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Abstract
Due to its perceptual limitations, an agent may have too little information about the environment to act optimally. In such

cases, it is important to keep track of the action-observation history to uncover hidden state information. Recent deep

reinforcement learning methods use recurrent neural networks (RNN) to memorize past observations. However, these

models are expensive to train and have convergence difficulties, especially when dealing with high dimensional data. In

this paper, we propose influence-aware memory, a theoretically inspired memory architecture that alleviates the training

difficulties by restricting the input of the recurrent layers to those variables that influence the hidden state information.

Moreover, as opposed to standard RNNs, in which every piece of information used for estimating Q values is inevitably fed

back into the network for the next prediction, our model allows information to flow without being necessarily stored in the

RNN’s internal memory. Results indicate that, by letting the recurrent layers focus on a small fraction of the observation

variables while processing the rest of the information with a feedforward neural network, we can outperform standard

recurrent architectures both in training speed and policy performance. This approach also reduces runtime and obtains

better scores than methods that stack multiple observations to remove partial observability.

Keywords Partial observability � Reinforcement learning � Influence � Conditional independence � Recurrent neural
networks

1 Introduction

It is not always guaranteed that an agent will have access to

a full description of the environment to solve a particular

task. In fact, most real-world problems are by nature par-

tially observable. This type of problems can be modeled as

factored partially observable Markov decision processes

(F-POMDP) [15]. The model is an extension of the MDP

framework [31] whereby, unlike in the original formula-

tion, states are not assumed to be fully observable. This

implies that the Markov property is no longer satisfied.

That is, future observations do not solely depend on the

most recent one. Moreover, in the factored formulation [4]

states and observations are both defined by sets of

variables, with the set observation variables being a subset

of the set of state variables. This is because some of the

variables that define the state space are hidden to the agent

[22].

Most POMDP methods try to extract information from

the full action-observation history (AOH) to disambiguate

the hidden state variables. We argue however that, in many

cases, memorizing all the observation variables is costly

and requires unnecessary effort. Instead, we can exploit the

structure of our problem and abstract away from our his-

tory those variables that have no direct influence on the

hidden ones.

Previous work on influence-based abstraction (IBA)

[28, 43] demonstrates that, in certain POMDPs, the non-

Markovian dependencies in the transition and reward

functions can be fully determined given a subset of vari-

ables in the history. Hence, the combination of this subset

together with the current observation forms a Markov

representation that is sufficient to compute the optimal
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policy. In this paper, we use these theoretical insights to

propose a new memory model that tries to correct certain

flaws in standard RNNs that limit their effectiveness when

applied to reinforcement learning (RL). We identify two

key features that make our model stand apart from the most

widely used recurrent architectures, LSTMs [9] and GRUs

[7]:

1. The input of the RNN is restricted to a subset of

observation variables which, in principle, should

contain sufficient information to estimate the hidden

state.

2. There is a feedforward connection parallel to the

recurrent layers, through which the information that is

important for estimating Q values but that does not

need to be memorized can flow.

Although these two features might be overlooked as minor

modifications to the standard architectures, together, they

provide a theoretically sound inductive bias that brings the

structure of the model into line with the problem of hidden

state. Moreover, as shown in our experiments, they have an

important effect on convergence, learning speed, and final

performance of the agents.

2 Related work

Partial observability The problem of partial observability

has been extensively studied in the past. The main bulk of

the work, comes from the planning community where most

solutions rely on forming a belief over the states of the

environment using agent’s past observations [25, 30, 34].

Classic RL algorithms, on the other hand, cannot directly

apply the above solution due to the lack of a fully specified

transition model. Instead, they learn stochastic policies that

rely only on the current observation [13, 18], or use a finite-

sized history window to uncover hidden state [17, 21].

Even though the previous solutions do not scale to large

and continuous state spaces, in the field of Deep RL the

problem is most of the times either ignored, or naively

overcome by stacking a window of past observations [23].

The paper by Steckelmacher et al [37] extends the options

framework [39] by conditioning the option initiation policy

on the previously-executed option, such that it can be

applied to POMDPs that show certain hierarchical struc-

ture. Other approaches incorporate external memories [26]

or use RNNs to keep track of the past history [1, 8, 14, 32].

Although this last solution scales better than observation-

stacking, recurrent models are computationally expensive

and often have convergence difficulties when working with

high dimensions [15, 22]. A few works, have tried to aid

the RNN by using auxiliary tasks like predicting game

feature information [16] or image reconstruction [11]. We,

on the other hand, recognize that the internal structure of

standard RNNs might not always be appropriate and pro-

pose a new memory architecture that is better aligned with

the RL problem.

Attention One of the variants of the memory architecture

we propose implements a spatial attention mechanism [44]

to provide the network with a layer of dynamic weights.

This form of attention is different from the temporal

attention mechanism that is used in seq2seq models

[20, 42]. While the latter allows the RNN to condition on

multiple past internal memories to make predictions, the

spatial attention mechanism we use, is meant to filter out a

fraction of the information that comes in with the obser-

vations. Attention mechanisms have recently been used in

the context of Deep RL to facilitate the interpretation of the

agent’s behavior [24, 40] or to tackle multi-agent problems

[12]. Similar to our model, the architecture proposed by

[36] also uses an attention mechanism to find the relevant

information in the game screen and feed it into the RNN.

However, their model misses the feedforward connection

through which the information that is useful for predicting

action values but that does not need to be stored in memory

can flow (see Sect. 4.1 for more details).

3 Background

The memory architecture presented in Sect. 4 builds on the

F-POMDP framework, and the concept of influence-based

abstraction. For the sake of completeness, we briefly

introduce each of them here and refer interested readers to

[15] and [27].

3.1 Factored POMDPs

Definition 1 (F-POMDP) A factored POMDP (F-

POMDP) is a tuple hS;X; Y ;A; T ;R;Oi where S is the set of
k state variables S ¼ fS1; :::; Skg, such that every state s 2
�k

i¼1S
i is a k-dimensional vector s ¼ hs1; :::; ski, X is the set

of m observation variables X ¼ fX1; :::;Xmg � S, such that

every observation ot 2 �m
i¼1X

i is an m-dimensional vector

o ¼ hx1; :::; xmi with m� k, Y is the set of n hidden state

variables Y ¼ fY1; :::; Yng � S with n� k, X [ Y ¼ S, and

st ¼ hot; yti, A is the set of actions, T is the transition

function, Tðstþ1 j st; atÞ ¼ Prðstþ1 j at; stÞ, Rðst; atÞ is the

reward function, Oðot j stÞ is the observation function.1

1 Note that this formulation differs from the usual POMDP setting

where the agent receives noisy observations of the true state, and

where Oðot j stÞ is a probability distribution. Here, observations are a

subset of the state variables, and hence Oðot j stÞ is a function that

outputs a 1 if ot is a subset of st and a 0 otherwise. Nonetheless, most
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The task is to find the policy p that maximizes the

expected discounted sum of rewards [38]. Since the agent

receives only a partial observation ot of the true state st, a

policy that is based only on the most recent information can

be arbitrarily bad [35]. In general, the agent is required to

keep track of its past AOH to make the right action choices.

Policies are therefore mappings from the full AOH ht ¼
ho0; a0:::; at�1; oti to actions, pðat j htÞ.

3.2 Memory

As mentioned in the previous section, ignoring the fact that

the observations are not Markovian can lead to sub-optimal

decisions. Therefore, most Deep RL methods that target

partial observability use some form of memory to disam-

biguate hidden state. In our experiments we compare our

method with the two techniques that are most widely used

in practice.

Frame stacking This simple solution was popularized by

the authors of the DQN paper [23], who successfully

applied it to train agents on playing the Atari video games.

Although the entire game screen is provided at every

iteration, some of the games, contain moving sprites whose

velocity cannot be measured using only the current frame.

The solution they adopted was to provide the agent with a

moving window of the past 4 observations. Of course, the

practicality of this approach is limited to relatively small

observation spaces and short history dependencies.

Recurrent neural networks A more scalable solution is to

train an RNN on keeping track of the information by

embedding the past AOH in its internal memory. However,

standard recurrent neural networks, such as LSTMs [9] or

GRUs [7] are known to be difficult to train and have

convergence difficulties when dealing with high dimen-

sions. The central argument of this paper is that these

popular architectures, which were especially designed for a

particular set of time series problems, (e.g. machine

translation, speech recognition) are not the most suited for

the RL task, as they fail to account for the structure many

problems exhibit.

3.3 Influence-based abstraction

The memory architecture we propose incorporates some of

the theoretical insights developed by the framework of

influence-based abstraction (IBA). Although we do not

make strict use of the mathematical properties introduced

below, we consider it important to include them here.

The fundamental idea of IBA is to build compact

F-POMDP models in which hidden state variables are

abstracted away by conditioning on the relevant parts of the

agent’s AOH. Here, rather than simplifying the transition

function, we use these insights to model the agent’s policy.

Although according to the POMDP framework, optimal

policies should condition on the full AOH, it turns out that,

in most partially observable problems, not all previous

information is strictly relevant.

Example (Warehouse commissioning) Figure 1 (left)

shows a robot (purple) which needs to fetch the items

(yellow) that appear with probability 0.05 on the shelves at

the edges of the 7� 7 grid representing a warehouse. The

robot receives a reward between (0, 1] every time it col-

lects an item. The added difficulty of this task is that the

robot is rewarded higher if it favors old over new item

orders. Moreover, items disappear if they are not collected

after 16 timesteps. Hence, the robot needs to maintain a

time counter for each item and decide which one is best to

go for.

The structure of the problem is represented by the

dynamic Bayesian network (DBN) [5, 29] in Fig. 1 (right),

where lt denotes the robot’s current location in the ware-

house, and it and pt are binary variables indicating if the

item order is active and whether or not the robot is at the

item pick-up location. The hidden state variable yt is the

item’s time counter,2 to which the robot has no access, and

upon which transitions and rewards depend. The robot can

only infer the time counter based on past actions at and

observations ot ¼ hlt; pt; iti. To do so, however, it does not

need to remember the full AOH, but only whether or not a

given item order was active at a particular timestep. More

formally, inspecting the DBN, we see that ytþ1 is only

indirectly influenced by the agent’s past location lt�1 via

pt�1 and the item variable it. Therefore, we say that ytþ1 is

conditionally independent of lt�1 given pt�1 and it,

ytþ1 ?? lt�1 j pt�1; itð Þ ð1Þ

Similarly,

ytþ1 ?? at�2 j pt�1; itð Þ ð2Þ

The above means that in order to infer the hidden state

variable y at any timestep it is sufficient to condition on the

past values of p and i. The history of these two variables,

highlighted in green in Fig. 1, constitutes the d-separating

set (d-set).

Definition 2 (D-separating set) The d-separating set is a

subset of variables dt in the agent’s AOH ht, such that the

hidden state variables yt and the remaining parts of the

Footnote 1 continued

POMDPs can be formulated as F-POMDPs by modelling the sources

of partial observability as hidden state variables.

2 For simplicity, we only include a single item in the DBN in Fig. 1.

The dynamics for all the other of the items in the warehouse are

analogous.
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history ht n dt are conditionally independent given dt:

Prðyt j htÞ ¼ Prðyt j dt; ht n dtÞ ¼ Prðyt j dtÞ: This condi-

tional independence can be tested using the notion of

d-separation [3].

4 Influence-aware memory

The properties outlined in the previous section, are not

unique to the warehouse example. In fact, as we show in

our experiments, it is often the case in partially observable

problems that only a fraction of the observation variables

influence the hidden state directly. This does not neces-

sarily imply that the agent can completely ignore the rest of

the information. In the warehouse example, the robot’s

current location, despite being irrelevant for inferring

hidden state, is in fact crucial for estimating action values.

The Bellman equation for the optimal action value

function Q� of a POMDP can be expressed in terms of the

history of actions and observations ht as

Q�ðht; atÞ ¼ Rðht; atÞ

þ
X

otþ1

Prðotþ1 j ht; atÞmax
atþ1

Q�ðhtþ1; atþ1Þ; ð3Þ

with

Prðotþ1 j ht; atÞ
¼

X

otþ1;stþ1;yt

Oðotþ1 j stþ1ÞTðstþ1 j ot; yt; atÞPrðyt j htÞ ð4Þ

where Rðht; atÞ ¼
P

st
Prðst j htÞRðst; atÞ is the expected

immediate reward at time t over the set of possible states st
given a particular history ht.

According to IBA, we can replace the dependence on

the full history of actions and observations ht by a

dependence on the d-set dt (Definition 2),

Q�ðhdt; oti; atÞ ¼ Rðhdt; oti; atÞ

þ
X

otþ1;stþ1;yt

Oðotþ1 j stþ1ÞTðstþ1 j hyt; oti; atÞPrðyt j dtÞ

max
atþ1

Q�ðhdtþ1; otþ1i; atþ1Þ;

ð5Þ

and dtþ1,hdt;Dðotþ1Þi, where Dð�Þ is the d-set selection

operator, which chooses the variables in otþ1 that are added

to dtþ1. Note that, although dt contains enough information

to estimate the hidden state variable yt (Equation 5 and

Definition 2), ot is still needed to compute transitions T and

rewards R. Hence, given the tuple hdt; oti we can write

Q�ðht; atÞ ¼ Q�ðhdt; oti; atÞ; ð6Þ

The upshot is that in most POMDPs the combination of dt
and ot forms a Markov representation that the agent can use

to find the optimal policy. Unfortunately, in the RL setting,

we are normally not provided a fully specified DBN to

determine the exact d-set. Nonetheless, in many problems

like in our warehouse example it is not difficult to make an

educated guess about the variables containing sufficient

information to predict the hidden ones. The network

architecture we present in the next section enables us to

select beforehand what variables the agent should memo-

rize. This is however not an prerequisite since, as we

explain in Sect. 4.2, we can also force the RNN to find such

variables by restricting its capacity.

4.1 Influence-aware memory network

The Influence-aware Memory (IAM) architecture we pro-

pose is depicted in Fig. 2. The network encodes the ideas of

IBA as inductive biases with the goal of being able to learn

policies and value functions more effectively. Following

from (6), our architecture implements two separate

Fig. 1 Left: A snapshot of the warehouse environment. The purple

box represents a robot that needs to collect the yellow items that

appear on the shelves located at the edges of the warehouse. Items

disappear if they are not collected after 8 timesteps. Right: Dynamic

Bayesian Network describing the environment dynamics. Edges

represent conditional dependencies between variables. Variables

within the green dashed box are visible to the agent. The hidden

variables yt can only be inferred from the past AOH
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networks in parallel: an FNN, which processes the entire

observation,

xt ¼ FfnnðotÞ; ð7Þ

and an RNN, which receives only DðotÞ and updates its

internal state,

d̂t ¼ Frnnðd̂t�1;DðotÞÞ; ð8Þ

where we use the notation d̂t to indicate that the d-set is

embedded in the RNN’s internal memory. The output of

the FNN xt is then concatenated with d̂t and passed through

two separate linear layers which compute values

Qðhxt; d̂ti; atÞ and action probabilities pðhxt; d̂ti; atÞ.

IAM vs. standard RNNs We try to facilitate the task of the

RNN by feeding only the information that, in principle,

should be enough to uncover hidden state. This is only

possible thanks to the parallel FNN channel, which serves

as an extra gate through which the information that is

useful for predicting action values but that does not need to

be stored in memory can flow. This is in contrast to the

standard recurrent architectures that are normally used in

Deep RL (e.g. LSTM, GRU, etc.), which suffer from the

fact that every piece of information that is used for esti-

mating values is inevitably fed back into the network for

the next prediction. Intuitively, standard RNNs face a

conflict: they need to choose between ignoring those

variables that are unnecessary for future predictions, risk-

ing worse Q estimates, or processing them at the expense of

corrupting their internal memory with irrelevant details.

Figure 3 illustrates this idea by comparing the information

flow in both architectures.

Finally, since the recurrent layers in IAM are freed from

the burden of having to remember irrelevant information,

they can be dimensioned according to the memory needs of

the problem at hand. This translates into networks that

combine regular size FNNs together with small RNNs.

Image data If our agent receives images rather than feature

vectors, we first preprocess the raw observations o with a

Fig. 2 Left: Influence-aware Memory network architecture. IAM

connects an FNN and RNN in parallel. While the FNN processes the

entire observation vector, the RNN is fed only with the variables in ot
that belong into dt. Right: Diagram of one of the attention heads.

Images are first processed by a CNN. The resulting feature map is

decomposed into m� m vectors vit each of them describing the

different region in the image. These vectors are fed into an attention

module which computes a weight ai for each of them. The output of

each attention head is the weighted average of these vectors

Fig. 3 Information flow in standard RNNs (left) compared to IAM

(right). The diagram on the left shows that the same vector ht that is
used for estimating p and Q is also part of the input for the next

prediction (green arrows). On the other hand, in the IAM architecture

there is another vector xt coming out from the FNN, which is only

used for estimating p and Q at time t and is not stored in memory.

Hence, the RNN in IAM is free to include in d̂t only the information

that the agent needs to remember
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CNN, FcnnðotÞ ¼ vt and obtain m� m vectors v of size N,

where N is the number of filters in the last convolutional

layer and m� m the dimensions of the 2D output array of

each filter (Fig. 2 right). Fortunately, since the convolution

operator preserves the topology of the input, each of these

vectors corresponds to a particular region of the input

image. Thus, we can still use domain knowledge to choose

which vectors should go into the RNN.

4.2 Learning approximate d-sets

Having the FNN channel can help detach the RNN from

the task of estimating the current Q values. However,

without the d-set selection operator D, nothing prevents the

information that does not need to be remembered from

going through the RNN. Although, as we show in our first

two experiments, it is often possible for the designer to

guess what variables directly influence the hidden state

information, it might not always be so straightforward. In

such cases, rather than manually selecting the d-set, the

agent will have to learn D from experience. In particular,

we add a linear layer before the RNN, to act as information

bottleneck [41] and filter out the irrelevant information:

D̂AðotÞ ¼ Aot ð9Þ

where D̂ indicates that the operator is learned rather than

handcrafted and A is a matrix of weights of size K � N,

where N is the number of observation variables (the

number of filters in the last convolutional layer when using

images) and K is a hyperparameter that determines the

dimensions of the output. The matrix A needs to be com-

puted differently depending on the nature of the problem:

Static d-sets If the variables that must go into the d-set do

not change from one timestep to another. That is, if D al-

ways needs to choose the same subset of observation

variables, as occurs in the warehouse example, we just

need a fixed matrix A to filter all observations in the same

way. A can be implemented as a separate linear layer

before the RNN or we can just directly reduce the size of

the first recurrent layer.

Dynamic d-sets If, on the other hand, the variables that

must go into the d-set do change from one timestep to

another, we use a multi-head spatial attention mechanism

[42, 44] to recompute the weights in every iteration. Thus

we write At to indicate that the weights can now adapt to ot

and d̂t�1. The need for such dynamism can be easily

understood by considering the Atari game of breakout. To

be able to predict where the ball will be next, the agent

does not need to memorize the whole set of pixels in the

game screen, but only the ones containing the ball. A

matrix At that varies over time is needed because the

location of these pixels differs in every observation. For

each row j in At, each element ai;jt is computed by a two-

layer fully connected network that takes as input the cor-

responding element in the observation vector oi and d̂t�1,

followed by a softmax operator. Figure 2 is a diagram of

how each of the attention heads operates for the case of

using as input the output of the CNN vt instead of the

observation vector ot.

Note that the above solutions would not be able to filter

out the information that is only useful for the current

Q estimates without the parallel FNN connection (Fig. 3).

It is also important to stress that these mechanisms are by

no means guaranteed to find the optimal d-set. Nonetheless,

as shown in our experiments, they constitute an effective

inductive bias that facilitates the learning process.

5 Experiments

We empirically evaluate the performance of our memory

architecture on the warehouse example (Sect. 3), a traffic

control task, the memory S11 environment from the gym-

minigrid suite [6], and the flickering version of the Atari

video games [8]. The goal of our experiments is to:

1. Evaluate whether our model improves over standard

recurrent architectures. We compare learning perfor-

mance, convergence and training time.

2. Show that our solution scales to high dimensional

problems with continuous observation spaces.

Fig. 4 Traffic control environment. Cars are only visible when they

enter the red box. The agent needs to anticipate the arrival of cars, and

switch the lights before they enter the red box
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3. Demonstrate the advantages of restricting the input to

the RNN and compare the relative performance of

learning vs. manually specifying the d-sets.

4. Analyze the impact of the architecture on the learned

representations by inspecting the network hidden

activations.

5.1 Environments

Below is a brief description of the three domains on which

we evaluate our model. Please refer to the ‘‘Appendix’’ for

more details.

Warehouse This is the same task we describe in our

example in Sect. 3.3. The observations are a combination

of the agent’s location (one-hot encoded vector) and the 24

item binary variables. In the experiments where d-sets are

manually selected, the RNN in IAM only receives the latter

variables while the FNN processes the entire vector.

Traffic control In this environment [19], the agent must

optimize the traffic flow at the intersection in Fig. 4. The

agent can take two different actions: either switching the

traffic light on the top to green, which automatically turns

the other to red, or vice versa. The observations are binary

vectors that encode whether or not there is a car at a par-

ticular location. Cars are only visible when they enter the

red box. There is a 6 seconds delay between the moment an

action is taken and the time the lights actually switch.

During this period the green light turns yellow, and no cars

are allowed to cross the road.

Fig. 5 Average return and standard deviation during training of IAM

and GRU for various recurrent layer sizes. Top left: IAM with manual

d-set selection D on the warehouse environment. Top right: IAM with

learned static d-set selection D̂A on the warehouse environment.

Bottom left: IAM with learned static d-set selection D̂A on the traffic

environment. Bottom right: IAM with learned dynamic d-set selection

D̂At
on the Memory S11 environment. The dashed black lines are the

learning curves of FNNs without memory
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Agents need to anticipate cars entering the red box and

switch the lights in time for them to continue without

stopping. This forces the recurrent models to remember the

location and the time at which cars left the intersection and

limits the performance of agents with no memory.3 In the

experiments where d-sets are manually selected, the RNN

in IAM receives the last two elements in each of the two

vectors encoding the road segments (i.e. 4 bits in total).

The location of these elements is indicated by the small

grey boxes in Fig. 4. This information should be sufficient

to infer hidden state.

Gym-minigrid memory S11 The third environment is a

high-dimensional version of the T-maze [1]. The environ-

ment is included in the gym-minigrid suite [6]. Here, the

agent starts in a room where there is an object that it needs

to memorize. Then, it has to go through a long corridor

which ends in a split and choose one of the two pathways.

The correct pathway depends on the object in the first

room. A reward of þ1 is given if the correct pathway is

selected and 0 otherwise. To complicate things, the agent

has limited vision and can only see objects that are within a

7� 7 grid from its own position. In the original imple-

mentation, the object in the first room is always at the same

location. This makes it relatively easy to learn a fixed d-set

operator D̂A with static weights that can filter out all

observation variables but the ones where the object is

located. Hence, to make things harder, and in order to test

the attention mechanism, we modified the environment so

that the object is randomly placed at a different location in

every episode.

Flickering atari In this version of the Atari video games [2]

the observations are replaced by black frames with prob-

ability p ¼ 0:5. This adds uncertainty to the environment

and makes it more difficult for the agent to keep track of

moving elements. The modification was introduced by

Hausknecht and Stone [8] to test their recurrent version of

DQN (DRQN) and has become the standard benchmark for

Deep RL in POMDPs [11, 45].

5.2 Experimental setup

We compare IAM against two other network configura-

tions: A model with no internal memory that uses frame

stacking FNN, and two standard recurrent architectures

GRU (warehouse, traffic, and memory S11 environments)

and LSTM (Atari games). All four models are trained using

PPO [33]. For a fair comparison, and in order to ensure that

both types of memory have access to the same amount of

information, the sequence length parameter in the recurrent

models (i.e. number of time steps the network is unrolled

when updating the model) is chosen to be equal to the

number of frames that are fed into the FNN baseline. We

evaluate the performance of our agents at different points

during training by calculating the mean episodic return.

The results are averaged over ten random seeds. A

table containing the full list of hyperparameters used for

each domain and for each of the three architectures, toge-

ther with a detailed description of the tuning process is

provided in the ‘‘Appendix’’.

5.3 Learning performance and convergence

We first evaluate the performance of our model on the

warehouse, traffic control, and memory S11 environments.

Although the observation sizes are relatively small com-

pared to most deep RL benchmarks (73, 30, and 49 vari-

ables respectively), the three tasks are quite demanding

memory-wise. In the warehouse environment, the agent is

required to remember for how long each of the items has

been active. In the traffic domain, cars take 32 timesteps to

reappear again in the red box when driving around the big

loop (Fig. 4). Finally, in the Memory S11 the agent must

remember the object it saw in the first room so that it can

choose the right pathway at the end of the corridor.

Figure 5, shows the learning curves of IAM and GRU in

the three environments for various recurrent layer sizes.

The IAM architecture outperforms the GRU baseline on all

Table 1 Average final score on

the Flickering Atari games for

each of the three network

architectures and standard

deviation

FNN (8 frames) LSTM IAM

Breakout 26:57� 1:51 21:32� 0:45 83:10� 5:29

Pong 18:07� 0:06 �20:25� 0:03 20:07� 0:11

Space Invaders 854:93� 11:64 520:44� 9:41 834:66� 21:23

Asteroids 1393:75� 11:28 1424:87� 5:23 2281:63� 63:92

MsPacman 2388:03� 167:03 1081:11� 293:79 2326:04� 31:53

Bold numbers indicate the best results on each environment

3 Videos showing the results of the traffic control experiment can be

found at https://youtube.com/playlist?list=PLbZouP4AED8DMxN

b5oY8syc78-r6GOcDx.
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three environments both in terms of convergence and final

performance. These results are strong evidence that the

parallel feedforward channel in IAM is indeed helping

overcome the convergence difficulties of GRUs (Sect. 4.1).

Moreover, the size of the recurrent layers in IAM can be

brought down to only 16 neurons in the warehouse envi-

ronment and 32 neurons in the traffic and memory S11

environments while still outperforming both the GRU and

the FNN baselines. This, of course, translates into a sig-

nificant reduction in the total number of weights and thus

computational speedups. A full summary of the average

runtime for each architecture, along with a description of

the computing infrastructure used is given in the

‘‘Appendix’’.

5.4 Learning approximate d-sets

As explained in Sect. 4.2, if the optimal d-set is static, like

in the warehouse and traffic environments, we might be

able to learn D̂ by simply restricting the size of the RNN.

The two plots at the top of Fig. 5, show the difference in

performance between manually selecting and learning the

d-set on the warehouse domain.

The problem needs to be treated with a bit more care in

cases where the variables that influence the hidden state

change from one episode to another, as occurs in the

Memory S11 environment. In such situations, just

restricting the size of the RNN is not sufficient since the

weights are static, and hence unable to settle for any par-

ticular subset of observation variables (Sect. 4.2). The plot

at the bottom right of Fig. 5 shows the performance of IAM

with a dynamic d-set selection layer D̂At
on the Memory

S11 environment. As explained in Sect. 4.2, D̂At
is imple-

mented by an attention mechanism. This layer makes the

RNN module in IAM invariant to the location of the object,

which translates into a significant performance gain with

respect to the GRU baseline.

5.5 High dimensional observation spaces

The advantage of IAM over LSTMs (GRUs) and FNNs

becomes even more apparent as the dimensionality of the

problem increases. Table 1 compares the average scores

obtained in Flickering Atari by the FNN and LSTM

baselines with those of IAM.4 Both IAM and LSTM

receive only 1 frame. The sequence length parameter is set

to 8 time steps for the two networks. The FNN model, on

the other hand, receives the last 8 frames as input. The

learning curves are shown in the ‘‘Appendix’’ together with

the results obtained in the original games and the average

runtime.

5.6 Architecture analysis

Decoding the agent’s internal memory

We evaluated if the information stored in the agent’s

internal memory after selecting the d-set and discarding the

rest of the observation variables was sufficient to uncover

hidden state. To do so, we trained a decoder on predicting

the full game screen given the encoded observation xt and

d̂t, using a dataset of images and hidden activations col-

lected after training the policy. The image on the leftmost

of Fig. 6 shows an example of the full game screen, from

which the agent only receives the region delimited by the

red box. The second image from the right shows the pre-

diction made by the decoder. Note that although everything

outside the red box is invisible to the agent, the decoder is

able to make a fair reconstruction of the entire game screen

based on the agent’s internal memory d̂. This implies that

IAM can capture the necessary information and remember

Fig. 6 Example of a full

simulator screen and the

reconstruction made by the

memory decoder (left).

Although everything outside the

red box is invisible to the agent,

the decoder is able to make a

fair reconstruction of the entire

game screen based on the

agent’s internal memory d̂

4 We used LSTM instead of GRU as the baseline for the flickering

Atari games because this was the architecture used by Hausknecht

and Stone [8].
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how many cars left the intersection and when without being

explicitly trained to do so.5

Analysis of the hidden activations:

Finally, we used Canonical Correlation Analysis (CCA)

[10] to measure the correlation between the network hidden

activations when playing Breakout and two important

game features: ball velocity and number of bricks

destroyed. The projections of the hidden activations onto

the space spanned by the canonical variates are depicted in

the two plots on the right of Fig. 6. The scatter plot on the

left shows four distinct clusters of hidden memories d̂t.

Each of these clusters corresponds directly to one of the

four possible directions of the velocity vector. The plot on

the right, shows a clear uptrend. High values of the first

canonical component of xt correspond to frames with many

missing bricks. While the FNN is taking care of the

information that does not need to be memorized (i.e.

number of bricks destroyed) the RNN is focused on

inferring hidden state variables (i.e. ball velocity). More

details about this experiment are given in the ‘‘Appendix’’.

6 Conclusion

The primary goal of this paper was to reconcile neural

network design choices with the problem of partial

observability. We studied the underlying properties of

POMDPs and developed a new memory architecture that

tries to decouple hidden state inference from value esti-

mation. Influence-aware memory (IAM) connects an FNN

and an RNN in parallel. This simple solution allows the

RNN to focus on remembering just the essential pieces of

information. This is not the case in other recurrent archi-

tectures. Gradients in LSTMs and GRUs need to reach a

compromise between two, often competing, goals. On the

one hand, they need to provide good Q estimates and on the

other, they should remove from the internal memory

everything that is irrelevant for future predictions. Our

model enables the designer to select beforehand what

variables the agent should memorize. This is however not

an prerequisite since, as shown in our experiments, we can

force the RNN to find such variables by restricting its

capacity. We also investigated a solution for those prob-

lems in which the variables influencing the hidden state

information differ from one observation to another. Our

results suggest that while standard architectures have sev-

ere convergence difficulties, IAM can even outperform

methods that stack multiple frames to remove partial

observability. Finally, aside from the clear benefits in

learning performance, our analysis of the network hidden

activations suggests that the inductive bias introduced in

our memory architecture enables the agent to choose what

to remember.

Table 2 Hyperparameters used for Warehouse Commissioning

Warehouse

Model FNN GRU IAM

num frames 16 1 1

time horizon 8 8 8

seq length – 16 16

FNN Layer 1 Layer 2 – Layer 2 Layer 1 Layer 2

neurons 256 256 – 256 128 256

RNN None layer 1 layer 1

rec neurons – 256 128

Table 3 Hyperparameters used for Traffic Control

Traffic control

Model FNN LSTM IAM

num frames 32 1 1

seq length – 32 32

time horizon 32 32 32

FNN Layer 1 Layer 2 – Layer 2 Layer 1 Layer 2

neurons 256 128 – 128 128 128

RNN None Layer 1 Layer 1

rec neurons – 256 128

Table 4 Hyperparameters used for Memory S11

Memory S11

Model FNN GRU IAM

num frames 32 1 1

time horizon 32 32 32

seq length – 32 32

FNN Layer 1 Layer 2 – Layer 2 Layer 1 Layer 2

neurons 256 128 – 128 128 128

RNN None Layer 1 Layer 1

rec neurons – 256 128

Attention None None Layer 1

neurons – – 32

num heads – – 1

5 A video of this experiment where we use the decoder to reconstruct

an entire episode can be found at https://youtu.be/aDAjSzFC1bY.

More examples are provided in the ‘‘Appendix’’.
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Appendix A: Implementation details

Warehouse, traffic control, and memory S11 The FNN and

GRU baselines that we used in the warehouse, traffic, and

memory S11 environments, have two hidden layers. Only

the first layer in the GRU baseline is recurrent. This seems

to work much better than the reverse option (i.e. first layer

feedforward and second layer recurrent). Moreover, to

ensure a fair comparison, the size of the first layer in IAM

is set equal to the size of the first layer in the FNN and the

GRU baselines. That is, adding together the number neu-

rons in the FNN and the GRU channels. For instance, if the

first layer of the FNN and the GRU baselines is 640 neu-

rons, a valid configuration for IAM would be 512 feed-

foward and 128 recurrent neurons. Such that the FNN and

the GRU combined also add up to 640. When doing

observation-stacking the FNN baseline is provided the last

8 observations in the warehouse environment, 32 obser-

vations in the traffic environment, and 16 observations in

the memory S11 environment. On the other hand, the

gradients in the recurrent architectures (GRU and IAM) are

backpropagated for 8, 32, and 16 timesteps (sequence

length parameter). We did extensive testing to try to find

the best possible network configuration for each model.

These are reported in Table 2 for the warehouse environ-

ment, Table 3 for the traffic environment, and Table 4 for

the Memory S11 environment. We tried different combi-

nations of f128; 256; 512g and f64; 128; 256g for the size

of the first and second layers respectively. As reported in

Sect. 5.3 (Fig. 3), we also tried with f16; 32; 64; 128; 256g
neurons for the recurrent layers in GRU and IAM.

Flickering Atari As explained in Sect. 4.1, when the

observations are images, instead of feeding them directly

Table 5 Hyperparameters used

for Flickering Atari
Flickering Atari

Model FNN LSTM IAM

num frames 8 1 1

seq length – 8 8

time horizon 128 128 128

CNN Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

filters 32 64 64 32 64 64 32 64 64

kernel size 8 4 3 8 4 3 8 4 3

strides 4 2 1 4 2 1 4 2 1

FNN Layer 1 None Layer 1

neurons 512 – 256

RNN None Layer 1 Layer 1

rec neurons – 512 256

Attention None None Layer 1

neurons – – 256

num heads – – 1

Table 6 PPO hyperparameters
learning rate 2.5e–4

discount c 0.99

GAE k 0.95

memory size 128

batch size 32

num. epoch 3

num. workers 8

entropy b 1.0e–2

clip � 0.1

value coeff. c1 1

Table 7 Runtime performance in milliseconds

Warehouse Traffic Flickering Atari

Evaluation Update Evaluation Update Evaluation Update

FNN (obs-stacking) 1:03� 0:41 81:96� 1:29 0:90� 0:16 63:21� 0:71 3:82� 0:53 215:95� 7:54

LSTM 1:27� 0:27 151:10� 2:98 1:27� 0:12 167:36� 10:41 5:41� 1:13 285:19� 24:60

IAM 1:32� 0:50 82:60� 4:87 1:05� 0:13 144:96� 13:51 3:47� 1:84 163:30� 28:19
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into the FNN or the RNN, we first preprocess them with a

CNN. The FNN and LSTM baselines use the same archi-

tecture reported by Mnih et al. [23] and Hausknecht and

Stone [8] respectively. The IAM maintains the same CNN

configuration, and then connects 128 feedforward and 128

recurrent neurons in parallel so that the total number of

neurons (256) remains the same as in the FNN and LSTM

baselines. Additionally, the attention mechanism, which

computes At for every hot; d̂ti, consists of a single head

with 256 neurons. The FNN baseline receives the last 8

frames as input, whereas LSTM and IAM only receive 1

frame. To update the network, gradients in the recurrent

models are backpropagated for 8 timesteps. The network

configurations used for Flickering Atari, are provided in

Table 5. We used LSTM instead of GRU as the baseline for

the flickering Atari games because this was the architecture

used by Hausknecht and Stone [8].

As for the hyperparameters specific to PPO we used the

same values reported by Schulman et al [33] for all three

models and the three domains. These are shown in Table 6.

B Runtime performance

Table 7 is an empirical analysis of the runtime performance

of the three architectures. The values are the average wall-

clock time in milliseconds of evaluating (forward pass) and

updating (backward pass) the models. The FNN baseline

receives a stack of 8, 32 and 8 observations in the Ware-

house, Traffic Control and Flickering Atari environments,

respectively. On the other hand, gradients in LSTM and

IAM are backpropagated for 8, 32 and 8 timesteps when

updating the networks in each of the three environments.

An evaluation corresponds to a forward pass through the

network. One update involves 3 epochs over a batch of

1024 experiences. The test was run on an Intel Xeon CPU

E5-1620 v2.

C Learning curves

Figure 8 shows the mean episodic reward comparison of

the two baselines FNN and LSTM and the two versions of

IAM, static and dynamic, as a function of training time on

the flickering Atari games. Since we could not run all our

experiments on the same machine, training time is esti-

mated using the values provided in Table 7.

Table 8 Average score per

episode and standard deviation

over the last 200K timesteps

after 50 h of training on the

original (non-flickering) Atari

games

FNN (4 frames) LSTM IAM (static) IAM (dynamic)

Breakout 326:54� 22:21 127:37� 26:13 295:73� 31:40 339:42� 21:96

Pong 20:68� 0:07 �20:26� 0:04 20:73� 0:08 20:74� 0:04

Space Invaders 975:39� 70:06 1177:47� 24:81 1326:63� 53:59 868:23� 37:34

Asteroids 2184:61� 62:83 1618:89� 41:93 2057:21� 109:65 2792:45� 60:40

MsPacman 3859:91� 751:30 667:58� 32:39 4016:78� 273:11 3294:29� 222:64

The scores are also averaged over three trials. Bold numbers indicate the best results on each environment.

Multiple results are highlighted when the differences are not statistically significant

Fig. 7 RNN’s internal

memories d̂ projected onto the

two first canonical components,

colors indicate the direction of

the velocity vector (second from

the right). FNN’s outputs

x projected onto the first

canonical component against

the number of bricks destroyed

(rightmost)
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D Results on the original Atari games

We also tested IAM on the original Atari games. Although

the full game screen is visible at all times, some of the

games contain moving elements whose speed and direction

can not be measured from just a single frame. This means

that the original games are also POMDPs [8]. In DQN [23]

this issue is easily solved by stacking the last 4 frames and

feeding them into the network. Our experiments show

(Table 8), that even when frame-stacking seems to be the

optimal solution, IAM can reach the same or even better

performance of the FNN model while clearly outperform-

ing the LSTM baseline.

E Decoding the agent’s internal memory

The memory decoder consists of a two-layer fully con-

nected FNN which takes as input the RNN’s internal

memory d̂t�1 and the output xt of the FNN (see Fig. 3) and

outputs a prediction for each of the pixels in the screen.

The network is trained on a dataset containing screenshots

and their corresponding network activations (d̂t�1 and xt),

using the pixel-wise cross entropy loss. The dataset is

collected after training the agent’s policy. The images are

first transformed to grey-scale and then normalized to

simplify the task. The results are shown in Fig. 9. The goal

of this experiment was to confirm that although the RNN is

Fig. 8 Average score per episode as a function of training time. Shaded areas show the standard deviation of the mean

Neural Computing and Applications

123



only fed the last two elements of the binary vectors rep-

resenting each lane, it can still uncover hidden state. It is

important to point out that the agent is only trained to

maximize the reward and has no explicit knowledge of the

environment dynamics. A video of this experiment can be

found at https://youtu.be/aDAjSzFC1bY.

F Analysis of the hidden activations

We further analyze the information contained in d̂ when

playing Breakout (non-flickering) by looking at the acti-

vation patterns at different timesteps and their correlation

with the ball velocity. The velocity vector v is computed by

comparing the location of the ball at two subsequent

frames. We use Canonical Correlation Analysis (CCA)

[10] to obtain a lower dimensional representation of d̂. In

broad terms, CCA is a linear transformation that projects

Fig. 9 True state (left) and state

predicted by the memory

decoder (right)
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two sets of variables, in this case d̂ and v, onto two sub-

spaces that are highly correlated. This is done by iteratively

finding linear combinations of d̂ and v, known as canonical

components, that maximize the correlation between them

Fig. 10 Breakout

Fig. 11 Pong
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while being uncorrelated with the previous canonical

components. We found that the first two canonical com-

ponents of d̂ are highly correlated with the two coordinates

of the velocity vector (0:98 and 0:90).

We also show that the FNN’s output x, on the other

hand, contains information that does not need to be

memorized but is relevant for predicting action values. We

applied CCA to compare x with the number of bricks

destroyed at each frame and obtained a correlation coeffi-

cient of 0:96. The projections of the d̂ and x onto the space

spanned by their corresponding cannonical components are

shown in the two scatter plots on the left of Fig. 7 in the

paper.

G Attention maps

Here we include a collection of images which show the

weights that the attention mechanism gives to the different

regions of the game screen based on the agent’s internal

memory d̂t�1 and the current observation ôt. The network

seems to focus on the regions that are important to mem-

orize (Figs. 10, 11).
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