structured man-
ner.

4.3 BUILDING BUSINESS OBJECTS

Business Objects should be the "right" means for realizing (business) software
systems, according to the concept of the Multi-Tier Architecture. That is, it
should be possible to use them with different data sources and user interfaces.
They should also ease interoperation between different systems and platforms
in distributed and heterogeneous environments. In other words, the built
Business Objects should offer the "right" means for providing the Business
Logic layer in the Multi-Tier Architecture.

There are a number of approaches for building Business Objects in the litera-
ture, such as those presented by [Ehnebuske et al. 1997] and [Eeles and Sims
1998]. Again, these approaches are based on different definitions of Busi-
ness Objects. For example, [Ehnebuske et al. 1997] suggests building "(fine-
grained) objects" based on the underlying databases, "Business Objects"
based on objects and "business components" based on Business Objects and
their user interfaces.

46 CHAPTER 4. CREATING BUSINESS OBJECTS

In general, building (the devised) Business Objects, as Business Objects or
Business Object Components, is not different than building any other kind
of object or component. Therefore, building Business Objects and Business
Object Components can be based on the existing approaches for building
objects and components as software constituents, such as those presented
by [Dellarocas 1995), [Nierstrasz and Tsichritzis 1995] and [Heineman and
Councill 2001].

Furthermore, there are certain differences between Business Objects and
Business Object Components. Business Objects, in contrast to Business
Object Components, do not have to support the notion of software plug
and play. Besides, Business Objects should be transparent, but this is not
a prerequisite for Business Object Components. Consequently, while build-
ing Business Objects provides a more visible and flexible means for realizing
business software systems, building Business Object Components results in
more reusable and interoperable software building blocks. '

The interfaces of Business Objects should contain attributes, operations, rela-
tionships and descriptions, and the interfaces of Business Object Components
should expose inputs and outputs, as well as introspection/self-describing and
customisation/adjustment capabilities.

For implementing the interfaces of both Business Objects and Business Ob-
ject Components, one can begin from scratch or reuse the existing software
resources.

Implementing Business Objects from scratch can (potentially) result in a
higher level of efficiency, although it can require more work. In this case,
the devised Business Objects are directly implemented from the beginning.
It is obvious that in this way one is free to take any factor into account to
increase the efficiency.

Implementing Business Objects based on reuse can result in a lower level of
efficiency, although it can (potentially) require less work. In this case, the
devised Business Objects are implemented through the use of existing soft-
ware constituents, including objects, components, modules and applications,
in different forms, related to the possibilities and requirements. As such,
searching for suitable software constituents is an indispensable part of reuse.

Although finding and integrating (the right) software constituents can be
very difficult, and can restrict performance to the constituents used, taking
advantage of existing software as much as possible is the preferred option for

4.3. BUILDING BUSINESS OBJECTS 47

contemporary enterprises. |Skord 1998] refers to the advantages of reuse for
companies as follows:

One of the motives for companies to reuse classes is to save money
in the long run. Another is that reuse gives the system a higher
quality since the classes have been tested and verified in earlier
systems. Reuse also makes it possible to achieve a higher pace of
production since the classes can be used as building blocks when
the system is being created. Another reason for reusing classes is
to lower the maintenance costs. This is possible since the devel-
opers are more familiar with the classes used in the systems, plus
there will be fewer classes to maintain.

Then it names the most important characteristics of a reusable class as fol-
lows:

- The class should be flexible in the context and it should be easy
to modify and adapt to one’s needs.

- A class interface should be easy to understand and it should also
follow the company’s coding guidelines.

- A class should be independent and have minimal relations to
other classes.

- A class is quality assured since it has either been used in earlier
systems or stnce it has been tested and verified according to the
company’s standards.

- A reusable class is more expensive to develop than a specific
class. This is due to the fact that the surrounding environment
has more requirements on a reusable class than it has on a spe-
cific class, since the reusable class is to be used in many different
contexts.

Wrapping the legacy systems by objects is a special form of implementing
Business Objects based on reuse. However, applying this form can decrease
the efficiency, among others, due to the following reasons; there may be:

48 CHAPTER 4. CREATING BUSINESS OBJECTS

e entities that are repeated in different systems,
e superfluous functionality in different systems or

e complex relationships between different elements of different systems.

In addition, as [Semaphore 1997] notes, using existing systems implies a kind
of compromise in modelling efforts and choosing a middle-out approach. Ac-
cordingly, this may lead to models that deviate from the desired model.

Moreover, the mentioned options can be applied together. In this way, Busi-
ness Objects can be partly implemented from scratch and partly implemented
based on reuse. Besides, Business Objects implemented based on reuse can
later be gradually replaced with new ones that are implemented from scratch
and/or are more efficient.

Finally, Business Object Components can be combined with other Business
Object Components related to other (business) concepts. In this case, the re-
sulting component, which is concerned with two or more (business) concepts,
can be called a Business Object Block.

The functionality of Business Object Components can also be extended with
other (macro) functionalities. With respect to the Five-Layer Architecture,
the functionality of Business Object Components can be extended with the
(macro) functionalities related to Presentation Logic and Information Logic.
In this case, the resulting component, which is concerned with Core Logic,
can be called a Business Core Component.

Accordingly, with respect to the Five-Layer Architecture, the functionality of
Business Object Blocks can be extended in order to offer the whole function-
ality related to Core Logic for a number of interrelated (business) concepts.
In this case the resulting component can be called a Business Core Block.

4.4 STANDARDIZATION OF BUSINESS OB-
JECTS?

Standard is something established by authority, custom or general consent as
a model or ezample [Merriam-Webster|. The International Organization for
Standardization (ISO) [ISO| has defined standards as follows:

*The background of this section can be found in [Abolhassani 2000-2].

4.4. STANDARDIZATION OF BUSINESS OBJECTS 49

Standards are documented agreements containing technical speci-
fications or other precise criteria to be used consistently as rules,
guidelines or definitions of characteristics, to ensure that materi-
als, products, processes and services are fit for their purpose. ...
International standards thus contribute to making life simpler,
and to increasing the reliability and effectiveness of the goods
and services we use. ... International standardization is well-
established for many technologies in such diverse fields as infor-
mation processing and communications, textiles, packaging, dis-
tribution of goods, energy production and utilization, shipbuild-
ing, banking and financial services. It will continue to grow in
importance for all sectors of industrial activity for the foreseeable
future.

In the field of information and communication technology, different standards
regarding different aspects, such as character sets, programming languages
and operating systems, are devised and utilized. For instance, the Open
Systems Interconnection (OSI), a subcommittee of ISO, has developed a ref-
erence model for communications architecture. This model, known as the
OSI model, has provided the field of information and communication tech-
nology with important advantages.

Concerning the close relationship between Business Objects and components
(and Business Object Components) as discussed in {3.6}, the following para-
graph can clarify the necessity and importance of standards in this area
[Herzum and Sims 2000]:

Traditionally, the main objective of good design has been to cost-
effectively build a given system satisfying its functional and extra-
functional requirements. Two additional objectives for component-
based development are to make it simple to develop components
themselves ... and to make life simpler for the developer who uses
components. This last objective requires the provision of easy-to-
understand and well-specified interfaces corresponding to a clean
and scalable architectural model. Achieving this, in turn, requires
consistency across interfaces which requires standards.

Furthermore, according to the definition of Business Objects, given in {2.3.2},
standardization is one of the main distinguishing characteristics as well as

50 CHAPTER 4. CREATING BUSINESS OBJECTS

advantages of this concept, compared to the other (Object-Oriented) ap-
proaches in realizing software systems. The standardization feature of Busi-
ness Objects makes them suitable for serving as a means of communication
for the cooperating parties, for interoperation within or between different
organizations and for utilization of software in (different) organizations.

In the area of information technology, the existing standards are mostly con-
cerned with the syntax of data. This leads to (the need for) many different
standards. For instance, the Reference Model for Open Distributed Process-
ing (RM-ODP)? aims to provide a "big picture" that organizes the pieces of
an ODP system into a coherent whole, but it does not try to standardize
the components of such systems. Business Objects, on the other hand, are
concerned with the semantics of data and processes, as they focus on the
Business Logic and reflect the reality of the business domains. Since Busi-
ness Objects represent semantical standards, they can provide a basis that
leads to uniform standards for different business domains.

Moreover, Business Objects can also be intended for other "organizational
units" than business domains, such as sections, departments and enterprises.
Besides, countries and regions can also be considered as organizational units.
The relationship between the organizational units can then be one of "sub-
ordination", "intersection" or "distinction".

In order to be able to take advantage of the standardization feature of Busi-
ness Objects, one must deal with issues that stem from the very nature of
business; the varieties of business methods, disagreements about concepts, as
well as differences in cultures, circumstances, possibilities and requirements.
Besides, the Business Logic may change over time due to reasons such as in-
validation, obsolescence or changes of (parts of) semantics of the real-world
concepts over time. Accordingly, some conflicts are known in advance and
some are not. Therefore the differences should be handled differently. Keep-
ing standards at the lowest possible level [Casanave 1995] is the easiest way

3The Reference Model for Open Distributed Processing (RM-ODP), a joint effort of
International Organization for Standardization (ISO) and International Telecommunica-
tion Union (ITU), presents standards for distributed and heterogeneous systems through
the use of a common interaction model. The goal of RM-ODP is to achieve portability
of applications across heterogeneous platforms, interoperability through exchanging in-
formation, as well as offering functionality between distributed systems and distribution
transparency through hiding the consequences of distribution from both the application
programmers and users.

4.4. STANDARDIZATION OF BUSINESS OBJECTS 51

to deal with these difficulties.

The following subsections discuss how standards for Business Objects can/-
should be devised and complied with.

4.4.1 DEVISING STANDARDS

Devising standards for Business Objects is closely related to devising and
building Business Objects.

4.4.1.1 ABSTRACTION LEVELS

The abstraction levels involve three, orthogonal, and albeit interrelated, as-
pects, namely organizational unit, semantics and granularity.

ORGANIZATIONAL UNIT

Standard Business Objects should make "interoperation" and "reuse" pos-
sible. Therefore, as interoperation and reuse can take place at different or-
ganizational units, standards should also be concerned with different organi-
zational units. Consequently, the intended organizational unit(s) can affect
the level of abstraction that is suitable.

SEMANTICS GRADE

Standard Business Objects should present the semantics of the real world in
such a way that they can accommodate different requirements and changes.
Therefore, the grade of the semantics reflected by standards is essential. In
fact, there is a trade-off between the grade of semantics on the one hand,
and the level of applicability and flexibility of the devised standards, as well
as the level of difficulty involved in devising standards on the other hand.
These trade-offs must be weighed carefully.

GRANULARITY LEVEL

Standard Business Objects should form the Business Logic. Therefore, they
should offer the right granularity levels. The granularity levels do not only
involve modelling and realizing the Business Logic, they also influence the
system performance, especially in distributed environments. Fine-grained
Business Objects offer more flexibility, as they can be composed and re-
composed into different shapes. Coarse-grained Business Objects offer more
efficiency, as they hide details and take care of their inherent relationships.

52 CHAPTER 4. CREATING BUSINESS OBJECTS

In the literature, both fine-grained and coarse-grained Business Objects are
advocated. For instance, according to [Sutherland et al. 1997):

Technically, Business Objects encapsulate traditional lower-level
objects that implement a business process (i.e., they are a collec-
tion of lower-level objects that behave as single, reusable units).
User interfaces can be thought of as views of large-grained Busi-
ness Objects.

However, standards should be devised with respect to different granularity
levels, as no single level would be sufficient.

4.4.1.2 CONCEPTS - ORGANIZATIONAL UNITS

When the same concepts apply to more than one organizational unit, one
should take into account on the one hand the relationship between the or-
ganizational units concerned, and on the other hand the abstraction level of
the concepts concerned.

Assuming that the concept C is applicable to organizational units OU1 and
OU2, and that only OU1l and OU2 and no other organizational units are
involved, six major situations, as shown in figure 4.1, can occur.

4.4. STANDARDIZATION OF BUSINESS OBJECTS 93

Figure 4.1: Different situations with respect to the relationship between con-
cepts and organizational units.

In the following these situations are explained:

e I) OU2 is subordinate to OU1, and C is only inside OU2: The - single
- C should be standardized for both OUs.

e II) OU2 is subordinate to OU1, and C is both inside and outside OU2:
The abstraction levels of the Cs can be different, and most probably the

54

CHAPTER 4. CREATING BUSINESS OBJECTS

C inside OU2 is a more specific and detailed version of the C outside
OU2. Therefore, at least, two Cs should be standardized for each OU,
probably with the one outside OU2 as the basis for the one inside QU2.

I1I) OU1 and OU2 intersect, and C is inside the intersection: The -
single - C should be standardized for both QUs.

IV) OUL and OU2 intersect, and C is outside the intersection: The
Cs can be of the same or of different abstraction levels. In the former
case, the C in common should be standardized for both QUs. In the
latter case, the two Cs should be standardized for each OU. However,
it is better to provide a general standardized C, which can serve as the
basis for the two specific Cs.

V) OUI and OU2 are distinctive, but interoperate: The Cs can be of
the same or of different abstraction levels. In the former case, the C in
common should be standardized for both OUs. In the latter case, the
two Cs should be standardized for each OU. However, it is better to
provide a general standardized C, which can serve as the basis for the
two specific Cs.

VI) OU1 and OU2 are distinctive, and do not interoperate: Two -
different - Cs should be standardized for each QU.

4.4.1.3 ASSOCIATIONS

As mentioned in {4.1}, the associations between Business Objects should be
kept at the lowest possible level. As not all of the real-world concepts are
supposed to be reflected by (the standard) Business Objects, there are also
associations between Business Objects and the other constituents of the Busi-
ness Logic. Furthermore, not all of the standards, not even those concerned
with a specific organizational unit, may be devised together. Therefore, in
addition to specifying what the standard Business Objects can offer, one
should also specify what these can expect from the other Business Objects
or other constituents of the Business Logic.

4.4. STANDARDIZATION OF BUSINESS OBJECTS 95

4.4.2 COMPLYING WITH STANDARDS

The semantics of the concepts, on the basis of which the standard Business
Objects are devised, may be different for different situations or may change
over time. As change lies at the heart of modern business, it is the main
reason why flexible business software is required.

Consequently, adopting the devised and built (standard) Business Objects
for modelling business systems and realizing business software systems may
not be straightforward, and some adaptations may be required. These adap-
tations may be of a conceptual or a technical nature.

In order to be able to take advantage of these adaptations, one needs to devise
the standards such that they can accommodate the changes required. Be-
sides, in order to utilize these adaptations, one needs to consider the available
resources, application environment and desirable performance.

4.4.2.1 CONCEPTUAL ADAPTATIONS

The conceptual adaptations are mainly based on the definition and the inte-
rior traits of Business Objects.

ABSTRACTION LEVELS

The different abstraction levels of Business Objects, as discussed in {4.4.1.1},
can be taken into consideration. Business Objects that offer a lower grade
of semantics and /or a higher level of granularity can be used as a basis, and
Business Objects that offer a higher grade of semantics and/or a lower level
of granularity can be partly or completely ignored.

CATEGORIES

The distinction between Entity Business Objects and Process Business Ob-
jects can be taken into consideration?. Entity Business Objects are more
data oriented. Each Entity Business Object provides the functionality that
is dedicated to itself, with no or minor involvement of other Entity Business
Objects (of the same abstraction level). Process Business Objects are more
function oriented. Each Process Business Object provides the functionality
that is dedicated to handling specific business tasks, according to specific
strategies, using the data and functionality of Entity Business Objects.

4These categories of Business Objects are defined in {4.5.1}.

56 CHAPTER 4. CREATING BUSINESS OBJECTS

Therefore, Process Business Objects reflect those concepts that are more
subject to change in different situations and over time, and Entity Business
Objects reflect those concepts that are, by nature, more stable and generally
acceptable. Accordingly, (the standard) Entity Business Objects can be used
as a basis, and Process Business Objects can be partly or completely ignored.

4.4.2.2 TECHNICAL ADAPTATIONS

The technical adaptations are mainly based on the location and the exterior
traits of Business Objects.

DIRECT

In case the built Business Objects are objects consisting of an interface and
implementation, as described in {4.3}, conventional Object-Oriented meth-
ods can be applied:

¢ Implementation: The implementation of Business Objects can be partly
or completely changed, while the interface remains the same.

e Specialization: Business Objects can be specialized. This can take
place both at the interface and at the implementation.

¢ Delegation: Business Objects can be delegated. This means that a
Business Object can be included in a new object (class) as an instance
variable. In this way, interaction with the Business Object can be
controlled through the new object (class).

INDIRECT

As the connection between Business Objects and the User Interface layer
takes place through Presentation Logic, defined in {3.3}, the desired changes
can also be imposed thereby. That is, the constituents of the Presentation
Logic layer, namely Presentation Objects, defined in {3.5}, can take care of
desired modifications. However, this implies a deviation from the nature of
Business Objects.

4.5. CATEGORIZATION OF BUSINESS OBJECTS 57

4.5 CATEGORIZATION OF BUSINESS OB-
JECTS®

"Categorization" (or "classification") means systematic arrangement in groups
or categories according to established criteria [Merriam-Webster|, and is closely
related to "taxonomy", the study of the general principles of scientific clas-
sification, ... orderly classification of plants and animals according to their
presumed natural relationships [Merriam-Webster].

Accordingly. categorization can be defined as the act of arranging things in,
or assigning things to, groups, based on specific characteristics. It is a helpful
practice, used in many fields of science and technology. Categorization is in
fact a method for maintaining information in a logical manner. It is beneficial
for organizing the conceptual requirements at different levels in an efficient
way. The categories at each level can be mutually exclusive or not, and taken
together, may include all possibilities or not. The taxonomies can then be
used in two ways:

¢ Looking for the things with specific characteristics, beginning from the
general ones.

e Determining the position of things according to their specific charac-
teristics, with respect to the other ones.

In the field of computer science and technology, categorization has been ap-
plied in many different areas, like computer architecture [Skillicorn 1998§],
software development [Chance and Melhart 1999], information visualization
[Shneiderman 1996], multimedia [Heller and Martin 1999] and security [Land-
wehr et al. 1993]. Moreover, as is well known, the Object-Oriented paradigm
is closely involved in categorization. The most important feature of this
paradigm is that concepts are divided into "classes®.

As a concept that is closely associated with Object-Oriented paradigm, Busi-
ness Objects should also take advantage of categorization. However, despite

The background of this section can be found in [Abolhassani 2001-2}.
5The terms "category" and "class" can often be used interchangeably. However, in the
Object-Oriented paradigm, "class" has got a more specific meaning than "category".

58 CHAPTER 4. CREATING BUSINESS OBJECTS

some efforts, this concept has not yet adequately benefited from categoriza-
tion. Besides, as Business Objects are at a higher semantical level than
objects, categorization of Business Objects should go further than that ap-
plied in the Object-Oriented paradigm. In this way, categorization can be
helpful for the creation and utilization of Business Objects.

Furthermore, categorization of Business Objects is closely related to stan-
dardization of Business Objects, discussed in {4.4}. Categorization can pro-
vide standardization with a more disciplined basis, and standardization can
confirm categorization.

In general, categorization can help us to:

¢ Recognize real-world business concepts and concentrate on their main
features.

e Recognize different abstraction levels.

Represent different abstraction levels.
e Comply with the main features of the concept of Business Objects.

e Provide comprehensive and disciplined information about each concept
and its related Business Object.

e Provide a general view on the existing (and missing) Business Objects.

Use the existing Business Objects.
¢ Recognize the facilities and services required for Business Objects.

o Assign the required facilities and services to Business Objects.

Adapt Business Objects.

In the following, the basic categories of Business Objects are described in
more detail and some criteria for categorizing Business Objects (further) are
suggested.

4.5. CATEGORIZATION OF BUSINESS OBJECTS 99

4.5.1 THE BASIC CATEGORIES

The definition of Business Objects given in {2.3.2} is based on the categoriza-
tion of objects according to their roles in information systems. Accordingly,
objects are divided into five main categories, namely Reflection Objects, In-
teraction Objects, Completion Objects, Connection Objects and Construc-
tion Objects. Business Objects are classed under the Reflection Objects.

In this way, Business Objects can also be divided into different categories. A
well-known categorization of Business Objects is the following [Shelton 1995]:

Business entity objects: Are what usually come to mind in a dis-
cussion of Business Objects. They represent people, places and
things, in much the same manner as a data-modelling entity...

Business event objects: Represent business events, such as busi-
ness time boundaries (end of quarter or fiscal year, elections,
etc), changes in the business environment, product life cycles, etc.
Many business event objects represent boundaries in time, while
others recognize that some significant action has taken place...

Business process objects: Represent business verbs. They repre-
sent business processes ..., where a process is characterized by the
interaction of a set of Business Objects...

This categorization is also in agreement with the view of BODTF on dif-
ferent Business Object categories [OMG 1997-2]. In fact, the idea is not
new. A similar categorization was already assigned to objects in general
[Shlaer and Mellor 1988]:

An object is an abstraction of a set of real-world things... Most of
things are likely to fall into the following five categories: tangible
things, roles, incidents, interactions and specifications.

Assuming that here the term "object" refers to the Reflection Objects, as in
many other cases, and in view of the definitions of the categories that are
given, we can note that:

e Tangible things and specifications are comparable with entities,

60 CHAPTER 4. CREATING BUSINESS OBJECTS

e Incidents are comparable with events and

¢ Interactions are comparable with processes.

(Dedication of a special category to roles is a matter of taste.)

Furthermore, this approach is also supported by the systems analysis and
design Methods [Tudor and Tudor 1995):

Early structured methods (De Marco, Yourdon) concentrated on
modelling the system in terms of processes and the data flowing
between them. It soon appeared that, in all but small, real-time
systems, the structure of data was important. Techniques to han-
dle data structure were added (entity modelling being the princi-
pal one). It then emerged that it was not just data and processes
which were important, but the timing and effects of the interaction
between them. Thus, now that structured methods have matured,
they have adopted a three-sided approach to specification of the
system:

- Data
- Processes (functions)
- Events (and the effect of these on processing and data)

What the modelling techniques need to model is the following sit-
uation:

An event in the outside world will trigger a process. This will
cause an effect on data in a given state and (if this is an updating
event) will transform data into another recognized state.

Accordingly, the Business Object categories can be defined as follows:

Entity Business Objects (EBOs) are those Business Objects that
represent tangible and intangible business facets, such as "person",
"bank account" and "order", and encapsulate enterprise data and
their manipulations according to business rules and constraints.
Attributes play the most important role in the structure of this
category.

4.5. CATEGORIZATION OF BUSINESS OBJECTS 61

Process Business Objects (PBOs) are those Business Objects that
represent business activities, such as "purchase", "money transfer"
and "delivery", and encapsulate units of enterprise work and their
data according to business rules and constraints. Operations play
the most important role in the structure of this category.

Event Business Objects (VBOs) are those Business Objects that
represent persistent records of, and notification means for, busi-
ness happenings, such as "reception", "in debt" and "end of year",
and are concerned with state changes, action occurrences and time
boundaries.

In fact, Entity Business Objects are the means that are necessary to carry out
the activities described by Process Business Objects, and Event Business Ob-
jects mainly result from interactions between Entity Business Objects with
respect to Process Business Objects and can trigger other Process Business
Objects.

The importance of categorization can be underlined irrespective of the def-
inition of Business Objects and the categories concerned. For instance, re-
garding Entity and Process Business Objects, based on a different view on
these categories, [Schmid et al. 1998] declares:

A business entity provides services embodying business rules, which
are common to and used in different applications. ... A business
process, or, as a smaller part, a business procedure or a busi-
ness activity, is a processing sequence that requests services from
business entities; it is specific for an application.

Consequently, it mentions the three following differences between Entities
and Processes:

e Processes request services from Entities and not vice versa.
e Entities have a permanent state and Processes do not.

e Sharing of Entities involves transaction mechanisms and sharing of Pro-
cesses does not.

62 CHAPTER 4. CREATING BUSINESS OBJECTS

4.5.2 THE OTHER CATEGORIES

The most obvious and straightforward basis for categorizing Business Objects
(further) is to follow the basic categorization, and to proceed with the Entity,
Process and Event categories. For instance, [Schmid and Simonazzi 1998]
represents a kind of taxonomy for Process Business Objects that includes
"Procedures", "Activities" and "Sub-Activities". The same can be done for
Entity Business Objects and Event Business Objects. For example, Entity
Business Objects can be divided into "Active" and "Passive" categories, and
Event Business Objects can be divided into "Process-Dependent”, "Entity-
Dependent" and "Time-Dependent" categories.

Obviously the existing taxonomies of various fields of life, including business
(domains), can also be used and extended to categorize Business Objects in
general, and Entity Business Objects in particular.

However, there are many other criteria that can (and must) be used as a basis
for categorization of Business Objects. These criteria are mainly related to
semantical and structural aspects.

4.5.2.1 SEMANTICAL CRITERIA

The semantical criteria are mainly based on the definition and the interior
traits of Business Objects, and are mainly related to the devising of Business
Objects.

APPLICATION DOMAIN

Business Objects can be applied to different business domains. Therefore,
the application domains of Business Objects can be divided into two major
categories:

e Horizontal applications, which can be used for a wide range of business
activities.

e Vertical applications, which are related to particular business activities.
Accordingly, Business Objects can be divided into two categories with respect

to Horizontal and Vertical applications. The Vertical category can then be
further extended for each specific domain, sub-domain and so on.

4.5. CATEGORIZATION OF BUSINESS OBJECTS 63

[Bonar 1997] presents classifications with respect to applications of Business
Objects.

APPLICATION TYPE

Business Objects can be used for different application types [Abolhassani
2000-1]. The application types can be divided into two major categories:

e OnLine Transaction Processing (OLTP) applications, which are in-
volved in the day-to-day activities of an enterprise.
e OnLine Analytical Processing (OLAP) applications, which are involved

in the decision-making activities of an enterprise.

Accordingly, Business Objects can be divided into two categories with re-
spect to OLTP and OLAP applications. Each of these categories can possess
specific features needed for the related type of application.

ABSTRACTION LEVEL

Business Objects can be related to different abstraction levels, as discussed
in {4.4.1.1}. The abstraction levels are based on three aspects, namely:

e Organizational unit
e Semantics grade
e Granularity level

Accordingly, Business Objects can be divided into categories with respect to
target organizational units, grades of semantics and levels of granularity.

4.5.2.2 STRUCTURAL CRITERIA

The structural criteria are mainly based on the location and the exterior
traits of Business Objects, and are mainly related to the building of Business
Objects.

64 CHAPTER 4. CREATING BUSINESS OBJECTS

STATE

Business Objects can outlive the session in which they are instantiated or
not. In the former case they are called "stateful" and in the latter case they
are called "stateless".

Therefore, Business Objects can be categorized according to their state.

ACCESS RIGHT

Business Objects can be used according to their access rights. (In the general
sense, "access right" determines who has the "right" to "access" what and
in which manner.) For instance, Business Objects can be "read-write" or
"read-only".

Therefore, Business Objects can be categorized according to their access
rights.

UTILIZATION

Business Objects may (need to) utilize different facilities and services, such
as "persistence", "transaction" and "security".

Therefore, Business Objects can be categorized according to the facilities and
services they utilize.

DEPENDENCY

To be able to start, continue, accomplish or finish their task, Business Objects
may, or may not, depend on:

Other Business Objects

Other objects

Other system constituents

Other systems

e Users

Therefore, Business Objects can be categorized based on their dependencies.

Chapter 5

USING BUSINESS OBJECTS

The real problem is not whether machines think but whether men
do.

[B. F. Skinner|

The use of Business Objects is related to their location and creation. This
chapter discusses the issues concerned on the basis of the Five-Layer Archi-
tecture.

The first section outlines the general issues. The second section concentrates
on the layers of the Five-Layer Architecture and the relationship between
these layers. The third section elaborates on a number of options regarding
the relationship between Business Objects and data sources, and different
perspectives on the basis of which Business Objects can be created!.

5.1 GENERAL ISSUES

In order to use Business Objects in an organizational unit one should take
some general issues into consideration. These issues are related to a number
of conceptual and technical aspects.

The conceptual aspects include:

!The background of this chapter can be found in [Abolhassani and van Groen 2000].

65

66 CHAPTER 5. USING BUSINESS OBJECTS

e The relationship between the organizational unit concerned and other
organizational units.

e The viewpoint of the organizational unit concerned on the concept of
Business Objects.

e The specification of the universe of discourse concerned.

With respect to the universe of discourse, one should decide within which
borders the real-world concepts should be searched for, and which concepts
should be reflected (by Business Objects). Besides, there are concepts that
can only exist within software systems, and hence not in the real world.

The technical aspects include resources, possibilities and requirements, such
as:

e The development time.

e The development approach.

The development resources, including people, platforms and communi-
cation means.

The (legacy) databases.

The usage characteristics, including frequency of use and (the desired)
run-time speed.

5.2 SYSTEM LAYERS

There are two (contradictory) trends in information systems, namely distri-
bution and centralization. On the one hand, by virtue of the new possibilities,
especially with respect to communications, information systems are spread
over different locations. On the other hand, because of the importance at-
tached to information, each enterprise wants to have a centralized control
over it. The Five-Layer Architecture and Business Objects can be used to
accommodate both of these trends. As mentioned in {3.5}, objects, including
Business Objects, can be spread over different locations in order to take ad-
vantage of different software and hardware resources for storage, processing,

5.2. SYSTEM LAYERS 67

communications, etc., and to deal with issues such as performance, autho-
rization and security. Besides, the Information Logic layer can deal with
the distributed data, and provide the Business Logic layer with the needed
information. The Business Logic layer, in turn, can provide a centralized
information model, accessible for the Presentation Logic layer.

However, specifying the location of each layer according to its nature, possi-
bilities and requirements is an important issue, and asks for careful engineer-
ing and management of distributed resources. For instance, placing two (or
more) layers on the same location can simplify communication and increase
speed, while distributing the layers can increase flexibility and optimise uti-
lization of resources.

In any case, reducing the volume of exchanged data and information on the
wire to the lowest possible amount can increase both speed and flexibility.
However, this costs more time and effort in the system development.

A convenient distribution of the layers of the Five-Layer Architecture, which
resembles the Three-Layer Architecture, is as follows:

e User Interface and Presentation Logic at the client side.

e Business Logic and Information logic at a central location accessible
for all clients.

e Data Source at different locations accessible for Information Logic.

However, as the Five-Layer Architecture divides a system into five logical
layers, it offers more flexibility for the distribution of system according to
each specific situation.

In the following subsections, each layer is discussed further.

5.2.1 USER INTERFACE

The User Interface layer is an essential and indispensable layer, and is the only
layer of the system that deals directly with the user. This layer can be realized
based on Interaction Objects or other software constituents. Besides, the IOs

68 CHAPTER 5. USING BUSINESS OBJECTS

(and other constituents of UI) that are used very often can be componentized.
This is the idea on which components like "Controls"? are based.

Furthermore, if one supplies UI constituents as Internet-enabled components
and places them in a central location, a Web browser at the client side is
sufficient for a user interface. In this way, the UI components can be installed,
updated and upgraded only in one location.

5.2.2 PRESENTATION LOGIC

The Presentation Logic layer is not essential for the system, although it can
improve application development. It bridges the gap between the Business
Logic layer and the User Interface layer, and can be realized based on Pre-
sentation Objects. Besides, the POs (and other constituents of PL) that are
used very often can be componentized.

In case the constituents of the User Interface layer are based on a specific
model, the Presentation Logic can also be considered as a "mapper" between
that model and the model on which the Business Logic layer is based®.

5.2.3 BUSINESS LOGIC

‘The Business Logic layer is an essential layer, and forms the central point
of the system. This layer should be (preferably) realized based on Busi-
ness Objects and/or Business Object Components, although other software
constituents can be used as well.

However, despite the important role of BL in the system, it can be omitted
in the following two situations:

e When the Business Logic is trivial.

e When the Data Source is sophisticated.

2Controls include items such as text boxes, list boxes, check boxes, combo boxes, option
groups, option buttons, command buttons and toggle buttons.
3For an example of this case see [Abolhassani and Szentivanyi 1999).

5.2. SYSTEM LAYERS _ 69

In these situations the concepts can be directly presented through the Data
Source (and Information Logic), and the rules and constraints concerning
these concepts can be maintained through the Data Source (and Presen-
tation Logic). In this way, by providing a direct connection between the
Presentation Logic or User Interface on the one hand, and the Information
Logic or Data Source on the other hand, one can increase the performance.

5.2.4 INFORMATION LOGIC

The Information Logic layer is an essential and indispensable layer for the
system in case there are two or more data sources. It bridges the gap between
the Business Logic layer and the Data Source layer, and can be realized based
on Information Objects. Besides, the FOs (and other constituents of FL) that
are used very often can be componentized.

The Information Logic layer hides the details of data access from Business
Objects, and hence insulates them from migration of data sources (databases).
In this way, the Information Logic layer acts as an intermediate between
the existing data models on the one hand, and the Business Object model
on the other hand. In this way when the constituents of the Data Source
layer are based on a model (for instance the "relational" model) that differs
from the model on which the Business Logic layer is based (most likely the
"Object-Oriented" model), the Information Logic can also be considered as a
"mapper" between those models, and the Information Logic layer should take
care of conversions between the constituents of the two models (for instance
tables and objects).

Information Logic can be as simple as a table consisting of data entries and
their location in a data source, along with the required characteristics of the
respective data source, or as complex as procedures dealing with contradic-
tions, duplications, etc. of data in different data sources.

Accordingly, the Information Logic layer can get involved in issues such as
querying, locking, transaction management and communication. Therefore,
the Information Logic layer should take advantage of the Control Logic, and
can directly affect the performance of the whole system.

70 CHAPTER 5. USING BUSINESS OBJECTS

5.2.5 DATA SOURCE

The Data Source layer is an essential and indispensable layer of the system.
Although each layer of the system may store and retrieve (temporary) data
through the environments embracing them, DS is the only layer of the system
that takes care of (persistent) data of the whole system. As mentioned in
{3.5}, in case Object-Oriented database systems are used, this layer can be
realized based on Data Objects.

Furthermore, the applied database system, its characteristics and in partic-
ular its category influences the design, implementation and performance of
the whole system.

5.3 OPTIONS AND PERSPECTIVES

As regards the effect of the applied data sources (databases) on the whole
system, the relationship between the Business Objects that form the Busi-
ness Logic layer and the data sources that form the Data Source layer is of
crucial importance. Although this relationship is taken care of by the Infor-
mation Logic layer, there are a number of interrelated "options" that should
be taken into consideration. Decisions about the (preferred) relationship be-
tween Business Objects and data sources should be based on an evaluation
of these options. In addition, the creation of Business Objects can be based
on different "perspectives". '

The following subsections discuss these options and perspectives.

5.3.1 OPTIONS
5.3.1.1 LEGACY/NEW

Business Objects may use legacy data sources (databases) or new customized
ones. In the former case, the data sources and their characteristics dominate
the relationship with Business Objects. In the latter case, the data sources
are realized based on the requirements of Business Objects. Therefore, choos-
ing one of these options also involves the perspectives discussed in {5.3.2}.

5.3. OPTIONS AND PERSPECTIVES 71

The use of legacy data sources is in agreement with the "reuse" principle,
and can result in optimal utilization of resources, while the use of new data
sources can increase flexibility and efficiency. For instance, realizing new
data sources can lead to simpler Information Logic, and even eliminate the
need of an Information Logic layer.

Furthermore, it is also possible that Business Objects use both legacy and
new data sources at the same time. That is, Business Objects can retrieve
data from the legacy data sources and save their state in the new data sources.
Therefore, these options also involve the Persistent/Temporal options dis-
cussed in {5.3.1.2}.

5.3.1.2 PERSISTENT/TEMPORAL

Business Objects may or may not pass on the changes made to them to data
sources. In the former case, the changes can outlive "sessions" and become
persistent. In the latter case, the changes cannot outlive "sessions" and
are temporal. Therefore, these options also involve the One/More options
discussed in {5.3.1.3}.

The use of Business Objects as temporal software constituents only makes
sense if there is no "crucial" data involved, or if the existing data can/should
not be changed during the session. Process Business Objects that do not
posses any "crucial" data can be examples of the first case, and Read-Only
Business Objects can be examples of the second case.

The use of Business Objects as persistent software constituents is more likely,
and, in itself, involves the "state" category of Business Objects. In case of
Stateless Business Objects, data should be written back to its origin in data
sources. In case of Stateful Business Objects, there are three possibilities:

e The changes are inherently saved as "states" of Business Objects in
their allocated data source.

e The "states" of Business Objects are inherently saved as changes in
their original data sources.

e The "states" of Business Objects are saved in their allocated data
source, and the changes are saved in their original data sources.

72 CHAPTER 5. USING BUSINESS OBJECTS

Furthermore, in some cases it is also possible that Business Objects are state-
ful in relation to one specific user, and stateless in relation to the other users.
That is, the state of Business Objects can be saved for a specific user during
a specific application.

5.3.1.3 ONE/MORE

Business Objects may be instantiated separately for each individual (real-
world) concept or for each (real-world) concept as a whole. In the former
case, data can be extracted in due course, and in the latter case all data can
be extracted in one go from the data sources concerned.

The choice for one of these options strongly depends on the specific cases for
which the Business Objects are used. Both options can provide efficiency or
result in inefficiency.

Although the first option is more consistent with the nature of Business
Objects, in many cases where relational database systems are used as data
sources, there is a one-to-one relationship between Business Objects (and in
particular Entity Business Objects) and "tables". Besides, in some cases,
Business Objects can be associated with a number of the fields of one table
(called "projection"), or a number of the fields of two or more tables (called

"view"). Furthermore, different classes of Business Objects may also be as-
sociated with a common table. In this way, multiple classes of an inheritance
tree can be associated with a single table.

5.3.2 PERSPECTIVES
5.3.2.1 DATA

Business Objects can be created in agreement with data existing in (legacy)
data sources. This perspective suggests a one-to-one relationship between
data source (database) entities, such as tables, and Business Objects, while
data source entities are the starting point?. Accordingly, the entities con-
cerned should be chosen based on factors such as the characteristics of the
respective data sources and the One/More options, discussed in {5.3.1.3}.

4This perspective is described in [Jerke et al. 1999].

5.3. OPTIONS AND PERSPECTIVES 73

The main advantage of this perspective is that it makes the relationship
between Business Objects and the Data Source layer straightforward. Con-
sequently, Information Logic can be simpler, or it might even be possible
to leave out the Information Logic layer altogether. However, the Business
Objects created based on this perspective would not be suitable for (new)
data sources that are added to the system later on.

The main disadvantage of this perspective is that it may result in Business
Objects that are not consistent with the definition of Business Objects, and
(even) deviate from the nature of this concept.

5.3.2.2 APPLICATION

Business Objects can be created in agreement with the intended applications.
This perspective suggests an association between application requirements
and Business Objects.

The main advantage of this perspective is that it makes the relationship be-
tween Business Objects and the User Interface layer straightforward. Con-
sequently, Presentation Logic can be simpler, or it might even be possible
to leave out the Presentation Logic layer altogether. However, the Business
Objects created based on this perspective would not be suitable for new
applications of the system.

The main disadvantage of this perspective is that it may result in Business
Objects that are not consistent with the definition of Business Objects, and
(even) deviate from the nature of this concept.

5.3.2.3 REAL WORLD

Business Objects can be created in agreement with real-world concepts. This
perspective suggests a one-to-one relationship between real-world concepts
and Business Objects.

The main advantage of this perspective is that it can result in Business
Objects that are consistent with the definition of Business Objects, and the
nature of this concept.

The main disadvantages of this perspective are that it may demand more ef-
fort, and may decrease the efficiency with respect to the relationship between
Business Objects and both user interfaces and data sources.

74

CHAPTER 5. USING BUSINESS OBJECTS

Chapter 6

STATE-OF-THE-ART

Protocol is everything.

[Francoise Giuliani]

The preceding chapters discussed different aspects of Business Objects. Using
the discussed subjects as a background, we can survey the environments in
which software systems based on the concept of Business Objects can be
realized, and technologies with which these environments can be enabled.
Accordingly, this chapter surveys the representative enabling technologies
and system environments with respect to the discussed subjects concerned
with architectural and construction aspects!.

The first section addresses the general issues. The second section specifies the
architectural and constructional criteria for the assessment of the technologies
and environments for Business Objects. The third and fourth sections survey
a number of enabling technologies and system environments according to the
specified criteria.

6.1 GENERAL ISSUES

The emergence of high-bandwidth communication channels and the extreme
growth of computer networks, Internet and Intranets on the one hand, and

'For a survey and comparison of different enabling technologies for Business Objects
from another viewpoint see [Emmerich et al. 1998].

75

76 CHAPTER 6. STATE-OF-THE-ART

the emergence of several information and communication standards on the
other hand have promoted the distribution and heterogeneity of software
systems. Business software systems should take advantage of the new possi-
bilities, and at the same time deal with continuous change in business.

Obviously, Monolithic software systems cannot benefit from the new pos-
sibilities, nor comply adequately with the changes in business. Although
software systems based on the Client/Server architecture can be more ap-
propriate, inherently they cannot fully benefit from the new possibilities and
are not flexible enough to comply with the changes in business. Separat-
ing the whole functionality of a software system into loosely coupled layers
(tiers) is a better way to comply with the business requirements, in view of
the technical possibilities.

Furthermore, as mentioned in {3.5}, although Business Objects can be used
for systems based on Monolithic and Client/Server architectures, software
systems based on a Multi-Tier Architecture are most suitable for applying
the concept of Business Objects. Therefore, our survey is confined to those
enabling technologies and system environments that can be used for realizing
software systems based on a Multi-Tier Architecture.

Enabling technologies should provide basic facilities and services, and in
particular communication means for realizing distributed and heterogeneous
software systems. System environments should use these enabling technolo-
gies to make realizing such software systems possible. Besides, system en-
vironments should let users construct Business Objects, and should support
separation of the Business Logic from other parts of the system.

Moreover, systems should be able to interoperate and cooperate with other
systems. A prerequisite for this is that the system environment is open and
extensible. Besides, ease of use for the users and developers can be considered
as an extra advantage.

6.2 ASSESSMENT CRITERIA

In the previous chapters we discussed what the use of Business Objects in-
volves: locating, devising, building, standardizing and categorizing Business
Objects. In the following subsections, we specify the criteria for assessing

6.2. ASSESSMENT CRITERIA

-1
~1

the existing resources and tools for Business Objects according to these ar-
chitectural and construction aspects.

6.2.1 ARCHITECTURAL ASPECTS

Architectural aspects are related to the constituents that form software sys-
tems in which Business Objects are located, and the means that take care of
communication between these constituents.

6.2.1.1 SYSTEM CONSTITUENTS

Each system constituent should handle a specific (macro) functionality and
isolate the other constituents from its (implementation) details. These de-
tails should be encapsulated behind an appropriate abstraction or interface
that presents only the essential constructs to the other constituents. In this
way, an entire system constituent can be replaced without impacting the
other constituents. Parallelism in development is another advantage of this
approach. An appropriate architecture should at least include the following
system constituents:

A User Interface layer

A Business Logic layer

A Data Source layer

A Control Logic

The existence of these layers should be supported, and assistance in realizing
these layers may be given at different levels.

The Control Logic should provide different facilities and services, including;:

e Naming: allows naming of Business Objects so that they can be ac-
cessed through the use of a unique name.

78 CHAPTER 6. STATE-OF-THE-ART

e Life Cycle: supports the creation (providing a default state), copy-
ing, moving, activation (acquiring the state from persistent storage),
deactivation (dumping the state into persistent storage) and deletion
(removing the state from persistent storage) of Business Objects.

e Persistence: helps in storing and retrieving (the states) of Business
Objects, and in accessing data in (legacy) data sources.

e Relationship: helps in creating dynamic associations between Business
Objects and helps to provide mechanisms for traversing the links that
group the related Business Objects.

e Transaction: coordinates the changes of (the states of) Business Ob-
jects shared by different clients that may perform actions at any time.

e Event: makes the clients aware of changes in (the states of) Business
Objects.

Security: helps in making Business Objects secure.

6.2.1.2 COMMUNICATION MEANS

Communication means should provide (seamless) access to Business Objects
and other constituents of the system. Moreover, the system constituents
should be spread over computer networks in order to take advantage of re-
sources efficiently. However, the decisions and assumptions involved in per-
formance issues may change over time due to changes in the technical in-
frastructure and other areas. Besides, load balancing and fail-over handling
may also be desired. Accordingly, it should be possible to migrate system
constituents with no or minor changes in the involved codes or specifications.
Therefore, communication means should also provide transparent migration
of system constituents.

Furthermore, in addition to the synchronous communication, communication
means may also offer asynchronous communication. If this is the case, the
client can simply be notified when the requested results are ready. If this is
not the case, the client must either wait or repeatedly poll until the requested
results are ready. As such, in large systems consisting of many constituents

6.2. ASSESSMENT CRITERIA 79

this can cause problems and reduce the performance?. While the synchronous
"call and wait" communication can be sufficient for communications among
coarse-grained constituents, communications among fine-grained constituents
can be maintained better by the asynchronous "send and continue" commu-
nication.

As a familiar communication means, the Object Request Brokers (ORBs)
are communication buses that allow objects to interoperate across address
spaces, programming languages, operating systems and networks. They can,
in principle, offer the desired means, albeit with different levels of flexibility.

6.2.2 CONSTRUCTION ASPECTS

Construction aspects are related to technical and conceptual factors con-
cerned with the creation of Business Objects.

6.2.2.1 TECHNICAL

The construction of Business Objects can be technically supported in dif-
ferent ways, such as by providing modelling tools, taking care of source or
binary code production and offering ready-made constituents. This support
may be bound to specific programming languages and platforms.

The programming languages used for constructing Business Objects may or
may not support Object-Oriented concepts, such as inheritance and polymor-
phism. Furthermore, when system constituents are tightly integrated with
a specific platform, low-level system services can be used. This may reduce
the complexity of the code and can result in a higher performance.

The ready-made constituents come in different forms and at different ab-
straction levels. For instance, an "abstract class" is a design model for a
single object, and a "framework" is a design model for a set of objects that
collaborate to carry out a defined set of responsibilities. Thus frameworks
have a higher granularity level than abstract classes, and abstract classes can
have a higher semantical grade than frameworks.

2There are two methods to work around this shortcoming, namely 1) using threads and
2) simulating asynchronous call backs through calls from server to client. However, the
first option makes code more complex and the second option is not pragmatic when there
is more than one client.

80 CHAPTER 6. STATE-OF-THE-ART

6.2.2.2 CONCEPTUAL

The construction of Business Objects involves the following conceptual issues:

e The reuse of legacy software constituents.

The deployment of standard Business Objects.

The deployment of Business Object categories.

The specification of the relationship between Business Objects and data
sources.

In this respect the user can be provided with different options and can be
supported with relevant means.

It may be necessary to use the existing software constituents for the con-
struction of Business Objects to save on resources.

Standardization is the main characteristic of the concept of Business Objects.
As such, in addition to support the construction of Business Objects, enabling
technologies and system environments may support the use of off-the-shelf
Business Objects and building-block software constituents, and may assist in
the customisation of standard Business Objects.

Categorization of Business Objects based on different criteria can be sup-
ported in order to enhance the design and implementation of Business Ob-
jects.

Business Objects may use legacy or new data sources, be persistent or tem-
poral and represent one or more instances of a real-world concept.

6.3 ENABLING TECHNOLOGIES

6.3.1 CORBA3

The Common Object Request Broker Architecture (CORBA) [CORBA],
presented by Object Management Group (OMG), is a specification that

3This assessment is based on the CORBA specifications. Of course each implementation
of the specifications may have its own peculiarities.

6.3. ENABLING TECHNOLOGIES 81

forms the major part of a technological infrastructure intended for reusable,
portable and interoperable components in distributed and heterogeneous en-
vironments, through a set of interfaces and protocol specifications, named
Object Management Architecture (OMA).

Interface Definition Language (IDL) is a descriptive programming language
that forms the basis of CORBA concepts, interfaces and protocol specifica-
tions.

6.3.1.1 ARCHITECTURAL ASPECTS

The OMA architecture is based on a cooperative paradigm that should allow
applications to cooperate dynamically across the network.

SYSTEM CONSTITUENTS

CORBA is appropriate for realizing software systems based on a Multi-Tier
Architecture. However, the realization of the Business Logic layer is the only
area that is directly supported.

Furthermore, CORBA presents the Control Logic in the form of OMG object
services, which are collections of system-level services packaged as objects.
belonging to the Completion Objects category, with an IDL interface. The
purpose of these services is to provide a set of standard interfaces in order to
implement generic object services. These include:

e Naming (CORBA Naming Service)

Life Cycle (CORBA LifeCycle Service)

Persistence (CORBA Persistence Service)

Relationship (CORBA Relationship Service)

Transaction (CORBA Transaction Service)

Event (CORBA Event Service)

Security (CORBA Security Service)

82 CHAPTER 6. STATE-OF-THE-ART

COMMUNICATION MEANS

The basic part of CORBA is an Object Request Broker. It enables sending
messages to objects, and receiving the corresponding responses transparently,
in a distributed environment, irrespective of the locations. The requests to
objects may be issued by processes related to a procedure or an object.
The requested objects may be present in the same process that initiates
the request or be distributed over different processes. The ORB can link
objects both statically, that is, interfaces are known at compilation time,
and dynamically, that is, interfaces are discovered at run-time.

The first versions of CORBA did not support asynchronous communication,
but the later versions did.

6.3.1.2 CONSTRUCTION ASPECTS

TECHNICAL

The CORBA object model strongly separates the "interface" from the "im-
plementation". The interfaces should be defined through IDL, which sup-
ports the Object-Oriented mechanisms of inheritance and polymorphism.
However, IDL can only be used for defining interfaces, and only in a rigor-
ous, programming-language-independent manner. IDL definitions can then
be compiled for different programming languages. IDL mapping exists to-
wards the main Object-Oriented languages such as C+-+, Java and Smalltalk.
Therefore, Business Objects do not have to be implemented in a specific
Object-Oriented language, and on/for a specific platform. In this way, COR-
BA provides an architecture that can encompass various programming lan-
guages and platforms. Besides, clients and servers can be implemented in
different languages and still interact.

However, being programming-language-independent, CORBA must convert
any object to flat records or opaque byte streams before sending them over the
wire, and back to objects again at the receiving end. Besides, CORBA objects
cannot directly exploit the specific features of Object-Oriented languages.
Being platform independent, CORBA objects cannot take advantage of low-
level system services.

Furthermore, directly converting interfaces into implementations may cause
significant performance problems. For instance, performance may decrease

6.3. ENABLING TECHNOLOGIES 83

when objects have to serve too many purposes. Moreover, IDL cannot cap-
ture the semantics of the real-world (business) concepts adequately.

Component Description Language (CDL), promoted by the OMG Business
Objects Domain Task Force (BODTF), can be considered as a superset of
IDL, and is another language for specifying Business Objects. CDL is meant
to capture the semantics of business concepts, including business rules. CDL
can then be compiled to IDL interfaces. However, in mapping CDL to IDL
the business rules (may) get lost, and hence additional code must be gener-
ated in an Object-Oriented programming language in order to embody the
lost semantics.

OMG provides standard IDL interfaces in specific domains such as telecom-
munications, management, health care and finance. However, working at IDL
level is not easy. Frameworks and other tools can assist the developer in this
respect. For instance, high-level interfaces can hide the highly technical IDL
interfaces from application developers, and frameworks can provide inter-
faces appropriate for directly developing Business Objects. Besides, CORBA
offers vertical application frameworks that can be used directly by Business
Objects.

CONCEPTUAL

CORBA is dedicated to objects of a relatively high granularity level. There-
fore, objects of low granularity levels are not efficiently supported by CORBA.
Furthermore, CORBA is based on the notion that not all the software con-
stituents in an enterprise are Object Oriented. That is the reason why
CORBA IDL should provide descriptive features that are not tied to any
language or object model. This makes CORBA appropriate for the "reuse"
of legacy software constituents. Using CORBA, one can represent a (server)
component as an object, even if it is a wrapped chunk of legacy code.

The CORBA Component Model (CCM), included in the newer versions of
CORBA, extends the CORBA object model by defining features that enable
application developers and users to develop and deploy components that in-
tegrate CORBA services in a standard environment. This can, in particular,
ease the development of CORBA applications. In addition, CCM can pro-
mote "reuse", as well as the concept of software plug and play.

With respect to standardization of Business Objects, CORBA is involved
in the standardization efforts of OMG. These standards, which are based on

84 CHAPTER 6. STATE-OF-THE-ART

different real-world (business) concepts related to different business domains,
do not address different abstraction levels and do not categorize adequately.

With respect to the relationship between Business Objects and data sources,
CORBA does not impose any restriction. Besides, it recognizes a specific kind
of objects called "active", which represents those objects that provide services
for different objects in the form of a single object. These objects share data
among different objects and are not instantiated by each requesting object
separately.

6.3.2 ACTIVEX

ActiveX [ActiveX], presented by Microsoft, embraces a set of Object-Oriented
technologies and tools, including Component Object Model (COM), Dis-
tributed COM (DCOM) and COM+. It provides an environment for the
creation and deployment of components named ActiveX controls. COM is
a framework for the development and deployment of ActiveX components,
DCOM extends the capabilities of COM to support interoperation of com-
ponents in a distributed environment and COM+ extends COM with a set
of new services for application development.

This concept originates from Object Linking and Embedding (OLE), a frame-
work for assembling and managing compound documents, and an applica-
tion environment containing objects originating from different sources under
Microsoft Windows. In turn, OLE had replaced Dynamic Data Exchange
(DDE), which was based on string interchange through shared memory. OLE
improved DDE by supporting data interchange through a clipboard. OLE
controls, named OCX, were software constituents with specific functionality
like Graphical User Interface (GUI) entities.

6.3.2.1 ARCHITECTURAL ASPECTS

SYSTEM CONSTITUENTS

The User Interface layer, Presentation Logic layer and Business Logic layer
can be realized using any programming language that supports ActiveX.

The realization of the Information Logic layer depends on the applied data
sources (databases). For instance, using MS SQL Server, a database man-
agement system, as data source, the Information Logic layer can use Stored

6.3. ENABLING TECHNOLOGIES 85

Procedures? to collect data. Compared to Queries, which can be transmitted
to databases in the form of strings inside the "calling code", Stored Proce-
dures have two important advantages:

e Stored Procedures are precompiled and are therefore faster.

e Stored Procedures can be reused in different places.

Furthermore, the Information Logic layer can use Open Database Connec-
tivity (ODBC)®.

For the Control Logic, ActiveX offers:

Naming (Monikers/Repository)

Life Cycle (IClassFactory interfaces)

Persistence (IPersistStorage, IpersistStream)

Transaction (Microsoft Transaction Server (MTS))

Event (Connections interface)

COMMUNICATION MEANS

ActiveX controls can be deployed by different applications within a single
computer, as well as by different applications in computers distributed over
a network.

ActiveX does not support asynchronous communications.

4Stored Procedures, introduced by Sybase, are groups of Structured Query Language
(SQL) statements that provide flow control facilities and accept parameters, except "table"
names, for execution of operations and exchange of data. They are more efficient than
sending SQL statements over the network.

3Open Database Connectivity (ODBC) is an open standard Application Programming
Interface (API) for accessing different databases, including Access, dBase and DB2, with-
out having to know the proprietary interfaces to them.

86 CHAPTER 6. STATE-OF-THE-ART

6.3.2.2 CONSTRUCTIONAL ASPECTS

TECHNICAL

ActiveX technology is language independent. That is, ActiveX controls can
be created using different languages, such as: C, C++, Visual Basic and
Visual Java. ActiveX controls are implemented as Dynamic Link Library
(DLL) modules.

ActiveX technology depends on the Microsoft platform, and is tightly inte-
grated with Microsoft products. It can use low-level system services of the
Microsoft platform, and hence can reduce the complexity of code and result
in a higher performance.

ActiveX components can be deployed as ready-made building blocks. They
are delivered in binary code and expose their interfaces in a well-defined
binary form.

Furthermore, Microsoft Foundation Classes offer a set of customisable ser-
vices that can be used in some general domains.

CONCEPTUAL

ActiveX is not dedicated to any granularity level. However, it is more appro-
priate for lower granularity levels. Furthermore, ActiveX does not address
the notion of "reuse" explicitly.

With respect to standardization of Business Objects, ActiveX is not involved
in any standardization effort. Besides, it does not address categorization (of
Business Objects).

ActiveX is, in principle, "stateless"®. Therefore, it has certain problems in
realizing business software systems that require that the state is maintained.

6.3.3 JAVA

Java [JAVA], presented by Sun Microsystems, provides component technol-
ogy in the form of Java Beans [JavaBeans| and Enterprise Java Beans [EJB].
In addition, Java Applets can be used as a special kind of component.

61t is possible to reconnect to an instantiation of a particular object through Persistent
Intelligent Names.

6.3. ENABLING TECHNOLOGIES 87

6.3.3.1 ARCHITECTURAL ASPECTS

SYSTEM CONSTITUENTS

Java Beans can be used as client-side constituents. GUI components are
well-known examples of Java Beans. As such, the User Interface layer and
Presentation Logic layer can be realized using Java Beans.

Enterprise Java Beans (EJB) can be used as server-side constituents. As
such, the Business Logic layer can be realized using EJB.

For the realization of the Information Logic layer, one can use technologies
such as the Visual Business Sight Framework (VBSF). VBSF is an object-
relational Java framework that makes it easy to store and retrieve Java ob-
jects in and from relational databases.

Furthermore, the Information Logic layer can use Java Database Connectiv-

ity (JDBC)".

For the Control Logic, EJB provides services including Transaction and Se-
curity.

COMMUNICATION MEANS

Interoperation among the Java constituents is based on Java Remote Method
Invocation (RMI). RMI can make distribution transparent.

RMI does not support asynchronous communications.

6.3.3.2 CONSTRUCTION ASPECTS

TECHNICAL

Java is platform independent, and can be deployed on almost all of the exist-
ing platforms. However, due to this fact, the performance of this technology
is not high.

Java Beans technology is based on an Object-Oriented Application Program
Interface (API). '

Enterprise Java Beans (EJB) is a component-container architecture specifi-
cation for the development and deployment of distributed applications. It
consists of:

7 Java Database Connectivity (JDBC) is an Application Program Interface (API) spec-
ification for connecting programs written in Java to different databases.

88 CHAPTER 6. STATE-OF-THE-ART

e A server that provides run-time services.

e A container that provides a host environment for components and in-
sulates them from the servers by acting as an intermediary layer, and
helps servers in managing the services.

e Enterprise Beans, which construct components that embody (business)
concepts and use the services of the servers through containers.

Java Applets are (small) application modules that can be used as Web page
elements, and can be transformed from the remote Web server to the Web
client.

CONCEPTUAL

Java is not dedicated to any granularity level. However, it is more appropriate
for lower granularity levels. Furthermore, Java does not address the notion
of "reuse" explicitly.

With respect to standardization of Business Objects, Java is not involved in
any standardization effort.

With respect to categorization of Business Objects, in the terminology of
Enterprise Java Beans, two categories of components (Business Objects) are
addressed. These categories are Entity (Entity Business Objects) and Session
(Process Business Objects). However, the only main difference between these
two categories is their persistence capabilities. In principle, being persistent
and belonging to either the Entity or the Process category of Business Objects
are two orthogonal issues. That is, both the Entity Business Objects and the
Process Business Objects can be persistent or not, and therefore combining
these two criteria is not helpful.

With respect to the relationship between Business Objects and data sources,
Java does not impose any restriction.

6.3.4 EXTENDED C++

Extended C++, presented by PowerBroker, is an Object-Oriented program-
ming language that extends C++ in order to provide an integrated environ-
ment for the development and management of large-scale distributed systems.

6.3. ENABLING TECHNOLOGIES 89

6.3.4.1 ARCHITECTURAL ASPECTS

SYSTEM CONSTITUENTS

The User Interface layer, Presentation Logic layer, Business Logic layer and
Information Logic layer can be realized using any conventional C+-+ pro-
gramming language method.

For the Control Logic, Extended C++ provides services such as Naming,
Life Cycle, Persistence and Event, through a class library and explicit service
objects.

COMMUNICATIONS MEANS

Extended C++ allows direct manipulation of objects through Remote Method
Call (RMC) arguments and call backs. Therefore, it offers a flexible commu-
nication means that provides scaling and event-driven real-time notification
capabilities.

Since Extended C++ works at object level, objects can be moved around in
the networks. This can provide the clients with location-independent services
and makes it possible to provide load balancing and fail-over handling that
are transparent to the client.

6.3.4.2 CONSTRUCTION ASPECTS

TECHNICAL

Extended C++ services are unified within an object model and are provided
through a class library with uniform and simple Application Programming
Interfaces. Services can be applied transparently, or can be called explicitly
by instantiating the classes involved.

Additional distributed object services can be specified as C++ classes. The
pre-processor parses the header file concerned and generates standard C++
code including a local interface to the remote object service.

Extended C++, in keeping with the spirit of C++, offers all of the known
advantages of the Object-Oriented paradigm. For instance, it supports both
multiple inheritance and polymorphism, and places no unnecessary restric-
tions on arguments and return values. Furthermore, built-in types and types
inherited from the Extended C++ class library can be sent as arguments or

90 CHAPTER 6. STATE-OF-THE-ART

return values. Arguments and return values may even encapsulate complex
data structures, and can be passed by value.

CONCEPTUAL

Extended C++ is not dedicated to any granularity level. However, it is more
appropriate for lower granularity levels. Furthermore, Extended C++ does
not explicitly address the notion of "reuse".

With respect to standardization of Business Objects, Extended C++ is not
involved in any standardization effort. Besides, it does not address catego-
rization (of Business Objects).

6.4 SYSTEM ENVIRONMENTS

6.4.1 SANFRANCISCO

SanFrancisco (SF) [SF], presented by IBM, is a framework for creating busi-
ness management applications, and is based on different layers, including
Base, Common Business Objects (CBOs), Core Business Processes (CBPs)
and Commercial applications.

6.4.1.1 ARCHITECTURAL ASPECTS

SYSTEM CONSTITUENTS

Sankrancisco supplies a Graphical User Interface (GUI) framework, including
base classes for view and control of remote server business components, along
with a full set of client area controls needed in different business solutions,
and ActiveX components that can be used at the client side. As such, the
User Interface layer and Presentation Logic layer can be realized using this
GUI framework.

SanFrancisco supplies Common Business Objects (CBOs), including several
domain-independent objects that can be used for most business applications,
and Core Business Processes (CBPs), including basic structure and behaviour
according to traditional business procedures. As such, the Business Logic
layer can be realized using CBOs and CBPs.

6.4. SYSTEM ENVIRONMENTS 91

Furthermore, SanFrancisco presents the Control Logic through the Foun-
dation layer, which offers a comprehensive set of kernel services, including
Naming, Persistence, Transaction and Security.

COMMUNICATIONS MEANS

SanFrancisco uses Java Remote Method Invocation (RMI) as the basis of
its communication infrastructure, and has extended it to include support for
areas such as server process management.

6.4.1.2 CONSTRUCTION ASPECTS

TECHNICAL

SanFrancisco is based on the Java technology. The server runs on IBM
08S/400 and AIX, as well as on Windows NT and Unix platforms. It pro-
vides Java-based development tools, as well as specific tools, including an
automated code generator.

Applications can be implemented using the basic classes and utilities offered
by the Foundation layer, as well as using the components offered by the CBO
and CBP layers.

CONCEPTUAL

SanFrancisco applications can be integrated with legacy applications using
"calls", and with data sources through an "extended schema mapper" utility.
Therefore, SanFrancisco complies with the notion of "reuse".

SanFrancisco deals with standardization of Business Objects through Com-
mon Business Objects (CBOs) and Core Business Processes (CBPs). CBO
components are fine-grained objects that are abstract enough for providing
the functionality needed for most business applications. CBP components
are coarse-grained objects that are related to traditional business procedures,
and maintain the functionality needed for specific business domains. The dif-
ference between the granularity levels of CBO and CBP components is large.

SanFrancisco deals with the changes through a specific concept called "com-
mand", which can embrace different (unchangeable) Business Objects and
can be changed to deal with each specific situation. Another way in which
SanFrancisco deals with the changes is based on a notion called "active com-
pany", which allows different applications to have different views on the same
data.

92 CHAPTER 6. STATE-OF-THE-ART

With respect to categorization of Business Objects, SanFrancisco only dis-
tinguishes CBOs and CBPs.

SanFrancisco delivers skeletal applications covering areas such as ledgers,
accounts payable and accounts receivable. Use of these generic frameworks
can quickly yield business solutions with reduced development effort.

6.4.2 R/3

R/3 is a comprehensive set of integrated business applications, presented
by Systems, Application and Products in data processing (SAP) [SAP], us-
ing the Client/Server architecture model for providing the ability to store,
retrieve, analyse and process data in different ways for different business
domains. R/3 replaced R/2, which is still in use.

6.4.2.1 ARCHITECTURAL ASPECTS

SYSTEM CONSTITUENTS

The User Interface layer, Presentation Logic layer, Business Logic layer and
Information Logic layer can be realized by means of the variants of the Ad-
vanced Business Application Programming (ABAP) programming languages
- such as ABAP/4 and ABAP Objects - using R/3 Business Objects.

One of the main ideas behind R/3 is to make it possible to use a common
database for a comprehensive range of applications.

Furthermore, R/3 presents the Control Logic internally, and not externally.
That is, the Control Logic is maintained for the R/3 Business Objects that
exist within the system.

COMMUNICATION MEANS

R/3 uses CORBA, COM+ and Java Remote Method Invocation (RMI) as the
basis for its communications infrastructure for accessing Business Objects.

For communications between Business Objects, R/3 uses a message broker,
based on Application Link Enabling (ALE).

The R/3 (persistent) Business Objects can be transparently accessed in dis-
tributed environments through a unique "identifier" assigned to them.

6.4. SYSTEM ENVIRONMENTS 93

The R/3 Business Objects can also be accessed dynamically, that is, their
interfaces can be discovered at run-time through a Dynamic Invocation In-
terface.

6.4.2.2 CONSTRUCTION ASPECTS

TECHNICAL

R/3 does not support the construction of Business Objects but only supports
the use of them through their exposed interfaces. The R/3 Business Objects
are presented through a Business Object Repository (BOR), and their oper-
ations are presented through Business Application Programming Interfaces

(BAPIs).

For developing R/3 applications, BASIS offers a development environment.
It consists of a set of middleware programs and tools that provide the un-
derlying base, which enables applications that are seamlessly interoperable
and portable across operating systems and databases. BASIS is based on
the Client/Server architecture, and offers a relational database management
system and a Graphical User Interface (GUI).

ABAP Objects, an extension to ABAP/4, is an Object-Oriented language
that supports Object-Oriented concepts, such as inheritance and polymor-
phism.

R/3 runs on a number of platforms including Windows.

CONCEPTUAL

R/3 is principally based on the notion of "reuse" and aims to provide a back-
ground for the interoperation of constituents based on different standards and
technologies, such as CORBA, COM+ and Java.

R/3 deals with standardization of Business Objects through Business Appli-
cation Programming Interfaces (BAPIs), which define a business standard
for communication between business applications.

R/3 considers Business Objects coarse-grained constituents that cannot be
altered directly. New Business Objects can be created based on those of-
fered by R/3 through inheritance. Moreover, R/3 does not address or apply
categorization (of Business Objects).

In general, the R/3 Business Objects can be considered as ready-made solu-
tions in the form of Business Object interfaces.

94

CHAPTER 6. STATE-OF-THE-ART

Chapter 7

CASE STUDY

To find a fault is easy; to do better may be difficult.

[Plutarch 46 AD - 120 AD]|

Applying Business Objects for a real-world case can help us to elaborate on
the subjects discussed in the previous chapters from a practical viewpoint.

This chapter presents an example case of using Business Objects in an enter-
prise as the organizational unit concerned. It discusses technical and theo-
retical issues of applying Business Objects in practice. The practical result of
this case study is the addition of new functionality to an information system.

First the background of the case study is introduced. Then the system within
which the case study is carried out is introduced, by explaining the structure,
production, usage and theoretical aspects of the system. Subsequently the
main subject of this case study is discussed. This includes a description of,
and the requirements for a new part of the system, as well as the theoretical
aspects and the realization of it. Finally, the conclusions are presented®.

!The case study is presented in [van Groen 2000].

95

96 CHAPTER 7. CASE STUDY

7.1 BACKGROUND

The case study was carried out in the company Professionals In Dienstver-
lening? (PID) in Amersfoort, the Netherlands®, within the framework of the
realization of an information system called Geintegreerde Registratie- en
Informatie-systeem PID* (GRIP). GRIP is an information system for the
registration and administration of data about the employees of PID. It con-
sists of several modules® and each module deals with a specific kind of data.

The case study concentrated on the construction of one of the GRIP modules,
which deals with the registration and administration of lending data related
to lending articles such as book, software and mobile phone. The module
is called the "Lending Administration". During this case study the module
was designed, implemented, tested and used.

The case study began with a study and analysis of the existing system,
GRIP, including an investigation of the structure, production and usage of
the system. For this purpose, we studied the existing documents about GRIP
and tested the GRIP applications.

Then we interviewed the (intended) users of the Lending Administration
module. Since the users were the only people who could provide us with
information about the area where the module was going to be applied, the
aim of these interviews were twofold. The interviews helped us to recognize
the related real-world concepts, and at the same time it helped us to get
acquainted with the user demands. In this way, we found out which arti-
cles could/should be lent, how they should be lent, who should have which
permissions and how the users want to enter, change and read data.

Subsequently, based on the interviews, we designed the input panels. Then,
using the feedback from users about the panels, we specified the data and

>The name "Professionals In Dienstverlening" means "professionals in provision of ser-
vices".

3The company Professionals In Dienstverlening (PID) is a temporary employment
agency that is dedicated to Web technology and embedded software systems. It offers
services to companies in different domains such as telecommunication, banking and insur-
ance.

4The name "Geintegreerde Registratie- en Informatie-systeem PID" means "integrated
registration and information system of PID".

SHere the word "module" does not (exactly) represent its specific meaning in Software
Engineering, but stands for a certain part of a system with a specific functionality.

7.2. THE GRIP SYSTEM 97

procedures concerned.

After realizing a prototype for a few lending articles and a number of func-
tions, and getting feedback from users about it, we designed the detailed
models. This led to the implementation of the Lending Administration mod-
ule. Business Objects were our focal point during these steps.

Finally, we tested the module and wrote a user manual for it.

7.2 THE GRIP SYSTEM

7.2.1 STRUCTURE

GRIP is an integrated system consisting of several modules that uses a central
database. It substitutes a few smaller systems in order to, among others,
avoid information redundancy. In this system the concept "employee" plays

a major role and data are mainly related to this concept. Some of the main
modules of GRIP are:

e System Administration

Employee Administration

Project Administration

Insurance Administration

Connections Administration

Each module administrates a specific area of the internal activities of the
company. They offer different applications for entering, changing and reading
data. In some applications it is also possible to provide an overview of the
whole data. The system administrator controls the access that users have
through these applications to the company data.

The modules of GRIP consist of three (distinct) layers. These layers are:

e User applications

98 CHAPTER 7. CASE STUDY

e Business data and procedures

e System data

The first layer, as the front end of the system, takes care of interaction with
users. It consists of forms and other user interface constituents. For example,
the applications of the Employee Administration module contain forms for
entering and changing data about employees. The constituents of this layer
were written in Visual Basic 6.0 under Windows 95/98.

The second layer, as the middle layer of the system, provides an abstraction
means for accessing the company data in the database, so that the applica-
tions of the first layer do not have to get involved in the details of the used
database(s) in the third layer. The constituents of this layer are objects,
which are created in Visual Basic 6.0 under Windows 95/98, in the form
of ActiveX components, and are grouped in Dynamic Link Library (DLL)
modules. For example, in the group "System", there are "Application" and
"Employee" Business Objects.

The third layer, as the back end of the system, takes care of storage and
retrieval of data. It is a MS SQL server 6.5 under Windows NT, and it
is accessed through Open Database Connectivity (ODBC). This layer also
contains Stored Procedures (SPs).

This architecture resembles the Three-Layer Architecture, discussed in {3.2}.
Besides, the middle layer consists of objects that not only resemble Business
Objects but are also referred to by this term.

The layers make it possible to distribute the system over different locations.
Accordingly, the applications of the first layer are located on the users’ work-
stations, the Business Objects of the second layer are installed on a remote
server that can be accessed by (the applications of) the first layer, and the
database of the third layer is located in a central place.

Each module can use other modules in order to fulfil its tasks. This coop-
eration takes place through Business Objects. That is, Business Objects of
each module can be (re-)used by other modules through their interfaces.

However, the existing Business Objects do not always provide the whole
functionality required for new modules. In case an existing Business Object
should be adapted in order to meet the (new) needs of the (new) modules,
it should be designed, implemented and installed again.

7.2. THE GRIP SYSTEM 99

Furthermore, the Business Objects use other kinds of objects such as the
so-called Server objects and Read-Only (RO) objects to accomplish their
tasks.

The Server objects load the Business objects and take care of their con-
nection with the database through ODBC. For example, a Server object in
the Project Administration module, Server Project, contains the operation
Load _Project, which returns an instance of the Project Business Object. In
general, one Server object can load more than one Business Object.

The Read-Only (RO) objects are comparable with the records of a table of
the database. These objects are instances of the same class and each of their
attributes are related to one field in the corresponding table. In this way,
each Business Object receives data from a table of the database; sending
data back to the database takes place through the Business Object itself.
For example, the Project Business Object receives data in the form of a
collection of RO_Project objects. The RO objects are created by the same
Business Object that uses them.

Figure 7.1 depicts a simplified object model showing the mutual relationships
between an example GRIP Business Object and its related Server and RO
objects.

Project

1.1 1.n

Server_Project RO_Project

+Project_ID : String
+Name © String
+Start_Date : Date
+End_Date : Date
HTime_Charge : Real

Make_Connection()

Figure 7.1: An example GRIP Business Object and its related Server and RO
objects.

100 CHAPTER 7. CASE STUDY

7.2.2 PRODUCTION

The production of GRIP takes place in phases. At the end of each phase a
new release is delivered. Each new release extends the system so that users
are provided with more options and can work with more information. This
is realized either through the improvement of the existing modules or by
adding new modules. The new modules take advantage of the functionality
of the existing modules, such as those provided by the Business Objects and
database entities. In this way, the existing modules are re-used and the
system retains its uniform character.

Each release consists of, among others, installation programs and scripts.
Using the installation programs, one can set up all of the implemented ap-
plications of the modules on a client and create Business Objects on the
Business Object server. Using the scripts, one can create the needed tables
and Stored Procedures in the database.

7.2.3 USAGE

Through the System Administration module, one can specify which employ-
ees can have access to which applications, by assigning combinations of user
names and passwords and the name of applications.

To be able to use the system users should first run a standard client applica-
tion called GRIPOffice. This application asks the user to enter his user name
and password, and checks them with the access data existing in the System
Administration module. If they are correct, the icons of the applications for
which the user is qualified are shown. The user can then start an application
by clicking on its icon. Starting an application leads to the running of an exe-
cutable. There are different executables with respect to different access rights
for each module. For example, if there are two groups that use (the appli-
cations of) the Project Administration module, there should be two (groups
of) applications, such as Read_Projects and Administrate Projects.

The same combinations of user names and passwords are also used by the
ODBC connection and the SQL database for the evaluation of read and write
rights.

7.3. THE LENDING ADMINISTRATION MODULE 101

7.2.4 THEORETICAL ASPECTS

Based on our studies about the GRIP system we derived the theoretical
aspects related to the creation and usage of Business Objects within GRIP.

With respect to the possible "options" and "perspectives" for the creation
and usage of Business Objects, discussed in {5.3}, these aspects can be item-
ized as follows:

e Legacy/New: the Business Objects are not inherited from legacy data-
bases; their corresponding data is added as new tables to the database
according to the needs of modules.

e Persistent/Temporal: the Business Objects are temporal, thus not per-
sistent. They are instantiated and filled with data at the beginning
of each session. Changes in their attributes do not directly result in
changes in the database; one can only make these changes by calling a
specific operation explicitly. This makes coordination easier.

e One/More: the Business Objects correspond to each concept as a
whole, and not to each individual concept separately.

e Perspective: the Business Objects are created and used based on the
Data perspective. That is, they are derived directly from the data en-
tities. Therefore, the Business Objects are in fact Information Objects
that contain Business Logic.

Furthermore, there is no inheritance among the Business Objects, and their
relationships are shifted to the database. Therefore, there is no association
among the Business Objects, although they have some similar attributes and
operations, and they share some specific construction characteristics.

7.3 THE LENDING ADMINISTRATION MOD-
ULE

7.3.1 DESCRIPTION

In the area of lending administration, like the other areas of the internal
activities of the company, the concept "employee" is the central point; the

102 CHAPTER 7. CASE STUDY

main goal is to obtain an overview of what an employee has borrowed. This
should include an overview of what an employee has borrowed at a specific
moment (lending overview), and what the employee has borrowed in the past
(lending history).

There are two groups of users, namely administrators such as secretaries and
system administrators, and managers such as office managers, sales man-
agers, field managers and accountants. There should be a clear distinction
between different (groups of) users, as the users can perform different func-
tions.

Administrators should be able to administrate a specific kind of article and its
lending, and should be able to acquire information and get overviews about
the article and its lending. However, one person can perform the role of
more than one administrator. For example, a secretary administrates books
and mobile phones, and a system administrator administrates software and
hardware.

Managers should be able to acquire information and get overviews of all of
the lending articles and the employees who have borrowed those articles.
They should not be able to change data.

Some of the articles are not, and do not need to be, registered. While one
should be able to administrate lending of this kind of articles, there is no
need to be able to get overviews of them.

For articles such as books and software there may be a number (of copies)
of the same item, so that the same article can be lent more times. Besides,
it should be possible to lend an article such as a book more than once to the
same employee on the same day, although this may not happen very often.

Most of the time, when a mobile phone is lent, the device and the SIM card
are handed over together. However, it should be possible to lend a SIM card
without a device.

In brief, it should be possible for the administrators to enter, change and
read information about one or more articles and their lending, and it should
be possible for the managers to read information about all of the articles and
their lending. Accordingly, the Lending Administration module should allow
users to:

e Maintain lists of articles

7.3. THE LENDING ADMINISTRATION MODULE 103

e Inspect overviews of lists of articles
e Administrate lending of articles

e Monitor lending of articles

7.3.2 REQUIREMENTS

Reuse of Business Objects was a major requirement. On the one hand we
had to use the existing Business Objects wherever possible for creating new
Business Objects, and on the other hand we had to create new Business
Objects so that they could be used by the other modules of the system (in
the future).

Furthermore, the user interfaces of the Lending Administration module had
to look like the user interfaces of the existing modules, so that users could
learn to work with the new module quickly and easily. Besides, it was im-
portant that GRIP could retain its uniform look and feel.

Moreover, we had to use the existing hardware and software resources. With
respect to the platform, programming language and database system, we had

to adapt to the existing modules; we had to use MS Windows, Visual Basic
and MS SQL.

7.3.3 THEORETICAL ASPECTS

For the creation and usage of Business Objects we tried to follow our own
view, while complying with the requirements as far as possible. It should be
noted that our starting point was a Three-Layer Architecture. Accordingly,
we considered the possibilities with respect to the "options" and "perspec-
tives", discussed in {5.3} as follows.

7.3.3.1 OPTIONS

LEGACY/NEW

We had to use the existing data in the database through the existing Business
Objects. For the new concepts we could create our own Business Objects and
add their corresponding data structures (tables) to the database.

104 CHAPTER 7. CASE STUDY

However, as mentioned in {7.3.2}, we had to use the existing database.
Therefore, our data had to be placed in a relational database.

PERSISTENT/TEMPORAL

The Business Objects did not need to preserve their state and outlive the
sessions in which they are instantiated. Therefore, we did not have to deal
with the following issues:

® Type and location of the storage place of (the states of) the Business
Objects.

¢ Relationship between (the states of) the Business Objects and their
underlying data in the database.

 Timing and access control of the updates of (the states of) the Business
Objects and their underlying data in the database.

ONE/MORE

The Business Objects had to correspond to each concept as a whole. There-
fore, the whole data could be extracted in one go from the database.

7.3.3.2 PERSPECTIVES

Having decided about the options, we had to choose our perspective. In
the following we go through the perspectives and discuss them by using an
example. The example is related to a representative part of our case, that
is, lending books to employees.

DATA

The Data perspective suggests a one-to-one relationship between database
entities and Business Objects, while database entities are the starting point.
As mentioned in {7.2.4}, the existing modules of GRIP were all based on
this perspective.

Following this perspective for our example leads us to the model shown in
figure 7.2.

7.3. THE LENDING ADMINISTRATION MODULE 105

Book Employee
+Book_|D : String +Employee_ID : String
+Name : String +Name : String
+Author © String +Address : String

2

P e
Book Employee

Figure 7.2: Business Objects of the example according to the Data perspective
and their relationship with database entities.

In this model there are two Business Objects, or so-called Data Business Ob-
jects®, corresponding to two database entities, namely Book and Employee.
Each Business Object handles one database table and contains Business Logic
concerned with the corresponding concept. Therefore, Business Logic con-
cerned with two or more concepts cannot be directly supported.

Accordingly, the Business Objects can be reused for other applications (of
other modules), but there is no direct support for the administration of lend-
ing books to employees in the Business Logic layer. Passing the required
support to the front-end layer could result in inefficiency.

APPLICATION

The Application perspective suggests an association between application re-
quirements and Business Objects.

Following this perspective for our example leads us to the model shown in
figure 7.3.

Do not confuse with Data Objects defined in {3.5}.

106 CHAPTER 7. CASE STUDY

Adm_Book_Lending

HBook_ID : String
+Book_Name : String
+Book_Author : String
+Employee_[D : String
HEmployee_Name : String
HEmployee_Address : String
+HL.end_Date : Date
[+Return_Date : Date

+Set_Lending()

b1 —_—
Employee

Figure 7.3: Business Object of the example according to the Application per-
spective and its relationship with database entities.

In this model there is one Business Object, or so-called Application Business
Object, corresponding to the lending of books, namely Adm_Book _Lending.
‘This Business Object exchanges data with two database tables and contains
Business Logic concerned with both the concepts represented by the tables
at the same time.

Accordingly, there is direct support for the administration of lending books
to employees in the Business Logic layer. However, applications may need
different functionalities, even when they use the same data. Therefore the
usage of this Business Object would be restricted to the lending of books.

REAL WORLD

The Real-World perspective suggests a one-to-one relationship between real-
world concepts and Business Objects.

Following this perspective for our example leads us to the model shown in
figure 7.4.

7.3. THE LENDING ADMINISTRATION MODULE 107

Adm_Book_Lending

+Book_ID : String
+Employee_ID : String
+Lend_Date : Date
+Return_Date : Date

+Set_Lending()

]

o]

Book Employee
+Book_ID : String +Employee_ID : String
+Name : String +Name : String
+Author : String +Address : String

-

Employee

Figure 7.4: Business Objects of the example according to the Real-World
perspective and their relationship with database entities.

In this model there are three Business Objects, corresponding to three real-
world concepts; two Entity Business Objects, namely Book and Employee,
and one Process Business Object, namely Adm Book Lending. The En-
tity Business Objects handle two database tables and contain Business Logic
related to the corresponding concepts. The Process Business Object is as-
sociated with the two Entity Business Objects and contains Business Logic
related to both of them at the same time.

Accordingly, there is support for the administration of lending books to em-
ployees through the Process Business Object in the Business Logic layer, and
the Entity Business Objects can be reused for other applications (of other
modules).

We can also consider the resulting model as a hybrid model - a combination
of Data Business Objects resulting from the Data perspective and an Appli-
cation Business Object resulting from the Application perspective - with two
layers.

108 CHAPTER 7. CASE STUDY

7.3.4 REALIZATION

In conformance with the description, requirements and theoretical aspects of
the Lending Administration module, discussed in the preceding subsections,
we realized the module.

7.3.4.1 DESIGN

The Business Object model consists of two types of Business Objects, namely
Data and Application Business Objects, and is shown in figure 7.5.

Data corresponding to the Data Business Objects are maintained in the
database. That is, we added two groups of tables to the database, namely
Article and Lend _ Article tables.

The Article tables represent articles themselves. Their fields correspond to
the characteristics of articles and their ID.

The Lend_ Article tables represent articles that are lent. Their fields cor-
respond to the lending of articles such as the lending date and the return
date. These tables have relationships with both the Article tables and the
Employee table, in order to specify the lent item and the employee who has
borrowed the item. This relationship is maintained through two Foreign
Keys.

Therefore, these tables can keep data about the available and lent items of
articles. For most of the articles which need to be registered, the whole data
is there; one can get overviews and select items for lending. For the other
articles the corresponding data do not turn up in the database until they are
lent.

For the articles such as books and software of which there may be a number
(of copies) of the same item, there is an additional attribute, namely Number.
This attribute gives the number of the existing copies of the same item. In
this way, the same item can be lent several times concurrently. Attribute
"Available" shows the number of available copies. Besides, a unique key has
been assigned to each record of the Lend _Article tables so that an article
such as a book can be lent on the same day to the same employee more than
once.

Since mobile phones and SIM cards can be lent separately, they are repre-
sented by separate tables.

7.3. THE LENDING ADMINISTRATION MODULE 109

The Overview Application Business Object uses the Adm Article Lending
and Adm__ Article Application Business Objects in order to present informa-
tion about the articles and the employees who have borrowed those articles.
The Data Business Objects have no mutual relationships.

All of the Application Business Objects use the Server Lending Completion
Object in order to connect to a Data Business Object or another Application
Business Object. The application forms in the User Interface layer also use
this Completion Object in order to connect to the Application Business Ob-
jects. It makes instances of the requested Business Objects and passes them
on to the requester objects.

The Data Business Objects use Stored Procedures for reading and writing
data. The Stored Procedures in turn exchange data with one or two database
tables; two for most of the articles and one for those articles that do not need
to be registered.

Furthermore, the Data Business Objects do not communicate with the table
Employee, as shown in the Real-World perspective model (figure 7.4), but
instead with the Employee Business Object, which already existed in the
GRIP system.

110 CHAPTER 7. CASE STUDY

Application

i

Ldm_Aﬂide_Lending Overview Adm_Article History

Book

Software

Data

Figure 7.5: The Business Object model.

7.3.4.2 IMPLEMENTATION

The front-end layer presents a number of applications consisting of Graphical
User Interface (GUI) constituents such as menus, forms and tables. These
applications use the Application Business Objects of the middle layer and
provide the functionality required by the administrators and managers for
the administration of and getting overviews of articles and their lending.
Each application has a main panel where a user can enter, change and read
data. The applications are:

e Administrate_ Articles: to register and maintain lists of articles. For

7.4. CONCLUSIONS 111

example, to add a new purchased item to the corresponding list.

e Overview_ Articles: to provide overviews of the lists of articles. For
example, to see if an article is lent and which employee has borrowed
the article.

e Administrate_ Overview_Lending: to register and maintain lending of
articles to employees, and to provide overviews of the lists of borrowed
articles.

e Overview History: to provide overviews of lists of all articles that an
employee has ever borrowed.

The constituents of this layer are implemented using Visual Basic 6.0 under
Windows 95/98, and are installed on the users’ workstations. They provide
users with a uniform interface for all applications, and are similar to those
already offered by other modules.

The middle layer (mainly) consists of Application and Data Business Objects.

The constituents of this layer are implemented using Visual Basic 6.0 under
Windows 95/98 in the form of ActiveX components, and are installed on a
remote server.

At the beginning of each session, the Business Objects are instantiated and
filled in, and at the end of the session they are deleted. Besides, the changes
in the Business Objects do not directly result in changes in the related data;
these only take place after calling of the specific operations.

The back-end layer consists of data in the form of tables and Stored Proce-
dures set up in the system database, which is a MS SQL-server 6.5 under
Windows NT, and is installed on a central server.

7.4 CONCLUSIONS

As discussed in {2.3.1}, there is no globally accepted definition of the term
Business Objects. Therefore, different people who are familiar with this term
often have different definitions of it. People in PID were not an exception.
However, their familiarity with Business Objects and the fact that they had

112 CHAPTER 7. CASE STUDY

a background in using them was very helpful. Otherwise, it would have been
extremely difficult (or even impossible) to perform this case study.

During this case study, we tried to comply with the demands imposed by the
company as far as possible. For example, with respect to the programming
language, database system and enabling technology, other choices could have
led to better solutions. Anyhow, the company was satisfied with the result.

The Three-Layer Architecture of the existing system made it easier for us to
study the system and its parts, while applying the same architecture for the
new module made its development more convenient.

Furthermore, in the applied architecture, Data Business Objects are depen-
dent on the Data Source layer, and Application Business Objects are depen-
dent on the User Interface layer. We could use Business Objects that - in
conformance with their definition, given in {2.3.2} - only contain Business
Logic and shift the task of exchanging data with the Data Source layer to
Information Objects and the task of exchanging data with the User Interface
layer to Presentation Objects. This was one of the ideas that later resulted
in the concept of Five-Layer Architecture, discussed in {3.3}.

Chapter 8

ILLUSTRATIVE EXAMPLES (I)

One machine can do the work of fifty ordinary men. No machine can
do the work of one extraordinary man.

[Elbert Hubbard|

Applying Business Objects is closely related to the underlying architecture.
This chapter illustrates the application of Business Objects within the frame-
work of a Five-Layer Architecture, for two domains, namely the health-care
domain and the banking domain.

The first section concentrates on the role of Information Objects and Event
Business Objects, and elaborates on those requirements of the health-care
domain that can benefit from these concepts.

The second section concentrates on the role of Presentation Objects, and
addresses one of the requirements of the banking domain that can benefit
from this concept.

8.1 THE HEALTH-CARE DOMAIN

Automation in the health-care domain, like in many other domains, under-
went different stages. At present, automation designers face the challenge
of having to find a way to enable and maintain the interoperation between
different information systems, prevent redundancy of data and of procedures

113

114 CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

that are present in different systems, support reuse and deal with the dy-
namic work environment. This section discusses the use of Business Objects
for complying with the general requirements of this domain.

The section begins by introducing automation in the health-care domain,
through reviewing its history and general requirements. Then it describes
how one can use Business Objects to comply with these requirements. In
particular it describes how to deal with different data sources and to react
to changes in the work environment by concentrating on two specific and
representative example cases!.

8.1.1 BACKGROUND
8.1.1.1 HISTORY

Automation in the health-care domain began with mainframe-based systems
such as Hospital Information Systems (HISs). These systems were meant for
supporting the administrative functions of Health-Care Institutes® (HClIs),
such as billing, inventory and scheduling. However, this support remained at
the (higher) enterprise levels. The special requirements of different depart-
ments of HCIs were a barrier to extending the mainframe-based information
systems in order to provide support at the (lower) departmental levels.

Later, the minicomputer-based departmental information systems supported
the (administrative) functions, similar to those of HISs, for different depart-
ments of HCIs, such as laboratory, radiology and pharmacy. In addition to
information systems, departments also use special equipment, such as patient
monitoring and imaging devices.

Unfortunately, (most of) the automation units® are stand-alone. They do not
interoperate with the other automation units. This makes, mainly, the inter-
operation between the information systems of different departments within
HClIs very difficult. Accordingly, the department-level information systems
form distinct islands. This situation obstructs an enterprise level view not

"This section is based on the author’s work in the Academical Medical Centre (AMC),
Amsterdam, the Netherlands and the Reinier de Graaf Hospital, Delft, the Netherlands.

2This term is used to refer to all of the different organizations involved in health care,
including different kinds of hospitals and clinics.

3 Automation units refer to all automation systems and equipment in HCI.

8.1. THE HEALTH-CARE DOMAIN 115

only on data but also on data exchange routes and procedures. Obviously.
in this way, interoperation among HClIs, as well as interoperation between
HCIs and other enterprises that are active in other domains is not easy, if
possible at all.

In order to make interoperation between systems possible, different stan-
dards have been devised and used. However, some of these standards are, in
fact, imposed on HCls as a side effect of the purchased products. Anyhow,
the traditional standardization approaches have not adequately dealt with
providing interoperability.

Many of the standards are related to "data exchange". These standards are
merely conventions for exchanging data between systems with respect to a
specific or general area. Digital Imaging and Communications in Medicine
(DICOM) [DICOM], Medical Information Bus (MIB) [MIB] and Health Level
7 (HL7) |HL7] are examples of this category of standards. DICOM, devised
by the medical imaging business, supports interfacing of various pieces of
imaging equipment; MIB provides cross-vendor connectivity for clinical mon-
itoring equipment; HL7 is based on a set of messages for data definition and
transmission.

Following another approach, the Clinical Context Object Workgroup (CC-
OW) [CCOW 1998] aims to enable interoperability in the form of application
control, based on the concept of "clinical contexts". The clinical contexts rep-
resent common state information including parameters that should uniformly
affect the behaviour or operation of multiple health-care applications. The
user should be able to manage the clinical contexts by establishing and mod-
ifying them, and applications should be able to coordinate their behaviour
as the clinical contexts change.

Accordingly, it is difficult to take advantage of (a group of) existing systems,
in order to realize a new functionality. In fact, in order to maintain the
right interoperation between systems, one has to deal with many different
platforms, languages, models, standards, etc.

Furthermore, one of the main difficulties of using the (ready-made) software
systems in the health-care domain is "adjustment" of the system. It demands
a lot of time and effort to adjust a system to the specific requirements of a
HCI. This is due to the fact that each HCI not only has its own peculiari-
ties with respect to resources and requirements, but also its own methods.
Therefore, software systems should be so general that different HCIs can use

116 CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

them. As such, even when a software system is flexible enough, adjusting it
may require a lot of time and effort; when a software system is not flexible
enough, adjusting it may be more difficult than developing it from scratch.

Moreover, supporting of the administration procedures has been the main
goal of many of the information systems in the health-care domain. There-
fore, these information systems have been developed based on concepts that
are not appropriate for purposes other than administration support. Conse-
quently, the administration-oriented information systems cannot be extended
to comprehend support for clinical procedures, such as treatment of patients
as well.

An important issue in this respect is dealing with what is called "Patient
Logistics". This term represents a large number of (interrelated) activities
related to examination, treatment, hospitalisation, etc. of patients.

At present there are a number of systems that can only help in consulting
dispersed information with respect to personnel work schedules, (laboratory)
equipment, etc. Still the main part of the work takes place through personal
contact (oral, telephonic, email, etc.).

In order to support Patient Logistics the information system concerned should
get involved in the whole procedure from the time that a patient arrives at
the hospital until the time that the patient leaves the hospital. For instance,
it should also include issues like "waiting list" and "release policy".

What makes support for Patient Logistics more difficult is the high dynamism
of the procedures and the continuous change in the work environment. For
example, patients can always reject an appointment and ask for a new one.
This makes planning extra difficult.

Together, the above-mentioned problems with information systems in the
health-care domain have resulted in a situation with the following character-
istics:

e inability or difficulty of interoperation between different systems,

¢ redundancy of data in different systems,

e redundancy of procedures in different systems,

e lack of reuse and

8.1. THE HEALTH-CARE DOMAIN 117

e inflexibility of procedures in reacting to changes in the work environ-
ment.

Besides, the health-care domain has a number of distinctive characteristics
that should be taken into consideration, including:

e high sensitivity of data,

high complexity of procedures,

huge diversity of systems.

low operating budgets for automation and

little or hopefully no intention of making profit.

8.1.1.2 GENERAL REQUIREMENTS

To improve automation in the health-care domain, one should take the de-
scribed situation into consideration, and should deal with the mentioned
characteristics.

All in all, HCIs require affordable, flexible, distributed and heterogeneous
information systems that are able to interoperate seamlessly and securely
across a variety of organizations, including hospitals and (outpatient) clinics,
and their different departments. The systems should, among other things,
support HCIs in managing, organizing and scheduling different activities .
involved in the treatment and hospitalisation of patients, and hence serve
different kinds of users, including physicians, nurses and employees, while
maintaining authorization and guaranteeing privacy. Furthermore, the sys-
tems should be based on the existing resources; it should use and improve
the hospital automation infrastructure efficiently and reliably.

Accordingly, the main general requirements for information systems in the
health-care domain can be summarized as follows:

e maintain (secure) interoperation between different departments of HClISs,
among different HCIs* (and between HCIs and other enterprises active
in other domains),

4Each HCI should preserve the ownership of its own data. This makes centralization
of data undesirable, if possible at all.

118 CHAPTER 8. ILLUSTRATIVE EXAMPLES (1)

e maintain flexibility for information systems, in order to be able to apply
them under different circumstances and changing work environments,

e support administrative, as well as clinical procedures,

e maintain authorization of data access and manipulation, without any
restrictions with respect to time, location, platform, etc. and

e guarantee privacy of patients.

8.1.2 APPLYING BUSINESS OBJECTS

Business Objects can be used to build an information system for the health-
care domain that meets all the requirements, in particular those related to
dealing with different data sources and reacting to changes in the work en-
vironment. In the following, the benefits of applying Business Objects for
these purposes are discussed and shown through two representative example
cases.

8.1.2.1 RATIONALE

The main characteristics of Business Objects, as defined in {2.3.2}, and the
Multi-Tier Architecture, as defined in {3.4}, make them appropriate for the
outlined requirements for an information system of the health-care domain.

STANDARDS

The existing standards in the health-care domain are mainly based on data
formats and control information. Business Objects are based on the real-
world concepts of the health-care domain, and reflect the changes appropri-
ately in an organized way, with respect to organizational units concerned.
Therefore, Business Objects provide a better basis for interoperation than
those based on data or applications.

Applying the notion of Business Objects results in a common model that
comprises data and procedures of the health-care domain. In this way, those
concepts that are basically common in the whole domain do not have to
be repeated for each separate organizational unit such as "department" and
hence redundancy can be eliminated. In addition, this makes interoperation

8.1. THE HEALTH-CARE DOMAIN 119

between applications based on Business Objects easier. as they either use
the same Business Objects or use different Business Objects whose (direct or
indirect) relationships are always maintained to reflect the real world.

Furthermore, we can "implement" the same "interfaces" in different ways,
and have the Business Objects related to the more specific concepts "inherit"
from those related to the more general concepts. In this way, we can deal
with the specific requirements and at the same time preserve interoperability.
In addition, the "encapsulation" of data through Business Objects can help
us to protect data, maintain data ownership and provide controlled access to
the (critical) data.

However, to realize the new enterprise-level systems, we should deal with
and take advantage of the existing departmental-levels systems as much as
possible. In fact, the legacy systems present and support many fundamental
procedures. Consequently, the existing standards for data exchange have also
become a real-world concept, and one should also take them into consideration
when one wants to realize systems based on the concept of Business Objects.

In principle, using (standard) Business Objects in accordance with the Multi-
Tier Architecture is orthogonal to the use of other standards. That means
that one can use Business Objects and still apply different standards for dif-
ferent purposes. For instance, in the context of the Multi-Tier Architecture,
the Information Logic layer can exchange data between the Business Logic
constituents, the Business Objects, according to different standards. In this
way, the existing standards can co-exist with the standard Business Objects.

PATIENT LOGISTICS

Support for Patient Logistics mainly involves planning and plan adjustment,
and in broad outlines should take the following factors into consideration:

e Human resources such as physicians and nurses,
e Material resources such as workplaces and equipment and

e Data such as those registered on the medical records of patients.

While planning (mainly) copes with the (relatively) static aspects of these
factors, plan adjustment should deal with their dynamic aspects.

120 CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

In fact, here we have to deal with the "supply and demand" problem between
the existing resources on the one hand and the patients (and their treatment
requirements in its general sense) on the other hand. The responsible person-
nel should always be able to get an overview of the existing resources, order
(new) resources and adapt planning of resources (to the current situation). It
should also be possible to make ad hoc modifications. The result of changes
should then be propagated to everyone involved.

An important issue in plan adjustment is the capability of reacting to the
"real-time" data such as presence/absence and availability /unavailability of
resources, as well as patients. For example, in case of an equipment defect,
patients should be informed and new appointments should be made.

Accordingly, in order to be able to support Patient Logistics we need to
have an integrated and flexible system which can deal with both clinical and
administration procedures at the same time. Systems based on Business
Objects can fulfil these demands.

SOFTWARE DEVELOPMENT

As Business Objects are not tightly linked to the data they represent, one can
develop (new) applications, or change (existing) applications, without having
to deal with the underlying databases. In addition, the validity of (common)
data, which is presented through Business Objects and is used by different
applications, is also always guaranteed. This is of crucial importance in HCI
environments, where many different databases are used.

Moreover, one can reuse the legacy systems through wrapping them by Busi-
ness Objects or their underlying objects. This is also very important in HCI
environments, where many different systems are in use.

Furthermore, for realizing Business Objects and the related applications, one
can use the existing enabling technologies and system environments that are
(specifically) intended for this purpose. Besides, the ready-made Business
Objects presented by third parties can also be evaluated, adjusted and used.

As Business Objects are organized and arranged according to the categories
they belong to, they can easily be searched and located. In addition, changing
Business Objects in accordance with changes in their real-world counterparts
(with respect to the organizational unit concerned) can be accomplished at
one place and be made available for all applications that use them.

8.1.

THE HEALTH-CARE DOMAIN 121

REASONS TO APPLY BUSINESS OBJECTS

In general, the main reasons for applying Business Objects in health-care-
domain information systems can be summarized as follows. Business Objects
can help us to:

integrate data in different systems.

integrate procedures in different systems.
provide a general view on data and procedures,
prevent the redundancy of data.

prevent the redundancy of procedures,

make the extension of systems and the addition of new applications
easier; this can help us to support different kinds of users, including
physicians, nurses and employees that are active in different areas, such
as diagnosis, hospitalisation and accounting,

reuse existing systems,

provide conceptual and technical flexibility for creation, distribution
and usage,

take advantage of enabling technologies and system environments,
use off-the-shelf components,
provide a better basis for cooperation with other HCIs and

provide the possibility for interoperation with systems of enterprises
active in other domains, for instance in order to manage purchases of a
HCI through interaction between the information systems of the HCI
and vendors of the health-care materials.

CORBAmed [CORBAmed 1998], the Domain Task Force of Object Manage-
ment Group (OMG) in the health-care domain, aims to offer the mentioned
advantages based on the notion of Business Objects.

122 CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

CORBAmed intends to provide a model of the health-care domain, including
concepts such as "Person", "Institution", "Ordering", "Tracking", "Schedul-
ing" and "Financial Services". CORBAmed has already been active in dif-
ferent areas, including:

e Electronic Patient Record (EPR)

Clinical Image Access Service (CIAS)

Clinical Observation Access Service (COAS)

Patient Identification Services (PIDS)

Health care Resource Access Control (HRAC)

8.1.2.2 EXAMPLE CASES

In broad outlines, the treatment of patients in the health-care domain is car-
ried out by general practitioners, hospitals and complementary care organi-
zations. Figure 8.1 shows a simplified view of this process in the Netherlands.
Each of the following examples discusses specific aspects of this process.

The first example concentrates on dealing with different data sources, and
the second example concentrates on reacting to changes in the work environ-
ment.

8.1. THE HEALTH-CARE DOMAIN

123

" Patient
(complaint}

- '.
Visit

General
Practitioner

" Examination
needed?

Patient ill?

» therapy

Patient ill?

Consuitant
nesded?

Examination

Hospital

Patient
{healthy)

entrance

Patient registered?

yes

Registration

Visit
consultant

Examination

Hospitalisation

Treatment
needed?

Complementary-
treatment needed?

Complementary-
treatment

Patient
{healthy)

Figure 8.1: A simplified view of the health-care process in the Netherlands.

124 CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

FIRST EXAMPLE

The "general internal" department of the outpatient clinic deals with a wide
range of diseases and patients, and hence is involved in different kinds of data
and procedures.

This department accepts the patients who are sent by general practitioners
or consultants from other departments. The secretary of the department
arranges the appointments for the consulting hours of the consultants of the
department.

For the consulting hours, it must be checked whether the appointments have
not been cancelled or changed, and if all the patient’s documents that are
needed, like laboratory results and x-rays, are ready. Before each consulting
session, all of the existing documents related to the patient concerned should
be available to the consultant.

During the consulting sessions, different types of information about the pa-
tient are acquired through asking questions, examination, etc. and subse-
quently a diagnosis is made. The diagnosis may result in medication, hos-
pitalisation, etc. In some cases, the consultant may need complementary
information before making the diagnosis.

After each consulting session the consultant provides a report about the pa-
tient, including (new) information. All the documents about the patient,
including the mentioned report, should be collected and added to the pa-
tient’s file.

The consultants continuously consult with other consultants, general prac-
titioners, assistants, nurses, etc. through different means, including special
forms. Besides, the consultants supervise the activities of their assistants.

The outpatient clinic in general and the "general internal" department in
particular use different systems for different purposes. These systems are
not able to interoperate; they include overlapping data and do not cover all
desired data and functions.

The "general internal" department uses two legacy relational database sys-
tems and intends to use a new relational database system for its documents.

8.1. THE HEALTH-CARE DOMAIN

Business Object Models

In order to provide a basis for complying with the requirements of the ex-
ample case, we should recognize the real-world concepts of this area, as the
organizational unit concerned, and should realize Business Objects for these
concepts.

Figure 8.2 shows the Entity Business Object model of the example case.

These Business Objects mainly represent data related to this area.

Entity

Person

iGeneral_Practitioner

0.1

Document

‘f

*Agpolntmem_Sr.hedule

Patient_Record

Confer_Farm

1.1

0.n

atient_Report

1.1 0.n 1.n
O.n
Staff
Nurse Assistant Consultant
0..n 1.n

Patient_Actual|

Estahiishment

Figure 8.2: The Entity Business Object model of the first example case.

Figure 8.3 shows the Process Business Object model of the example case.

[Examination_Result ’

126

CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

These Business Objects mainly represent procedures related to this area.

Process

tnter-colleague_Confer

Appointment

Consult

Examination

Hospitalisation

Figure 8.3: The Process Business Object model of the first example case.

Figure 8.4 shows the Event Business Object model of the example case. These
Business Objects represent the main events that initiate procedures related

to this area.

Event

Consult_Request

Examination_Request

Hospitalisation_Request

Figure 8.4: The Event Business Object model of the first example case.

The shown Business Objects can be applied for both administration and
clinical procedures, and can be used and reused for different applications.
Furthermore, they can be modified and extended to deal with new require-

ments.

8.1. THE HEALTH-CARE DOMAIN 127

Dealing With Different Data Sources

The main purpose of applying Business Objects to this area is to deal with
different data sources in an effective and efficient way. This can be demon-

strated by concentrating on a specific part of the Business Object model that
focuses on "consult".

Consult

+Arrange_Consult()
+Do_Consult()

tn| 1.1

Ci H R <t
ey

+Requester : String
+Patient : String

+Consultant : String

+Reason : String Patlient

-Date : Date

+Set_Consult() +Name : String

+Change_Consult() +Birth_Date : Date

+Cancel_Consult(- +Birth_Place : String
i+Address : String
+Registration_Date : Date

11 +General_Practitioner :. String

Consultant ‘+Last_Visit_Date : Date

(+Last_Visit_Reason : String
+Name : String

+Birth_Date : Date

+Birth_Place : String
+Address : String 1.1
+Department : String

1.1

+Spaciality : String
Patient_Report
1t +Edition_Date : Date 0.1
1.n [+Complaints : String "
+Fever : Real N
p
+Blood_Pressure : String 0.n atient_Recard
+Diagnasis : String 1.1 T
+Medication : String :;_Zi'g: ; g ::ll
+Remarks : String +Social_Circumstances : String
+Habits : String
+Select_Repon()

Figure 8.5: A part of the Business Object model of the first example case.

Figure 8.5 shows a part of the Business Object model of the example case
that includes a number of Entity Business Objects. These Business Objects
represent data distributed over different data sources. Therefore, the (In-
formation Objects of the) Information Logic layer should store and retrieve
data related to these Business Objects with no concern about the underlying

128 CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

data sources.

In general, for each Business Object there is an Information Object that
stores and retrieves its data. This Information Object knows the exact loca-
tion of data, and accomplishes the required conversions and transformations.
Furthermore, the relationship between Business Objects and data sources
also depends on a number of aspects discussed in {5.3}.

In the following, the relationship between the "Patient" Entity Business Ob-
ject and the data sources concerned is explained.

"Patient" has a number of attributes, including "Name", "Birth Date",
"Birth_Place", "Address", "Registration date", "General Practitioner",
"Last_ Visit_Date" and "Last_ Visit_ Reason". The first five attributes are
stored in a legacy relational database that is intended for administrative pur-
poses. One can only change data in and add data to this database through
native applications. Other systems can only read data stored in this database.
The last three attributes are stored in a legacy relational database that is
intended for clinical purposes.

During each session, when a specific "Patient" is called, the system searches
for the instance concerned. If it does not find the instance, it creates a new
instance. During the creation, the (only) instance of the related Information
Object, "F_Patient", is called. This instance, in turn, searches the data
sources concerned. It searches for two different tables in two different rela-
tional database systems, in order to find the related records. If such records
exist, the "F'_ Patient” instance collects data and passes it to the "Patient"
instance, otherwise the corresponding exception is thrown.

The explained procedure is shown in figure 8.6.

8.1. THE HEALTH-CARE DOMAIN 129

atient
instance
called

atient
instance

exists? / 7

no

yes

Create
Patient
instance

F_Patient
instance exists?

yes

create
F_Patient
instance

F_Patient searches
for Patient data in
data source(s)

t

Patient data
found?

throw
exception

F_Patient fills
Patient with data

Figure 8.6: Flow of actions for using a specific instance of the "Patient" Busi-
ness Object (data) through the corresponding Information Object.

Furthermore, "Patient Record" has a number of attributes, including "Wei-
ght", "Length", "Social _Circumstances" and "Habits". These attributes are
stored in a legacy relational database that is intended for clinical purposes.

130 CHAPTER 8. ILLUSTRATIVE EXAMPLES (1)

One can only add data to this database through native applications. Other
systems can read and change data stored in this database.

During each session, when a specific "Patient_Report" is called, the system
searches for the instance concerned. If it doesn’t find the instance, it cre-
ates a new instance. During the creation, the (only) instance of the related
Information Object, "F_ Patient_ Record", is called. This instance, in turn,
searches the data source concerned. It searches for a table in a relational
database system, in order to find the related record. If such record exists,
the "F_Patient_Record" instance collects data and passes it to the "Pa-
tient_Record" instance, otherwise the corresponding exception is thrown.
At the end of the session, existing instances of "Patient Record" are written
back to the database through the "F_Patient Record" instance. However,
during the session, at specified points in time the instances are stored in the
database as well.

"Patient_Report" has a number of attributes, including "Edition_Date",
"Complaints", "Fever", "Blood _Pressure", "Diagnosis", "Medication" and
"Remarks". These attributes are stored in a new relational database that is
intended for clinical purposes. One can only change data in and add data to
this database through the related Business Objects. Other systems can only
read data stored in this database.

During each session, when a specific "Patient_Report" is called, the system
searches for the instance concerned. If it does not find the instance, it cre-
ates a new instance. During the creation, the (only) instance of the related
Information Object "F_ Patient_ Report" is called. This instance, in turn,
searches the data source concerned. It searches for a table in a relational
database system, in order to find the related record. If such record exists,
the "F_Patient_Report" instance collects data and passes it to the "Pa-
tient_Report" instance, otherwise the corresponding exception is thrown.
When a new "Patient_ Report" must be created, the system creates a new
instance. At the end of the session, existing instances of "Patient_Report"
are written back to the database through the "F_ Patient Report" instance.
For new instances, a new entry in the database is created. However, dur-
ing the session, at specified points in time the instances are stored in the
database as well.

"Consultant" has almost the same story as "Patient". "Consult" and "Con-
sult _Request" are of temporary nature and thus not persistent.

8.1. THE HEALTH-CARE DOMAIN 131

SECOND EXAMPLE

The "opthalmology" department of the outpatient clinic manages appoint-
ments telephonically or directly, and registers them in a file.

At the beginning of each workday the presence of consultants is checked. In
case a consultant is not available, his appointments must be cancelled and
new appointments should be set. In some cases it is possible to hand the
appointments to other consultants. It can also happen that a consultant
leaves the clinic during the working hours for a specific or unknown period
of time. This can also have consequences for the appointments.

If a patient wants to change or cancel his appointment, the freed time slot
should be made available for setting new appointments. The time slot should
then be used as optimally as possible. In general, when everything runs
according to the agenda, patients should check in with the clinic at least a
quarter of an hour before their appointment. If a patient does not show up
on time, his appointment may be changed. In that case, his time slot will be
given to another patient who is present.

Business Object Models

The target environment of this example is very similar to the environment of
the previous example. Therefore, most of the real-world concepts of this ex-
ample are the same as those presented in the previous example. Accordingly,
the Business Objects of the previous example can be used for this example
as well.

The additional concepts of this example are those related to the main events
with respect to the availability of consultant and patient. They can be pre-
sented by two Event Business Objects, namely Consultant Availability and
Patient _ Availability. Figure 8.7 shows the Business Object model of this
example case.

132 CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

Patient
lAppointment_Schedule| 0..n

Name : String
+Birth_Date : Date

[+Birth_Place : String
0.n I HAddress : String
Appointment [+Registration_Date : Date
HGeneral_Practitioner | String
- [+Last_Visit_Date : Date

+Set_Appointments() ~ e

+Reset_Appointments{) +Last_Visit_Reason : String

+Shift_Appointments()

-Swap_Appointments() 1.1

O.n -Find_Patients(
-Find_Next_Patient()
|-Find_Consultant()
Consultant
+Name : String

+Birth_Date : Date
+Birth_Place : String
+Address : String
+Department : String
+Speciality : String

Consultant_Availability

Patient_Awvailability

1.1

-Availability : Boolean
+Presence ; Boolean

+Set_Availability(}
+Reset_Availability()

FAvailability : Boolean

Set_Avallabifty(

HReset_Availability()

+Set_Presence() 0.1
+Reset_Presence()

Patient_Record

[+Weight Real

1.n 1.1 [Hength: Real
Patient_Report HSocial_Circumstances : String
HHabits : String
+Select_Report()

+Edition_Date : Date
+Complaints :.String O..n
+Fever : Real
+Blood_Pressure : String
+Diagnosis : String
[+Medication : String
+Remarks : String

Figure 8.7: The Business Object model of the second example case.
Reacting To Changes In The Work Environment

A main purpose of applying Business Objects to this area is to react to
changes in the work environment. This can be demonstrated by going over a
number of scenarios with respect to the availability of consultant and patient.

8.1.

THE HEALTH-CARE DOMAIN 133

Consultant not available the whole day: Generally, at the beginning
of the workday the Presence and Availability attributes of the Consul-
tant _ Availability Event Business Object of the consultant concerned
are set. If it becomes known that the consultant will not be present, his
Presence Attribute is reset. This change triggers the Reset Presence
operation of the Consultant _ Availability Event Business Object. This
operation in turn triggers the Reset Appointments operation of the
Appointment Process Business Object. in order to cancel the appoint-
ments of the consultant. This operation then finds all patients that
have an appointment with the consultant concerned on that day. It
then tries to find free time slots of the other appropriate consultants
on the same day for the patients. The appropriateness of a consultant
for a patient is derived from the corresponding patient record. In any
case the result is registered in the involved Entity Business Objects and
can be used for further steps, for example to notify the patients.

Consultant not on time: If the consultant does not come before a spe-
cific amount of time, the Availability attribute of his corresponding
Consultant__ Availability Event Business Object is reset. This change
triggers the Reset _ Availability operation of the Consultant _ Availability
Event Business Object. This operation in turn triggers the Shift -
Appointments operation of the Appointment Process Business Ob-
ject, in order to shift the appointments of the consultant for a spe-
cific amount of time. This action continues for a certain number of
times for specified time intervals. If during this period the consul-
tant arrives, his Availability attribute is set. This change triggers the
Set_ Availability operation of the Consultant _Availability Event Busi-
ness Object, and stops the Reset Availability operation from trigger-
ing the Appointment Process Business Object. Otherwise, the Pres-
ence Attribute of the Consultant _Availability Event Business Object
is reset. This change triggers the Reset_ Presence operation of the Con-
sultant_ Availability Event Business Object, and it acts the same as in
the first scenario.

Consultant not available for a while: If during the workday the con-
sultant leaves the clinic for any reason, the approach is similar to that

134 CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

described in the second scenario. The Availability attribute of his corre-
sponding Consultant _ Availability Event Business Object is reset, and
SO on.

¢ Patient not available: If the patient checks in on time, the Availability
attribute of his corresponding Patient _Availability Event Business Ob-
ject is set. This attribute is checked after a specific amount of time. If it
is set, the Set _ Availability, and otherwise the Reset _ Availability opera-
tion of his Patient_ Availability Event Business Object is triggered. The
Reset_ Availability operation in turn triggers the Shift Appointments
operation of the Appointment Process Business Object, in order to
shift the appointment of the patient to a later time on the same day.
This operation then finds the next patient who has an appointment
with the same consultant on that day, and has already checked in.
The operation then swaps the appointment time slots of the two pa-
tients. In case the patient shows up for his (new) appointment, his
Availability attribute is set. This change triggers the Set_ Availability
operation of the Patient_ Availability Event Business Object and stops
the Reset_ Availability operation from triggering the Process Business
Object. Otherwise the same procedure will be repeated for a certain
number of times for specified time intervals, and subsequently the Re-
set _ Availability operation of the Patient_ Availability Event Business
Object triggers the Reset_ Appointments operation of the Appointment
Process Business Object, in order to cancel the patient’s appointment
and assign his time slot to another patient. This is registered in the
involved Entity Business Objects and can be used for further steps.

In this way, Event Business Objects can play an important role in reacting
to changes in the work environment.

THE MAIN ADVANTAGES

Figure 8.8 shows an example architecture of a health-care information sys-
tem in a hospital. Each hospital unit is connected to the system through a
workstation which presents the User Interface layer. The clinical and admin-
istration applications are installed on these workstations. The Presentation
Logic can exist on the same workstations or on other locations accessible for
two or more workstations. The Business Logic layer is placed in a central
location. It can exchange data with different data sources through the Infor-
mation Logic layer. This layer can exist in the same location as the Business

8.1. THE HEALTH-CARE DOMAIN 135

Logic layer. The legacy information systems such as Hospital Information
System (HIS) can be dealt with as legacy databases.

Figure 8.8: An example architecture of a health-care information system in a
hospital.

136 CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

The presented examples can be observed in the context of this architecture.
Since the basic administration functions of different departments of the out-
patient clinic are almost the same, issues and solutions discussed for one
department are valid for and can be applied to other departments.

As the examples show, applying Business Objects and the Multi-Tier Archi-
tecture can mainly help us to:

e provide a general view on data,
e prevent redundancy of data,

e recognize the missing data,

e reuse the existing data sources,
e provide the missing data and

e react to the changes in the working environment.

The (Entity) Business Objects represent the data distributed over the data-
bases. Accordingly, the "general internal" department can have a general
view on its data through these Business Objects. For example, the patient
data, which exists in two relational databases, is represented through "Pa-
tient".

It would be possible for some of the attributes, e.g. "Address" of "Patient"
(patient’s address) to exist in both databases. This would be detected during
the development of the Information Objects concerned, e.g. "F_Patient",
and the desired policy could be enforced through them. Anyhow, the Busi-
ness Objects concerned would not have to get involved in this problem.

Moreover, as Business Objects are based on the real-world concepts (their
real-world counterparts), the missing data can be spotted and added to sys-
tem in an organized manner that makes them available and reusable for the
whole system. For example, in order to be able to comply with (the changes
in) the real world, due to administration reasons, the "general internal" de-
partment would have to know about the patient’s occupation. This would
affect the creation of the "Patient" Entity Business Object, and consequently
the related attribute would be added to (one of) the underlying databases.

8.1. THE HEALTH-CARE DOMAIN 137

In addition, there will be no (new) redundant data in future, as the (new)
data will be added based on Business Objects.

All applications - the existing applications and the new ones - have a well-
defined place in the process flow and use the Business Objects of the Business
Logic layer as a communication means. This maintains the integrity of the
system.

Business Objects encompass the Business Logic with respect to the ordinary,
as well as (predictable) occasional situations. Data, and in each specific
situation possible operations on data are based on the valid rules with respect
to the situation concerned. Changes in the work environment are associated
with the physical and medical state of patients and physical state of resources.
Event Business Objects help us to manage events that can lead to, or result
from, these changes. In this way, the system can be adapted to the changing
situations in the work environment.

The extendibility of the system makes it possible to cover the whole area of
Patient Logistics. The new internal activities, as well as external activities,
can be supported through the realization of new Business Objects, and in-
teroperation through the Business Logic layer or the Data Source layer. For
example, in this way the system can exchange data with information systems
of general practitioners, recreation centres and pharmacies.

Furthermore, Business Objects can be reused in order to form new systems.
Therefore, new systems/applications can be realized in a relatively short time
and at low cost, as one does not have to begin from scratch and can take
advantage of already applied and tested software constituents. Furthermore,
to develop applications, one can use the Business Objects without having
to deal with (or even without having to know about) the underlying data
sources. For example, any application can use "Patient" without dealing with
the two databases that maintain its data. This not only promotes reuse of
the existing resources, but also supports integration of different applications.
Besides, one can use the existing software constituents for creating Business
Objects.

Reuse of existing software constituents cannot only reduce the time and effort
required for software development, but also maintenance efforts.

Analysis and design can directly affect maintenance efforts. Standardization
and categorization of Business Objects leads to clear view on functionality
of system constituents and the relationship among them.

138 CHAPTER 8. ILLUSTRATIVE EXAMPLES (1)

For realizing Business Objects and the related applications, one can take
advantage of the existing resources and tools for Business Objects, or even
use the ready-made Business Objects in case they are available.

8.2 THE BANKING DOMAIN

Automation in the banking domain, like in many other domains, involves var-
ious dimensions. In broad outlines, automation designers should deal with
the core procedures of banking on the one hand, and the different channels
for communicating with the customers on the other hand. This leads to a
high level of complexity, and requires a lot of work to establish and maintain
information systems. This section discusses the use of the Multi-Tier Archi-
tecture based on the concept of Business Objects for dealing with different
channels in this domain®.

The section begins by introducing automation in the banking domain. Then
it describes how one can use the Multi-Tier Architecture based on the concept
of Business Objects for this domain in order to deal with different commu-
nication channels, by concentrating on a specific and representative example
case.

8.2.1 BACKGROUND

Automation in the banking domain should support a wide range of activities.
These activities can be as simple as transferring money from one account to
another, or as complex as providing full budgeting and financial planning ad-
visory services. Furthermore, banks persistently aim at reducing their costs
and paperwork, broadening their activity fields and offering new services, in
order to attract new customers and to preserve the old customers. There-
fore, information systems in the banking domain should support these efforts
as well. Accordingly, the architecture of these information systems should
make it possible to comply with the requirements of these activities and ef-
forts. However, the existing information systems are mainly based on an old
banking model, which has resulted in an enormously complex structure.

>The advantage of using Business Objects for another financial domain, E-Commerce,
is addressed in [Abolhassani 2000-1].

8.2. THE BANKING DOMAIN 139

For a long time, physical branches and the (snail) mail were the only channels
through which banks offered their services to their customers. In the last
years, banks have started to provide different channels for communicating
with their customers. Accordingly, new channels, mainly based on telephone
(lines) and computer (devices), have gradually been added to the existing
ones. Therefore, the system architecture in the banking domain should also
deal with the (new) channels as they come into view.

Moreover, each channel should be able to reach the core of the banking sys-
tem according to its characteristics. Therefore, the existing systems should
continuously be altered and extended with proprietary protocols, standards
and software packages. This all can result in a complicated situation, which
is not easily manageable and asks for an architecture which can embrace
reusable, flexible and scalable constituents in a heterogeneous and distributed
environment.

8.2.2 APPLYING BUSINESS OBJECTS

Applying the Multi-Tier Architecture together with the concept of Business
Objects can be beneficial for the banking domain, in particular for dealing
with different communication channels. In the following, the use of the Multi-
Tier Architecture and Business Objects for this purpose is discussed and
shown through a representative example case.

8.2.2.1 RATIONALES®

The Multi-Tier Architecture, in accordance with the concept of Business Ob-
jects, is an appropriate architecture for information systems in the banking
domain. It can result in manageable systems, as it separates the core concepts
from their usage issues, such as communicating with customers through dif-
ferent channels. This architecture makes it possible to change, enhance and
improve the core procedures, while the (new) channels for communicating
with the customers can use those procedures in the same way. Moreover,
the channels should be balanced and consistent with each other, and trans-
actions should be reflected across all channels. This can also be maintained
by applying the Multi-Tier Architecture.

6The items discussed in {8.1.2.1} can also be valid here.

140 CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

Furthermore, although all channels should in principle be able to access the
core of the system, each specific channel should provide the customers with
possibilities according its characteristics. This means that the services offered
by each channel should be in agreement with the nature of that channel and
nothing else. The Presentation Logic layer of the Multi-Tier Architecture
can take care of such a relationship between the Business Logic layer as the
core of the system on the one hand, and the User Interface layer of each
channel on the other hand.

Moreover, maintaining security is an important issue in the banking domain,
and except for the common parts of the system, each channel may have its
own security principles and requirements’.

8.2.2.2 EXAMPLE CASE

A bank offers different services to its customers such as accounts, personal
loans, mortgages and insurance. The bank accounts are of different types,
intended for different purposes. Two main types of the accounts are "Current
Account" and "Saving Account". While the former can be used for ordinary
transactions, the latter is intended for yielding interest.

Each customer can have several accounts at the same bank, possibly at differ-
ent physical branches. In general, the bank accounts offer services including
account transactions - such as account-to-account transfer and bill payment
- and balance inquiry. The customer can receive money through his account.
This can happen casually or regularly such as monthly salary. In the same
way, the customer can pay money through his account, casually or regularly
such as monthly rent. The customer should also be informed about his ac-
count balance, both on demand and regularly. That is, in addition to the
periodically issued statements, the customer may want to be informed about
his transactions and balance of an account at any arbitrary point in time.

The bank intends to offer the above-mentioned services through different
channels, including physical branch (applying to the desk), telephone (di-
alling the special number of the call centre and following the instructions),
and computer, using standard Web browsers (from the bank’s home page,
selecting the "online banking" section and then choosing the desired option),
or installing and using specific software packages.

"This issue is beyond the scope of this work.

8.2. THE BANKING DOMAIN 141

However, the channels may not offer the services in the same way. and some
channels may not be appropriate for some services at all. For instance, for
some services it might be necessary that the customer goes to the physical
branch.

Furthermore, it is of crucial importance for the bank, and also for the cus-
tomers, to prevent unauthorized people from attempting to use (some of)
the bank services through different channels. For instance, the bank needs to
prevent unauthorized people from logging into its "online banking" section
of its "home page".

A typical scenario of the relationship between the bank and the customers is
as follows:

The customer contacts the bank, and then, on request, iden-
tifies himself to the bank. In case the bank recognizes him as a
legal customer, he can ask for the desired service, for example
checking an account balance. Consequently, the bank asks the
customer to choose the desired account, in case he as more than
one account. Subsequently, the bank verifies the chosen account
and lets the customer know the account balance.

The described scenario can be realized through different channels. For in-
stance, realizing this scenario through the Web can result in the following
session:

The customer goes to the bank’s "home page" through his
Web browser, and selects the "online banking" section. Then, he
enters his "user name" and "password" in the form displayed on
his monitor. The system verifies if there is an existing customer
with the specified "user name" and if the "password" is valid. If
the system cannot identify and/or validate the customer, it no-
tifies the customer and requests him to re-enter the information.
In case the customer is registered, and the system recognizes him
as a legal customer, a menu with a number of options is shown.
The customer chooses the "Account Services" option, and then
"Show Balance" from the following submenu. Then, the system
lists all of the accounts owned by the customer with the type

142 CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

of each account. The customer can then choose the desired ac-
count from that list. Subsequently, the system verifies the chosen
account and shows the balance of the account.

BUSINESS OBJECT MODELS

To provide the basis for complying with the requirements of the example
case, we should recognize the real-world concepts of this area, as the or-
ganizational unit concerned, and should realize Business Objects for these
concepts. Applying Business Objects in this area can mainly help us to:

e provide a structured system and

¢ support different channels.

Figure 8.9 shows the Entity Business Object model of the example case.
These Business Objects mainly represent data relevant to this area.

8.2. THE BANKING DOMAIN

143

Entity

Person

Customer

Employee

Bank

.n

Account

T

Current_Account

Ifaving_Accnum

Figure 8.9: The Entity Business Object model of the example case.

Figure 8.10 shows the Process Business Object model of the example case.
These Business Objects mainly represent procedures relevant to this area.

144 CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

Process

Open_Account IClose_Account Deposit Withdrawal

Transfer

Figure 8.10: The Process Business Object model of the example case.

Figure 8.11 shows the Event Business Object model of the example case.
These Business Objects represent the main events that initiate procedures
relevant to this area.

Event

lNagatiw_Balanc% Positive_Balance

Figure 8.11: The Event Business Object model of the example case.

The shown Business Objects can be used and reused for different applica-
tions. Furthermore, they can be modified and extended to deal with new
requirements.

8.2. THE BANKING DOMAIN 145

DEALING WITH DIFFERENT COMMUNICATION CHANNELS

The main purpose of applying the Multi-Tier Architecture based on Business
Objects for this area is to deal with different communication channels. This
can be demonstrated by concentrating on a specific part of the Business
Object model.

Customer
+Name : String
+Birth_Data : Date Current_Account
+Birth_Place : String
+Address : String 1.1 1.0 [+Number : String
+Registration_Date : Date +Branch : String
+Last- Access_Date : Date +Deposit)
+F‘hon'e : St;ing +Withdrawal()
+Email : String +Transaction_Histary()

+Check_Balance()

Figure 8.12: A part of the Business Object model of the example case.

Figure 8.12 shows a part of the Business Object model of the example case
that includes two Entity Business Objects. These Business Objects should
communicate with the customer through different channels. Therefore, the
(Presentation Objects of the) Presentation Logic layer should present these
Business Objects to the User Interface according to the channel concerned.

Therefore, as the Presentation Logic layer deals with different communica-
tion channels, the Business Logic layer, and hence the Business Objects, do
not have anything to do with the peculiarities of the channels. Accordingly,
the system can support different channels, only by maintaining the appro-
priate Presentation Logic, while the same Business Logic can be used across
different channels.

In general, for each Business Object there can be a Presentation Object
that presents it to the User Interface. This Presentation Object knows the
characteristics of the channel concerned, and accomplishes the required con-
versions and transformations. Besides, the Presentation Logic layer blocks
the services that are not appropriate for each specific channel. As such, the
relationship between Business Objects and Presentation Objects does not
have to be a one-to-one relationship. In addition, in case there is a one-
to-one relationship between Business Objects and Presentation Objects, the

146 CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

relationship between their attributes and operations does not have to be a
one-to-one relationship. Furthermore, it should be noted that the presen-
tation of the Business Logic layer is not the only task of the Presentation
Logic layer; for instance, authentication is another one. (In the general sense,
"authentication" is checking the legitimacy and access right(s) of the user.)

In the following, the Presentation Objects related to the "Customer" and
"Current_ Account" Entity Business Objects are explained. The Presenta-
tion Objects, namely "P_ Customer" and "P_ Current_ Account", are used
for the Web, which is the communication channel here. These Presentation
Objects are shown in figure 8.13.

P_Customer

+Name ; String | 1.1 P_Current_Account
+Get_Accounts() 1.n

HNumber : String
HTransaction_History()
+Check_Balance()

Figure 8.13: The Presentation Object model of a part of the Business Object
model of the example case.

"Customer" has a number of attributes, including "Name", "Birth_Date",
"Birth_ Place", "Address", "Registration_ date" and "Last_ Access_Date",
as well as "Phone" and "Email". The "Name" attribute is required and
appropriate to be presented through the channel concerned. Moreover, an
operation, such as "Get__ Accounts", is required to provide the User Interface
layer with all the accounts of the customer.

"Current_ Account" has a number of attributes, including "Number" and
"Branch", and a number of operations, including "Deposit", "Withdrawal",
"Transaction_History" and "Check Balance". The "Name" attribute and
the "Check _Balance" operation are required and appropriate to be presented
through the channel concerned.

8.2. THE BANKING DOMAIN 147

THE MAIN ADVANTAGES?®

Business Objects represent the core of the system. Accordingly, it is possible
to handle different channels based on the same concepts and software con-
stituents that provide a common basis. For example, the concept "Account"
and its related Business Object can be used by user interfaces at physical
branches, as well as Web browsers.

As the core of the system is represented by Business Objects, it can eas-
ily adapt to changes in the real world. In addition, as channels are not
tightly coupled to Business Objects, the changes do not directly affect them.
For example, if the rules concerning the current account change, the "Cur-
rent _Account" Business Object can be changed while the other Business
Objects, as well as the channels can (principally) remain unchanged. Further-
more, as a new kind of account, say "new account”, is introduced, its Business
Object counterpart, "New_ Account", can be added to the system (Business
Logic), and its Presentation Object counterpart, "P_ New_Account", can be
added to the Presentation Logic. Accordingly, the user interface of different
channels can use "P_New_ Account" for their (new) services.

Moreover, one can use the Business Objects, such as "Current _Account", to
add (new) channels. This not only promotes reuse of the existing resources,
but also supports integration of different channels.

8The items discussed in {8.1.2.2} can also be valid here.

148 CHAPTER 8. ILLUSTRATIVE EXAMPLES (I)

Chapter 9

ILLUSTRATIVE EXAMPLES
(IT)

In a few minutes a computer can make a mistake so great that it
would have taken many men many months to equal it.

[Anonymous|

The previous chapter illustrated the use of the concept of Business Objects
and its related (architectural) concepts, for specific domains and require-
ments. This chapter illustrates the use of Business Objects and the Multi-
Tier Architecture, in the general sense, for simulation and system integration.

The first section addresses the (potential) advantage of Business Objects for
realizing simulation.

The second section discusses the use of the Multi-Tier Architecture, in the
form of the Three-Layer Architecture, and the benefits of Business Objects
for architectural system integration.

9.1 SIMULATION

Simulation can be applied in many different areas, including business sys-
tems, for different purposes, such as analysis, visualisation of processes and

149

150 CHAPTER 9. ILLUSTRATIVE EXAMPLES (II)

training. Important aspects of realizing simulation are recognition of the es-
sential elements of the system concerned, providing an appropriate represen-
tation of these elements and maintaining a convenient relationship between
this representation and the simulation models. This section discusses the use
of Business Objects for realizing simulation, which can be considered as a
side effect of using Business Objects in general.

The section begins with the background of the use of Business Objects for
realizing simulation. It shows the lack of, and the need for, such a concept
in simulation. Then it discusses how one can use Business Object models
to provide Petri-Net and (other) simulation models, by concentrating on a
representative example case!.

9.1.1 BACKGROUND

Simulation can be applied in many different areas, such as manufacturing,
transportation and education, and for different purposes, including:

e Analysis,

e Capturing the dynamic behaviour,

e Design,

e Visualization of processes,

o Testing,

¢ Optimisation and

e Training.
The realization of simulation in any area encompasses different phases. The
three main, interrelated, phases of simulation are model design, model execu-
tion and model analysis [Fishwick 1996]. In addition, the ability to represent

the system under study correctly and adequately is a key issue in realizing
simulation. Accordingly, recognition of the essential elements of the system

'The background of this section can be found in [Abolhassani and Barjis 2000] and
[Abolhassani and Barjis 2001].

9.1. SIMULATION 151

concerned is of crucial importance and should be accomplished before the
mentioned phases of simulation. As such, this effort can be considered as a
"pre-simulation" phase.

Furthermore, it is also important to provide an appropriate representation of
the achieved results of the "pre-simulation" phase and maintain a convenient
relationship between these results on the one hand, and the main simulation
phases on the other hand. In other words, a convenient translation from
the models of the recognized elements of the system under study into the
simulation models should be possible.

9.1.1.1 SIMULATION ELEMENTS

In the area of business systems, similar to the other areas, simulation asks
for a thorough insight of the system under study, without any unnecessary
details.

The notion of Business Objects imposes a strict distinction between the
"pure" business concepts and anything else. Therefore, this notion can be
used for the recognition of the "right" elements of the business system con-
cerned that should be part of a simulation.

Business Object models provide a comprehensive and organized view on the
system under study and they can flexibly react to the changes.

9.1.1.2 REALIZING SIMULATION

To realize simulation, one should construct a simulation model. The notion of
Petri-Nets, [Peterson 1981] and [Petri-Nets], is one of the well-known means
for constructing simulation models, as discussed in [Oren and Birta 1995]
and [Agostini and Michelis 1998].

One of the main advantages of applying the notion of Petri-Nets for this
purpose is its concise form. Petri-Nets represent information in a compact
way, and can be used for realizing simulation directly, through specific Petri-
Net tools, or indirectly, through general simulation tools. In the former case
Petri-Net tools should offer simulation facilities, in addition to those intended
for analysing and editing the Petri-Net models. In the latter case Petri-Net
models can serve as input for the construction of simulation models, as they
contain all necessary information.

152 CHAPTER 9. ILLUSTRATIVE EXAMPLES (II)

In broad outlines, business processes, like many other processes, consist of a
number of activities, which can take place sequentially or in parallel. Further-
more, for each activity to follow another activity or activities, there might
be one or more conditions that must be fulfilled, or there might be timings
that must be complied with.

Petri-Net models contain information about the logical sequence of processes,
as well as causal, conditional and optional links, choice elements and synchro-
nization; simulation tools support and apply this information for realizing
simulation.

Models based on the notion of Business Objects provide a (reasonable) strai-
ghtforward way for the construction of Petri-Net models. Therefore, applying
Business Objects with Petri-Nets offers a comprehensive way for realizing
simulation for business systems.

Furthermore, the standardization and categorization features of Business Ob-
jects can be helpful in providing simulation models, and for communication
and cooperation among the people involved in realizing simulation, as well
as among these people and those involved in the original system (the system
being simulated).

In addition, applying Business Objects for realizing simulation can result in
the production of standard simulation software constituents.

9.1.2 EXAMPLE CASE

A travel agency wants to investigate its methods of dealing with its clients,
especially with respect to the arrangement of accommodation and trans-
portation. The routine procedure of the travel agency is as follows.

When a client applies to the travel agency to book a trip, the desk clerk
must check if he is already registered. Then the client lets the desk clerk
know about his preferences for his intended trip. The preferences encompass
destination, time, cost, accommodation and transportation. The desk clerk
then surveys the options that match these preferences.

For the desired destination, and according to the specified time and cost
(range), the desk clerk looks for the accommodation possibilities that match
the client’s desired accommodation. Then the desk clerk checks the outcomes
with the client to see if the result is satisfactory. If the result is not accepted,

9.1. SIMULATION 153

the desk clerk asks the client to make some changes in his preferences for
accommodation, and then follows the same procedure with the new prefer-
ences. If after a certain number of trials the result is still not satisfactory, the
desk clerk asks the client to change his preferences for other items, namely
cost and time. In some cases it may even happen that the client is asked to
change his destination, if possible. After each change the desk clerk begins
the procedure with the new preferences.

When accommodation that matches all of the (possibly changed) preferences
is found, a similar procedure begins for the transportation. In this step, the
desk clerk looks for those transportation means that match all of the prefer-
ences (fixed at the previous step) and the client’s desired transportation. If
no satisfactory result can be found, the other preferences for time and cost
should be changed. In this case, if the changes in the preferences affect the
other items, the desk clerk must repeat the procedure for those items. For in-
stance, if the departure and/or arrival time change, the accommodation must
be checked again. If the result is satisfactory, the initiator step is succeeded,
otherwise it must be repeated with new preferences.

In case all of the (possibly changed) preferences are matched, and the desired
accommodation and transportation are found, the desk clerk informs the
client and presents the achieved results to the counter clerk for the payment.
After the payment is made by the client, the counter clerk informs the desk
clerk and the desk clerk makes the reservations.

When the travel agency receives the confirmations from the parties con-
cerned (hotels, airlines, etc.), the counter clerk informs the client about it.
If no confirmation is received (on time), the reservations are considered as
failed. Accordingly, the client is invited to either change his preferences,
which initiates the whole procedure from the very beginning, or to get his
money back.

Finally, in case the whole process succeeds, the travel agency sends the ac-
commodation and transportation documents to the client.

The travel agency is looking for answers to the following questions:

e Is it better to begin the procedure with the transportation and not the
accommodation?

e Is it better to search for transportation and accommodation in parallel?

154 CHAPTER 9. ILLUSTRATIVE EXAMPLES (II)

e Is it better to merge the tasks of the desk clerk and the counter clerk?
e Up to which point is it reasonable to change the preferences?

Which order is more efficient for changing the preferences?

What other preferences can be taken into account?

Is it better to let (ask) the client (to) give a range of preferences for
each item in advance?

9.1.2.1 BUSINESS OBJECT MODELS

In order to provide the basis for realizing simulation for the example case,
we should recognize the main elements of the organizational unit concerned
and present them in Business Object models.

Figure 9.1 shows the Entity Business Object model of the example case.

9.1. SIMULATION 155

Entity
i)
Client 1.1 Registration_Form
1.1
1.1 1n
]
Clerk Preferences_Form
'T 1.n
1.1
R tion_Form| ' 1 Bill
1..n
Desk Counter
O.n
G.n
0..n
[Transportation
O.n
Accommodation

Figure 9.1: The Entity Business Object model of the example case.

Figure 9.2 shows the Process Business Object model of the example case.

156 CHAPTER 9. ILLUSTRATIVE EXAMPLES (1I)

Process

Application Reservation

Payment

Confirmation Cancsllation

Figure 9.2: The Process Business Object model of the example case.

Figure 9.3 shows the Event Business Object model of the example case.

Event

Succeed Fail

Figure 9.3: The Event Business Object model of the example case.

In addition, figure 9.4 shows the sequence diagrams of the example case.

9.1. SIMULATION

1

7

These diagrams depict three processes related to Reservation, Succeed and

Cancellation

Fail.
Client Desk Clerk Counter Clerk
Reservation
Set-Registration
Check-Registration
) Set-Preferences
Get-Preferences
Survey-Accommodation
Set-Bill
Do-Transaction
Set-Reception
Reset-Bill
Client Desk Clerk Confirmation
Succeed .
Inform-Client
Store-Reservation-Form
Send-Documents
Client Desk Clerk Counter Clerk
Fail <
Inquire-Client
Set-Bill
Do-Transaction >
Reset-Bill
Initiate-Application

Figure 9.4: The sequence diagrams of the example case.

158 CHAPTER 9. ILLUSTRATIVE EXAMPLES (II)

9.1.2.2 SIMULATION MODELS

The shown Business Object models, and in particular the Process Business
Object model, can be used to provide Petri-Net models; the business pro-
cesses can be identified and the causal and conditional links between these
processes can be established.

Figure 9.5 shows the Petri-Net model of the example case.

sot registration,
set preferences

check-registration,
get-preferences,

uu-;-waﬂ;u-fwm,
setbill
IF client retries ¥F client gives up

doransaction, set-
reception, reset-bill

Paymant transaction is
ccomplished and receipt is issued

IF failed

IF succeeded

inform-client, set-bill, ::2"::::;‘:.";;::”
initiate-application mddowm.nk'

Cancellation

IF client retries

IF client gives up

Figure 9.5: The Petri-Net model of the example case.

9.1. SIMULATION 159

The model shown in figure 9.5 represents all of the five identified processes,
namely Application, Reservation, Payment, Confirmation and Cancellation,
as five transitions in the form of five rectangles. The Facts that are created
after each process follow the rectangles in the form of ovals. For example,
after the Application process, two facts are created. These two facts rep-
resent the setting of the Registration form and the Preference form. All
of the supplementary activities, related to each process, are listed next to
the corresponding rectangle. For example, Application process contains two
activities: set registration and set preferences.

As mentioned in {9.1.1.2}, the resulted Petri-Net model can be used for
realizing simulation directly, through specific Petri-Net tools, or indirectly,
through general simulation tools.

For instance, one may convert the Petri-Net model to a simulation model
using the Arena simulation tool [Kelton et al. 2002]. In this simulation tool,
each activity, action or atomic process can be represented by three interre-
lated elements, namely "Arrive", "Server" and "Depart" or "Enter", "Pro-
cess" and "Leave". In addition, Arena presents logical models that rep-
resent typical features of process modelling, such as sequence, parallelism
("Duplicate"), causal and conditional interrelations ("Choose", "If", "Else",
"Always"), as well as "synchronization ("Batch").

Accordingly, The Arena simulation model of the example case can be pro-
vided (almost) directly from the shown Petri-Net model. In brief:

"Begin" converts to "Arrive".

Each "transition" converts to a "Server".

In case there is more than one "input" for a "Server", a "Batch" should
be used.

Each "condition" converts to "Choose".

"End" converts to "Depart".

Figure 9.6 shows the Arena simulation model of the example case.

160 CHAPTER 9. ILLUSTRATIVE EXAMPLES (II)

Application Reservation

Arrive % Bateh Server | Server V-}

u Choose
Payment
: Server >—l
L Choose
: Cancellation
Server]

Confirmation |

o S B oy

»
»

Depart

Figure 9.6: The Arena simulation model of the example case.

9.2. SYSTEM INTEGRATION 161

9.2 SYSTEM INTEGRATION

Over the years, the information systems of enterprises have been realized
based on different models and technologies. and they have been spread over
different computer networks. Accordingly, enterprises have been locked to
separate systems that exist on various locations. To use their systems op-
timally, enterprises aim to integrate these systems. This practice is called
"system integration". This section discusses system integration from an ar-
chitectural point of view based on the notion of the Multi-Tier Architecture,
and points to the role of Business Objects in this respect.

The section begins with a background about system integration. Then, it
discusses architectural system integration by going over different integration
possibilities. The possibilities are based on four architectural categories and
three general methods. Finally, the benefits of Business Objects for architec-
tural system integration are mentioned?.

9.2.1 BACKGROUND

System Integration is the act of making two or more systems work together
in order to achieve new functionality, or to improve the functionality of one
or more of the participating systems for a defined period of time. The new
or improved functionality should be the result of interoperation and coopera-
tion between the participating systems. The interoperation and cooperation
can be realized in different forms related to the desired functionality, the
characteristics of the participating systems and the available and applicable
means.

The domain of the participating systems can be limited to an individual
enterprise, a so-called inside firewall, or encompass two or more enterprises,
a so-called outside firewall. Connecting the Front-Office systems® and Back-
Office systems* is an example of the inside firewall System Integration. The
concept of Virtual Enterprise® is an example of the outside firewall System
Integration.

2The background of this section can be found in [Abolhassani 2001-3].

3Front-Office systems include Help Desks, Customer Service Desks and Customer Call
Centres.

4Back-Office systems include General Ledger, Account Payable and Payroll.

SThis concept refers to a group of Small and Medium Enterprises (SMEs) distributed in

162 CHAPTER 9. ILLUSTRATIVE EXAMPLES (II)

In general, to realize System Integration we can:

e Found the desired functionality upon the existing systems, as is.

e Provide a model for the desired functionality, and then adopt and adapt
existing systems based on that model.

9.2.2 ARCHITECTURAL SYSTEM INTEGRATION

System Integration can be considered from an architectural point of view.
This viewpoint makes it possible to deal with system integration at an ab-
stract level with respect to the peculiarities of the participating systems. As
such, architectural system integration can be of general applicability.

The possibilities for architectural system integration can be explained by
dividing systems into four main categories, and using three major methods
that can be applied for implementing interoperation and cooperation among
systems.

9.2.2.1 CATEGORIES

The notion of the Multi-Tier Architecture, as defined in {3.4}, is an appro-
priate basis for the architectural categorization of systems. According to this
notion, systems consist of the following (macro) functional parts:

e User Interface

Presentation Logic

e Business Logic

Information Logic

e Data Source

a given geographical region or even located in different countries and continents that form
an individual virtual enterprise, for a specific period of time, in order to supply a specific
product or service, based on interoperation and cooperation via computer networks by
sharing their data and resources.

9.2. SYSTEM INTEGRATION 163

Consequently. by imposing clear borders between different parts of a sys-
tem related to different (macro) functionalities, the Multi-Tier Architecture
provides us with a robust architectural view on the integration of systems.

By ignoring Presentation Logic and Information Logic for the sake of sim-
plicity, and looking at each part as a pure logical unit, we can bring each
system under one of the following categories, defined in {3}:

e Monolithic: User Interface, Business Logic and Data Source are inter-
Woven.

e Fat Client /Server: User Interface and Business Logic are interwoven.
Data Source is distinguishable.

e Client/Fat Server: User Interface is distinguishable. Business Logic
and Data Source are interwoven.

e Three-layer: User Interface, Business Logic and Data Source are dis-
tinguishable.

Accordingly, System Integration can be considered as a matter of:

e Data Source integration
¢ Business Logic integration

e User Interface integration

or a combination thereof.

9.2.2.2 METHODS

MESSAGING

The "messaging" method is based on exchanging text messages according to
the syntax and semantics recognizable for the parties involved. This implies
that each party is provided with the facilities and services required for sending
and receiving the messages. Extensible Markup Language (XML), [XML]
and [XML-W3], is an example of enabling technology for this method.

The advantages of this method are:

164 CHAPTER 9. ILLUSTRATIVE EXAMPLES (II)

e It is easy to implement.

It is easy to maintain.
e It does not impose much overhead.

It can be fast at run-time.

The disadvantages of this method are:

e It is flat.
o It has security problem.
¢ It cannot maintain "state".

e It is not transparent.

This method can be used for the User Interface, Business Logic and Data
Source integration. The (sub) system that is integrated with the main system
through this method cannot take part in the overall system model as a first-
class constituent.

WRAPPING

The "wrapping" method is based on providing an interface for (part of) a
system. Accordingly, the desired functionality of the system (part) is exposed
through the interface, and requests to the exposed functionality are directed
through this interface. The interface should take care of the manipulations
required. CORBA is an example of enabling technology for this method.

The advantages of this method are:

e It can be easy to implement.
e It can be easy to maintain.
e It can be secure.

e It can maintain "state".

It is almost transparent.

9.2. SYSTEM INTEGRATION 165
The disadvantages of this method are:

o [t is flat.
e It imposes overhead.

e [t can be slow at run-time.
This method can be used for the User Interface, Business Logic and Data
Source integration. The (sub) system that is integrated with the main system

through this method can take part in the overall system model as a coarse-
grained component.

ASSOCIATION

The "association" method is based on treating part of a system (S1) as
part of another system (S2). As such, the same technology used for the
communication between the constituents of S2 should be applied for the
related part of S1.

The advantages of this method are:

e It is robust.
e It can be secure.

e It is transparent.
The disadvantages of this method are:

e It can be difficult to implement.
e It can be difficult to maintain.
e It can imply duplication of work.
¢ It can impose overhead.
This method can be used for the Business Logic and Data Source integra-

tion. The (sub) system that is integrated with the main system through this
method can be considered as a part of the main system.

166 CHAPTER 9. ILLUSTRATIVE EXAMPLES (II)

9.2.2.3 POSSIBILITIES

The starting point for the integration is a Three-Layer system. It is supposed
that a system consisting of three distinct layers (main system) should be
integrated with another system (subsystem) which belongs to one of the four
mentioned categories through one of the three mentioned methods.

MONOLITHIC SYSTEM

The subsystem can be considered as a black box. It can be integrated with
the User Interface and Business Logic of the main system through messaging
and wrapping.

This case is shown in figure 9.7.

W -~ -

1

Figure 9.7: Integrating a monolithic system.

9.2. SYSTEM INTEGRATION 167

FAT-CLIENT/SERVER SYSTEM

The fat client (User Interface and Business Logic) of the subsystem can be
integrated with the User Interface and Business Logic of the main system
through messaging and wrapping.

The server (Data Source) of the subsystem can be integrated with the Busi-
ness Logic of the main system through association.

This case is shown in figure 9.8.

Figure 9.8: Integrating a fat-client/server system.
CLIENT/FAT-SERVER SYSTEM

The client (User Interface) of the subsystem can be integrated with the User
Interface of the main system through messaging and wrapping.

The fat server (Business Logic and Data Source) of the subsystem can be
integrated with the User Interface and Business Logic of the main system

168 CHAPTER 9. ILLUSTRATIVE EXAMPLES (II)

through messaging and wrapping. Besides, the fat server of the subsystem
can be integrated with the Business Logic of the main system through asso-
ciation. However, this can result in duplication of work with respect to the
Business Logic.

This case is shown in figure 9.9.

PP e - - -

Figure 9.9: Integrating a client /fat-server system.

THREE-LAYER SYSTEM

The User Interface of the subsystem can be integrated with the User Interface
of the main system through messaging and wrapping.

The Business Logic of the subsystem can be integrated with the User Inter-
face and Business Logic of the main system through messaging and wrap-
ping. Besides, the Business Logic of the subsystem can be integrated with
the Business Logic of the main system through association.

9.2. SYSTEM INTEGRATION 169

The Data Source of the subsystem can be integrated with the Business Logic
of the main system through association.

This case is shown in figure 9.10.

\f

Figure 9.10: Integrating a three-layer system.
TAILORING THE SYSTEM

To realize system integration as explained above, and in particular to choose
the right methods, one should take into account many theoretical and prac-
tical aspects which are related to the possibilities and requirements of the
specific situation in which system integration should be realized. The main
theoretical and practical considerations are:

e Integration goal: improvement of the existing functionality /providing
new functionality

170 CHAPTER 9. ILLUSTRATIVE EXAMPLES (II)

e Characteristics of the participating systems

e Level of distinguishability between the layers of the participating sys-
tems

e Available code: binary/source
e Development time

e Development resources

e Development approach

¢ Frequency of (data) usage

e Run-time speed

e Security

9.2.3 BENEFITS OF BUSINESS OBJECTS

Although the integration of systems based on the Business Logic layer is,
in principle, the most logical and robust way, it is not always easily achiev-
able. The ease of the Business Logic integration is especially related to the
constituents that form this layer.

The use of Business Objects for realizing the Business Logic layer makes
system integration based on this layer more feasible, in particular because
Business Objects:

e are based on the real-world concepts,
e provide the desired level of abstraction and
e are reusable.
Furthermore, the use of Business Objects can result in uniformity and stan-

dardization of the constituents of the Business Logic layer. This makes sys-
tem integration easier.

Chapter 10

CONCLUSIONS

The longest part of the journey is said to be the passing of the gate.

[Marcus Terentius Varro

In conformance with the research goal, the preceding chapters provide a
comprehensive and integrated view on Business Objects. They identify the
core concept of Business Objects and its value for software engineering in
realizing information systems through answering to the formulated research
main and sub-questions.

Furthermore, the preceding chapters show that the hypotheses formulated at
the beginning of this research are acceptable.

This chapter reviews and concludes the subjects discussed in the preceding
chapters.

10.1 DEFINITION

Chapter two presents a clear and unambiguous definition of the concept of
Business Objects. This definition can form an appropriate basis for discussing
Business Objects and the accompanying issues. Furthermore, Business Ob-
jects created in accordance with this definition can lead to openness and
semantical interoperability among information systems.

171

172 CHAPTER 10. CONCLUSIONS

Using Business Objects, as a specific kind of objects, can result in reusability,
flexibility and modifiability. Therefore, using Business Objects can improve
system development and reduce system maintenance efforts. Furthermore,
Business Objects reflect the real-world concepts they represent and provide
a structured view on the business in question. Therefore, in addition to their
benefit for software systems, Business Objects can help enterprises to find the
inefficiencies and deficiencies of their (business) systems. Accordingly, enter-
prises can use Business Object models as leading models for (re-)engineering
and (re-)constructing their information systems. Consequently, using Busi-
ness Objects can have considerable financial advantages for companies. At
the same time, Business Objects dictate their required infrastructure to the
information systems concerned, and hence may give rise to changes in the
existing infrastructure.

For realizing business software systems [Taylor 1995] suggests using "model-
based" development, as opposed to application development; the model-
based software systems, like the business systems they support, are adaptive
and able to respond to evolving business requirements. It describes the goal
of this approach as providing software models that are not tied to any par-
ticular problem and represent the structure and operations of a business as
simply and directly as possible. Furthermore, the use of "active components"
for dealing with the requirements of (enterprise) information systems is sug-
gested in [Dietz 1994] and [Dietz and Mulder 1998]. The concept of Business
Objects, as defined in this thesis, is in accordance with these approaches.

The thesis emphasizes that the concept of Business Objects involves more
than merely applying the Object-Oriented technology for business systems.
The concept of Business Objects represents a specific approach for modelling
business systems and realizing business software systems, and, in turn, leads
to new concepts different from those related to applying objects - or even
Reflection Objects - to isolated software systems. These concepts are in
particular related to the architectural aspects of applying Business Objects.

10.2 LOCATION

Chapter three presents the Multi-Tier Architecture as the appropriate archi-
tecture for (applying) Business Objects, and describes the role of Business
Objects as constituents of the Business Logic.

10.3. CREATION 173

In addition to its value with respect to Business Objects, the Multi-Tier
Architecture enables and promotes parallelism and reuse in software devel-
opment. As in this architecture the main constituents of the system are not
tightly coupled, they can be designed and implemented in parallel and can
be reused for new systems, more effectively and efficiently than is possible in
other architectures.

[Taylor 1995] also refers to the software architecture that supports the model-
based development approach as a layered architecture which consists of hori-
zontal layers, rather than vertical applications; the models occupy the middle
layer and form the integrating structure of the system, the top layer contains
the screens and the bottom layer consists of the legacy systems. The archi-
tectural context of Business Objects defined in this thesis is in accordance
with this viewpoint.

10.3 CREATION

Chapter four discusses two forms of the presentation of Business Objects,
namely "abstract" and "object". Presenting Business Objects as "abstract",
the OMG approach, can result in semantical standardization and is in par-
ticular advantageous for interoperation among systems. Presenting Business
Objects as "object" can result in usage standardization and is in particular
advantageous for reusability.

However, the use of off-the-shelf Business Objects as components for realiz-
ing business software systems is not straightforward. The componentization
of Business Logic can lead to new challenges in the design of applications.
Choosing the "right" components with the "right" abstraction levels and
using the existing software constituents are examples of these challenges.

Furthermore, chapter four deals with standardization of Business Objects
as the major characteristic of this concept. It does not limit the standard-
ization to the globally acceptable standards. This is especially meaningful
with respect to the difficulty of devising such standards. Accordingly, the
standardization feature of Business Objects does not have to be restricted
to widely acceptable standards. Standardization can be realized and used at
different organizational units.

Whether Business Objects can comply with the standards closely depends

174 CHAPTER 10. CONCLUSIONS

on how they have been devised. For instance, the deployment flexibility
of the standard Business Objects is directly related to their granularity, as
well as the semantics they maintain. Therefore, to devise the standards
we should not only deal with the general standardization issues and the
specific characteristics of the domain concerned, but we should also take
their deployment into consideration.

Moreover, chapter four also points to categorization of Business Objects as
an important aspect to which insufficient attention has been paid. It shows
that the categorization criteria of Business Objects are (to a large extent)
orthogonal. That is, each Business Object can belong to many different
categories. In other words, each Business Object can be considered as a
point in an n-dimensional space, where each dimension represents a specific
criterion. Categorization of Business Objects can be helpful in providing a
better view on different aspects of Business Objects, in devising standard
Business Objects and in using them.

For instance, in the modelling phase we do not have to deal with issues such
as persistence, security and transactions. Moreover, in addition to the core
semantical issues that are specific for each business domain there are many
other issues that are repeated in different business domains, and there are
many issues that are repeated when one realizes software systems based on
Business Objects. Capturing these issues in a disciplined manner based on
categorization of Business Objects can be advantageous.

Literature shows some similar efforts in the relevant and close areas. For
instance, [Vaessen 2001] presents a taxonomy with respect to Business Logic,
where each Business Logic rule belongs to "structural assertation”, "action
assertation" or "derivation assertation".

As the use of Business Objects for modelling business systems and realizing
business software systems increases, categorization of Business Objects, and
Business Object taxonomies, will grow in importance as well.

10.4 USAGE

Chapter five discusses issues that are involved in the use of Business Objects.
These issues are related to the location and creation of Business Objects. The

10.5. STATE-OF-THE-ART 175

chapter shows the close relationship between the layers of a Five-Layer Ar-
chitecture. In addition, it points to the different interrelated options with
respect to the relationship between Business Objects and data sources, and
to the perspectives with respect to the creation of Business Objects. Ac-
cordingly, the use of Business Objects (within the framework of a Multi-Tier
architecture) closely depends on each specific case.

10.5 STATE-OF-THE-ART

Chapter six points to a number of existing enabling technologies and system
environments that can be used to develop, deploy and manage distributed
systems, and discusses their relationship with the concept of Business Ob-
jects. Not all of these technologies and environments use the term Business
Objects in their terminology, nor do they have the same understanding of
this term. However, using different aspects of Business Objects discussed
in the preceding chapters as background, this chapter surveys a number of
these technologies and environments.

10.6 APPLICATION

Chapter seven presents a case study carried out in a company, within the
framework of the realization of an information system. The information
system is based on the Three-Layer Architecture and uses Business Objects
for its middle layer.

Chapter eight discusses the use and advantages of Business Objects and the
Multi-Tier Architecture for two domains, namely health care and banking.
It illustrates how we can apply Business Objects within the framework of a
Five-Layer Architecture in order to deal with specific requirements, namely
dealing with different data sources and user interfaces, as well as changes in
the work environment. '

However, the term "Business Objects" is not familiar to many people in the
studied domains, as in many other domains. Besides, among those to whom
this term sounds familiar, there is a confusion about its meaning and benefit.
In addition, the term "Business" has a negative effect on some people in some
domains, especially on those in the health-care domain.

176 CHAPTER 10. CONCLUSIONS

Chapter nine illustrates the use and advantages of Business Objects and
the Multi-Tier Architecture, in the general sense, for simulation and system
integration.

10.7 OUTLOOK

The trend towards the integration of information systems and the providing
of integrated business services, the growing interoperation and cooperation
between enterprises and the new technological possibilities motivate the use
of Business Objects. Delivering the "right" information (up to date - back
end) to the "right" people (customers, employees, partners, etc.) at the
"right" time (fast enough) in the "right" form (platform, device and media
type - front end) is the ultimate goal of any enterprise information system.
Business Objects can help designers of enterprise information systems to
achieve this goal.

There is another trend towards the use of the Internet services instead of
software packages. These services can deliver the last version of an applica-
tion through the Internet. These applications require neither installation nor
upgrades, and have no multiple versions the user has to deal with. The In-
ternet services can enable and result in multi-party business systems. These
systems require Business Objects that are different from those required by
traditional business systems.

Bibliography

[Reference] Description!

|[Abolhassani 1999] M. Abolhassani, Defining The Business
Objects, International Workshop on In-
formation Integration and Web-based
Applications & Services (ITWAS’99),
November 1999, Yogyakarta, Indonesia

[Abolhassani and Szentivanyi 1999] M. Abolhassani and G. Szentivanyi,
A Component-Oriented Approach For

1References are listed alphabetically and belong to one of the following categories:

e Books

Articles of conferences, workshops, etc.
o Technical reports
e Web pages

They identify items belonging to each category with the same details, as far as possible,
while they aim to identify each item in sufficient detail, as follows:

e For a Book the details, in order, are: first initial(s) and surname(s) of the author(s),
title, publisher, date (year) of publish.

e For an article the details, in order, are: first initial(s) and surname(s) of the au-
thor(s), title, name, date (month, year) and place (city, country) of the conference,
workshop, etc.

e For a technical report the details are: first initial(s) and surname(s) of the author(s),
organization name, title, date of publish.

e For a Web page the details, in order, are: title, Internet address.

177

178

[Abolhassani 2000-1]

[Abolhassani 2000-2]

[Abolhassani and Barjis 2000]

[Abolhassani and van Groen 2000]

[Abolhassani 2001-1]

BIBLIOGRAPHY

Enterprise-Devoted E-Commerce, Inter-
national Workshop on Advance Issues
of E-Commerce and Web-based Infor-
mation Systems (WECWIS’99), April
1999, Santa Clara, USA

M. Abolhassani, Reviewing The Re-
quirements Of Traditional E-Commerce,
The Fourth CollECTeR Conference
on Electronic Commerce (CollECTeR
(USA) 2000), April 2000, Breckenridge,
USA

M. Abolhassani, Business Objects And
Standards, International Conference on
System Research, Informatics and Cy-
bernetics (InterSymp 2000), August
2000, Baden-Baden, Germany

M. Abolhassani and J. Barjis, Apply-
ing Business Objects For Simulation,
Summer Computer Simulation Confer-
ence (SCSC 2000), July 2000, Vancou-
ver, Canada

M. Abolhassani and A. van Groen,
Business Objects In Practice: Options
And Perspectives, International Work-
shop on Practical Information Medi-
ation, Brokering and Commerce on
the Internet (IMEDIAT 2000), October
2000, Tokyo, Japan

M. Abolhassani, Business Objects And
Enterprise Applications, Information
Resources Management Association In-
ternational Conference (IRMA 2001),
May 2001, Toronto, Canada

BIBLIOGRAPHY

[Abolhassani 2001-2]

[Abolhassani 2001-3|

[Abolhassani and Barjis 2001]

[ActiveX]

[Agostini and Michelis 1998]

[Bonar 1997]

[Booch 1994]

[Casanave 1995)

179

M. Abolhassani, Categorization Of
Business Objects, International Confer-
ence on System Research, Informatics
and Cybernetics (InterSymp 2001), Au-
gust 2001, Baden-Baden, Germany

M. Abolhassani, System Integration,
Architectural Approach And Business
Objects, Scuola Superiore Guglielmo
Reiss Romoli Conference (SSGRR2001),
August 2001, L’Aquila, Italy

M. Abolhassani and J. Barjis, Realizing
Simulation For Business Management,
Summer Computer Simulation Confer-
ence (SCSC’01), July 2001, Orlando,
USA

ActiveX, http://www.activex.org

A Agostini and G. de Michelis, Simple

Workflow Models, Workshop on Work-
flow Management: Net-based Con-
cepts, Models, Techniques and Tools
(WFM'98), June 1998, Lisbon, Portu-
gal

J. Bonar, Business Objects for Front-
Office Applications: Making Domain
Experts Full Partners, Object-Oriented
Programming Systems, Languages and
Applications (OOPSLA’97), October
1997, Atlanta, USA

G. Booch, Object-Oriented Analysis
and Design, The Benjamin/Cummings
Publishing Company, Inc., 1994

C. Casanave, Business-Object Architec-
ture and Standards, Object-Oriented

180

[Cattel and Barry 1997]

[CCOW 1998]

[Chance and Melhart 1999]

[Cook and Daniels 1994]

[CORBA]

[CORBAmed 1998]

[Cummins 1996]

[Dellarocas 1995]

[DEMO]

BIBLIOGRAPHY

Programming Systems, Languages and
Applications (OOPSLA’95), October
1995, Austin, USA

R. Cattel and D. Barry, The Object
Database Standard: ODMG 2.0, Mor-
gan Kaufmann Publishers, Inc., 1997

Common Clinical Context Architecture
Specification 1.1, The Clinical Context
Object Workgroup (CCOW), 1998

B. Chance and B. Melhart, A Taxonomy
for Scenario Use in Requirements Elic-
itation and Analysis of Software Sys-
tems, IEEE Conference and Workshop
on Engineering of Computer-Based Sys-
tems, March 1999, Nashville, USA

S. Cook, J. Daniels, Designing Object
Systems, Prentice-Hall, Inc., 1994

Common Object Request Broker Archi-
tecture (CORBA), http://www.omg.
org/corba

The CORBAmed Roadmap, COR-
BAmed: The OMG Health-Care Do-
main Task Force, February 3, 1998

F. Cummins, Business Objects Issues,
Electronic Data Systems, 1996

C. Dellarocas, Toward a Design Hand-
book for Integrating Software Compo-
nents, the Fifth Symposium on Assess-
ment of Software Tools and Technolo-
gies, June 1997, Pittsburgh, USA

Dynamic Essential Modelling of Organi-
zations (DEMO), http://www.demo.nl

BIBLIOGRAPHY

[DICOM]

[Dietz 1994]

[Dietz 1999|

[Dietz and Mulder 1998]

[Edwards 1997]

[Eeles and Sims 1998]

[Ehnebuske et al. 1997]

[EJB]

181

Digital Imaging and Communications in
Medicine (DICOM). http://medical.
nema.org

J. Dietz, Modelling Business Processes
For the Purpose of Redesign, Busi-
ness Process Re-Engineering: Informa-
tion Systems Opportunities and Chal-
lenges, May 1994, Queensland Gold
Coast, Australia

J. Dietz, Understanding and Modelling
Business Processes with DEMO, In-
ternational Conference on Conceptual
Modelling (ER’99). November 1999,
Paris, France

J. Dietz and H. Mulder, Organiza-
tional Transformation Requires Con-
structional Knowledge of Business Sys-
tems, Thirty-First Annual Hawaii Inter-

national Conference on System Sciences,
January 1998, Kohala Coast, USA

J. Edwards, 3-tier Client/Server At
Work, John Wiley & Sons, Inc., 1997

P. Eeles, O. Sims, Building Business Ob-
jects, John Wiley & Sons, Inc., 1998

D. Ehnebuske, B. Mc Kee, 1. Rouvellou
and I. Simmonds, Business Objects and
Business Rules, Object-Oriented Pro-
gramming Systems, Languages and Ap-
plications (OOPSLA’97), October 1997,
Atlanta, USA

Sun’s Enterprise Java Beans (EJB),
http://java.sun.com/products/ejb

182

[Emmerich et al. 1998]

[Fishwick 1996]

[Fowler 1997]

[van Groen 2000]

[Heineman and Councill 2001]

[Heller and Martin 1999)

[Hertha et al. 1995]

[Herzum and Sims 1998]

BIBLIOGRAPHY

W. Emmerich, E. Ellmer, B. Oster-
holt and R. Zicari, Business Object
Facilities - A Comparative Analysis,
Workshop Integration heterogener Soft-
waresysteme, September 1998, Magde-
burg, Germany

P. Fishwick, What is Simulation?, IEEE
Potentials, February 1996

M. Fowler, Analysis Patterns, Addison-
Wesley, 1997

A. van Groen, Business Objects in
GRIP, master thesis, Delft University of
Technology, August 2000

G. Heineman and W. Councill,
Component-Based Software: putting
the pieces together, Addison-Wesley,
2001

R. Heller and C. Martin, Using a Taxon-
omy to Rationalize Multimedia Devel-
opment, IEEE International Conference
on Multimedia Computing and Systems,
June 1999, Florence, Italy

W. Hertha et al., An Architecture
Framework: From Business Strategies
to Implementation, Object-Oriented
Programming Systems, Languages and
Applications (OOPSLA’95), October
1995, Austin, USA

P. Herzum and O. Sims, The Business
Component Approach, Object-Oriented
Programming Systems, Languages and
Applications (OOPSLA’98), October
1998, Vancouver, Canada

BIBLIOGRAPHY

[Herzum and Sims 2000

[HL7|

[Hung and Patel 1997]

[Hung et al. 1998]

[1SO]

[Jacobson et al. 1992]

[JAVA]

[JavaBeans]

[Jerke et al. 1999]

183

P. Herzum and O. Sims, Business Com-
ponent Factory, John Wiley & Sons,
Inc., 2000

Health Level 7 (HLT7), http://www.
hl7.org

K. Hung and D. Patel, Modelling Do-
main Specific Application Frameworks
with a Dynamic Business Object Archi-
tecture: An Approach and Implemen-
tation, Object-Oriented Programming
Svstems, Languages and Applications
(OOPSLA’97), October 1997, Atlanta,
USA

K. Hung, T. Simons and T. Rose,
"The Truth Is Out There?" A Survey
of Business Objects, The International
Conference on Object-Oriented Infor-
mation Systems (OOIS98), September
1998, Paris, France

International Organization for Stan-
dardization (ISO), http://www.iso.ch

L. Jacobson," M. Christerson, P. Jons-
son and G. Overgaard, Object-Oriented
Software Engineering, Addison-Wesley,
1992

Sun’s Java, http://java.sun.com

Sun’s JavaBeans, http://java.sun.
com/beans

N. Jerke, G. Szabo, D. Jung and
D. Kiely, Visual Basic 6 Client/Server
How-To, Sams Publishing, 1999

184

[Kelton et al. 2002]

[Landwehr et al. 1993]

[Larman 1998]

[Marshall 1997]

[Merriam-Webster]

[MIB]

[Nierstrasz and Tsichritzis 1995]

[Oestereich 1999]

[OMG]

[ODMG]

BIBLIOGRAPHY

W. Kelton, R. Sadowski and D. Sad-
owski, Simulation with Arena, McGraw-
Hill, 2002

C. Landwehr, A. Bull, J. McDermott
and W. Choi, A Taxonomy of Computer
Program Security Flaws with Examples,
Naval Research Laboratory, November

1993

C. Larman, Applying UML and Pat-
terns: an introduction to Object-

Oriented analysis and design, Prentice-
Hall, Inc., 1998

C. Marshall, Business Object Man-
agement Architecture, Object-Oriented
Programming Systems, Languages and
Applications (OOPSLA’97), October
1997, Atlanta, USA

Merriam-Webster ~ OnlLine,

//www.m-w.com

http:

Medical Information Bus (MIB), http:
//www.mib.com

O. Nierstrasz and D. Tsichritzis, Object-
Oriented Software Composition, Pren-
tice Hall, 1995

B. Oestereich, Developing Software with
UML, Object-Oriented Analysis and
Design in Practice, Addison-Wesley,
1999

Object Management Group (OMG),
http://www.omg.org

Object Database Management Group
(ODMG), http://www.odmg.org

BIBLIOGRAPHY

[OMG 1995

[OMG 1997-1)

[OMG 1997-2]

[OMG 1999)

[Oren and Birta 1995]

[Orfali and Harkey 1997]

[Orfali et al. 1996]

[Orfali et al. 1999|

[Peterson 1981]

185

Object Management Group (OMG),
Glossary of Terms, Business Object

Management Special Interest Group,
OMG Document, 95-09-12

Object Management Group (OMG),
A Discussion of the Object Manage-
ment Architecture, Object Management
Group, Inc., 1997

Object Management Group (OMG),
Common Business Objects, Business
Object Domain Task Force, OMG Doc-
ument, 97-12-04

Object Management Group (OMG),
Business Object Concepts, Business Ob-
ject Domain Task Force, OMG Docu-
ment, 99-01-01

T. Oren and L. Birta, Petri-Nets and
Simulation: A Tutorial, Summer Com-
puter Simulation Conference (SCSC
1995), July 1995, Ottawa, Canada

R. Orfali and D. Harkey, Client/Server
Programming with JAVA and CORBA,
John Wiley & Sons, Inc., 1997

R. Orfali, D. Harkey and J. Edwards,
The Essential Distributed Objects Sur-
vival Guide, John Wiley & Sons, Inc.,
1996

R. Orfali, D. Harkey and J. Edwards,
Client/Server Survival Guide, John Wi-
ley & Sons, Inc., 1999

J. Peterson, Petri-Net Theory and the
Modelling of Systems, Prentice-Hall,
Inc., 1981

186

[Petri-Nets]

[Ramackers and Clegg 1995]

[Rumbaugh 1991]

[SAP]

[Schmid and Simonazzi 1998)

[Schmid et al. 1998]

[Semaphore 1997]

[SF]

BIBLIOGRAPHY

Petri-Nets, http://www.petrinets.
org

G. Ramackers and D. Clegg, Object
Business Modelling, requirements and
approach, Object-Oriented Program-
ming Systems, Languages and Appli-
cations (OOPSLA’95), October 1995,
Austin, USA

J. Rumbaugh, Object-Oriented Mod-
elling and Design, Prentice-Hall, Inc.,
1991

Systems, Application and Products in
data processing (SAP), http://www.
sap.com

H. Schmid and F. Simonazzi, Business
Procedures are not Represented Ade-
quately in Business Application Frame-
works!, Object-Oriented Programming
Systems, Languages and Applications
(OOPSLA’98), October 1998, Vancou-

ver, Canada

H. Schmid, M. Riebisch, T. Heverha-
gen and H. Liessmann, A Business Ob-
ject Framework Architecture, Object-
Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’98),
October 1998, Vancouver, Canada

Semaphore, Building Business Objects
with Distributed Object Computing,
1997

IBM SanFrancisco (SF), http://www.
ibm.com/Java/Sanfrancisco

BIBLIOGRAPHY

[Shelton 1995]

[Shlaer and Mellor 1988]

[Shneiderman 1996

[Sim 1996]

[Skillicorn 1998]

[Skérd 1998)]

[Stacey 2001]

[Sullo 1994]

[Sutherland 1995]

187

R. Shelton, Business Objects, Open En-
gineering Inc., 1995

S. Shlaer and S. Mellor, Object-
Oriented Systems Analysis: Modelling
the World in Data, Prentice-Hall, Inc.,
1988

B. Shneiderman, The eyes have it: A
task by data type taxonomy of informa-
tion visualizations, IEEE Symposium
on Visual Languages, September 1996,
Los Alamos, USA

E. Simon, Distributed Information Sys-
tems: From client/server to distributed
multimedia, McGraw-Hill International
Ltd., 1996

D. Skillicorn, A Taxonomy for Com-
puter Architectures, Computer, IEEE,
November 1988

P. Skérd, Reuse and characteristics of
reusable classes, master thesis, Vaxjo
University, June 1998

M. Stacey, Component Design, Archi-
tectural Press, 2001

G. Sullo, Object Engineering: Design-
ing Large-Scale Object-Oriented Sys-
tems, John Wiley & Sons, Inc., 1994

J. Sutherland, The Object Technol-
ogy Architecture: Business Objects for
Corporate Information Systems, Sym-
posium for VMARK Users, November
1995, Albuquerque, USA

188

[Sutherland et al. 1997]

[Szyperski 1998]

[Taylor 1995]

[Tudor and Tudor 1995]

[Vaessen 2001]

[XML]

[XML-W3]

[Yin 1994]

BIBLIOGRAPHY

J. Sutherland, D. Patel, C. Casanave,
J. Miller and G. Hollowell, Business
Object Design and Implementation,
Springer, 1997

C. Szyperski, Component Software:
beyond Object-Oriented programming,
ACM, 1998

D. Taylor, Business Engineering with
Object Technology, John Wiley & Sons,
Inc., 1995

D. Tudor and I. Tudor, Systems Analy-
sis and Design: A Comparison of Struc-
tured Methods, Blackwell Publishers
Inc., 1995

R. Vaessen, Business Logic Extraction,
master thesis, Eindhoven University of
Technology, June 2001

Extensible Markup Language (XML),
http://www.xml.com

Extensible Markup Language - the
World Wide Web consortium (XML-
W3), http://www.w3.org/XML

R. Yin, Case Study Research: Design
and Methods, Sage Publications, 1994

SAMENVATTING
HET ONDERZOEK

Midden jaren zeventig begon men met het toepassen van objectgeoriénteerde
technologie voor het modelleren van systtmen en het realiseren van
softwaresystemen, en sinds het begin van de jaren negentig is deze technologie
algemeen geaccepteerd. Meer recentelijk begon de term “Business Objects (BOs)”
veelvuldig te verschijnen in de literatuur over informatiesystemen, software
engineering en de corresponderende gebieden. Deze term wordt gebruikt om
verschillende ideeén te representeren en wordt geassocieerd met verschillende
onderwerpen. Vandaar dat basiskennis over het kernconcept dat door deze term is (of
moet) gerepresenteerd (worden) praktisch is of zelfs noodzakelijk. Tot deze kennis
behoort de rol die het concept van Business Objects speelt in informatiesystemen en
haar waarde voor software engineering. Dit onderzoek beoogt deze kennis te
verschaffen.

Om zulke kennis te kunnen verschaffen, moet men alle verschillende aspecten
betreffende het concept Business Objects bestuderen en deze aspecten met hun
onderlinge samenhang behandelen. Alleen op deze manier kan de (vermeende)
toegevoegde waarde van Business Objects voor software engineering en het realiseren
van informatiesystemen beseft en gerealiscerd worden. Dientengevolge is het
hoofddoel van dit onderzoek: het verschaffen van een veelomvattend en geintegreerd
beeld van Business Objects. Om die reden streeft dit onderzoek emaar het
kemconcept van Business Objects te identificeren door middel van een grondige
discussie over de verschillende aspecten ervan en naar het leggen van logische
verbanden tussen die aspecten.

Om het genoemde doel te kunnen bereiken, moet men echter alle betreffende aspecten
op een abstract niveau behandelen. Dit is noodzakelijk om de verbanden tussen die
aspecten toe te kunnen lichten terwijl de geldigheid van de besproken kwesties
gewaarborgd kan blijven. Bovendien is de verworven kennis bruikbaar voor het
bestuderen van de literatuur over specifieke kwesties.

DE VRAAGSTELLING

Om een veelomvattend en geintegreerd beeld van Business Objects te kunnen
verschaffen, moet men de betreffende aspecten in een georganiseerde manier met
betrekking tot de (vermeende) toegevoegde waarde van Business Objects voor
software engineering en het realiseren van informatiesystemen bespreken en
behandelen. Derhalve formuleren we de fundamentele vraagstelling van dit onderzoek
als volgt:

Hoe kan het concept Business Objects bijdragen aan de vooruitgang op het
gebied van “informatiesystemen engineering”?

Vervolgens moet het onderzoek zich richten op het concept Business Objects met
betrekking tot haar relatie met de ontwikkeling en het onderhoud van
softwaresystemen. Het moet bestudeerd worden of de toepassing van Business
Objects de systeemontwikkeling kan verbeteren en het benodigde systeemonderhoud
kan terugdringen.

De realisering van het onderzoeksdoel kan verder worden bewerkstelligd door het
formuleren van een aantal kemvraagstukken, die van de fundamentele vraagstelling
afgeleid kunnen worden. Deze subvraagstellingen moeten zich enerzijds richten op de
hoofdkwesties behandeld in de literatuur, en anderzijds richten op de kwesties die niet
(voldoende) behandeld zijn.

Vandaar dat dit onderzoek zich richt op de volgende vragen:

Wat zijn Business Objects?

Wat is de plaats van Business Objects?

Op welke manier kunnen Business Objects gecreéerd worden?

Op welke manier kunnen Business Objects gebruikt worden?

Wat zijn de hulpmiddelen en gereedschappen voor Business Objects?
Op welke manier kunnen Business Objects toegepast worden?

Als uitgangspunt voor de beantwoording van de genoemde vraagstellingen gebruiken

we de volgende hypotheses:

- Een universeel aanvaardbare definitic van Business Objects kan geformuleerd
worden.

- Business Objects kunnen voordelen hebben voor het realiseren van
informatiesystemen.

- Het concept Business Objects kan een centraal punt vormen voor een bepaalde
discipline van het gebied van software engineering. Deze discipline kan rond een
aantal architectonische en bouwkundige aspecten met betrekking tot informatie
systemen gevormd worden.

Vanwege de aard van dit onderzoek zijn literatuurstudie en casestudie de meest
geschikte onderzoeksmethoden voor het beantwoorden van de vragen.

DE UITVOERING

In de literatuur wordt de term “Business Objects” hoofdzakelijk gebruikt om de
toepassing van objectgeoriénteerde technologie voor het modelleren van ‘“business”
systemen en het realiseren van business softwaresystemen (in gedistribueerde
omgevingen) te representeren. Er zijn echter veel verschillende, uiteenlopende en
(zelfs) elkaar tegensprekende definities van deze term, en er ontbreekt een heldere en
overal geldende definitie. Dit vormt een probleem voor het onderzoek over (en de
toepassing van) Business Objects. Na een discussie over het concept “object” en het

categoriseren van objecten op basis van hun rol in informatiesystemen en het
doomemen van representatieve definities voor Business Objects in de literatuur,
formuleren we een definitie van dit concept en geven we de belangrijkste voordelen
daarvan aan.

Om de rol van Business Objects in informatiesystemen te specificeren, bepalen we de
plaats van Business Objects met betrekking tot de bestaande architecturen. Derhalve
bestuderen we eerst de basistypen van architecturen, namelijk ‘“Monolithic” en
“Client/Server” architecturen. Dan bestuderen we de “Three-Layer Architecture”, een
specifiek soort Client/Server architectuur. Vervolgens defini€ren we de “Five-Layer
Architecture”. Deze architectuur breidt de Three-Layer Architecture uit en pakt haar
tekortkomingen aan. Daama is de “Multi-Tier Architecture” gedefinieerd. Dan
beoordelen we de rol en plaats van Business Objects binnen de genoemde
architecturen, en in het bijzonder in de Five-Layer Architecture. Uiteindelijk wordt
het concept "component”" behandeld, de relatie tussen component en Business Objects
besproken en het concept “Business Object Components” gedefinieerd.

Business Objects moeten gecreéerd worden in overeenstemming met hun beoogde
kenmerken en voordelen en hun locatie met betrekking tot informatiesystemen; alleen
op deze manier kunnen ze ons doelmatig en docltreffend helpen in het modelleren van
(business) systemen en het realiseren van (business) softwaresystemen. Om die reden
behandelen we de hoofdkwesties voor het creéren van Business Objects. Dan
bespreken we het “beschrijven” van Business Objects en presenteren we een
algoritme hiervoor. Daarna bespreken we het opbouwen van Business Objects en
defini€éren we de concepten ‘“Business Object Blocks”, “Business Core Components™
en “Business Core Blocks”. Vervolgens bespreken we standaardisatie en
categoriseren van Business Objects. We beschouwen standaardisatie als een
belangrijk kenmerk van Business Objects, en een voordeel van dit concept ten
opzichte van andere (objectgeoriénteerde) methoden voor het realiseren van
softwaresystemen. Daarnaast beschouwen we categoriseren als een handig
hulpmiddel voor het gebruik van Business Objects bij het realiseren van
softwaresystemen.

Verder wordt het gebruik van Business Objects in het kader van de Five-Layer
Architecture behandeld. In dit verband bespreken we de hoofdkwesties, de lagen van
deze architectuur en de relatie tussen deze lagen. Daarnaast bespreken we een aantal
“opties” met betrekking tot de relatie tussen Business Objects en “data sources”, en
verschillende “perspectieven” op basis waarvan Business Objects kunnen worden
gecreéerd.

Gebruik makend van de besproken onderwerpen over Business Objects kijken we
naar een aantal representatieve omgevingen voor het realiseren van softwaresystemen
op basis van Business Objects, en technologieén die deze omgevingen hiertoe in staat
stellen.

Vervolgens tonen we de toepassing van Business Objects aan de hand van een
casestudie en illustratieve voorbeelden. De casestudie is uitgevoerd in een bedrijf, in
het kader van de realisering van een informatiesysteem dat gebaseerd is op de Three-
Layer Architecture en gebruik maakt van Business Objects voor het “middel layer”.
De eerste twee voorbeelden laten zien hoe Business Objects en de Five-Layer
Architecture kunnen worden toegepast in twee gebieden, namelijk de
gezondheidszorg en het bankwezen, om aan hun specifieke eisen tegemoet te komen.
De volgende twee voorbeelden tonen aan hoe Business Objects en de Multi-Tier
Architecture in het algemeen kunnen worden gebruikt voor systeemintegratic en
simulatie.

Acknowledgements

I would like to thank Prof. Jan Dietz for his productive supervision and support.

Thanks are due to Prof. Waltraud Gerhardt, Prof. Henk Koppelaar, Prof. Maarten
Looijen, Prof. Vaclav Repa, Prof. Roberto Zicari and Dr. Eugen Kerckhoffs for all
their constructive comments and valuable remarks.

I want to express my gratitude to all of the members of the promotion committee for
their cooperation and participation.

I thank Mrs. Mijam Nieman for her friendly assistance and effort in checking the
text.

Mohammad Abolhassani
January 2003, Dortmund, Germany

About the author

Mohammad Abolhassani was born on the 10" of January, 1962 in Teheran, Iran. In
1979 he finished his secondary school and began his higher education studies. After
an interruption from 1980 to 1983 he continued his studies and in 1987 he got his
diploma in Computer Hardware from Shahid Beheshti University (former National
University of Iran). From 1986 to 1992 he worked in different positions such as
programmer, teacher and system analyst.

In 1993 he began his studies at Delft University of Technology, the Netherlands, and
in 1997 he graduated in Technical Informatics, in the Knowledge-Based Systems
group. From December 1997 to November 2001 he was doing his PhD research at
Delft University of Technology, in the Information Systems group.

In February 2002 he joined the Information Retrieval group at the University of
Dortmund, Germany. In January 2003, together with the group, he moved to

_ Duisburg-Essen University.

