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Abstract Within the scope of the upcoming launch of a new water related satellite

mission (SMOS) a global evaluation study was performed on two available global soil

moisture products. ERS scatterometer surface wetness data was compared to AMSR-E soil

moisture data. This study pointed out a strong similarity between both products in sparse to

moderate vegetated regions with an average correlation coefficient of 0.83. Low correla-

tions were found in densely vegetated areas and deserts. The low values in the vegetated

regions can be explained by the limited soil moisture retrieval capabilities over dense

vegetation covers. Soil emission is attenuated by the canopy and tends to saturate the

microwave signal with increasing vegetation density, resulting in a decreased sensor

sensitivity to soil moisture variations. It is expected that the new low frequency satellite

mission (SMOS) will obtain soil moisture products with a higher quality in these regions.

The low correlations in the desert regions are likely due to volume scattering or to the

dielectric dynamics within the soil. The volume scattering in dry soils causes a higher

backscatter under very dry conditions than under conditions when the sub-surface soil

layers are somewhat wet. In addition, at low moisture levels the dielectric constant has a

reduced sensitivity in response to changes in the soil moisture content. At a global scale the

spatial correspondence of both products is high and both products clearly distinguish

similar regions with high seasonal and inter annual variations. Based on the global analyses

we concluded that the quality of both products was comparable and in the sparse to
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moderate vegetated regions both products may be beneficial for large scale validation of

SMOS soil moisture. Some limitations of the studied products are different, pointing to

significant potential for combining both products into one superior soil moisture data set.

Keywords Hydrology � Global � Soil moisture � Remote sensing � Satellites �
SMOS

1 Introduction

Soil moisture is an important state variable in land surface hydrology and has a dominant

influence on physical processes. It is a variable that has always been required in many

disciplinary and cross-cutting scientific and operational applications (e.g. ecology, bio-

geochemical cycles, climate monitoring, flood forecasting, etc.) (Jackson et al. 1999).

Unfortunately, accurate estimates of surface soil moisture are often difficult to make,

especially at larger spatial scale. The main reason is that it is a very difficult variable to

measure, not at a point in time, but on a consistent and spatially comprehensive basis

(Leese et al. 2001).

Satellite remote sensing can be a powerful tool in fulfilling those needs because it can

monitor environmental processes in both spatial and temporal terms. Since the 1960s,

satellites have provided data for water resources management. Most importantly, visible

and infrared imaging sensors have been used for observing land surface parameters such as

snow cover, surface water areas, land use and surface temperature (Schmugge 1985). A

major drawback of these instruments is their dependence on atmospheric conditions. The

occurrence of clouds, water vapor and aerosols can easily disturb the signals, resulting in

limited land surface information. Also, with the exception of thermal infrared sensors,

these techniques depend on the sun as a source of illumination of the land surface and

cannot provide data during night time and low sun elevation. On the other hand, remote

sensing instruments working in the microwave range of the electromagnetic spectrum can

be operated day and night and are less affected by atmospheric conditions. This has

prompted much research and development in the field of microwave remote sensing.

In microwave remote sensing one distinguishes active and passive techniques. While

passive microwave radiometers record naturally emitted radiation, active microwave

sensors transmit electromagnetic waves and record the backscattered radiation. The latter

are often referred to as radar which stands for radio detection and ranging. Because

scattering and emission phenomena are closely related (Schanda 1986), the development of

passive and active microwave remote sensing techniques went hand in hand. The first

space-borne earth-observation radiometer was launched in 1968 on the Russian satellite

Comos 243, followed ten years later by the first spaceborne radar satellite Seasat that was

built and operated by NASA (Ulaby et al. 1981). Since then numerous satellites carrying

microwave radiometers and/or radar instruments have been launched.

The potential of microwave sensors for measuring soil moisture has been recognized

early (Eagleman and Ulaby 1975). The theoretical basis for measuring soil moisture at

microwave frequencies lies in the large contrast between the dielectric properties of liquid

water and dry soil material. The large dielectric constant of water is the result of the water

molecule’s alignment of its permanent electric dipole in response to an applied electro-

magnetic field. Therefore, when water is added to the soil matrix, the effective dielectric

constant of the soil increases strongly (Hipp 1974). Since the emission and scattering

properties of the soil are strongly influenced by the soil dielectric constant, both active and
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passive microwave measurements are highly sensitive to soil moisture (Ulaby 1974;

Schmugge et al. 1986).

For retrieving soil moisture it is necessary to develop models that are capable of

accounting for vegetation and surface roughness effects on the microwave signal. In 1975

Wilheit developed one of the first radiative transfer models that described the physics of

microwave radiation in the soil. This important step in microwave research started a series

of papers on the possibilities to retrieve soil moisture in both the active and passive

microwave domain. In the passive domain Njoku and Kong (1977) used a simple

regression technique on multi frequency microwave observations in combination with a

given surface temperature to obtain soil moisture from a controlled bare soil site. In time,

these models started to become more complex with the addition of surface roughness

models (Choudhury et al. 1979; Wang and Choudhury 1981; Wigneron et al. 2001) canopy

layers (Kirdiashev et al. 1979; Mo et al. 1982), atmosphere layers (Pellarin et al. 2003;

Liebe 2004), snow layers (Pulliainen et al. 1999) and better dielectric mixing models

(Wang and Schmugge 1980; Dobson et al. 1985; Peplenski et al. 1995; Mironov et al.

2004). In the active domain, important steps were the development of bare soil backscatter

models (Fung et al. 1992; Oh et al. 1992) and vegetation scattering models (Attema and

Ulaby 1978; Fung 1979).

Methodological problems, lack of validation data and limitations in computing have

frequently delayed the research progress to retrieve soil moisture from space observations

(Wagner et al. 2007a). But now, more than 20 years later, research in these fields has

resulted in several global and continental scale soil moisture datasets (e.g. Wagner et al.

2003; Njoku et al. 2003; Owe et al. 2008). Also, the launch of the soil moisture and ocean

salinity (SMOS) satellite is anticipated (Kerr et al. 2001). SMOS uses a synthetic aperture

radiometer operated in L-band and is the first satellite dedicated to measuring soil moisture

over land. In preparation for SMOS, research in the passive microwave domain has

accelerated and supporting field studies have resulted in various new insights. For example,

microwave emission from the soil surface can now be described with more physically

based soil transition models (Schneeberger et al. 2004) in stead of the existing empirical

descriptions (i.e. Choudhury et al. 1979; Wang and Choudhury 1981). At field sites, the

effect of the vegetation cover on the microwave observations has been studied intensively.

Saleh et al. (2006) discovered a strong contribution of litter and wet canopy on the

microwave emission and Schwank et al. (2005) demonstrated the effects of vegetation

structure change by studying microwave observations of clover grass prior and after a hail

storm. However, these studies are all based on L-band microwave observations at field sites

and the validity of these findings at global scale has yet to be shown.

For a better understanding of the capabilities of existing active and passive microwave

instruments and in preparation for SMOS, this paper compares two promising global soil

moisture data sets. The first soil moisture dataset was obtained from a low resolution

(50 km) scatterometer originally designed for measuring winds over the oceans. The

scatterometer product has been developed by researchers of the Vienna University of

Technology and is based on backscatter data acquired by the C-band (5.3 GHz) scatter-

ometer on board of the European satellites ERS-1 and ERS-2 (Wagner et al. 1999b). This

product has already been used in numerous research projects (e.g. Dirmeyer et al. 2004;

Pellarin et al. 2006; Parajka et al. 2006; Crow and Zhan 2007). The second soil moisture

data set has been developed jointly by researchers of NASA Goddard Space Flight Center

and the Vrije Universiteit Amsterdam (Owe et al. 2008). It uses low frequency AMSR-E

microwave brightness temperatures to obtain soil moisture. Both global products have

recently been tested in a series of validation studies. Table 1 gives a summary of these
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validation activities. The table also includes the validation activities on the official AMSR-

E daily Level 3 surface soil moisture product of the National Snow and Ice Data Center

(NSIDC; Njoku et al. 2003).

This table does not cover all vegetation types and climate regimes, but it clearly

shows a poor performance of the AMSR-E (NSIDC) product on both field and model

validations. AMSR-E (VUA-NASA) has the highest correlations with field observations

and the ERS product shows high correlations with a land surface model. Consequently,

we chose to focus our analysis on the two most promising products: ERS and AMSR-E

(VUA-NASA).

The two products are based on different sensor technologies and retrieval approaches.

Given the uncertainties pertaining to both products, a direct comparison does not allow

determining the exact quality of either one of the two products. Nevertheless, in regions

where both products exhibit the same statistics (in terms of correlation, seasonal- and

interannual variation), it is very likely these statistics represent the actual soil moisture

characteristics. This is because it is extremely unlikely that the same systematic errors are

present in both independent data sets, given the very different sensors and retrieval

approaches. Only if the error is directly related to the dielectric properties of the land

surface (e.g. salt plains), the statistics of both products would be compromised.

This paper describes briefly the theoretical background of each product followed by a

temporal and spatial analysis. The weaknesses and strengths of each product are discussed,

which will be valuable information for future microwave missions.

2 Global Soil Moisture Products

2.1 AMSR-E Soil Moisture

Satellite observations from the Advanced Microwave Scanning Radiometer (AMSR-E) on

board of the AQUA satellite are used for soil moisture mapping. The instrument measures

the microwave radiation emitted by the Earth’s surface in vertical and horizontal polari-

zation, expressed in terms of brightness temperature. AMSR-E provides the global passive

microwave observations at 6 different frequencies, including 6.9 GHz (C-band), 10.7 GHz

(X-band) and the 36.5 GHz (Ka-band). The spatial resolution of the footprint measure-

ments is 56 km at C-band, 38 km at X-band and 12 km at Ka-band. AMSR-E scans the

Earth’s surface in an ascending (1:30 pm) and descending (1:30 am) mode. In this study

we used the observations from the ascending mode.

Level 2A globally swatted brightness temperatures are obtained from NSIDC and the

retrieved soil moisture is resampled to a 0.25 degree grid in order to become spatially

consistent. AMSR-E was launched in May 2002 and is currently still active. Daily Earth

coverage is nearly 100% above and below 45 degrees North and South latitude, while mid-

latitudes experience about 80% coverage (Ashcroft and Wentz 2003; NSIDC 2006).

The brightness temperatures are converted to soil moisture values with the Land

Parameter Retrieval Model (LPRM; Owe et al. 2008). The LPRM is based on a microwave

radiative transfer model that links surface geophysical variables (i.e. soil moisture,

vegetation water content, and soil/canopy temperature) to the observed brightness

temperatures.

The thermal radiation in the microwave region is emitted by all natural surfaces, and is a

function of both the land surface and the atmosphere. The contribution of the atmosphere

to the observed brightness temperature may be expressed as

404 Surv Geophys (2008) 29:399–420
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TBp ¼ Tu þ exp �sað ÞTbp þ rpTd ð1Þ

where Tu and Td are the upwelling and downwelling atmospheric emissions respectively, sa

is the atmospheric opacity, rp is the surface reflectivity, and Tbp is the surface brightness

temperature. The subscript p denotes either horizontal (H) or vertical (V) polarization. The

surface brightness temperature is a function of the physical temperature of the radiating

body and its emissivity, according to

Tbp ffi espTs ð2Þ

where Ts is the thermodynamic temperature of the emitting layer, and esp is the smooth-

surface emissivity. The emissivity may be further defined as

esp ¼ 1� Rsp

� �
ð3Þ

where Rs is the smooth-surface reflectivity. The contribution of roughness on the micro-

wave emission is significant and can be described by different surface roughness models.

The LPRM uses the roughness model of Wang and Choudhury (1981). The emissivity is

directly related to the dielectric constant of the soil and this relation can be described with

the Fresnel relations.

As already mentioned earlier soil moisture retrieval from microwave measurements is

made possible due to the large contrast between the dielectric constants of dry soil (*4)

and water (*80). This contrast results in a broad range in the dielectric properties of soil–

water mixtures (4–40), and is the primary influence on the natural microwave emission

from the soil (Schmugge et al. 1986). The dielectric constant is defined as a complex

number, where the real part determines the propagation characteristics of the energy as it

passes upward through the soil, and the imaginary part determines the energy losses. In a

heterogeneous medium such as soil, the complex dielectric constant is a combination of the

individual dielectric constants of its constituent parts, and includes air, water, rock, etc.

Other factors which will influence the dielectric constant are temperature, salinity, soil

texture, and wavelength. The dielectric constant is a difficult quantity to measure on a

routine basis outside the laboratory, and values are generally derived from dielectric

mixing models that uses an estimation of the ratio rock/water/air based on the given soil

properties to calculate the dielectric constant (Dobson et al. 1985; Mironov et al. 2004;

Wang and Schmugge 1980). In 1998 Owe and Van de Griend compared the Dobson and

the Wang-Schmugge model and they concluded that the Wang-Schmugge model had better

agreement with the laboratory dielectric constant measurements. Consequently, the LPRM

uses the Wang-Schmugge model to describe the dielectric properties of the soil.

Figure 1a demonstrates the theoretical Fresnel relationship between the soil dielectric

properties and smooth surface emissivities at horizontal (H) and vertical (V) polarization

for the AMSR-E incidence angle of 55 degrees. To simplify the graph, the complex

dielectric constant of the soil moisture water mixture is expressed as an absolute value (|e|).
While the absolute magnitude of the soil emissivity is somewhat lower at horizontal

polarization, the sensitivity to changes in soil dielectrics and therefore in soil moisture is

significantly greater than at vertical polarization (See Fig. 1a). This subsequently forms the

basis of several approaches to use horizontal polarized brightness temperatures for soil

moisture retrieval (e.g. Njoku and Li 1999; Owe et al. 2001).

In addition, the relationship between soil dielectric constant and soil moisture is

expressed in Fig. 1b. This relationship is derived from the Wang-Schmugge model and

describes the relationship for a typical sand, loam and clay soil. The relationship is almost
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linear except at low moisture contents (See Fig. 1b). This non-linearity at low moisture

contents is due to the strong bonds which develop between the surfaces of the soil particles

and the thin films of water which surround them. These bonds are so strong at low moisture

levels, that the free rotation of the water molecules is impeded. This is often referred as the

bound water phase. Therefore, in a relatively dry soil, the water is tightly bound and

contributes little to the dielectric constant of the soil water mixture. As more water is

added, the molecules are further from the particle surface and are able to rotate more

freely. This is often referred as the free water phase. The subsequent influence of the free

Fig. 1 (a) Comparison of smooth surface emissivity and the soil dielectric constant according to the Fresnel
relations with an incidence angle of 55 degrees. (b) Comparison of the soil dielectric constant and soil
moisture for typical sand, loam and clay soils
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water on the soil dielectric constant therefore also increases. Soils with an high clay

content will generally have a lower dielectric constant than coarse sandy soils at the same

moisture content, since more water is being held in the bound water phase (De Jeu 2003).

Vegetation affects the microwave emission as observed from above the canopy in two

ways. First, vegetation will absorb or scatter the radiation emanating from the soil. Sec-

ondly, the vegetation will also emit its own radiation. These two effects tend to counteract

each other. The observable soil emission will decrease with increased vegetation, while

emission from the vegetation will increase. Under a sufficiently dense canopy, the emitted

soil radiation will become totally masked, and the observed emissivity will be due largely

to the vegetation. The magnitude of the absorption depends upon the wavelength and the

water content of the vegetation. The most frequently used wavelengths for soil moisture

sensing are in the L, C- and X-bandwidths (*1.4, *6 and *10 GHz respectively), with

L-band sensors having greater penetration of vegetation. While observations at all fre-

quencies are subject to scattering and absorption and require some correction if the data are

to be used for soil moisture retrieval, shorter wave bands are more susceptible to vegetation

influences. A variety of models have been developed to account for the effects of vege-

tation on the observed microwave signal, and range from empirical linear models (Jackson

et al. 1982; Ahmed 1995), to more physically-based radiative transfer treatments (Meesters

et al. 2005; Mo et al. 1982; Njoku and Li 1999; Wigneron et al. 1995; Wegmuller et al.

1995).

The radiation from the land surface as observed from above the canopy may be

expressed in terms of the radiative brightness temperature, Tbp, and is given as a simple

radiative transfer equation (Mo et al. 1982),

Tbp ¼ TSerpCp þ 1� xp

� �
TC 1� Cp

� �
þ 1� erp

� �
1� xp

� �
TC 1� Cp

� �
Cp ð4Þ

where TS and TC are the thermodynamic temperatures of the soil and the canopy respec-

tively, x is the single scattering albedo, and C is the transmissivity. The first term of the

above equation defines the radiation from the soil as attenuated by the overlying vegeta-

tion. The second term accounts for the upward radiation directly from the vegetation, while

the third term defines the downward radiation from the vegetation, reflected upward by the

soil and again attenuated by the canopy. The transmissivity is further defined in terms of

the optical depth, s, and incidence angle, u, such that

C ¼ exp �s=cos uð Þ ð5Þ
The optical depth is strongly related to the canopy density, and for frequencies less than

10 GHz, it can be expressed as a linear function of vegetation water content (Jackson et al.

1982). It was shown that at C-band, the above-canopy signal becomes totally saturated at

an optical depth of about 1.5 (x = 0.06) in the horizontal channel, although for practical

purposes, the sensitivity is already quite low above 0.75 (Owe et al. 2001).

The single scattering albedo describes the scattering of the soil emissivity by the

vegetation, and is a function of plant geometry. The scattering albedo may be calculated

theoretically (Wegmuller et al. 1995), however, experimental data for this parameter are

limited, and values for selected crops were found to vary from 0.04 to about 0.13 (Mo et al.

1982; Owe et al. 2001). Few values are found for natural vegetation. A 3-year time series

of the scattering albedo at both 6.6 GHz and 37 GHz was calculated for an African

savanna region (Van de Griend and Owe 1994). The scattering albedo exhibited consid-

erable variability during the period, although no relationship with vegetation biomass or

other seasonal indicators was observed.

Surv Geophys (2008) 29:399–420 407

123



While there is some experimental evidence indicating possible polarization dependence

of both the optical depth and the scattering albedo, these differences have been observed

mainly during field experiments and over vegetation elements that exhibit some uniform

orientation such as vertical stalks in tall grasses, grains, and maize (Wigneron et al. 1995;

Wegmuller et al. 1995; Kirdiashev et al. 1979). However, the canopy and stem structure for

most crops and naturally occurring vegetation are randomly oriented. Furthermore, the

affects of any systematic orientation exhibited by vegetation elements would most likely be

minimized at satellite scales (Owe et al. 2001)

Table 2 summarizes the different modules used by the LPRM. The model uses either C-

band or X-band for soil moisture retrieval. For this study four years (i.e. 2003–2006) of

descending C- and X-band soil moisture are used. The soil moisture products from the

LPRM represent soil moisture of the first centimeters and are expressed in volumetric

values. The product is validated at different regions of the world and compares well to field

observations (see Table 1).

In 2003 De Jeu performed an error propagation analysis on the LPRM for Nimbus 7-

SMMR C-band brightness temperature observations over five selected sites (i.e. three

agricultural sites in the U.S. and two semi arid sites in respectively Mongolia, and

Turkmenistan). The resulting standard deviation of the soil moisture varies between

0.03 m3 m-3 and 0.13 m3 m-3, with an average value of 0.05 ± 0.02 m3 m-3 and is seen

to be related to the vegetation optical depth (Fig. 2). The illustration reveals an increased

uncertainty in the soil moisture retrievals as the vegetation density increases. This is

consistent with theoretical predictions, which indicate that as the observed soil emissivity

decreases with an increase in vegetation biomass, the soil moisture information contained

in the microwave signal decreases.

The same figure also illustrates noticeably higher standard deviations at relatively low

optical depths. This phenomenon appears to be most pronounced within the lower range of

soil moisture values (0.0 and 0.1 m3 m-3). For example, within this soil moisture range the

standard deviations are predominantly between 0.04 and 0.13 m3 m-3. This may be due to

the reduced sensitivity in the dielectric constant in response to changes in the moisture

content at low moisture levels. Within this range, changes in soil moisture have only a

minimal effect on the soil dielectric.

A data mask was developed on the AMSR-E data products to eliminate those data cells

where data values were either meaningless due to frozen soil conditions, snow cover or

excessive vegetation, or were unreliable because the residual between observed and

modelled brightness temperature exceeds 0.25 K. Pixels with snow and frozen soils were

detected with a simple surface temperature algorithm (De Jeu and Owe 2003). Soil

emission is attenuated by the canopy and tends to saturate the microwave signal with

Table 2 Model configuration of
the land parameter retrieval
model (LPRM)

Components Module

Dielectric Mixing Model Wang and Schmugge (1980)

Reflectivity Model Fresnel Law

Roughness Model Wang and Choudhury (1981)

Temperature Model De Jeu and Owe (2003)

Canopy Layer Mo et al. (1982)

Vegetation Optical Depth Model Meesters et al. (2005)

Atmosphere Pellarin et al. (2003)
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increasing vegetation density, resulting in decreased sensor sensitivity to soil moisture

variations (e.g. Fig. 2). For this reason pixels with a vegetation optical depth exceeding 0.8

were removed.

The effect of vegetation density on the decrease of sensitivity to soil moisture variations

is inversely proportional to the wavelength and therefore higher at X-band than at C-band.

2.2 ERS Soil Moisture

The second soil moisture product is derived from C-band (5.3 GHz) backscatter mea-

surements acquired by the scatterometer on board of the European remote sensing satellites

ERS-1 and ERS-2. The ERS scatterometer has been operational for monitoring wind speed

and direction over the oceans. It is configured as a real aperture radar providing three radar

images of the Earth’s surface with a spatial resolution of 50 km and a swath width of

500 km (Lecomte 1998). The three images are acquired by three different antennas that

sequentially transmit micro-second long pulses towards the Earth’s surface from different

viewing directions. The antenna look directions are perpendicular to the ERS ground track,

45� forwards and 45� backwards looking. After reception of the return echoes, non-

coherent power detection is performed. The raw measurements are finally calibrated to

obtain images of the backscattering coefficient r0.
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Fig. 2 The standard deviation of the retrieved soil moisture as related to the vegetation optical depth. The
results are based on an error propagation analysis on Nimbus-SMMR C-band brightness temperatures (taken
from De Jeu 2003). Note the different relations for different moisture regimes
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Due to the mono-static measurement configuration and the coherent nature of the radar

signal, scatterometer measurements are very sensitive to the roughness of the illuminated

surface at scales comparable to the wavelengths. Over the oceans, wind near the water

surface causes small ripples to form which consequently enhance radar backscatter (Young

and Moore 1977). This increase in backscatter is modulated by the orientation of the

antennas relative to the wind direction, whereas the backscattering coefficient exhibits

maxima in the upwind and downwind directions and minima in the cross-wind directions

(McLaughlin et al. 1991). Therefore it is possible in a relatively direct manner to estimate

the speed and direction of ocean winds from the three backscatter measurements of the

ERS scatterometer. Also over land and ice, the backscattering coefficient is very sensitive

to the roughness of the surface. However, contrary to scatterometer observations over sea,

azimuthal modulations of the backscattering signal are generally weak. The exceptions are

areas where wind shapes the surface microrelief. Remy et al. (1992) discovered that over

Antarctica the minimum values of the backscatter coefficient are always observed in the

direction of katabatic winds. They explained this by the presence of sastrugi, which are

streamlined features formed on the snow surface in the wind direction. Over land, areas of

strong azimuthal anisotrophy can be found in sand deserts, where the prevailing winds

form the shape and microrelief of the sand dunes (Stephen and Long 2005; Bartalis et al.

2006).

Besides roughness, the strength of the echoes backscattered from rough surfaces

depends on how much of the incoming energy is absorbed by the surface material and how

much is reradiated by the induced conduction and displacement currents (Ulaby et al.

1982). In electromagnetic theory these material properties are described on a macroscopic

level by the dielectric constant which is a number relating the ability of a material to carry

alternating current to the ability of vacuum to carry alternating current. In general, one

finds backscatter to increase with an increasing dielectric constant of the surface material

regardless of the roughness characteristics of the surface. In ocean wind retrieval with C-

band scatterometers, the dielectric constant is not important because the dielectric constant

of the ocean water is fairly constant, only changing somewhat with water temperature and

ocean salinity (Schanda 1986). However, over bare or sparsely vegetated land surfaces

much of the variability of C-band backscatter measurements is the result of soil moisture

induced changes of the soil dielectric constant. This is the basis for using C-band scatt-

erometers also for the retrieval of soil moisture over land.

The soil moisture data sets used in this study has been derived using the retrieval

method proposed by Wagner et al. (1999a, 2003). Because of the current limitations of

bare soil backscatter models (Walker et al. 2004), the method rests upon a change detection

approach that tracks relative soil moisture changes rather than trying to estimate absolute

soil moisture values. Dry and wet reference conditions are identified based on multi-year

backscatter time series. In this way, the method indirectly accounts for spatial patterns of

surface roughness and land cover. For quantifying the effect of seasonal vegetation change,

the method makes use of the fact that the three scatterometer antennas look at the surface

from different incidence angles (Wagner et al. 1999b). Given that vegetation influences

backscatter at different incidence angles differently, temporal changes in backscatter due to

soil moisture and seasonal vegetation change can be modelled.

As a result, time series of the topsoil moisture content ms (\5 cm) are obtained. It is a

relative quantity ranging between 0 and 1 (respectively, 0–100%), scaled between zero soil

moisture and saturation.

This data set is available since 2002 from the website http://www.ipf.tuwien.ac.at/radar

and has been used in various studies (See Table 1). For example, Pellarin et al. (2006)
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validated the precision of this data set over a half-degree region in Southwestern France.

Based on a high resolution soil moisture simulation (1 km2) validated at the local scale, the

root mean square error of the ERS soil moisture data set was estimated to be 0.06 m3 m-3.

Using a novel data assimilation-based approach for the continental-scale evaluation of

remotely sensed surface soil moisture Crow et al. (2007) found this product over contig-

uous United States to be roughly on a par with the AMSR-E soil moisture product of

NASA (Njoku et al. 2003)—perhaps slightly better in heavily vegetated areas. However,

the results of Crow et al. (2007) suggest that it performs less well compared to an

unpublished soil moisture product derived by T. J. Jackson and X. Zhan of the U.S.

Department of Agriculture (USDA) Hydrology and Remote Sensing Laboratory based on

AMSR-E and MODIS data.

The ERS soil moisture data are available since 1991 up to the present, although data

coverage is variable in space and time due to conflicting operations of the Synthetic

Aperture Radar (SAR) on board of ERS-1/2. Also, after the failure of the last gyroscope of

ERS-2 in January 2001, the distribution of scatterometer data was temporarily discontinued

because no software was initially available to calibrate the backscatter data (Crapolicchio

and Lecomte 2005). A further event that had a strong impact on the Scatterometer mission

occurred at the end of June 2003, when the two on-board tape recorders became unusable.

That fact caused the loss of the global Earth coverage because the data could no longer be

recorded on-board. In response to this problem, ESA started building up a network of

ground receiving stations which provided coverage of Europe, North Africa, North

America and some other regions.

3 Evaluation

The scatterometer-derived surface wetness is compared with the AMSR-E C-band surface

soil moisture for the overlapping year 2006 over two regions with a sufficient ERS

observation density; North America and Europe/North Africa. Figure 3 gives an overview

of the average soil moisture distribution for 2006 of both the ERS and AMSR-E products

for these regions. While the scatterometer data is available on an irregular grid with 28-km

pixel spacing, both the C-band and X-band radiometer data are given on a regular 0.25

degree grid.

In general the soil moisture patterns are similar over the major part of the land surface

with dry regions in the Midwest of the US, Sahara, and the Arabian Peninsula. Wet regions

are detected in North eastern part of the US and Canada, and Northern Europe. In the U.S.

clear differences between ERS and AMSR-E can be found along the western part of the

lower basin of the Mississippi and in Northern Mexico along the border with the US. The

ERS soil moisture values in the lower basin of the Mississippi are low, which is highly

unusual because this is a heavily vegetated region with a lot of water bodies. The apparent

detection of a wet region in northern Mexico of ERS is also odd. This phenomenon has also

been observed in other desert regions. We speculate that this might be caused by volume

scattering in dry soil or by the reduced sensitivity of the dielectric constant at these low soil

moisture levels as indicated in Fig. 2. As Schanda (1987) discusses total backscatter from

rough soil surface is due to scattering at the air–soil boundary layer and volume scattering

from sub-surface soil layers. Because the penetration depth of microwaves rapidly

decreases with increasing soil wetness, the volume scattering contribution can in general be

neglected. However, for very dry soil conditions, this may not necessarily be a valid

assumption.
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Figure 3c clearly demonstrates the effect of Radio Frequency Interference (RFI) in the

C-band soil moisture product over the Eastern part of the US. Compare to the X-band soil

moisture map of the US, the C-band has a lot of small areas with unusually dry sites in the

eastern part of the US. These dry areas are caused by artificial disturbances and are most

likely caused by active radar instruments on the ground. These instruments can emit

electromagnetic radiation in C and X-band and can therefore disturb the measurement of

Fig. 3 Average soil moisture of 2006 for the United States and a large part of Europe and Northern Africa.
(a) and (b) are derived from ERS data, (c) and (d) from C-band AMSR-E data and (e) and (f) from X-band
AMSR-E. ERS soil moisture is expressed as a relative quantity ranging between 0 and 1 and scaled between
zero soil moisture and saturation. The units of AMSR-E soil moisture are volumetric and given in m3 m-3
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the natural microwave emission of the surface. These RFI’s always result in unusually dry

values in the AMSR-E soil moisture products. At C band RFI occurs mostly at or near

major cities or airports in the US, Middle East and Japan (Njoku et al. 2005). At X-band

RFI is more a problem in Europe, with some significant disturbances in England (UK),

Belgium, and a large part of Italy. RFI is a well known problem in AMSR-E data (Li et al.

2004) and there is currently research in progress at NASA Jet Propulsion Laboratory to

develop RFI filters (Njoku et al. 2005). Given a map of well known RFI regions the most

appropriate band can be selected.

In addition, the follow-up mission for AQUA-AMSR-E, the Global Change Observation

Mission for the observation of the Water cycle (GCOM-W) will carry a similar radiometer

with an addition channel in C-band (i.e. the 7.3 GHz channel) to correct for RFI (Imaoka

et al. 2006).

In Fig. 4 the correlation coefficient R values between ERS and AMSR-E soil moisture

of 2006 can be seen for the US and Europe/Northern Africa. In general, R is positive over

the major part of the land surfaces with maximum values even beyond 0.9 in the Sahel

region and North of the Black and Caspian Sea. The comparison of both C-band and

X-band with ERS show almost exact similar patterns. Low and negative values can be

found in the deserts and the more densely vegetated regions. This is confirmed by Fig. 5a,

Fig. 4 Correlation coefficient maps between ERS and AMSR-E soil moisture of 2006 for the United States
and a large part of Europe and Northern Africa. (a) and (b) show the correlation coefficient between ERS
and AMSR-E C-band soil moisture; (c) and (d) the correlation coefficient between ERS and AMSR-E
X-band
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which shows histograms of R between ERS and AMSR-E C band stratified according to

vegetation density. The vegetation density or vegetation optical depth (s) is a dimen-

sionless parameter that can be interpreted as being directly proportional to vegetation water

content (Jackson and O’Neill 1990; Jackson and Schmugge 1991) and was derived

simultaneously with the LPRM according to analytical approach of Meesters et al. (2005).

Figure 5b shows the spatial distribution of the vegetation density. The desert regions

(s\ 0.1) don’t show a specific correlation and have a median value of -0.08 ± 0.5. In

sparse to moderate vegetated regions (s = 0.1–0.5) ERS and AMSR-E soil moisture

compare well with a median value of 0.83 ± 0.4. For the more densely vegetated regions

(i.e. s = 0.5–0.6, and s[ 0.6), the correlation decreases to median values of 0.47 ± 0.4 to

0.33 ± 0.4, respectively. It is expected that the new satellite sensor onboard of the SMOS

mission will obtain more reliable soil moisture values from these regions because L-band

observations have a greater vegetation penetration.

The low correlation coefficients in the desert regions were due to both the low sensi-

tivity of the dielectric constant of the soil on soil moisture when it is dry and the scattering

volume anomaly. This affects the quality of both the ERS and AMSR-E soil moisture

products but in different ways, resulting in low correlation values. In spite of these issues,

both products reveal on average similar low soil moisture values in the desert regions. The

decrease in correlation for the more vegetated regions can be addressed to the increasing

contribution of vegetation on the microwave signal. Soil emission is attenuated by the

vegetation and as the vegetation cover becomes denser the sensitivity of the microwave

sensor to retrieve soil moisture information will subsequently decrease (i.e. Fig. 2).

In order to get a global overview of both products, a general statistical analysis was

applied on 9 year historical ERS data. The period January 1992–December 2000 was

selected, because for this period the ERS soil moisture product still had a full global

coverage. For AMSR-E the analysis is applied to four years (January 2003 till December

2006) of soil moisture retrievals as derived from descending C-band overpasses. Even

though the global statistics from these data sets represent different periods for each

product, we do expect to find similar patterns.

In Fig. 6(a, b) the global average soil moisture values are presented. Both products show

a similar distribution with low values in the deserts and semi arid regions and high values

in the northern latitudes and dense vegetated regions. A few regions deviate. Australia is

Fig. 5 (a) Histogram of correlation coefficient R between ERS and AMSR-E surface soil moisture for 2006
for four classes representing different vegetation densities; (b) shows the spatial distribution of these
different vegetation densities at a global scale
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for example less dry in the ERS data compared tot AMSR-E data. This is actually true

because Australia is recently subject to frequent droughts, and many areas have been

experiencing extraordinary drought conditions since 2000 (Liu et al. 2007). The AMSR-E

average map of Australia was derived from these dry years. Other deviated regions can be

found in China and the Kashmir region and are also due to dominant wet and/or dry years

during the 2003–2006 period. The differences of these regions may also be caused by the

effect of mountains. Mountainous regions can both affect the roughness and the incidence

angle, resulting in deviating soil moisture values.

Figure 6(c, d) shows the standard deviation of both ERS and AMSR-E. The standard

deviation is based on the daily observations and is an excellent descriptor of the average

seasonal variation. Both products have a very high spatial correspondence with high

seasonal dynamics in the Sahel region, India, Eastern part of North America, and Western

Europe. The seasonal variation in Eastern part of North America is more outspoken in the

ERS dataset. This is probably due to RFI problems in the AMSR-E dataset that ads to the

natural standard deviation (Njoku et al. 2005). The AMSR-E dataset shows more seasonal

variation in Eurasia, and in particular Turkey. The lack of seasonal variation in the ERS

dataset in these regions might be related to the backscatter anomaly when the soil is very

Fig. 6 General statistics of 9 years of ERS (a, c, and e; 1992–2000) and 4 years of AMSR-E C-band (b, d,
and f; 2003–2006) soil moisture data. (a) and (b) represent the annual average soil moisture value of
respectively ERS and AMSR-E, (c) and (d) the standard deviation, and (e) and (f) the inter annual standard
deviation. Please note that ERS soil moisture is based on a relative quantity ranging between 0 (dry) and 1
(saturated) and AMSR-E soil moisture is based on volumetric units (m3 m-3)
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dry. Compared to AMSR-E soil moisture this anomaly will results in higher soil moisture

values in the summertime and consequently in low standard deviation values.

Figure 6(e, f) describes the standard deviation of the average annual maps and is a good

descriptor to distinguish inter annual variation. These inter annual images are somewhat

comparable. However, it is important to realize that the analyses are applied for different

years and that we should not expect a lot of similarities. Nevertheless, comparable strong

variations are detected in Botswana, Eastern Australia, and Eastern Brazil. For all these

regions it is known that large scale oceanic circulations like El Nino Southern Oscillation

(ENSO), have a dominant effect on precipitation over land (Los et al. 2001). A recent study

just revealed a strong relationship between ENSO and satellite derived soil moisture in

Eastern Australia (Liu et al. 2007). These two maps show that similar relationships can be

expected in both the ERS and AMSR-E dataset.

4 Summary and Conclusions

Within the scope of future soil moisture assessment with ESA’s satellite mission of SMOS

an evaluation study has been applied on two existing and public available global soil

moisture products. ERS scatterometer surface wetness data was compared to the AMSR-E

soil moisture data set.

The ERS scatterometer surface wetness data was developed by the Technical University

of Vienna (Wagner et al. 1999a, b) and converted C-band backscatter measurements into

soil moisture values. The AMSR-E soil moisture data set was developed by collaboration

between NASA Goddard Space Flight Center and the Vrije Universiteit Amsterdam and

used the Land Parameter Retrieval Model to extract soil moisture values from C-band

passive microwave brightness temperatures. This study pointed out a strong similarity

between both products in sparse to moderate vegetated regions with an average correlation

coefficient of 0.83.

In this vegetation regime it is very likely that the data sets are of high quality, because it

is unexpected that the same errors are present in the data sets given the very different

sensors and retrieval approaches.

Low correlations were found in densely vegetated areas and deserts with average

correlation coefficient values of respectively -0.08 and 0.33.

The lower values in the vegetated regions can be explained by the limited soil moisture

retrieval capabilities over dense vegetation covers. Soil emission is attenuated by the

canopy and tends to saturate the microwave signal with increasing vegetation density,

resulting in a decreased sensor sensitivity to soil moisture variations. The upcoming launch

of SMOS with L-band radiometry might be able to tackle this issue because compare to C-

band, the L-band has a greater penetration of vegetation. It is therefore expected that

SMOS will obtain higher quality soil moisture products in these regions. This is not

entirely true for the derivation of soil moisture with L-band radar backscatter, because here

appropriate filtering and calibration of surface roughness parameters are needed to derive

reliable values (Walker et al. 2004).

Low correlations in the desert regions are due to the low variability of the signal. Also,

artefacts which may possibly be due to volume scattering effects in very dry soils may even

cause negative correlations between the scatterometer and radiometer measurements. The

volume scattering in dry soils causes a higher backscatter under very dry conditions than

under conditions when the sub-surface soil layers are somewhat wet. Nevertheless both

datasets show low soil moisture values in these regions.
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At a global scale the spatial correspondence of both products is high and both products

clearly distinguish similar regions with high seasonal and inter annual variations. We

concluded that the quality of both products was comparable.

Based on several differences in limitations of each product (i.e. RFI in AMSR-E, some

misinterpretation of ERS in desert regions) we think there is a significant potential to

combine both products into one superior soil moisture data set. This will be a logical step

forward in soil moisture research and might have a strong impact on the proposed future

NASA mission Soil Moisture Active Passive (SMAP), a planned satellite system with both

a scatterometer and a radiometer.

The questions of whether, where and how coarse resolution satellite data can be used

at finer scales are important because, within the next few years, only coarse resolution

(25–50 km) soil moisture data derived from spaceborne radiometer and scatterometer

systems can be expected to be operationally available (Wagner et al. 2007a, b). Global

soil moisture products are already available. For soil moisture retrieval at finer spatial

scales, Synthetic Aperture Radar (SAR) may be used. However, scientific and techno-

logical breakthroughs are still needed for the operational use of SAR (Kerr 2007;

Wagner et al. 2008).

Finally, it is envisaged that the above described methodologies will continue to provide

global soil moisture products from various satellite sensors, including the satellites dis-

cussed in this paper. During the operation of SMOS these products will be available for

initial soil moisture validation, especially for the semi-arid and moderate vegetated

regions. Compared to the existing soil moisture methodologies, SMOS is expected to

provide a more quantitative soil moisture product, which rules out a quantitative validation.

However, the temporal and spatial characteristics of the described global soil moisture sets

can be valuable for SMOS soil moisture validation.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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