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Abstract

Program comprehension is an important concern in software

maintenance because these tasks generally require a degree

of knowledge of the system at hand. While the use of dynamic

analysis in this process has become increasingly popular, the

literature indicates that dealing with the huge amounts of

dynamic information remains a formidable challenge.

Although various trace reduction techniques have been

proposed to address these scalability concerns, their appli-

cability in different contexts often remains unclear because

extensive comparisons are lacking. This makes it difficult for

end-users to determine which reduction types are best suited

for a certain analysis task.

In this paper, we propose an assessment methodology for

the evaluation and comparison of trace reduction techniques.

We illustrate the methodology using a selection of four types

of reduction methods found in literature, which we evaluate

and compare using a test set of seven large execution traces.

Our approach enables a systematic assessment of trace

reduction techniques, which eases the selection of suitable

reductions in different settings, and allows for a more effec-

tive use of dynamic analysis tools in software maintenance.

1. Introduction

The use of dynamic analysis has become increasingly popu-

lar in various stages of the software development process.

Among the areas of interest is program comprehension,

which constitutes an essential part of many maintenance

tasks [2, 6]: the engineer must sufficiently understand the

program at hand before any action can be undertaken. In do-

ing so, a mental map is built that bridges the gap between the

program’s high-level concepts and its source code [27, 19].

There exist various approaches to gain knowledge of a

software system. Static analyses focus on such artifacts as

source code and documentation, and potentially cover all of

the program’s execution paths. Dynamic analysis, on the

other hand, concerns the examination of the program’s be-

havior at runtime, which offers the ability to reveal object

identities and occurrences of late binding [1]. One of the

main issues with dynamic techniques, however, is the huge

amounts of data that need to be analyzed [28].

In recent years, many solutions have been proposed to

tackle the scalability issues that are associated with large

execution traces. Unfortunately, an effective comparison of

such techniques is hampered by three factors. First, the eval-

uations of trace reduction techniques by the authors mostly

concern limited numbers of software engineering contexts.

Second, the evaluation criteria being used across these evalu-

ations are typically different. Third, different researchers use

their own sets of execution traces to evaluate their techniques

on, i.e., no two techniques have been tested on one and the

same trace. A major consequence of these factors is that the

evaluation results have limited generalizability, which makes

it unclear for an engineer which reduction technique best fits

a particular context.

In this paper, we propose an assessment methodology for

trace reduction techniques. The purpose of this methodol-

ogy is to enable the community to subject such techniques

to a systematic evaluation process, in order to provide end-

users with sufficient information to choose the most suit-

able technique in their respective contexts. We illustrate our

methodology by applying it on a selection of trace reduc-

tion techniques encountered in literature, which we evalu-

ate and compare using context-specific criteria. We argue

how such assessments enable the reasoning about the appli-

cability of a reduction technique in certain analysis contexts,

which leads to a more effective use of dynamic analysis tools

during maintenance tasks.

The remainder of this paper is organized as follows. Sec-

tion 2 provides an outline of the problem area and the chal-

lenges involved therein. Next, in Section 3, we elaborate on

our assessment methodology. We then illustrate the use of

this methodology by discussing four existing reduction tech-

niques in Section 4, which we then assess in Section 5. Our

findings are discussed in Section 6, after which we present

conclusions and future directions in Section 7.

2. Background

Our intent to support software engineers in discerning the

most effective reduction techniques in specific contexts is

motivated by the research community’s growing interest in

dynamic analysis. These analyses are often characterized by

huge amounts of data: Reiss and Renieris, for example, re-
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Summarization Metrics-based filtering Language-based filtering Ad hoc

execution pattern notation [11] frequency spectrum analysis [1, 30] package filtering [13, 24] sampling [4, 12]

pattern summarization [21, 25, 15] utilityhood measure [14] visibility specifiers [17] fragment selection [24, 26]

object & event clustering [13, 22] webmining [29] getters & setters [17, 7] ...

monotone subsequence summ. [18] stack depth limitation [11, 7] constructor hiding [17, 7]

... ... ...

Table 1. Categories of automatic trace reduction techniques.

port [21] on an experiment in which one gigabyte of trace

data was generated for every two seconds of executed C/C++

code or every ten seconds of Java code.

Being able to cope with such amounts of run time data

is beneficial to many areas in software engineering. These

include such tasks as debugging and performance optimiza-

tion, and tasks related to software understanding, such as

feature analysis, trace understanding, and visualization. Un-

fortunately, in many such tasks, the analyses have upper

bounds on the amount of data that can be handled. In ear-

lier work, for example, we reconstructed UML sequence di-

agrams from event traces [7]. Clearly, from a cognitive point

of view, such diagrams in themselves do not scale up to thou-

sands of events. We then proposed novel visualization tech-

niques [10] with a strong focus on scalability; still, the tool’s

performance deteriorates as the amount of data being visual-

ized exceeds several hundred thousands of events.

The huge amounts of data involved in dynamic analysis

necessitate the use of trace reduction techniques to render

the information suitable for analysis. In this paper we con-

sider (very) large traces, and therefore focus on automatic

rather than manual techniques in achieving initial data reduc-

tions. Many such techniques have been proposed in literature

over the recent years, each targeting different aspects of ex-

ecution traces. To provide an overview of the approaches in

literature, we distinguish four different categories:

(a) Summarization techniques attempt to shorten a trace

by replacing part of its contents by more concise nota-

tions. Typical summarization targets include recurrent

patterns.

(b) Metrics-based filtering is centered around the use of

certain metrics. Examples of such metrics are the stack

depth, and degrees of fan-in and fan-out.

(c) Language-based filtering techniques are targeted at

the omission of such constructs as getters and setters,

private methods, and so forth.

(d) Ad hoc approaches concern the use of “black-box”

techniques that do not consider the trace contents.

Table 1 shows the categories, along with various example

techniques and pointers to literature.

3. Assessment Methodology

The main issue with the reduction techniques being offered

is that they are seldomly compared side-by-side by their re-

spective authors. For lack of a common assessment frame-

work, the different techniques are generally not evaluated

• in the same software engineering contexts;
• by the same evaluation criteria; and
• on the same test set (i.e., execution traces).
As a result, an engineer who is faced with large amounts of

trace data has the difficult task of selecting the most suitable

reduction technique(s) for his specific context.

To address this issue, we propose an assessment method-

ology that is aimed at the thorough evaluation and compar-

ison of trace reduction mechanisms. Such assessments are

important because they enable a side-by-side comparison of

both existing and future techniques. The key aspect of our

methodology is the use of a common context, common eval-

uation criteria, and common test set.

Given a set of trace reduction techniques that are to be

assessed, our methodology distinguishes the following steps:

1. Context: the establishment of a context, i.e., a certain

task, and the role of reduction techniques therein.

2. Criteria: the definition of a set of evaluation criteria

that are relevant to the context.

3. Metrics: the definition of set of metrics that enables the

reasoning about the techniques in terms of the afore-

mentioned criteria.

4. Test set: the selection of a series of execution traces on

which to evaluate the techniques.

5. Application: the application of the techniques on the

test set while extracting the previously defined metrics.

6. Interpretation: the interpretation and comparison of

the measurements, in terms of the evaluation criteria.

Our methodology is applicable in any context that involves

the need for trace reductions, and to any of the trace reduc-

tion techniques in Table 1. Furthermore, the evaluation cri-

teria can be chosen such that the end-user’s requirements are

met. Note that the first three steps of our methodology corre-

spond, respectively, to the goal, the question, and the metric

in the Goal-Question-Metric (GQM) paradigm [3].

The methodology can be used in various cases. Exam-

ples are the development of new (or more effective use of

existing) analysis tools that require the reduction of certain

amounts and types of trace data, and the development of

new reduction techniques that should be compared to exist-

ing solutions with respect to certain criteria. The use of our
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methodology in these cases ensures that the relevant aspects

of reduction techniques can be properly compared, which

helps end-users to estimate the applicability of those tech-

niques in specific contexts.

4. Four Reduction Techniques

We demonstrate our methodology on a selection of four trace

reduction techniques. Our choice for these particular tech-

niques is motivated by the categorization in Section 2, in the

sense that we select one technique from each of the four cate-

gories. The techniques under study are subsequence summa-

rization, stack depth limitation, a combination of language-

based filtering techniques, and sampling.

For lack of available implementations of these techniques,

we have implemented versions of our own. These are based

on the descriptions in literature, and details are provided be-

low to ensure the reproducibility of our experiment. Finally,

for reasons of scalability, our implementations process traces

on the fly rather than reading them completely into memory.

4.1. Subsequence summarization

The first reduction mechanism that we put to the test is a

summarization technique by Kuhn and Greevy [18]. It is

based on the grouping of trace events according to some

criterion, with each group (or “subsequence”) being repre-

sented in the output trace by that group’s first event. The

projected result is a trace that generally contains a signifi-

cantly smaller number of events. The authors of this tech-

nique have named it monotone subsequence summarization,

and while they use it to represent traces as signals in time,

the technique is essentially a trace reduction mechanism.

The grouping criterion used by this technique is based on

nesting level differences between trace events: the algorithm

assigns consecutive events that have equal or increasing nest-

ing levels to the same group. As soon as a level decrease is

encountered and the difference exceeds a certain threshold,

called the gap size, a new group is initiated. Considering the

fact that the nesting level typically fluctuates during the exe-

cution of a system, the number of resulting events is smaller

than the number of original events, and can be controlled by

changing the gap size. Our implementation follows an itera-

tive approach: initially setting the gap size to 0, the algorithm

repeatedly increments its value until the projected output size

meets the requirements.

4.2. Stack depth limitation

The second technique is centered around metrics-based fil-

tering and is called stack depth limitation. This form of

reduction has been used both in static contexts [23] and in

our earlier work [7], in which encouraging results were at-

tained in the removal of implementation details from test

case executions. The variant discussed here revolves around

the definition of a maximum depth: events taking place at

depths higher than this threshold are removed from the orig-

inal trace. The maximum depth depends on the maximum

size of the output trace and on the stack depth progression in

the original trace, i.e., the program’s nesting behavior.

For this technique to obtain the necessary stack depth in-

formation, the algorithm first collects the amount of events at

each depth. Next, given the maximum output size, the value

of the maximum depth can be automatically determined, by

use of which the trace is consequently reduced.

4.3. Language-based filterings

From the third category of reduction mechanisms we con-

sider a combination of language-based filtering techniques.

Since initial experiments have pointed out that these tech-

niques by themselves are generally not successful in the sig-

nificant reduction of large traces, we consider three consec-

utive filtering steps:

(i) Removal of getters/setters and their control flow.

(ii) Removal of private and protected method calls.1

(iii) Removal of constructors and their control flow.

Depending on the maximum output size, either of these

mechanisms can be applied “on demand” in the given order.

4.4. Sampling

The fourth category of reduction techniques is represented

in our experiment by sampling, an ad hoc reduction method

that is used, among others, by Chan et al. [4] in reducing

the dynamic information used by their AVID visualizer. The

variant that we use in our experiment is simple: given an

execution trace, we keep every n-th event. We call n the
sampling distance, which is automatically determined based

on the maximum size of the output trace.

5. Experimental Setup

Our demonstration assessment aims at a thorough evaluation

of the trace reduction techniques in the previous section. The

design of the experiment follows our methodology,with each

of the six steps being described in the following sections.

5.1. Context

In this experiment, we consider a use case in which an engi-

neer is faced with the task of understanding a system’s exe-

cution through the visualization of its execution traces. We

assume his main interest to concern events taking place at

high and medium abstraction levels, i.e., low-level details are

considered less important. To make this example represen-

tative of real life situations, we assume the traces at hand to

1 Note that we preserve the control flows of private and protected meth-

ods since these are generally of interest, e.g., private initialization and pro-

cessing methods within a main method.
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contain several tens of thousands or even millions of events.

Furthermore, the intended visualization offers the opportu-

nity to understand the temporal aspects of the trace, and is

interactive in the sense that one can dynamically alter the

size of the input data if need be.

5.2. Evaluation criteria

The context of our experiment entails a set of requirements

that must be sufficiently met by a candidate reduction tech-

nique. In particular, we distinguish three evaluation criteria:

reduction success rate, performance, and information preser-

vation. These criteria are largely representative of actual use

cases in the sense that they are often applicable in practice,

particularly the first and third criteria.

Reduction success rate: the degree to which the techniques

attain the desired reductions. We say that a reduction fails if

the size of a reduced trace does not satisfy some threshold on

the output size. The reduction success rate is relevant, as it

depends greatly on the trace aspects exploited by a technique,

and the degree to which these aspects occur in the trace.

Performance: a measure for the computational effort that is

involved in the reduction. This is relevant in our context be-

cause the interactive nature of the reference visualization im-

plies that modifications of the trace data should be processed

as quickly as possible. For example, if during an interactive

session the engineer decides that the trace data should be re-

duced further, it is not desirable if it takes several minutes for

the visualization to refresh its views.

Information preservation: the extent to which informa-

tion from the original trace is kept after reduction. While the

application of a reduction generally implies that certain in-

formation is lost, it is important to quantify this loss and to

study how it relates to the information needed for the context.

We explore two directions for measuring information

preservation. The first route involves a generic approach

from information theory that does not use background infor-

mation regarding the data that is compared; the second route

concerns a domain-specific analysis of information preserva-

tion that is tailored to the comparison of traces, with respect

to the context sketched earlier. In the latter case, we dis-

tinguish three event types in a trace: (1) high-level events,

which intuitively correspond to the control routines in a

trace; (2) low-level events, which intuitively correspond to

implementation details (e.g., utilities); and (3) medium-level

events that comprise the remainder and intuitively concern

business logic.

5.3. Metrics

In order to reason about the relevant aspects of the reduction

techniques in terms of the criteria discussed above, we define

a set of metrics. The first two metrics below are directly re-

lated to the measurement of reduction success rate and per-

formance, respectively. The last two metrics correspond to

the two routes to measuring information preservation.

Actual output size: the actual size of the output dataset

after reduction, in calls. This metric allows for a discussion

on the reduction success rate in each run. The measurements

reflect the degree to which the reduction was successful (if

at all), on the basis of which an average success rate can be

calculated for each technique. For example, if a trace must

be reduced to 1,000 events, the success rate is 90% in case

of an output of 900 events, and 0% if the reduction fails.

Computation time: the amount of time spent on the re-

duction, in seconds. This metric allows for a comparison

of the techniques in terms of performance. Since the reduc-

tion techniques represent different approaches, in each run

we measure the total time spent on all subtasks. These in-

clude such tasks as reading the trace (multiple times if need

be), determining the appropriate value for the technique’s pa-

rameter, and the actual reduction.

Normalized compression distance (NCD): a generic sim-

ilarity metric [5] that uses standard compression algorithms

to compute a practical approximation of the non-computable

but optimal “normalized information distance” (NID) [20].

This metric has its origins in the field of information theory

and is based on the notion of Kolmogorov complexity. NCD

has been successfully applied in various areas, ranging from

text corpora to handwriting recognition, genome sequences,

and pieces of music. The NCD can be used to measure in-

formation preservation: a reduced trace that is shown to have

a high similarity to the original trace implies that little infor-

mation has been lost.

Preservation of events per type: for each event type, we

measure the percentage of events that remains after reduc-

tion, relative to the number of events in the original trace for

that type. While there are various options for defining such

types (e.g., utilityhood [17]), we define the high-, medium-,

and low-level types without loss of generality as (1) events

with no fan-in, (2) events with no fan-out, and (3) remain-

ing events for our demonstration experiment. As events we

consider the method signatures, and fan-in/fan-out rates are

determined on the basis of the original trace.2

5.4. Test set

Systems under study. The test set in our example assess-

ment consists of seven different execution traces from six

different Java systems. For this test set to be as representa-

tive as possible, in our systems selection we have taken into

account such characteristics as system size, typical trace size,

and multithreading.

JPACMAN is a small application used for educational pur-

poses at Delft University of Technology. The program is an

2 Alternatively, one could use the system’s static call graph, as in [17].
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Trace # calls # threads Description

checkstyle-short 31,237 1 The processing of a small input file that contains 50 lines of commented Java

code.

pacman-death 139,582 1 The start of a game, several player and monster movements, player death, start

of a new game, and quit [8].

jhotdraw-3draw5fig 161,087 1 The creation of a new drawing in which five different figures are inserted, after

which the drawing is closed. This process is repeated two times [10].

cromod-assignment 266,337 11 The execution of a typical assignment that involves the calculation of green-

house parameters for two days for one greenhouse section [10].

checkstyle-3c 1,173,914 1 The processing of three Java source files that are between 500 and 1000 lines

in size each.

azureus-newtorrent 3,144,785 172 The program’s initialization, and invocation of the “new torrent” functionality

on a small file before quitting.

ant-selfbuild 12,135,031 1 The execution of the program, having specified the non-trivial task of building

Apache Ant itself [29].

Table 2. Description of the test set.

implementation of the well-known Pacman game in which

the player can move around on a graphical map while eating

food and evading monsters.

CROMOD is a medium-size, multithreaded industrial sys-

tem that regulates the environmental conditions in green-

houses. Given a set of sensor inputs at the command line,

it calculates for a series of discrete points in time the op-

timal values for such parameters as heating, windows, and

shutters. Since these calculations are performed for a great

number of points in time, a typical scenario involves massive

amounts of events.

CHECKSTYLE3 is a medium-size source code validation

tool. From the command line it takes a set of coding stan-

dards to process one or more input files, while systematically

looking for violations and reporting these to the user.

JHOTDRAW4 is a medium-size tool for graphics editing.

It was developed as a showcase for design pattern usage and

is acknowledged to be well-designed. It provides a GUI that

offers various graphical features such as the insertion of fig-

ures and drawings.

AZUREUS5 is a large-size, multithreaded peer-to-peer

client that implements the BitTorrent protocol. Its GUI can

be used to exchange files by use of so-called torrents, which

are files containing metadata on the files being exchanged.

APACHE ANT6 is a medium-size, Java-based build tool.

It is command line based and owes much of its popularity

to its ability to work cross-platform. The execution trace for

this system was obtained through fellow researchers [29].

Execution scenarios. For each system we define a typical

execution scenario. We then instrument the systems, run the

scenarios, and register the entries and exits of all constructor

and (static) method calls on the class level, and the threads in

which these events take place. This results in seven execution

3 Checkstyle 4.3, http://checkstyle.sourceforge.net/
4 JHotDraw 6.0b, http://www.jhotdraw.org/
5 Azureus 2.5.0.0, http://azureus.sourceforge.net/
6 Apache Ant 1.6.1, http://ant.apache.org/

traces that size from several tens of thousands of events to

several millions of events. The descriptions and sizes of the

traces are given in Table 2.

5.5. Application

Each of the four techniques is applied on all seven traces.

The task being performed during each run is the reduction of

the input trace while conforming to a certain threshold. The

threshold is the maximum output size of the trace, and re-

flects use cases in which a certain degree of reduction is nec-

essary for a certain task. An example of such a use case is a

trace analysis method from earlier work [9], which can han-

dle at most 50,000 events because it has complexity O(n2)
with respect to the trace size n.

We employ seven different thresholds with values be-

tween 1,000 and 1,000,000 calls. This yields a total of 196

runs, which we perform on a Linux system with an Intel Pen-

tium M 1.6 GHz processor and 2 GB of memory.

5.6. Interpretation

The final stage of the assessment concerns the interpretation

of the results. By focusing on the measurements in each of

the 196 runs, we discuss the results of the techniques in terms

of our evaluation criteria. Finally, based our observations, we

conclude with a comparison of the techniques.

6. Results & Discussion

The results of the experiment are shown in Table 3, which

shows the measurements for each of the four techniques

across the relevant runs.7 Reductions that were unsuccess-

ful are denoted by dashes; furthermore, the percentages of

preserved events have been rounded upwards so as to dis-

tinguish very small fractions from zeroes. Finally, the NCD

7 Cases with thresholds higher than the input trace sizes were omitted.
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Figure 1. Average reduction success rates.

values for information preservation were omitted in this ta-

ble since they proved unreliable for the trace sizes used in

the experiment; this is discussed in Section 6.3.

Figure 1 shows the average reduction success rate of each

technique across the entire test set. The percentages are

based on the measurements of all relevant runs.

Figures 2 through 4 demonstrate the performance of each

technique in terms of computation time. We have selected

the cases that exhibit the clearest differences (i.e., the largest

traces) and that have high numbers of successful reduc-

tions, being cromod-assignment, checkstyle-3c, and

ant-selfbuild. Note that the latter two diagrams employ

logarithmic scales for the computation time.

Finally, Table 4 summarizes each technique’s achieve-

ments relative to those of the other techniques.

In the following sections we discuss our findings, which

are structured according to the three criteria.

6.1. Reduction success rate

In terms of the first evaluation criterion, we observe that

the sampling technique achieved the best results: it is the

only method that yielded successful reductions under all cir-

cumstances, with the output sizes mostly being close to the

thresholds. This is presumably due to its ad hoc nature, as ex-

ecution traces can always be sampled such that the maximum

output size is satisfied, regardless of the size and composition

of the trace.

The summarization and stack depth limitation techniques

are both dependent on stack depth progression and show

results that are similar to one another, with both methods

mostly having difficulties with the azureus-newtorrent

trace. The cause is most likely found in the abundance

of active threads during this program’s execution, in which

(1) there occur many thread interactions, which hinders

the grouping algorithm used during summarization; and (2)

many threads exhibit low nesting levels, which renders depth
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Figure 2. Performance for the Cromod trace.

limitations less effective. Furthermore, when faced with

strict trace size limits, the summarization technique occa-

sionally produces very small traces because in such cases the

gap size is large out of necessity.

Finally, the combination of language-based filtering tech-

niques proves disappointing with nearly half of the reduc-

tions having been unsuccessful. A noteworthy exception is

the cromod-assignment trace, in which 98 out of every

100 events concern constructors, which are all filtered given

any of the thresholds in Table 3.

6.2. Performance

With regard to performance, our measurements show that all

four techniques were capable of reducing traces smaller than

one million events within one minute (Figure 2). When look-

ing at larger traces, however, there exist clear differences:

here we observe that sampling easily outperforms any of the

other techniques (Figures 3 and 4). We assume the principal

cause to be that the sampling distance can be determined a

priori, after which the trace needs to be processed only once.

For the same reason, the computational effort involved in this

approach is independent of the thresholds.

The same holds for the stack depth limitation technique,

but here a trace must be processed twice because the stack

depth frequencies must first be collected. Moreover, the in-

terpretation of the stack depth at each event requires addi-

tional parsing effort in comparison to the black-box approach

used by the sampling technique.

Concerning the language-based filtering techniques, there

is little timing data available due to the many failed reduc-

tions. The data that is available, however, suggests that

this approach is significantly slower than the aforementioned

techniques: since the filterings are applied on demand and

one by one, low thresholds require that the trace at hand is

processed up to four times, i.e., once for each filter type, and

once more to read and write the traces. Moreover, the stack
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Figure 3. Performance for the checkstyle-3c trace.

depths and signatures of each event must be parsed in order

to acquire the information that is targeted by the filters.

The subsequence summarization technique typically re-

quires a trace to be processed multiple times, as the gap

size must be repeatedly incremented (starting at 0) until a

suitable projected output size has been found. This iterative

process yields significant overheads if the threshold is much

smaller than the size of the trace, with the effort involved in

each iteration being proportional to the trace size. Moreover,

the number of necessary iterations also depends on the stack

depth progression in the trace. The overall result is that the

summarization approach is clearly the slowest technique in

our experiment, particularly for large traces.

6.3. Information preservation

The assessment of our final criterion yields mixed results.

Unfortunately, the values computed by the NCD metric

proved unreliable in practice due to the trace sizes that were

used in our experiment. To explain the issue, we need to

provide some background on this metric. NCD is based on

the notion that two objects are close to each other if we can

significantly compress one object given the information in

the other [5]. In practice, this translates to compressing the

concatenation of the original and reduced traces and com-

paring its size to that of the compressed original trace. How-

ever, it turns out that standard compression tools split their

input in “compression windows” within which the compres-

sion information is shared. As the size of the concatenation

of the original and reduced trace exceeds the size of the com-

pression window, that particular compressor can no longer

be used to determine the NCD between those traces (since

we are no longer compressing one object given the infor-

mation in the other). Personal communication with R. Cili-

brasi, the metric’s first author [5], confirmed these issues and

suggested their circumvention by writing a dedicated com-

pressor. Since the metric only serves as an example in our
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Figure 4. Performance for the ant-selfbuild trace.

experiment, this is left as a direction for future work.

For the domain-specific assessment of information preser-

vation, we focus on high-level and medium-level events

since those are required by our context (Section 5.1).

Subsequence summarization typically attains the best re-

sults: the percentages of preserved high-level events are

significantly higher than those of the medium-level events

which, in turn, are often higher than those of the low-level

events. This is because each group is represented by its

first event, and using our depth-based grouping criterion this

event is likely to reside at relatively high levels.

The stack depth limitation and language-based filtering

techniques show comparable results: the percentages of pre-

served high-level events are generally higher than those of

other event types, with the depth limitation technique attain-

ing the highest percentages in this respect. In several re-

ductions, however, the fractions of preserved medium-level

events are not always higher than those of low-level events.

Examples are checkstyle-3c for depth limitation, and

azureus-new-torrent for filtering. This implies that the

use of these two techniques sometimes causes the preserva-

tion of low-level events at the cost of those at the medium-

level, which is undesirable in the given context.

The sampling technique mostly exhibits similar fractions

of preserved events across all three event types, particu-

larly in large traces. This means that all event types are

equally represented in the reduced traces. We attribute this to

the technique’s ad hoc nature, which implies that low-level

events are neither identified, nor removed. This makes sam-

pling the least useful technique in preserving high-level and

medium-level events in our context.

On an interesting note, the measurements for the

ant-selfbuild trace suggest that all of its high-level

events are often preserved. However, it turns out that our

definition of high-level events implies that this trace has only

one high-level event.
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Subsequence summarization Stack depth limitation Language-based filterings Sampling

reduction success rate o o − +

performance − o o +

information preservation + o o −

Table 4. Assessment summary with respect to the example context.

6.4. Threats to validity

A potential threat to the internal validity concerns the test

set in our experiment. As with most evaluations in literature,

certain implications were based on the properties of our test

set, e.g., systems with multiple threads running the risk that

stack depth-based reductions may have limited applicability

(Section 6.1). Such observations do not necessarily hold true

for any program or trace, as threading and nesting behavior

can vary from system to system. We have addressed this

issue by using a test set that is above average in terms of size

and composition, and that contains systems and traces with

different sizes and characteristics.

An additional threat to the internal validity concerns the

fact that reduction techniques in literature could be subject

to different interpretations. To address this threat, we have

described our implementations in detail to allow validation

by others and to ensure the reproducibility of our results.

Concerning the external validity, we note that the reduc-

tion techniques considered in this paper are automatic in na-

ture. The assessment of reduction methods is more difficult

if other factors come into play; e.g., when a technique relies

heavily on additional information, such as domain knowl-

edge. Furthermore, most reduction techniques can be imple-

mented in different manners: for instance, in terms of perfor-

mance, the summarization algorithm used in our experiment

could benefit from a higher initial gap size in case of large

traces or low thresholds.

Finally, alternative contexts may require other evaluation

criteria in addition to those used in our example assessment.

For example, the evaluation of a memory-intensive technique

warrants a discussion on spatial complexity. However, we ar-

gue that our example criteria are generic to a great extent: in

particular, the notions of reduction success rate and informa-

tion preservation are applicable in many alternative assess-

ment contexts, which renders our experimental results useful

in those cases.

7. Concluding Remarks

Program comprehension is an important aspect of the soft-

ware development process. While the use of dynamic anal-

ysis in this process has become increasingly popular, such

analyses are often associated with large amounts of trace

data, which has lead to the development of numerous trace

reduction techniques in recent years. Unfortunately, the dif-

ferent techniques being offered are generally not evaluated

(1) in the same software engineering contexts, (2) by the

same evaluation criteria, and (3) on the same test sets. As a

result, it is often unclear to which extent a certain technique

is applicable in a particular context, if at all.

We addressed this challenge by proposing an assessment

methodology that uses a common context, common evalua-

tion criteria, and a common test set to ensure that the reduc-

tion techniques under study can be properly compared. To

illustrate its use in practice, we applied the methodology on

a selection of four types of reduction techniques, being sub-

sequence summarization, stack depth limitation, language-

based filtering, and sampling. Using a test set of seven

large execution traces, we evaluated and compared these ap-

proaches in terms of context-specific criteria, leading to an

overview (Table 4) that is valuable for software maintainers

in similar contexts.

In summary, the work described in this paper makes the

following contributions:

• An assessment methodology for the evaluation and
comparison of trace reduction techniques.

• The demonstration of this methodology through the im-
plementation, evaluation, and comparison of four types

of trace reduction techniques used in literature.

7.1. Future work

As a direction for future work we consider applying our

methodology to additional traces and reduction techniques.

In particular, we seek to determine the extent to which

the assessment results can be generalized, i.e., whether the

achievements of a technique are representative for other tech-

niques in the same category (Table 1). This includes the use

of larger test sets and the consideration of alternative con-

texts, which could involve different evaluation criteria.

Another direction for future work concerns adapting the

compressor that is used to compute the NCD metric, such

that it no longer suffers from the “compression window” lim-

itations that were discussed in Section 6.3. This enables its

applicability to realistically-sized traces, and renders it an in-

teresting alternative for measuring information preservation.

Finally, we seek to investigate whether certain trace char-

acteristics (similar to those in [16]) can help in predicting

the effectiveness of certain reduction techniques. The CRO-

MOD trace in our experiment is a good example, as its many

constructors were the key to the success of the constructor

filtering technique in that case.
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