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Nonlinear Repetitive Control for Mitigating Noise Amplification*

Leontine Aarnoudse1, Alexey Pavlov2, Johan Kon1, and Tom Oomen1,3

Abstract— Repetitive control can lead to high performance by
attenuating periodic disturbances completely, yet it may amplify
non-periodic disturbances. The aim of this paper is to achieve
both fast learning and low errors in repetitive control. To this
end, a nonlinear learning filter is introduced that distinguishes
between periodic and non-periodic errors based on their typical
amplitude characteristics to adapt the extent to which they are
included in the repetitive controller. Convergence conditions for
the nonlinear repetitive control system are derived by casting
the resulting closed-loop as a discrete-time convergent system.
Simulation results of the proposed approach demonstrate fast
learning and small errors.

I. INTRODUCTION

Repetitive control (RC) leads to high performance for
systems with periodic disturbances, since it can attenuate
these disturbances completely. RC is based on the internal
model principle [1] and employs a periodic signal generator
to fully reject periodic signals. While periodic disturbances
are attenuated, non-periodic disturbances, including measure-
ment noise, may be amplified by RC [2], [3]. To achieve
high performance, RC should attenuate periodic disturbances
fast without amplifying non-periodic disturbances, yet in
traditional RC there is a trade-off between these requirements
due to the waterbed effect. Essentially, the repetitive con-
troller modifies the closed-loop system through a modifying
sensitivity, which contains notches, i.e., local suppression,
at the frequency of the periodic disturbance and its higher
harmonics, and consequently exceeds 0 dB at other frequen-
cies. Thus, non-periodic disturbances or disturbances with
different periods are amplified. A similar effect is observed
in the related field of iterative learning control (ILC) [4].

Existing linear time-invariant (LTI) methods to reduce the
amplification of non-periodic disturbances in RC typically
lead to a reduced learning speed and imperfect attenuation
of periodic disturbances. Repetitive control often uses a low-
pass filter to ensure robust stability. Lowering the cut-off
frequency of this filter reduces not only the amplification
of non-periodic disturbances, but also the attenuation of
periodic disturbances, and is therefore undesirable. Reducing
the learning gain reduces the amplification of non-periodic
disturbances, at the cost of the learning speed [5] and the
robustness against period variations. High-order RC [6], [7]

*This work is part of the research programme VIDI with project number
15698, which is (partly) financed by the NWO.

1The authors are with the Dept. of Mechanical Engineering, Control
Systems Technology, Eindhoven University of Technology, Eindhoven, The
Netherlands. l.i.m.aarnoudse@tue.nl

2Alexey Pavlov is with the Dept. of Geoscience and Petroleum, NTNU
Norwegian University of Science and Technology, Trondheim, Norway.

3Tom Oomen is also with the Delft Center for Systems and Control,
Delft University of Technology, Delft, The Netherlands.

induces similar trade-offs between noise and period robust-
ness. In [8], an optimal model-based repetitive controller is
designed in conjunction with an observer-state feedback con-
troller, which allows for more extensive trade-offs yet retains
the fundamental limitations. Kalman filters may reduce the
amplification of non-periodic disturbances in RC, but the
performance depends completely on models of the system
and the periodic disturbance [2].

Since LTI RC approaches cannot overcome the fundamen-
tal limitation of the Bode sensitivity integral and as such
always result in trade-offs, the use of a nonlinear repetitive
controller is considered. To mitigate non-periodic distur-
bances, these are distinguished from periodic disturbances
through their different amplitude. Essentially, this can be
viewed as an adapting controller, where the gain is adapted
depending on whether a periodic disturbance is detected.
This leads to a nonlinear RC implementation, which does
not suffer from the performance limitations in LTI systems,
including the aforementioned Bode sensitivity integral.

The nonlinear repetitive controller relates to the idea
of variable gain feedback controllers that are constructed
through nonlinear filters, including [9], [10]. A similar idea
has been applied to the related field of ILC in [11]–[13],
where a deadzone nonlinearity is included in the learning
filter in lifted or frequency-domain ILC. The main difference
between ILC and RC is that ILC assumes resets between
iterations, while RC assumes continuous operation. ILC does
not influence the stability of the closed-loop system, even if
the iteration-domain system can become unstable. Therefore,
stability results for nonlinear ILC cannot be applied directly
to nonlinear repetitive control. Existing stability analyses for
nonlinear RC, see, e.g., [14]–[16], consider RC applied to
continuous-time nonlinear systems, and cannot be applied
directly to the discrete-time linear system with a nonlinear
repetitive controller considered in this paper.

Although significant steps have been taken to optimize
the performance of RC algorithms, the trade-off between
fast attenuation of periodic disturbances and limiting ampli-
fication of non-periodic disturbances hampers performance
improvements in the presence of non-periodic disturbances.
The aim of this paper is to remove this trade-off by intro-
ducing a nonlinear learning filter in repetitive control, which
exploits distinct amplitude characteristics of periodic and
non-periodic disturbances to apply varying learning gains.
The contribution consists of the following elements.
• The influence of RC on periodic and non-periodic distur-

bances is analyzed (Section III).
• A nonlinear RC framework is introduced that achieves fast

attenuation of periodic disturbances while mitigating the
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Fig. 1: Standard control scheme (top) and repetitive control
scheme (bottom).

amplification of non-periodic disturbances (Section IV).
• Conditions for the convergence of the nonlinear RC system

are developed, enabling design using identified frequency
response functions of the linear system (Section V).

• The approach is illustrated in simulations (Section VI).
Notation: For a vector x and a matrix P , ∥x∥P =

√
xTPx

denotes the weighted 2-norm. The spectral radius of a matrix
is denoted by ρ(P ). The H∞-norm is denoted by ∥G∥∞ =
supω∈[0,2π) |G(eiω)| for a real-rational, causal and stable
transfer function G ∈ RH∞. The sets of real, natural, and
integer numbers are denoted by R, N and Z, respectively.

II. PROBLEM FORMULATION

Repetitive control aims to attenuate unknown exogenous
periodic disturbances by learning a model of these distur-
bances that is included in the feedback controller in view of
the internal model principle [1]. Consider a SISO LTI system
P in feedback with a controller C as shown in Fig. 1 (top).
The error e0 of the original closed-loop system is given by

e0 = (I + PC)−1︸ ︷︷ ︸
S

(yd − ṽ), (1)

with reference yd and measurement noise ṽ. A repetitive
controller R is implemented as shown in Fig. 1 (bottom),
such that the error e is given by

e = (1 + PC(1 +R))−1(yd − ṽ) = (1 + TR)−1︸ ︷︷ ︸
SR

e0, (2)

with T = PC(1 + PC)−1, see, e.g., [17] for a derivation.
The repetitive controller R is given by

R(z) =
αL(z)z−NQ(z)

1− z−NQ(z)
, (3)

with z−N the z-domain representation of the delay operator
DN , i.e., DN (z) = z−N , which acts as a buffer storing
the error signal of the previous repetition. Delay N ∈ N
corresponds to a disturbance frequency fd = fs/N for
sampling frequency fs. The learning gain is denoted by
α ∈ (0, 1]. Filters Q(z) ∈ R and L(z) ∈ R can have finite
preview, i.e., be non-causal, as long as R(z) ∈ RH∞ is

causal which is ensured by embedding their preview in z−N .
Typically, L is chosen to approximate T−1, for example
using ZPTEC [18], and Q is a zero-phase low-pass filter.
The resulting modifying sensitivity SR is given by

SR(z) =
1− z−NQ(z)

1− z−NQ(z)(1− T (z)αL(z))
. (4)

A sufficient condition for the stability of the closed-loop
system (2) is given by the following lemma [2].

Lemma 1. Assume that S, T , Q and L are stable. Then
the closed-loop repetitive control system (2) is stable for all
N ∈ N if

|Q(eiω)(1− T (eiω)αL(eiω)))| < 1 ∀ω ∈ [0, 2π). (5)

Stability of S and T can be ensured through the feedback
controller C, and Q and L are stable by design. Repetitive
control can attenuate periodic exogenous disturbances with
period N perfectly. For many control applications, only part
of the exogenous error signal is periodic, for example when
the reference yd(k) = yd(k + N) is periodic but a noise
term ṽ(k) is non-periodic. These non-periodic disturbances
are amplified by traditional repetitive control due to the
waterbed effect [2], as is further illustrated in Section III.
The amplification may be reduced by reducing the learning
gain, at the cost of reducing the learning speed.

The aim of this paper is to achieve fast attenuation of peri-
odic disturbances while mitigating the amplification of non-
periodic disturbances. It is assumed that these disturbances
have distinct amplitude characteristics, which is exploited
by a nonlinear learning filter that applies a high learning
gain to high-amplitude periodic disturbances to ensure fast
attenuation, and a low learning gain to low-amplitude non-
periodic disturbances to avoid amplification.

III. AMPLIFICATION AND ATTENUATION OF
DISTURBANCES IN REPETITIVE CONTROL

In this section, the attenuation and amplification of peri-
odic and non-periodic disturbances in RC is analyzed. The
error (2) of a stable RC system depends on SR. The influence
of Q and α on SR is illustrated in the Bode magnitude
diagram in Fig. 2, leading to the following observations:

• For α = 1, the magnitude of the repetitive controller is
≪ 1 at frequency fd and its multiples, but due to the
waterbed effect |SR| > 1 at other frequencies.

• Reducing α if Q ̸= 1 reduces the width and depth of the
notches, and as a result the magnitude of SR at other
frequencies is increased less.

• Decreasing the cut-off frequency of the robustness filter
Q reduces the number of multiples of the frequency fd
included in SR, and it reduces the depth of the notches.

The influence of SR on the settling time, in terms of the
number of repetitions needed for the periodic disturbance
to be attenuated, and on the converged errors is threefold.
First of all, deeper notches result in faster attenuation of
disturbances at the corresponding frequency, and therefore
a faster settling time. Secondly, due to the waterbed effect
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Fig. 2: Modifying sensitivity SR for L ≈ T−1, N = 50 and
fs = 1000Hz. Top: α = 1 ( ) and α = 0.1 ( ) for a Q-
filter with a cut-off frequency of 100Hz. Bottom: Q-filters
with cut-off frequencies 100 ( ) and 50Hz ( ) for α = 1.

disturbances at frequencies other than fd and its multiples
may be amplified, and the amplification is stronger if the
notches are wider and/or deeper. Thirdly, for wider notches
more frequencies around fd are suppressed, which is useful
because in practice N may not be known exactly.

Based on these effects, it follows that the robustness filter
Q is not suitable for reducing the amplification of non-
periodic disturbances, since it also strongly influences the
attenuation of periodic disturbances in the same frequency
range. Regarding the learning gain, reducing α reduces the
amplification of non-periodic disturbances significantly, but
at the cost of reducing the width of the notches, which is
undesirable if fd is not known exactly, and at the cost of
learning speed as illustrated in Fig. 3.

IV. NONLINEAR REPETITIVE CONTROL

In this section, the repetitive controller is extended by a
deadzone nonlinearity, which adapts the learning gain based
on the distinct amplitude characteristics of disturbances to
achieve both fast attenuation of periodic disturbances and
limited amplification of non-periodic disturbances.

The deadzone nonlinearity φ is implemented as shown in
Fig. 4. The input e of the nonlinearity is written as a function
of its output signal eφ = φ(e) and the disturbances contained
in e0, see (1), as follows.

e = TReφ + SRe0, (6)

with modifying sensitivity SR defined according to (4), and
TR being the complementary sensitivity of the linear RC
loop, given by

TR = (1 + TR)−1TR. (7)

5 10 15 20
10−4

10−3

Repetition [-]

∥e
∥ 2
/
√
N

[m
2
]

Fig. 3: Error norm reduction over repetitions for repetitive
control (activated at repetition 2) for α = 1( ), 0.7 ( ), 0.5
( ) and 0.2 ( ), averaged over 20 simulations. Reducing α
reduces the converged error at the cost of convergence speed.

α

C P

DN Q L

ϕ
eϕ

yd e y

−
ṽ

Fig. 4: Nonlinear repetitive control scheme.

The output of the deadzone nonlinearity φ(e(k)) is given by

φ(e(k)) =

{
0, if |e(k)| ≤ δ

(γ − γδ
|e(k)| )e(k), if |e(k)| > δ.

(8)

The deadzone is a static nonlinearity that satisfies the incre-
mental sector condition

0 ≤ φ(a)− φ(b)

a− b
≤ γ (9)

for any two scalars a and b. This property enables the con-
vergence analysis of the nonlinear repetitive control system
in the next section. In this paper, a deadzone nonlinearity
is used to distinguish between periodic and non-periodic
disturbances based on their amplitude characteristics, but
the framework allows the use of any static nonlinearity that
satisfies an incremental sector condition.

The main idea of extending RC with a deadzone is that
only error values that are above the threshold δ are stored in
the buffer, where δ is chosen such that φ(enp) ≈ 0 for non-
periodic disturbances enp. To determine a suitable deadzone
width δ, a measurement without RC that contains several
repetitions of the periodic disturbance is used. The measured
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Fig. 5: Nonlinear repetitive control as a Lur’e system.
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Fig. 6: Deadzone nonlinearity φ according to (8) with width
δ = 1 and gain γ = 1.

error is divided in nr repetitions with length N , given by

ej =
[
e((j − 1)N + 1) . . . e(jN)

]T
= ep + enp,j (10)

with ep the periodic disturbance and enp,j the realization of
the non-periodic disturbances for repetition j. An estimate
of ep is given by the sample mean of these repetitions, i.e.,

êp =
1

nr

∑nr

j=1 ej , ênp,j = êp − ej , (11)

with ênp,j the estimates of the realizations of the non-
periodic disturbances. These estimates are used to determine
a suitable deadzone width δ, as illustrated in Section VI.

V. CONVERGENCE OF NONLINEAR REPETITIVE CONTROL

To analyze the existence and global exponential stability
of the steady-state solution of the nonlinear repetitive control
system (6), it is rewritten in state-space form as a cascade of
a linear system SR and a Lur’e system formed by the linear
system −TR with static nonlinearity φ in feedback, see Fig.
5. The dynamics of the cascaded system are given by

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k)

}
− TR (12a)

u(k) = −φ(y(k) + w(k))

n(k + 1) = An(k) +Be0(k)
w(k) = Cn(k) + e0(k)

}
SR (12b)

The matrices A, B and C form a minimal state-space
realization of −TR, such that (A,B) is controllable and
(A,C) is observable. Note that since SR = 1 − TR, (12a)
and (12b) have the same A, B and C-matrices.

Next, conditions under which the nonlinear repetitive
control system is convergent are developed. Convergence for
a discrete-time system of the form

x(k + 1) = f(x(k), k), (13)

with state x ∈ Rn, f : Rn × Z → Rn and discrete-time
variable k ∈ Z, is defined as follows [19, Definition 1].

Definition 2. System (13) is called exponentially convergent
if

• there exists a unique solution x̄(k) that is defined and
bounded on Z (from −∞ to +∞),

• x̄(k) is globally exponentially stable, i.e., there exists
c > 0 and 0 < λ < 1 such that |x(k) − x̄(k)| ≤
cλk−k0 |x(k0)− x̄(k0)| for all k ≥ k0.

Solution x̄(k) is called a steady-state solution. It follows
from this definition that any solution of a convergent system
converges to this steady-state solution, irrespective of the
initial condition. The time-dependency of (13) is typically
due to an input w(k), and if the input is periodic then
the steady-state solution of the convergent system is also
periodic with the same period [19]. The convergence property
is an extension of the stability properties of asymptotically
stable linear systems excited by external inputs, and since
for traditional (linear) RC asymptotic stability is desired [2],
for nonlinear RC convergence is shown. For the convergence
of a nonlinear system, the following holds [19, Theorem 1].

Lemma 3. Consider system (13) with a Lipschitz continuous
[20, Chapter 3] right-hand side satisfying

∥f(x1, k)− f(x2, k)∥P ≤ λ∥x1 − x2∥P , (14)
∀x1, x2 ∈ Rn, k ∈ Z

sup
k∈Z

∥f(0, k)∥P < +∞, (15)

for some matrix P = PT ≻ 0 and number λ ∈ (0, 1). Then
system (13) is exponentially convergent.

For the cascade of two exponentially convergent systems,
the following lemma holds.

Lemma 4. Consider the cascaded system{
x(k + 1) = f(x(k), w(k), k)

w(k + 1) = g(w(k), k).
(16)

Suppose the x-subsystem meets the conditions in Lemma 3
for any w(k) bounded on Z and is therefore exponentially
convergent, and the w-subsystem is exponentially convergent.
In addition, f(x,w, k) is globally Lipschitz with respect to
w with Lipschitz constant K, i.e.,

∥f(x,w1, k)− f(x,w2, k)∥ ≤ K∥w1 − w2∥∀x, k. (17)

Then system (16) is exponentially convergent.

A proof of Lemma 4 is given in Appendix A. Applying
Lemma 3 and 4 to the nonlinear repetitive control system
leads to the following convergence theorem.
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Theorem 5. Let (12a) be a minimal realization of the linear
system −TR with (A,B) controllable and (A,C) observable.
The system (12) is exponentially convergent for any input
e0(k) bounded on Z if the following conditions are met:

a) ρ(A) < 1.
b) φ satisfies (9) for a certain γ.
c) The following small-gain condition holds:

sup
ω∈[0,2π)

|TR(e
iω)| < 1

γ
. (18)

Proof. Consider system (12) as a cascade of (12a) and (12b).
The idea is to establish exponential convergence as a cascade
of two exponentially convergent systems. First, condition a)
ensures that system (12b) is exponentially convergent for
any bounded input e0(k), as a linear exponentially stable
system. Secondly, the incremental sector condition in b)
ensures that the right-hand side of (12a) is globally Lipschitz
in w, uniformly in x, i.e., that (17) holds. Thirdly, conditions
a)-c) ensure that the nonlinear Lur’e system (12a) with w(k)
as inputs is convergent. This follows from the proof of [13,
Theorem 9], which shows that a sufficient condition for
the convergence of the nonlinear Lur’e system (12a) is the
existence of a matrix P = PT ≻ 0 such that the strict
inequality[

∆x
∆φ

]T [
ATPA+ CTC − P −ATPB

−BTPA BTPB − 1
γ2

] [
∆x
∆φ

]
< 0, ∀x1, x2 ∈ Rn, k ∈ Z, (19)

holds, with ∆x = x1 − x2 and ∆φ = φ(Cx1 + w(k)) −
φ(Cx2+w(k)). By the Kalman-Szegö lemma, see, e.g., [21,
Lemma 17], a matrix P = PT ≻ 0 for which (19) holds
exists if and only if

∥ − TR∥∞ = ∥TR∥∞ = sup
ω∈[0,2π)

|TR(e
iω)| < 1

γ
, (20)

which is ensured by condition c). It follows that if condi-
tions a)-c) are satisfied, then system (12a) is exponentially
convergent for any bounded w(k) by Lemma 4.

Condition a) of Theorem 5 can be satisfied through the
design of L and Q. Stability of the linear system is verified
using identified frequency response functions of the system,
and Q can be designed explicitly to ensure robustness against
model uncertainty in L. Similarly, Condition c), which can
be satisfied by choosing suitable values for α and γ, can be
verified using a measured frequency response of the system.

VI. PRINTER EXAMPLE

In this section, nonlinear repetitive control is applied to
a simulated printer system, the carriage of which performs
a periodic motion. The printer is modeled as a discrete-
time non-collocated two-mass-spring-damper system, and the
schematic representation and Bode diagram are shown in Fig.
7. The system is sampled at fs = 1000 Hz and the reference
yd leads to a disturbance that is periodic with N = 2000 such
that fd = 0.5 Hz. The non-periodic disturbance comes from
zero-mean Gaussian white output noise ṽ with a variance

m1 m2

y
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M
ag
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tu
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100 101 102 103
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−90
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Fig. 7: Schematic representation (top) and Bode diagram
(bottom) of the printing system.

0 0.5 1 1.5 2

−2

−1

0

1

2

×10−3

Time [s]

Er
ro

r
[m

]

Fig. 8: Estimates of the periodic disturbance êp ( ) and
20 realizations of the non-periodic disturbances ênp. Most
noise is contained within the interval [−2×10−4, 2×10−4],
indicated by black lines.

of 10−8. The learning filter L is constructed using ZPETC
and the robustness filter Q is a 30th order zero-phase low-
pass FIR filter [2] with a cut-off frequency of 200 Hz. Each
simulation is repeated 20 times and averaged.

Based on the approach in Section IV, which is illustrated
in Fig. 8, the deadzone width is set to δ = 2 × 10−4. In
Fig. 9 the error 2-norm over repetitions for nonlinear RC
with γ = 1, α = 0.1 is compared to linear RC with α = 1,
α = 0.5 and α = 0.2. It is shown that nonlinear RC reaches
low errors without reducing the convergence speed.

VII. CONCLUSION

Using nonlinear filters in repetitive control enables adap-
tive adjusting of the learning gain, allowing highly accurate
tracking while mitigating the amplification of non-periodic
disturbances. This leads to a different and less stringent
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Fig. 9: Error norm reduction over repetitions for repetitive
control, averaged over 20 simulations. Compared to linear
RC for α = 1( ), 0.5 ( ), and 0.2 ( ), nonlinear RC with
γ = 1, α = 0.1 and δ = 2 × 10−4 ( ) achieves faster
learning and lower errors. RC is activated at repetition 2.

trade-off compared to LTI designs, which are limited by the
traditional Bode sensitivity integral. The approach achieves
both fast learning and small converged errors through a
deadzone nonlinearity, which applies variable gains based on
the amplitude characteristics of the disturbances. Conditions
for the convergence of the discrete-time nonlinear RC sys-
tem are developed. Simulations illustrate that the approach
achieves fast learning and small errors, and future research
will involve experimental implementation of the approach.

APPENDIX A

In this appendix the proof of Lemma 4 is given.

Proof of Lemma 4. For the cascaded system (16), define

F (z(k), k) :=

{
x(k + 1) = f(x(k), w(k), k)

w(k + 1) = g(w(k), k),
(21)

with z =
[
x w

]T
. Let

∥f(x1, w, k)− f(x2, w, k)∥P ≤ λ1∥x1 − x2∥P (22)
∥g(w1, k)− g(w2, k)∥Q ≤ λ2∥w1 − w2∥Q, (23)

for some matrices P = PT > 0 and Q = QT > 0 and
numbers λ1, λ2 ∈ (0, 1), and P := diag(P, αQ) for some
α > 0. For system (16), it holds that

∥F (z1, k)− F (z2, k)∥P =

∥∥∥∥f(x1, w1, k)− f(x2, w2, k)
g(w1, k)− g(w2, k)

∥∥∥∥
P

=∥f(x1, w1, k)− f(x2, w2, k)∥P + ∥g(w1, k)− g(w2, k)∥αQ
≤∥f(x1, w1, k)− f(x1, w2, k)∥P + ∥g(w1, k)− g(w2, k)∥αQ
+ ∥f(x1, w2, k)− f(x2, w2, k)∥P (24)

≤λ1∥x1 − x2∥P + λ2∥w1 − w2∥αQ +K∥w1 − w2∥P ,
with K the Lipschitz constant for f in (17). In inequality
(24), α > 0 can be chosen such that L∥w1 − w2∥P ≤

λ3∥w1 − w2∥αQ, where λ3 > 0 is small enough to satisfy
λ2 + λ3 < 1. Thus, we obtain from (24):

∥F (z1, k)− F (z2, k)∥P (25)
≤ λ1∥x1 − x2∥P + (λ2 + λ3)∥w1 − w2∥αQ
≤ max{λ1, (λ2 + λ3)}∥z1 − z2∥P,

with max{λ1, (λ2 + λ3)} < 1. It follows that the cascaded
system is exponentially convergent by Lemma 3.
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