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Abstract In this paper, we follow a similar procedure
as proposed by Koval (SPE J 3(2):145–154, 1963) to
analytically model CO2 transfer between the overriding
carbon dioxide layer and the brine layer below it. We
show that a very thin diffusive layer on top separates
the interface from a gravitationally unstable convective
flow layer below it. Flow in the gravitationally unstable
layer is described by the theory of Koval, a theory that
is widely used and which describes miscible displace-
ment as a pseudo two-phase flow problem. The pseudo
two-phase flow problem provides the average concen-
tration of CO2 in the brine as a function of distance. We
find that downstream of the diffusive layer, the solution
of the convective part of the model, is a rarefaction so-
lution that starts at the saturation corresponding to the
highest value of the fractional-flow function. The model
uses two free parameters, viz., a dilution factor and
a gravity fingering index. A comparison of the Koval
model with the horizontally averaged concentrations
obtained from 2-D numerical simulations provides a
correlation for the two parameters with the Rayleigh
number. The obtained scaling relations can be used in
numerical simulators to account for the density-driven
natural convection, which cannot be currently captured
because the grid cells are typically orders of magnitude
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larger than the wavelength of the initial fingers. The
method can be applied both for storage of greenhouse
gases in aquifers and for EOR processes using carbon
dioxide or other solvents.
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Nomenclature

C Dimensionless concentration (dimensionless)
D Diffusion coefficient (in square meter per

second)
E Effective viscosity ratio
f Fractional-flow function
g Acceleration due to gravity (in meter per

square second)
H Height of the porous medium (in meter)
Hk Koval heterogeneity factor (dimensionless)
J Convective mass flux (dimensionless)
K Permeability of the porous medium (in square

meter)
kr Relative permeability (dimensionless)
K Koval factor
KG Gravity fingering index
mD Normalized mass of dissolved CO2

p Pressure (in pascal)
Pe Peclet number (dimensionless)
Ra Rayleigh number (dimensionless)
S Phase saturation (dimensionless)
t Time (in second)
uc Dimensionless velocity (dimensionless)
U Velocity (in meter per second)
VDP Dykstra–Parsons coefficient
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X Rescaled z-coordinate (ξ /ε)
Z Distance in z-coordinate

Greek symbols

ατ Dilution factor
ε 1/Pe
ϕ Porosity of the porous medium (dimensionless)
h Transformation coordinate
λc Wavelength (in meter)
λ Mobility (kr/μ)
	 Mobility ratio of phase (dimensionless)
μ Viscosity of the fluid (in kilogram per

meter-second)
ξ Dimensionless distance (z/H)
p Density of the fluid (in kilogram per cubic meter)
τ Dimensionless time (dimensionless)

Subscripts

i Initial value of the quantity
m Mixture phase
S Pure solvent
w Water phase
z Quantity in z-direction

1 Introduction

When a denser fluid is placed on top of a lighter one,
it can lead to Rayleigh–Taylor instabilities [43]. This
phenomenon is of importance for many fields of science
and engineering (see, e.g., [42]); however, we confine
our interest to CO2–brine and CO2–oil systems, rele-
vant for CO2 sequestration and enhanced oil-recovery
processes. The instabilities initiated by local density
increase of brine (or oil), caused by dissolution of CO2,
increases the mass-transfer rate of CO2 in brine (or oil)
[10–12, 14, 51]. Even if the same approach can indeed
be used for CO2–oil displacements, this paper entirely
focuses on CO2–water displacement. The increase of
the mass-transfer rate is equivalent to a dissolution
of a larger amount of CO2 in a shorter period of
time and faster propagation of CO2 in porous media
(aquifers and hydrocarbon reservoirs) [33, 34, 38]. The
large volume of dissolved CO2 remains permanently
in the liquid (at least as long as the pressure remains
unchanged) and poses no threat of leakage, which is
favorable for geological storage of CO2 [23].

The efficiency of mixing in density-driven natural
convection is governed by the Rayleigh number (Ra),
which includes the reservoir permeability and the den-
sity difference. A stability analysis of the density-driven

natural convection in the saturated porous layers indi-
cates that the time required for the initiation of natural
convection is proportional to ∼Ra−2 and the critical
wavelength is proportional to ∼Ra−1 Meulenbroek
et al. (2012, under review) [39]. The critical wavelength,
λc, is an indication of the grid size required to cap-
ture the initiation of the initial fingers. Let us define
Rayleigh number by

Ra = k
ρgH
ϕμw D

. (1)

For the values of k = 1 Darcy, 
ρ = 10 kg/m3, g =
10 m/s2, H = 50 m, μw = 1 cP, D = 2 × 10−9 m2/s,
and ϕ = 0.2, we obtain Ra = 1.25 × 104, which using
the analysis of Meulenbroek et al. (2012, under review)
provides λc = 110 H / Ra ∼ 0.009 H = 50 cm. This
implies that accurate estimation of the amount of dis-
solved CO2 in brine under these conditions requires
grid sizes much smaller than 50 cm. For highly per-
meable and heterogeneous porous media, the required
grid size may be too small to resolve even with mas-
sively parallel architectures [32, 34]. This necessitates
the development of simpler models that could approxi-
mately quantify the amount of dissolved CO2 after the
injection period taking into account the instabilities.

In miscible displacement, the viscosity difference
between the solvent and the oil leads to development
of fingers that adversely affects the oil recovery. The
characteristic fingering behavior of the solvent con-
centration profile cannot be predicted by fractional-
flow-based miscible displacement models, originally
described by [35]. Koval [28] developed a simple model
to account for the instabilities (fingering behavior) ob-
served in the miscible displacements. The significance
of Koval theory, which has become a standard for rep-
resenting instabilities in miscible displacements in the
petroleum industry, apart from its simplicity, is because
of the fact that it is able to reproduce the experimental
data in a horizontal configuration very well [47]. In this
model, the viscosity ratio between the displacing and
displaced fluids in the fractional-flow function of the
Buckley–Leverett equation, which is defined as

fBL (S) = 1

1 + kro(S)

krs(S)

μs
μo

, (2a)

is replaced by the Koval factor, K.
Therefore, in Koval’s model, Eq. 2a becomes

fkoval (S) = 1

1 + 1−S
S

1
K

, (2b)
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where we also note that Koval uses S to denote a con-
centration, as his inspiration comes from the descrip-
tion of oil–water flow, where S is used as the saturation.

Indeed, kro is the relative permeability of the dis-
placed fluid (i.e., oil), krs is the relative permeability of
the displacing fluid (i.e., the mixture of solvent and the
oil) that now has been assumed to be a linear function
of its saturation, μo is the oil viscosity, μs is the solvent
viscosity, and the Koval factor is given by K = Hk E.

Here, E is the “effective” viscosity ratio and is defined
as the ratio between the oil viscosity and the viscosity
of the mixture of oil and solvent in which the volume
fraction of the solvent is Se. The effective viscosity of
the displacing fluid can be calculated from the “1/4
power” mixing rule:

E = (
(1 − Se) + Se (μo/μs)

1/4
)4

.

E is chosen such that the results of the model fit the
experimental data. Using the experiments of [3], Koval
found that Se = 0.22, i.e., the mixture of solvent and oil
that displaces the oil contains 22 % solvent [28].

In spite of its success, Koval’s model cannot be used
for all miscible displacement problems. [4, 5] shows that
Koval is only performing well for high Peclet number
conditions and sees no easy method to extend the
theory to low Peclet number conditions. The Peclet
number describes the ratio of convective transport and
diffusion transport and is in the vertical setting similar
to the Rayleigh number (Eq. 1). Yortsos and Salin [52]
derive bounds to show that the mixing zone develops
much slower than given by the “naïve solution of trans-
verse averaged equations.”

However, numerical simulations of [5] suggest that
taking Se = 0.22 gives good agreement between Koval’s
theory and numerical simulations at high Peclet num-
bers. For heterogeneous reservoirs, E is multiplied by
the Koval heterogeneity index, Hk, which is related to
the Dykstra–Parsons coefficient by [30]

log Hk = VDP

(1 − VDP)0.2 . (3)

The degree of heterogeneity of the permeability field
determines the character of the density-driven natural
convection flow in porous media. Similar to the in-
stabilities induced by the viscosity difference between
the fluids [47], instabilities induced by a density differ-
ence can lead to f ingering, channeling, and dispersive
regimes depending on the degree of the permeability
variance (Dykstra–Parsons coefficient) and the correla-
tion length of the porous medium [15, 37]. The disper-
sive regime (characteristic of flow in media with a high
degree of heterogeneity) can be analytically modeled

by choosing an effective dispersion coefficient in a
diffusion-based model [20]. In the channeling regime,
which occurs for a medium degree of heterogeneity,
there is no correlation with the measures of hetero-
geneity and the transfer rate of CO2 in water, and
therefore, the method proposed by Koval cannot be
applied without modification. Here, we confine our
interest to finding an analytical model for a low degree
of heterogeneity, which leads to a fingering regime. It
could be validated that for a low degree of heterogene-
ity, the effect of heterogeneity on the transfer rate is
relatively small.

This paper concerns the use of Koval’s theory
to describe gravity-induced fingering. Unfortunately,
Koval is not performing as well for gravity-induced
instabilities as for horizontal unstable flow. There are
many experimental studies on viscous fingering with
gravity effects, e.g., [3, 22, 26, 50]. When used to test
the theory, they all give less accurate results than for
horizontal flow. Dougherty [8] extended the Koval
model to include gravity. He discussed various expres-
sions for the driving force to optimize agreement with
experimental results of [3]. Fayers and Newley [18]
and [17] introduced a three-parameter model to obtain
a better description of viscous fingering with gravity
effects. However, [19] pointed to the poor performance
for gravity flow indicated, not only for Koval model
itself but also for extensions like the [17, 44] models.

In spite of this and in view of the fact that the Koval
model is well representing the qualitative features of
unstable miscible flow, we will use it as a starting point
for developing the theory below. We do not attempt
to include saturation dependences of the density and
viscosity [8, 36], as this deserves a separate study. We
show that including a diffusion coefficient will both
describe the diffusive layer near the entrance as the
unstable behavior away from the interface.

Therefore, the objective of this paper is to develop
an analytical model that predicts the performance of
gravitationally unstable flow in porous media. Our
special focus will be on the inclusion of the effect
of fingering on the transfer rate of CO2 in brine. As
indicated above, we use an analogous procedure as
proposed by [28]. The proposed model is similar to the
Buckley–Leverett method for gravity-dominated flow.
The flow function uses the dilution parameter ατ and a
“gravity fingering index” as an input (KG factor). The
solution provides the average concentration of CO2 in
the brine as a function of distance and eventually the
total mass of dissolved CO2. The structure of the paper
is as follows: First, we describe the physical model and
provide the ensuing equations. Next, we use the method
of matched asymptotic expansions to obtain an approx-
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imate analytical solution for the described equations.
Afterwards, we introduce empirical parameters into
the model to take into account the fingering behavior
and compare the results of the proposed model to
the numerical simulations. Finally, we draw the main
conclusions of this study.

2 Physical model

Figure 1 schematically shows the purpose of the model,
i.e., to capture the averaged behavior of the process in
the direction of the flow. If there is no instability, there
will be a short transition zone (here, the ensuing error
function is represented as a shock) between the CO2-
containing brine at the top and the initial brine that
contains no CO2. This occurs when the flow regime is
diffusive (e.g., at the initial stages of the process) or dis-
persive (for highly heterogeneous media). This behav-
ior can be accurately modeled through diffusion-based
models, albeit with an effective diffusion coefficient.
When instabilities occur, the concentration front moves
faster and there is a gradual change from a high (hor-
izontally averaged) concentration of CO2 at the top to
the initial concentration.

2.1 Formulation

We consider a 1-D porous medium of length H that is
initially saturated with water. The vertical coordinate,
z, is taken positive in the downward direction. The
constant porosity of the porous medium is ϕ and its
permeability is k. Initially, there is no CO2 dissolved
in water (Si = 0). We assume a no-flow boundary at
the bottom of the porous medium. CO2 is continuously
supplied from the top, i.e., the CO2 concentration at
the top is kept constant and therefore the water at
the interface is fully saturated with CO2. We consider
the water and water saturated with CO2 (referred to
as “mixture” and represented by m) as two separate
phases: (1) pure water with density ρw and viscosity μw

and (2) a mixture phase that contains two components,
i.e., CO2 and water with density ρm and viscosity μm.
We disregard the presence of a capillary transition zone
between water and mixture phases and assume that
the relative permeability of the mixture is proportional
to its saturation denoted by Sm. In the same way, the
relative permeability of the water phase is proportional
to its saturation Sw = 1 − Sm. The saturation of the
mixture can be interpreted as the local concentration
of the solvent at the respective time and point in the
space, i.e., S(z,t).

2.2 Governing equations

The motion of fluids in a porous medium can be de-
scribed by Darcy’s law. The Darcy equation for the
mixture can be written as

um = −λm

(
∂pm

∂z
− ρmg

)
. (4)

The Darcy equation for water reads

uw = −λw

(
∂pw

∂z
− ρwg

)
, (5)

where u is the Darcy velocity, pα (α = m, w) is the
pressure of phase α, ρα is the density of phase α, g is
the acceleration due to gravity, and λα = kkrα / μα (α =
m, w) is the mobility, which is the ratio between the
phase permeability kkrα and the viscosity μα . Subscripts
m and w denote the CO2+ water mixture and the initial
water, respectively. Both viscosity [1, 29] and density
[9, 25] are functions of the CO2 concentration and
increase with increasing carbon dioxide concentration.
The pressure in both phases is the same as we ignore
the capillary forces and therefore pm = pw = p.

The saturated density difference between an aque-
ous solution of CO2 and pure water is given by cρ pg,
where the value of the cρ = 0.261 kg/m3/bar for pure
water (see [21], p. 72); cρ will be less for formation
brines, because the solubility of CO2 in water decreases
with increasing salinity. Therefore, the density of the

Fig. 1 Schematic of a stable
and b unstable displacement
and transverse average of the
corresponding concentration
profiles
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mixture can be assumed to increase according to the
following relationship:


ρ = ρm − ρw = ατ

(
cρ pg

) = ατ
ρmax., (6)


ρmax will only be established at the beginning of the
process when the interface is fully saturated with CO2

and the underlying liquid contains no CO2. When the
instabilities initiate, 
ρ or the driving force at the
front is the density difference between the brine–CO2

mixture at the tip of advancing fingers and the initial
brine. However, as the CO2 fingers move away from
the interface, the concentration of CO2 in the fingers
decreases. To account for these effects, 
ρmax is mul-
tiplied by a “dilution factor” ατ , whose value decreases
with increasing Rayleigh number. Taking ατ as constant
for each Rayleigh number implies that the mass transfer
is proportional to time. It turns out that this is true until
the transient Sherwood number (the history of the ratio
between the cumulative mass of the CO2 transported
to the liquid by convection and diffusion and the cumu-
lative mass transported in the absence of convection)
reaches its maximum value. Indeed, the experimental
results indicate that initially the mass transfer of CO2

into water increases significantly by convection until
the transient Sherwood number reaches a maximum,
and afterwards, it starts to decrease due to the decreas-
ing importance of natural convection effects when the
CO2 becomes distributed more evenly [14]. The max-
imum transient Sherwood number occurs when CO2

reaches the bottom of the porous medium and the mass
transfer is no longer linear with time; therefore, the
time dependency of ατ should be considered only after
this time.

We assume ideal mixing and use the Boussinesq
approximation, i.e., we only consider the density varia-
tions in Eqs. 4 and 5. With this assumption and because
there is no source or sink in our model, the volume
conservation is equivalent to mass conservation and
therefore

um + uw = 0, (7)

which implies a countercurrent flow. We can derive an
expression for the Darcy velocity of the mixture, i.e.,

um+uw = 0 = um − λw

λm
λm

(
∂p
∂z

− ρmg
)

− λw (ρm−ρw) g.

(8)

We replace the term containing the expression (∂p / ∂z-
ρmg) by um λw / λm and it follows that

um = λwλm

λw + λm
(ρm − ρw) g. (9)

The conservation law for the mixture including diffu-
sion reads

ϕ
∂Sm

∂t
+ ∂um

∂z
= ϕD

∂2Sm

∂z2
. (10)

Substitution of Eq. 9 into Eq. 10 leads to

ϕ
∂Sm

∂t
+ ∂

∂z

(
λwλm

λw + λm
(ρm − ρw) g

)
= ϕD

∂2Sm

∂z2
. (11)

2.3 Dimensionless form of the equations

We scale the velocity with a reference velocity uc =
k
ρmaxg/μw, the length with H„ and twith ϕH/μc.
Therefore, Eq. 11 now reads

∂Sm

∂τ
+ ∂

∂ξ

(
ατ krw

1 + 	−1

)
= ε

∂2Sm

∂ξ 2
, (12)

where τ = (μc/ϕH) t, ξ =z/H, 	 = λm/λw, ε = 1/Pe,
and Pe = uc H/ϕD = Ra. We define the “fractional-
flow function” as

f (Sm) = krw

1 + 	−1
. (13)

Therefore, Eq. 12 can be written as

1

ατ

∂Sm

∂τ
+ df (Sm)

dSm

∂Sm

∂ξ
= ε

ατ

∂2Sm

∂ξ 2
, (14)

as ατ is considered constant. The Peclet number, Pe,
is defined as the ratio between the convective and
diffusive fluxes. For the values mentioned earlier, we
will obtain uc = 2 × 10−7 m/s. Using D = 2 × 10−9 m2/s,
we obtain Pe = 5,000. Zimmerman and Homsy [53]
noted that for Pe >> 1, it is reasonable to model the dif-
fusion as constant and isotropic because at large Peclet
numbers, all averaged quantities are independent of
any anisotropy (see also [5]). Therefore taking D as
constant is justified. We notice that for very large Peclet
numbers (Pe→ ∞ or ε →0), Eq. 14 converts to the
classical Buckley–Leverett type of equation, albeit with
a different fractional-flow function.

In the displacement problems, the initiation of the
flow is forced by injection. In our case, the flow rate
cannot be forced. Therefore, a crucial parameter of
the model is to define the top boundary condition. If
we assume that the saturation of the mixture is 1, it is
not immediately clear how unstable convective motion
would initiate. Here, we will investigate the approx-
imate analytical solution of Eq. 14 with the method
of matched asymptotic expansions [45] and compare it
with the numerical solution.
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2.4 Approximate solutions

The approximate solution consists of an inner solution
in the domain R1 = [0,ε), where diffusion dominates,
and an outer solution in R2 = (ε,1] that is convection-
dominated. This behavior is also shown experimentally
[27]. It turns out that the outer solution consists of a rar-
efaction solution and that the inner solution concerns
the stationary diffusion equation.

2.4.1 Rarefaction (or outer) solutions

In the absence of diffusion, the solution consists of
rarefactions and constant states. The rarefaction solu-
tion will be followed by a shock if the 
ρmax in Eq. 6
is assumed to be a function of saturation [16]. In the
following, we derive the rarefaction solution and the
constant state. We can use a coordinate transformation
η = ξ/ (ατ τ ) and obtain from Eq. 14

(

−η + df
(
Sout

m

)

dSout
m

)
dSout

m

dη
= 0. (15)

where the superscript “out” refers to the outer solution.
The value of ατ only changes the meaning of η in the
sense that the same “outer” profile is obtained after
τ/ατ with respect to the case with ατ = 1. The inner
profile, which is governed by the equation

df
(
Sin

m

)

dSin
m

∂Sin
m

∂ξ
= ε

ατ

∂2Sin
m

∂ξ 2
,

is affected by the value of ατ in a different way. This
means that the outer and inner solutions use a differ-
ent scaling factor. However, in the comparisons below
(Figs. 5, 6, 7 and 8), we will not use the inner solution
(see Eq. 28) and we will only show the outer solution.

The solution of Eq. 15 is either a constant state
dSout

m /dη = 0 or

η = df
(
dSout

m

)

dSout
m

. (16)

In the rest of this section, we omit the superscript
out to avoid cumbersome notation. Equation 16 can
be solved to obtain Sm = Sm(η) on condition that the
second derivative of the fractional-flow function does
not change sign [31, 41], i.e., in the absence of shocks.
Replacing krw = (1 − Sin), λm = kSin / μm, λw = k(1 −
Sin)/μw in Eq. 13, we obtain

η = d
dSm

(
(1 − Sm)

(1−Sm)

Sm

1
KG

+ 1

)

, (17)

where we have replaced μw / μm with KG similar to
Koval’s fractional-flow function in Eq. 2b. As already
indicated above, this choice of linear relative perme-
abilities was introduced by Koval to describe miscible
displacement. The introduction of the KG factor is
equivalent to scaling of the relative permeability of the
mixture phase by a factor KG and keeping the viscosity
ratio in the equation (which is very close to unity). The
latter is similar to the pseudo relative permeability ap-
proach that is a well-accepted approach of up-scaling in
the petroleum engineering literature [6, 7, 24, 49]. The

Fig. 2 Plot of dimensionless
phase velocity, i.e., term in
brackets in RHS of Eq. 17
versus saturation. Just
downstream of the diffusion
layer, all solutions start at the
saturation corresponding to
the highest phase velocity
with a rarefaction
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term in brackets is plotted in Fig. 2 for different values
of KG. We note that experimental data suggest that
μm > μw, which would lead to KG < 1.In other words,
we attribute nonphysical values to KG. Downstream of
the diffusive layer, the solution of Eq. 17 for different
values of KG starts at the saturation corresponding to
the highest phase velocity (maximum of the fraction-
flow function) with a rarefaction solution. We refer to
KG as the gravity fingering index and use it as a fitting
parameter to obtain agreement between the numerical
and analytical results. The general rarefaction solution
of Eq. 17 is

η = − Sm KG

1 + Sm (KG − 1)
+ KG (1 − Sm)

(1 + Sm (KG − 1))2 . (18)

For KG = 1, i.e., μm = μw, the solution is simplified to

η = (1 − 2Sm) . (19)

2.4.2 Diffusion equation (or inner) solution

In R1, we rescale the z-coordinate X = ατ ξ

ε
in Eq. 12.

This leads to

ε
∂Sin

m

∂τ
+ ∂ f

(
Sin

m

)

∂ X
= ∂2Sin

m

∂ X2
. (20)

where the superscript “in” refers to the inner solution.
The first term on the left-hand side of Eq. 20 is small
with respect to the other terms and can be omitted.
Then, Eq. 20 becomes

∂ f
(
Sin

m

)

∂ X
= ∂2Sin

m

∂ X2
. (21)

Integration of Eq. 21 gives

∂Sin
m

∂ X
= f

(
Sin

m

) + δ, (22)

where δ is a constant. The matching condition reads
[45, 46]

lim
X→∞

Sin
m (X) = lim

ξ→0
Sout

m (ξ) = S0
m.

From Eq. 18, we have

η = 0 ⇒ S0
m = 1

1 + √
KG

. (23)

S0
m is the saturation that separates the diffusive and

rarefaction regimes. Notice that this is the saturation
where the fractional-flow function attains its maximum.
The second boundary for Eq. 21 reads S0

m (0) = 1.

Defining a new integration constant κ = δ/KG instead
of δ and using Eqs. 13, 17, and 22, we obtain

dSin
m

dX
= f

(
Sin

m

) + κKG

= KG

((
1 − Sin

m

)
Sin

m + κ
(
1 − Sin

m (1 − KG)
)

1 − Sin
m (1 − KG)

)

.

(24)

As X → ∞, we know that Sin
m → S0

m, which means that
dSin

m/dX → 0 as X → ∞, and therefore, dSin
m/dX → 0

as Sin
m → S0

m. Therefore, the numerator in Eq. 24 must
be proportional to Sin

m → S0
m, and since the numerator

is quadratic in Sin
m, we find

(
1 − Sin

m

)
Sin

m + κ
(
1 − Sin

m (1 − KG)
)

= − (
Sin

m − S0
m

) (
Sin

m − γ
)

(25)

from which we find

γ = S0
m − 1

S0
m − KGS0

m − 1
. (26)

Combining Eqs. 23 and 26, we obtain

γ = S0
m. (27)

Substitution of Eq. 27 into Eq. 24 and integration gives
∫

1 − Sin
m (1 − KG)

(
Sin

m − S0
m

)2

dSin
m =

∫ − (1 − KG)
(
Sin

m − S0
m

) + 1 − S0
m (1 − KG)

(
Sin

m − S0
m

)2

dSin
m = −KG X + C,

and we obtain

−KG X + C = − (1 − KG) ln
(
Sin

m − S0
m

)

−1 − S0
m (1 − KG)

Sin
m − S0

m
= 2S0

m − 1
(
S0

m

)2 ln
(
Sin

m − S0
m

)

− 1

S0
m

1 − S0
m(

Sin
m − S0

m

) ,

where we used Eq. 23 to replace KG by
(

1
S0

m
− 1

)2
.

Using the top boundary condition Sin
m (0) = 1 at X =

0, the numerical constant C can be computed and we
obtain

−KG X = 2S0
m − 1

(
S0

m

)2 ln

(
Sin

m − S0
m

1 − S0
m

)
+ 1

S0
m

Sin
m − 1

Sin
m − S0

m
. (28)

Figure 3 plots the inner solution (Eq. 28) and outer
solution (Eq. 19) of this case and compares it to the
numerical solution.
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Fig. 3 Inner solution (Eq. 28)
(dotted curve), outer solution
(Eq. 19) (dashed-dotted
curve), and numerical
solution of Eq. 12 (drawn
curve) for Pe = 5,000, ατ = 1,
and KG = 1. Here, we show
the solution at breakthrough
time τbt (ατ = 1). For ατ < 1,
a different solution is
obtained and breakthrough
occurs at a later time, i.e., τbt
(ατ < 1) = τbt (ατ = 1) / ατ .
The outer coordinate is
affected in a different way by
ατ than the inner solution.
Below, in Figs. 5, 6, 7 and 8,
we will only show the outer
solution.

3 Results and discussion

In this section, we present the results of the 1-D an-
alytical model and compare them to the results of
the numerical simulations, which were performed in a
2-D porous medium with an aspect ratio (length/width
ratio) of 1. A no-flow boundary condition was used at
the sides and at the bottom of the medium. The concen-
tration of CO2 at the top of the medium was assumed to
be 1. The initial white noise perturbations are applied
within the diffusive layer to reduce the time for the
onset of gravity fingering. As seen in [39], perturbations
are subjected to high damping till a critical time is
reached. Any natural disturbances that occur in the
system at early times will be damped significantly. So
we look at perturbations at times closer to the critical
time. The numerical simulation consists of 512 × 512
grid cells for Ra = 1,000 and 1,024 × 1,024 for Ra >

1,000. The details of the numerical simulations can be
found in [39]. We use the same dimensionless numbers
as in Section 2.3.

To compare the results, the concentration values of
the 2-D numerical simulations were averaged in the
horizontal direction. An example is shown in Fig. 4.

Figures 5, 6, 7 and 8 demonstrate the concentration
profiles of CO2 at different times for different Rayleigh
numbers. The solid and dashed lines are the results of
the 1-D analytical model and the 2-D numerical sim-
ulations, respectively. There is qualitative agreement
between the two models as to the outer part of the

solution, which is all that can be expected for a gravity
unstable process [19]. The inner solution is shown in
Fig. 3, but not in Figs. 5, 6, 7 and 8 because the solution
near the interface (the inner solution) does not affect
the transfer rate from the gas to the liquid phase. It
describes the steep transition between the surface and
asymptotic saturation value Sm near z = 0. Figure 3
shows asymptotic saturation value Sm near z = 0. For
the gravity fingering index KG = 1, the asymptotic
saturation value is 0.5 (see Eq. 23). However, the hor-
izontally averaged concentrations obtained from 2-D
numerical simulations converge at a smaller value than
this saturation value. The saturation value decreases
further with increasing Rayleigh number. The value
decreases to even smaller values as time progresses,
especially for smaller Rayleigh numbers [4]. Therefore,
to obtain a reasonable match between the outer analyt-
ical and numerical models, the KG factor was modified
such that the asymptotic values of the saturation values
Sm near the interface of the two models matched. We
ignored time dependency of this value, i.e., we kept
the KG factor independent of time. The fitting parame-
ters of the model, i.e., KG and ατ , are listed in Table
1. The KG factor increases with increasing Rayleigh
number, while the dilution factor, ατ , decreases with
increasing Rayleigh number, because as the Rayleigh
number increases, the fingers move away faster from
the interface.

Note that our model is only valid until CO2 reaches
the bottom of the medium. After this time, CO2-
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Fig. 4 The concentration profile of CO2 for Ra = 8,000 at τ = 7. The right plot is obtained by averaging the concentration values of
the left plot in the horizontal direction

saturated solution will start to fill up the layer from the
bottom. This filling up was treated in a pioneering pa-
per of [40] and later by [2], who addressed an analogous
problem concerning the secondary migration of oil. Oil
was moving through countercurrent gravity drainage
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τ = 3.8, Numerical
τ = 6, Numerical
τ = 7, Numerical
τ = 3.8, Analytical
τ = 6, Analytical
τ = 7, Analytical

Fig. 5 Comparison between the analytical (solid lines, KG =
1.5, ατ = 0.085) and numerical (dashed lines) models at different
times for Ra = 1,000. The outer analytical solution is obtained by
optimizing KG and ατ as fitting parameters in Eq. 18. The inner
analytical solution (Eq. 28) is not shown in Figs. 5, 6, 7 and 8

from the source rock to the future reservoir initially
filled with water. The problem is almost the same as
the problem considered here except that the saturation
exponents of the relative permeabilities are not one for
the true two-phase (oil and water) conditions and the
trivial fact that the gravity is pointing in the opposite
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Fig. 6 Comparison between the analytical (solid lines, KG =
2.0, ατ = 0.065) and numerical (dashed lines) models at different
times for Ra = 2,000
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Fig. 7 Comparison between the analytical (solid lines, KG =
2.2, ατ = 0.055) and numerical (dashed lines) models at different
times for Ra = 4,000

direction. Another main difference is that in the mi-
gration problem, the upstream boundary condition (in
the source rock) is that the oil saturation is a given low
value and is not governed by a diffusion process like
here. Downstream there is a seal, which may be par-
tially leaking, which is one of the complicating factors
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τ = 8.5, Numerical
τ = 6, Numerical
τ = 4, Numerical
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τ = 2.3, Analytical
τ = 4, Analytical
τ = 6, Analytical
τ = 8.5, Analytical

Fig. 8 Concentration profiles obtained from the analytical (solid
lines, KG = 2.5, ατ = 0.048) and numerical (dashed lines) models
at different times for Ra = 8,000

Table 1 The values of KG and ατ used as fitting parameters to
obtain the “match” between the analytical and numerical models

Rayleigh number ατ KG

1,000 0.085 1.5
2,000 0.065 2.0
4,000 0.055 2.2
8,000 0.048 2.5

in the paper by [40]. In our case, we assumed a no-flow
boundary at the bottom.

By analogy with the Siddiqui–Lake paper, we expect
that a reflected wave will occur once the CO2-saturated
solution hits the bottom of the reservoir. Indeed, the
saturation of the carbon dioxide-containing aqueous
phase near the bottom will increase until it is on the
right side (um, Sm) = (0,1) in Fig. 2. Here, the wave
velocity (see Eq. 17) will be negative (reflected wave).
Consequently, the reservoir will stably fill up from the
bottom with the saturated solution. Mixed convection
and diffusion, and at later stages pure diffusion, will
be the dominant mechanisms of this process. To mimic
this behavior, ατ in our model should be assumed time
dependent after CO2 reaches the bottom as mentioned
earlier. This aspect will be left for future work.

Figure 9 plots the parameters reported in Table 1
as a function of Rayleigh number. A fitting exercise
provides the following relationships:

KG = 0.309Ra0.236, ατ = 0.534Ra−0.271. (29)

These empirical relations can be used to “effectively”
model the gravity-induced instabilities.

Figure 10 plots the mass of the dissolved CO2

(normalized to the maximum mass that can be dis-
solved, i.e., msat) for different Rayleigh numbers and

KG= 0.309Ra0.236

ατ = 0.534Ra-0.271
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Fig. 9 The fitting parameters as a function of Rayleigh number
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Fig. 10 The dimensionless
mass of CO2 dissolved in
water obtained from the
analytical (solid lines) and
numerical (dashed lines)
models at different times for
different Rayleigh numbers
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compares it to the numerical model. For illustration
purposes, the time has been divided to the correspond-
ing Rayleigh number of each case. A good agreement
between the results of the two models is observed if
our interest is only in the transfer rate between the
gas phase and the liquid phase. The agreement only
requires two parameters as a function of the Rayleigh
number.

We observe from Fig. 10 that the slope of the lines
increases as the Rayleigh number increases, indicating
that the dimensionless rate of mass transfer (or the
convective flux, Jconv) of CO2 into the brine at the
interface decreases with increasing Rayleigh number.

Figure 11 plots the dimensionless flux rates of CO2 at
the interface, which are calculated from the slopes of
the lines in Fig. 10. The following scaling relation is
obtained:

Jconv = dm
dτ

= 0.0794Ra−0.168. (30)

In Eq. 30, mD and τ are dimensionless parameters. The
dimensional mass-transfer rate increases with increas-
ing Rayleigh number, because the maximum soluble
mass of CO2 increases with increasing Ra. Assuming

Fig. 11 The dimensionless
convective flux of CO2 at the
interface as a function of
Rayleigh number
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that Henry’s law is valid at high pressures, the maxi-
mum soluble CO2 is given by

msat = PCO2 MCO2 VCO2

kH
.

Using Eq. 31, the dimensional form of Eq. 30 becomes

jconv = dm
dt

= κ Ra5/6 (31)

where

κ = 0.0794MCO2

D
ϕH2

(
PCO2 VCO2

kH

)

= 0.0035
D

ϕH2

(
PCO2 VCO2

kH

)
. (32)

where PCO2 is the pressure of gaseous CO2, VCO2 is the
volume of the gaseous CO2, kH is Henry’s solubility
constant, and MCO2 is the molecular weight of CO2.

4 Conclusions

• Following a similar procedure to that proposed
by [28], we developed an analytical model to pre-
dict transfer between the overriding carbon dioxide
layer and the brine layer below it. The model is able
to describe gravitationally unstable flow in porous
media.

• The method of matched asymptotic expansions was
used to obtain an approximate analytical solution
for the relevant equations describing both the dif-
fusive and convective regimes. The solution is char-
acterized by a thin diffusive layer that separates the
interface from a zone below where gravity unstable
flow occurs.

• The developed model takes the gravity fingering
index (or KG factor) and a dilution factor, ατ , as
input parameters and provides the average concen-
tration of CO2 in the brine as a function of distance
at different times.

• The solution of the convective part of the model
starts at the saturation corresponding to the highest
value of the fractional-flow function with a rarefac-
tion solution at the downstream of the diffusive
layer. Even if the agreement between the Koval
solution and the numerical natural convection solu-
tion is only qualitative, it turns out that the transfer
rate between the gas and liquid phase is adequately
represented by the Koval model with two parame-
ters. A reduced value of dilution factor ατ can be
attributed to mixing between fingers. However, the
gravity fingering index KG is purely empirical and
has no obvious physical foundation.

• A comparison between the analytical model and
the horizontally averaged concentrations obtained
from 2-D numerical simulations provides a cor-
relation for calculation of the KG factor and the
dilution factor, ατ , for different Rayleigh numbers.

• The empirical relations between the KG factor and
the Rayleigh number, the dilution factor ατ and the
Rayleigh number, and the convective flux of CO2

at the interface with Rayleigh number can be used
in numerical simulators to account for the density-
driven natural convection, which cannot be cur-
rently captured because the grid cells are typically
orders of magnitude larger than the wavelength of
the initial fingers.
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