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Optimal Control for Distributed Aeroelastic Morphing Structure
with Uncertainties and Imperfections

Tigran Mkhoyan∗, Xuerui Wang†, Roeland De Breuker‡

Delft University of Technology, Delft, The Netherlands

This research takes a further step towards the development of an autonomous aeroservoelastic
wing concept with distributed flaps. The wing demonstrator, developed within the TU Delft
SmartX project, aims to demonstrate in-flight performance optimization and multi-objective
control using an over-actuated wing design. To address the challenges posed by the aeroelastic
system’s nonlinearities and uncertainties, this paper employs an optimal control method relying
on solving the State-Dependent Riccati Equation (SDRE). Geometrical nonlinearities, introduced
in the form of plunge and torsion stiffness, make the system state-dependent and unsuitable
for linear control methods. Additionally, a backlash model is incorporated to represent the
uncertainty of the actuation system. The control strategy is implemented in a multi-objective
manner to perform maneuver and gust load alleviation while accounting for the nonlinearities
and uncertainties using the SDRE control. Firstly, a numerical sample case is investigated
involving a state-dependent and highly non-linear canard aircraft configuration, to assess the
ability of the SDRE control method. Then, in a numerical experiment, the effectiveness of the
control strategy is evaluated through the nonlinear aeroelastic model. Evaluations are made on
the practicality of the control approach, laying a foundation for future static and dynamic wind
tunnel experiments with the SmartX-Neo demonstrator.

I. Abstract
The advancements in aircraft materials, manufacturing technology, control algorithms, and hardware design allow

the development of increasingly flexible aircraft concepts. Generally, flexibility comes as a side effect of lighter aircraft
design and must be considered adequately. However, a more natural approach is to utilize the flexibility for the benefit
of better performance, much like it is seen in nature with wing morphing for better gliding performance [1, 2]. As in
nature, flexible wing concepts have been evolving since the early years of aviation.

One of the well-documented examples was the active roll control of the Wright Flyer, the first successful heavier-
than-air powered aircraft. In this lightweight design, the lateral stability was ensured by wing twist-warping [3]. This
was possible because the flexible fabric-wrapped structure was well-suited for morphing. As the flight speeds and loads
were increased with the advancement of flight, a stiffer wing was required to fulfil structural requirements and overcome
aeroelastic instabilities. As a result, the considerably more rigid wing design - generally optimized for cruise conditions
- is faced with a compromised performance in other flight conditions. To harness the potential of a flexible wing, two
design choices are possible: active morphing design and conventionally flapped distributed wing designs. Both design
concepts can allow the lift distribution to be tailored actively, potentially reducing this performance loss and improving
aircraft performance across the flight envelope. Furthermore, both design concepts can be distributed and modular (i.e.,
having multiple flaps along the span), mimicking the distributed nature of feathers found in avian biology. However,
such flexible and modular concepts involve complex designs which may come with inherent non-linearities, further
exacerbated by aero-elastic coupling or uncertainties present in actuator systems such as backlash [4, 5].

The control of such flexible wing systems with nonlinearities and uncertainties poses significant challenges. One
approach that has been extensively studied is the use of the State-Dependent Riccati Equation (SDRE) control technique.
SDRE control has been applied successfully to various aeroelastic systems, including aircraft wings. A literature review
reveals several notable applications of SDRE control in addressing system nonlinearities and uncertainty of actuator
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dynamics. For instance, in the work of Bhoir et al. [6], SDRE control was employed to mitigate the adverse effects of
nonlinearities in aeroelastic systems, resulting in improved flutter suppression performance. Additionally, Li et al. [7]
proposed an SDRE-based control approach that effectively handled the uncertainties associated with actuator dynamics
in an aeroelastic airfoil section. Several studies investigated SDRE control for general Another study investigated SDRE
tracking for a hydraulic actuation system subject to nonlinearities, demonstrating general effectiveness to uncertain
actuator dynamics [8]. These studies highlight the effectiveness of SDRE control in addressing the challenges posed by
nonlinearities and uncertainties in aeroelastic systems.

While active morphing benefits aerodynamic efficiency, the morphing mechanism required for smooth shape control
generally needs larger actuation forces and a more complex design. In our previous study, we have demonstrated a
seamless morphing wing concept [9, 10], the SmartX-Alpha, capable of performing objectives such as shape control,
drag minimization, and simultaneous gust and maneuver load alleviation [4]. This design showed a significant advantage
over previous morphing concepts, allowing the lift distribution to be controlled locally by individually adjusting the
camber and twist of each morphing module. However, the relatively high loads on actuators make large-area continuous
morphing surfaces less appropriate in fast control tasks, such as gust load alleviation and flutter suppression. The
SmartX-Neo research aims to address this gap and investigate the potential of discrete morphing with conventionally free
hinged flaps. The benefit is significantly lower actuation forces and a simpler actuation mechanism. This initiated the
development of the SmartX-Neo wing demonstrator concept. This paper describes the design and aeroelastic analysis of
the wing demonstrator. Furthermore, the development and integration of the wing concept are discussed for future static
and dynamic wind-tunnel experiments at the Open Jet Facility (OJF) of Delft University of Technology.

This paper is structured as follows. In Sec. II.A, the aim of the SmartX project and the objectives of the SmartX-Neo
are presented. Section II.B discusses the design methodology of the SmartX-Neo wing and the envisioned aircraft
platform. The aeroservoelastic model and the control design are presented in Sec. III and Sec. III.C. The nonlinear
stiffness and the actuator model are presented in Sec. III.B.1 and III.B.2. Sec. IV presents two numerical experiments.
First, a sample case was investigated in Sections IV.A and V.A to demonstrate the ability of the SDRE control approach
applied to stabilize a non-linear aircraft model. Then, the effectiveness of the control strategy is evaluated on the
non-linear aeroelastic SmartX-Neo model subject to gust disturbance in Sec. V and actuator imperfection. Finally, the
conclusions are presented in Sec. VI.

II. Design Methodology
In the following sections, the design methodology of the SmartX-Neo is presented. In Sec. II.A, the aim of the

SmartX project and the objectives of the SmartX-Neo are presented. Section II.B discusses the wing and aircraft
planform design. Section II.C discussed briefly the manufacturing philosophy of the hardware demonstrator and
integration of sensors and actuation systems.

A. SmartX Philosophy
In the SmartX project, the aim is to achieve in-flight performance optimization through the integration of control,

sensing, and morphing design. The project focuses on several objectives, including drag optimization, load alleviation,
flutter suppression, and shape control [4]. The initial development within the project resulted in the SmartX-Alpha, a
smart morphing wing capable of continuous active morphing with distributed Translation Induced Camber (TRIC) for
local control of lift distribution and optimal lift-to-drag ratio [11]. However, the actuation bandwidth limitations of the
morphing concept hindered faster objectives such as flutter suppression. To address this gap, the SmartX-Neo concept
was developed, featuring discrete morphing with conventionally hinged flaps and a simpler actuation mechanism. The
SmartX-Neo aims to investigate the benefits of discrete morphing, conventionally hinged flaps, over-actuated wing
concepts, and actuation speed on control objectives. By comparing discrete morphing with smooth morphing, assessing
the advantages of conventionally hinged flaps, and exploring advanced control methods with over-actuated wings, the
SmartX-Neo project aims to advance the understanding of aeroelastic control and actuation system design. Figure 1
illustrates a comparison of the objectives between the SmartX-Alpha and the SmartX-Neo.

B. Planform Design and Analysis
The wing design of the SmartX-Neo was evaluated using an aerodynamic model built with XFLR5 [12] and a Finite

Element Model (FEM) constructed using ABAQUS [13] to represent the wing’s structure. The planform design aimed
to investigate the benefits of advanced control methods for over-actuated aeroelastic wings and integration into an
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Drag minimisation

Load Alleviation

SmartX Objectives

Shape control

Aeroelastic
control

Smooth controlSmooth control

SmartX-Alpha SmartX-Neo

Fast control

Lift Distribution

Tip deflection and
twist

Fig. 1 Comparison of the objectives of the SmartX-Alpha and SmartX-Neo.

autonomous glider platform. The wing profile NACA0015 was selected for a good trade-off between aerodynamic
performance and required structural components and instrumentation volume. The wing’s span was set at 1.7 m
considering manufacturing constraints. Preliminary design and assessment of the suitable flight platform and glider
configuration were conducted, including the elevator and vertical stabilizer. The elevator and vertical stabilizer were
sized relative to the main wing, ensuring a balanced design. Steady-state stability analysis was performed to determine
the relative placement of the wings and the body, resulting in the determination of the center of gravity (COG) and
neutral point. Additional details of the planform design and parameters can be found in Appendix A and Table 1.

(a) Aerodynamic analysis for conditions 𝛼 = 4◦ and 𝛼 = 1◦, at
𝑉∞ = 35 m/s.

(b) Lift slope 𝐶𝐿𝛼𝑤
distribution main wing used in the

aeroservoelastic model, 𝑉∞ = 35 m/s, 𝛼 = 4◦.

Fig. 2 Aerodynamic analysis and wing lift distribution.

To assess the aerodynamic load on the wing structure and evaluate the lift generated by the flaps, an aerodynamic
model was built using XFLR5. This model employed the Vortex Lattice Method (VLM) and the 3D panel method
based on XFOIL [12, 14]. The analysis was performed at a cruise condition of 𝑉∞ = 35 m/s and 𝛼 = 4◦. The resulting
lift distribution along the wing span and torque on the flap hinge were obtained from the aerodynamic analysis. The
wing’s aerodynamic mesh consisted of 2600 VLM panels and, 5225 3D panels. The analysis included a type 1 (fixed
speed) viscous analysis with a specified viscosity. Figure 2 presents the aerodynamic analysis results, showcasing the
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lift distribution along the span and the streamlines at different angles of attack.
Overall, the design methodology of the SmartX-Neo was focused on the integration of control, sensing, and morphing

design to achieve in-flight performance optimization. The wing’s planform design, based on preliminary assessments
and evaluations, aims to explore advanced control methods for over-actuated aeroelastic wings. Aerodynamic analysis
using XFLR5 provides insights into the wing’s performance and lift distribution, contributing to the design process.

C. Manufacturing philosophy

servo mount reinforcing
ribs

pressure
tapsflap seal

flap 10

servo bay

(a) Flap close-up view.

linkage rod servo hornpickup
skin

(b) Flap side view.

Fig. 3 Overview of the actuation mechanism.

The manufacturing philosophy of the SmartX-Neo project involved the construction of a composite wing demonstrator
with a wing-box structure and an integrated actuation mechanism. The manufacturing process consisted of multiple
steps and the assembly and integration of various components.

curingjoiningassembly

cutout

servo components

servo assembly curing stepwiring3D prints

cutoutepoxyclampA B C D

Fig. 4 Assembly integration process.

The composite wing design was divided into four parts: the top skin, bottom skin, wing box structure, and distributed
flap modules. A mold was created using Polyurethane based SikaBlock with a density of 650 kg/m3. The wing skins
were manufactured using three layers of 160 g/m2 carbon fiber and an additional layer of 40 g/m2 fiberglass for a smooth
surface finish. The skins were cured using the hand layup technique and vacuum bagged in the top and bottom molds.
The spars, made of two layers of 160 g/m2 carbon fiber, were cured separately and then assembled into the main wing
structure. Foam-reinforced Kevlar material and Herex foam strips were used to enhance stiffness. The integration
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process focused on assembling the various components of the wing. The actuation mechanism, designed to be fully
integrated inside the wing, was assembled after joining the top and bottom parts of the wing. 3D-printed parts made of
polylactic acid (PLA) were used in the assembly process. A supporting rib structure was added near the cutouts to resist
buckling.

Sensor and module integration were also key aspects of the manufacturing process. Strain gauges, fiber optics sensors,
and pressure taps were installed at various locations on the wing to measure strain, twist, and pressure distribution. The
tubing for pressure measurement was guided through the wing root and D-box area. Additionally, flexible feather-like
patches were integrated between the modules to improve the smoothness and aerodynamic properties of the flaps.
The control architecture of the glider platform, responsible for the controller and sensor data processing, followed a
distributed data-sharing approach based on decentralized communication principles. This architecture facilitated the
integration of over-actuated wing systems and a multitude of sensors. It allowed for parallel integration of hardware and
software components in various programming languages and communication protocols, enabling real-time operation.

III. Aeroservoelastic Model
An aeroservoelastic model is developed in Matlab/Simulink to access actuator requirements concerning the expected

dynamic response of the wing demonstrator and develop a controller capable of fulfilling the objectives of the
SmartX-Neo. The model is adapted from [15] and represents a coupled unsteady aeroservoelastic model, trimmed at an
air density 𝜌air = 1.225 kg/m3 and free stream velocity 𝑉∞ = 35 m/s. It is composed of ten aerodynamic strips placed at
equal distances, and the span corresponds to the number of flaps.

A. Model structure
To study the behavior of the aeroelastic wing, the wing structure is modeled as a linear Euler-Bernoulli beam.

Each actuator (flap) is modeled as a second-order mass-spring-damping system, with a hinge moment control input
𝑀act

𝑓
. The clamped beam-flap model has four degrees of freedom at each node, represented by the state vector

x𝑠 =
[
𝑤 𝜙 𝜃 𝛽

]T
. Where, 𝑤, 𝜙, 𝜃, represent the transverse displacement (↓ +), bending (⟲ +), torsion (⟲ +) and

𝛽 is the flap rotation angle (⟳ +). The dynamics for the clamped beam are given by:

M𝑠 ¥x𝑠 + C𝑠 ¤x𝑠 + K𝑠xs =
[
Fr Fext

]
(1)

Where M𝑠 ,C𝑠 ,K𝑠 and structural mass damping and stiffness matrices, respectively. On the right-hand side, Fr and Fext
are the wing root reaction forces and the distributed external forces. The wing root reaction forces are, the shear force,

the root bending moment, and the torsion moment contained in vector Fr =
[
𝐹𝑤 𝑀𝜙 𝑀𝜃

]T
. Structural damping is

added proportionally to the stiffness matrix, though C𝑠 = 𝑘𝑠K𝑠 , where C𝑠 is the damping matrix and 𝑘𝑠 a scaling factor.
In Eq. (1) beam structural mass and stiffness matrices M𝑠 and K𝑠 are augmented to include the effect of the flap,

yielding Maug
𝑠 and Kaug

𝑠 , as follows:

Maug
𝑠 =


 M𝑠


𝑆𝛽

0
𝐼𝛽 + 𝑏(𝑐 − 𝑎)𝑆𝛽

𝑆𝛽 0 𝐼𝛽 + 𝑏(𝑐 − 𝑎)𝑆𝛽 𝐼𝛽


, Kaug

𝑠 =


 K𝑠


0
0
0

0 0 0 𝐾𝛽


(2)

In Eq. (2), the flap angle state 𝛽 is coupled with the main beam structure through inertia couplings and a rotational
spring, serving as actuator stiffness. The measurable outputs are the shear force, the root bending moment, and the node
displacements in the heave direction 𝑤. In total, ten nodes are movable; the first node denotes as 0th, is the reference
node at the root (clamped). The remaining nodes are labeled 1-10th and correspond to the center location of each flap as
shown in Fig. 5.

In total, ten nodes are movable; the first node denoted as 0th, is the reference node at the root (clamped). The
remaining nodes are labeled 1-10th and correspond to the center location of each flap as shown in Fig. 5.
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1. Aerodynamics
Because of the high aspect ratio of the wing, the two-dimensional strip theory was adopted where the unsteady

aerodynamic forces on each strip are represented in a time-domain formulation, equivalent to Theodorsen’s frequency-
domain model [16]. The time-domain formulation used in this study is the indicial function approximation by
Leishman [17].

Referring to Ref. [17] four lag states are introduced for each aerodynamic strip to model the circulatory part
of the aerodynamic response. Similar to the structural part, the aerodynamic state vector is represented by x𝑎 =[
𝑤 𝜙 𝜃 𝛽 𝑧𝑖

]T
. Where the latter entry is the lag states. The aerodynamic force vector, F𝑎, is defined as:

F𝑎 = M𝑎 ¥x𝑎 + C𝑎 ¤x𝑎 + K𝑎x𝑠 + K𝑧𝑧𝑖 (3)

2. Couplings
The coupling of the structural and the aerodynamic models is described in [15]. The full aeroservoelastic model

contains the following states:

x𝑎𝑒 =
[
¤x𝑠 x𝑠 𝑧1 𝑧2 𝑧3 𝑧4

]T
(4)

where x𝑠 is the structural state vector, representing the nodal degrees-of-freedom for each of the 11 nodes;
𝑧1, 𝑧2, 𝑧3, 𝑧4 are the aerodynamic lag states.

An overview of the coordinate system, nodes, and axis definitions of the aeroelastic system is presented in Fig. 5.
Here 𝑂𝑤 represents the right-wing frame.

yw

MφMθ

zw

Fw
xw

wt

Ow
10 nodeth

0 nodeth

Ow

Fig. 5 Reference frames, axis definitions, and degrees of freedom of the aeroelastic system (the right wing).

3. Gust model
Initial assessment of the dynamic response is performed with a simplified gust model, a “1-cosine” gust profile,

assumed to be uniform across the span and represented as an increment in 𝛼:

𝛼𝑔 (𝑡) = 𝑊𝑔

(
1 − cos

(
𝜔𝑔𝑡

) )
(5)

where𝑊𝑔 is the gust magnitude, and 𝜔𝑔 is the gust frequency in radians, calculated as 𝜔𝑔 = 2𝜋 𝑓𝑔. Here, 𝑓𝑔 is the gust
frequency in Hz. For this study, gust is assumed to be uniform along wing span.

B. System non-linearities

1. Geometric non-linearities
In the definition of the structural matrices, non-linearity is assumed in the torsional (pitch) and transverse displacement

(plunge) of the structural stiffness parameters. Various models are adopted in literature, one of the common approaches
describing polynomial nonlinearity of stiffness parameters [18]:
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K𝑤 (𝑤) = (𝑐1)︸︷︷︸
K𝑤1

+ (𝑐1𝑐2𝑤)︸   ︷︷   ︸
K𝑤𝑛𝑙

(6)

Here the plunge stiffness is a function of the transverse displacement with linear and non-linear parts, 𝐾𝑤1 and 𝐾𝑤𝑛𝑙
,

respectively. The transverse displacement is a function of time.
The nonlinearity in the torsional stiffness parameter is described as a quartic polynomial:

K𝜃 (𝜃) = (𝑐3)︸︷︷︸
K𝜃1

− (𝑐3𝑐4𝜃 + 𝑐3𝑐5𝜃
2 + 𝑐3𝑐6𝜃

3 + 𝑐3𝑐7𝜃
4)︸                                         ︷︷                                         ︸

K𝜃𝑛𝑙

(7)

Here, similarly, the torsional stiffness K𝜃 (𝜃) is state dependent in 𝜃 and consists of a linear and non-linear part, 𝐾𝜃1 and
K𝜃𝑛𝑙 , respectively.

Before the assembly into the state-space form the structural stiffness, K𝑠 lumped in Eq. 2 is considered to consist of
linear and non-linear parts described in Equations 6 and 7 as follows:

K𝑠 (𝑤, 𝜃) = K𝑠1 {K𝑤1 ,K𝜙1 ,K𝜃1 ,K𝛽1 }︸                           ︷︷                           ︸
linear, augmented eq. (2)

+K𝑠𝑛𝑙 (K𝑤 (𝑤),K𝜃 (𝜃))︸                      ︷︷                      ︸
non-linear, eq. (6), and (7)

(8)

The non-linear parts of the stiffness matrices, can be solved by discretizing and recomputing the model in a linear
form at specific time intervals. The resulting combined stiffness is assembled into a state-space form using Eq. (1).

2. Actuator dynamics and uncertainties
Manufacturing imperfections not only introduce uncertainties about the structural characteristics of a wing design,

but only uncertainties related to functional structures such as the actuation system. In particular, when the system is
complex and modular, each actuator may be characterized by a different degree of uncertainty and non-linearity. In the
general definition of the non-linear aeroelastic system in Eq.12 the actuator uncertainty can be linked to the input 𝑢, the
control effectiveness matrix B and flap stiffness K𝛽 . Typically, the actuator dynamics can be modeled by a second-order
system, which is analogous to a mass-spring-damping system. To parametrically adjust the damping and stiffness
parameters, a parameter 𝑘 is chosen, with the following relationship:

K𝛽 = K 𝑓 𝑘
2, C𝛽 = C 𝑓 𝑘 (9)

Here the matrices K 𝑓 and C 𝑓 represent the actuator stiffness and damping matrices. The quadratic relationship in
Eq. (9) ensures that the natural frequency of the actuator dynamics is scaled proportionally, while the damping ratio is
kept invariant[19].

It is not trivial to fully characterize actuator uncertainties in complex systems, however, a widely adopted first-order
approach in the aeroelasticity domain is a free-play model which described a dead-band between commanded and actual
actuator input [20]:

𝜏 = 𝑓 (𝑡, 𝑢) =


𝑘1 (𝑢 − 𝑢 𝑓− ), if 𝑢 < 𝑢 𝑓−

𝑘2 (𝑢 − 𝑢 𝑓+ ), if 𝑢 > 𝑢 𝑓+

0, otherwise
(10)

Here 𝑘1 and 𝑘2 are positive scalar values representing linear slopes and 𝑢 𝑓+ describe the free-play dead-band. In a
more challenging scenario, the input 𝑢 produced by the actuator is not only defined by the commanded input, 𝑢𝑐 but also
its velocity ¤𝑢𝑐 [21, 22]:

¤𝜏 = 𝑓 (𝜏, 𝑢, ¤𝑢)


𝑘1 ¤𝑢, if ¤𝑢 < 0 and 𝜏 = 𝑘1 (𝑢 − 𝑢 𝑓− )
𝑘2 ¤𝑢, if ¤𝑢 > 0 and 𝜏 = 𝑘2 (𝑢 − 𝑢 𝑓+ )
0, otherwise

(11)

7

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

5,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
08

32
 



uc

u

(a) Free-play deadband.

uc

u

(b) Backlash non-linearity.

Fig. 6 Illustration of actuator uncertainties described by free-play and backlash phenomena.

Such phenomenon, characterizing dependency on the time history of the commanded signal, known as a backlash,
was investigated previously for the SmartX-Alpha demonstrator [4, 5]. The two types of actuator uncertainties are
depicted in Fig. 6 [4, 5].

As with the geometric-nonlinearity described in Sec. III.B.1, the actuator uncertainty related to the input 𝑢 is
computed in a discrete-time simulation.

C. Control design
To stabilize the non-linear dynamics of the aeroservoelastic wing model, the system is controlled by SDRE optimal

control method. The objective of the SDRE controller is to stabilize the system as optimally as possible concerning
the objective function 𝐽 and bring the initial states back to equilibrium when a state-dependent system is subject to
disturbance or an initial input. The SDRE must do so while the model changes due to previous states, previous input,
and time. The general state-dependent dynamics of the aeroelastic model can be described as follows:

¤x = (A + x𝑤A𝑛𝑙)x︸           ︷︷           ︸
A𝑛

+ (B + B𝑛𝑙)u︸       ︷︷       ︸
B𝑛

+B𝑔𝛼𝑔 (12)

y = Cx + Du (13)

Where A,B,B𝑔,C,D are the system dynamic matrices, u is the input vector with the flap angles, x𝑤 the state vector
describing the nodal displacements (heave), A𝑛𝑙 and B𝑛𝑙 are the state-dependent portion of the dynamics, and 𝛼𝑔 is the
gust angle of attack input defined in Eq. (5) and added to the system as a disturbance.

In the described dynamics is assumed that the non-linearity arises from: (i) geometric non-linearities in structural
stiffness and damping induced by imperfections and uncertainties in the structural system (ii) actuator non-linearities
induced by backlash and uncertainties of the actuation system as discussed in Sec. III.B.

More specifically the geometric non-linearity, represented by the structural stiffness K𝑠𝑛𝑙 is tied to A𝑛𝑙 and the actuator
non-linearity is tied to the control effectiveness matrix B𝑛𝑙 . In a discrete simulation scenario, these non-linearities
discussed, are (pre) computed and assembled into the state-space form (Eq.12) using the couplings described in
Equations (1) and (2). It is noteworthy to mention that the combined damping matrix augmented to the actuator
dynamics is tied to the combined stiffness matrix quadratically as assumed in the definition given by Eq. 9.

For a discrete simulation scenario, to solve and feedback the time-varying system matrices at discrete time steps, the
system is modeled in single integrator form.

The gain matrix is obtained to minimize the objectives of interest, namely: the wing root shear force 𝐹𝑤 , the wing
root bending moment 𝑀𝜙, and the wing tip displacement 𝑤𝑡 . The state feedback law minimizes the quadratic cost
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function, which for SDRE is defined in its simplest form as:

𝐽 (x0, 𝑢) =
1
2

∫ ∞

0

(
x𝑇Qx + u2Ru

)
d𝑡 (14)

Here, the weight matrices Q and R are positive definite matrices that penalize the cost of deviation of the states from
zero and the cost of actuation, respectively.

In this particular type of control design, Q is often chosen as CTC and R matrix is often chosen as identity matrix
I𝑛, with 𝑛 = 10. Hence, the second part of the equation can be simplified to 𝑢2 instead of 𝑢𝑇𝑅𝑢.

The SDRE gain is calculated by solving the following Riccati equation [23]:

P𝑡+1An(x)t + An(x)tP𝑡+1 − P𝑡+1Bn(x, u)𝑡R−1Bn(x, u)𝑇𝑡 P𝑡+1 = 0 (15)

The above equation is a minimization problem, centered on finding the state feedback gain matrix, K = R−1BTS,
required to calculate the stabilizing input to the system at each time step:

u𝑡+1 = −K(x,An,Bn, 𝑡)𝑡+1 · x (16)

For SDRE this is evaluated as:

u𝑡+1 = −R−1Bn𝑡P𝑡+1x𝑡 (17)

Note that the control effectiveness and the state vector are taken from the previous time step. In a practical
implementation using a Simulink model, this can be achieved by a memory block. The equations 17 and 15 are evaluated
at each time step. As seen, the gain K(x,An,Bn, 𝑡)𝑡+1 needed to compute the stabilizing input, u = −K ∗ x, is a function
time-varying and state-dependent system matrices x𝑡 ,An(x)𝑡 ,Bn(x)𝑡 and state vector x𝑡 .

The yielding closed-loop system dynamics are:

¤x = Ax + Bu + B𝑔𝛼𝑔 = (A − BK)︸      ︷︷      ︸
Aclp

x + B𝑔𝛼𝑔 (18)

It is noteworthy that the gust is unknown to the controller. The SDRE assumes that full-state feedback is available.
In a real-life system, when full-state feedback is not available the states can be estimated using Kalman filters and sensor
fusion(e.g., from cameras, gyros).

IV. Numerical Experiments
To assess the capabilities of the SDRE control approach, and its suitability for application to a state dependent

aeroservoelastic systems, two numerical experiments have been set up. The first experiment describes the stabilization
for a state dependent sample model using a highly non-linear canard-type aircraft configuration. The second experiment
discusses the impact of non-linearities in the actuator dynamics to gust load alleviation of a non-linear aeroservoelastic
SmartX-Neo model.

A. Sample model
The non-linear aircraft model investigated is a highly maneuverable aircraft designed by Garrard et al. [24]. The

state vector 𝑥 contains, the deviation of velocity from the trim condition (units 100m/s), the deviation of angle of attack
from the trim condition (rad), the pitch rate (rad/s), the flight path angle (rad), and the deviation of canard control flap.
The input to the system is the flap angle of the canard in radians.

x(𝑡) =
[
Δ𝑉 Δ𝛼 ¤𝑝 ¤𝛾 Δ𝛿canardmeas

]
(19)

The parameters of the systems matrices at time step 0 in (level flight) are listed in Appendix B.
In the above equation, the system is represented as quadratically nonlinear in state variables, also a non-linear

quadratic coupling is added to the control effectiveness B𝑛 as explained in [24]. The nonlinearity is assumed to be affine
in control hence a non-linear state space, A𝑛,B𝑛 can be obtained from the following summation of state matrices:
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¤x(𝑡) = (A0 + 𝑥2A𝑛𝑙)x︸            ︷︷            ︸
A𝑛

+ (B1 + 𝑢B2)𝑢︸         ︷︷         ︸
B𝑛

(20)

The instability of the system is shown in 8b. It arises from both the instability in 𝐴0 and the non-linear coupling of
the angle of attack. The system can become highly unstable due to coupling the quadratic non-linear coupling of the
control effectiveness matrix 𝐵 with the input.

B. Aeroservoelastic model and simulation set-up
To conduct the simulation experiment, a state-space aeroelastic dynamic model was established as described in

Sec III.C. The scope of the simulation was limited to testing the hypotheses presented in IV.C. Two scenarios, where the
actuator dynamic were impacted by (i) free-play and (ii) backlash, and the impact on the GLA performance was studied
in both scenarios.

Therefore, the model was simplified by assuming no geometric non-linearity, A𝑛𝑙 in the system. Since the free-play
and backlash non-linearity, described in equations 10 and 11 in Sec. III.B.2, cannot be directly added through a linear
B𝑛𝑙 matrix, the model was modified as follows:

¤x = Ax + B𝑔𝛼𝑔 + B 𝑓 𝑓 (u𝑐) (21)
y = Cx + Du (22)

Where the system matrices are as defined in Sec III.C, u𝑐 is the commanded flap signal, and actual flap input
signal u is obtained by adopting either the free-play (u𝑐 = 𝑓 (𝑡, u𝑐)) or backlash (u𝑐 = 𝑓 (𝑡, u𝑐, ¤u𝑐)) models described in
Sec. III.B.2.

The non-linearities in this case did not arise from the state dependency of the system as with the sample model,
rather from uncertainty added to the actuator dynamics. This uncertainty was assumed to be unknown to the controller.
The close loop control was designed to minimize the, the shear force 𝐹𝑤 , root bending moment 𝑀𝜙 , wing torsion 𝑀𝜃

and the tip displacement 𝑤𝑡 . The, Q is chosen as CTC, while R is chosen as an identity matrix I𝑛, with 𝑛 = 10. As with
a previous study using LQR, it was assumed that the gust signal was an unknown disturbance and the full state feedback
is available [7].

Each scenario was simulated for the duration of 1.2 seconds, where a variable sampling time was adopted in Simulink
with a relative tolerance of 1𝑒 − 5 and maximum step-size of 0.04.

C. Hypotheses
In this study, the analysis shall focus on studying the effect of systems imperfection towards Gust Load Alleviation

(GLA) performance. More precisely, two types of actuator uncertainty shall be introduced to make the system imperfect,
free-play and backlash. Considering the assumption and constraints made in the preceding section, the following two
hypotheses are formulated:

1) the first hypothesis is that actuator uncertainty will reduce gust load alleviation performance;
2) the second hypothesis is that actuator uncertainty will have a destabilizing effect on the system;

V. Results and Discussions
In this section, the analysis of the design and the results of the simulation experiment with the state dependent sample

model and the aeroservoelastic models, defined in Sections IV.A and IV.B shall be discussed. Firstly, the performance
of the SDRE controller is discussed for the state dependent sample model defined in Sec. V.A. Secondly, the impact
of actuator non-linearities and uncertainties are discussed in Sec. V.B on the load alleviation performance using the
free-play and the backlash model presented in Sec. III.B.2. Lastly, the impact of damping and stiffness variation of the
actuator dynamics combined with uncertainty is discussed in Sec. V.B.3.

A. Results sample model
The SDRE controller is designed according to the methodology and the objective function described in Sec. III.C,

while the objective aims to minimize the deviation from an initial state and reduce the actuation effort.
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Fig. 7 Overview Simulink model.

In the context of the non-linear system, the task of the controller in the sample case is to stabilize all states of the
non-linear system, x(𝑡), while a large angle of attack input (e.g. due to gust) of 25 degree (25 · (𝜋/180) rad as 𝑥20)
causes the system to perturb from the trim state. The choice of the 𝑄 and 𝑅 matrices are given in the appendix.

To solve the system at each time step and recalculate the stabilizing feedback on the time-varying system matrices,
the system is modeled in single integrator form. This is seen in the main system block, Fig. 7. The system is modeled in
Simulink and simulated for 10 seconds.

Figures 8b and 8a, and 9 and 9a show the SDRE-stabilized versus open-loop system response. The stabilization is
achieved by reevaluating the control input u = −K ∗ x at discrete time intervals. The gain K(x,An,Bn, 𝑡)𝑡+1, calculated
for the next time step, is a function time-varying and state-dependent system matrices x𝑡 ,An(x)𝑡 ,Bn(x)𝑡 and state
vector x𝑡 .

0 1 2 3 4 5 6 7 8 9 10

-0.02

0

0.02

0.04

0.06

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0 1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

(a) Response of controlled stable system.
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(b) Response of open-loop unstable stable system.

Fig. 8 SDRE stabilized system. It’s seen how the response is stabilized and the coefficients of the system matrices
settle.

The Figure sequence in 10 shows snapshots of system poles and zeros at discrete intervals between 0-10 seconds.
As seen, the poles travel towards the RS (Right-Hand side) indicating higher instability in the dominant pole related to
the angle of attack coupling with flap input. Furthermore, the state vector becomes unstable as shown in Fig. 8b. The
stable system on the other hand (A𝑛 − B𝑛 · K𝑆𝐷𝑅𝐸 (x, 𝑡)) stabilizes the system by the computed SDRE feedback gain
K𝑆𝐷𝑅𝐸 and return to initial equilibrium. The latter is indicated by the travel of the poles towards LH (Left-Hand side)
and the stabilized time traces shown in Fig. 8a.
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(a) Variation of model coefficients with time (stable)
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(b) Variation of model coefficients with time (unstable)

Fig. 9 Change of model coefficients of table (left) and unstable (right) system. The B does not change in the
open loop system since the input is 𝑢 = 0.
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Fig. 10 Comparison of change in eigenvalues for unstable and stable systems with SDRE gain feedback. As the
input grows, the open loop system becomes more unstable, and the dominant unstable related to alpha shifts
towards RS, while the stable system towards the LS.
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B. Impact of actuator uncertainties
The actuator uncertainties can have a significant performance on load alleviation effectiveness and for some systems

in most adverse cases lead to instabilities. A visual representation of both free-play and backlash was presented
described in Sec III.B.2, Figures 11a and 11b were simulated with a sinusoidal tracking signal. The time trace shown
in Figures 11a shows the commanded compared to output flap signal when filtered through both types of uncertainty
models. As seen, the free-play model shown in the left figure mainly results in lead-lag effect for a commanded signal
of 10 degree of flap deflection (blue dotted line). The dead-band parameters for the simulation are 1, 3, 5 degrees,
respectively. Backlash, shown in the right figure, is characterized by a lag effect and flattening of the commanded peak
deflection. The latter is a more complex phenomenon, as the output depends on both the magnitude and the rate of the
commanded angle 𝑢𝑐. In the latter simulation, the dead-band angle parameters for the backlash model are similarly
1, 3, 5 degrees.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-10

-8

-6

-4

-2

0

2

4

6

8

10

(a) Free-play dead-band response.
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(b) Backlash non-linearity.

Fig. 11 Illustration of actuator response subject to free-play and backlash uncertainty.

In the following sections, the impact of free-play and backlash was evaluated on the aeroelastic wing model described
in Sec III and closed loop control design described in Sec III.C.

1. Free-play
The impact of free-play on the model was studies with varying levels of severity expressed in degrees of dead-band,

namely 1, 3, 5 and 7 degrees. Figure 12 shows the closed loop response to free-play for the root bending moment
𝑀𝜙, wing torsion 𝑀𝜃 and the tip displacement 𝑤𝑡 . The color indicates varying degrees of free-play introduced to
the system as an input signal 𝑢. The blue line corresponds to no-free play; the green line, to free-play of 7 degrees.
Going from left to right, it is apparent that increasing severity of free-play results in less effective load alleviation. For
reference, the open-loop response is shown in App. Appendix C in Fig. 21 with the addition of the shear force 𝐹𝑤 .
While open-loop performance is worse by a significant degree, nevertheless it is evident that actuation originating from
a phenomenon such as free-play will significantly impact the performance of the controller. Moreover, observing the
torsion response in the rightmost figure for free-play of higher degrees, it can be assumed that higher levels of free-play
are likely to destabilize the system more. This is seen by the oscillatory response of the wing torsion towards the end of
the simulation (green curve). It is likely that more complex phenomena such as backlash can be more destabilizing, as is
discussed in Sec. V.B.2.

A closer look at the destabilizing effect is given in Figures 13a and 13b showing the wing bending and torsion, and
the actuator inputs respectively. In Fig. 13b the actuator inputs of the most outboard actuator are shown in terms of
the commanded signal 𝑢𝑐, originating from the controller and the resulting input signal 𝑢 𝑓 after free-play of varying
degrees. As seen the, the transient free-play signal 𝑢 𝑓 introduced to the system is showing increasingly higher peaks
at higher dead-band degrees before settling to bounded oscillations towards the end of the gust onset. The collective
actuation command for 5 degree of free-play for all actuators is shown in Fig. 18a. These findings agree with the
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Fig. 12 Closed-loop response comparisons with free-play.

hypotheses stated earlier that the actuator uncertainties are likely to have a destabilizing effect and a reduction in load
alleviation performance.
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(a) Destabilization of the closed-loop response.
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(b) Comparison of actuator commands.

Fig. 13 Comparison responses to various degrees of free-play.

2. Backlash
Similar to the free-play, the impact of backlash was studies with varying levels of severity expressed in degrees of

dead-band, namely 1, 3, 5 and 7 degrees. The closed loop response to backlash is shown in Fig. 14, for the root bending
moment 𝑀𝜙 , wing torsion 𝑀𝜃 and the tip displacement 𝑤𝑡 . The open-loop response can be found in App. Appendix C
Fig. 22 with the addition of the shear force 𝐹𝑤 . Demonstrated in Fig. 14 across varying severities, backlash does not

14

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

5,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
08

32
 



particularly manifest in reduced load alleviation performance, but rather adds significant destabilization of the wing
torsion moment. The wing bending moment response shown in the right most figure exhibits an oscillatory signature of
up to 10 𝑁𝑚 across varying severity levels.
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Fig. 14 Closed-loop response comparisons with backlash.

The destabilization becomes more apparent on the zoomed transient response shown in Figures 15a and 15b, where
high frequency oscillation are observed in the wing torsion at the onset of the gust disturbance. From the actuation input
shown in Fig. 15b the destabilizing effect can be seen to originate from the actuation input. Overall it is apparent that for
this system, wing torsion is more sensitive to actuation input and in particular will be impacted by the higher degree of
uncertainty for either backlash or free-play shown in Figures 13b and 15b.
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(a) Destabilization of the closed-loop response.
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(b) Comparison of actuator commands.

Fig. 15 Comparison responses to various degrees of backlash.
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3. Impact of actuator damping and stiffness combined with uncertainty
In a previous study, the effect of damping and stiffness variation of the actuator dynamics of the aeroservoelastic

model were studied [19]. The study demonstrated that as the bandwidth of the actuator is increased (𝑘 < 1), the
controller was able to react more effectively to the gust disturbance and exhibited better performance. However, no
actuator uncertainty was assumed for the latter study. It is noteworthy to understand how the higher bandwidth system
would fare with free-play or backlash present.
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Fig. 16 Closed-loop response comparisons with free-play and actuator scaling parameter 𝑘 = 0.5.
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(a) Destabilization of the closed-loop response.
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(b) Comparison of actuator commands.

Fig. 17 Comparison responses to various degrees of free-play and actuator scaling parameter 𝑘 = 0.5.

To evaluate the impact of the actuator uncertainty, the scaling parameter, as described in Sec. III.B.2 was set to
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𝑘 = 0.5 and the altered model was re-run with the previous settings for free-play and backlash. It is clear from the closed
loop response shown in Figures. 16 and 17a that relaxing the scaling parameter has a destabilizing effect when combined
with free-play. This is particularly evident when comparing the oscillation towards the edges with the relatively smooth
response of the shear force, Fig. 12 for the nominal system (𝑘 = 1). From Fig. 17b it is clear that the source of the
destabilization lies in a more disturbed feedback signal compared to Fig. 13b. Furthermore, it is observed that a higher
degree of free-play causes an increasingly larger deviation of the actuation command from the perfect system (red dotted
line).
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(a) Actuator commands for 𝑘 = 1.
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(b) Actuator commands for 𝑘 = 0.5.

Fig. 18 Collective actuator commands due to free-play of 5 degrees for varying scaling.

While for backlash the lower scaling has not significantly altered the transient behavior of the close loop response
(App. Appendix C in Fig. 25), a larger band of uncertainty is observed in the actuator input in Fig. 17b compared to
Fig. 13b. Collectively, these findings agree with the hypothesis stated earlier that the actuator uncertainties are likely to
have a destabilizing effect.
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Fig. 19 Comparison responses to various degrees of backlash and actuator scaling parameter 𝑘 = 0.5.
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VI. Conclusion and Recommendation
The ability of SDRE to stabilize a highly non-linear system was demonstrated by running a test case example

of the aircraft configuration. The design of the SDRE objective was then discussed, tailored to a multi-objective
stabilization and gust load alleviation problem of an uncertain non-linear aeroelastic system subject to gust disturbance.
In particular, the effect of dynamics and uncertainties were studies in this paper by means of non-linearities introduces
in the system through free-play and backlash. The general observation were that higher severity of the free-play and
backlash dead-band resulted in lower effectiveness in load alleviation performance in addition to destabilization of the
with closed loop control performance. In particular, while free-play led to lower load alleviation performance, backlash
led to larger destabilization effect across the wing torsion for this system. The main observation is that the wing torsion,
generally operating at higher frequencies, is more likely to be destabilized by higher-frequency oscillation resulting
from actuation imperfections. Finally, the variation of stiffness and damping characteristics were studies in combination
with actuation uncertainties and bandwidth. Collectively, these findings suggested that actuator uncertainties are likely
to have a more destabilizing effect, particularly when coupled to a more responsive system. It is recommended to
further study the impact of non-linearities resulting from not only the actuation system, but also from the structural and
aerodynamic impact added to the systems’ response.
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Appendix A. Planform Parameters
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(b) Wing planform design.

Fig. 20 Overview of the wing planform design.
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Table 1 Planform parameters.

Item Symbol Value Unit
Wing aspect ratio Æ𝑅 13.6 [-]
Wing span 𝑏𝑤 3.4 [m]
Wing loading 𝑏𝑤 6.706 [kg/m2]
Fuselage length 𝐿 𝑓 2.345 [m]
Elevator span 𝑏𝑒 0.56 [m]
Vertical stabilizer span 𝑏𝑠 0.25 [m]
Wing chord (NACA 0015) 𝑐𝑤 0.25 [m]
Elevator chord (root,tip) (NACA 0010) 𝑐𝑒 (1.67,1.45) [m]
Vertical stabilizer chord (root,tip) (NACA 0010) 𝑐𝑠 (0.24,0.19) [m]
Elevator incidence angle 𝛼𝑖 -4 [◦]
Fuselage position 𝑥 (w.r.t. wing) 𝑥 𝑓 -0.645 [m]
c.g. position 𝑥 (w.r.t. wing) 𝑥𝑐𝑔 0.027 [m]
Neutral point 𝑥 (w.r.t. wing) 𝑥𝑛𝑝 0.305 [m]
Total mass 𝑊𝑡 5.7 [kg]
Payload mass 𝑊𝑝 1.5 [kg]

Appendix B. System Matrices sample case model
The system matrices of the sample model with the non-linear canard configuration are given below [24].

A0 =



−0.0443 1.1280 0.0 −0.0981 0.0
−0.0490 −2.5390 1.0 0.0 −0.0854
−0.0730 19.32 −2.2700 0.0 22.6834
0.0490 2.5390 0.0 0.0 0.0854

0.0 0.0 0.0 0.0 20.0


(23)

Anl =



−0.2317 0.0 0.0 0.0 0.0
−1.2760 −0.7922 0.0 0.0 0.0206
0.1020 64.2940 −13.9710 0.0 −5.4167
1.2760 0.7922 0.0 0.0 −0.0206

0.0 0.0 0.0 0.0 0.0


(24)

B1 =

[
0.0 0.0 0.0 0.0 20.0

]𝑇
(25)

B2 =

[
0.0 0.0 0.0 0.0 2.0

]𝑇
(26)

Q =



100 0 0 0 0
0 10 0 0 0
0 0 10 0 0
0 0 0 100 0
0 0 0 0 10


(27)

𝑅 = 1 (28)

x0 =

[
0 25 · (𝜋/180) 0 0 0

]𝑇
(29)

Appendix C. Responses open and closed loop systems
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Fig. 21 Open and closed-loop response comparisons with free-play and actuator scaling parameter 𝑘 = 0.5.
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Fig. 22 Open and closed-loop response comparisons with backlash and actuator scaling parameter 𝑘 = 0.5.
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Fig. 23 Open and closed-loop response comparisons with free-play and actuator scaling parameter 𝑘 = 0.5.
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Fig. 24 Open and closed-loop response comparisons with backlash and actuator scaling parameter 𝑘 = 0.5.

22

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

5,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
08

32
 



0 0.2 0.4 0.6 0.8 1 1.2

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0 0.2 0.4 0.6 0.8 1 1.2

-20

-15

-10

-5

0

5

10

Fig. 25 Closed-loop response comparisons with backlash and actuator scaling parameter 𝑘 = 0.5.
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