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ARTICLE INFO ABSTRACT

Keywords: Sequentially linear solution procedures provide a robust alternative to their traditional incre-
Non-proportional loading mental-iterative counterparts for finite element simulation of quasi-brittle materials. Sequentially
Quasi-br-ittle r_naterials . linear analysis (SLA), one such non-incremental (total) approach, has been extended to non-
Sequentially linear analysis (SLA) proportional loading situations in the past few years. Although the process of damage propa-

Force-release method

Stress redistribution gation and localisation is often dynamic in nature, the simulation being quasi-static poses a

fundamental problem. This article gives an overview of the different approaches to address non-
proportional loading in SLA and other sequentially linear methods, and their corresponding re-
distribution methodologies to address the dynamic phenomenon. Furthermore, the inherent
differences between two such methods: SLA (total) and the Force-Release method (incremental),
and their suitability to structural continuum models involving non-proportional loading, are il-
lustrated using real-life concrete and masonry experimental benchmarks tested up to and beyond
brittle collapse. In each illustration, SLA is shown to enforce equilibrium during dynamic failure
by load reduction, using the intermittent proportional loading, while allowing for active damage
propagation resulting in a relaxed failure mechanism which manifests as snap-back(s).
Contrarily, the Force-Release method is shown to describe the collapse through states of dis-
equilibrium.

1. Introduction

Finite element (FE) models, in use for simulation of materials characterised by brittle failure like concrete and masonry, often
encounter problems related to snap back, bifurcation points, divergence or material softening leading to negative tangent stiffness
and the consequent ill conditioning of the formulation. Convergence issues, resulting from multiple integration points being pushed
simultaneously into strain softening, may lead to inaccurate results due to deviation of the simulation into alternative equilibrium
paths. Use of path following procedures like the Arc-length control method help but requires extreme care from the user to steer the
analysis (and possibly prior knowledge of crack locations). This gave rise to several alternate solution approaches which can generally
be classed into three categories: purely total approaches wherein unloading and reloading is done non-proportionally, purely in-
cremental approaches wherein the stress and loading history is explicitly tracked and finally a class of combined incremental-total
approaches. The Sequentially Linear Analysis (SLA) is a feature, as a part or whole, of all three aforementioned categories.
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Sequentially linear analysis, a total approach which has been in development from the early 2000s, has been successfully used for
structural nonlinear finite element analysis (NLFEA) in the past [1-3], and is a proven alternative for applications in masonry [4],
reinforced concrete [5] and glass [6]. It is an event-by-event strategy where one linear analysis is performed at a time. The integration
point with the least ratio of the allowable strength to the governing stress, i.e. the load multiplier, is identified as the most critical
one. The strength and stiffness of this integration point are reduced stepwise based on a discretised constitutive relation called the
saw-tooth law. Thereafter, the linear analysis results i.e. the displacements, forces, stresses and strains are scaled using the critical load
multiplier A.;. The method thereby avoids multiple integration points being pushed into failure, as in an incremental-iterative
approach, which is known to cause robustness issues. The constitutive framework is generally that of an orthotropic fixed smeared
crack model coupled with step-wise Poisson’s and shear reduction [5]. The procedure was, however, initially developed for a pro-
portional loading scheme, where the rate of change of all loads is the same.

The extension of SLA to non-proportional loading, closer to real life loading situations wherein loading history is important, was
complicated with respect to finding the critical integration point and the load multiplier. The simplest and most common case of non-
proportional loading is when there are constant loads on the structure like dead loads, precompression, overburden etc., and the
structure is subsequently subject to variable loads like earthquake or wind loads. It was proposed to express each global stress
component as a scaled combination based on the principle of superposition and to subsequently find a closed form solution for the
critical load multiplier [7]. The aforementioned approach of DeJong et al. [7] was restricted to plane stress formulations in the
smeared cracking framework, wherein principal stresses are considered for damage initiation and the resulting crack coordinate
system was established for the secondary cracking to follow. DeJong’s approach overlooked the redistribution that is necessary to
simulate the dynamic phenomenon' of cracking and crushing in the quasi-static setup of SLA, and allowed for temporary violation of
constitutive laws when no admissible load multiplier could be found. Thereafter, Van de Graaf [5] proposed the constrained max-
imisation approach for SLA in combination with a double load multiplier strategy to avoid violating constitutive laws as in the case of
DeJong [7]. The redistribution herein is generally implicit and in cases where there is no constitutively admissible load multiplier* for
the FE simulation, an intermittent proportional loading (IPL) is performed to scale the last successful load combination. This brings
about a redistribution such that the constitutive law is not violated anywhere in the FE model but implicitly allows for reduction of
the constant loads, at least temporarily. Subsequently, Chenjie et al. [8] proposed another alternative for non-proportional loading in
SLA for simple problems, which were referred to as weakly nonlinear, wherein the initial loads may not be very large or do not affect
the critical element determination significantly. Recently, Alfaiate et al. [9] proposed the Improved total analysis which also aims to
address the shortcomings of DeJong’s approach. Nevertheless, all the aforementioned approaches are total in nature, i.e. they do not
incrementally keep track of the loading history and in principle allow for reloading non-proportionally.

The ruptures under invalid stress fields in DeJong’s approach was also pointed out by Elias et al. [10], and the Force-Release
method [11,10], an alternative to the non-proportional loading problem, was presented. This was a purely incremental approach in
controlling the applied load, while the saw-tooth relation was used locally. It aimed to address the dynamic phenomenon due to a
damage event, that could lead to a series of subsequent failures in the vicinity of a damaged element, by redistributing the unbalanced
forces gradually. The approach could be seen as a case of dynamic relaxation which allows the system to pass through disequilibrium
states before returning to a static equilibrium. Since it could not handle snap backs because of not being able to alter the previously
applied load (incremental approach), the General method was proposed [12] of which the Force-Release and the load-unload
methods (like SLA) are extreme cases, depending on the time scales for redistribution.

Despite the active contributions of several researchers, the topic of non-proportional loading in SLA and similar methods continues
to be a debated one. This article gives an overview on the topic, illustrates the necessity for the stress redistribution in a quasi-static set
up to simulate the dynamic phenomenon of cracking/crushing and elucidates the differences between a purely-total and an incremental
approach for continuum finite element problems. Firstly, the constitutive framework and work flow of SLA is introduced in Section 2.
Thereafter, an overview of all sequentially linear and hybrid methods in literature to address the non-proportional loading problem is
presented in Section 3. Subsequently, in Section 4, the inherent differences between a purely-total and an incremental approach, SLA
with the double load multiplier strategy using a constrained maximisation approach and the Force-Release method respectively, are
illustrated using four case studies involving non-proportional loading. These include a prestressed beam example; two in-plane pushover
analysis examples of a slender cantilever masonry wall and a squat cantilever reinforced concrete (RC) wall; and finally a pushover
analysis of a 2D masonry facade with openings. In summary, Section 5 presents the conclusions of the work.

2. SLA methodology®
2.1. Constitutive model

The crux of the method is in discretising the uni-axial constitutive relation into an equivalent step-wise secant material law, also

! The word dynamic in this article, used at several locations, refers to the dynamic nature of the fracture process. It is reiterated that all studies are
performed under quasi-static assumptions with no inertial effects.

2 A constitutively admissible critical load multiplier refers to one which limits the stresses of each integration point in the FE Model, including the
critical one, to be less than or equal to the current strength of their respective saw-tooth laws, considering tension and compression criteria in all
relevant directions.

3 This section is reproduced from the authors’ previously published journal article [20]
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Fig. 1. (a) Ripple bandwidth type saw tooth constitutive law, with p the saw-teeth discretisation factor, for linear tension softening and (b) the work
flow for proportional loading conditions.
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known as the saw-tooth law. In principle, the material law is described as a series of successively reducing secant stiffnesses, starting
from the initial elastic branch with the original Young’s modulus of the material (E,;). Whenever there is breach of the stress limit in
an integration point and it becomes the most critical in the FE model, the next secant relation with reduced strength and stiffness
properties takes over from its previous secant branch. This process of reducing the stiffness upon attaining a stress limit in a single
integration point is repeated until the stiffness of the structure has vanished, which corresponds to a state of complete damage. An
overview of the approaches used thus far for saw-tooth approximations of typical tension and compression softening curves can be
found in Reference [5]. Fig. 1(a) depicts the ripple bandwidth type saw-tooth law for a linear tension softening relation.

These uni-axial saw-tooth laws are used in the orthotropic fixed smeared crack framework, wherein as soon as the principal stress
violates the allowable strength at an integration point, the isotropic stress strain relation o = De transforms into an orthotropic
relation as ong = Dygiense With the nst cracked coordinate system. The primary principal stress direction’s Young’s modulus and
strength are damaged according to the uni-axial saw-tooth law. In the event that normal stresses in the tangential directions (sec-
ondary or tertiary) violate the corresponding allowable strengths, caused by stress rotations or redistribution of stresses or application
of another load non-proportionally, damage is introduced in those directions similarly. So every integration point essentially requires
two uni-axial saw-tooth laws each for tension and compression in the 2-D stress state and 3 in the case of a 3-D stress state. This aside,
the shear behaviour in the fixed cracking model is represented using a variable stepwise shear retention function that takes into
account the reduction of shear stiffness with increasing damage in the corresponding normal direction of the cracked plane [13].
Also, the Poisson’s ratio is reduced at the same rate as the associated Young’s modulus. For further information on the smeared
cracking constitutive model used in SLA, the reader is referred to References [3,5,14,15]. Furthermore, SLA has been extended to
other constitutive models as well like discrete cracking, bond slip and coulomb friction models for interface elements. For detailed
information on these models, the reader is referred to Reference [5].

The studies in this work involve masonry and concrete examples. Masonry can be represented in FE models using micro, meso and
macro modelling approaches depending on the required level of accuracy (local or global behavior of the structure) [16]. Macro-
modelling, which considers masonry as a homogeneous continuum, is used predominantly in this work because it is advantageous
owing to reduced computational time and memory requirements as well as the user-friendly mesh generation. The material behaviour
of the continuum is then described using continuum damage or plasticity-based constitutive laws. The masonry examples in this study
are represented using a combination of the aforementioned fixed smeared crack/crush framework and discrete cracking interfaces,
where necessary. A simple Rankine-type failure surface is used for both crack and crush initiation in the continuum. This is followed
by linear tension softening and parabolic compression softening [17] relations for the orthogonal directions of fixed crack/crush
system. The effects of lateral confinement or cracking on the compressive behaviour are currently under investigation for the SLA
framework and therefore, discarded in this study. Concrete has also been represented using these formulations quite adequately thus
far [18,19] and is therefore used in this study.

2.2. Work flow - Proportional loading
Firstly the saw-tooth laws are defined as shown in Fig. 1(a). Thereafter, the finite element model is loaded by a unit value of the
total imposed load (L) which could either be forces or prescribed displacements (or a combination thereof). Subsequently, a linear

analysis is performed and a load factor can be calculated for each integration point as the ratio of the allowable strength to that of the
governing stress (considering the principal stress theory for a smeared fixed crack approach) as shown in the following.

C'-gov,i ( 1 )
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where j refers to the analysis step and i either denotes an integration point number for an undamaged situation or alternatively upon
damage, denotes events corresponding to tension/compression failure criteria along the 2 or 3 fixed damage directions, depending on
the stress state. agjovj is the governing stress component for integration point i, fl.j is the peak stress limit as defined by the current
secant branch of the saw-tooth law and /lcjm,i the associated load multiplier. To ensure that only one integration point reaches its peak
stress limit, the linear analysis is scaled with the minimum of all load factors, which is referred to as the critical load factor. The total

factor and the applied load are then defined as

crit crit, i crit,i

My =min@A) VYV Ay >0
Ll =2 L @)

The strength and stiffness of this critical integration point is then reduced based on the saw-tooth laws. Eventually, the results of the
linear analysis; the stresses, strains and displacements, are scaled using the critical load multiplier.

3. Existing approaches to non-proportional loading in sequentially linear solution methods

The total framework in an SLA type of method works well under proportional loading conditions, i.e. when loads acting on a
structure increase or decrease simultaneously. When there are non-proportional loads, some of which are constant over the structure
unlike loads which vary over time, problems arise due to considerable stress rotations and consequently finding the critical load
multiplier and integration point was not as straightforward anymore. The extension to non-proportional loading was intended to
make the procedure more suitable to wider applications and the various strategies that have been proposed to incorporate this aspect
are presented in this section. Additionally, all the incremental and combined incremental-total alternatives are reviewed in this section.
The sequentially linear class of methods have alternatively been referred to as non-iterative methods in literature [21]. However,
considering that SLA is a feature of all the methods, this class is referred to as sequentially linear methods hereon.

3.1. Total approaches

This class of sequentially linear methods relies on unloading and reloading a specimen, of all previously applied loads, while
undergoing damage propagation. In line with this nature, they are also alternatively referred to as load-unload methods in literature
[10,22]. Each of them trace the critical event differently but are all similar with respect to non-proportional loading.

3.1.1. DeJong’s method

The method of DeJong et al. [7] was proposed for the smeared cracking approach, involving tensile failure only, under plane
stress assumptions. For a system loaded by constant loads (L.,,) and a unit variable load (L.,), the global stresses are expressed as the
superposition of the stresses due to constant and the scaled variable loads (.o, and oy, respectively) as shown in Eq. (3). These are
then substituted in the expression for principal stress, to be limited by the tensile strength (f,,), as a function of the load multiplier for
the variable load (1).

0 = Geon + A Ovar 3)

01,2 (/1) = j{en (4)

The closed form solution for 4 of Eq. (4) corresponds to crack or damage initiation for an integration point. For already damaged
integration points, linear equations are solved along the orthogonal directions of the crack coordinate system, n and s, as shown in Eq. (5).

Onn (l) :ften,nn
Oss (1) :ften,ss (5)

The selection criteria for the critical load multiplier are based on the stress caused by the variable load. In case the variable load
causes tension, considering the crack opening effect, the associated A' is considered a maximum load multiplier (in which the
superscript j indicating the analysis step is dropped for readability). In case the variable load causes compression, considering the
crack closing effect, the associated A° is considered as a minimum load multiplier. The minimum of all A' from the integration points is
denoted 1);, and the maximum of all A° from the integration points is denoted 15,. In the scenario that A, > A%, A5, is chosen as
Acrit and the corresponding integration point is damaged based on the saw-tooth law ensuring that all other integration points adhere
to the constitutive law. However, when 1%;, < 15,,, no At can be selected such that all integration points in the finite element
model adhere to their respective constitutive relations. This situation hereon is referred to as limit point, wherein no constitutively
admissible® 1. can be found. This limit point is not to be confused with the traditional limit point encountered in an NLFEA response.
DeJong’s approach in such a situation proceeds forward by selecting 15, as the critical load multiplier. Therefore, it allows for
temporary violation of the constitutive law in one or more integration points, which may lead to rupture under invalid stress fields as
has been pointed out in References [5,10].

3.1.2. Constrained maximisation analogy
The constrained maximisation approach proposed by Van de Graaf [5] follows the basics of the non-proportional loading concepts
proposed by DeJong et al., with regards to the principal of superposition of stresses, the use of principal stresses for damage initiation
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and calculation of the closed form solution for the critical load multiplier. The difference lies in the selection criteria for the critical
load multiplier which is based on a constrained maximisation approach, wherein sets of admissible load multipliers are deduced.
Damage initiation involves solving quadratic (2D) or cubic inequalities (3D) in load multiplier as the stress state may be [14], while
damage propagation involves solving linear inequalities per direction of the orthogonal cracked system. The common global subset of
these local sets would then reflect the set of constitutively admissible load multipliers for the entire FE model, the maximum of which
is chosen as the critical load multiplier.

Lipl = Leon + ij_l Lyar 6)

crit
Li{)l = At Lipi 7)

In the event that this common subset is empty in a certain analysis step j, the approach runs into the aforementioned limit point. In
order to adhere to the constitutive law, Van de Graaf proposed the double load multiplier strategy which includes an intermittent
proportional loading (IPL), wherein the last successful load combination Ly, of step (j — 1) (Eq. (6)) is scaled proportionally as shown
in Eq. (7). It allows for redistribution by implicitly allowing for the reduction of the constant load and is deemed acceptable when the
redistribution is followed by full recovery of the constant load. For further information on the work flow for the constrained max-
imisation analogy, the reader is referred to References [5,14]. Chenjie et al. [8] also proposed an algorithm for the non-proportional
loading problem but confined their applications to problems wherein the determination of the critical load multiplier was not affected
significantly by the constant loads. This class of problems was referred to as weakly nonlinear problems.

3.1.3. Improved total analysis

The inherent feature of unloading and reloading non-proportionally is the main cause for the problems associated with non-
proportional loading and to supposedly overcome this, Alfaiate et al. proposed the Improved total analysis [9]. Considering a non-
proportional loading case of loads L; and L, applied sequentially, the improved total analysis proposes an initial load close to the last
successful applied load instead of reloading again sequentially as L, and L,. So at analysis step j the load is determined based on the
preceding load combination as follows.

Li-1 = L + A1 L, 8)

Li=L+W1'+AV)L, ©)

The term A%/ could be negative or positive but the total second load L, applied remains positive. In principle, the approach claims
to allow for partial unloading and thereby avoid reloading non-proportionally. However, it seems clear from a prestressed beam
example in their work that the stress history is not kept in memory. The stress state corresponding to each load is indeed recomputed
for the damaged state, the representation of using about 75% of the last successful load multiplier is only mathematical and the
approach does not truly adhere to the physical loading history like in an incremental approach. The approach is therefore purely total
and equivalent to the constrained maximisation analogy described above. Additionally, the approach does not indicate its take on the
limit point situation where there is no possible load multiplier. However, simultaneously Alfaiate et al. [9] proposed an incremental
version, allowing for partial unloading, called the secant-incremental analysis which is described in the following section.

3.2. Incremental approaches

3.2.1. Force-release method

Elias et al. [10] also pointed out that DeJong’s approach essentially did not incorporate the correct loading history and ad-
ditionally that an event may lead to a series of subsequent failures in the vicinity of a damaged element without increasing the
prescribed displacement or forces. These regions normally appear as instabilities in a displacement controlled experiment which look
smoothed out. However, in principle, these are snap backs which are referred to as avalanche of ruptures by Elias et al., driven by
redistribution of the elastic energy released from damaged elements into their vicinity. Addressing this fundamental problem in
simulating a dynamic phenomenon, like an avalanche of ruptures due to damage (cracking or crushing), using a quasi-static ap-
proach, Elias et al. [10] proposed the Force-Release method.

This method is a purely incremental approach wherein the non-proportional load path is discretised into a series of piece-wise
proportional loading paths. They proposed to discretise each load into a series of n, load vectors with magnitudes L,, with
u =1, 2, ..n,, ensured to be non-decreasing, so that the proper loading/stress history is taken care of. For force loads, the magnitude
is based on the euclidean norm of the prescribed forces. The variable t,, ranging from O to 1, represents how far the simulation has
proceeded along a certain load magnitude L, and is essentially a fraction of the prescribed load. It is expressed as in Eq. (12), where
AL, are reference load increments analogous to the unit load in SLA. The stiffness matrix, displacements, reactions and elements
stresses are denoted as K, d, R and o. Linear analyses are performed either with the reference load increments, which would re-
present regions of static equilibrium in the response, or with disequilibrium forces representing the intermediate redistribution
region. After each load increment or event, all quantities are updated with their incremental parts and stored.

The work flow is summarised as follows. To begin, linear analysis is performed with the reference load increment of the first load
AL, to compute the reactions AR, displacements Ad and stresses Ac. Thereafter the critical element, i, is deduced such that the
following holds.
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(g+ AAg) =f AVi # k(o + AAg) < f (10)

In Eq. (10), all quantities with A are their corresponding incremental values caused by the load increment AL; and f is the allowable
strength. Once the critical element is evaluated, a decision between damage & redistribution or proceeding to the next load’s in-
crement AL, is made based on the following (with appropriate values of the load sequence u).

L
0<A< (-t 4
\( u)ALu (11)
L
b=t + 1%
YT AL, (12)

If the inequalities of Eq. (11) are true, the critical element i is damaged. The stiffness matrix, reactions, displacements and stresses are
updated with their corresponding scaled incremental quantities. The variable ¢, is also updated with its scaled increment as shown in
Eq. (12). Subsequently, the system is loaded by disequilibrium forces, S = R — Kd that arise due to the previous event. This region
represents a state of disequilibrium and a new potential critical element is deduced based on Eq. (10). 0 < 4 < 1 indicates that the
unbalanced forces generated by the previous damage event i needs to be redistributed in its vicinity, by another rupture. The newly
identified critical element is damaged, and the stiffness matrix, reactions, displacements and stresses are again updated. Thereafter,
the system is loaded by the newly computed disequilibrium forces to determine if there needs to be yet another rupture due to the
redistribution. Thereby, the avalanche of ruptures or the so-called redistribution loop continues, as long as 0 < 1 < 1, through
several disequilibrium states before returning to static equilibrium. Once the avalanche finishes, the simulation moves to the next
load L, ;. On the other hand, if the inequalities of Eq. (11) do not hold, A = (1 — t,)(L,/AL,) and it indicates no damage possibilities
until the end of the load AL,. In other words, the system is in equilibrium and further external load is added. The internal state
parameters are updated and the simulation moves to the next load L,; similar to the continuation at the end of the avalanche.

The Force-Release method, in summary, uses the constitutive model as in SLA performing linear analyses with reference load
increments which are fractions of the total prescribed load. Each reference load increment corresponds to an analysis which may or
may not lead to damage. Upon damage, the stress from a damaged element is released gradually through a sequentially linear
redistribution loop wherein other elements may be damaged. The approach is suitable for non-proportional loading paths but cannot
handle snap backs because of its incremental nature. Additionally, although it is claimed that these imposed loads could either be
forces or prescribed displacements, for simulations involving global softening, the Force-Release procedure would work only under
prescribed displacements since imposed forces can’t reduce in magnitude.

3.2.2. General method

This approach is shown to be a generalisation, of which the load-unload and the Force-Release methods are extreme cases [12]. It
also overcomes the problems of non-observance of snap back in the Force-Release method and the lack of avalanche of ruptures due
to a single damage event in the load-unload method. The general method is based on the redistribution of stresses from damaged
elements as is done in the Force-Release method and the simultaneous scaling of external load characteristic of the load-unload
method.

The formulation involves defining two reference stress variables Ag, and Aoy corresponding to the external load increment and the
disequilibrium forces. The method is suited to either force or displacement loading or both (depending upon appropriate boundary
conditions). The total reference stress state is expressed as a sum of the two reference stress variables, enhanced by a slight mod-
ification of the external load by a parameter w, as shown in Eq. (13). @ determines the ratio between the effects of the external load
and the disequilibrium forces to the reference stress. Substituting this in the governing equation of the Force-Release method, Eq.
(10), the expression for the general method is deduced (Eq. (14)).

Ao = Acgs + wAoy, 13)
0+ A(Aos; + wAoy;)) =f A Vi # ki (0 + A(Aos + wAopk)) < f 14

The method now is general because the choice of the parameter w allows the process to be steered as desired. By setting w = 0, the
external load is kept constant which would be equivalent to the Force-Release method. It can also be led to alternate equilibrium
states by choosing values for w arbitrarily. If the w is set such that the redistribution finishes exactly when the external load di-
minishes to zero, the path would lead back towards the origin and this corresponds to the load-unload method. The choice of the
parameter to control the external load is direct while indirect controls, like the crack mouth opening displacements (CMOD) which
are often used to steer experiments, are also possible in this set-up of the general method. The approach in shown be suited to both the
proportional and non-proportional loads [12].

Simultaneously, Liu and Sayed [22] proposed another general approach which also treats the load-unload and Force-Release
methods as special cases. However, this is based on a simple linear interpolation of the trial displacement fields of both the methods
as against the scaled combination of the reference stress states due to the external load and residual forces as in Elias’ general
approach [12]. Elias claims that the latter seems a more reasonable formulation considering the underlying physics of the problem
since the displacement field interpolation lacks a strong physical motivation [12].

3.2.3. Secant-incremental analysis
In addition to the previously described Improved total analysis, a purely incremental procedure referred to as the secant
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incremental solution was proposed by Alfaiate et al. [9]. Inspired from the former, the latter approach allows for partial unloading
with the secant stiffness K/~ of the previous step thereby avoiding sudden load drops as in SLA. The load is kept close to the
previously applied load, a reloading secant-incremental stiffness K* is determined based on a heuristically evaluated local con-
stitutive D* matrix, and the minimum load factor is determined to reach the envelope using the defined stiffness relation. The new
secant stiffness K’ is then determined a posteriori. Additionally, the approach is shown to allow for non-secant unloading, without
allowing the damage to increase, by discretising the unloading path using intermediate multi-linear branches. Unlike the improved
total analysis, this approach is incremental in principle and therefore overcomes the non-proportional loading problem naturally. The
approach however is computationally intensive owing to the need of evaluating the global stiffness matrix twice per analysis and
there is also no proof that there always exists an admissible solution for 4.

3.3. Mixed formulations

3.3.1. Combined incremental-total approaches

Two combined incremental-total approaches were first presented by Graca-e-Costa et al. and were called the Automatic Method
and the NIEM (Non-Iterative Energy based method) [21]. Both approaches, in contrast to SLA, use multi-linear material laws to ensure
that all non-linearities are due to loading or unloading. The idea of both these methods it to employ a non-iterative incremental
solution and then to shift to the total approach intermediately when bifurcation points arise, to guarantee a unique admissible path
which may not be traced otherwise. The incremental part is controlled by increment of loads leading to largest energy release at the
structural level in the FE model, in line with the Energy release control proposed by Gutierrez et al. [23]. Locally, at the integration
point level, for a certain load increment AL, the evolution of the constitutive law is forced to follow the valid path, either positive
(loading) or negative (unloading), that ensures the release of the largest amount of energy. To begin with, the critical load factor 1,;
is evaluated in a trial step, which corresponds to reaching the nearest point in the multi-linear law for an integration point. Sub-
sequently, the true step ensuring ALy, = A¢irALgyiq is performed and the material stiffness is updated. This carries on as long as
bifurcation points do not arise. When they do, the total approach takes over. The stiffness update in each total step could be done in
two ways and accordingly two approaches were deduced.

In the first approach, referred to as the Automatic Method, similar to SLA, the secant stiffness is reduced by a predefined factor as in
the saw-tooth law. Subsequently, only one of the points becomes critical and reaches the original envelope while all others are on
their respective current secant paths. And after intermediately traversing through this region, the method shifts back to the incre-
mental approach using tangent stiffness matrix D. In the second approach, referred to as the NIEM (Non-Iterative Energy based method),
the a priori definition of the secant stiffness reductions is avoided. When an integration point encounters a bifurcation, a true
incremental step is performed, although it is incorrect. This is done to determine the new updated stiffness for all non critical points
that may be on the envelope or unloading, and compute their secant stiffnesses as:

gl

j-1 Jj-1
€ + Agtrial
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while keeping the secant stiffness fixed for the critical bifurcation points. This step in any case is deemed null and the total approach
is adopted with the computed secant stiffnesses. Eventually, the approach reverts back to the incremental part in a similar way to the
Automatic Method.

Although the material loading history is taken care of in the incremental part, the total part of both approaches still required a
non-proportional loading approach which in turn was based on DeJong’s approach of principle of superposition of stresses followed
by determination of load factors. However, the authors mention that the adopted procedure overcomes the development of new non-
linearities during the initial loading (non-proportional loading) due to the preferential usage of the incremental solution. Both
methods have been validated against several benchmarks concluding that the NIEM leads to more consistent results in terms of
energy dissipated, peak capacity and the consistency condition. Both methods were able to properly track the material loading history
as against a total method like SLA due to the inherent incremental nature. Additionally, no material parameters were to be reg-
ularised, as in SLA to ensure mesh objectivity, due to the use of multi-linear constitutive relations.

3.3.2. Incremental Sequentially linear analysis

The Incremental Sequential Linear Analysis (ISLA) was proposed recently [24], in which an incremental procedure is used in
combination with internal iterations intermittently. In contrast to the traditional incremental-iterative methods, this approach uses
the secant stiffness relation globally and therefore the solution path will have jumps similar to the combined incremental-total
approaches. The imposed load is either force or displacement controlled. In general, for a non-proportional loading case with two
loads L; and L,, for each load step the loading and stress history in stored because of the incremental nature. Three variations namely:
load control, damage control and load & damage control were proposed depending on the method of stiffness reductions and how the
corresponding loading factors 4,, 4, are treated.

In the load control, the 4; corresponding to L, is fixed for all load steps (once fully applied) and the 4, corresponding to L, is fixed
in a certain load step j — 1. A critical element is identified based on the ratio of the strength to the total governing stress accumulated
thus far. For the subsequent step j, the second load factor 4, is increased and if the stress in the critical point exceeds the allowable
strength, damage is increased based on the saw-teeth definition and the stiffness matrix is updated. The displacements and other
system variables of the previous step j — 1 are restored and the internal forces are calculated to check for equilibrium. If not, damage
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is again induced to the same structure-state as step j — 1, for the same or another critical element, until the algorithm reaches a
temporary equilibrium states using Newton-Raphson iterations. In the damage control method, once a critical element is damaged,
the damage is kept constant and the load multiplier 4, corresponding to L, is repeatedly reduced based on a constant reduction value
or a function, based on N-R iterations to arrive at an equilibrium state. In the load & damage control method, once a critical element is
damaged, the damage is also varied (in the same or different critical elements) along with the load multiplier 4, corresponding to L,,
which is also iteratively reduced, to arrive at an equilibrium state.

The load control method in ISLA can be seen as an equivalent of the Force-Release method which also traverses through dis-
equilibrium states to arrive at equilibrium. Additionally, they are similar in the sense that post peak softening behaviour can be
realised only if the imposed loads are prescribed displacements.

3.4. Discussion on the methods

The sequentially linear approaches thus differ on two main accounts. Firstly, the application of load and the tracking of its history
is different under a non-proportional loading situation. The class of total approaches unload and reload non-proportionally. However,
as long as the current damage situation allows for all previously applied loads (or the so called constant loads) to be applied without
new failures, the constant loads are truly kept constant and this can be interpreted as unloading only until the beginning of the
variable load. When the limit point situation arises, previously described in Section 3.1, the constant load could potentially cause
premature failure problems which brings about the need for an explicit redistribution. Of all the aforementioned total approaches,
only the constrained maximisation analogy [5] provides an alternative in such a situation by allowing to unload and reload from the
beginning of the constant load. Or, in other words, an intermittent proportional loading is performed to allow for redistribution by
scaling the last successful load combination proportionally and potentially reach a damage state which allows for full recovery of the
constant loads. In case of the class of incremental methods, the inherent incremental nature keeps track of the loading history thereby
avoiding the aforementioned problems with regards to non-proportional loading.

Secondly, the avalanche of ruptures or multiple failure events are addressed differently by both classes of approaches. In case of
the total approaches like SLA, these manifest as sharp snap backs or sudden decay of loads. SLA brings about an instantaneous
stiffness reduction in the damaged element thereby relieving it of the stress. However, the neighbouring elements that are almost
loaded up to their respective strengths are unable to take over the released stress. In such a scenario, the SLA set-up allows for a
reduction in load factor as the only option to redistribute which brings about a snap back in the response. This happens multiple times
inducing failures in the surrounding elements before allowing for a full recovery of the load factor close to the true equilibrium path.
While in the case of the incremental approaches like the Force-Release method, the load is kept constant and the avalanche of ruptures
are achieved in states of disequilibrium using a sequentially linear redistribution loop. Herein, the unbalance forces that may arise
due to a damage event are gradually reduced. Thus, both the approaches address the time scales of redistribution differently as has
been previously pointed out by Liu and Sayed [26]. It is understood that when the internal forces of the damaged elements are
released instantaneously, the total methods are preferable. Contrarily, when the internal forces are released gradually, the elemental
failure sequence becomes crucial, and the Force-Release method becomes suitable. Liu and Sayed [26] conclude from their illus-
trations with lattice models that damage evolution in the Force-Release method ensures compatibility of controlled displacement
loadings throughout the analysis and that the area under the force displacement curve is the exact amount of work done by the
external loads and the released internal forces (Table 1).

With respect to constitutive relations, incremental formulations allow for discretised laws with elastic stiffnesses for evolving stress
points. This means unloading under arbitrary stiffness is possible, which allows for plastic strains unlike the total approaches which
rely purely on damage mechanics. In other words, total approaches unload to zero-stress-strain state. Furthermore, such modified
constitutive models would make it possible for incremental approaches to be applied to cyclic loading problems.

In the current study, it is sought to understand the differences between both classes of approaches at a structural level using
simulations involving continuum elements. The validity of unloading and reloading from the beginning of the constant loads, upon
reaching the limit point, as in the constrained maximisation approach in the SLA is looked into further in this study. This mechanism
of redistribution is compared to the gradual static stress redistribution brought about in a Force-Release simulation and conclusions

Table 1
Constitutive modelling and applications of the discussed approaches.
Method Constitutive models & illustrations
Dejong’s method [7] Continuum models — Smeared fixed crack model and discrete cracking interfaces using uniaxial saw-
teeth relations
Force-Release (F-R) method [10] Lattice models — elastic brittle relations, Continuum models - Smeared rotating crack model [25]
General method [12] Lattice models with meso-level internal definition — Mohr Coulomb surface with tension cut-off
Constrained maximisation analogy [5] In addition to the illustrations by DeJong [7], bond-slip relations for reinforcement, coulomb friction
model for interfaces
Automatic method [21] Similar to the illustrations by DeJong [7] except using uniaxial multi-linear relations
NIEM method [21] Similar to the illustrations by DeJong [7] except using uniaxial multi-linear relations
Improved total analysis [9] Mixed mode traction based model — discrete cracking
Secant-Incremental analysis [9] Mixed mode traction based model - discrete cracking
Incremental sequentially linear analysis (ISLA) [9] Continuum & discrete models — with softening, plasticity etc.
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on suitability of either methods are drawn. For simplicity, the constrained maximisation variant of SLA is simply referred to as SLA
hereon.

4. Comparative study: Sequentially Linear Analysis vs Force-Release method for non-proportional loading

The mechanism of stress redistribution in a total approach and its incremental counterpart is compared in this section using
structural continuum finite element models. All FE simulations in this study are performed in the commercial FEA package DIANA
and under 2D under plane stress assumptions. The constitutive model is that of the smeared fixed crack/crush model using a simple
Rankine-type failure surface for crack/crush initiation. The shear retention is damage based [13] and the uniaxial saw-tooth relations
are of the ripple band type illustrated as in Fig. 1(a) with p the saw-teeth discretisation factor, unless stated otherwise. In the presence
of interfaces, similar ripple band saw-teeth relations are used to simulate discrete cracking and for reinforcements, an elasto-plastic
saw-teeth relation is used to simulate yielding. The latter is kept damage based as in Reference [5] for suitability to SLA. Alter-
natively, for the F-R, the discretised elasto-plastic constitutive law can be made with elastic stiffnesses to attain true plastic unloading
but this is not included herein. Pure sliding failures, which are possible in typical masonry mechanism, may not be relevant for
masonry walls which fail in rocking like in Section 4.2.1. But the facade study in Section 4.3 which involves the diagonal failure
mechanism in piers requires it in principle. This is possible using a meso-model in combination with coulomb friction interface
formulation for SLA [5] but, considering the scale of the facade, the study is limited to the orthogonal fixed cracking approach under
macro modelling as previously done in Reference [15].

The loading condition for all the chosen examples is non-proportional and is composed of two stages: firstly a precompression or
prestress is added as force loads, followed by a second stage of imposed/prescribed displacements. The force loads and prescribed
displacements are depicted in orange and green/yellow colours respectively in the FE model descriptions for consistency.

4.1. Prestressed beams

4.1.1. Experiment

Several three-point bending tests were performed on plain concrete beams in an experimental campaign by Zhao et al. [27]. These
were previously analysed using SLA with plane stress assumptions [5]. Of these beams, SG2-B1, of span 600 mm, 150 mm depth, and
120 mm thickness is chosen as reference for this study. The beam is tested in three point bending with a notch of depth 60 mm and
2 mm width and a schematic representation of the experiment is shown in Fig. 2(a). The middle of the beam is in pure bending and if
such a beam were to be subject to axial loads (purely for an academic purpose) like a prestress force, the loading would become non-
proportional. The effect of compressive axial loads will increase the capacity of a beam and has been a proven benchmark study for
testing non-proportional loading strategies in SLA thus far [7]. This simple case study is used to compare the performance of SLA and
the Force-Release method.

4.1.2. Finite element model

The simply supported beam is modelled with geometry as shown in Fig. 2(a) except that the notch width is assumed to spread over
an entire element length. The FE model is made using linear 4-noded iso-parametric plane stress elements, with 2 translational
degrees of freedom per node and a regular 2x2 Gaussian integration scheme. All elements are square and approximately 10 mm in
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Fig. 2. (a) Schematic diagram of the 3-point bending test on beam SG2-B1 by Zhao et al. [27], (b) FE model of the set-up with axial force loads and
prescribed displacements for the bending, and (c) load-displacement curves for the 3-point bending case with and without axial loads simulated as in
the SLA and Force-Release methods.
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Table 2

Modelling and material parameters — prestressed beam.
Parameters Values
Young’s Modulus E, [GPa] 16
Poisson’s ratio v, 0.15
Tensile strength f; [MPa] 3.78
Mode I fracture energy G} [N/mm] 0.224
Tension softening relation Linear
Saw-tooth discretisation factor (p) 0.15
No. of saw teeth 16
Compressive behaviour Linear elastic
Crack bandwidth h [mm] 10
Shear retention factor 8 1074

size. Concrete has been modelled as a linear-elastic material everywhere except the notched column of gray coloured elements, see
Fig. 2(b), where all the physical non-linearity is lumped (only tensile). A linear tensile softening saw-tooth law with material
parameters mentioned in Table 2 is used. Two cases are considered in this section. First, the three point bending test of SG2-B1 beam
as in the experiment is simulated. Since the notch extends over one whole linear element, the point load is assumed to be equivalent
to two prescribed displacements applied either side of the central element at the top of the notch as shown in Fig. 2(b). Second, the
beam is firstly assumed to be subject to a uniform compressive prestress, of magnitude 0.42 MPa, at the ends of the beam before
proceeding to the three point bending.

4.1.2.1. Results & discussion. The force displacement curves from SLA and the Force-Release method, for the first case without axial
loads, match up well with those from the experiment. Furthermore, both simulations show the propagation of the tensile crack
through the height of the notch resulting in the reduction of effective cross section of the beam. This behaviour results in loss of
flexural capacity and eventually is observed as the global softening in the force displacement curves shown in Fig. 2(c). And similar to
the case without axial loads, the SLA and Force-Release response are quite similar for the non-proportional case of axial loads
followed by the bending load. The presence of axial loads like the compressive prestress tends to delay the cracking and consequently
results in a higher capacity.

However, there are small variations between SLA and Force-Release in both sets of responses with and without the prestress force.
The SLA shows small snap backs in the response which is indicative of the load-unload nature of the approach and the way multiple
failure events are handled. Since one event occurs at a time, a potential event in a neighboring integration point occurs only by
allowing for a reduction in the load in the next linear analysis. Conversely, in case of the Force-Release method, vertical drops are
observed in the force displacement response rather than snap-backs. Since the previously applied load cannot be modified, for a
constant prescribed displacement, an additional event or more occurs due to the gradually released unbalanced forces due to the
previous event. This is the previously described avalanche of ruptures denoting a region of disequilibrium. Additionally, since the
constant load i.e. the compressive axial load isn’t too high, SLA doesn’t run into the intermittent proportional loading and the
associated redistribution. That is, SLA could keep the prestress load (constant) throughout the entire simulation, while fully satisfying
the constitutive laws. This case study shows the inherent difference in load application between the two approaches. The small
differences in element failure sequence is not very apparent due to the problem definition, wherein the overall final crack is confined
to a single band of the elements, and is therefore not deliberated upon.

4.2. Pushover analysis of walls

4.2.1. Slender masonry wall

4.2.1.1. Experiment. TUDCOMP-20 was one of the several quasi-static in-plane cyclic tests performed recently at the TU Delft
laboratories. This is part of an extensive experimental campaign to characterise the response of unreinforced Dutch masonry
buildings to induced seismicity [28]. The specimen was a calcium-silicate brick masonry wall, roughly 2.7 m high and 1.1 m long,
with a thickness of 102 mm. The wall was tested under cantilever boundary conditions, i.e. it was clamped at the bottom and free to
rotate at the top. Firstly, an overburden stress of 0.63 MPa is applied on the wall through a combination of actuators and a steel beam
as shown in Fig. 3(a). This load is maintained constant throughout the experiment while allowing for the rotation of the top of the
wall. Subsequently, a cyclic lateral displacement is applied to the top of the wall using a horizontal actuator connected to the top steel
beam. This wall exhibits pure rocking movement and for large displacements, splitting cracks were observed at the bottom-left and
bottom-right corner of the wall, see Fig. 5(a). This was followed by the phenomenon of toe crushing when the base shear force
dropped substantially for the same imposed displacement, starting at the red dot in the experimental response, see Fig. 3(b).
Considering the scope of this article, the explosive failure in this non-proportionally loaded experiment makes for an interesting case
to be investigated using the SLA and Force-Release methods. The explosive failure led to instability of the wall and its eventual
collapse (See Fig. 5). For further information about the experiment, the reader is referred to Reference [29].
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Fig. 3. (a) Experimental set-up to apply precompression followed by an imposed cyclic lateral displacement to the top of a cantilever wall and (b)
the experimental response of base shear against the net top horizontal displacement, additionally showing the point of onset of collapse [29].

4.2.1.2. Finite element model. Since cyclic loading applications are not yet possible in the SLA framework, the loading is kept
monotonic and the results from the simulation are compared to the backbone/envelope curve of the experimental cyclic response as
shown in Fig. 4(b). The finite element model of the wall, as shown in Fig. 4(a), is made with 4-noded iso-parametric plane stress
elements, roughly 55x55 mm in size, with linear interpolation shape functions and a 2x2 Gaussian integration scheme. The
compressive non-linearities are in these continuum elements and are described by a smeared fixed crush framework, while behaving
linearly in tension. The uniaxial saw-tooth compressive softening law is of a parabolic type [17] with material parameters as
described in Table 3. Additionally, a zero-thickness interface (shown in green in Fig. 4(a)) is provided at the bottom of the wall to
simulate the discrete cracking leading to the rocking behaviour. This is made using 2 + 2 noded interface elements, roughly 55 mm in
length each, with linear interpolation shape functions and a 2 point Newton-Cotes integration scheme. The tensile non-linearities in
these interface elements are described using a linear tension softening type saw-teeth law with material parameters mentioned in
Table 3. The FE model also includes another row of continuum elements at the top of the wall (not shown herein) with stiffer
properties behaving linear elastically. This is to ensure the cantilever boundary conditions. The bottom of the wall is fixed as shown in
Fig. 4(a). The overburden load is applied first as force loads at the top edge of the wall and subsequently, a prescribed displacement is
applied at the left top corner. The assumption in the FE model to separate tensile and compressive non-linearities into the discrete
cracking interface and the continuum plane stress elements is done to simplify the problem while accurately capturing the failure
mode.

4.2.1.3. Results & discussion. Firstly, both the SLA and Force-Release simulations exhibit the rocking behaviour, which is localised in
the discrete cracking interface, followed by compressive softening in the toe region of the wall. This leads to dissipation of energy
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experimental backbone curve - including the corresponding points during the collapse mechanism, and (c) evolution of the precompression load
(normalised) during the simulations.
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Fig. 5. Failure pattern of masonry wall in the TUDCOMP20 experiment before collapse (left) and after collapse (right) [29].

Table 3
Modelling parameters - TUDCOMP20: identifed by sensitivity studies based on material properties obtained from the experiments [28,29].
Material Parameters Continuum Interface
Masonry Young’s Modulus E, [GPa] 4.972 -
Normal & Shear stiffness [N/mm?] - 104
Poisson’s ratio v, 0.16 -
Tensile strength f, [MPa] - 0.13
Mode I fracture energy G} [N/mm] - 0.15
Saw-teeth discretisation factor (p) - 0.1
Tension softening relation - Linear
Compressive strength f;, [N/mm?] 6.35 -
Compressive fracture energy G, [N/mm] 20 -
Compressive softening relation Parabolic -
Saw-teeth discretisation factor (p) - 0.1
Crush bandwidth h [mm] 55 _
Shear retention factor 8 Damage-based [13] 102
STEEL BEAM Young’s Modulus E, [GPa] 210 -

resulting in a rather ductile response as shown in Fig. 4(b). Both SLA and the Force-Release simulations are rather identical but
showcase minor differences as previously observed in the prestressed beam case. However, the responses show a good qualitative
agreement to the experimental backbone curve until the collapse mechanism begins.

The explosive failure is captured adequately by both methods, but the mechanism of redistribution differs. The point of onset of
the mechanism is denoted by a green mark in the Fig. 4(b) and it occurs around the same imposed displacement for both simulations.
The damage patterns are also identical as seen in Fig. 6(a) where DmSS is the amount of damage accumulated in the discrete cracking
interface and the crushing continuum. DmSS ranges from O to 1, which correspond to undamaged and fully damaged conditions. It is
clear that the two elements at the bottom right corner of the wall are fully crushed and that all interface elements to the left of this
region are completely cracked, leaving a very tiny portion which effectively supports the wall. The ensuing mechanism is described
by both approaches differently. On the one hand, SLA runs into the limit point situation described previously in Section 3.1.1, where
there is no constitutively admissible critical load multiplier. The intermittent proportional loading (IPL) commences and the last
successful load combination is scaled proportionally. Firstly, the IPL occurs a little before the onset of collapse as well but recovers
back to the conventional non-proportional loading. However, once the collapse begins the IPL never recovers which is evident from
the amount of precompression, the first load applied (constant), that remains on the structure in the rest of the simulation, see
Fig. 4(c). The IPL implicitly reduces the constant load, thereby describing the entire dynamic brittle collapse mechanism while
maintaining equilibrium. On the other hand, the Force-Release method runs into an avalanche of ruptures while going through
disequilibrium states. Since the previously applied load cannot be altered, for the same imposed displacement and the full value of
precompression, the Force-Release method attempts to allow for redistribution due to successive failure events by gradually releasing
the stresses. The ongoing failure is therefore captured differently by both approaches as seen in Fig. 6(b).
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Fig. 6. Failure patterns of SLA & Force-Release simulations of the TUDCOMP20 experiment: (a) at the onset of collapse and (b) during collapse.

The difference between the approaches in describing collapse may be interpreted as two extremes of the time scales for a dynamic
redistribution process [12]. SLA in this situation is essentially assuming that the loading equipment is fast enough to react to the
collapse mechanism, alter the load and consequently release the stresses quickly to avoid further failures. This is clear as the eventual
failure pattern additionally only involves the crushing of the tiny effective portion supporting the wall before the onset of collapse.
The crush zone appears to be more realistic, in a quasi-static sense, wherein SLA gives room for damage propagation while quasi-
statically releasing the loads. The Force-Release method on the other hand stays true to the displacement controlled experiment, and
realises the full collapse by gradually releasing the stresses in a sequentially linear redistribution loop. Although the process is
dynamic, the Force-Release method effectively neglects all inertial forces. Since vertical equilibrium is not possible anymore the
simulation could be interpreted to have been completed and the wider crush-zone is indicative of the instability. In summary, both
approaches adequately describe a real non-proportionally loaded experiment involving true brittle collapse, in terms of the failure
patterns and the eventual mechanism, differing only in their respective approaches to the latter.

4.2.2. Squat reinforced concrete wall
4.2.2.1. Experiment. The third benchmark is a reinforced concrete shear wall, named SW13, from the experiments of Lefas et al. [30].
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Fig. 7. (a) Experimental set-up of the shear wall test by Lefas et al. [30] and (b) geometry and reinforcement detailing of the wall (images
reproduced from Reference [30]).

13



M. Pari, et al. Engineering Fracture Mechanics 230 (2020) 106960

@ Precompression

SAAVA S AYAVAVAVAYAVAV NAVY
A

SJUSUIODIOJUISL POPPOqUIE

Continuum Elements - Concrete
. - Tension & Compression nonlinearities

[ ]- Linear Elastic

Fig. 8. (a) FE Model of the RC shear wall test (reinforcements in yellow) and (b) the final failure pattern of the experiment [30].

Fig. 7 shows the experimental set-up, the geometry and reinforcement layout of the wall. The vertical and horizontal reinforcement
bars were of 8 mm and 6.25 mm diameter respectively. Additionally, mild steel stirrups of 4 mm diameter were used to confine the
wall edges. An axial load of 355 kN was first applied through a spreader beam to the top edge of the walls, and the horizontal load
was then applied to the header beam at a rate of 0.04 kN/s. The crack progression began with the first flexural cracks near the bottom
third of the tensile edge at around 15% of the horizontal load (49.5 kN). At 40% of the horizontal load (130 kN) the first inclined
crack appeared and simultaneously the flexural cracks had already spread at a slight inclination within the wall web. This was
followed by growth in the flexural and inclined cracks, almost reaching the compressive edge. The first yielding of the tensile
reinforcement occurred at 75% of the horizontal load (250 kN) which was followed by the failure. Fig. 8(b) shows the failure that
occurred by way of near-vertical splitting of the compressive zone at a peak load of 330 kN. For further information on the
experiment, the reader is referred to Reference [30].

4.2.2.2. Finite element model. Fig. 8(a) shows the discretised model of the shear wall used in the SLA and the Force-Release
simulations. 6 noded iso-parametric triangular continuum elements of 75 mm, with quadratic interpolation shape functions and a 3-
point Gaussian integration scheme, were used. Reinforcements are modelled as embedded units and are shown in yellow in Fig. 8(a).
The constant vertical load of 355 kN was applied as two uniformly distributed loads over a distance of 125 mm on the top edge of the
wall, to replicate the load application to the spreader beam as in the experiment. The horizontal load was applied to the right side of
the header beam at mid-height as a prescribed displacement. The foot of the wall was not modelled because its influence was found to
be negligible [32]. Instead, the base of the wall was fixed with translational restraints in both directions to model the clamped wall
base. Table 4 shows the material parameters used in the simulations for concrete, according to the fib Model Code 2010 [31], and
reinforcement properties obtained from the experiment.

Table 4
Modelling parameters — RC Shear-Wall: identified by studies from the work of Reference [32,33].
Material Parameters General Compression Tension
Concrete Young’s Modulus E, [GPa] 28.537 - -
Poisson’s ratio v, 0.16 - -
Strength f., f; [MPa] - 34.5 2.67
Fracture energy G, G} [N/mm] - 34.5 0.138
Saw-teeth discretisation factor (p) - 0.1 0.1
Softening relation - Parabolic Linear
Crush/Crack bandwidth h [mm] - 75 75
Shear retention factor 8 - Damage-based [13] Damage-based [13]
Reinforcements Young’s Modulus E, [GPa] 210 - -
Saw-teeth discretisation factor (p) - 0.1 0.1
Ultimate strain - —0.02 0.02
8 mm ¢ Yield Strength [MPa] - —470 470
6.25 mm ¢ Yield Strength [MPa] - —520 520
4 mm ¢ Yield Strength [MPa] - —420 420
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Fig. 9. (a) The base shear vs top displacement response for SLA & Force-Release methods compared against the experimental response — including
the corresponding points during the collapse mechanism, and (b) evolution of the precompression load (normalised) during the simulations.

4.2.2.3. Results & discussion. The results from the SLA and Force-Release simulations for the RC shear wall test, shown in Fig. 9,
exhibit the decisive failure as a drop of load. Although the response from both the approaches is stiffer than the experiment, have a
delayed onset of cracking and exhibit a lower peak load, the qualitative behaviour is quite consistent with the experiment. The
aforementioned problems isn’t a feature of the SLA or the Force-Release methods but also arose in previous NLFEA simulations and is
more a feature of the constitutive modelling used [33,32].The material parameters in Table 4 are based on previously done NLFEA
studies [33,32] to obtain the best fit. The flexural crack progression is followed by the inclined cracks until the peak load (Fig. 10) and
eventually the toe crushing combined with yielding of reinforcements is captured well (Figs. 11 and 12). The toe region of this wall
undergoes crushing of the concrete (see Fig. 13), compressive yielding of the reinforcements (see Fig. 14) and additionally exhibits
splitting cracks at the onset of collapse. The splitting cracks in this region are due to the lateral compressive softening, in addition to
the presence of the yielding vertical reinforcements that are close to rupture.

The collapse mechanism begins with the crushing of concrete at the toe and the yielding of the reinforcement as seen in Figs. 13&
14 which further propagates through the simulation. Both approaches capture this adequately. However, the drop of load corre-
sponding to the eventual instability is described by the SLA and the Force-Release methods in diametrically opposite ways with
regards to the time scales for the redistribution. This is in line with the differences observed between the approaches to the explosive
failure in the previous case study and is clear from how the loading is modified in case of SLA (Fig. 9(b)) during collapse. SLA again
describes the collapse mechanism while maintaining equilibrium by reducing the constant load while the Force-Release method
addresses it using the avalanche of ruptures in disequilibrium. As the complex stress state in this zone evolves and undergoes
redistribution, SLA experiences stress reversal problems. The evolving splitting cracks (due to lateral compression softening) in this
complex zone causes unloading in surrounding elements resulting in crack closure in some elements, with incorrect damaged
stiffness. This is a characteristic to the approach, wherein damaged stiffness is carried onto tension or compression upon stress
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Fig. 10. Crack pattern plots (Eknn denotes the normal crack strain) of SLA & Force-Release simulations of the RC shear wall experiment around the
corresponding peak loads.
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Fig. 11. Crack pattern plots (Eknn denotes the normal crack strain) of SLA & Force-Release simulations of the RC shear wall experiment at the onset
of collapse.
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Fig. 12. Crack pattern plots (Eknn denotes the normal crack strain) of SLA & Force-Release simulations of the RC shear wall experiment during

collapse.
-

I 0.00
m SLA O Force Release

Fig. 13. Damage patterns of SLA & Force-Release simulations of the RC shear wall experiment indicating toe crushing at the onset of collapse. DmSS
ranging from O to —1 indicates undamaged to fully crushed situation (In order to distinguish between tensile and compressive failures for ‘S’
direction of the ‘N-S’ orthogonal fixed crack/crush system, compressive DmSS ranges from 0 to —1 and tensile DmSS ranges from 0 to 1.).
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reversal due to redistribution. This therefore hinders the splitting crack formation at the peak and close to the onset of collapse in the
case of SLA, see Figs. 10 and 11. On the other hand, at a similar stage in the simulation, Force-Release captures the splitting cracks
better as observed in Fig. 11. Both the approaches experience stress reversal issues but the problem is much less accentuated in case of
the Force-Release method because of the inherent incremental nature of the approach in keeping track of the stress history.
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Fig. 14. Reinforcement vertical strain patterns of SLA & Force-Release simulations of the RC shear wall experiment indicating compressive yielding
and rupture (at the toe region) at the onset of collapse.

Nevertheless, a dedicated stress reversal event and a corresponding load multiplier should be incorporated in line with previous
proposals for SLA in continuum models [34] and Force-Release method in lattice models [35].

4.3. Masonry facade

4.3.0.4. Experiment

A full scale masonry building tested by Magenes et al. [36] is a well known benchmark study to investigate the seismic response of
masonry buildings [15]. It consists of four walls: walls A + B 4+ C which are connected by an interlocking brick pattern around the
corner and wall D which is disconnected from perpendicular walls A and C (Fig. 15(a)). This detached wall can be simulated using 2D
plane stress elements and thus fits the scope of the current study. Although the experiment was a cyclic test, this benchmark is
simulated with monotonically increasing lateral loads and the backbone curve of the cyclic response is used as reference for com-
parison. The geometry of the facade is shown in Fig. 15(b) and has a thickness of 0.25 m. The facade is loaded in two stages: First, the
floors are loaded by a distributed load of 10 kN/m? resulting in total vertical loads of 248.4 kN and 236.8 kN at the first and second
floor respectively. The floors rest on beams, which are connected to walls B and D, such that half of the floor load is carried by each
facade. Second, the building is loaded by a monotonically increasing lateral load at both floors to simulate the static equivalence of
seismic action. The damage pattern corresponding to the cyclic test at an ultimate displacement of 23 mm is as shown in Fig. 15(c).

4.3.0.5. Finite element model

The FE model of wall D is made of 8 noded iso-parametric quadrilateral plane stress elements with quadratic interpolation shape
functions and 2x2 Gaussian integration scheme. All elements in white, representing masonry, are provided tensile and compressive
non-linearities with parameters mentioned in Table 5. The ones of the lintel and those along the floor levels in gray are kept linear
elastic since cracks are not expected here [15]. All elements are of size 230 mm. Loading of the first stage contains vertical loads
applied as line loads along the height of the two stories and additionally gravity loads. The second stage involves applying prescribed
displacements to an auxiliary frame, as shown in Fig. 16, such that equal monotonically increasing lateral forces are applied at both
floors (using the master-slave connection) to simulate the static equivalence of seismic action. This is in line with a mass-proportional
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Fig. 15. (a) The experimental scheme of the quasi-static cyclic pushover test on a 2-storey house, (b) the dimensions of Wall D of the house and (c)
the cyclic experimental crack pattern of Wall-D at ultimate displacement (images reproduced from Reference [36]).
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Table 5
Modelling parameters — Masonry Facade: identified by studies from the work of Reference [15]
Material Parameters General Compression Tension
MASONRY Young’s Modulus E, [MPa] 1410 - -
Poisson’s ratio v, 0.2 - -
Density p Kg/m® 1800 - -
Strength f., f; [MPa] - -3.0 0.1
Fracture energy G, G} [N/mm] - 10 0.05
Saw-teeth discretisation factor (p) - 0.11 0.11
Softening relation - Parabolic Linear
Crush/Crack bandwidth h [mm] - 230 230
Shear retention factor - Damage-based [13] Damage-based [13]
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Fig. 16. FE Model of wall D of the pushover test on the building simulated using a stiff auxiliary frame to impose equal forces on both floors.

pushover analysis (assuming the floors have the lumped mass), contrary to a modal pushover analysis. The facade is supported at the
bottom in both horizontal and vertical direction to simulate the fixed boundary condition.

4.3.0.6. Results & discussion

The results of the SLA and Force-Release simulations of the pushover test are shown in Fig. 17. The results show good qualitative
agreement against the experimental backbone curve. Since the experiment was cyclic in nature, the damage accumulation over the
test i.e. the progressive degradation in stiffness affects the peak load achieved as against a monotonic counterpart. Accordingly, the
simulations show a slightly higher peak load. However, the first stage of the rocking of the piers occurs, followed by diagonal splitting
type cracks in the center and right piers is in accordance to the experimentally observed damage crack patterns. Around peak load,
the first drop of load corresponds to the development of the aforementioned diagonal cracks in the central and right piers. This is
shown in Fig. 18. SLA and Force-Release methods differ very slightly in the crack patterns and this corresponds to minor differences
in the elemental sequence failure that is characteristic of both approaches. However, around this first drop of load, SLA requires the
intermittent proportional loading for redistribution due to the dynamic crack propagation in the central and right piers. These are
also seen as drops of the constant load between 2000th and 4000th step (linear analysis) in Fig. 17(b). Although such a redistribution
driven by the intermittent proportional loading is premature, i.e. much ahead of the actual structural collapse observed in previous
case studies, the redistribution allows for recovery of the full magnitude of the constant loads and is therefore acceptable. Force-
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Fig. 17. (a) The base shear vs lateral second floor displacement response for SLA & Force-Release methods compared against the backbone curve of
the cyclic experimental response — including the corresponding points during the collapse mechanism, and (b) evolution of the precompres-
sion + gravity loads (normalised) during the simulations.
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Fig. 18. Crack pattern plots (Eknn denotes the normal crack strain) of SLA & Force-Release simulations of the pushover test around the peak region
after the first drop of load.

Release, on the contrary, goes through three large avalanche of ruptures for corresponding constant imposed displacements through
this region. This again illustrates the inherent differences in the approaches (Figs. 19 and 20).

At an ultimate displacement of around 18 mm, SLA runs again into the intermittent proportional loading. However this time the
actual collapse begins with the right pier completely failing by diagonal splitting failure and also lateral splitting near the toe region
due to the compression softening. Force-Release, owing to the inherent incremental approach and the manner of redistribution,
proceeds further to an ultimate displacement of 24 mm leading to the collapse while going through disequilibrium states. The
collapse mechanism is also captured similarly by both approaches varying again only in the manner of load modification. SLA
enforces a relaxing mechanism in equilibrium while Force-Release describes the explosive failure as an instability.

5. Conclusions

Finite element simulation of quasi-brittle materials using incremental-iterative methods often suffers from robustness issues.
Consequently, several sequentially linear methods were devised to address this problem. This article, firstly, provides an extensive
overview on all such alternatives available in recent literature [5,21,9,10,12,24]. Furthermore, the mechanism of redistribution due
to dynamic failure propagation in a quasi-static set-up, as addressed by the two classes of sequentially linear methods: namely the
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Fig. 19. Crack pattern plots (Eknn denotes the normal crack strain) of SLA & Force-Release simulations of the pushover test at onset of collapse.
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Fig. 20. Crack pattern plots (Eknn denotes the normal crack strain) of SLA & Force-Release simulations of the pushover test showing ongoing
collapse.

total and incremental approaches, is qualitatively discussed based on previous perspectives to this topic from the field of lattice
modelling.

Although several studies have been made in the lattice modelling community to elucidate the inherent differences between these
classes of methods [10,22], their suitability to structural applications has been touched upon only sparsely. Of all the available total
approaches in literature, only the constrained maximisation analogy [5] addresses the limit point situation wherein no constitutively
admissible critical load multiplier can be found. This method is therefore chosen as the reference total approach to be compared
against an incremental counterpart, the Force-Release method. The inherent differences between these methods is illustrated using
continuum FE models of structural examples involving non-proportional loading in this article. To this end, an academic example of a
prestressed beam and three experimental benchmarks: a slender masonry wall, a squat reinforced concrete wall and a full-scale 2D
masonry facade, all subject to different magnitudes of precompression followed by pushover are studied. In general, it is observed in
all 4 case studies that the non-proportional loading strategy in a total approach like SLA is almost equivalent to the incremental
solution obtained using a Force-Release method, in terms of force-displacement curves and damage patterns, until the limit point
situation is reached. Prior to this, although the unloading and reloading are both done non-proportionally in SLA, it is acceptable to
interpret that unloading happens only until the beginning of the variable load since the all previously applied (constant) loads can be
reloaded fully without causing new damage. It is also interesting to note that the differences in the sequences of events, which can
significantly affect the eventual failure mechanisms as in the case of lattice modelling examples [22], does not greatly affect the
results at continuum level of all 4 presented case studies.

However, upon reaching the limit point, which denotes an oncoming dynamic failure propagation region in the true response, the
process needs to be driven by a sudden release of energy which inherently requires multiple failure events or the so called avalanche
of ruptures. The SLA and Force-Release approaches differ in the redistribution mechanism at this juncture. On the one hand, SLA
allows for such multiple failures sequentially, only by reduction of all previously applied loads which brings about snap-backs. Since
every damaged element’s stress is released instantaneously, the neighbouring elements whose stresses are close to their respective
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allowable strengths subsequently become critical in SLA at a considerably lower load. This is done by scaling the last successful load
proportionally which in turn, unlike total unloading, allows for damage propagation by reduction of forces thereby giving the
structure the time to relax. In other words, SLA lets the damage progress quasi-statically by load reduction during a dynamic event.
This is acceptable under proportional loading situations and also under non-proportional loading conditions if the experiments are
controlled truly quasi-statically [37]. When the damage process zone is controlled for quasi-static evolution of failure in an ex-
periment [37], SLA is preferable. This can also be simulated using arc-length control procedures in an implicit NLFEA set-up. On the
other hand, the Force-Release method keeps track of the load history incrementally and allows for multiple failure events by gradual
redistribution of stresses through disequilibrium states. The Force-Release method is suitable for typical displacement controlled
experiments which actually exhibit instabilities but is not suitable for physical processes which exhibit snap backs or for truly quasi-
static experiments.

Thus, both approaches are essentially extremes with regards to time scales for redistribution, which is more apparent only in
major dynamic failure processes in the case of continuum models. These dynamic failure processes can either be intermediate in the
entire process of damage evolution or the final collapse mechanism in itself. In the former case of an intermediate failure process,
with regards to SLA, if the simulation allows for a full recovery of all previously applied loads, the results are deemed acceptable.
Such an instance was observed around first drop of peak load in the pushover case study of the 2D masonry facade. However, during
these intermediate failure processes, if all previously applied loads have to be gradually reduced to extremely low values to simulate
the failure process, then the results of SLA correspond to alternate equilibrium paths of damage propagation that do not culminate in
the actual expected collapse mechanism. Or, in other words, premature loss of previously applied load much ahead of the actual
mechanism is not equivalent to simulating the experiment truly. In the latter case where the dynamic failure is the actual collapse
mechanism as observed in the pushover case studies of the masonry and reinforced concrete walls, SLA tries to enforce equilibrium by
load reduction and allows for a relaxed failure mechanism. While the Force-Release method describes both the intermediate and the
explosive ultimate failures through avalanches of events that are states of disequilibrium. The Force release method stays true to the
instability in the experiment but the excessive damage propagation at collapse as observed in the wider-crush zone of the slender
masonry wall case study (Section 4.2.1) needs further deliberation including a localisation analysis. In summary, complex dynamic
failure processes which cause robustness issues in incremental iterative methods also affect sequentially linear methods under non-
proportional loading and are addressed differently by the two sub-classes: the total and incremental approaches, with their suitability
depending on the experiment being simulated.
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