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for being part of my thesis committee. I could not have finished this report without the
improvements suggested by Tavishi, Sanjeev, Miriam and Yeshwanth. Thanks to everyone
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Abstract

This work tackles the problem of repetition counting in videos using modern deep learning
techniques. For this task, the intention is to build an end-to-end trainable model that could
estimate the number of repetitions without having to manually intervene with the feature
selection process. The models that exist currently perform well on videos which are sta-
tionary but, realistic videos are rarely perfectly static. A series of intermediate experiments
are performed to eventually come up with an end-to-end trainable pipeline. Techniques
like the University of California Riverside’s Matrix profile, bi-directional recurrent neural
networks and convolutional neural network architectures that employ dilation are experi-
mented with for the task at hand. For the experiments, a variety of videos from the Qual-
comm and University of Amsterdam (QUVA) repetition dataset and the YouTube Segments
(YTSegments) dataset are used which both exhibit a good number of non-static videos of
real life scenarios like people exercising, chopping vegetables, etc. A proprietary Aircraft in-
spection dataset which contains repetition of spinning engine blades is also experimented
with. The proposed model obtains a lower Mean Absolute Error than the existing deep
learning architectures. Finally, the model proposed in this work is able to estimate repeti-
tions on a variety of videos successfully in real time without manual intervention. On the
task of repetition estimation, an accuracy of about 60% of correctly labelled frames (with
repetitions so far) on unseen test videos is obtained.
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1
Introduction

1.1. The Problem and Applications

This work tackles the problem of estimating repetition in videos. Humans are virtually sur-
rounded by visual repetition. It is ubiquitous in a diverse set of domains like sports, music
or cooking. Repetition occurs in several forms because of its variety in motion continu-
ity and motion pattern. The perception of 3D motion in 2D depends on the viewpoint
which is of course crucial for the cognizance of recurrence. Periodicity can denote a variety
of movements including animal/human movements like a beating heart, breathing lungs,
flapping of wings, running, etc. Movement of the blades of a windmill, spikes of a wheel, a
swinging pendulum are also periodic. Periodicity or repetition is also ever-present in nat-
ural, industrial and urban environments like blinking lights or LEDs or traffic patterns or
leaves in the wind. Repetition and rhythm are already used to approximate velocity, esti-
mate progress and to trigger attention (Johansson, 1973). This has many applications in
computer vision as well, like: it can be used for human motion analysis, action localization
(Laptev et al., 2005), action classification (Goldenberg et al., 2005), (Lu and Ferrier, 2004),
3D reconstruction (Belongie and Wills, 2004), camera calibration (Huang et al., 2016), ac-
tivity recognition (Brand and Kettnaker, 2000), object tracking (Briassouli and Ahuja, 2004)
etc. Some other domains that can potentially benefit from repetition estimation include
and not limited to: applications in high throughput biological-experiments, gaming and
surveillance. Due to its applicability in a wide range of domains, this problem has enjoyed
an increasing amount of attention.

At the semantic level, this task is actually well-defined. In fact, humans are able to per-
form this task without a lot of difficulty. The existing work shows acceptable results under
the unacceptable assumptions of stationary and static periodicity. In real life, the video is
rather complex and rarely stationary or perfectly periodic. The popular fourier-based mea-
surement is more than often, not upto the mark in real-life applications. In practice, the
movement of the camera makes this task inescapably hard. Other works try to manually
perform feature engineering like foreground-segmentation, object localization, flow field
calculation etc. to perform this task. This work tries to solve the problem under more nat-
ural and realistic conditions as nonstationary is actually the norm. This work experiments
with three different video datasets as discussed in Section 3. A modern deep learning alter-
native to tackle the problem is proposed. Instead of manually engineering the features, the

1



2 1. Introduction

proposed architecture lets the model learn from the labelled dataset that is provided to it.
This end-to-end trainable architecture will only keep getting better as more labelled videos
are provided to it with little manual intervention.

1.2. Research Scope

The aim of this research is to answers the following questions:

1. How can a Recurrent Neural Net be used to estimate repetitions in a video?
Hypothesis: Recurrent Neural networks (More specifically its variants like Long Short
Term Memory Networks (LSTMs) (Hochreiter and Schmidhuber, 1997)) are known
to perform very well on tasks that involve temporal sequences because of their archi-
tecture which allows them to maintain a memory as a sequence is fed through them.
Videos are temporal sequences of image frames, so theoretically, a big enough recur-
rent network should be able to tackle the task of repetition estimation by feeding it
frame-image-pixels directly or frame-wise Convolutional Neural Network(CNN) fea-
tures.

2. How to use the University of California Riverside’s Matrix Profile in conjunction
with a Recurrent Neural Network to estimate repetitions in a video?
Hypothesis: UCR’s Matrix Profile introduced in (Yeh et al., 2016) claims to make any
time-series data mining task "trivial". It helps in efficiently finding motifs and anoma-
lies in a multidimensional time-series signal. Theoretically, a matrix profile should
be able to detect motifs (repeating patterns) in a multidimensional time-series signal
(which videos are). If the matrix profile emits a reasonably reliable signal, a Recur-
rent Neural Network architecture like an LSTM should be able to estimate repetitions
from it.

3. How does the number of parameters required for the Recurrent Neural Network
architecture change based on the Matrix Profile usage?
Hypothesis: The Matrix profile is a 1 Dimensional signal (as shown in (Yeh et al.,
2016)), compared to the multidimensional frame-image-pixels and CNN-features.
The number of trainable parameters required in the recurrent neural network archi-
tecture should be dramatically fewer for a variant which employs the Matrix Profile
as compared to a variant where frame-image-pixels or CNN-features are directly fed
to the Recurrent Neural Network architecture.

4. Can a backpropagatable feature extraction step help improve the accuracy of our
model?
Hypothesis: Since the computation of the matrix profile is just a series of differen-
tiable mathematical operations (as shown in (Yeh et al., 2016)) on the raw multidi-
mensional image-frames, it should be possible to backpropagate through the matrix
profile. This could potentially result in a trained Convolutional Network that helps in
computation of the Matrix Profile signal such that the computed Matrix Profile signal
(using this resulting CNN’s features) in turn improves the estimation of repetitions in
videos.



2
Related work

Because of the numerous applications, there has been quite some research already done
in this domain. There have been a variety of attempts in the past to tackle the problem
of repetition estimation. These attempts can be broadly classified into a few categories as
discussed below:

2.1. Frequency Domain Analysis

Most of the existing literature is dominated by methods that use the fourier transform or
methods that incorporate wavelet analysis. The fourier transform is discussed in detail in
the Appendix A1. These techniques employ fourier transform, and are very susceptible to
background noise. The background noise from each frame in the video massively deterio-
rates the quality of these models, so they usually end up employing techniques of remov-
ing the background (Piccardi, 2004). The most popular way of removing the background is
modelling the background as a Gaussian mixture. This gaussian mixture model technique
leads to very precise results, but, this usually needs to employ a training stage and has a
much higher computation cost than other techniques. One such cheaper technique is the
Median Filtering. It provides a reasonable accuracy with limited memory and computation
requirements. (Briassouli and Ahuja, 2007) uses median filtering for background subtrac-
tion. This paper presents an approach which performs the time-frequency analyses for the
entire video at once. This allows it to extract several periodic trajectories from the video.
This also allows one to estimate the separate independent periods simultaneously over a
static background. The spatial domain information is used to extract the periodically mov-
ing objects. The main idea behind this paper is that the repeating patterns have unique
signatures in the frequency space.

To analyze the periodic variations, a Frequency Modulated signal is first constructed where
the frequency is tuned by the object displacements with time over successive frames in the
video frame sequence (Djurovic and Stankovic, 2003), (Stankovi and Djurovi, 2001). These
variations are however periodic in our case and hence the respective frequencies will also
be periodic functions with respect to time. By incorporating the Time Frequency Distri-
butions, the varying frequencies of the Frequency Modulated Signal can be obtained and
thereby, the spatial trajectories can be computed. To build this Frequency Modulated sig-
nal, a technique called µ-propagation (from (Djurovic and Stankovic, 2003)) is used which

3



4 2. Related work

is a Fourier Transform at frequency. These Frequency-domain techniques involve an anal-
ysis which is spatially global and not local, which enables them to be effective against local
illumination-variances (like in (Hoge et al., 2003)) and occlusions. These techniques don’t
make any kind of assumptions about the trajectory smoothness or the shape of the objects,
so the results hold for a wide variety of videos and is much more reliable than intensity-
based techniques like the ones proposed in (Barron et al., 1994), near the boundaries of
the moving objects. The estimation of the periodic cycles using these techniques can also
be employed in the spatial domain for tasks like motion segmentation. An unavoidable
difficulty that arises with this technique is called the localization problem as discussed in
(Young and Kingsbury, 1993). Even though the motion estimation by frequency-domain
is global in nature and avoids local errors (like occlusion, illumination changes, object
boundaries etc.), it doesn’t contain insights about the actual spatial address of the objects
in motion. This results in the need for further processing of the video using help from the
spatial-domain to accurately allocate motion-estimates to the frame-pixels. Another diffi-
culty is that these techniques are very susceptible to background noise and therefore can’t
be used without an expensive background subtraction step.

2.2. Spatial Correlation Methods

Trying to understand videos is one of the core problems of Computer Vision and has been
researched upon for decades. Some of the oldest contributions in video understanding fo-
cussed on the development of spatio-temporal features from the video sequence for anal-
ysis. A majority of the past approaches for periodicity in motion analysis (like (Lu and Fer-
rier, 2004), (Cutler and Davis, 2000)) incorporate first detection of the object in successive
image-frames and then computing their trajectories and finally analysis of the computed
trajectories. More recent spatio-temporal approaches for generic motion analysis incorpo-
rate statistical shape priors and levelsets (like in (Cremers et al., 2004), (Chin et al., 1994)) or
under smoothness-constraints, involve computation of the optical flow (like in (Brox et al.,
2004)).

The technique proposed in (Polana and Nelson, 1997) identifies periodic repetitions in a
sequence of images by initially aligning the image-frames with respect to the centroid of
the major-moving-object in the video so that the object in consideration remains immo-
bile in time. Then, a few lines which are parallel to the motion-flow of the chosen centroid
are extracted. These are referred to as the reference curves. The spectral power is then com-
puted for the frames along these reference curves. The measure of periodicity for each of
the reference curves is calculated as the difference(normalized) between the sum of (high-
est amplitude) spectral energy frequency and the sum of the spectral energy frequencies
half way through.

The method discussed in (Liu and Picard, 1998) makes an assumption of a static camera
and employs background subtraction to extract motion information. The objects in the
foreground are tracked and their trajectory path is approximated to a line using the Hough
Transform (as shown in (Duda and Hart, 1971)). The hough transform is discussed in de-
tail in the Appendix A1. The information from the temporal histories of each pixel is then
further dissected using the Fourier analysis and the harmonic motion energy accumulated
because of the periodic motion is computed. The given assumption in this case is of-course
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that the background is static. This is because a non-homogeneous background will under-
mine the harmonic energy that needs to be estimated. This work differs from the work
of (Cutler and Davis, 2000) as in that instead of individual pixels, areas of the image are
considered(collection of pixels) which compose an object. Another change introduced in
the latter is the use of a smooth image resemblance metric. Because of these changes in
approach, the fourier analysis of (Cutler and Davis, 2000) is much simpler as the analyzed
signals don’t have a significant number of harmonics of the rudimentary frequency. Tech-
niques like (Cutler and Davis, 2000) and (Wang et al., 2003) require an initial pre-processing
step of detecting the foreground objects (like a person) in the video frames. (Note: This step
can be comparable to the background subtraction step in some approaches). Then the fore-
ground objects are aligned to ensure spatial correlation with all frames in the sequence.
(In the Fourier Domain Analysis techniques, this step was only required during the seg-
mentation stage of the algorithm (lower complexity than the spatial-counterpart)). These
frame-correlations are required for computing the similarity-plot per video. If we were to
incorporate a spatial-only approach, the similarity plot is compared with a dense enough
lattice (to make sure that the repetitions are not missed). In such cases, prior knowledge or
heuristics are required to get reliable estimates of the periods.

The spatial-correlation methods can be further classified into two kinds of methods:

2.2.1. Point correspondence

Point correspondence methods have been employed in several applications like, for com-
puting arm and leg trajectories((Seitz and Dyer, 1997)), for gait analysis ((Tsai et al., 1994))
etc. In a controlled environment setting, the point correspondences can be detected by
laying out reflective markers on the objects in motion and then following their positions
in the respective frames in the video sequence (as shown in (Polana and Nelson, 1997)).
This results in a very precise trajectory information for the moving object or moving parts
in the object. The period can be effectively estimated from this quality-data. But, real-life is
not a controlled environment setting. Most of the times, it is not possible to have reflective
markers placed on the moving object (e.g. in medical imagery). In such cases, the point
correspondences need to be extracted from the available images as features. The methods
of computing feature correspondences are highly susceptible to illumination changes, lo-
cal occlusions, reflectance etc. The computation is also very expensive. Because of these
problems, this method is deemed unreliable and not generally applied in practice.

2.2.2. Region Correspondence

In the region correspondence techniques, the correlation is computed for succeeding image-
frames of a video and a similarity plot is computed (as shown in (Cutler and Davis, 2000)).
Whenever an object behaves in an oscillatory/repetitive manner, say with a period of T, its
periodicity can also be observed in the similarity plot. Periodicity can be assumed to be
strict oscillations around a fixed state. Because of this assumption, these methods are in-
effective whenever the periodicities are coupled with other motions like translation. These
actually cover several useful scenarios like walking/running etc. Because of this assump-
tion, an initial pre-processing step is mandatory which involves frame alignment based on
the moving-object such that the object is stationary in the video(the frames are aligned in



6 2. Related work

such a way that the moving object is brought to the same position in each video frame),
before we move on to finding correlation to compute the respective periodicities. But,
this localization of objects moving periodically also needs prior knowledge and heuristics.
These area-based techniques have several advantages when compared to the pixel-based
techniques like enabling analysis of the robustness of an entire object which is simply not
possible in pixel-based techniques. Another advantage is that these allow analysis of mo-
tion(periodic) which is not parallel to the image-plane. Whenever there is no periodic pixel
variation, the pixel-based techniques won’t work at all. An example of this scenario is a
person walking directly towards the camera.

All of the spatial-correlation methods work in steps. The initial steps being extracting the
motion trajectories using the spatial-statistics and then determining if they are repeating.
These approaches are usually based on feature-matching which is unfortunately often not
feasible, computationally expensive or unreliable. Placement of markers, or using feature
correspondences also needs pre-processing and/or prior knowledge. Finally, these point
and region correlation methods are also sensitive to noise and may lead to results which
are unreliable if the quality of the videos is poor.

2.3. Approaches that define Crystallographic groups

This is a more recent approach of tackling the problem of repetition estimation which in-
volves defining fixed cases for perception of 3D recurrence in a video comprised of 2D im-
ages (not to be confused with 3 color channels in the 2D image frames). (Liu et al., 2004)
was the first work that came up with the idea of defining crystallographic groups. The main
contribution of this work was that in an N-dimensional euclidean space, a finite number
of crystallographic-groups(symmetry-groups) can represent an infinite number of periodic
repeating patterns. The authors of this work argue that in the 2D space, there are a total of
seven groups which describe the patterns(monochrome) that show signs of repeating oc-
currence along a single direction and seventeen groups for patterns that can show signs
of recurrence along two linearly independent directions. They came up with a set of ap-
proaches to classify a periodic pattern to one of the underlying symmetry-group, it’s un-
derlying lattice and also computing the motifs.

The work published by (Runia et al., 2018) then came up with an approach that defined
18 fundamental cases of perception of 3D recurrence in 2D videos. These cases can be ob-
served in Figure 2.1. This work builds upon the wavelet transform to handle the scenarios
of non-static and non-homogeneous video environment settings. They use the flow fields
and their partial differentials to extract three kinds of fundamental types of motions and
three kinds of motion-continuities of inherent periodicity in 3 dimensions. This leads to
a total of 9 cases. Finally, based on the 2 viewpoints (front/side) there can be a total of
9×2 = 18 fundamental cases. This work tries to effectively tackle the issues caused by cam-
era motion and a variety of repetitions in videos by constructing a rich set of flow-based
signals that vary over time. These are computed over the object segmented out from the
background. Specifically, the authors measured the flow field (average-pooled) F = (Fx ,Fy )
and the respective differentials. Then, the ∆F can be estimated by calculating ∆xFx and
∆y Fy . The differentials are calculated by using large Gaussian derivative filters(filter size
of 13× 13) to get a measurement that is global in nature over the segmented foreground.
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Figure 2.1: 18 Fundamental cases of recurrence-perception from (Runia et al., 2018)

Hence, the eventual measurement is a region with a small radius around the center of the
object of interest. This paper relies on the motion segmentation by (Papazoglou and Fer-
rari, 2013) with minor modifications. They compute the dense flow field by incorporating
EpicFlow (as proposed in (Revaud et al., 2015)). This work handles complex camera mo-
tion scenes and complex appearances quite well but it requires several expensive feature
engineering steps like background segmentation and computation of flow fields.

2.4. Approaches that use Deep Learning

Deep learning is the use of Neural Networks as proposed in (Hinton et al., 2006). Modern
deep learning techniques have added a big boost to the already rapidly evolving field of
Computer Vision. Because of Deep Learning, a variety of new applications of the existing
vision techniques has emerged and is rapidly becoming a part of our daily life. The intro-
duction of AlexNet in (Krizhevsky et al., 2012) marked a huge breakthrough in the field of
still-image recognition. There has been a huge interest and steady series of brilliant ad-
vances driven by innovations like multi-scale convolutions (introduced in (Szegedy et al.,
2015)), use of smaller spatial filters (introduced in (Simonyan and Zisserman, 2014)), resid-
ual learning (introduced in (He et al., 2016a)), dense network connections (introduced in
(Huang et al., 2017)) and many more. On the darker side, it can be argued that the do-
main of video processing has not yet observed its "AlexNet moment" yet. The most pop-
ular video processing task is undoubtedly the task of action recognition. Although a deep
network ((I3D (Carreira and Zisserman, 2017))) currently boasts of the best results in the
task of action recognition, the improvement over the best hand-crafted feature engineered
approach(iDT (Wang and Schmid, 2013)) is only marginal and not as impressive.

The state of the art method was proposed by (Levy and Wolf, 2015). This work processes
the video online as the frames arrive. They came up with the idea of estimating cycle length
and thereby looking the counting problem from the other end. They process and analyze
20 non-consecutive frames from the video at a time and estimate the cycle length over each
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such block using Convolutional Neural Networks. This information is then integrated over
time by a separate flow. They break down the method into two major components:

• The core system: This system performs the actual counting. It processes blocks of 20
frames at a time. A region of interest(independent) is then computed for each block.
This region of interest is resized and fed to a CNN which estimates the cycle length
in the block which is pretrained on a synthetic dataset prepared by the authors(not
actual videos).

• The outer system: This controls when to start and stop the counting process. This also
integrates the output from the core system over time. The video is passed through the
core system at several time scales to cover several lengths of repetitions. The entropy
of the CNN predictions is used to determine when to start and stop counting the
repetitions.

This approach relies on a synthetic pretraining step and an external system to manage the
predictions. The results are impressive on the YTSegments dataset released with the paper
but the dataset shows little variability in cycle length, camera motion, appearance of mo-
tion and clutter in the background. Also, this approach is clearly not end to end trainable.

(Karpathy et al., 2014) demonstrated a slow fusion model that increases the connectivity of
the convolution layers in time and calculates the activations using temporal convolutions
and not just spatial convolutions. They however couldn’t find great success with this new
approach and found that the networks operating on individual frames performed at-par
with their approach. (Tran et al., 2018) discusses several kinds of spatio-temporal con-
volutions and experiments them for video analysis and specifically on the task of action
recognition. They argue that 3D Convolutions over time have accuracy advantages over 2D
CNNs over individual frames which have been the standard. They also show that using 3D
convolutional filters into separate temporal and spatial components does yield some gains
in the performance(accuracy) of the model.

Most of the methods proposed before have a handicap of relying on human-crafted rules
to compute visual onsets and can only perform nicely on a small subset of the videos. This
work by (Xie et al., 2019) aims to extract a variety of features including original-frame-
pixels, frame residuals, body-pose, scene-change and optical flow and feed them to an end
to end trainable network as input features. This network then re-aligns the misalignment
between all the computed features using a proposed feature alignment layer. These aligned
features are then further fed to a Bidirectional LSTM (introduced in (Graves and Schmid-
huber, 2005)) and Conditional Random Field layers which label the sequence (as shown in
(Ma and Hovy, 2016)) with their respective onsets. This approach is definitely a step in the
right direction of an end to end trainable model. But the computation of several features
in the first step relies on manual feature engineering and is not feasible to implement this
for a real-time setting because of the high computation cost associated with each of the
feature extraction steps.



3
Datasets and Preparation

This research only focuses on the visual information present in videos. The visual informa-
tion in the videos boils down to a time-series of image frames. For instance, A 60-fps video
has 60 image frames in each second of video.

3.1. Datasets

The following datasets were used for the experiments conducted in this research:

3.1.1. YTSegments dataset

The YouTube Segments dataset collected by (Levy and Wolf, 2015) is a collection of 100
videos mostly gathered from YouTube. This dataset contains a good mix of domains from
which the videos are obtained like cooking, exercising, living animals etc. The dataset is
prepared such that it is pre-segmented to only contain the repeated action. This dataset
boasts of good variability in number of repetitions per video. The videos in this dataset
don’t display a lot of camera motion in most of the videos. The annotations for this dataset
is just a total count per video. The temporal bounds per repetition in each video is not
annotated. Preprocessing and manually annotating the temporal bounds of repetitions for
these videos was required. Frames from a ball hopping video from this dataset can be found
in Figure 3.1.

3.1.2. QUVA Repetition dataset

The Qualcomm and the University of Amsterdam Repetition dataset published with (Ru-
nia et al., 2018) is a collection of a wide variety of videos which exhibit periodicity like
rope-skipping, cutting, swimming, stirring, music-making, combing etc. They collected
the original untrimmed videos from YouTube. They assigned the task of labelling the inter-
vals per-video to human annotators. After obtaining the annotations, good agreement was
observed between the annotators. The videos for which there was a high overlap among the
annotators were published for improving the quality of the dataset. They finally came up
with the intervals by taking the intersection of temporal annotations. The repetition-counts
per video and temporal bounds of each repetition in that video are finally obtained. The

9
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Figure 3.1: Random frames of a ball-hopping video from the YouTube Segments dataset

authors argue that this is a higher quality dataset as compared to the YTSegments dataset
proposed by (Levy and Wolf, 2015). This boasts of more variability in cycle length, camera
motion, appearance of motion and clutter in the background. This dramatically increases
the difficulty in both temporal dynamics and the complexity of the scene. This is a much
more realistic and difficult benchmark for repetition estimation in videos. This dataset has
a collection of 100 videos and it as video wise annotations that contain the frame numbers
which indicate the end of a repetition cycle from the video frames. Frames from a fitness-
video from this dataset can be found in Figure 4.12.

3.1.3. Aircraft inspection dataset

Another dataset that is used for the experiments is Aircraft inspection dataset from Aiir
Innovations (aiir.nl). During large overhauls or whenever an irregularity has been spotted
by sensors during a flight, each stage of the engine is manually inspected by the mechan-
ics to look for any anomalies. While the mechanic inspects each stage of the engine, they
have to inspect each turbine blade and depending on the engine type and the engine stage
currently being inspected, the total number of blades differ. Currently, the mechanic has to
manually keep track of the number of blades that have been inspected to ensure all blades
have been inspected. This dataset contains videos from such inspections. The dataset
available has inspection videos from various angles and for different stages in the engine.
This contains a collection of over 100 videos. As existing annotations, this dataset just con-
tains the total number of repetitions per video. The annotations for temporal bounds of
each repetition per video doesn’t exist for this dataset yet. For video datasets like actions
datasets, the repetitions are defined very well. For this dataset, it is non-trivial because one
repetition depends on when you define to be the start of that repetition. Some utility scripts
were built to make manually annotating the temporal bounds of the cycles in these videos
much easier. Frames from a sample blade-inspection video from this dataset can be found
in Figure 4.5.

3.2. Video preprocessing and Labelling

A video is a time series of image frames with an audio signal embedded into it. For the
task of repetition estimation, this work will not analyse the audio signal and only consider
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the visual aspects of it. So a video can be assumed to be a sequence of images as shown
in Figure 3.2. Each image in this sequence is a grid of pixels. These pixels have 3 channels
(values) which correspond to the intensity of the primary colors Red, Green and Blue as
shown in Figure 3.3. These values can be in the range [0,255]. Black has 0 in intensity for all
the colors, so a black pixel would have R/G/B as 0/0/0. Similarly, a purely red pixel would
have the intensity values 255/0/0.

Figure 3.2: A video represented as a sequence of images

Figure 3.3: Image represented as a 3-channel grid of pixels

FPS or frames per second determines how many image-frames are present in a second of
video. A high fps indicates many frames per second and hence a smoother video. As the
fps increases, the size of our dataset also increases. This would mean that more informa-
tion would need to be processed by the model which would require longer training times
and larger model size. To avoid the aforementioned problems, for the task at hand, all the
videos are resampled to 10fps as it is sufficient to not miss any repetition.

All the pretrained CNN models expect the images to be at least 224 × 224 × 3 (Height x
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Width x color channels), so all the image frames in each video were also resampled to
224×224×3. This height and width is also more than enough to observe any kind of repe-
tition in the available dataset of videos. This means a video in the prepared dataset would
have (224×224×3× f r ames) dimensions.

Now, for annotating these videos, multiple approaches were experimented with.

Figure 3.4: Folder structure of Last-time-step labelled dataset

3.2.1. Last time step labelling

This approach demands that the entire video is only annotated with a class label (number
of repetitions in that video). The videos were labelled like this to try and backpropagate
the gradient back from the last time step as discussed before. For this approach, the train
and test videos are separated first to ensure that there is no overlap in the frames that were
being fed to the model. So, different folders were created for train and test sets. Next, dif-
ferent folders were created for each of the categories (class label). For example, a different
folder for (0, 2, 3, 4 ..) repetitions. Notice that there is no folder for 1 as there is no such
thing as 1 repetition. (If a video has just one repetition of an event, then that event doesn’t
appear in the video again which implies that the video contains no repeating occurrences.)
In each of these folders, trimmed videos were placed to ensure that the video had only x
number of repetitions where x is the integer value of the name of the folder. It is possible to
automate this as the QUVA repetition dataset has annotations with frame numbers where
roughly a repetition begins/ends (onsets). For the blade-inspection dataset, a script is built
which helped annotate the videos just like the QUVA dataset is annotated. A tree view of
the labelled dataset folder would look like in Figure 3.4.

3.2.2. Each time step labelling

This approach demands that each frame in the video is labelled. This work came up with
a novel approach of labelling the videos. The idea is that each frame in the video is labelled
with repetitions that have occurred so far. This would mean that the initial frames in the
video would be all labelled as 0. There is no such thing as 1 repetition. And after there were
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Figure 3.5: Each-time-step annotations of a video with 5 repetitions

two repetitions, the frames would be labelled as 2 and so on. The frame-wise labels for a
video would look something like this [0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5]. These
annotations if visualized would look like steps. Figure 3.5 shows annotations of a video with
5 repetitions. This type of labelling would also help visualize the model prediction results
in a beautiful way. The videos were labelled like this to try and backpropagate the loss back
from each time step as discussed before. For both of the kinds of labelling, three separate
datasets were created:

1. Blade-inspection videos. This dataset is a smaller subset of the entire dataset. For
this dataset, the script-annotated blade inspection videos were used. This subset
usually has crisp matrix profiles, so theoretically it should be easier to train a model
to at least overfit on this subset. For each time-step labelling, this dataset is manually
frame annotated with rough repetition occurrences just like the annotations already
present for the QUVA dataset. This helps use the same automation which is used
on the QUVA dataset to create each-time-step labels. This dataset has a total of 22
(manually annotated) videos.

2. YTSegments videos. This is a more generic dataset with a variety of videos like veg-
etable cutting, exercising etc. This dataset contains 100 unique videos and contained
labels just like the blade inspection videos i.e. total count per video. The same an-
notation script is used from before(blade-counting annotation) for annotating this
dataset just like the QUVA dataset is pre-annotated to have consistent annotations
across all datasets.

3. QUVA videos. This is a more generic dataset with all kinds of videos like a guy playing
tennis, a person skipping ropes, cutting cucumber etc. This dataset has more camera
movement and background variation as compared to the YTSegments dataset. This
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dataset contains a total of 100 unique videos. Hypothetically, it should be harder for
a model to learn using this dataset because of the variability in the video-frames of
this dataset. This dataset has a total of 100 (pre-annotated) videos.

3.3. Training and Testing splits

All of these datasets have a train, test and validation split of 70%, 20% and 10% re-
spectively. These splits are created at the beginning and ensure that the videos in
each of these splits have completely different frames to avoid unreliable results. The
videos from the training set will be used for actual gradient computation and weight
updates in the model parameters. The videos from the validation split will be used
for inspecting the loss curves and watching out for signs of over-fitting or bias. The
videos from the validation split will never be used to update the weights of the model.
The test split is used to compute the projected accuracy of the model. Since the
model has never seen the test-set videos while training, model’s accuracy on this set
is a reliable estimate of the model’s performance on a real world example.
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Approach

4.1. The Matrix Profile signal

Figure 4.1: Sliding window for Matrix Profile calculation from (Yeh et al., 2016)

The matrix profile proposed by (Yeh et al., 2016) is discussed in detail in the Appendix A1.
The matrix profile computation has one hyperparameter which is the window size. A win-
dow size determines how many data points(from the time-series sequence) are compared
at a time. For each window in the time series, it is compared to all the other windows. Like
a sliding window shown in Figure 4.1, each window gets its turn and on its turn, its distance
is computed with every window in the time series. All these distance values are fill up the
reference window’s column in the distance matrix (which is shown in Figure 4.2). The type
of distance used is Z-Normalized Euclidean distance.
Given two windows (time-series-sequences) x and y , where: x = x1..xn and y = y1..yn

Z-normalized sequence x̂i :

x̂i = xi −µx

σx
(4.1)

Z-normalized Euclidean distance d(x, y):

d(x, y) =
√

n∑
i=1

(x̂i − ŷi )2 (4.2)

.
Once the z-normalized euclidean distances of all the windows with all the other win-

dows is computed, a completely filled in distance matrix is obtained.

15
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Figure 4.2: Each window is compared to every other window in the input to obtain the Distance
Matrix and finally the Matrix Profile from (Yeh et al., 2016)

1. Each column in this matrix is the distance profile for that window.

2. Computing the matrix profile from this is very straightforward: Just save the mini-
mum value from each column and there you have a 1-dimensional matrix profile.

Each item in the computed matrix profile represents the minimum distance of the corre-
sponding time-step item in the original signal when measured against all the other items
in the signal. This 1-dimensional matrix-profile is quite intuitive to look at and the peaks in
the signal depict anomalies and the valleys depict motifs. There has been a lot of research
done in efficient computation of the Matrix profile ((Zhu et al., 2019)) and maintaining it
incrementally ((Zhu et al., 2018)).

Figure 4.3: Matrix Profile for a blade inspection video (5 repetitions)
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Figure 4.4: Matrix Profile for a blade inspection video (5 repetitions)

In the following experiment, some matrix profile signals are manually inspected to see
if it is even possible to use it for the task at hand. The results are quite impressive for the
blade counting dataset. The matrix profile looks sharp with clear valleys which indicates
the presence of repeating patterns. Some matrix profiles with their respective frames can
be found in Figure 4.3. The blade inspection dataset has static camera and the background
usually doesn’t change much. This is one of the reasons that the matrix profile output dis-
plays clear peaks and valleys. Some sample frames from the blade inspection dataset can
be seen in Figure 4.5. Another crisp matrix profile for a blade inspection video can be seen
in Figure 4.4.

Figure 4.5: Random frames from a blade inspection video

The Matrix profile is also computed for the more generic QUVA dataset. Mixed results
are obtained for this harder dataset. For some of the videos, the matrix profile output seems
reliable like for chopping cucumbers video (Matrix profile - Figure 4.8, Frames - Figure 4.7)
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Figure 4.6: Random frames from a blade inspection video

Figure 4.7: Random frames from cucumber chopping video

Figure 4.8: Matrix Profile for cucumber chopping video (5 repetitions)
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Figure 4.9: Random frames from rowing video

Figure 4.10: Matrix Profile for rowing video (5 repetitions)

and rowing video (Matrix profile - Figure 4.10, Frames - Figure 4.9). For both the videos
dicsussed above, the matrix profile outputs clearly show 5 valleys. However, it is not at all
intuitive for some videos such as for the fitness video (Matrix profile - Figure 4.11, Frames
- Figure 4.12). The matrix profile output in this case shows no clear peaks or valleys while
the video actually has 5 repetitions. Another interesting example is the bmx-stunt video
shown in Figure 4.13. This video has an abnormal spike in it’s matrix profile which is shown
in Figure 4.14. The cause of this spike becomes clearer when the window-wise distance
profiles are visualized. The distance profiles for the same can be seen in Figure 4.15. The
spike is because the video has a few frames where there is a bright camera flash and all
those frames are over exposed. One such frame is also shown in the frames of the video
in 4.13. The distance profile for that window (in yellow) is much higher than all the other
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Figure 4.11: Matrix Profile for fitness video (5 repetitions)

Figure 4.12: Random frames from fitness video

profiles. Therefore, all the windows have a high distance with that window (sharp peak in
the center for all distance profiles in Figure 4.15).

Figure 4.13: Frames from bmx video

The matrix profile is indeed a great feature for the task at hand but it is not always
enough for all kind of videos as observed above. The reason for this is that the entire im-
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Figure 4.14: Matrix profile calculated from the bmx video

Figure 4.15: Distance profiles from the bmx video

age frame is sent for comparison in the matrix profile, and this is bound to have a lot of
background information which is extra noise so, in videos where the background changes,
the output of the matrix profile becomes unreliable. A possible solution to this could be to
employ some background subtraction techniques to ensure that only the interest region is
passed to the matrix profile from each frame (or window of frames). Since the matrix profile
looks promising for most of the videos, it was decided to experiment with the matrix profile
and use it for the task of repetition estimation. As discussed before, a quick intuition about
the matrix profile is that if we are just able to estimate the number of valleys in the matrix
profile, we would be able to estimate the number of repeating patterns in the video.
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4.2. Using a Recurrent Neural Network to find peaks and val-
leys in the matrix profile

The matrix profile is a noisy 1D signal. Theoretically, an LSTM should be able to do well
at the task of estimating peaks and valleys in a 1 dimensional signal. As a toy task for the
same, this work works with a self generated synthetic 1D signal. Since a sine wave is also
a 1D signal with peaks and valleys, this work experiments with sine waves as a toy task for
the LSTM.

4.2.1. ToyTask: Mimicking the Matrix Profile
For creating our synthetic dataset, we first began with a sinusoidal cycle. We will refer to it
as a wave-cycle in the remainder of this report.

Wave-cycles

Figure 4.16: Default wave-cycle for a sine wave

A default sine wave-cycle is shown in Figure 4.16
A wave-cycle can have the following parameters:

1. G is the Ground value. This is simply where on the vertical axis, the wave-cycle
should start. By default this would have a value of 0 as a sine wave exists at ground 0.
This directly added to the value of f (x)

2. S is the Scaling factor. Scaling factor decides if the wave is squeezed or expanded in
the x axis. If the stretch factor has a value greater than 1, then the wave should have
larger cycles and similarly if the stretch factor has a value less than 1, then the wave
will have smaller cycles.

3. A is the Amplitude factor. This is the height of the wave-cycle. The maximum value
of a sine wave is 1, hence the default amplitude factor is set to 1. Having an amplitude
factor larger than 1 will result in taller waves and an amplitude factor less than 1 will
result in shorter wave-cycles.
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4. P is the Phase value. This is the x value where the wave-cycle begins. A sine wave can
begin from −∞ to ∞. By default it is set to 0, so the wave-cycle begins at x=0 and goes
up. If the wave-cycle begins anywhere betweenπ/2 and 3π/2, it will go down initially.

5. C is the Crop factor. This determines what proportion of the wave-cycle to include.
It can have values in the range [0,1]. By default, the entire cycle should be included
in the wave-cycle, so the default value for this is 1.

This wave cyle is created by using the following equations:

phase = 0,end = 2π

phase = phase ∗S

end = phase +2πC ∗S

f (x) =G + (sin(x/S)∗ A) ∀x ∈ [phase,end ] (4.3)

.

Figure 4.17: Wave cycle parameters

The default wave-cycle shown in Figure 4.16 has the default values for all the parameters: [
Ground=0, Scaling=1, Amplitude=1, Begin=0, Crop=1 ].
Please look at Figure 4.17 to have a better intuition about the wave-cycle parameters. The
blue wave-cycle is the default wave-cycle. The purple cycle is identical to the default cycle,
but it has a ground value of 2, so it is all shifted up in the y-axis. The orange cycle is taller
than the default cycle because it has an amplitude value of 2. The brown cycle looks like the
inverse of the default cycle because it begins at π instead of the usual 0. So the sine wave is
shifted in the x axis by half a cycle. The red and green cycles demonstrate the effect of the
scaling factor. The red wave-cycle is squeezed and the green cycle is expanded compared
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to the default cycle because the scaling factors are less than one and greater than one re-
spectively. Note that the green cycle also has a crop factor of 0.5 which is the reason only
half the wave-cycle is actually created.

Stitching the wave-cycles
Not to be confused with how Fourier Transform (See Appendix A1) works, these wave-
cycles are placed one after the other and are not added together for the same timesteps.
The timesteps for each of the wave-cycles are non-overlapping.

"Wave-cycles in a wave are like words in a sentence" - Jan Van Gemert.

The number of data points in a wave-cycle determines how smooth the wave-cycle is. More
data points in a cycle would ensure that the computed f(x) is very smooth. If we have very
few data points in a given range for x, the computed f(x) would still be a sinusoidal cycle
but it would be coarse and edgy. The number of data points in a cycle is kept configurable
as a configurable parameter.

Now, to create a long wave from these wave-cycles, we can simply align a bunch of wave-
cycles. If we ensure that the new wave-cycle begins where the last wave-cycle ended, we
can end up with a smooth-looking wave. A wave-cycle can end anywhere between G + A to
G−A (where G is ground value and A is the amplitude value for that wave-cycle). To ensure
that the next wave seems continuous with the previous wave-cycle, just adjust the ground
value of the new wave-cycle such that it aligns perfectly with the previous wave.

Figure 4.18: Stitched wave-cycles

Figure 4.18 shows a few stitched wave-cycles. There are 4 waves displayed in the image.
The first wave is composed of all the default wave-cycles. Notice where each wave-cycle
ends in the picture (marked with a transparent red vertical line). The second wave shows a
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spiked wave which is created by sampling two kinds of wave-cycles:

1. Default wave-cycles.

2. Flat wave-cycles. f (x) =G (G = Ground value).

The third wave is stitched from wave-cycles which have the same parameters as the default
wave-cycle, apart from the crop factor. The crop factor in each of the wave-cycles used for
this wave is 0.75. This is the reason that the wave-cycle ends at the value G − A instead of
ending at G . Hence the overall wave shows a downwards trend. The fourth wave shown
in Figure is composed of random wave-cycles. The random wave-cycles are generated by
sampling values of its parameters from the following choices:

1. Crop factor: can have a value from [0.25, 0.5, 0.75, 1]

2. Scaling factor: can have a value from [0.5, 1, 2]

3. Amplitude: can have a value from [0.5, 1, 2]

4. Phase values: can have a value from [ 0 , π]

5. Ground values: This value depends on where the last wave-cycle ended.

The waves generated can be easily subsampled to get a wave of a given sequence length.
The sequence length in real-world would be determined by how many frames the video
has. For the toy tasks, we ensured that the sequence length was never more than a few
hundreds. For longer sequences, it gets harder for the gradients to flow backwards because
of the problem of vanishing gradients. Vanishing gradients is a very common problem in
neural networks which usually occurs when the computation graph becomes too big to
effectively backpropagate useful information. Computation Graphs are discussed in detail
in the Appendix A.

Labelling the stitched wave-cycles
The waves generated in the previous section can be easily labelled for peaks and valleys
(local maximas and minimas). The key point in labelling such a wave is: each wave-cycle
can have at most one peak and one valley. Other peaks and valleys can exist at the points
where the wave-cycles are stitched. A few rules can easily determine whether the stitching
point will be a peak or a valley. Each point in the wave can be assigned one of the following
classes:

1. Category-1: No peak, no valley

2. Category-2: Peak

3. Category-3: Valley

Most of the points in the waves will be assigned to the Category-1. Figure 4.19 shows
some labelled waves. The green vertical lines indicate presence of a peak (Category-2 point)
and the red vertical lines indicate presence of a valley (Category-2 point) at that point.
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Figure 4.19: Labelled waves

Figure 4.20: Random wave

Adding noise to the wave

The actual matrix profile is not nice and smooth like the waves generated so far. It is actually
noisy and coarse (as shown in Figure 4.3). To mimic the actual matrix profile, some noise
was added to the generated waves. As most of the models expect a normalized input (as
suggested by (Sola and Sevilla, 1997)), the datapoints in the waves were first normalized
between 0 and 1. On this normalized wave, some Gaussian noise with µ = 0, σ = 0.05 was
added. As the Gaussian distribution has 68% of its datapoints within the first σ (either side
of the µ), this would ensure a maximum of 5% distortion in 68% of the datapoints in the
wave. The choice of µ and σ was made after inspecting the waves to ensure the final result
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looked like a typical matrix profile. Figure 4.21 shows a default wave with some Gaussian
noise added to it.

Figure 4.21: Noisy wave

Each datapoint in the dataset looks as:

1. X will contain the f (x) values as shown in the sections above.

2. Y will contain the class (category) for each of the datapoints in X.

For preparing the training and validation data set, there must not be any overlap between
the datasets. To ensure that, the only option was to create synthetic random waves. A
sample random wave can also be found in Figure 4.20. The dataset has a split ratio of 70%
Training set and 10% Validation set and 20% Test set. A dataset of a total 200 waves with
160 training samples and 40 validation samples is generated. Each wave has a sequence
length of 100 points. The sequence length of 100 points was decided as this would mimic
the video dataset which after preprocessing, would have similar number of frames (at least
in the same order of magnitude). This is therefore a classification task, as the model needs
to predict the class for each of the points in the signal. The class can be one of the three
categories (discussed above). Since there are 3 classes, it was decided to use a negative log-
likelihood loss also known as the cross entropy loss (See Appendix A for more details). For
a single training example, the loss is computed as:

Li =−log

(
e fyi∑

j e f j

)
(4.4)

The main motivation for using this type of loss is that it emits a probability score for each
of the classes as the output if we employed. This makes the model training results quite
interpretable and helps make informed decisions while trying to tune the parameters. For
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instance, it can be observed if the model is actually learning by inspecting the class scores
at the interest points (peaks/valleys).

4.2.2. Training models on this synthetic dataset
Recurrent Neural Networks
Theoretically, a recurrent neural network should be able to tackle the task of labelling the
time series signal at each time step with a category (no-peak-no-valley / peak / valley).
Recurrent neural networks tend to feed into themselves at each time step and maintain a
small memory which helps learn patterns in the time axis. A recurrent neural network block
unrolled in the time axis is shown in Figure 4.22. A simple recurrent neural network is rarely
used in practice because of issues over long sequences like vanishing gradients. The most
popular variant that is widely used in practice is an LSTM. It has 4 times the number of
parameters in each layer compared to a simple Recurrent Neural Network. An unrolled
LSTM block is shown in Figure 4.23. This architecture effectively tackles the shortcomings
of a simple recurrent net. More details about recurrent neural network architectures can be
found in the Appendix A.

Figure 4.22: Unrolled single-layered Recurrent Neural Network from [L1]

Figure 4.23: Unrolled single-layered LSTM network from [L1]

Before actually training the network, our hypothesis were:

1. Since it is a simple 1-dimensional signal, we should not require a huge model for the
task of labelling each timestep with a category.

2. A bidirectional network should be able to do a better job than a unidirectional LSTM
model. The reason for this is that a bidirectional model has information about the
wave even from the opposite direction and hence gives it more confidence about it
being in a peak or a valley at any point in time.
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In this report, while talking about training of neural network architectures, epochs are men-
tioned as a metric for training durations. One Epoch means the network is trained with all
the training-samples once. Several model sizes for the LSTM are experimented with. To en-
sure the experiments yield some tangible results without a lot of variance, the number of
hidden layers in the network are fixed to 2. For the experiments, only the number of hidden
units in each layer are varied. Since there exists a label (class) for each point in the time
series datapoint, it is possible to backpropagate the loss back from each timestep predic-
tion. This is like spoon-feeding the LSTM to learn better and faster. The backpropagation
in this approach can be observed in the figure: 4.24. Notice how the loss is backpropagated
at each time step when unrolled in time. The minimum sized model that does at least as

Figure 4.24: LSTM backpropagation architecture

good as the models with more number of parameters was with at most 20 hidden neu-
rons in each hidden layer. As expected, the bidirectional LSTM does better even with fewer
number of training parameters (using 10 hidden neurons in each layer). Figure 4.25 shows
the training and testing losses of two LSTM architectures while training for 50 epochs. The
bidirectional variant, even with fewer training parameters shows a lower cross entropy loss.
Using this trained model for predicting classes on a test set signal is shown in Figure 4.26.
The peak and valley probabilities in the output show that the LSTM is pretty confident of
its predictions. The LSTM does well on this task and displays clear understanding of peaks
and valleys in a 1-dimensional signal.
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Figure 4.25: LSTM losses for 50 epochs

Figure 4.26: Trained LSTM prediction on a test set signal

Convolutional Architectures

Recently, there has been a lot of research done on using convolutional architectures for
time series tasks as well. The main motivation for this is that the recurrent neural net-
works need to be fed the time series sequence sequentially which leads to a network that is
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Figure 4.27: Building block of TCN from (Bai et al., 2018)

much slower to train. Convolutional architectures look at the entire sequence at once and
hence the computations can be parallelized and are much faster to train. These architec-
ture usually employ convolutions with dilations as inspired by WaveNet (Oord et al., 2016).
One such architecture is the Temporal Convolutional Network (TCN) (Bai et al., 2018). The
Temporal Convolutional network is composed of several residual blocks (with skip connec-
tions). One such block is shown in Figure 4.27. As depicted in Figure 4.27, the activation
function used in a TCN block is RELU. It was observed that for the task at hand, a variant of
RELU, specifically ELU did much better than RELU. More details on RELU and its variants
can be found in the Appendix A. A bidirectional version of a TCN is also implemented for
the experiments as the bidirectional variant does much better than a unidirectional variant
in case of LSTMs. The training and testing loss values of the TCN are shown in Figure 4.28.
This network is also trained for 50 epochs. The cross-entropy losses for the regular TCN
and the bidirectional variants do not show a lot of difference. The losses however, are still
much more than the LSTM counterparts. This effect is emphasised when the predictions
on test signals is observed. A couple of pretrained TCN predictions on test-signals can be
observed in figures 4.29 and 4.30. The probability curves show beautiful representation of
learning process, but the probability values are not nearly as confident as the LSTM coun-
terparts which are crisp and very confident in their predictions.

The difference in loss values (between Figure 4.25 and Figure 4.28) and the difference in
prediction confidence values (between Figure 4.26 and Figure 4.29) makes it clear that an
LSTM is better suited to the task. These experiments showed that an LSTM can be trained
to estimate peaks and valleys in the matrix profile. These also provide an intuition about
what size of the model should be sufficient for the task at hand. This model, just pretrained
on the synthetic sinusoidal dataset is tried on an actual matrix profile of a blade inspec-
tion video. One such result can be seen in Figure 4.31. This video has 7 repetitions and the
model predicts it correctly out of the box. This model already does well for videos which
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Figure 4.28: TCN losses for 50 epochs

Figure 4.29: Trained TCN prediction on a test set signal

have a crisp matrix profile. These experiments show that a relatively small LSTM archi-
tecture (with only 3000 trainable parameters) is sufficient for estimating peaks and valleys
in a 1-dimensional signal. The bidirectional variant performs better than a unidirectional
variant even with fewer learnable parameters.
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Figure 4.30: Trained TCN prediction on a test set signal

Figure 4.31: Trained LSTM prediction on a Matrix Profile (7 repetitions)

4.2.3. Backpropagating loss from the last time step
The number of peaks and valleys is a good estimate of the number of repetitions but, where
exactly does the valley lie is a problem. It is not feasible to manually label the matrix profiles
with peaks and valleys for all the videos. For the datasets available, there is either a count
per video or rough frame numbers where the next repetition occurs. Some videos do not
even have a good usable matrix profile as shown in Figure 4.12. To tackle this problem, it
is clear that relying on labelling the matrix profile with peaks and valleys is not feasible.
One way of labelling the videos is to have a count (class) per video. So each frame in time-
series is not labelled with a class, but the entire sequence is labelled with a single class.
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Figure 4.32: New LSTM backpropagation architecture

This means that the loss would have to be backpropagated from the last time step in the
sequence. The new architecture would look something like in Figure 4.32. Note how it
is different from the previous architecture shown in Figure 4.24. A network of the same
size as our previous experiments with 20 hidden neurons in each layer and 2 hidden layers
was used. A synthetic dataset was prepared for training this new architecture, which has
sequences of fixed length (50 for our experiments). A quick estimate is that we resampled
all the videos in our video dataset to 10fps, so, 50 timesteps means 5 seconds of video.
Each sequence in this set would have from 0 - 5 peaks/valleys at varying positions in the
signal. This was prepared using default and flat-waves with varying points-per-wave-cycle
as discussed before in the wave-cycle preparation section. A sample signal is shown in
Figure 4.33. The respective train and test sets were created to ensure there was no overlap.
This would be the class label of the entire sequence which would be backpropagated from
the last time step.
The hypotheses for this setup were:

1. It should be much harder for the network to learn any patterns, since the loss is only
propagated backwards from the last time step. It should also get increasingly difficult
for the model if the sequence length increases.

2. This setup should take more time and iterations to train.
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Figure 4.33: New dataset sample for Backpropagation from last step

Figure 4.34: Good prediction on a last-time-step sample

As expected, the model’s learning was much slower than the previous approach of LSTM
spoon-feeding. The prediction results are mixed, and the confidence in the true class is not
very high whenever the model makes correct predictions. A few good and bad predictions
can be observed in the figures 4.34 and 4.35 respectively. It shows that it is harder to make a
network understand the problem if we only backpropagate the loss from the last time step.
The results were not completely unsuccessful. So, this architecture is also experimented
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Figure 4.35: Average predictions on a last-time-step sample

with in the end-to-end pipeline.

4.3. Backpropagating through the Matrix Profile

Figure 4.36: Frames from rowing-machine video

Based on the synthetic wave toy tasks discussed in this chapter before, it is clear that a spe-
cialized recurrent neural network architecture, like an LSTM, can tackle this problem of
estimating repetitions in videos. Before building an end-to-end trainable pipeline, it needs
to be ensured that the computation of the matrix profile in itself is backpropagatable (the
gradients should be able to flow through it). As a part of this project, a PyTorch implemen-
tation of the matrix profile computation was written which is backpropagatable.

4.3.1. Varying window size
The new backpropagatable implementation is also flexible to have varying window sizes.
Our hypothesis regarding the window-size was that as we increase the window size, a range
of frames would be compared at once, and that would result in a smoother matrix pro-
file. Visualizing the results proved this hypothesis. A sample rowing-machine video was
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Figure 4.37: Distance profiles from rowing-machine video

Figure 4.38: Change in Matrix profile with change in Window size

observed (frames shown in Figure 4.36). The distance profiles of this video are shown in
Figure 4.37. The minimum values (for each time-step) from this distance profile is the ma-
trix profile. The comparisons of using different window sizes(1, 3 and 7) are shown in Figure
4.38. As expected, the matrix profile gets smoother as the window size is increased.
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4.3.2. Matrix Profile on pretrained CNNs

The matrix profile is reliable when computed using image pixels. We hypothesized that the
matrix profile should be reliable when computed using CNN features as well. This could in-
crease the speed of the computation if features from each window were compared instead
of the huge number of pixels. A few pretrained convolutional neural network architectures
(pre-trained on the ImageNet dataset (Deng et al., 2009)) are used to have a compressed
representation of the frames. This also aids in having an end-to-end trainable model if the
weights of this pretrained CNN are further tuned. Using the CNN dramatically reduces the
dimensions per frame hence speeding up the calculation of the matrix profile. A few CNN
architectures are compared in detail in Appendix A.14.

1. Dimensions per frame using pixels = 224×224×3 = 150528

2. Dimensions per frame using CNN (ResNet-18) features = 512

3. Dimensions per frame using CNN (DenseNet-121) features = 1024

4. Dimensions per frame using CNN (SqueezeNet-1.1) features = 86528

Figure 4.39: Matrix profile using pixels vs CNN(DenseNet-121) features (window size = 1)

On comparing these CNN architectures, there is no clear winner in terms of feature map
size, trainable parameters or computation graph size. In the experiments however, it was
observed that ResNet, even though having the largest number of trainable parameters,
trains the fastest for our task. We believe that it is because of the skip connections in its
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Figure 4.40: Matrix profile using pixels vs CNN(DenseNet-121) features (window size = 7)

architecture which let the gradient comfortably flow backwards. This is the reason that
ResNet-18 is used for the end-to-end pipeline. To ensure that the calculated matrix profile
using CNN features is reliable, the matrix profiles using pixels and using CNN features are
plotted for varying window sizes in Figures 4.39 and 4.40. It can be seen in the figures that
with increase in window size, the matrix profile gets smoother (like it does for matrix pro-
file calculated using pixels). As expected, the matrix profile using the CNN features is also
decent with an added advantage of being able to further train the CNN weights to possibly
improve the calculated matrix profile signal.

4.3.3. Gradient Video
Before moving to the end-to-end experiments, it needs to made sure that the gradients
flow from the model prediction vs count label back into the LSTM and through the Matrix
profile computation graph back into the CNN block. To actually see if there is some use-
ful information being passed back, an experiment was conducted to visualize the gradient
flow. To see if the gradients flow back properly with meaningful information, the CNN
block is removed from the pipeline as shown in Figure 4.42. And the video frames are made
trainable. What this means is that the frame-image-pixels are made tunable, so the gra-
dient information can flow into them. The last time step of the prediction is compared to
the actual label of the video (as discussed in the Last time step labelling section above) and
is where the gradient originates and it flows back into each frame of the video. Now, the
gradient information per frame in the video is gathered and a video is created out of the
gradients. A video that we used for this experiment is the bmx video (as shown in Figure
4.13 before). After making the frame pixels trainable, the computed gradient information
video is shown in 4.41. The gradient video shows a nice interest region in the pixels where
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Figure 4.41: Gradient video computed by making the video-frame-pixels trainable.

Figure 4.42: End-to-end pipeline without CNN block for Gradient video computation

the movement actually occurs in the video. It clearly highlights the moving region in the
video for each frame. We believe this could be experimented with further for tasks like in-
terest region computation or background subtraction from videos. This experiment shows
that the gradients flow backwards properly even from just the last time step.

4.4. End-to-end trainable pipeline
The final end-to-end trainable pipeline is shown in Figure 4.43. A series of experiments
were conducted that would change one variable at a time to be able to definitively answer
the research questions. All the experiments conducted so far work with only segments of
this pipeline. For example, the sinusoidal experiments at the beginning aid in finalizing the
LSTM block (and its size required for a given task) that could understand a 1-dimensional
signal that matrix profile generates which is the last block in the pipeline. Similarly, the
CNN with matrix profile experiments were conducted to ensure that the output of a con-
volutional network can be used for computing the matrix profile instead of the raw pixel
values. This section covers the end-to-end flow. Some challenges encountered while train-
ing this pipeline are discussed in Appendix A.15.
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Figure 4.43: End-to-end trainable pipeline

4.4.1. Changing one variable at a time
Theoretically, with an infinite amount of labelled videos for training and an unlimited amount
of memory in the available GPUs, it should be possible to estimate repetitions in all kinds
of videos by just feeding the raw pixel values into a big enough LSTM network. We have
neither of those, so we need to learn features from the images to reduce the dimensions
of the input to the LSTM network. And we do not even have an unlimited memory, so we
want our LSTM network to be as small as possible. Through our upcoming experiments,
we will try to come up with light versions of the model that perform at least as good as the
heavier models. The key idea is that the lighter the model is, the more feasible it is to use
for a real-world problem.
Several instances of the model were deployed with slight modifications in each one. The
slight changes ensure that one variable is changed at a time to understand the effect of the
variations. It is a configurable plug and play pipeline and the following configurations are
experimented with:

1. CNN Type: This can have a value between DenseNet-121 or SqueezeNet-1.1. Based on
this configuration, the Convolutional Neural Network block is decided. For either of
these networks, the input to the Convolutional Block (per time step) is an image of
dimensions (224×224×3). The output of this convolutional block is of dimensions
512 if it is a ResNet-18, 1024 if it is a DenseNet-121 and 86528 if it is a SqueezeNet-1.1.

2. Matrix Profile Flag: This is a boolean flag which can have a value of True/False (on/off).
If this flag is turned on, only then the matrix profile block is used in the pipeline. For
instance, if this flag is turned off, the CNN features are directly fed to the next block
which is the LSTM block. In this case, the input for the LSTM block would be of di-
mensions 1024 (if CNN used is DenseNet-121), 86528 (if CNN used is SqueezeNet-1.1)
or 512 (if CNN used is ResNet-18).

3. Matrix Profile window-size: This field is only used if the Matrix Profile flag is set to
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on. This field determines the window-size which is a hyperparameter used in calcu-
lation of the matrix profile. (See the Matrix Profile section above for more details).

4. LSTM Hidden Layers: This field determines the number of hidden layers employed
in the LSTM block in our pipeline. By default, we have set this parameter to 2 for our
experiments. This configuration can help us experiment with the complexity of our
model later on if needed.

5. LSTM Hidden Neurons(per layer): This field determines the number of neurons in
each hidden layer of the LSTM block. Because of our initial wave-cycle experiments,
we could make informed guesses about this parameter. Based on the choices of
the other configuration fields, this field would be modified (as shown in this section
later).

6. CNN Backpropagation: This is a boolean flag which can have a value of True/False
(on/off). If this flag is turned on, only then will the weights of the CNN be tuned.
For initialization of the weights of the CNN (either of the two variants), we use the
pretrained weights (pretrained on ImageNet (Deng et al., 2009)). If this flag is not
turned on, the image frame to CNN feature calculation step will not be a part of the
computation graph (more details on the computation graph in the Appendix). In that
case, the end-to-end computation graph would be much smaller than in the case of
this flag being on. Our hypothesis regarding this parameter was that by tuning the
weights of this CNN, we could possibly polish the computed matrix profile signal.
(The CNN would adjust itself to make it easier for the matrix profile to detect motifs).
If turned on, this would make the training of the pipeline drastically slower, but the
possible rewards are worth the wait.

Based on the configuration options discussed above, there can be any number of com-
binations to converge to a final model. But, from our experience with the experiments
conducted so far, we came up with the following combinations:

1. Model: t0

Figure 4.44: Architecture of models t0 and t1. The CNN features are directly fed to the LSTM block.

• CNN Type: ResNet-18

• Matrix Profile Flag: off
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• Matrix Profile window size: Not applicable (as Matrix Profile Flag is off)

• LSTM Hidden Layers: 2

• LSTM Hidden Neurons (per layer): 100

• CNN Backpropagation: off

Figure 4.44 shows the architecture of this model. This is a relatively lightweight pipeline
without the Matrix Profile. The idea of training this pipeline is that feeding the CNN
frames directly to a light LSTM. Our hypothesis regarding this variant is that it would
begin to learn some patterns but the performance of this pipeline would not be as
good as the heavier LSTM variant.

2. Model: t1

• CNN Type: ResNet-18

• Matrix Profile Flag: off

• Matrix Profile window size: Not applicable (as Matrix Profile Flag is off)

• LSTM Hidden Layers: 2

• LSTM Hidden Neurons (per layer): 2000

• CNN Backpropagation: off

Figure 4.44 shows the architecture of this model. This is a heavier Pipeline without
the Matrix Profile. The idea of this pipeline is that we have enough number of hidden
neurons to actually fit the task at hand. Our hypothesis is that this variant would
perform better than the variant with a lighter LSTM.

3. Model: t2

Figure 4.45: Architecture of models t2 and t3. The CNN features are used to compute the Matrix
Profile and that is fed to the LSTM block.

• CNN Type: ResNet-18

• Matrix Profile Flag: on
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• Matrix Profile window size: 1

• LSTM Hidden Layers: 2

• LSTM Hidden Neurons (per layer): 2000

• CNN Backpropagation: off

Figure 4.45 shows the architecture of this model. This is a heavier pipeline with the
Matrix Profile.

4. Model: t3

• CNN Type: ResNet-18

• Matrix Profile Flag: on

• Matrix Profile window size: 1

• LSTM Hidden Layers: 2

• LSTM Hidden Neurons (per layer): 100

• CNN Backpropagation: off

Figure 4.45 shows the architecture of this model. This is a relatively lightweight pipeline
with the Matrix Profile. The idea of using matrix profile in this pipeline is that if it is
possible to use the matrix profile to greatly reduce the size of the model required for
the task of repetition estimation.

5. Model: t4

Figure 4.46: Architecture of model t4. The CNN features are used to compute the Matrix Profile and
that is fed to the LSTM block. The CNN weights are also trained for this model.

• CNN Type: ResNet-18

• Matrix Profile Flag: on

• Matrix Profile window size: 1
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• LSTM Hidden Layers: 2

• LSTM Hidden Neurons (per layer): 100

• CNN Backpropagation: on

Figure 4.46 shows the architecture of this model. This model is a relatively lightweight
pipeline with the Matrix Profile but its CNN backpropagation is turned on leading to
a huge computation graph. The goal of this pipeline is to train the CNN in such a way
that the computed matrix profile using this gets better (it becomes easier to detect
repetitions from the computed matrix profile signal). This model would answer the
question if backpropagating through the matrix profile actually helps.

These models are trained on all the three datasets for 500 epochs or a max-run-time of 3
days (whichever happens before) on a pascal GPU machine. The training-losses, validation-
losses and epoch-accuracies can be found in the Appendix B.
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Results and Discussions

The model-configurations discussed at the end of the last section are all trained separately
on all the three datasets. (Note: These results are obtained using each time-step labelling as
discussed before). Each frame denotes a class to which it belongs (repetitions so far). Now,
to make sure that there is no bias, it is ensured that each video in the dataset has exactly 5
repetitions. The videos which have more than 5 repetitions are trimmed so that they meet
this constraint.

Measuring accuracy: For each time-step labelled data, a label for each frame in the video
is present which denotes the number of repetitions so far. There are several ways to mea-
sure accuracy. Existing literature (like (Runia et al., 2018) and (Levy and Wolf, 2015)) uses
Mean Absolute Error to compute errors in their final estimations. Mean Absolute Error is
the difference in actual and predicted number of repetitions. These works also do not use
a separate test set for evaluation. This would mean only considering the output of the last
frame for our architecture since an output is produced for each frame by this work’s pro-
posed model. This is not a good indicator of the accuracy of the proposed model. A tech-
nique to evaluate such an online approach is to look at all the predicted labels of all the
frames (from the videos in the test set) and compare them to the actual labels to compute
an overall accuracy. This approach however, has an ingrained flaw. If a video has a lot of
frames (as compared to other videos in the test set), the accuracy of that video would skew
the overall accuracy of the model which should not be the case. Since all the videos have
exactly 5 repetitions, a video could have more frames if the action is repeated slowly in the
video (temporal cycle length is large). To overcome this flaw, this work proposes the ap-
proach of computing accuracy per video (from the test set) by comparing individual frame
predictions with the labels and then calculating an overall accuracy of the test set by taking
an average of all the accuracies. This approach gives an equal weight to each video in the
test set.

5.1. Blade Inspection dataset

This is the smallest dataset (with each-time-step labelling) with 20 videos. The repetitions
in this dataset are slower than the other two datasets. Since each video in all subsets con-
tains exactly 5 repetitions, this dataset has the maximum number of frames per video. Since
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each of these videos feature long repetition cycles, the videos in this dataset have a lot of
frames. Backpropagating gradients through the matrix profile computation step leads to a
very big computation graph which doesn’t fit in the GPU memory. This is the reason this
dataset was resampled to 5 frames per second. All the training and validation loss plots can
be found in the Appendix B.

• Figure B.1 shows training and validation losses using t0 architecture. It also shows
the test-accuracy per epoch while training. Figure B.2 shows accuracies per video
distribution. The training and validation loss curves show a steady decrease in loss
and the best accuracy(number of correctly labelled frames) obtained was about 56%.

• Figure B.3 shows training and validation losses using t1 architecture. It also shows the
test-accuracy per epoch while training. Figure B.4 shows accuracies per video distri-
bution. This architecture uses a heavier LSTM variant and shows signs of overfitting
on the training set. The loss in train set keeps decreasing while the loss in the vali-
dation set starts to rise which indicates that the model is overfitting on the training
set. Since this dataset had very few videos and lots of trainable parameters, this was
expected. This could be rectified by employing some regularization techniques like
L1/L2 regularization, dropout etc. (A few regularization techniques are discussed in
detail in the Appendix A). As expected, the best accuracy obtained using this architec-
ture was about 61% and better than the lighter LSTM architecture (t0 architecture).
The accuracy difference was not significant however.

• Figure B.5 shows training and validation losses using t2 architecture. It also shows
the test-accuracy per epoch while training. Figure B.6 shows accuracies per video
distribution. This architecture uses the Matrix Profile and uses a heavy LSTM. The
accuracies obtained by this architecture were at-least as good as the t1-architecture
(around 60%) which indicate that the Matrix Profile is useful for the task at hand in-
stead of using the CNN features directly.

• Figure B.7 shows training and validation losses using t3 architecture. It also shows the
test-accuracy per epoch while training. Figure B.8 shows accuracies per video distri-
bution. This architecture uses a light LSTM with the Matrix profile. The accuracies
obtained with this architecture were again at-least as good as the heavier t1 architec-
ture and t2 architecture variants. The accuracy obtained using this architecure was
66% which is the best accuracy obtained so far compared to the other architectures.
This helps prove our hypothesis that employing the matrix profile can help compress
the model size required for the task of repetition estimation.

• Figure B.9 shows training and validation losses using t4 architecture. It also shows
the test-accuracy per epoch while training. Figure B.10 shows accuracies per video
distribution. The training of this model for the blade dataset shows a lot of movement
in loss curves and obtains a best accuracy of 66%. This accuracy is not better than
the t3 architecture, but, is still better than any other architecture and doesn’t disprove
thy hypothesis that backpropagating through the matrix profile can be beneficial for
repetition estimation.
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5.2. YTSegments dataset

This dataset contains about 100 videos (with each time-step labelling). This dataset con-
tains a variety of videos like cooking, exercise etc. The repetitions in this dataset are fairly
quick compared to the blade dataset, so the number of frames per video in this dataset is
lower (as all the videos have exactly 5 repetitions). All the training and validation loss plots
can be found in the Appendix B.

• Figure B.11 shows training and validation losses using t0 architecture. It also shows
the test-accuracy per epoch while training. Figure B.12 shows accuracies per video
distribution. Because of the variety of videos in this dataset, the loss curves show
more variance around the trend line. The best accuracy obtained on this dataset was
around 51%. As expected this dataset has a variety of videos and has more videos
which results in a slightly lower accuracy compared to the blade dataset. Toward the
end the training shows some signs of overfitting as the training loss decreases while
the validation losses start rising.

• Figure B.13 shows training and validation losses using t1 architecture. It also shows
the test-accuracy per epoch while training. Figure B.14 shows accuracies per video
distribution. Again the heavier LSTM. This architecture uses a heavier LSTM variant.
It doesn’t yet show any signs of overfitting. This could be because the model is still
learning its massive amounts of parameters and the amount of training data is not
too small like the blade dataset. This architecture again obtains a better accuracy of
56% compared to the lighter LSTM variant.

• Figure B.15 shows training and validation losses using t2 architecture. It also shows
the test-accuracy per epoch while training. Figure B.16 shows accuracies per video
distribution. This architecture uses the Matrix Profile and uses a heavy LSTM. The
accuracies obtained by this architecture were around 57% and again at-least as good
as the t1-architecture indicating the usefulness of the Matrix Profile.

• Figure B.17 shows training and validation losses using t3 architecture. It also shows
the test-accuracy per epoch while training. Figure B.18 shows accuracies per video
distribution. This architecture uses a light LSTM with the Matrix profile. The accu-
racies obtained with this architecture were around 56%. Just like the blade dataset,
a lighter model with the Matrix profile gets accuracies as good as the heavier models
indicating that the with the matrix profile, the required model size is smaller.

• The t4 architecture involves backpropagating throught the matrix profile calculation
and training the pretrained CNN weights. Since the repetitions on this dataset were
quick, the size of the computation graph was feasible. The validation loss seemed to
hint overfitting as the training loss kept decreasing but, the accuracies obtained by
this model were 63% which is the best so far. This experiment shows that it is indeed
possible to backpropagate through the matrix profile.

5.3. QUVA dataset

This dataset also contains about 100 videos (with each time-step labelling). It contains
videos with lots of camera movements and varying repetition cycle lengths. All the training
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and validation loss plots can be found in the Appendix B.

• Figure B.21 shows training and validation losses using t0 architecture. It also shows
the test-accuracy per epoch while training. Figure B.22 shows accuracies per video
distribution. The training and validation curves show a steady decrease and later
shows signs of overfitting just like the same architecture with the YTSegments dataset.
The best accuracy on the test-set obtained using this architecture was a mere 40%.

• Figure B.23 shows training and validation losses using t1 architecture. It also shows
the test-accuracy per epoch while training. Figure B.24 shows accuracies per video
distribution. The best accuracy obtained was 45% using this architecture.

• Figure B.25 shows training and validation losses using t2 architecture. It also shows
the test-accuracy per epoch while training. Figure B.26 shows accuracies per video
distribution. This architecture uses the Matrix Profile in conjunction with a heavy
LSTM. The best accuracy obtained by this architecture(46%) was quite similar to the
t1 architecture variant.

• Figure B.27 shows training and validation losses using t3 architecture. It also shows
the test-accuracy per epoch while training. Figure B.28 shows accuracies per video
distribution. Even with a light LSTM this architecture shows accuracies of 46% which
are similar to the heavier LSTM variants just like for the other two datasets.

• The t4 architecture which involves backpropagating throught the matrix profile cal-
culation and training the pretrained CNN weights was successfuly performed on the
quva dataset as well. The quva dataset contains videos of a variety of cycle lengths
but the cycle lengths are never as big as the blade dataset videos. Just like for the
YTSegments dataset, the loss curves showed hints of overfitting, but the best accu-
racy(50%) obtained by this backpropagation through the matrix-profile approach ex-
ceeded all the other architectures. This again proves our hypothesis that backprop-
agating through the matrix profile is possible and potentially useful.

The accuracies on the test sets of Aircraft Engine Blades, YTSegments and QUVA datasets
for all of the model architectures are plotted in Figure 5.1. The trend in the plot shows that
the models making use of the Matrix profile (t3 and t4 architectures) obtain the best results
in terms of accurately labeled frames. The experiments comparing t0 and t1 architectures
show a difference of about 5% for all datasets. This shows that estimating repetitions using
a recurrent network fed with CNN features requires a heavy RNN to better learn the task
at hand. The t3 architectures for all datasets consistently gave accuracies equal to or better
than the heavier t1 and t2 architectures. This helps us deduce that computing the matrix
profile is actually useful for estimating repetitions and helps us reduce the size of the model
without compromising on accuracy. The t4 architecture showed good promise by obtain-
ing the best accuracies (with a margin of about 5%) for both quva and ytsegments datasets.
By looking at the results of the t4 architecture on the datasets, it can safely be concluded
that it is possible to backpropagate through the step of computing the matrix profile and
update the CNN weights such that it helps the upstream LSTM to more effectively use the
computed Matrix profile signal. This means that backpropagating through the matrix pro-
file could potentially be used for several other tasks where matrix profile already shines to
further improve the results in that specific domain. This also means that other problem
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Figure 5.1: Model architecture accuracies for Aircraft Engine Blades, YTSegments and QUVA
datasets.

Blades YTSegments QUVA
(Levy and Wolf, 2015) 3.454 2.87 3.076
t4 architecture 0.409 1.383 0.641

Table 5.1: Mean Absolute Error comparison of the t4 architecture with (Levy and Wolf, 2015) on the
prepared datasets with 10 fps and 5 repetitions per video.

specific mathematical operations could be backpropagated through to further improve re-
sults.

The best performing architecture (t4 architecture) is also compared with the pretrained
model published by (Levy and Wolf, 2015) on the prepared dataset for Mean Absolute Er-
ror. The prepared datasets contain all the videos with exactly 5 repetitions. The model
published by (Levy and Wolf, 2015) predicts a count per video which can be compared
with 5 to get the error in prediction (if any) and the error is averaged over all the videos
in the dataset. The count per video is obtained from the proposed t4 architecture by only
considering the model’s prediction on the last time step. The Mean absolute errors for
both these models can be found in the Table 5.1. It clearly shows that on the prepared
dataset, the proposed architecture easily outperforms the model published by (Levy and
Wolf, 2015) (which possibly requires dataset specific configurations judging by higher er-
rors on datasets with longer repetition cycle lengths).



6
Conclusions and Recommendations

6.1. Conclusions
This work suggests a new way to look at the problem of repetition estimation. It proposes
a novel approach of labelling the dataset by labelling each frame of the video with a class
(repetitions so far). This results in an inherently online approach to tackle the problem. It is
observed that this kind of labelling aids in faster and better learning in recurrent architec-
tures as compared to assigning a label to the entire video (or to just the last time step). After
labelling the dataset like this, the Matrix Profile is experimented with and it is observed that
it is useful for the task of repetition estimation. Furthermore, a recurrent neural network
architecture like an LSTM can be trained using video frames or using pretrained CNN (like
ResNet) features from video frames. An LSTM like this would need to be quite heavy (with a
lot of trainable parameters). The size of this network can be dramatically reduced by using
the Matrix Profile and feeding the Matrix profile (computed from the CNN features) to the
upstream LSTM instead of feeding the CNN features to LSTM directly. The weights of this
pretrained CNN (ResNet-18) are also trained by backpropagating through the Matrix Pro-
file computation step and it is observed that the accuracy of the model increases for both
all the three (Blade inspection, QUVA and YTSegments) datasets. The fact that the matrix
profile computation is backpropagatable can be quite beneficial to several domains that
employ the Matrix Profile or other domains which employ some problem specific mathe-
matical operations like the Matrix Profile.

6.2. Recommendations
The problem of estimating repetitions in videos is harder than it seems at first glance. There
could be several ways to improve the performance and learning of the proposed architec-
ture. Currently, the datasets were labelled with each-time-step labelling manually by a sin-
gle person. This could be rectified by having several people label the videos and aggregating
their results to have consistent repetition cycle estimates. For the matrix profile calculation,
a window size of 1 is used in the end-to-end pipeline experiments. Different values for this
hyperparameter can be cross-validated to see what works best for the dataset at hand. An-
other improvement could include cross-validating with several loss-types like the Margin
Hinge Loss etc. instead of the employed Negative Log-Likelihood Loss. and with different
activation functions like tanh or sigmoid. Different types of loss and activation functions
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can perform better for different kinds of problems. A few popular loss types and activa-
tion functions are discussed in detail in the Appendix A. More boost in performance could
be obtained by increasing the size of the dataset by using video augmentation techniques
like rotation, shear etc. The computation graphs of several matrix profile implementations
could be inspected to chose the smallest one or the most parallelizable one to enable faster
convergence. Smaller computation graphs as proposed by (Veit and Belongie, 2018) can
be experimented with. The matrix profile output is not necessarily aligned perfectly with
our idea of repetition-cycle end/begin. The Feature Aligning Network recently proposed by
(Xie et al., 2019) also seems promising to align the matrix profile properly with the labels. A
completely different way to tackle this problem could be by using the Triplet Loss proposed
by (Schroff et al., 2015). To use the Triplet Loss, videos with the same number of repetitions
could be grouped together as positive examples for the anchor and any other video could
be negative examples.
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A
Appendix I: Detailed Explanations

A.1. Matrix Profile
The problem of finding similarity joins or all-similar-pairs has been researched upon exten-
sively since several decades. There hasn’t been a great amount of progress in feasibly find-
ing similarity joins for time series datasets. The paucity of advancement could be blamed at
the intimidating nature of the problem. Even for relatively moderate sized datasets, the typ-
ical nested-loop approach can take months to converge to a solution. There have been sev-
eral techniques proposed to obtain a speed-up like early-abandoning, indexing, triangular
inequality, lower bounding etc. But all of these techniques only produce a small speedup
of a couple orders of magnitude at best. (Yeh et al., 2016) proposed a technique which
claims to be scalable even for exceptionally huge datasets. This algorithm can be used as
an anytime-algorithm in cases of large datasets and emit quality approximations in an ac-
ceptable amount of time. This algorithm for similarity joins also provides the fastest known
approach for finding motifs and discords in time series which are both extensively studied
problems. There are several advantages of employing the Matrix Profile for data mining
tasks on time series over techniques like indexing, hashing etc. like:

• It doesn’t provide any false positives for tasks like discovery of motifs and discord or
for joins on time series etc. It is therefore exact.

• Opposed to a lot of other algorithms like spatial access algorithms, the matrix profile
doesn’t require any tuning and is therefore simple and free of any hyperparameters.

• The matrix profile computation doesn’t need a ton of space and only requires space
in a linear order of magnitude of the timeseries along with a constant overhead. This
allows the computation to be performed in the Random Access Memory. Hence, the
space complexity is linear(efficient).

• The time complexity of the algorithm is also constant in subsequence length which
is a very lucrative attribute for a motif/discord/join algorithm. The matrix profile can
actually be computed in deterministic time and it is possible to precisely estimate the
time that would be required to calculate it.

• It is possible to incrementally maintain the matrix profile. This makes it usable for
extremely long sequences of multidimensional data. This means that the algorithms
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proposed in (Mueen et al., 2009) and (Chandola, 2009) can exactly maintain time-
series motifs and discords respectively using streaming data. Only the extreme(maximum
and minimum) values need to be kept track of while the matrix profile grows incre-
mentally.

• The computation of the Matrix Profile also allows for blazingly-fast approximate so-
lutions which could be used for extremely large datasets.

• The matrix profile is not adversely affected by some missing data. The approach
doesn’t provide any false negatives even if some data is missing.

• The algorithm is massively parallelizable which allows it to use several cores of a CPU
or even GPU to speedup the calculations.

Given all these bankable attributes, the Matrix Profile finds applicability in a wide range
of data mining tasks on time series. The papers exhibit the utility of the algorithm on sev-
eral time series problems like semantic segmentation, novelty discovery, motif discovery,
contrast set mining etc.

A.2. Fourier Transform
For all intents and purposes everything on the planet can be portrayed by means of a wave-
form - a function of space, time or some other variable. For example, electromagnetic
fields, sound waves, a plot of Voltage Standing Wave Ratio versus recurrence, the cost of
your preferred stock versus time, and so on. The Fourier Transform gives us an interest-
ing and incredible method for conceptualizing these waveforms. All waveforms, known to
mankind, are in reality simply a combination(sum) of straightforward sinusoids of various
frequencies. While this appears to be made up, it is valid for all waveforms. This goes for
phone signals, TV signals the sound waves that are emitted when you talk. When all is said
in done, waveforms are not comprised of a discrete amount of frequencies, but actually a
continuous collection of frequencies. The Fourier Transform is the scientific device that
tells us the best way to deconstruct the waveform into its sinusoidal parts. This has a huge
number of applications and helps us in better understanding the universe by giving a new
way of looking at the world. It is widely used in a variety of fields in engineering and sci-
ence like for material rupture estimations in astrophysics, in space travel for long distance
communication, in forecasts and market signals analysis etc.

A.3. Hough Transform
The hough transoform is a popular technique used in computer vision and digital image
processing for feature extraction. The main goal of using this technique is to find rea-
sonable instances of objects by using a voting methodology. This casting a ballot strat-
egy is done in a parameter space, and the object candidates are secured from the local
maxima from the accumulator-space that the technique builds for calculating the trans-
for. The earlier-version of Hough transform focussed on finding lines in a picture, yet later
the Hough transform has been stretched out to recognizing places of self-assertive shapes,
most generally ellipses and circles as discussed in (Duda and Hart, 1971). In computerized
investigation of digital images, a problem regularly emerges of identifying straightforward
shapes, for example, straight lines, ellipses or circles. In a lot of the cases an edge detection
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step can be utilized as a pre-preparing stage to get image pixels or image points that are on
the ideal curve in the image space. Because of blemishes in either the image information or
the edge locator, be that as it may, there might miss focuses or pixels on the ideal curves just
as spatial deviations between the perfect line/ellipse/circle and the noisy edges as they are
acquired from the edge indicator. Thus, it is regularly significant to bunch the extricated
edge highlights to a fitting arrangement of lines, circles or ellipses. The motivation behind
the Hough transform is to address this issue by making it conceivable to perform groupings
of edge-points into candidates(up for voting) by playing out an unequivocal voting-system
over a lot of image objects that are parameterzed.

A.4. Optical Flow

Figure A.1: Optical flow of a moving ball from [L2]

Optical flow is the pattern of evident movement of an object, edges, and surfaces in
an ocular scene occuring due to the relative movement between a scene and the observer.
It can also be coined as the spread of discernible velocities of the motion of patterns of
brightness in an image. It is in-fact a 2 Dimensional vector field in which, each vector de-
notes the motion of a certain pixel or a pixel region from the previous frame to the next.
Figure A.1 shows a moving ball and its position in five frames (consecutive). The big arrow
denotes the direction of the displacement vector. Optical flow finds applications in several
fields like video stabilization, structure from motion ((Belongie and Wills, 2004)), video sta-
bilization etc. This algorithm works on a few big assumptions that for an object, the pixel
intensities don’t change with successive frames and that the pixel-neighbours have similar
kind of motion trajectory. A popular open source method to compute optical flow is the
Lucas Kanade method proposed by (Lucas et al., 1981) whuch takes a 3×3 patch around a
point of interest and then computes the trajectory of these 9 points as a whole. Usually in
practice, a corner detector like the Harris corner detector ((Harris et al., 1988)) is first used
to compute corners which are interest points and then the optical flow for those points is
computed. This optical flow calculation usually fails whenever there is a big movement
since it only relies on pixel’s local surroundings in successive frames. To overcome this,
pyramids are used. As you move up in the pyramid from the base, the small motions dis-
appear and the large motions become smaller. The optical flow calculation can then be
performed along with the changed scale. The Lucas Kanade method is readily available as
a function to use in the OpenCV library.
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A.4.1. Dense Flow Field
The Lucas Kanade approach computes the optical flow for a feature set which is sparse in
nature. For example, we typically compute the optical flow of interest points like corners
as discussed above. (Farnebäck, 2003) proposed an algorithm to compute the dense flow
field which is the flow(motion trajectory) for all of the pixels in the image frame. This work
proposes a two-frame algorithm for motion estimation. It employs quadratic polynomials
by making use of the polynomial expansion transform to approximate the neighborhood of
the consecutive frames.

A.5. Mixture of Gaussians
A Gaussian mixture model is a probabilistic model that makes an assumption that all data
points are produced from a blend of a limited number of Gaussian distributions with pa-
rameters that are unknown. One can consider mixture models as extrapolating k-Means
clustering to fuse knowledge about the covariance structure of the data just as the center
points of the inactive Gaussians. It is also a kind of a clustering technique. As the name
suggests, each of the clusters is a part of a different gaussian distribution. This results in a
probabilistic and flexible approach to model the data leads to soft-assignments unlike the
k-means clustering algorithm which employs hard assignments. So there is always a prob-
ability for a datapoint to belong in a cluster. In fact, each of the distributions(part of the
mixture) will have a non zero probability over generating any datapoint. This technique
enjoys application in a wide range of fields which involve modelling or clustering in unsu-
pervised settings.

A.6. Computation Graphs

Figure A.2: Computation graph of an expression from [L3]

For calculating derivatives of an expression, we need to use the chain rule. Chain rule is
just breaking down the expression to its smallest form to calculate the derivative(gradient)
for each step. Computation graph is the breakdown of the expression required to calcu-
late the derivative of the expression. There have been great advancements in frameworks
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that enable building of this computation graph effectively and automatically calculate the
gradients. The most popular ones being PyTorch and Tensorflow. Backpropagation is the
flow of gradients back in a neural network’s computation graph. It is the single most impor-
tant algorithm that has enabled training of deep neural networks computationally feasible.
Deep Learning is not the only field that benefits from backpropagation. It is extensively
used for tasks like numerical computing, weather forecasting etc. At its core, it is a trick to
compute derivatives rapidly. To get a better intuition about computation graphs, we will
look at an example. Suppose we have an expression:

e = (a +b)× (b +1) (A.1)

In this equation, the initial variables are a and b. we can rewrite this equation with a few
more intermediate variables as follows:

c = a +b

d = b +1

e = c ∗d

Now the computation graph for this expression would look something like the figure A.2.
Whenever one node is used for calculating another node, there is an arrow from former
node into the latter. Now if we calculate the derivative of e which sits at the top of the graph,
we can see how the gradients would flow backwards from it into each of the nodes under it.
Inspecting the computation graphs can give us tips about the learning of the network and
possibly look for problems like vanishing or exploding gradients in neural networks.

A.7. Feedforward Neural Networks
A feedforward network is a kind of neural network that has a series of linear mathematical
operations performed at the nodes of the networks and then multiplied with a non linear
activation function before reaching the final output. When the information is flowing for-
ward through such a network, the information never goes through the same node more
than once. It is different from recurrent architectures as the latter involves looping the in-
formation through the same nodes several times before forwarding it across for the output
layer. Multi Layer perceptrons are the simplest kind of feed-forward nets. These nets are
fairly simple with the input example being fed on one end and the output is compared to
the expected output on the other end and the loss is backpropagated to update the weights
in the network to actually fit to the training data. It is usually trained till it minimizes the
error it is making while making the predictions. A network like this can then be used on
data that the network hasn’t even seen before as the network learns patterns in the multidi-
mensional data which are applicable to even the test set. This is the reason that the results
get better and better as we acquire more and more data. Convolutional networks are also
a special variant of the feedforward network built specially for working with 3-chanelled
(Red/Green/Blue) image data. Unlike the recurrent networks, feedforward networks have
no understanding of order in time and it looks at the input all together. Technically it only
remembers the formative snapshots of training.
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A.8. Activation Functions
Activation functions are the mathematical equations that help compute the output of a
typical neural network architecture. Usually this function is applied to each neuron in the
network. This function determines if the neuron is activated or not based on the input
given by the user so that the model makes the correct prediction based on weather the in-
put to that neuron is relevant for the prediction. Activation functions usually clamp the
output of the input to a small range like [−1,1] or [0,1] which leads to a normalizing effect.
Another property of the commonly used activation functions is that they are not compu-
tationally demanding and their derivatives are very easy to calculate as this function is ap-
plied to millions of neurons in a network and needs to be computed again for each training
sample(or batch). Modern neural networks use backpropagation to have the gradients flow
backwards in the computation graph and using simple activation function (with a simple
derivative) helps speed-up the flow and thereby faster convergence.

A.8.1. Linear Activation Functions
Several linear transformations can be squished to a single linear transformation. If the
activation function is a linear function, as the data is propagated forward in the network,
no matter how deep the network is, the last layer will be a linear function of the entry layer.
Hence, a linear activation function would render having a deep network useless as it would
be equivalent to having a single linear layer which is equivalent to a simple linear regression
model. Such a model has very limited flexibility and can’t cope with the complexity of real
world problems.

Figure A.3: Sigmoid Activation Function from [L4]

A.8.2. Non-Linear Activation Functions
Most of the modern neural network architectures use non-linear activation functions. These
allow the model to have complex computation graphs between the inputs and outputs
of the network which is essential for learning and fitting to complex multidimensional
datasets like images, audio, video etc. Because of the non-linearity, these functions al-
low stacking up of several layers in the deep network which are essential for the model in
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learning high level features. A few popular activation functions are discussed below:

Figure A.4: Tanh with Sigmoid Activation Functions from [L4]

• Sigmoid or Logistic: This function ensures a smooth gradient and prevents any jumps
in the output. It squeezes the output between 0 and 1. Figure A.3 shows the plotted
sigmoid function.

f (x) = 1

1+e−x

f ′(x) = f (x)

1− f (x)

This function suffers from the problem of vanishing gradient for very high or very low
values of the input. This can cause the network to learn nothing or being too slow to
converge to an accurate prediction. The outputs of this model are not zero centered
and this is also computationally demanding.

• Tanh or hyperbolic tangent: It is very similar to the logistic sigmoid function but it’s
range is from -1 to 1. The shape of this function compared to a sigmoid function is
shown in the figure A.4.

f (x) = ex −e−x

ex +e−x

f ′(x) = 1− f (x)2

This function is zero centered and makes it easier to work with strongly positive or
negative inputs. This can also suffer from the problems that the sigmoid function
suffers from like vanishing gradients.

• ReLU - Rectified Linear Unit: It is a very simple activation function and the most
popular in deep learning literature. This function clamps the output below 0 to 0
and keeps the output the same as the input otherwise. Figure A.5 shows the ReLU
function compared to the sigmoid function.

f (x) = max(0, x)
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f ′(x) = 1 (i f x > 0 )

f ′(x) = 0 (i f x <= 0 )

This function is computationally very efficient and usually the network converges
pretty quickly using this. This suffers from a problem called the dying ReLU problem
when inputs are close to zero or are negative in which case the network is unable to
learn.

Figure A.5: Sigmoid(left) with ReLU(right) Activation Functions from [L4]

• Leaky ReLU and variants: Over time, several new variants of the popular ReLU func-
tion have been proposed like the Leaky ReLU. This function doesn’t clamp the value
below 0 to 0 but lets some fraction leak out (hence the term leaky ReLU). Because of a
positive slope even in the negative region, this allows for learning(backpropagation)
even for inputs that are negative. A shortcoming of this is that the results are not
always consistent for the negative input values.

A.9. Residual Learning or Skip Connections
In a traditional feedforward neural network, each layer feeds into the next layer. While
residual blocks enable each layer feeding into the next layer and into more layers a few
hops away. This idea was quite ground breaking and vastly improved the performance of
state of the art networks on a variety of tasks (ResNet introduced by (He et al., 2016a)). The-
oretically, as we increase the number of layers in a network, its learning capacity should in-
crease and should result in better accuracies since neural networks are universal function
approximators. But, in practice, the deeper networks don’t always perform as well as the
shallower variants due to the problem of vanishing gradients. Figure A.6 shows one such
example. The idea was that it was needed to skip the extra layers and atleast match the
accuracy of the shallower sub-networks and hence the skip-links or residual links were de-
signed. These are also referred to as identity shortcut connections. These act like highways
for the gradient to flow backwards and not die on the way thus enabling the creation of very
deep networks.

A.10. Batch Normalization
Batch normalization was first proposed by (Ioffe and Szegedy, 2015). This is typically used
to improve the stability of the neural network even with eratic input data. The idea is that
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this step normalizes the output of the previous activation layer by subtracting the batch
mean from it and dividing the remaining value by the batch standard deviation. The ac-
tivation outputs are not optimal anymore because the weights are transformed(shifted or
scaled). This needs to be un-normalized and that is handled by the Gradient Descent while
trying to minimize the loss function. This step of batch normalization introduces two new
trainable parameters in each layer which are the mean (µ) and standard deviation (σ).
Batch normalization relies on Gradient Descent to do the denormalization by changing
only these two trainable weights for each activation instead of changing all the weights and
losing stability of the network. This stability results in a normalizing effect and the results
show signs of improved robustness.

A.11. Optimizers
While training the neural network, we need to tweak and change the trainable weights of
the model to reach a configuration that minimizes the loss function to make predications
as accurately as possible. To decide when,how and by how much to change the weights
of the model, we rely on optimizers. In response to the output of the model with respect
to the loss function, the optimizer updates the model weights and hence ties the model
parameters with the loss function. Typically, the optimizer tries to go in the direction where
the loss is decreasing by looking at the slope(gradient) of the loss function by taking small
steps (decided by the learning rate) in the right direction. It is not possible to know what
the weights need to be from the beginning, but with trial and error and inputs from the
loss function, the optimizer can help the model converge to a local minima. A few popular
optimizers are discussed below:

• Stochastic Gradient Descent: This calculates the gradient for only a subset of the
training examples for every pass of gradient descent instead of calculating it for all of
the training examples. It usually employs random examples or batches at a time for
each pass.

• Adagrad: This approach changes the learning rate such that some weights in the net-
work have different learning rates than the others. It is usually impressive whenever
where are missing input examples and the dataset is sparse. One problem with this
approach is that the learning rate eventually gets too small over time.

• RMSprop: This approach is a variant of the Adagrad discussed above. It was devel-
oped by Professor Geoffery Hinton. It only gathers gradients in a fixed window instead
of gathering all the gradients for momentum. It tries to solve issues that the Adagrad
approach left open.

• Adam: This is the most popular optimizer and is widely accepted in deep learning
literature. Adam stands for "adaptive moment estimation". It is a way of calculating
gradients by making use of the past gradients. It also benefits from the concept of
momentum by adding fractions of the older gradients to the present one.

A.12. Regularization
The most common problem in machine learning is of Overfitting. Overfitting means that
the model learns to do well on the training set, but, performs poorly on the data that it
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hasn’t seen before. This usually happens if one of the parameters is weighed too much
and dominates the entire formula. This can be usually rectified by employing some kind
of regularization in the optimization process. This is usually performed by adding a small
piece into the loss function that discourages large weight values by penalizing them. This
would mean that the it will be penalized for not only wrong predictions but also for huge
weight values even if the predictions are accurate. This ensures that the weights stay sane
and generalize well on unseen data. A few popular kinds of regularization techniques are
discussed below:

• L2 regularization: This is the most common form of regularization used in practice.
It can be simply implemented by punishing the squared magnitude of all parameters
directly in the objective(loss) function. That means that for every weight(w) in the
network, we add 1

2λw 2 to the loss function (where λ is the strength of regularization).
Because of this, the L2 regularization discourages peaky weights and prefers diffused
weight vectors. This forces the network to make use of all the features instead of using
just a few features a lot.

• L1 regularization: This is another relatively common type of regularization. In this,
for each weight w in the network, we add λ|w | to the objective function (where again
λ is the regularization strength). Using this type of regularization leads to the network
using only a few of the input features and becomes sparse unlike the L2 regulariza-
tion. This makes the model immune to noisy input values.

• Dropout: Another popular form of simple and effective regularization is the Dropout
as proposed in (Srivastava et al., 2014). It complements other types of regularization
discussed above and can often be used in conjunction with either of them. This is
implemented by letting a neuron train with some probability p (which is a hyperpa-
rameter) on each pass and setting it to zero otherwise. This leads to a more robust
model which generalises better on unseen datasets.

A.13. Loss Functions
Optimization algorithms typically use a function to evaluate a proposed candidate solution
and that function is called the objective function. The solution proposed would be the set
of trainable weights in our network. We usually need to minimize or maximize the objec-
tive function to converge on the best candidate solution(with the best score). Usually, in
case of neural networks, the objective function is referred to as the loss function or simply
loss which we seek to minimize. Several functions could be employed to gauge the error
of a given set of weights(candidate solution). Using iterative updates to the model weights,
the high dimensional terrain of the objective function can be navigated and a local min-
ima can be reached. A popular framework for finding estimates of parameters from past
training data is the Maximum Likelihood Estimate. It uses cross-entropy to measure the
error between two probability distributions. For classification problems where each input
variable needs to be mapped to a class label, the probability of the example belonging to
each of the classes can be predicted. For the training examples, the probability of the ac-
tual class would be kept to 1 and the others to 0. Finally, the weights that the model-training
converges on would ensure that the correct class gets the highest probability while predict-
ing labels. Under the inference framework of Maximul Likelihood Estimate, the most pre-
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ferred loss function is the Cross Entropy Loss (also known as th Negative Log Likelihood
loss). It computes a score that quantifies the average difference between the predicted
and actual probability distributions for all labels(classes) in the problem. If the number of
classes(labels) we have is j , and the number of training examples we have is N , the Cross
Entropy Loss per training example is formally expressed as:

Li =−log

(
e fyi∑

j e f j

)
j 6= yi

Another commonly employed loss is the Multiclass Support Vector Machine(SVM) loss
also known as the margin loss. It computes a score for each class such that the correct
class has the highest score. This loss doesn’t emit convenient probabilities like the cross
entropy loss does. The margin is denoted by ∆. The margin loss per training example is
formally expressed as:

Li =
∑

j 6=yi

max(0, s j − syi +∆)

The full multiclass Margin/Cross-Entropy loss can be expressed as:

L = 1

N

∑
i

Li +λR(W )

As shown above, to compute the overall loss we need to average this loss(margin-loss or
cross entropy loss) per training sample and add a regularization term which is denoted by
R(W ) and λ denotes the regularization strength. In practice, both these losses usually lead
to comparable results and the differences are usually very small.

A.14. Evaluating CNN architectures to use in the pipeline

Since each frame in the video has too many pixels and each pixel has 3 values in it (corre-
sponding to the intensity of red, green and blue in the pixel), there are too many dimensions
in the video. To make use of the recent work already done in the field of computer vision
and more specifically, Convolutional Neural Networks (CNN), we evaluated some popular
CNN architectures. We only considered the popular architectures as it would be easier to
obtain standardised ImageNet pretrained weights for these models. A CNN architecture
usually has a series of Convolution layers coupled with max-pooling layers and non-linear
activations (discussed in detail in Appendix). These are then connected to fully connected
layers which leads up to the number of classes in the dataset the same as the neurons in
the last layer. For all the architectures trained on the ImageNet, the number of neurons
in the last layer is 1000 as there are a thousand classes in ImageNet. Now, these models,
pretrained on ImageNet can be used for a wide array of problems. The initial few layers of
the network usually learn to identify simple features like edges, colors and corners etc. As
the depth of the layers increase, they usually identify more and more complex features like
detecting complete or partial objects in the images. The final fully-connected layers can
then be disposed off when we just need the image features and a new fully connected layer
can be attached to this pretrained CNN. Based, on the architecture employed, the number
of features obtained from the CNN differs. A few metrics that can be compared for these
architectures are:
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1. Number of trainable parameters (size of the model)

2. Top-5% error (checks if the actual output class is among the top 5 predictions). This
would indicate that the model is more or less accurate.

3. Top-1% error (checks if the actual output class is the same as the top prediction). This
would indicate how precise the model is.

A few popular models with their top-1% errors, top-5% errors and trainable parameters
are shown in the table A.1.

Model Name Trainable Parameters Top-5 error% Top-1 error%

ResNet-18 11,689,512 10.92 30.24

AlexNet 61,100,8407 20.91 43.45

VGG16 138,357,544 8.5 26.63

VGG11 132,863,336 10.19 29.62

Inception-v3 27,161,264 6.44 22.55

SqueezeNet-1.1 1,235,496 19.38 41.81

DenseNet-121 7,978,856 25.35 7.83

Table A.1: Comparing Pretrained CNN architectures

Looking at the trainable parameters of a CNN is a good estimate of how big the network
is and how time-consuming it will be to train, but, it is not the definitive answer. Based
on the architecture incorporated, the computation graph of a bigger network (more train-
able parameters) can actually have fewer number of operations performed on them, which
would lead to faster training and easy flow of gradients. Cross-validation and dissecting
each architecture is the only way to identify which CNN architecture would perform the
best for our use case. Based on our intuitions about the architectures and by looking at the
the trainable parameters, the models that we shortlisted were the popular ResNet by (He
et al., 2016a), DenseNet by (Huang et al., 2017) and SqueezeNet by (Iandola et al., 2016).
Out of the available pretrained ResNet models, we stuck with the smallest ResNet-18 for
our experiments which has 11 Million trainable parameters (including the fully-connected
layers at the end). SqueezeNet has a relatively small model size with only about 1.2 Million
trainable parameters while DenseNet has about 8 Million trainable parameters. Our hy-
pothesis was that ResNet, even though having the largest number of trainable parameters,
would perform well for our task because of the skip connections in its architecture which
let the gradient comfortably flow backwards.

A.14.1. ResNet-18
The universal approximation theorem states that a big-enough simple feedforward net-
work with a single layer is enough to approximately represent any given function. This
of course leads to problems like a massive layer and also often leads to overfitting. The
research as a whole follows the trend of coming up with deep architectures to avoid the
aforementioned issues. The answer is not just stacking up layers. The deeper the network
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gets, the more prominent the issue of vanishing gradients becomes. As the computed gra-
dient is propagated backwards from the last layer, a series of multiplications can actually
make the gradient very small (almost zero). This results in no information reaching the ini-
tial layers while training. As a result, the performance of such an architecture often shows
signs of saturation or rapid degradation. Figure A.6 is taken from (He et al., 2016a) shows
train and test errors of simple CNN architectures being trained on CIFAR-10. It shows that
as the depth of the network increases, there is a higher training and test loss and hence,
worse performance.

Figure A.6: Image from (He et al., 2016a) - CNN-training on CIFAR-10

Before ResNet came out, there were several ways to tackle the vanishing gradient prob-
lem but none of them performed well and could be widely used. One such technique was
adding an auxiliary loss in one of the middle layers as an extra measure of supervision (like
in (Szegedy et al., 2015)). There was no solution that really solved the issue properly. The
main contribution of the paper was introduction of the identity shortcut connections which
were like direct links that could skip one or more layers. One such block is shown in Figure
A.7.

Figure A.7: ResNet Residual Block from (He et al., 2016a)

The authors hypothesized that using this architecture, if the depth of the network is
increased, the performance should only get better and never degrade. This is because it
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was like appending identity mappings to the existing network and the resultant network
should never have a training error which was higher than its shallower variants. They came
up with the idea that letting such stacked layers learn a residual mapping should be easier
than having the network learn the underlying mapping directly. The residual block shown
in Figure A.7 should assist the network to do this. Such skip-connections were not intro-
duced for the first time by ResNet. (Srivastava et al., 2015) introduced one such trick in
their work on Highway Networks called the gated-shortcut-connections. These connec-
tions limit and decide the amount of information that is allowed to flow through the con-
nection. The idea is also surprisingly similar to the forget-gate of a cell in Long Short Term
Memory Networks by (Hochreiter and Schmidhuber, 1997). Hence it is safe to assume that
the ResNet was a variant of the Highway Networks. The hypothesis was strong but the ex-
periments didn’t reveal the desired results. The deeper variants (1202-layer ResNet) of the
net were not necessarily better than the shalower counterparts (110-layer ResNet) as was
hypothesized before. The same authors improved their work in (He et al., 2016b) follow-
ing the intuition that the gradient highways need to be kept clear instead of exploring the
wider solution space by using a parameterized gate. This resulted in getting results which
were in line with the original hypothesis. A deeper network would always lead to at-least
as good results as its shallow counterparts. ResNet gained its well deserved popularity in
several computer vision tasks because of these compelling results.
For our experiments, we used the ResNet-18 which is the smallest ResNet variant trained
on ImageNet. The feature map of a ResNet-18 which inputs an image of dimensions (224×
224×3) is a mere 512. These 512 features effectively capture the high dimension complexi-
ties of an RGB image with much higher dimensions. This would help reduce the computa-
tion costs when computing the Matrix Profile using these features or if these features were
directly fed to an LSTM. The highway connections would also lead to a simpler computa-
tion graph overall.

A.14.2. DenseNet-121
A Dense Net architecture has quite a few residual connections (skip connections) as in-
spired by the ResNet. The model shows very good accuracy given its relatively small size
of 8 million trainable parameters. Each layer in a DenseNet is directly connected to every
other layer in a feed-forward fashion (within each dense block). For each layer, the feature
maps of all preceding layers are treated as separate inputs whereas its own feature maps
are passed on as inputs to all subsequent layers. The rough architecture is shown in Figure
A.8. The DenseNet is bigger than the SqueezeNet but it has an advantage: the number of
features that are projected out from a pretrained DenseNet is a mere 1024 compared to the
feature output of a SqueezeNet.

A.14.3. SqueezeNet 1.1
SqueezeNet is one of the smallest networks that performs as well as the AlexNet with much
fewer parameters. There are several advantages of smaller CNNs like: these require less
communication across servers during distributed training, require less bandwidth to ex-
port a new model from the cloud to a client device and are also deployable on hardwares
with limited memory (like FPGAs). The squeezenet architecture employs several clever
tricks to reduce the model size like:

1. Replace the original 3x3 filters with 1x1 filters.
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Figure A.8: DenseNet Architecture from (Huang et al., 2017)

Figure A.9: Squeeze and Expand layer from a SqueezeNet from (Iandola et al., 2016)

2. Reducing the number of input channels using squeeze and expand layers (depicted
in Figure A.9)

3. Perform downsampling much later in the network, so the convolution layers have
relatively larger activation maps.

The third point above is the reason that the feature map of the squeezenet (size ≈ 86,000) is
much larger than a DenseNet feature map (size ≈ 1,000) for an input image of same dimen-
sions. Hence, by looking at all of these CNNs, there was no clear winner. SqueezeNet is a
smaller model, but the ResNet and DenseNet boast of a better accuracy on ImageNet and a
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smaller feature map. Since there is no clear winner in terms of computation graph size, we
decided to experiment with all of these architectures.

A.15. Challenges
Early challenges encountered while training the pipeline:

Figure A.10: Flickering loss while training on last-time-step labelled dataset

• N aN s while computing the matrix profile. N aN s are Python’s (Not a Number) ob-
jects. This is a floating point value that you end up with, if you perform a calculation
whose result can’t be expressed as a number. Any calculations that are performed
with N aN , result in N aN . These N aN values accumulate into the model weights
and disrupt the entire learning process and intermediate results. Look at the follow-
ing example which caused N aN s while calculating the matrix profile:√

(x −1)2 = |x −1|. Now, the derivative of this is:

d |x −1|
d x

=


1, if x > 1

−1, if x < 1

N aN , if x = 1

A quick fix to this is to add a very small number ε to x −1 making it |x −1+ε| to avoid
a N aN gradient.

• Memory Leaks: A memory leak occurs when the program doesn’t free up resources(RAM)
that are not in use and keeps acquiring new resources. With each epoch of training,
the memory usage of a typical deep learning model should be stable and not increas-
ing. We faced this issue of leaking memory in our model and after several hours of
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debugging and carefully optimizing our code, we still couldn’t find any issue with our
code. The problem was with Pytorch’s Dataloader implementation. We found that it
was an open Pytorch issue (More information can be found in ). The issue thread sug-
gested some workarounds which avoid the memory-leak and ensure that the model
training consumes predictable amounts of memory.

• A CNN with randomly initialized weights (instead of using pretrained-on-ImageNet
weights). It turns out that learning spatial image features by using just the gradient
information from the LSTM is not enough. We couldn’t even get the network to overfit
on a small training segment. Learning from this we concluded that the repetitions-
so-far gradient information from the LSTM is not enough to train the CNN block from
scratch. Hence, we decided to use pretrained-on-ImageNet weights for initializing
the weights of the CNN block.

• Using the Last-time-step labelling on videos. This approach meant that we would
backpropagate the gradient only from the last time step back into the LSTM and then
further back into the CNNs. The wave-cycle experiments showed that this approach
struggled even on a 1 dimensional dataset and it was too hard for the network to
learn anything using this approach. The training loss as shown in the figure A.10 was
just flickering and showed no signs of a downward trend even after 100s of epochs.
After these underwhelming results, we decided to help the LSTM to learn by feeding
it Labels at each time step by using the Each time step labelling (discussed above).

https://github.com/pytorch/pytorch/issues/13246


B
Appendix II: Loss Curves and Accuracies

This appendix contains plots for training-losses and accuracies for all the model types dis-
cussed at the end of the Chapter 4. All of the plots with histograms indicate the number
of videos in the test set that had the same (or similar) accuracies. Each of these plots is
discussed in detail in the Chapter 5.

Figure B.1: Losses and accuracies of Model-Type-0 on subset=blade
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Figure B.2: Model accuracies per video(in the test-set) Model-Type-0 on subset=blade

Figure B.3: Losses and accuracies of Model-Type-1 on subset=blade
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Figure B.4: Model accuracies per video(in the test-set) Model-Type-1 on subset=blade

Figure B.5: Losses and accuracies of Model-Type-2 on subset=blade
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Figure B.6: Model accuracies per video(in the test-set) Model-Type-2 on subset=blade

Figure B.7: Losses and accuracies of Model-Type-3 on subset=blade
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Figure B.8: Model accuracies per video(in the test-set) Model-Type-3 on subset=blade

Figure B.9: Losses and accuracies of Model-Type-4 on subset=blade



79

Figure B.10: Model accuracies per video(in the test-set) Model-Type-4 on subset=blade

Figure B.11: Losses and accuracies of Model-Type-0 on subset=ytsegments
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Figure B.12: Model accuracies per video(in the test-set) Model-Type-0 on subset=ytsegments

Figure B.13: Losses and accuracies of Model-Type-1 on subset=ytsegments
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Figure B.14: Model accuracies per video(in the test-set) Model-Type-1 on subset=ytsegments

Figure B.15: Losses and accuracies of Model-Type-2 on subset=ytsegments
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Figure B.16: Model accuracies per video(in the test-set) Model-Type-2 on subset=ytsegments

Figure B.17: Losses and accuracies of Model-Type-3 on subset=ytsegments
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Figure B.18: Model accuracies per video(in the test-set) Model-Type-3 on subset=ytsegments

Figure B.19: Losses and accuracies of Model-Type-4 on subset=ytsegments
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Figure B.20: Model accuracies per video(in the test-set) Model-Type-4 on subset=ytsegments

Figure B.21: Losses and accuracies of Model-Type-0 on subset=quva
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Figure B.22: Model accuracies per video(in the test-set) Model-Type-0 on subset=quva

Figure B.23: Losses and accuracies of Model-Type-1 on subset=quva
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Figure B.24: Model accuracies per video(in the test-set) Model-Type-1 on subset=quva

Figure B.25: Losses and accuracies of Model-Type-2 on subset=quva
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Figure B.26: Model accuracies per video(in the test-set) Model-Type-2 on subset=quva

Figure B.27: Losses and accuracies of Model-Type-3 on subset=quva
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Figure B.28: Model accuracies per video(in the test-set) Model-Type-3 on subset=quva

Figure B.29: Losses and accuracies of Model-Type-4 on subset=quva
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Figure B.30: Model accuracies per video(in the test-set) Model-Type-4 on subset=quva
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Abstract

This work tackles the problem of repetition counting in
videos using modern deep learning techniques. For this
task, the intention is to build an end-to-end trainable model
that could estimate the number of repetitions without hav-
ing to manually intervene with the feature selection pro-
cess. The models that exist currently perform well on videos
which are stationary but, realistic videos are rarely per-
fectly static. A series of intermediate experiments are per-
formed to eventually come up with an end-to-end trainable
pipeline. Techniques like the University of California River-
side’s Matrix profile, bi-directional recurrent neural net-
works and convolutional neural network architectures that
employ dilation are experimented with for the task at hand.
For the experiments, a variety of videos from the Qualcomm
and University of Amsterdam (QUVA) repetition dataset
and the YouTube Segments (YTSegments) dataset are used
which both exhibit a good number of non-static videos of
real life scenarios like people exercising, chopping vegeta-
bles, etc. A proprietary Aircraft inspection dataset which
contains repetition of spinning engine blades is also exper-
imented with. The proposed model obtains a lower Mean
Absolute Error than the existing deep learning architec-
tures. Finally, the model proposed in this work is able to
estimate repetitions on a variety of videos successfully in
real time without manual intervention. On the task of repe-
tition estimation, an accuracy of about 60% of correctly la-
belled frames (with repetitions so far) on unseen test videos
is obtained.

1. Introduction

1.1. The Problem and Applications

This work tackles the problem of estimating repetition in
videos. Humans are virtually surrounded by visual repeti-
tion. It is ubiquitous in a diverse set of domains like sports,
music or cooking. Repetition occurs in several forms be-
cause of its variety in motion continuity and motion pattern.

The perception of 3D motion in 2D depends on the view-
point which is of course crucial for the cognizance of re-
currence. Periodicity can denote a variety of movements
including animal/human movements like a beating heart,
breathing lungs, flapping of wings, running, etc. Movement
of the blades of a windmill, spikes of a wheel, a swinging
pendulum are also periodic. Periodicity or repetition is also
ever-present in natural, industrial and urban environments
like blinking lights or LEDs or traffic patterns or leaves in
the wind. Repetition and rhythm are already used to ap-
proximate velocity, estimate progress and to trigger atten-
tion [19]. This has many applications in computer vision
as well, like: it can be used for human motion analysis, ac-
tion localization [20], action classification [13], [24], 3D
reconstruction [3], camera calibration [18], activity recog-
nition [4], object tracking [5] etc. Some other domains
that can potentially benefit from repetition estimation in-
clude and not limited to: applications in high throughput
biological-experiments, gaming and surveillance. Due to
its applicability in a wide range of domains, this problem
has enjoyed an increasing amount of attention.
At the semantic level, this task is actually well-defined. In
fact, humans are able to perform this task without a lot of
difficulty. The existing work shows acceptable results un-
der the unacceptable assumptions of stationary and static
periodicity. In real life, the video is rather complex and
rarely stationary or perfectly periodic. The popular fourier-
based measurement is more than often, not upto the mark
in real-life applications. In practice, the movement of the
camera makes this task inescapably hard. Other works try
to manually perform feature engineering like foreground-
segmentation, object localization, flow field calculation etc.
to perform this task. This work tries to solve the problem
under more natural and realistic conditions as nonstationary
is actually the norm. This work experiments with three dif-
ferent video datasets as discussed in Section 3. A modern
deep learning alternative to tackle the problem is proposed.
Instead of manually engineering the features, the proposed
architecture lets the model learn from the labelled dataset
that is provided to it. This end-to-end trainable architec-
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ture will only keep getting better as more labelled videos
are provided to it with little manual intervention.

1.2. Research Scope

The aim of this research is to answers the following ques-
tions:

1. How can a Recurrent Neural Net be used to esti-
mate repetitions in a video?
Hypothesis: Recurrent Neural networks (More specif-
ically its variants like Long Short Term Memory Net-
works (LSTMs) [16]) are known to perform very well
on tasks that involve temporal sequences because of
their architecture which allows them to maintain a
memory as a sequence is fed through them. Videos
are temporal sequences of image frames, so theoreti-
cally, a big enough recurrent network should be able
to tackle the task of repetition estimation by feeding
it frame-image-pixels directly or frame-wise Convolu-
tional Neural Network(CNN) features.

2. How to use the University of California Riverside’s
Matrix Profile in conjunction with a Recurrent
Neural Network to estimate repetitions in a video?
Hypothesis: UCR’s Matrix Profile introduced in [34]
claims to make any time-series data mining task ”triv-
ial”. It helps in efficiently finding motifs and anoma-
lies in a multidimensional time-series signal. Theoret-
ically, a matrix profile should be able to detect motifs
(repeating patterns) in a multidimensional time-series
signal (which videos are). If the matrix profile emits
a reasonably reliable signal, a Recurrent Neural Net-
work architecture like an LSTM should be able to es-
timate repetitions from it.

3. How does the number of parameters required for
the Recurrent Neural Network architecture change
based on the Matrix Profile usage?
Hypothesis: The Matrix profile is a 1 Dimensional
signal (as shown in [34]), compared to the multidi-
mensional frame-image-pixels and CNN-features. The
number of trainable parameters required in the recur-
rent neural network architecture should be dramati-
cally fewer for a variant which employs the Matrix
Profile as compared to a variant where frame-image-
pixels or CNN-features are directly fed to the Recur-
rent Neural Network architecture.

4. Can a backpropagatable feature extraction step
help improve the accuracy of our model?
Hypothesis: Since the computation of the matrix pro-
file is just a series of differentiable mathematical oper-
ations (as shown in [34]) on the raw multidimensional
image-frames, it should be possible to backpropagate

through the matrix profile. This could potentially re-
sult in a trained Convolutional Network that helps in
computation of the Matrix Profile signal such that the
computed Matrix Profile signal (using this resulting
CNN’s features) in turn improves the estimation of rep-
etitions in videos.

2. Related work
Because of the numerous applications, there has been

quite some research already done in this domain. There
have been a variety of attempts in the past to tackle the prob-
lem of repetition estimation. These attempts can be broadly
classified into a few categories as discussed below:

2.1. Frequency Domain Analysis

Most of the existing literature is dominated by methods
that use the fourier transform or methods that incorporate
wavelet analysis. These techniques employ fourier trans-
form, and are very susceptible to background noise. The
background noise from each frame in the video massively
deteriorates the quality of these models, so they usually end
up employing techniques of removing the background [26].
This paper presents an approach which performs the time-
frequency analyses for the entire video at once. This allows
it to extract several periodic trajectories from the video.
This also allows one to estimate the separate independent
periods simultaneously over a static background. The spa-
tial domain information is used to extract the periodically
moving objects. The main idea behind this paper is that the
repeating patterns have unique signatures in the frequency
space.
To analyze the periodic variations, a Frequency Modu-
lated signal is first constructed where the frequency is
tuned by the object displacements with time over succes-
sive frames in the video frame sequence [11], [30]. These
Frequency-domain techniques involve an analysis which is
spatially global and not local, which enables them to be ef-
fective against local illumination-variances (like in [17])
and occlusions. These techniques don’t make any kind of
assumptions about the trajectory smoothness or the shape of
the objects, so the results hold for a wide variety of videos
and is much more reliable than intensity-based techniques
like the ones proposed in [2], near the boundaries of the
moving objects. The estimation of the periodic cycles using
these techniques can also be employed in the spatial domain
for tasks like motion segmentation. An unavoidable diffi-
culty that arises with this technique is called the localization
problem as discussed in [35]. Even though the motion esti-
mation by frequency-domain is global in nature and avoids
local errors (like occlusion, illumination changes, object
boundaries etc.), it doesn’t contain insights about the ac-
tual spatial address of the objects in motion. This results in
the need for further processing of the video using help from
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the spatial-domain to accurately allocate motion-estimates
to the frame-pixels. Another difficulty is that these tech-
niques are very susceptible to background noise and there-
fore can’t be used without an expensive background sub-
traction step.

2.2. Spatial Correlation Methods

Some of the oldest contributions in video understand-
ing focussed on the development of spatio-temporal fea-
tures from the video sequence for analysis. A majority of
the past approaches for periodicity in motion analysis (like
[24], [9]) incorporate first detection of the object in succes-
sive image-frames and then computing their trajectories and
finally analysis of the computed trajectories. More recent
spatio-temporal approaches for generic motion analysis in-
corporate statistical shape priors and levelsets (like in [8],
[7]) or under smoothness-constraints, involve computation
of the optical flow (like in [6]).
The technique proposed in [27] identifies periodic repe-
titions in a sequence of images by initially aligning the
image-frames with respect to the centroid of the major-
moving-object in the video so that the object in considera-
tion remains immobile in time. Then, a few lines which are
parallel to the motion-flow of the chosen centroid are ex-
tracted. These are referred to as the reference curves. The
spectral power is then computed for the frames along these
reference curves. The measure of periodicity for each of the
reference curves is calculated as the difference(normalized)
between the sum of (highest amplitude) spectral energy fre-
quency and the sum of the spectral energy frequencies half
way through.
The method discussed in [22] makes an assumption of a
static camera and employs background subtraction to ex-
tract motion information. The objects in the foreground are
tracked and their trajectory path is approximated to a line
using the Hough Transform (as shown in [12]). The infor-
mation from the temporal histories of each pixel is then fur-
ther dissected using the Fourier analysis and the harmonic
motion energy accumulated because of the periodic mo-
tion is computed. The given assumption in this case is of-
course that the background is static. This is because a non-
homogeneous background will undermine the harmonic en-
ergy that needs to be estimated. The work by [9] considers
areas of the image (collection of pixels) instead of individ-
ual pixels as done by [22] which compose an object. It also
uses a smooth image resemblance metric. Because of these
changes in approach, the fourier analysis of [9] is much
simpler as the analyzed signals don’t have a significant
number of harmonics of the rudimentary frequency. Tech-
niques like [9] and [32] require an initial pre-processing
step of detecting the foreground objects (like a person) in
the video frames. (Note: This step can be comparable to
the background subtraction step in some approaches). Then

the foreground objects are aligned to ensure spatial correla-
tion with all frames in the sequence. (In the Fourier Domain
Analysis techniques, this step was only required during the
segmentation stage of the algorithm (lower complexity than
the spatial-counterpart)). These frame-correlations are re-
quired for computing the similarity-plot per video. If we
were to incorporate a spatial-only approach, the similarity
plot is compared with a dense enough lattice (to make sure
that the repetitions are not missed). In such cases, prior
knowledge or heuristics are required to get reliable esti-
mates of the periods.

2.3. Approaches that define Crystallographic
groups

This is a more recent approach of tackling the prob-
lem of repetition estimation which involves defining fixed
cases for perception of 3D recurrence in a video com-
prised of 2D images (not to be confused with 3 color
channels in the 2D image frames). [23] was the first
work that came up with the idea of defining crystallo-
graphic groups. The main contribution of this work was
that in an N-dimensional euclidean space, a finite number
of crystallographic-groups(symmetry-groups) can represent
an infinite number of periodic repeating patterns. The au-
thors of this work argue that in the 2D space, there are a total
of seven groups which describe the patterns(monochrome)
that show signs of repeating occurrence along a single di-
rection and seventeen groups for patterns that can show
signs of recurrence along two linearly independent direc-
tions. They came up with a set of approaches to classify a
periodic pattern to one of the underlying symmetry-group,
it’s underlying lattice and also computing the motifs.

[28] then came up with an approach that defined 18 fun-
damental cases of perception of 3D recurrence in 2D videos.
This work builds upon the wavelet transform to handle the
scenarios of non-static and non-homogeneous video envi-
ronment settings. They use the flow fields and their partial
differentials to extract three kinds of fundamental types of
motions and three kinds of motion-continuities of inherent
periodicity in 3 dimensions. This leads to a total of 9 cases.
Finally, based on the 2 viewpoints (front/side) there can be
a total of 9× 2 = 18 fundamental cases. This work tries to
effectively tackle the issues caused by camera motion and a
variety of repetitions in videos by constructing a rich set of
flow-based signals that vary over time. This work handles
complex camera motion scenes and complex appearances
quite well but it requires several expensive feature engineer-
ing steps like background segmentation and computation of
flow fields.

2.4. Approaches that use Deep Learning

Deep learning is the use of Neural Networks as proposed
in [15]. Modern deep learning techniques have added a
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big boost to the already rapidly evolving field of Computer
Vision. Because of Deep Learning, a variety of new
applications of the existing vision techniques has emerged
and is rapidly becoming a part of our daily life. The state of
the art method was proposed by [21]. This work processes
the video online as the frames arrive. They came up with
the idea of estimating cycle length and thereby looking the
counting problem from the other end. They process and
analyze 20 non-consecutive frames from the video at a time
and estimate the cycle length over each such block using
Convolutional Neural Networks. This information is then
integrated over time by an outer system which controls
when to start and stop the counting process. This approach
relies on a synthetic pretraining step and an external system
to manage the predictions. The results are impressive on the
YTSegments dataset released with the paper but the dataset
shows little variability in cycle length, camera motion,
appearance of motion and clutter in the background. Also,
this approach is clearly not end to end trainable.

Most of the methods proposed before have a handicap
of relying on human-crafted rules to compute visual on-
sets and can only perform nicely on a small subset of the
videos. This work by [33] aims to extract a variety of
features including original-frame-pixels, frame residuals,
body-pose, scene-change and optical flow and feed them
to an end to end trainable network as input features. This
network then re-aligns the misalignment between all the
computed features using a proposed feature alignment layer.
These aligned features are then further fed to a Bidirectional
LSTM (introduced in [14]) and Conditional Random Field
layers which label the sequence (as shown in [25]) with
their respective onsets. There is high computation cost as-
sociated with each of the feature extraction steps.

3. Datasets and Preparation
This research focuses on the visual information present

in videos. The visual information in the videos boils down
to a time-series of image frames. For instance, A 60-fps
video has 60 image frames in each second of video.

3.1. Datasets

The following datasets are used for the experiments con-
ducted in this research:

3.1.1 YTSegments dataset

The YouTube Segments dataset collected by [21] is a col-
lection of 100 videos mostly gathered from YouTube. This
dataset contains a good mix of domains from which the
videos are obtained like cooking, exercising, living animals
etc. The dataset is prepared such that it is pre-segmented
to only contain the repeated action. This dataset boasts of

Figure 1. Random frames of a ball-hopping video from the
YouTube Segments dataset

good variability in number of repetitions per video. The
videos in this dataset don’t display a lot of camera motion
in most of the videos. The annotations for this dataset is just
a total count per video. The temporal bounds per repetition
in each video is not annotated. Preprocessing and manu-
ally annotating the temporal bounds of repetitions for these
videos was required. Frames from a ball hopping video
from this dataset can be found in Figure 1.

3.1.2 QUVA Repetition dataset

The Qualcomm and the University of Amsterdam Rep-
etition dataset published with [28] is a collection of
a wide variety of videos which exhibit periodicity like
rope-skipping, cutting, swimming, stirring, music-making,
combing etc. They collected the original untrimmed videos
from YouTube. The repetition-counts per video and tempo-
ral bounds of each repetition in that video are present. The
authors argue that this is a higher quality dataset as com-
pared to the YTSegments dataset proposed by [21]. This
boasts of more variability in cycle length, camera motion,
appearance of motion and clutter in the background. This
dramatically increases the difficulty in both temporal dy-
namics and the complexity of the scene. This is a much
more realistic and difficult benchmark for repetition estima-
tion in videos. This dataset has a collection of 100 videos
and it as video wise annotations that contain the frame num-
bers which indicate the end of a repetition cycle from the
video frames.

3.1.3 Aircraft inspection dataset

Another dataset that is used for the experiments is the Air-
craft inspection dataset from Aiir Innovations (aiir.nl).
During large overhauls or whenever an irregularity has been
spotted by sensors during a flight, each stage of the en-
gine is manually inspected by the mechanics to look for any
anomalies. While the mechanic inspects each stage of the
engine, they have to inspect each turbine blade and depend-
ing on the engine type and the engine stage currently be-
ing inspected, the total number of blades differ. Currently,
the mechanic has to manually keep track of the number of
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blades that have been inspected to ensure all blades have
been inspected. This dataset contains videos from such in-
spections. The dataset available has inspection videos from
various angles and for different stages in the engine. This
contains a collection of over 100 videos. As existing anno-
tations, this dataset just contains the total number of repe-
titions per video. The annotations for temporal bounds of
each repetition per video doesn’t exist for this dataset yet.
For video datasets like actions datasets, the repetitions are
defined very well. For this dataset, it is non-trivial because
one repetition depends on when you define to be the start of
that repetition. Some utility scripts were built to make man-
ually annotating the temporal bounds of the cycles in these
videos much easier.

3.2. Video preprocessing and Labelling

A video is a time series of image frames with an audio
signal embedded into it. For the task of repetition estima-
tion, this work will not analyse the audio signal and only
consider the visual aspects of it. So a video can be assumed
to be a sequence of images. Each image in this sequence is a
grid of pixels. These pixels have 3 channels (values) which
correspond to the intensity of the primary colors Red, Green
and Blue. These values can be in the range [0, 255]. FPS
or frames per second determines how many image-frames
are present in a second of video. A high fps indicates many
frames per second and hence a smoother video. As the fps
increases, the size of our dataset also increases. This would
mean that more information would need to be processed by
the model which would require longer training times and
larger model size. To avoid the aforementioned problems,
for the task at hand, all the videos are resampled to 10fps
as it is sufficient to not miss any repetition.
All the pretrained CNN models expect the images to be at
least 224 × 224 × 3 (Height x Width x color channels),
so all the image frames in each video are also resampled
to 224 × 224 × 3. This height and width is also more
than enough to observe any kind of repetition in the avail-
able dataset of videos. This means a video in the prepared
dataset has (224× 224× 3× frames) dimensions.

3.3. Each time step labelling

This approach demands that each frame in the video
is labelled. This work proposes a novel approach of la-
belling the videos. The idea is that each frame in the
video is labelled with repetitions that have occurred so
far. This would mean that the initial frames in the video
would be all labelled as 0. There is no such thing as
1 repetition. And after there were two repetitions, the
frames would be labelled as 2 and so on. The frame-
wise labels for a video would look something like this
[0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5]. These an-

Figure 2. Each-time-step annotations of a video with 5 repetitions

notations if visualized would look like steps. Figure 2
shows annotations of a video with 5 repetitions. This type
of labelling would also help visualize the model prediction
results in a beautiful way. The videos are labelled like this
to try and backpropagate the loss back from each time step.
Three separate datasets are created after labelling each with
different train and test splits.

3.4. Training and Testing splits

All of these datasets have a train, test and validation split
of 70%, 20% and 10% respectively. These splits are cre-
ated at the beginning and ensure that the videos in each of
these splits have completely different frames to avoid unre-
liable results. The videos from the training set will be used
for actual gradient computation and weight updates in the
model parameters. The videos from the validation split will
be used for inspecting the loss curves and watching out for
signs of over-fitting or bias. The videos from the valida-
tion split will never be used to update the weights of the
model. The test split is used to compute the projected ac-
curacy of the model. Since the model has never seen the
test-set videos while training, model’s accuracy on this set
is a reliable estimate of the model’s performance on a real
world example.

4. Approach
4.1. The Matrix Profile signal

The matrix profile was proposed by [34]. Its computa-
tion relies on window size as a hyperparameter. A window
size determines how many data points(from the time-series
sequence) are compared at a time. For each window in the
time series, it is compared to all the other windows. Like a
sliding window, each window gets its turn and on its turn, its
distance is computed with every window in the time series.
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All these distance values are fill up the reference window’s
column in the distance matrix. The type of distance used is
Z-Normalized Euclidean distance.
Given two windows (time-series-sequences) x and y,
where: x = x1..xn and y = y1..yn
Z-normalized sequence x̂i:

x̂i =
xi − µx

σx
(1)

Z-normalized Euclidean distance d(x, y):

d(x, y) =

√√√√
n∑

i=1

(x̂i − ŷi)2 (2)

.
Once the z-normalized euclidean distances of all the

windows with all the other windows is computed, a com-
pletely filled in distance matrix is obtained.

1. Each column in this matrix is the distance profile for
that window.

2. Computing the matrix profile from this is very straight-
forward: Just save the minimum value from each col-
umn and there you have a 1-dimensional matrix pro-
file.

Each item in the computed matrix profile represents the
minimum distance of the corresponding time-step item in
the original signal when measured against all the other items
in the signal. This 1-dimensional matrix-profile is quite in-
tuitive to look at and the peaks in the signal depict anoma-
lies and the valleys depict motifs. There has been a lot of
research done in efficient computation of the Matrix profile
( [36]) and maintaining it incrementally ( [37]).

In the following experiment, some matrix profile sig-
nals are manually inspected to see if it is even possible
to use it for the task at hand. The results are quite im-
pressive for the blade counting dataset. The matrix profile
looks sharp with clear valleys which indicates the presence
of repeting patterns. The matrix profile for a video from
the blade dataset (which has 5 repetitions) can be found in
Figure 3. The blade inspection dataset has static camera
and the background usually doesn’t change much. This is
one of the reasons that the matrix profile output displays
clear peaks and valleys. The comparisons of using differ-
ent window sizes(1, 3 and 7) for matrix profile calculation
are shown in Figure 4. As expected, the matrix profile
gets smoother as the window size is increased. The Ma-
trix profile is also computed for the more generic QUVA
and YTSegments datasets. Mixed results are obtained for
these harder datasets and the peaks and valleys in the sig-
nal don’t always show clear correlation with the number of
repetitions. A possible solution to this could be to employ

Figure 3. Matrix Profile for a blade inspection video with 5 repeti-
tions

Figure 4. Change in Matrix Profile with change in window size

some background subtraction techniques to ensure that only
the interest region is passed to the matrix profile from each
frame (or window of frames). The matrix profile is also
computed using ImageNet pretrained CNN features instead
of raw pixel values and the resulting signal is decent. These
results can be seen in the supplementary document.
A quick intuition about the matrix profile is that if we are
just able to estimate the number of valleys in the Matrix
Profile, we would be able to estimate the number of repet-
ing patterns in the video.
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Figure 5. Wave cycle parameters

Figure 6. Labelled waves

4.2. Using a Recurrent Neural Network to find
peaks and valleys in the Matrix Profile

The matrix profile is a noisy 1D signal. Theoretically, an
LSTM should be able to do well at the task of estimating
peaks and valleys in a 1 dimensional signal. As a toy task
for the same, this work works with a self generated synthetic
1D signal. Since a sine wave is also a 1D signal with peaks
and valleys, this work experiments with sine waves as a toy
task for the LSTM.

4.2.1 ToyTask: Mimicking the Matrix Profile

For creating our synthetic dataset, we first began with a si-
nusoidal cycle. We will refer to it as a wave-cycle in the
remainder of this report. To create a synthetic wave, a num-
ber of wave-cycles like shown in Figure 5 are stitched (like

words in a sentence) with configurable parameters like Scal-
ing, Amplitude, Phase, etc. A wave-cycle can have the fol-
lowing parameters:

1. G is the Ground value. This is simply where on the
vertical axis, the wave-cycle should start. By default
this would have a value of 0 as a sine wave exists at
ground 0. This directly added to the value of f(x).

2. S is the Scaling factor. Scaling factor decides if the
wave is squeezed or expanded in the x axis. If the
stretch factor has a value greater than 1, then the wave
should have larger cycles and similarly if the stretch
factor has a value less than 1, then the wave will have
smaller cycles.

3. A is the Amplitude factor. This is the height of the
wave-cycle. The maximum value of a sine wave is 1,
hence the default amplitude factor is set to 1. Having
an amplitude factor larger than 1 will result in taller
waves and an amplitude factor less than 1 will result in
shorter wave-cycles.

4. P is the Phase value. This is the x value where the
wave-cycle begins. A sine wave can begin from −∞
to∞. By default it is set to 0, so the wave-cycle begins
at x=0 and goes up. If the wave-cycle begins anywhere
between π/2 and 3π/2, it will go down initially.

5. C is the Crop factor. This determines what propor-
tion of the wave-cycle to include. It can have values
in the range [0, 1]. By default, the entire cycle should
be included in the wave-cycle, so the default value for
this is 1.

This wave cyle is created by using the following equa-
tions:

phase = 0, end = 2π

phase = phase ∗ S
end = phase+ 2πC ∗ S

f(x) = G+ (sin(x/S) ∗A) ∀x ∈ [phase, end] (3)

.
Figure 6 shows a few stitched waves which are labelled.

The waves generated can be easily labelled for peaks and
valleys (local maximas and minimas). The key point in
labelling such a wave is: each wave-cycle can have at
most one peak and one valley. Other peaks and valleys can
exist at the points where the wave-cycles are stitched. A
few rules can easily determine whether the stitching point
will be a peak or a valley. Each point in the wave can be
assigned one of the following classes:
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Figure 7. LSTM backpropagation architecture

1. Category-1: No peak, no valley

2. Category-2: Peak

3. Category-3: Valley

Most of the points in the waves are assigned to the
Category-1. Figure 6 shows some labelled waves. The
green vertical lines indicate presence of a peak (Category-2
point) and the red vertical lines indicate presence of a valley
(Category-2 point) at that point. Some Gaussian noise with
µ = 0, σ = 0.05 is also added to this wave to mimic an actual
Matrix Profile which is also noisy and coarse.

4.3. Training neural networks on the synthetic
dataset

A few configuration of recurrent neural network archi-
tectures like the LSTM is trained on this dataset. It is ob-
served that the minimum sized model with 2 hidden layers
that performs at least as good as the models with more num-
ber of parameters is 20 hidden neurons in each hidden layer.
As expected, the bidirectional LSTM does better even with
fewer number of training parameters (using 10 hidden neu-
rons in each layer). Using this trained model for predicting
classes on a test set signal is shown in Figure 8. The peak
and valley probabilities in the output show that the LSTM is
pretty confident of its predictions. The LSTM does well on
this task and displays clear understanding of peaks and val-
leys in a 1-dimensional signal. Some convolutional archi-
tectures like Temporal Convolutional Network (TCN) pro-
posed by [1] are also experimented with (as shown in the

Figure 8. Trained LSTM prediction on a test set signal

supplementary document). The results for an LSTM are
much better and the predictions are more confident.

These experiments show that an LSTM can be trained to
estimate peaks and valleys in the Matrix Profile. These also
provide an intuition about what size of the model should
be sufficient for the task at hand. These experiments show
that a relatively small LSTM architecture (with only 3000
trainable parameters) is sufficient for estimating peaks and
valleys in a 1-dimensional signal. The bidirectional vari-
ant performs better than a unidirectional variant even with
fewer learnable parameters.

Backpropagating loss from the last time step is also
tried, but the results are not comparable to backpropagating
from each time-step. The findings of backpropagating only
from the last time step can be found in the supplementary
document.

4.4. End-to-end trainable pipeline

The final end-to-end trainable pipeline is shown in Fig-
ure 9. A series of experiments are conducted that change
one variable at a time to be able to definitively answer the
research questions. All the experiments conducted so far
work with only segments of this pipeline.

4.5. Changing one variable at a time

Theoretically, with an infinite amount of labelled videos
for training and an unlimited amount of memory in the
available GPUs, it should be possible to estimate repetitions
in all kinds of videos by just feeding the raw pixel values
into a big enough LSTM network. We have neither of
those, so we need to learn features from the images to
reduce the dimensions of the input to the LSTM network.
And we do not even have an unlimited memory, so we want
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Figure 9. Architecture of model t4. The CNN features are used to compute the Matrix Profile and that is fed to the LSTM block. The CNN
weights are also trained for this model.

our LSTM network to be as small as possible. Through our
upcoming experiments, we will try to come up with light
versions of the model that perform at least as good as the
heavier models. The key idea is that the lighter the model
is, the more feasible it is to use for a real-world problem.

Several instances of the model were deployed with slight
modifications in each one. The slight changes ensure that
one variable is changed at a time to understand the effect
of the variations. It is a configurable plug and play pipeline
and the following configurations are experimented with:

1. CNN Type: Based on this configuration, the Con-
volutional Neural Network block is decided. Several
CNN architectures were evaluated like DenseNet-121,
SqueezeNet-1.1. For brevity, ResNet-18 is used in the
experiments that follow. The input to the Convolu-
tional Block (per time step) is an image of dimensions
(224×224×3). The output of this convolutional block
is of dimensions 512 if it is a ResNet-18.

2. Matrix Profile Flag: This is a boolean flag which
can have a value of True/False on/off. If this flag is
turned on, only then the matrix profile block is used in
the pipeline. For instance, if this flag is turned off,
the CNN features are directly fed to the next block
which is the LSTM block. In this case, the input for
the LSTM block would be of dimensions 512 (if CNN

used is ResNet-18).

3. Matrix Profile window-size: This field is only used
if the Matrix Profile flag is set to on. This field de-
termines the window-size which is a hyperparameter
used in calculation of the matrix profile. (See the Ma-
trix Profile section above for more details).

4. LSTM Hidden Layers: This field determines the
number of hidden layers employed in the LSTM block
in our pipeline. By default, we have set this parameter
to 2 for our experiments. This configuration can help
us experiment with the complexity of our model later
on if needed.

5. LSTM Hidden Neurons(per layer): This field deter-
mines the number of neurons in each hidden layer of
the LSTM block. Because of our initial wave-cycle ex-
periments, we could make informed guesses about this
parameter. Based on the choices of the other configu-
ration fields, this field would be modified (as shown in
this section later).

6. CNN Backpropagation: This is a boolean flag which
can have a value of textiton/off. If this flag is turned
on, only then will the weights of the CNN be tuned.
For initialization of the weights of the CNN (either of
the three variants), the weights pretrained on ImageNet
[10] are used. Our hypothesis regarding this parameter
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Figure 10. Architecture of models t0 and t1. The CNN features
are directly fed to the LSTM block.

was that if turned on, the CNN would adjust itself to
make it easier for the matrix profile to detect motifs.

The configuration options that are kept constant for all
the upcoming experiments are CNN Type for which a
ResNet-18 is used, LSTM Hidden Layers for which 2 is
used and Matrix Profile window size for which 1 is always
used (if the Matrix Profile Flag is on). Based on the config-
uration options discussed above, there can be any number
of combinations to converge to a final model. For brevity,
the following combinations are experimented with:

Model: t0 is shown in Figure 10. This is a relatively
lightweight pipeline without the Matrix Profile. The idea
of training this pipeline is that feeding the CNN frames di-
rectly to a light LSTM. Our hypothesis regarding this vari-
ant is that it would begin to learn some patterns but the per-
formance of this pipeline would not be as good as the heav-
ier LSTM variant.

• Matrix Profile Flag: off

• LSTM Hidden Neurons (per layer): 100

• CNN Backpropagation: off

Model: t1 is shown in Figure 10. This is a heav-
ier Pipeline without the Matrix Profile. The idea of this
pipeline is that we have enough number of hidden neurons
to actually fit the task at hand. Our hypothesis is that this
variant would perform better than the variant with a lighter
LSTM.

• Matrix Profile Flag: off

• LSTM Hidden Neurons (per layer): 2000

• CNN Backpropagation: off

Model: t2 is shown in Figure 11. This is a heavier
pipeline with the Matrix Profile.

• Matrix Profile Flag: on

• LSTM Hidden Neurons (per layer): 2000

Figure 11. Architecture of models t2 and t3. The CNN features
are used to compute the Matrix Profile and that is fed to the LSTM
block.

• CNN Backpropagation: off

Model: t3 is shown in Figure 11. This is a relatively
lightweight pipeline with the Matrix Profile. The idea of
using matrix profile in this pipeline is that if it is possible to
use the matrix profile to greatly reduce the size of the model
required for the task of repetition estimation.

• Matrix Profile Flag: on

• LSTM Hidden Neurons (per layer): 100

• CNN Backpropagation: off

Model: t4 is shown in Figure 9. This model is a rel-
atively lightweight pipeline with the Matrix Profile but its
CNN backpropagation is turned on leading to a huge com-
putation graph. The goal of this pipeline is to train the CNN
in such a way that the computed matrix profile using this
gets better (it becomes easier to detect repetitions from the
computed matrix profile signal). This model would answer
the question if backpropagating through the matrix profile
actually helps.

• Matrix Profile Flag: on

• LSTM Hidden Neurons (per layer): 100

• CNN Backpropagation: on

These models were trained on all the datasets for 500
epochs or a max-run-time of 3 days (whichever happens be-
fore) on a pascal GPU machine. The training losses, vali-
dation losses and epoch accuracies can be found in the Ap-
pendix of the supplementary document.

5. Results and discussions
The model-configurations discussed at the end of the last

section are all trained separately on all the three datasets.
(Note: These results are obtained using each time-step la-
belling as discussed before). Each frame denotes a class to
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Figure 12. Model architecture accuracies for Aircraft Engine
Blades, YTSegments and QUVA datasets.

which it belongs (repetitions so far). Now, to make sure that
there is no bias, it is ensured that each video in the dataset
has exactly 5 repetitions. The videos which have more than
5 repetitions are trimmed so that they meet this constraint.

Measuring accuracy: For each time-step labelled data, a
label for each frame in the video is present which denotes
the number of repetitions so far. There are several ways to
measure accuracy. Existing literature (like [28] and [21])
uses Mean Absolute Error to compute errors in their final
estimations. Mean Absolute Error is the difference in ac-
tual and predicted number of repetitions. These works also
do not use a separate test set for evaluation. This would
mean only considering the output of the last frame for our
architecture since an output is produced for each frame by
this work’s proposed model. This is not a good indicator
of the accuracy of the proposed model. A technique that
considers the predictions per frame for all the videos for
evaluating such an online approach is to look at all the pre-
dicted labels of all the frames (from the videos in the test
set) and compare them to the actual labels to compute an
overall accuracy. This approach however, has an ingrained
flaw. If a video has a lot of frames (as compared to other
videos in the test set), the accuracy of that video would skew
the overall accuracy of the model which should not be the
case. Since all the videos have exactly 5 repetitions, a video
could have more frames if the action is repeated slowly in
the video (temporal cycle length is large). To overcome this
flaw, this work proposes the approach of computing accu-
racy per video (from the test set) by comparing individual
frame predictions with the labels and then calculating an
overall accuracy of the test set by taking an average of all
the accuracies. This approach gives an equal weight to each
video in the test set.

The accuracies on the test sets of Aircraft Engine Blades,
YTSegments and QUVA datasets for all of the model ar-
chitectures are plotted in Figure 12. The best accuracies
obtained for each of the datasets are 66%, 63% and 50% re-
spectively. The trend in the plot shows that the models mak-
ing use of the Matrix profile (t3 and t4 architectures) obtain
the best results in terms of accurately labelled frames. The
experiments comparing t0 and t1 architectures show a dif-
ference of about 5% for all datasets. This shows that esti-
mating repetitions using a recurrent network fed with CNN
features requires a heavy RNN to better learn the task at
hand. The t3 architectures for all datasets consistently gave
accuracies equal to or better than the heavier t1 and t2 ar-
chitectures. This helps us deduce that computing the matrix
profile is actually useful for estimating repetitions and helps
us reduce the size of the model without compromising on
accuracy. The t4 architecture showed good promise by ob-
taining the best accuracies (with a margin of about 5%) for
both quva and ytsegments datasets. By looking at the results
of the t4 architecture on the datasets, we can safely con-
clude that it is possible to backpropagate through the step of
computing the matrix profile and update the CNN weights
such that it helps the upstream LSTM can more effectively
use the computed Matrix profile signal. This could poten-
tially mean that backpropagating through the matrix profile
could be used for several other tasks where matrix profile
already shines to further improve the results in that spe-
cific domain. This also means that other problem specific
mathematical operations could be backpropagated through
to further improve results.

The best performing architecture (t4 architecture) is also
compared with the pretrained model published by [21] on
the prepared dataset for Mean Absolute Error. The pre-
pared datasets contain all the videos with exactly 5 rep-
etitions. The model published by [21] predicts a count
per video which can be compared with 5 to get the er-
ror in prediction (if any) and the error is averaged over all
the videos in the dataset. The count per video is obtained
from the proposed t4 architecture by only considering the
model’s prediction on the last time step. The Mean abso-
lute errors for both these models can be found in the Table
1. It clearly shows that on the prepared dataset, the pro-
posed architecture easily outperforms the model published
by [21] (which possibly requires dataset specific config-
urations judging by higher errors on datasets with longer
repetition cycle lengths).

6. Conclusions
This work suggests a new way to look at the problem

of repetition estimation. It proposes a novel approach
of labelling the dataset by labelling each frame of the
video with a class (repetitions so far). This results in an
inherently online approach to tackle the problem. It is
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Blades YTSegments QUVA
Levy & Wolf [21] 3.454 2.87 3.076
t4 architecture 0.409 1.383 0.641

Table 1. Mean Absolute Error comparison of the t4 architecture
with [21] on the prepared datasets with 10 fps and 5 repetitions
per video.

observed that this kind of labelling aids in faster and better
learning in recurrent architectures as compared to assigning
a label to the entire video (or to just the last time step).
After labelling the dataset like this, the Matrix Profile is
experimented with and it is observed that it is useful for
the task of repetition estimation. Furthermore, a recurrent
neural network architecture like an LSTM can be trained
using video frames or using pretrained CNN (like ResNet)
features from video frames. An LSTM like this would
need to be quite heavy (with a lot of trainable parameters).
The size of this network can be dramatically reduced by
using the Matrix Profile and feeding the Matrix profile
(computed from the CNN features) to the upstream LSTM
instead of feeding the CNN features to LSTM directly.
The weights of this pretrained CNN (ResNet-18) are also
trained by backpropagating through the Matrix Profile
computation step and it is observed that the accuracy of the
model increases for both all the three (Blade inspection,
QUVA and YTSegments) datasets. The fact that the matrix
profile computation is backpropagatable can be quite
beneficial to several domains that employ the Matrix Profile
or other domains which employ some problem specific
mathematical operations like the Matrix Profile.

7. Recommendations
The problem of estimating repetitions in videos is harder

than it seems at first glance. There could be several ways
to improve the performance and learning of the proposed
architecture. Currently, the datasets were labelled with
each-time-step labelling manually by a single person.
This could be rectified by having several people label the
videos and aggregating their results to have consistent
repetition cycle estimates. For the matrix profile calcula-
tion, a window size of 1 is used in the end-to-end pipeline
experiments. Different values for this hyperparameter can
be cross-validated to see what works best for the dataset at
hand. Another improvement could include cross-validating
with several loss-types like the Margin Hinge Loss etc.
instead of the employed Negative Log-Likelihood Loss.
and with different activation functions like tanh or sigmoid.
Different types of loss and activation functions can perform
better for different kinds of problems. A few popular loss
types and activation functions are discussed in detail in the

Appendix of the supplementary document. More boost in
performance could be obtained by increasing the size of
the dataset by using video augmentation techniques like
rotation, shear etc. The computation graphs of several
matrix profile implementations could be inspected to
chose the smallest one or the most parallelizable one to
enable faster convergence. Smaller computation graphs as
proposed by [31] can be experimented with. The matrix
profile output is not necessarily aligned perfectly with our
idea of repetition-cycle end/begin. The Feature Aligning
Network recently proposed by [33] also seems promising
to align the matrix profile properly with the labels. A
completely different way to tackle this problem could
be by using the Triplet Loss proposed by [29]. To use
the Triplet Loss, videos with the same number of repeti-
tions could be grouped together as positive examples for
the anchor and any other video could be negative examples.
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