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Abstract

Fast and accurate diagnosis of illnesses or other health complications is not accessible in many
locations around the world. Due to this, illnesses are unnecessarily left untreated. Therefore,
AiDx Medical has developed a portable automated diagnostic microscope with reliable and
rapid Al-assisted detection specifically for low-resource settings.

Scan speed is a key issue for the popularisation of whole slide imaging systems [1]. To address
this issue a recent paper by [29] proposed a Kalman filter-based scanning algorithm. This
approach eliminates the necessity for focus map generation prior to scanning and in doing so,
reduces the scan time. Importantly, the proposed approach requires no additional hardware,
and is more robust to noise.

In this thesis, two modifications to this work are proposed. Firstly, higher order process
models are used to generate more precise estimates of the best-in-focus positions. Secondly, a
two-dimensional Non-Symmetric Half Plane Kalman filter is developed to incorporate neigh-
bouring state estimates in the prediction — an approach previously thought inapplicable for
this purpose [24]. In a simulation, the new scanning algorithms are applied to scan thin smear
malaria specimens and compared to state-of-the-art focus map surveying procedures.
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Preface

This is report is a part of my graduation project for the degree of Master of Science in
Systems and Control at the Delft University of Technology. The idea of doing my thesis at
AiDx Medical came after being inspired by the work of my supervisors dr. ir. Gleb Vdovin
and dr. ir. Temitope Agbana. Both men have dedicated a lot of their resources and time to
fighting for a better, healthier future for people in developing countries. Contributing to that
mission has been an amazing opportunity for me.

At the start of my thesis I was asked to help bring AiDx’s automated microscope to the next
level. Our goal was to obtain in focus scans of diseases such as malaria, tuberculosis and
urinary tract infections. After investigating this problem I found this issue could be split into
three sub-problems, namely 1) achieving the required mechanical resolution, 2) determining
the best image based focus algorithm to find the best-in-focus plane and 3) selecting a scanning
algorithm with the best speed and accuracy. I am proud to be able to state that all three
problems have been solved. AiDx Medical is now able to make in focus images of malaria.

As the title of this report suggest this document is centered around the last subproblem.
This issue was found to have the most academic relevance and does not contain company
sensitive or intellectual property issues. The work throughout this academic year has however
encompassed a much broader scope. Milestones of my work that are not discussed in this
report are:

e Reducing the scan time for low magnification scan systems from 30 to 4 minutes.

e Implementing an approach to circumvent the actuator backlash.

o Improving the focus metric accuracy from 26.17 pum to 0.97 um (see appendix A)

¢ Implementing a Fibonacci search method to dynamically find the best-in-focus position

e High precision thermal actuator design, control and system identification development

The research has touched on topics ranging from material science to optics, and from lab work
to filtering theory. This allowed me to use just about all the tools that the university has
thought me throughout my time as a student. It made the experience all the more enjoyable,
challenging and interesting.
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Chapter 1

Introduction

Fast and accurate diagnosis of illnesses or other health complications is not accessible in many
locations around the world. Due to this illnesses are unnecessarily left untreated. This leads
to loss of quality of life and premature deaths on a large scale. In order to improve world
wide health and well-being and reduce inequality, accessible healthcare is vital. This starts
with accessible diagnosis.

Microscopy is commonly used to analyse pathology slides for diagnosis of illnesses and to
better understand disease processes. Due to the limited Field of View (FoV) of a microscope
several images (commonly referred to as frames) have to be surveyed in order to achieve the
required sensitivity for diagnosis. The number of frames that have to be surveyed depends
on the system magnification and the infection rate of the sample.

To diagnose parasitic diseases such as malaria, the microscope has to be able to resolve features
with a radius of 0.7 - 0.9 pum. This requires using an objective lens with a numerical aperture
of at least 0.4. Increasing the numerical aperture of the system implies an increase in the
magnification of the objective lens. Additionally, the Depth of Field (DoF) decreases. When
the DoF is smaller than the variations in the surface topography inherent to a particular
specimen, the working distance of the objective lens (the distance between the objective
lens and the specimen) has to be changed in every position to obtain an in focus image.
The tracking of the specimen topography with the objective lens is commonly referred to as
the autofocusing problem. Increasing the magnification additionally reduces the FoV of the
system. Hence, to achieve the required sensitivity up to hundreds of frames may have to be
acquired.

Currently, microscopes are still commonly operated manually by pathologists. Focusing per-
formed manually using the focus knob of the microscope platform. This traditional slide
reviewing process remains the gold standard in diagnosing. There are several issues inherent
to manual operation of the microscope for the diagnosis of different illnesses. Being that it is
time consuming, labour intensive, highly subjective and sensitive to human errors [3]. There-
fore, AiDx Medical has developed a portable automated diagnostic microscope with reliable
and rapid Al-assisted detection specifically for low-resource settings.
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2 Introduction

Acquisition of high-quality, in-focus images at high speed is a fundamental challenge in au-
tomated microscopy and a key issue for the popularisation of Whole Slide Imaging (WSI)
to be realised [1] [3]. It currently takes state of the art systems 9 minutes to 2 and a half
hours to scan a 15 x 15 mm area with a 40x magnification objective [15], depending on the
system used. To address these issues Zhang et al. [29] proposed a Kalman filter-based method
that predicts the best in-focus position of the next tile based on previous measurements and
historical data. This eliminates the need to sample the focus height at positions along the
sample for focus map generation prior to scanning. In doing so it reduces the scan time.
Importantly, the proposed approach requires no additional hardware, and performs well on
a low-precision platform [29]. The latter provides opportunities to save costs on the system
hardware.

In this thesis, we propose two modifications to the work by Zhang et al. [29]. Firstly, higher
order process models are used in the Kalman filter to generate more precise estimates. Sec-
ondly, an attempt is made to incorporate neighbouring state estimates in the state prediction
using a two dimensional Non-Symmetric Half-Plane (NSHP) Kalman filter to improve the
prediction accuracy. This method was previously disregarded for this purpose by Wang [24].
The new scanning algorithms will be applied in simulation to scan thin smear malaria speci-
mens using serpentine scanning directions on a AiDx HR device. The methods are compared
to state of the art focus map surveying procedures.

1-1 Report outline

The report is split into three chapters. Each chapter is written using a similar structure.
First, one or multiple (variations of) scanning algorithms are described. Than the algorithms
are used to filter the best in focus positions from the measurement data. Lastly, the obtained
results are described and discussed. In summary:

e Chapter 2 describes and evaluates the state of the art of scanning algorithms for image
based autofocus techniques.

e Chapter 3 describes and evaluates the Kalman filter based scanning approaches pro-
posed by Zhang et al. [29] and Wang [24]. Additionally, other state space models and
adjustments to the filter algorithm are proposed and evaluated.

o Chapter 4 describes and evaluates how the Non-Symmetric Half-Plane (NSHP) based
Kalman filter can be used to incorporate neighbouring state estimates to improve the
predicted state.

o The final chapter (chapter 5) summarises the findings of this thesis and proposes direc-
tions for further research.

R.C. van den Brink Master of Science Thesis



Chapter 2

Autofocusing and scanning methods

As was described in the introduction the autofocusing systems have to track the specimen
topography to create in focus images. To do so, the best-in-focus height has to be determined
at a each position of the to be scanned area. Many techniques have been developed for
this purpose. These techniques are commonly referred to as autofocusing approaches. The
autofocus approach used in this thesis is described in the first section of this chapter. The
following section describes different scanning methods that can be employed using the chosen
autofocusing approach. Finally, a comparison is made between the autofocusing methods,
evaluating their accuracy and the number of sampling points needed to reconstruct a height
map of a malaria sample.

2-1 Autofocusing approaches

There are two types of autofocus systems; active and passive. Active systems irradiate light
from a dedicated autofocus light source onto the specimen and focus based on the returned
light. Passive systems determine the best-in-focus position solely based on the acquired
images. This is also commonly referred to as the image contrast method. For the interested
reader, an excellent overview of the the state of the art of different autofocusing techniques
in 2020 is given in the literature review by Bian et al. [3].

A disadvantage of passive autofocus approaches is that the working distance (the distance
from the objective lens to the sample) must be changed to detect an increase or decrease
in contrast of image. Because multiple frames have to be analysed in order to determine
whether the system is in focus, this approach is slower than the active approach. Passive
approaches do however require fewer components and hence are relatively inexpensive [25].
As this thesis focuses on realising an economic and reliable scanning solution only passive,
image based autofocus techniques that require no additional hardware will be discussed.

Master of Science Thesis R.C. van den Brink



4 Autofocusing and scanning methods

FM Best in focus position

Out of focus

o —

VA

Figure 2-1: Traditional axial scanning procedure for autofocusing. A focus curve is computed
by determining the focus metric values of a z-stack in a particular position.

2-2 Best-in-focus position computation

To determine the best-in-focus position of the objective lens along the z-axis at a particular
coordinate, multiple images are acquired at different heights. Such a collection of images is
called a z-stack. Using a focus metric, the quality of each image in the stack is computed.
Plotting the focus metric values versus the position of the objective lens produces a focus curve
that resembles the sketched plot in Figure 2-1. Ideally, the best-in-focus-position corresponds
to the maximum of the focus curve.

Focus metrics exhibit various forms and variations, each rooted in distinct operational prin-
ciples. The choice of a particular focus metric relies on factors such as the computational
resources available, the optical configuration, and the unique attributes of the specimen. A
comprehensive account of the focus metric selection process and the preprocessing techniques
employed to achieve the findings presented in this report can be found in Appendix A.

Image fusion If the specimen under analyses contains 3D structures, such as stacked cells,
that are larger than the DoF it will not be possible to select a single plane in which the entire
image is in focus. To create an in focus image of all the elements of interest in one FoV
image fusion techniques have been developed. In these methods all the in focus sections from
multiple images along the optical axis are compiled in a single image.

Depending on the DoF of the optical system and the thickness of specimen, multi-focus fusion
methods can require tens or even hundreds of partially in focus images to generate an all-in-
focus image [13]. If the z-stack is undersampled, multi-focus fusion methods cannot remove
the defocus blurs completely [30].

R.C. van den Brink Master of Science Thesis



2-3 Scanning algorithms 5

2-3 Scanning algorithms

The previous section described how the best-in-focus position of the objective lens can be
determined. In this section the different methods that can be used in order to scan the area
efficiently using a passive, image based autofocus technique are described and compared.

2-3-1 Autofocus on each tile

The most trivial scanning procedure is to determining the best-in-focus height by acquiring
a z-stack in each position using a fixed scan range. The range along the z-axis in which
the images are obtained can be based on the historical data to ensure the best-in-focus
position is always included. This approach is sensitive to measurement noise. Therefore it
requires a highly accurate Focus Metric (FM) which may have a larger computational burden.
Additionally, the method does not make a prediction of the best-in-focus position based on
previous measurements. Hence, a relatively large z-stack has to be acquired to ensure the
best-in-focus position is included in the stack. This increases the scan time of the procedure.

1 FoVinfocus

w Surface topography
E [ J Reference position

1 Scan range z-stack

x-y

Figure 2-2: Propagation of the autofocus on each tile algorithm using across a cross section of
a sample.

Scanning the grid can be performed in different ways. When performing a scan the grid
coordinates and scanning direction as specified in Figure 2-3 will be used. In this thesis
bidirectional scanning, also called serpentine scanning, will be used (see figure 2-3b). This
scanning method is characterised by a back-and-forth or zigzag movement resembling the
movement of a snake.

Focus map of a thin smear malaria sample

To investigate the topography characteristics of a thin smear malaria sample and generate
simulation data a scan was made using the autofocus on each tile approach. The resulting
focus map is displayed in figure 2-4. Three potential sources of topography variations are (1)
the substrate supporting the specimen is not flat [18], (2) inaccuracies in the positioning of
the actuators and (3) existing variations in solid tissue samples. Regarding the latter, it is
given by Montalto et al. [12] that the topography variations in solid tissue samples can range
from nanometres to several micrometers over a single millimetre in the x or y direction. This
corresponds to what is observed in the obtained height map in figure 2-4.

The focus map shown in figure 2-4 will be used to generate test data for the simulated
comparison of the scanning algorithms. The test data is generated as follows. First, it is

Master of Science Thesis R.C. van den Brink



6 Autofocusing and scanning methods

Y+ P(1,1) P(NH, | y,
1) I
j P(i.)) [ <
I >
P(1, P(NH,
NV) NV)
(a) Reference grid (b) Serpentine scanning direction

Figure 2-3: Reference grid displaying the frame coordinates used and scanning directions used
in the report.

assumed that sudden irregularities in the focus map are due to noise. Therefore, the focus
map is smoothed using a Gaussian convolution filter (o = 1). This smoothed map will function
as a ground truth. The measurement data is simulated by adding normally distributed noise
(o0 = 1.5 pm) to the measurement. The 80x80 map is split into 16 20x20 maps. This is
the size that is required in order to diagnose malaria with a sensitivity that is approximately
equal to that of a rapid diagnostics test.

2-3-2 Tile skipping approach

The approach originally implemented on the system designed by AiDx is the called the tile
skipping approach. In this method the best-in-focus position is determined through two
steps. First, a z-stack is acquired and the best-in-focus position is determined by finding
the position at which the FM is maximised. For the following n positions the best-in-focus
position is assumed to stay constant. After the n positions have been scanned the procedure
is repeated.

This approach assumes that the specimen topography alterations remain smaller than the
depth of field of the camera in a range of n times the FoV dimensions. The number of frames,
n, naturally depends on the DoF of the system and specimen specific characteristics. The
assumption underlying this approach may hold for low magnification objective lenses with a
large DoF but not for a 60x magnification objective lens with a depth of field of 1 pm.

2-3-3 Focus map surveying

According to Bian et al. [3] focus map surveying is the most adopted solution to the autofocus
problem in commercially available WSI systems. In this approach a map containing the
estimated best in focus positions is created prior to scanning the entire slide. The focus map
is constructed through the following three steps, as depicted in Figure 2-6. First, a distribution
of points in which the slide needs to be sampled is chosen. These may correspond to a regular
grid with a certain spacing, a set of positions specified by the operator or a set chosen using

R.C. van den Brink Master of Science Thesis



2-3 Scanning algorithms 7

50.0
47.5
45.0 =
2.5 5_.
40.0 ™
37.5
35.0
32,5

Z [um]

(a) 80x80 tiles (b) 20x20 tiles (section from 2-4a)

Figure 2-4: Focus map of a thin smear malaria sample with a 1% infection rate made using the
normalised variance as a focus metric and an average step size of 0.19 um.

. 1  FoVinfocus
} w  Surface topography
m Q [ ) Reference position

Scan range z-stack

x-y

Figure 2-5: Propagation of the tile skipping algorithm using across a cross section of a sample.

another method. Secondly, z-stacks are acquired at each of the preset sampling positions.
Using a FM the best-in-focus position is determined from the z-stack. Lastly, the computed
best-in-focus positions are interpolated to construct a focus map. After the focus map has
been constructed the entire prespecified area can be scanned. In each position the objective
lens is moved to the height that is drawn from the interpolated focus map.

The focus map surveying approach has gained favour due to its simplicity, compatibility with
various sample types, and minimal intellectual property concerns. By interpolating between
the sampled positions, the method does not necessitate gathering a z-stack in each position
and hence enables faster scanning.

Despite the advantages outlined above, there are several limitations that must be considered.
Firstly, the procedure requires visiting positions all along the to-be-scanned area prior to
scanning. This additional step prolongs the overall scanning time compared to methods
that eliminate the need for revisiting the scanning area. Furthermore, the procedure lacks
the capability to adjust the focus map based on information obtained during the scanning
procedure. As a result, the focus remains static throughout the scanning process, potentially
resulting in sub optimal image quality in certain regions. Another important consideration
is that these methods assume that the sampled best in-focus heights are accurate. This
assumption may not always hold true, as various sources of noise can affect the accuracy of the

Master of Science Thesis R.C. van den Brink



8 Autofocusing and scanning methods

\

(a) Focus point distri- (b) Best-in-focus posi- (c) Interpolated focus
bution tions map

Figure 2-6: The procedure for generating a focus map presented in chronological order. The
sample slide is divided into distinct fields of view, depicted by the grid. The highlighted area on
the grid indicates the specific section of the slide that is covered by the specimen.

1  FoVinfocus
w Surface topography
[ J Reference position

Scan range z-stack

Interpolated position

>
>

x-y

Figure 2-7: Propagation of the focus map surveying algorithm across a cross section of a sample.

obtained data. Lastly, not obtaining a z-stack in each position could also be a disadvantage,
despite increasing scanning speed. The approach impedes image quality enhancement through
fusion techniques.

The interpolation method used during focus map surveying depend on surface specific char-
acteristics. In the following paragraphs different interpolation methods are described.

Bilinear interpolation This technique is used to interpolate values at points that lie inside
a rectangle, given the values at the four corners of the rectangle. The method involves
estimating the value at the point of interest by interpolating linearly along the x-axis and
then linearly along the y-axis, using the values at the four corners of the rectangle. Bilinear
interpolation assumes a linear change in the values of the function being interpolated over the
rectangle. The interpolation method is implemented in python using the following method
from SciPy [22]: scipy.interpolate.RegularGridInterpolater (method = ’linear’).

Spline interpolation Spline interpolation is a method used to interpolate data points by
fitting piecewise polynomial functions to the data. The method works by dividing the domain
of the function into smaller intervals, and fitting a polynomial function to each interval. The
polynomial functions are chosen to be smooth, meaning that their first and second derivatives
are continuous across the intervals. This results in a smooth curve that passes through all the
data points. This interpolation method is implemented in python using the following method
from SciPy [22]: scipy.interpolate.RegularGridInterpolater (method = ’cubic’).
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Delaunay based interpolation Delaunay interpolation is a typical method for generating
focus maps [3]. This technique involves constructing a Delaunay triangulation of the in-
put data points, which is a triangulation where no point is inside the circumcircle of any
triangle. Omnce the Delaunay triangulation is constructed, the value at a point of inter-
est is interpolated by computing the barycentric coordinates of the point with respect to
the triangle that contains it. These barycentric coordinates are then used to interpolate
the values of the function at the vertices of the triangle. This interpolation method is
implemented using scipy.spatial.Delaunay() to obtain the Delaunay triangulation and
scipy.interpolate.LinearNDInterpolator () to interpolate along the triangulation [22].

2-3-4 Kalman filter based scanning

Focus map construction prior to scanning requires revisiting positions to image the entire slide.
This adds a significant time burden to the scan procedure. To address this [29] proposed a
Kalman filter-based method that predicts the best in-focus position of the next tile based on
previous measurements and historical data. To ensure an image of the best in-focus position
is made at each position, a z-stack of images in a range around the predicted in focus position
can be collected. The acquired z-stacks of images can be used for multi-focus image fusion
and other post processing steps to obtain a higher quality images. As was mentioned in
the introduction, another important advantage of this approach is that it is less sensitive to
measurement noise [29].

FoV in focus
Surface topography

Reference position

Scan range z-stack

_ Predicted position

x-y

Figure 2-8: Propagation of the Kalman filter based scan algorithm across a cross section of a
sample.

In this report, two modifications to the work by Zhang et al. [29] are proposed. Firstly,
[29] utilised a zeroth-order Taylor expansion as a process model in their Kalman filter. This
model is based on the assumption that, on average, the best prediction is made by assuming
that height stays constant. Or in other words, it is assumed the to be scanned region is best
modelled as a flat surface with some slight variations that are best captured by white noise.
The first addition of this work is using higher order models to attempt to generate more
precise estimates. This modification will be discussed more elaborately in chapter 3

Secondly, an attempt is made to improve the accuracy of the filter by incorporating neigh-
bouring state estimates in the process model. To achieve this, the two dimensional Kalman
filter models that were primarily developed for image processing tasks by Woods and Rade-
wan [28] and Woods and Ingle [27] are extended to suit the application in this thesis. This
modification is discussed in chapter 4.

Master of Science Thesis R.C. van den Brink



10 Autofocusing and scanning methods

2-4 Comparison of conventional scan algorithms

In this thesis the algorithms that are not the Kalman filter based algorithms will be referred to
as the conventional scan algorithms. The accuracy achieved with these methods will function
as a baseline to which the other methods will be compared.

The comparison of the conventional approaches was determined by applying them to the
16 measurement maps described in section 2-3-1 and comparing the resulting focus maps to
the corresponding ground truths. The accuracy was computed as the mean of the difference
between the ground truth and the constructed focus map in each position. The number of
sampling points used was varied to check if this influenced the performance. The results are
plotted in figure 2-9. The number of sampling points that give the lowest mean error are
given in table 2-1 for each conventional approach.

Interpolation methods

6 -
e o o * ¢
5 -
£ .
3 a4 ® Bilinear
§ Spline
] ® Delaunay
E 3 ® Tile skip
=
2 -
oo
* ®®e o L ] @ ] ®
1 T o 2 ® ®
T T T T T T T T
25 50 75 100 125 150 175 200

Number of sampling points

Figure 2-9: Mean positioning error achieved using different conventional focus map construction

approaches.
Table 2-1: Error of the tested focus metrics
Scan algorithm Tile skipping Bilinear int.  Spline int. Delaunay based int.
Mean error 1.21 pm 5.61 um 5.84 um 0.94 pm
Std. error 1.51 um 6.96 um 7.20 um 1.17 pm
Number of points 200 49 36 100

It is found that Delaunay based interpolation outperforms the other methods. The Delaunay
triangulation has some desirable properties for interpolation of data with abrupt changes. One
of these properties is that it is locally optimal, meaning that it produces the triangulation that
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2-5 Conclusion 11

maximises the minimum angle of the triangles. In contrast, bilinear or spline interpolation
rely on a regular grid of points to interpolate values at arbitrary locations. These methods do
not perform well when the input data is sparse or irregularly spaced. Bilinear interpolation
assumes a smooth variation of the data between the neighbouring grid points, which may
not be true if the data has abrupt changes or discontinuities. The same holds for the tile
skip approach. Spline interpolation can produce oscillations or artefacts if the input data has
sharp features.

2-5 Conclusion

In summary, it was chosen to focus this thesis on passive autofocusing approaches because
they do not require any additional components and are therefore relatively inexpensive. It was
found that of the focus map surveying approaches Delaunay based interpolation outperforms
the other methods with regards to both the scanning accuracy and the required number
of sampling positions. Lastly, Kalman filter based scanning procedures were found to give
promising results to improve both scan speed and accuracy.
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Chapter 3

Kalman filtering

The Kalman filter scanning algorithm was previously mentioned in section 2-3-4. This chapter
gives a closer look at the different steps of this algorithm. Figure 3-1 gives an overview of
the steps in the process required to obtain a best-in-focus image. The automated microscope,
referred to as 'plant’ in figure 3-1, acquires a z-stack of images at position k. From this z-stack
the best-in-focus position z is computed using a FM. The computed best in focus position
is fed to the Kalman filter as the system measurement. The Kalman filter performs two
tasks. Firstly, it updates the previous state prediction using the obtained measurement. The
obtained state estimate is used to select an image from the z-stack at position k. Secondly, it
makes a prediction of the next best-in-focus position, Zx41, and computes the corresponding
covariance matrix Pk+1 based on the the previous state and covariance matrix estimates. The
z-stack in the next position is acquired in a range centered around the predicted best-in-focus
position. The size of the range is equal to some factor times the predicted covariance matrix.
In doing so, as the covariance converges and the Kalman filter becomes more certain of its
prediction the scan range, and scan time will decrease.

z-stack,
» Plant zi,
A J
. image;.
5 B Select image B
Ll from z-stack
# Kalman filter |« Y

Figure 3-1: Block diagram displaying the Kalman filter based scanning concept

The goal of the Kalman filter is twofold, namely 1) minimising the scan time and 2) obtaining
the best-in-focus image. Therefore, both the predicted and the updated state estimate should
be as close to the best-in-focus position as possible.
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14 Kalman filtering

3-1 Kalman filter theory

The Kalman filter finds a minimum-error variance estimate of the state x(k) of a stochastic
linear model from measurements of the modelled system. The discrete stochastic linear models
considered in this thesis will be described by the following equations:

2k +1) = Fa(k) +w(k), w(k) ~ N(0,Q) (3-1)
y(k) = Ha(k) + v(k), v(k) ~ N(0, R) (3-2)

where z(k) is the state, F' is the state transition matrix, y(k) the output, H the measure-
ment function, w(k) the process noise described by the covariance matrix @ and v(k) the
measurement noise described by the covariance matrix R. The steps of the Kalman filter are
summarised in algorithm 1. The two main steps of the algorithm will briefly be described
below.

First, the predict step is performed by computing the prior state, z (line 4-6, algorithm 1).
This is computed using the dynamical model to propagate the state to the next position. The
state transition matrix and covariance matrix are used to compute the corresponding prior
covariance matrix, P. Secondly, an update step is performed (line 7-11, algorithm 1). In this
step the Kalman gain is used to compute an estimate of the state, Z, and the corresponding
covariance matrix, P. Put simply, the Kalman gain is used to compute a weighted average
between the prior and the measurement based on their respective covariance matrices. The
covariance matrices () and R can be used to tune the algorithm to trust the prediction over
the measurements or vice versa. A more elaborate description of the Kalman filter has been
published by Verhaegen and Verdult [21] and 'Labbe [8]. In the remainder of the report
the (k) notation which indicates the time index will be dropped for brevity of notation.
The considerations for the chosen model and filtering parameters will be described more
elaborately in the following sections.

Algorithm 1 Kalman filtering

1: procedure KF(zs,zg, Py, R, Q, dx)

2: &P =z, Py > Initialise variables
3 for z in zs do

4: Predict step

5: x=Fz > Prior state
6 P=FPFT + Q > Prior cov. matrix
7 Update step

8 r=z—Hx > Residual
9: K =PHT(HPHT + R)™! > Kalman gain
10: T=x+ Kr > Posterior state
11: P=(-KH)P > Posterior cov. matrix
12: end for

3-1-1 Assumptions

The Kalman filter assumes the discrete time model given by equation 3-1 describes a Gaussian
random process. This is the case when all the probability density functions describing the
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3-1 Kalman filter theory 15

process are normal in form. Gaussian random processes have several desirable properties.
First of all, Gaussian random variables can be fully described by their mean and variance.
Hence, the mean state and covariance matrix computed in both the predict and the update
step of the Kalman filter fully describe the random variables in the state. Secondly, the
output of a linearly transformed Gaussian process is also Gaussian. These two properties
simplify the mathematical analysis and computational complexity significantly. Therefore,
the Kalman filter requires the process model to be linear.

The superposition of independent random variables always tends towards normality regardless
of the distribution of the individual random variables contributing to the sum. This is proven
in the central limit theorem. Because noise is often due to a superposition of many small
contributions the assumption of normality can be applied in many engineering applications.

In order for the Kalman filter to be implemented recursively it requires that the model de-
scribing the system dynamics and its uncertainties is a Markov sequence. This means that
the model has the following two properties:

Property 1. Markov property of states (Sarka [17]) The states xy : k =0,1,2,... form
a Markov sequence (or Markov chain if the state is discrete). This Markov property means
that xj (and actually the hole future Tyy1, Ty, ...) given xp_1 is independent of anything
that has happened before the time step k — 1:

P(@k|1k—1, Y1:e—1) = D(Tk|TE—1) (3-3)

Also the past is independent of the future given the present:

p(@p—1|Th7, Ykr) = P(TK—1|TEK) (3-4)

Property 2. Conditional independence of measurements (Sarka [17]) The current
measurement yy, given the current state xj is conditionally independent of the measurement
and state histories:

Pyl z1k, vik—1) = p(yk|ak) (3-5)

These properties enable circumvention of the explicit usage of the full Bayes’ rule in which
the number of computations per time step increases as new observations arrive. Using a
Markovian model the number of computations per time step remains constant.

3-1-2 Process noise

The process noise captures uncertainties or variations in the system dynamics that are not
accounted for by the model. In the case of surface modelling this could be due to modelling
errors or unmodelled disturbances. More specifically, the former relates to inaccuracies or
simplifications in the mathematical models used to describe the terrain dynamics. The latter
relates to external factors that are not explicitly accounted for in the model. An example
could be a sudden jump in the height because a particular malaria parasite happens to be in
a different focus plane.
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16 Kalman filtering

The process noise, represented by w(k), is assumed to be a zero-mean white noise process.
In the computation of the prior state estimate (line 5 of algorithm 1) this term is not added
because the process noise is assumed to have a mean value of zero. Hence, on average the
noise will have no effect on the state evolution during the prediction. The prediction of the
next state, z(k + 1), is thus based on the system dynamics captured by the state transition
matrix, F', and the current state estimate, z(k).

The subsequent update step adjusts the state estimate based on the difference between the
predicted and actual measurements, considering the uncertainty in the measurements and
the state estimate. The uncertainty in the state estimate depends on covariance matrix of
the estimate and the process noise covariance matrix Q. Therefore, the design of the process
noise covariance matrix () can have a significant influence on the filtered estimate.

As was previously stated, the process noise matrix () represents the uncertainty or variance
associated of state space description used to model the system dynamics. The elements of
the matrix @) represent the (co)variances between the different state variables in the system.
Note that as the process noise is assumed to have a zero mean the (co)variances are equal
to the mean-squared values of the respective states. The covariance matrix for a state space
model with two states is hence described by:

Q: E[xlxl] E[l'l:l?g] (3—6)

E[l‘g:ﬂl] E[$2$2]

The system response of one of the state variables can be computed as the convolution of the
impulse response function, g(u), with the input function, f(u), as follows:

l
2(t) = / g(u) £ (1 — u)du (3-7)

where [ is the distance over which the integral is performed. Using this definition of the state
response the mean-square value, E[z1x1] can be computed as:

Elzix1] / / v)R¢(u — v)dudv (3-8)

where Ry(u — v) is the autocorrelation function corresponding to the input. If the input
is unity white noise its autocorrelation function corresponds to the the Dirac delta function
with power spectral density equal to one. Scaling the autocorrelation with amplitude A gives
R¢(x) = Adx. As autocorrelation the value at R¢(0) corresponds to the mean square value
of the process and the mean of the process noise considered is zero mean, the mean square
value will equal the variance of the process. Hence, the variance of the process will equal
the amplitude of the autocorrelation function A = 2. Scaling the autocorrelation does not
change the shape or distribution of the power across different frequencies. It does scale the
amplitude of the PSD by the square of A.

Additionally, using the following property of the Dirac delta function:
/ f(@)d(x — zp)dx = f(x0) if o belongs to the open interval (3-9)

the computation of the terms of the process noise covariance matrix can be simplified signif-
icantly.
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3-2 The Kalman filter for Linear Space Invariant (LSI) systems

If the state space model used to model the system is space-invariant the Kalman filter con-
verges to a stationary solution. The exact conditions under which the Kalman filter has a
stationary solution are summarised in the following theorem:

Theorem 1. (Anderson and Moore [2]) Consider the linear space-invariant system

x(k+1) = Az(k) + Bu(k) + w(k) (3-10)
y(k) = Cx(k) + v(k) (3-11)

with w(k) and v(k) zero-mean random sequences with covariance matrix:

g [w(k;)T v(k)T| = © 3 Ak =) (3-12)
v(k) ST R
such that
@ 5 >0, and R>0 (3-13)
ST R

If the pair (A, C) is observable and the pair (A, Q'/?) is reachable, then

P(klk = 1) = E'| (x(k) — @(klk — 1)) (x(k) — 2(klk — 1))"| , (3-14)
with &(k|k — 1) = E[z(k)], satisfies

lim P(klk—1) =P >0 (3-15)
k—o0

for any symmetric initial condition P(0| — 1) > 0, where P satisfies

P =APAT + Q — (S+ APCT)(CPCT + R)~}(S + APCT)T (3-16)

Moreover, such P is unique. If this matriz P is used to define the Kalman-gain matriz K as
K = (S + APCT)(CPCT + R)™! (3-17)

then the matriz A — KC' is asymptotically stable.

There exist several refinements of this theorem in which the observability and reachability
refinements of this theorem are replaced by weaker noitions of detectability and stabilizability.
A discussion of these refinements is outside the scope of this thesis.
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18 Kalman filtering

3-3 State space models

3-3-1 Previous work

Zhang et al. [29] first proposed using a Kalman filter-based method scanning method for WSI
systems. In the employed state space model in their system the state is a assumed to be linear
plane. Because of this assumption the height was modelled as a random walk, such that the
height of the next best-in-focus position is equal to the current best-in-focus position plus
some noise. A more elaborate description of this process model and implementation will be
given below. This method will be used as a baseline to compare the other Kalman filters to.

Wang et al. [23] proposed using a higher order state space model and combining information
from two neighbouring positions. The paper is applied for digital terrain modelling. This
relates very closely to the application the discussed in this thesis. The main difference lies in
the scale that is considered.

The state space model proposed by Wang et al. [23] is defined as follows:

H(ig) | [b(.5) bij)dz o] [H(i—1,5)
H,(i,j5)| =| 0 1 0| |Hx(i—1,5)| + (3-18)
Hyi.)| | 0 0 0| |[Hyi-1,9)]
_C(i,j) 0 C(i,j)dy_ _H(i,j—l)_ wg (i, §)
0 0 0 Ho(i,j — )| + |wg, (i, 5) (3-19)
00 1 | |HGi-1]  |wm,()

where (i, j) denotes the position as is shown in figure 2-3a, wg, wy, and w 1, are assumed as
white sequences with known covariance structure Q(4, j), dr and dy are the sampling intervals
and b(7, j) and ¢(i, j) are blending factors with a summation of 1.

The observation of elevation is assumed to have a linear relationship with the state vector at
the relevant position:

H{(, )
Z(i,j)z[l 0 0] H,(i,7)| +v(,7) (3-20)
HZl(Z?])

where D = and v,(i, 7) is a white sequence with known covariance structure R(i,j) and having
zero cross-correlation with the vg(i, j) sequence.

There are three issues with the proposed model. First of all, and most importantly, the state
space model is not observable if only the height in the to be updated position is measured
(the test for observability can be found in appendix B). Due to this, the Kalman filter cannot
be guaranteed to give a stationary solution. Secondly, using the proposed model does not
provide a framework to include additional neighbouring positions in the estimate. Thirdly,
the state space model does not propagate the neighbouring state estimate that is required to
compute the prior.
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3-3 State space models 19

3-3-2 Brownian-motion based process models

As can be seen in Figure 2-4 the height maps are not flat planes. They have a changing slope
and show sudden variations related to the structure of the specimen. Therefore, the function
that perfectly describes the slope along the surface is expected to be a specimen specific
nonlinear function. Because the function is specimen specific it is not possible to know the
exact function prior to scanning. Therefore, lower order linear models will be derived and
evaluated with regards to their ability to capture the system dynamics.

In order to make a prediction of the height at the next scanning position an linear approx-
imation of the nonlinear function will be made using a Taylor series expansion. The second
order Taylor polynomial of a nonlinear function around a position, x, is given by:

H(zp41) = H(wy) + H;Cl(,x) (Th41 — k) + H”/éfx) (@h1 — 2x)? + O(da®) (3-21)

where (zrpi11 — k) is the step size in the x-direction. From this point onward this will be
denoted by dx. In the y-direction it will be denoted as dy. The step size is fixed in both
directions. The primes are used to denote the order of the partial derivative. Hence, H (x)
is the second order partial derivative with respect to the distance z. Lastly, O(dx?) is the
error term due to finite expansion. The order of the Taylor series corresponds to the number
of terms used in the polynomial approximation. Zhang et al. [29] proposed using a ot
order polynomial approximation. This thesis will additionally investigate 1% and 2"? order
polynomial approximations.

In order to be able to compare the Taylor series based model to other state space models
used to estimate the state dynamics, and for the ease of analysis of the model, the continuous
state space model and corresponding block diagram have been derived. The block diagram
of a second order Brownian noise model is given in figure 3-2. The corresponding continuous
state space model is given by:

.1"1 010 I 0

ia| =10 0 1| x| + 0] w (3-22)

T3 000 XT3 1
where x1 is the best-in-focus height of the objective lens, zo the gradient, x5 the curvature and
w(k) is the process noise. As is shown in 3-2 the process noise is assumed to be white. The
lower order models can be derived by removing integrator blocks in from the block diagram

and evaluating sub-matrices of the presented state space model. The model can be extended
with higher derivatives by doing the opposite.

White noise 1 Curvature Gradient

e

Height

h 4

v
v

1 1
E £

Figure 3-2: Block diagram depicting a Brownian noise second order model

In order to discretize the system the state transition matrix needs to be computed. Generally,
this can be done via two methods, namely 1) by computing the inverse Laplace of (sI — A) or
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2) by determining the value of eA4r T this particular case the Taylor polynomials can also

be used to determine the discrete state state space models. The discrete state space model
is:

z1(k+1) _1 dr  3dz*| |z1(k) 0
zo(k+1) =10 1 dz | |z(k)| + 0] w(k) (3-23)
l’3(k‘ + 1) 0 O 1 :Zig(k') 1

i :L'l(k + 1)
yk) =11 0 0| |a2(k+1)| +v(k) (3-24)
_ z3(k+1)

The lower order state space models can be computed in a similar and all correspond to sub-
matrices of the state space model given above. Therefore, they will not be stated explicitly.

The different order state space models describe different dynamical processes. In this para-
graph a short description of what the different order models describe is given. The zeroth
order model corresponds to a Brownian-motion or Wiener process. Such a process can be
characterised by an integrator driven by white noise. For such a process it can be shown that
the variance after n steps is equal to n. This model is used by [29] to model the surface. The
model assumes that the next position is equal to the current position with the addition of
random fluctuations, characterised by white noise. Hence, this models describes flat surfaces
where the deviations in the surface resemble white noise.

In the case of the first order model, where the gradient is simulated as a Wiener process, the
position is obtained by integrating the random fluctuations of the gradient. The integration
process accumulates these changes to determine the position at each point. In the Kalman
filter the random fluctuations are not added to the process model. Hence, the model assumes
that the surface is best described by a model with a constant slope. However, modelling is as
a Wiener process does influence the process noise covariance matrix, (). In doing so it allows
larger changes during the correction of the gradient in the update step.

The second order state space model additionally incorporates an estimate of the curvature.
A line for which the curvature is modelled as a Wiener process implies that the curvature
of the line follows the statistical properties of a Wiener process. In this case the gradient is
updated at each step using the state corresponding to the curvature term multiplied by the
step size. This modelling approach allows fluctuations to the curvature, resulting in a surface
with continuously changing curvature.

Determining the process noise covariance matrix, ()

The process noise covariance matrix () corresponding to the second order state space model
described above is derived in this section. The matrix is derived using the method described
in section 3-1-2.

The relevant transfer functions are given by:

1

=3 G(u to x2) = Go = 1 G(u to x3) = Gg = E (3-25)

G(u to x1) = Gy
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The corresponding impulse response functions of the transfer functions are:
Lo
g =35t ga =t g3 =1 (3-26)

Than using equation 3-8 and Rf(z) = 024(x) as the input autocorrelation function, the
expected mean-square values can be computed to be:

1 AL 1
Elxozo] = 02/ —vidv = 0> —ALP Elziz] = 02/ vidv = o? - ALP (3-27)
o 4 20 0 3
2 [P g 2l \ 74 N ol \ 72
Elzize) =0 / v dv =0 gAL Elzizo) =0 / vdv = o iAL (3-28)
0 0

1 AL
Elziz0] = 02/ §v2dv = UQEAL?’ Elzgzg] = 02/ ldv = o*AL (3-29)
0 0

This gives the following process noise covariance matrix Q:

HALS ALY LALS
Q= |iart IAL? lAr?|o® (3-30)
IAL® JAL? AL

The process noise covariance matrices corresponding to the lower order models can be deter-
mined easily using the integrals above.

3-3-3 Gauss-Markov models

Obviously not all random processes are accurately modelled by a Wiener process. curvature
for example is usually brief and not sustained. Therefore, a stationary Gauss-Markov process
may be more appropriate than the nonstationary Brownian motion. Gauss-Markov processes
have an exponential autocorrelation, Rx(7) = o2e 7. The mean-square value and time
constant for the process are given by the o2 and 1/ parameters, respectively. The expo-
nential autocorrelation function indicates that sample values of the process gradually become
less and less correlated as the separation between samples increases [4]. The block diagram
corresponding to such a model is given in figure 3-3.

Gradient Height

White noise _\ 25-2[8 Curvature
s+ 8

v

Y
v

1 1
8 8

Figure 3-3: Block diagram of a second order model where the curvature is modelled as a Gauss-
Markov process.

The continuous state space model corresponding to the depicted block diagram is given by
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the following equations:

i 01 0] |z 0
il =10 0 1 ||z +]| 0 |w (3-31)
i3 0 0 —B| |3 20213
1
yz[l 0 0] 2o | +v (3-32)
z3

The discrete state space model corresponds is given by the following equations:

z1(k+1) 1 de g (Bde —1+e 7)) |zi(k) 0
za(k+1)| =10 1 5(1—ePin) wa(k)| + 1 0 | w(k) (3-33)
z3(k+ 1) 0 0 e~ fAdx x3(k) 2023
z1(k)
y(k)Z[l 0 0] zo(k)| +v(k) (3-34)
z3(k)

The lower order state space models can be derived easily by removing integral terms from the
block diagram and computing the corresponding state space models.

Determining the process noise covariance matrix, ()

If the continuous system giving rise to the discrete situation has constant parameters and if
the various white noise inputs have zero crosscorrelation, some simplification is possible such
that the impulse response functions may be applied. A description of how the mean-square
expectations are computed is given below.

The relevant transfer functions are given by:

_ _ V20°8 - V2028
G(U to .Tl) = G1 = m, G(u to 1‘2) = GQ = m, (3-35)
20203

G(u to x3) = G3 =

—y; (3-36)

The corresponding impulse response functions are:

g1 = \/%T;(e—ﬁda: +Bdr—1) go= \/2;?(1 — e_ﬂdx) g3 =1/2026(1 — e_ﬁdx) (3-37)
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Now we can use equation 3-8 to find the mean-square expectations:

Elxix1] /AL /AL )o(u — v)dudv = /OAL g1(v)2dv (3-38)

F< ~ Bda® 4+ 52d 3 215(1 BTy ogpe iy (3-39)

AL AL AL
Blawwa) = [ [ gi(wgav)o(u—v)dudv = [ g1 (0)ga(v)ao (3-40)
20 —5 (—dz + ﬁd:v + dze P4 4 215(1 + e 2hdr _ 9p=hdry) (3-41)

Elxyz3] /AL /AL )o(u — v)dudv = /OAL g1(v)gs(v)dv (3-42)

— ﬁ(—dxe_ﬁdx + 216(1 — ¢ 2fdzy) (3-43)
Elwsea) = 2; (de — ;( ey 21[3(1 ) (3-44)
Elwses] = 202(;(1 ey 21ﬁ(1 _ 28y (3-45)
Elz3xs) = 02(1 — e 2Ad) (3-46)

The computed functions for the mean-square expectations can be substituted into a matrix
to obtain the process noise covariance matrix Q).

Q: E[.%'lflfg] E[$2$Q] E[xgxg] (3—47)

The process noise covariance matrices corresponding to lower order Gauss-Markov based
process models can be derived easily using the integrals given above.

3-3-4 Second-order Gauss-Markov process

Consider the case in which the position and the gradient are to be modelled as random
processes and the exact derivative relationship between the two applies, and it is assumed
both have finite variances. Than it can be shown that the position cannot be modelled as a
first-order Markov process, because the corresponding gradient would have infinite variance.
Why this is the case is described below.

Consider the position is modelled as a first-order Markov process. In that case its PSD
function is given by:
2023

pos = 2132 32 (3-48)

it is given that v(t) = 89(;?)
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24 Kalman filtering

Property 3. (The frequency derivative property) The multiplication of a function x(t) by t
in the time domain is equivalent to the differential of its Fourier transform in the frequency
domain. Therefore:

) = JwGpos(jw) (3-49)

The Wiener-Khinchine relation states that the Power Spectral Density of a process is the
Fourier transform of the autocorrelation function:

Sx(jw) = F[Rx(7)] (3-50)

if the transfer function from the best-in-focus position to the gradient is given by a first order

Gauss-Markov model Gps(s) = Vj:;'g . Than, given property 3 the transfer function from
the input to position corresponds to sGpos(s). Thus the power spectral density of the gradient

is given by Syei(s) = Gper(8)Gper(—s). In this case this corresponds to:

_ V202Bs \/202B(—s)  (—s?)20%8

= -51
Svet(s) s+8 —s+p —s2 + 32 (8-51)
or using s = jw:
202 fuw?
Svel(s) - w2 + B2 (3‘52)

The inverse Fourier transform of the spectral function gives the autocorrelation function,
which in turn can be used to derive the mean square value. The inverse Fourier transform
can be computed as:

- 1 o . jWT
F o Suaj)] = 5 /_ 1 (j) e dws = Ryor(7) (3-53)

The integral of S,¢; will go to infinity. Therefore, the corresponding gradient will have infinite
variance, which clearly does not model the true system dynamics accurately. Using a second
order Gauss-Markov process as a transfer function from the gradient to the position this issue
can be overcome. The new transfer function will however contain smaller high frequency
components compared than the first order Gauss-Markov process. As is shown by |.

This derivation shows that the designer should take care when modelling random processes
that are a derivative of another random variable. If the integral of the PSD is not finite the
variance will also be infinite, which often is undesirable.

3-3-5 Incorporating prior knowledge into the filtering procedure

In this section two adjustments to the filtering procedure described by algorithm 1 are sug-
gested. First, the change in scanning direction is incorporated in the model. Secondly, the
gradient in the y direction is added as a state variable. Pseudo code describing the algorithm
that is used to implement the higher order conventional Kalman filter is given by algorithm
2.
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3-3 State space models 25

The change in height is equal to the step size times the gradient along the direction in which
the step was made. A surface is a 2D plane steps are made in both the x and y direction. A
block diagram depicting these dynamics is given in figure 3-4.

White noise Gradient x Height
() 1

A 4

1
E

[

White noise Gradient y

Y

1
£

Figure 3-4: Block diagram depicting how both the x and y gradient contribute to the height in
a particular position.

Changing scan direction

It was chosen to design the Kalman filter such that all the information is captured within one
state space model. In the case of the first order Wiener process based model the matrices of
the state space model become:

z1(k+1) 1 dx dy| |z1(k) 0
zo(k+1) =10 1 0 |zo(k)| + |1]| w(k) (3-54)
wg(k + 1) 0 0 1 xg(k) 1

The measurement function remains the same. This approach to including the y-gradient in
the state space model can be extended to second and higher order descriptions. It should
be noted that the matrix pair (F, H) is no longer observable. The sub-matrices of F' and H
corresponding to a step in either the x or y direction are however observable. As the steps
are always taken in one direction the state space model can be partitioned at each step such
that the criteria of the Kalman filter stated in 1 are always satisfied. The partitioning also
applies to the update step of the Kalman filter. Thus in each step the derivatives along only
one direction are updated.

The design of the process noise, ), also depends on the scanning direction. When the model
is propagated along the x-direction, the model assumes the gradient in the y-direction is
constant. In a way it copies the gradient in the y direction from the previous step to the
next step without adding information. The process noise should account for uncertainties or
variations in the system dynamics that are not accounted for by the model. When moving in
the x-direction the slope in the y-direction is excluded from the model, and only propagated
to the next position. Therefore, the process noise should be zero for the terms corresponding
to the slope in the y-direction. The opposite holds when a step is made in the y-direction.
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26 Kalman filtering

The designs of the process noise matrices in both cases is given by the following equation:

%daz?’ %d%Q 0 %dy‘q’ 0 %dy2
Qv = |id2®> dz 0], Qy=|0 0 0 (3-55)
0 0 0 tdy? 0 dy

Reversing scan direction

The previous paragraph described how the partitioned matrices can be used to change from a
step in the y to a step in the = direction. Here the changes to the different matrices in order
to reverse the sign of the step size are described.

Changing the sign of the step needs to be performed on every new row. In the state transition
matrix F' the sign of the step size dx can simply be reversed when the scanning direction along
the x-direction is reversed. This corresponds to reversing the sign of dx in the state transition
matrix and of all the elements on the super- and sub-diagonal elements of the covariance
matrices P and @ (line 6, algorithm 2).

Corresponding algorithm

Algorithm 2 summarises the different steps accurately. At the start of each row the sign of
dz is reversed in the matrices F, @ and P (line 6, alg. 2). Than an predict step is performed
(line 8-9 or 12-13). In this step the fundamental matrix, F', and the process noise, @), depend
on the direction in which a step was made. The direction of propagation also determines
the section or slice of the state estimate and corresponding covariance matrix that will be
updated in the update step (line 10 or 14). After the update step the counter is iterated and
the next iteration of the for loop is performed.

3-3-6 Checking assumptions

All the models above were tested to meet the requirements stated by theorem 1. It was found
that all of the models meet the conditions stated by this theorem. Specifically for the Gauss-
Markov models, for the process noise covariance matrix, ¢) to be positive semi-definite 5 has
to be larger than a particular value. For the first order model this corresponds to 8 > 5, for
the second order model this is 8 > 20. If this condition is not met the term (HPHT + R)™!
can become singular.

Observability The Kalman filter may diverge if the system is not observable. This means
that there are one or more state variables that are hidden from the view of the observer (i.e.
the measurements). As a result, if the unobserved processes are unstable, the corresponding
estimation errors will be similarly unstable. Another way of putting it is that the measurement
do not provide enough information to estimate all the state variables of the system. The
observability problem can be solved by either changing the model used to describe the system
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3-3 State space models 27

Algorithm 2 Conventional Kalman filtering implementation higher order models

1. procedure KF(zs,zg, Py, R, Q, dx)

2: z, P= xo, Po > Initialise variables
3: count =1

4: for z in zs do

5: if (count — 1) modulo NH is 0:

6: Change sign of dx in F, Q, P

7 if count modulo NH == 0: > Predict step
8 =I5z

9: P= Fb1prY£ + le

10: sle=slc—y
11: else:
12: T=Fz

13: P=FPFT +Q
14: slc=slc—x

15: Update elements indexed by the slicing vector: slc.
16: r=z—Hzx > Update step
17: K =PHT(HPHT + R)™!

18: T=x+ Kr

19: P=(I-KH)P
20: count +=1
21: end for

dynamics such that all its states are observable or by adding appropriate measurements to
make the system completely observable.

In appendix B-1 the state space models described above are tested for observability. It is
shown that the observability matrices are full rank, and the system is observable if the stepsize,
dx, is chosen sufficiently large. If the step size dz becomes too small, the observability matrix
may loose rank due to numerical precision issues and the accumulation of round-off errors.
In the current application the step size depends on the FoV of the microscope. This can
be in the order of micrometers. As described a step size of such a small order may lead to
observability issues.

However because the step size is fixed it can be chosen to design the system such that the
slope is not expressed as the change in height over the change in distance but rather the
change in height per step. In doing so the "step size" dx changes from the width of the FoV
in meters to 1 step. Substituting dx = 1 ensures observability is preserved.

3-3-7 Tuning filter parameters

Tuning the process noise, (), and measurement noise, R, parameters is crucial to achieve op-
timal filtering performance. Careful adjustment of these parameters ensures that the Kalman
filter appropriately balances the trade-off between tracking the true system state and account-
ing for the uncertainties in the measurements and system dynamics.

The ratio of the two parameters determines the behavior of the filter. If R is set to a very
large value the covariance matrix will diverge and the filtered estimates becomes insensitive
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to measurements. If the wrong initial state is used or the track changes significantly the
filter will require significant time to adjust. Vice versa if @) is set large relatively to R, the
Kalman filter will trust the measurements over the predictions. Because of this noise will be
incorporated in the output.

3-4 Results and discussion

The results in this section were obtained by altering the code of the FilterPy Kalman filtering
module [9]. The code was adapted as is described in the pseudo code presented in the previous
sections. All the models derived above and corresponding algorithms were implemented. The
maps depicted in Figure 2-4a were flattened such that they could be used as measurements.
The Gaussian smoothed maps were used as underlying true values.

The noise that is added to the ground truth to simulate the measurements, introduces addi-
tional randomness and variability, which obscures the underlying dynamics and complicates
result interpretation. To mitigate this issue, all algorithms were initially tested on a simplified
measurement map devoid of any noise. This particular map exhibits a gradient equal to 1 in
each direction and is illustrated in Figure 3-5d. Subsequently, the algorithms were applied
to filter a noisy map with a standard deviation of 0.1 gm. The outcomes of this process
are presented in Tables 3-1, 3-2 and 3-3. These results serve to elucidate the performance
achieved when dealing with the noisy maps during scanning.

The errors displayed in the tables correspond to the Mean Absolute Error (MAE), which are
computed as the average of the absolute differences between the prior or posterior map and
the ’true’ Gaussian smoothed map.
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Figure 3-5: For each of the implemented algorithms the first 40 steps are shown. The measure-
ment map (shown in figure 3-5d) has a gradient equal to one in both the y and z direction. In
all runs complete knowledge of the initial state of the system is assumed. In each plot the blue
line corresponds to the tuning parameters that were found to achieve the best performance.

Figure 3-5 displays the predictions obtained using different order filters, using the measure-
ments from a simple map. Beginning with the conventional filters, implemented using algo-
rithm 1. It can be observed that the zeroth order filter consistently exhibits a lag behind
the measurements. This phenomenon arises due to the absence of the gradient in the process
model state. Hence, the model assumes a stationary position. As depicted in the plot, increas-
ing the process noise effectively reduces this lag, while decreasing the process noise exacerbates
the issue. Essentially, decreasing the process noise prioritises trust in the measurements over
the model prediction. This approach can enhance performance when measurement noise is
low. However, in the presence of substantial measurement noise, it incorporates the noise into

the filter’s output.
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30 Kalman filtering

The first order filter demonstrates improved tracking of the plane. However, since the al-
gorithm does not incorporate prior knowledge of the map, it tends to overshoot when the
direction changes. Notably, the best-performing filter on the actual noisy map, depicted in
blue in each plot, corresponds to the filter with the lowest process noise covariance, (). As is
described in section 3-3-7 this configuration makes the filter less responsive to changes in the
measurements.

The second order filter, which incorporates curvature as one of its states (height, gradient,
and curvature), demonstrates heightened responsiveness to measurement changes. While this
may seem advantageous when examining the performance in figure 3-5¢, this is generally not
the case. As the state space order is higher than the dynamics of the system it is modelling,
the higher order model is overfitting to the data, this reduces the performance when the
changes in the measurements are primarily due to noise.

The figures 3-5e, 3-5f, 3-bg and 3-5h correspond to the approach where prior knowledge is
incorporated in the map (described in section 3-3-5). The plots show that incorporating prior
behaviour in the filter allows accurate simulation of the plane given that the initial state is
correct. This observation confirms the effectiveness of the approach. This approach cannot
be applied to zeroth order filters, as they do not incorporate the gradient or other higher
order terms in the process model.

3-4-1 Reduced noise

The obtained results, showcasing the outcomes with the best tuning parameters, provide
valuable insights into the performance of different filters. It is noteworthy that the posterior
maps exhibit significantly lower MAE compared to the prior maps in all cases, as anticipated.
This demonstrates that the algorithm is does effectively filter noise from the measurements
in all cases. In line with the introductory statements of this chapter, the analysis proceeds
by initially examining the table with less noise before delving into the table with more noise.

The findings in table 3-1 confirm that the zeroth order model outperforms the higher order
models. This is expected as the effect of the changes in scanning direction are not incorporated
in these higher order models. Consequently, the predictions made by these models tend to
overshoot whenever a change in direction occurs, leading to less accurate prior estimates and
ultimately resulting in poorer posterior maps. Moreover, the standard deviation of the prior
maps for higher order models is significantly higher due to the sizeable errors introduced
during direction changes.

Moving on to filters that do incorporate prior knowledge, presented in table 3-2. A notable
improvement in performance is observed compared to filters of the same order without the
incorporation of such knowledge. The first order filter, in particular, outperforms the zeroth
order filter, indicating a better model representation of the surface. The second order filter
performs slightly worse than the first order filter, suggesting a potential issue of overfitting
due to the higher model order.

Shifting focus to the Gauss-Markov based filters presented in table 3-3. Here, the first order
model is best compared with the zeroth order Wiener filter, while the second order model is
compared to the first order filter. It is important to note that the key distinction between
the Gauss-Markov filter and the Wiener model lies in the modelling of the gradient or the
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curvature as a Gauss-Markov process. Notably, the tuning parameters used in the Gauss-
Markov based filters display significant differences, signifying the higher accuracy of models
containing a integrator compared to models that do not. These findings align with the
simulations conducted on the simple map depicted in Figure 3-5. However, the second order
model does not surpass the performance of the first order Wiener process-based model. This
suggests that the noise may be better represented as a white rather than a Gauss-Markov
process.

Table 3-1: Wiener process based filters

State Error Zeroth order First order Second order
(R=0.1,Q =3,P =5) (R=2,Q=1le—4,P =5) (R=10,Q =1le — 6, P = 2)
. Mean  0.286 um 0.314 um 0.418 um
Prior
St.d. 0.424 pm 0.854 pum 0.653 um
Mean  0.078 ym 0.082 um 0.091 pm
Post
St.d. 0.097 um 0.106 pum 0.120 pum

Table 3-2: Wiener process including prior knowledge

State Error Zeroth order First order Second order

(R=0.1,Q=2,P=5) (R=05Q=0.5,P=5)

X Mean - 0.243 um 0.348 um
Prior
St.d. - 0.333 um 0.487 um
Mean - 0.078 um 0.081 pum
Post.
St.d. - 0.098 pum 0.103 pum
Table 3-3: Gaus-Markov based filters
State Error Zeroth order First order Second order
(R=1e—2,P=5,0=1,=16) (R=1e3,P=5,0=1,8=21)
. Mean - 0.303 um 0.252 um
Prior
St.d. - 0.429 um 0.338 um
Mean - 0.077 um 0.078 um
Post
St.d. - 0.097 um 0.098 um

3-4-2 Standard map performance

The tables 3-4, 3-5 and 3-6 display the performance obtained when applying the filters de-
scribed in this chapter to the standard maps (with a lower signal-to-noise ratio). The obtained
results reveal that the models perform approximately equally well when tuned such that the
MAE is minimised. This outcome can be attributed to the substantial amount of noise
present in the system. In the cases that the change in direction is incorporated in the algo-
rithm, no notable improvement in prediction is observed. This lack of improvement can also
be attributed to the large amount of noise present in the measurements, which obscures the
benefits of incorporating such changes.
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An interesting observation is that most models achieve their best performance when the
process noise variance is significantly lower than the measurement noise variance. This con-
figuration renders the filter less susceptible to the noise present in the measurements. It may
however also cause the filter to ’ignore’ relevant information in the measurements, causing it
to overshoot. Additionally, if the initial state is wrong it takes the filter significantly longer to
adjust to the measurements. This effect can be clearly observed in the error maps displayed
in figure 3-6.

A comparison between the error map and the contour plot reveals that the largest errors
occur when there are changes in the gradient of the map. The filters, due to low process noise
variances, struggle to adequately adapt to these gradient changes, leading to heightened error
levels. It is important to note that increasing the process noise as a solution to this issue is
ineffective due to the relatively substantial amount of noise present in the system.

Table 3-4: Wiener process based filters

State Error Zeroth order First order Second order

(R=2,Q=02,P=5) (R=2Q=1le—4,P=5) (R=10,Q=1e—6,P=2)

. Mean  0.697 um 0.665 um 0.713 um
Prior
St.d. 0.875 um 0.854 pum 0.907 um
Mean  0.598 ym 0.593 um 0.619 um
Post
St.d. 0.745 um 0.773 um 0.803 um
Table 3-5: Wiener process including prior knowledge
State Error Zeroth order First order Second order
(R=1e2,Q =5e—2,P=5) (R=1e2,Q=1e—3,P =5)
. Mean - 0.724 um 0.856 pum
Prior
St.d. - 0.900 pm 1.097 um
Mean - 0.621 pm 0.684 um
Post.
St.d. - 0.771 pm 0.867 um
Table 3-6: Gaus-Markov based filters
State Error Zeroth order First order Second order
(R=1,P=5,0=1,=6) (R=1e3,P=5,0=1,8=21)
. Mean - 0.690 um 0.732 um
Prior
St.d. - 0.869 pum 0.907 um
Mean - 0.600 pm 0.626 um
Post
St.d. - 0.749 pum 0.775 um
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Figure 3-6: Heat maps of the MAE between the prior maps and the ground truth (shown in
figure 4-4d) of the Kalman filter algorithms presented in chapter 3. In each of the plots the
equipotential lines of the ground truth map are added to improve the interpretability of the map.

Comparison of Brownian-motion and Gauss-Markov based process models Comparing
the discrete state space models shows that the main difference between the Brownian motion
based models and the Gauss-Markov based models lies within the process noise covariance
matrix ). The state transition matrices, despite containing different terms, are very similar.
The term e 5% converges to zero for low values of 3. Hence, the first order Gauss-Markov
based process model is approximately equal to the zeroth order Brownian motion based
process model and the second order Gauss-Markov based model is approximately equal to
the first order Brownian motion based process model. Comparing their respective prediction
accuracy shows that the Wiener process based models perform slightly better than the Gauss-
Markov based models. This suggest that the true dynamics are better characterised by a state
space model driven by a Wiener process.

Master of Science Thesis R.C. van den Brink



34 Kalman filtering

As mentioned above the main difference between the Wiener and Gauss-Markov based state
space models lies in their process noise covariance matrices, ). The (co)variance correspond-
ing to the lower order terms of the Gauss-Markov based process model have a significantly
lower variance than is the case for the Brownian motion based process models. In both cases
the variance related to the highest order term is largest. The variance decreases as the order
of the state decreases. In the case of a second order model, this implies that the uncertainty
of the prediction is largest for the estimate of the curvature. It is thought that this may not
always reflect the dynamics of the surface accurately, as it is expected that the position of a
malaria parasite may change in a random fashion because the parasite is located in a different
plane. Hence, for future work it is advised to alter the model such that the noise is not only
considered to enter the system via the highest order system state, as is depicted in figure 3-3,
but is also added after the position.

3-4-3 Testing the innovation sequences

In Kalman filter theory what has been referred to as the residual up to this point is commonly
called the innovation. The innovation is the difference between the observed and predicted
measurements. If the Kalman filter is implemented correctly its innovation sequence has sev-
eral properties. Investigation of the innovation sequence can inform the designer of potential
issues.

One property of the innovation sequence is that it is white. White noise is characterised
by having a mean equal to zero. Additionally, the autocorrelation function of a white noise
process is described by a Kronecker delta function. This property can be checked by plotting
an estimate of the autocorrelation function of the innovation sequence. If the innovation
sequence is not white, it indicates that the assumptions of the Kalman filter may not hold in
the given system or measurement setup. Note that it is common to investigate the autoco-
variance of the Kalman filter. In the case that the mean of the process analysed is zero the
autocovariance is equal to the autocorrelation.

Figure 3-7 shows the autocorrelation functions of the innovation sequences of the algorithms
described above. It can be seen that the autocorrelation plots resemble Kronecker Delta
functions. This confirms that the surface can be modelled as a Markovian system. It can
additionally be noted that there are small peaks in the curves of the simplest Brownian
motion filters. These peaks correspond to the position approximately 40 tiles before the
current position. Intuitively this makes sense as these are the positions lying adjacent to
the current state. The peaks are more pronounced in the models that do not incorporate a
change in direction. This corresponds to what was expected because the residual in the error
is larger at the edges of the surface.
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Figure 3-7: Autocorrelation plots of the innovation sequences of the Kalman filter algorithms
implemented in chapter 3.

Table 3-7: Innovation sequence means

Conventional filter Brownian motion (incl. prior) Gauss Markov (incl. prior)
Filter Oth 1.5t 2nd 1st 2nd 1.5t 2nd
Mean 0.093 um  0.063 pm  0.044 pm  0.136 wm  0.042 um 0.003 pm  0.054 pum

Master of Science Thesis R.C. van den Brink



36 Kalman filtering

3-5 Conclusion

This chapter started with an introduction of the Kalman filter and the requirements of the
model in order for the system to converge to a stationary solution. This was followed by a
short summary of the previous work. It was concluded that the state space model proposed
by Wang [24] is not observable if only height measurements at the current position are used.
Additionally, it was proposed to investigate whether higher order models would improve the
performance of the Kalman filter proposed by Zhang et al. [29].

To test whether this is the case higher order Wiener and Gauss-Markov process based state
space models were derived and tested. It was found that in the case that the signal-to-noise
ratio is high and the surface is homogeneous, the first order Wiener process based state space
model outperforms the zeroth order model. However, in the case that the signal to noise
ratio is lowered the filters achieve similar performance. In the latter case, incorporating the
changes of the scanning direction into the filter do not seem to improve the performance
quality. Additionally, the results suggest that the Brownian motion based state space models
outperform the models with a Gauss-Markov input.

In future work, it is suggested to alter the model of the system such that noise is not only
driving the highest order term but also added separately to the height. In doing so the designer
can specify the uncertainty in the curvature or gradient separately from the uncertainty in
the position. This could for example be useful if there is uncertainty in the system that is
specific to the position, such as a malaria parasite that is randomly located slightly higher in
the blood sample.
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Chapter 4

Non-Symmetric Half-Plane Kalman
filtering

The Non-Symmetric Half-Plane (NSHP) Kalman filter is a recursive filtering approach which
can be used to incorporate neighbouring state estimates in the prediction of the future state.
The filter does so by extending the state vector so that it does not only consist of the filter
estimate of the state in the previous position, but a subset of the previously visited positions
is used to improve the prediction. This subset is referred to as the support. The other
positions included in the state are not relevant for computing the prediction. The inclusion of
these positions in the state vector is required for recursive implementation of the filter. The
term Non-Symmetric Half-Plane (NSHP) refers to the specific structure used to determine
which elements should be included in the state vector. This structure enables the recursive
implementation of the filter. The following paragraphs will elaborate on the the specific design
of the NSHP Kalman filter.

Using the NSHP was mentioned but disregarded by Wang [24] for two reasons. First, they ar-
gued that Kalman filtering is a model based filter, due to which suitability for one application
(image restoration), does not guarantee its suitability for other 2D applications. Secondly, it
was argued that applications other than image restoration require additional state variables,
which according to [24] could not be incorporated into the approach. In this section an at-
tempt will be made to show that the developed 2D Kalman processors can be extended to
other applications by developing a filter for height map modelling.

Variogram The NSHP Kalman filter is build on the assumption that the prior state estimate
can be improved by including information from not only the previous scanning position, but
several neighbouring positions in the prediction. In order to test to which extend a given
point on the surface is related to another point, and how this varies with the distance these
points are separated, variograms of the surfaces were investigated.

Rationalised variability theory does not use autocorrelation, but instead uses a related prop-
erty called the semivariance to express the degree of relationship between points on a surface.
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Figure 4-1: Variogram of one of the malaria maps. The lag corresponds to the separated distance
in frames.

The semivariance is half the variance of the differences between all possible points spaced
a constant distance apart. The range of the variogram refers to the distance at which the
semivariance will become approximately equal to the variance of the surface itself. This is
the greatest distance over which the value at a point on the surface are related to the value at
another point. The range defines the maximum neighbourhood over which adding positions
to the state is adding information and hence taking advantage of the statistical correlation
among observations [11].

In this case the sill is manually set to the variance of the input map. It is found that the
range is equal to 15 tiles. Beyond that range the value at a particular point is not related to
the value at another point.

4-1 Implementation of the NSHP filter

The steps of the filter are given in algorithm 3. Each frame corresponds to a coordinate P(i, j).
A NSHP Kalman filter support region S can be defined for each position, the structure of
the support is displayed in figure 4-2b. The recursion can be accomplished because only
previously computed points are used in the computation of the present output. In this report
a support order M indicates M; = My = M. The state estimates corresponding to the
positions in the support are used to predict the state of the next position. The state vector
is a column vector that is also determined by the support order M (see figure 4-2a) and can
be defined as:

[P(z,y), oy P(Ly),
P(NH,y—1), ..., P(L,y—1), (4-1)
P(NH,y— M), ..., Plz—M+1,y— M)’
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Separate lines were used to improve the readability and highlight that the positions correspond
to different rows in the grid. Note that the support region is a subset of the state vector.

I P(x—M,, P(x+M,,
I S ¥ M) M)
M,
7, P(NH, l
y-1 y-1
P(X)S M,, P(x,y)
P(L) )
— M, —
(a) Elements in state vector for NSHP support order M (b) NSHP order M support

Figure 4-2: Display of the state vector and support elements in the NSHP Kalman filter

Using this definition of the state vector the state transition matrix can be defined as:
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This matrix can be split into two sections, namely the first row and the remaining rows.
The latter section propagates all but the ’last’ state estimates. The first row multiplies the
elements of the state vector corresponding to support region with matrices Cy, Co, C3 and Cy
(or scalar weight in the 0" order model case). The sub-matrices C,, correspond to the system
matrices defined in section 3-3. The multiplications each give a prior estimate of the state.
Each prior estimate is weighted using the normalised euclidean norm of the distance of the
support position to the actual position. An example of the matrices corresponding to a first
order implementation of the NSHP filter is given by the following matrices:

1 dx O 1 der dy 1 0 dy
Ci=wi |0 1 0|, Coa=w24|0 1 0|, OCi3=w3|0 1 0 (4-3)
0O 0 1 0 O 1 0 0 1

where w,, correspond to the weights. Note that the sign of the step size dx varies depending
on the position relative to the predicted state.

At the boundaries the support and state transition matrix have to be altered. The boundary
conditions are invoked for computing the last and the first element of each row. Respectively,
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the state transition matrix used at the first boundary condition (line 8 in algorithm 3) is
almost identical to the matrix given in 4-2 except the C' matrix in the second to last column
of the first row is removed. In the state transition matrix for the second boundary condition
(line 15 of algorithm 3) the first two elements of the first row contain a C' matrix and the
lower diagonal identity matrix has been flipped. This ensures the elements in the state vector
are ordered correctly to filter the next row. An example of the steps in each iteration are
given in appendix C in order to visualise the effect of the multiplications.

4-1-1 Process noise

The process noise covariance matrix () is modelled using the same process as is described in
section 3-1-2. As was pointed out previously only the first row in the state transformation
matrix is used to predict the state of the next scanning position. The remainder of the matrix
is used to propagate the required state estimates of previously scanned positions for future
predictions. Therefore, the process noise matrix, ), should only increase uncertainty related
to the first row and not the other elements. This leads to the following design for the process
noise covariance matrix:

Q _ qub @1 (4_4)

Oy O3

where Qsub is approximated to be equal to the process noise covariance matrices derived in
the previous chapter.

4-1-2 Assumptions

All the models above were tested to meet the requirements stated by theorem 1. It was found
that all of the models meet the conditions stated by this theorem. It should be noted that
identical to the conditions mentioned in the previous chapter, for the Gauss-Markov models,
for the process noise covariance matrix, ), to be positive semi-definite 8 has to be larger
than a particular value. For the first order model this corresponds to 8 > 5, for the second
order model this is 8 > 20. If this condition is not met the term (HPH” + R)~! can become
singular.

4-1-3 Pseudo code NSHP algorithm

The pseudo code describing the steps of the implemented algorithm is given below in algorithm
3. The steps in the algorithm are similar to those performed in the conventional Kalman
filtering algorithm 2. The three if statements correspond to the three different cases. In
this case, because the state transition matrix is observable the matrices are not sliced as in
algorithm 2. Instead the update step is altered as follows.

In the update step the elements in the prior state vector are updated based on the differ-
ence between the predicted and the measured value and their respective covariance matrices.
However, not all elements of the state vector were used in the prediction. To ensure only the
state estimates used in the prediction are updated, the elements in the Kalman gain that do
not correspond to the support state estimates are set to 0 (line 13, 21 & 29 of alg. 3).

R.C. van den Brink Master of Science Thesis



4-1 Implementation of the NSHP filter 41

Algorithm 3 Non symmetric half plane Kalman filtering

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

procedure NSHP KF(a,b)

A KF of the same order as the NSHP KF models is used to predict and update the the
elements in the first row and first element of the second row. The corresponding state and
covariance matrices are used to construct xg and P.

z, P = xg, Py > Initialise variables
count = NH + 1
for z in zs do
if higher__order__model and count — 1 modulo NH is 0:
Change sign of dx in F, F},, Fp, and @
if count +1 mod NH == 0:
T =F, 2+ Bu > Predict step
P=F,PF'+Q
r=z—Hzx > Update step
K =PHT(HPHT + R)~!
K|slc] =
r=x+ Kr

elif count mod NH == O:
z = Fy,z 4+ Bu > Predict step
P=F,PFL+Q
r=z—Hzx > Update step
K =PH"(HPH" + R)~!
Klslc] =
=+ Kr
P=(I—-KH)P

else:
r=Fz > Predict step
P=FPFT +Q
r=z—Hzx > Update step
K =PHT"(HPHT + R)™!
K[slc) =0
T=x+ Kr

end for
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4-2 Results and discussion

The results in this section were obtained altering the code of the FilterPy Kalman filtering
module [9]. The code was adapted as is described in the pseudo code above. Similar to the
approach taken in the preceding chapter, we begin the analysis by examining the behaviour
of the filter when applied to a simple map. Just as in the previous chapter, the gradient
of this map is set to a constant value of one in all directions.
in the figures, clearly demonstrate that the higher order models (corresponding to figures
4-3b, 4-3c, 4-3f) accurately trace the measurement map when initialised with the correct
This alignment between the higher order models and the measurement
map highlights the effectiveness of these models in capturing the underlying dynamics of the
system. Note that both lower order models (corresponding to figures 4-3a, 4-3e), where the
noise is not integrated, lag behind the measurement map. As is explained more elaborately

initial condition.

in the previous chapter, this is due to underfitting.
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= Filter (R=1,0=1)
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Filter (R=1,Q =0.01)
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Figure 4-3: For each of the implemented algorithms the first 40 steps are shown. The measure-
ment map (shown in figure 4-3d) has a gradient equal to one in both the y and z direction. In
all runs complete knowledge of the initial state of the system is assumed. In each plot the blue
line corresponds to the tuning parameters that were found to achieve the best performance.

4-2-1 Reduced noise

Tables 4-1 and 4-2 provide an overview of the mean absolute errors (MAE) between the prior
maps and the ’true’ maps obtained using algorithm 3. When compared to the preceding
chapter, the models lacking an integrator manifest notably diminished performance. Again,
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the deficiency in fitting leads to a delay in the filters’ alignment with the actual dynamics.
Furthermore, this effect is exacerbated by the inclusion of neighbouring positions in the
estimation process, where higher-order state derivatives such as gradient or curvature are
not used to propagate the height at these positions to the present state. The higher order
filters demonstrate comparable performance to the filters derived in the previous chapter. To
achieve this performance level they do however require very low measurement noise. This
indicates that the filter design does not accurately capture the dynamics of the modelled

surface.
Table 4-1: NSHP Wiener process based filters
State Error Zeroth order First order Second order
(R=1e—2,Q=1,P=5) (R=1e—2Q=1,P=5) (R=1e—2,Q=1,P=5)
. Mean  0.814 um 0.343 pum 0.332 um
Prior
St.d. 0.879 um 0.586 pum 0.554 pum
Mean  0.079 pm 0.079 pum 0.334 pm
Post
St.d. 0.099 pum 0.099 um 0.554 pum
Table 4-2: NSHP Gauss Markov process
State Error Zeroth order First order Second order
(R=1e—3,P=50=1,8=6) (R=1le—3,P=5,0=1,8=21)
Mean - 0.739 um 0.325 um
Prior
St.d. - 0.966 pum 0.556 um
Mean - 0.079 um 0.079 um
Post
St.d. - 0.099 pm 0.098 pum

4-2-2 Performance on standard maps

In this section the performance of the algorithms on the height maps as presented in 2-3-1 is
evaluated. The MAE between the prior and ’true’ underlying maps is given in tables 4-3 and
4-4. Tt can be observed that the performance is significantly worse than of the algorithms
in the previous chapter. The MAE heat maps are displayed in figure 4-4. The heat maps
show the error has been smeared out over a larger area. This indicates that the information
from neighbouring positions on an adjacent row is not propagated to the to be predicted state
correctly. Why this is the case will be explained more elaborately in the following section.

Table 4-3: NSHP Wiener process based filters

State Error Zeroth order First order Second order

(R=1e—2,Q=1,P=5) (R=1,Q=1,P=5) (R=1,Q=1,P=5)

. Mean 1.015 uym 1.111 pm 1.267 uym
Prior
St.d. 1.200 pm 1.400 pm 1.555 um
Mean  1.179 um 0.863 um 0.873 um
Post
St.d. 1.478 ym 1.067 um 1.079 ym
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Table 4-4: NSHP Gaus Markov process including prior knowledge

State Error Zeroth order First order Second order

(R=1e—2,P=5,06=1,=6) (R=0.1,P=5,0=1,8=21)

. Mean - 1.244 pm 1.120 pm
Prior
St.d. - 1.457 um 1.420 um
Mean - 1.174 pm 0.872 pm
Post
St.d. - 1.457 pum 1.074 pm
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Figure 4-4: Heat maps of the MAE between the prior maps and the ground truth (shown in
figure 4-4d) of the NSHP Kalman filters. In each of the plots the equipotential lines of the ground
truth map are added to improve the interpretability of the map.

4-2-3 Innovation sequence analysis

Table 4-5 gives the means of the innovation sequences of the implemented NSHP filters. All
means are approximately 0. The autocorrelation functions of each of the models however does
not resemble a Kronecker delta function. This implies the measurements are influenced by
previous or future measurements or that the system dynamics are not adequately captured
by the model. In such cases, the Kalman filter’s assumption of independence between time
steps is violated, leading to suboptimal state estimation. Why this is the case is described in
the following section.
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Table 4-5: Innovation sequence means

Brownian motion (incl. prior) Gauss Markov (incl. prior)

Filter 0" 1 ond 15 ond

Mean 0.005 ym  0.03 wm  0.02 wgm  0.009 um  0.05 pm
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Figure 4-5: Autocorrelation plots of the innovation sequences of the implemented NSHP Kalman
filter algorithms.

4-2-4 Limitations of the NSHP filter

This subsection describes the issues with the NSHP filter that are hindering its performance.
The deterioration of the performance of the filters is attributed to two issues, namely the
observability of the states and the violation of the Markov assumption. The section starts
with a discussion of the observability of the states, following a discussion on whether the
current filter design satisfies property 1.

Observability Despite the (F, H) pair passing the observability test it i s thought that there
are issues with the state reconstruction from the measurements. As was described in section
3-3-5 when the gradient estimate in the y direction is also incorporated in the state transition
matrix, it is no longer observable. Intuitively it makes sense that using only one height
measurement, made by scanning mostly along one axis, does not provide sufficient information
to reconstruct the gradient in both the x and y direction accurately at each position.
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In the case of the NSHP filters the (F, H) pairs are observable. This is because the state is
build up of sub-state estimates at previous positions which add information to the system.
Despite passing the test for observability, a poor estimate is used for the y gradient in most
positions. Algorithm 2 is used to generate the state estimates of the positions along the first
row and the first position on the second row. The estimates are used to initialise the NSHP
filter structure. However, in algorithm 2 the state transition matrix is partitioned at each step
such that only one of the gradients is updated. Due to this the gradient in the y-direction
stays equal to its initial estimate along the first row. This same gradient is used by the NSHP
algorithm to project the neighbouring states in the row above the current row to the current
row. Therefore the y-gradient may however not be accurate at all.

This shows that the higher order models, containing higher order state estimates in multiple
directions are not appropriate for the NSHP algorithm. One approach to solving this issue
may be omitting states related to the y-direction all-together. When a step is made in the
y-direction the state transition matrix could be partitioned as to not include the gradient and
higher order derivatives in the x-direction in the prediction, and the process noise () can be
increased to reflect the uncertainty in the estimate.

The Markov property The NSHP filter was originally developed for image reconstruction
[28]. The pixel values in an image often exhibit local correlations and dependencies. Each
pixel’s value is influenced by its neighbouring pixels, and there may be spatial coherence within
the image. In this case the Markovian assumption may hold reasonably well, as the immediate
past pixel values can provide useful information for predicting the current pixel value. The
Kalman filter, with its ability to incorporate both measurement and state information, can be
effective for smoothing the image by taking advantage of the Markovian nature of the pixel
values.

Height measurements from a map are not inherently Markovian, as they typically depend on a
variety of factors and considerations that extend beyond the immediate location or state. the
appropriateness of applying the Kalman filter should hence carefully be considered depending
on the application at hand. In cases that the surface is relatively uniform or homogeneous
over small spatial scales, height measurements can exhibit Markovian behaviour. This is
assumed to be the case in the previous chapter. This implies that it has to be assumed that
the elevation changes are gradual and consistent within a local area.

Specifically to the current implementation of the NSHP Kalman filter. It can be derived that
the filter is not strongly optimal (meaning both the prediction and update are optimal). This is
due to the following reason. As the filter moves across the surface, filtered data corresponding
to previous positions is used in the computation of the prior state. This violates the Markov
property, due to which the filter is no longer optimal. In the correction of their previous
paper [26] a modification is proposed for strong optimality. Regrettably, the existence of
the correction only dawned upon the author of this thesis upon concluding the writing of it.
Therefore, it is left outside the scope of the thesis.
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4-3 Conclusion

As was mentioned in the previous section, Wang [24] disregarded the NSHP algorithm for two
reasons. They were correct in stating that as the Kalman filter is a model based filter suit-
ability for one application, does not guarantee its suitability for other 2D applications. More
specifically, it is important that the filtered surface is homogeneous, such that the Markovian
assumption holds. Secondly, it was argued that applications other than image restoration
require additional state variables, which according to [24] could not be incorporated into the
approach. In this section it was shown that the NSHP filter can incorporate additional state
variables in the filter design.

As was pointed out in the previous section the reason that the NSHP algorithms gave poor
results was due to issues with the state observability and the violation of the Markov property.
In order to solve the issue with the observability of the system a different description of the
system dynamics should be considered. To solve the latter issue Woods [26] proposed a
correction of their previous work. In conclusion, further research into the applicability of the
NSHP Kalman filter is necessary in order to use it to accurately reconstruct terrain models.
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Chapter 5

Conclusion

The goal of this thesis was to improve the speed and accuracy at which high-quality, in-focus
images can be acquired by an automated microscope. To do so two modifications to the work
by Zhang et al. [29] were investigated. Firstly, in chapter 3 higher order process models were
implemented. Secondly, in chapter 4 an attempt was made to improve the prior estimate
through incorporating information from previously estimated neighbouring positions in the
prediction using a two dimensional Non-Symmetric Half-Plane (NSHP) Kalman filter. The
performance of the proposed scanning algorithms was tested through the simulated applica-
tion of the algorithms using a height map of a thin smear malaria specimen. The accuracy
of the algorithms was compared to state of the art focus map surveying procedures.

In summary, it was found that the Kalman filter based on a zeroth order model as proposed
by Zhang et al. [29] outperforms all other proposed algorithms if the measurements are noisy.
If the signal to noise ratio is improved it is found that a first order Wiener process model
performs best. The improvement in the accuracy is significant. Using Delaunay based inter-
polation, which is a state of the art method, the mean error is 0.94 pm. Using the zeroth
order model reduces the error to 0.70 um for the prior estimate, and 0.60 um for the posterior
estimate. It should be noted that the performance of the algorithms is highly dependent on
the characteristics of the surface modelled.

With regards to NSHP it was found that the implementation proposed in this thesis performs
poorly due to issues with the state observability and the violation of the Markov property.
With regard to the former, the algorithm and state space model need to be altered such that
the states are observable. To solve the latter issue, Woods [26] proposed a correction of their
previous work. Further research into the applicability of the NSHP Kalman filter is necessary
in order to use it to accurately reconstruct terrain models.

5-1 Further research

In this thesis a first attempt was made to extend the Kalman filter based scanning approach
proposed by [29] to obtain more accurate predictions of the best-in-focus position under noisy
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circumstances. Faster and more precise scanning remains a decisive factor in the popularisa-
tion of automated microscopy. Below direction for further research are proposed.

Kalman filtering With regards to the NSHP Kalman filter many aspects can be investigated
more closely. It would be of interest to optimise the weights used, the size of the support
region and boundary conditions as suggested by Woods [26]. In order to save computational
power the reduced order update and the strip processor as proposed by Woods and Radewan
[28] could be implemented.

Other Kalman filtering approaches that would be interesting to apply to this problem are
periodic Kalman filters or Multiple Model Adaptive Estimators (MMAE). The serpentine
scanning direction introduced periodic elements in the measurement data. In this thesis an
attempt to include the information in the previously visited positions was made with the
NSHP algorithm. A periodic Kalman filter may however be more effective at doing so. In
MMAE, multiple models are ran alongside each other, at each position the state estimates
of the filter are blend using their likelihoods [8]. This approach could be effective to model
surfaces with changing characteristics. The surface may be flat in one segment, where higher
order terms would cause overfitting to the data, and have a changing slope in another segment,
requiring higher order models. MMAE provides a solution to this problem.

Delaunay triangulation Focus map surveying using Delaunay triangulation based interpola-
tion showed promising results in this thesis. Investigating this approach further might enable
improving the scan time significantly. An interesting approach would be to dynamically de-
termine the grid in which the positions are sampled. The distance between each point could
depend on the characteristics of the underlying map. For example, it would be interesting
to link the sampling rate to the curvature of the surface. If the gradient is changing fast a
higher sampling rate would be required to accurately reconstruct the surface and vice versa.
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Appendix A

Focus metrics

This appendix describes the method applied to determine the best in focus image at each
tile. It starts by describing how the acquired figures are preprocessed in order to remove noise
and maximise contrast of the features related to the Giemsa stained malaria parasite. The
following section describes the selection of the focus metric and related characteristics.

A-1 Preprocessing

The resolution of an imaging system is fundamentally limited by the diffraction limit of the
objective lens. In accordance with Rayleigh’s equations, the diffraction-limited resolution of
a 60x lens with a numerical aperture of 0.85 can be calculated to be 0.39 um. The resolution
of digital imaging systems can be further restricted by the resolution of the camera, which
is dependent on both the pixel size and the system magnification. The effective pixel size of
the system in the object plane is equal to the pixel size divided by the system magnification,
which, in the present case, amounts to 0.04 um.

To achieve the diffraction-limited resolution, the Nyquist sampling theorem stipulates that
the effective pixel size should be half the diffraction-limited resolution. Should the effective
pixel size be greater than that required by the Nyquist theorem, aliasing will occur, whereas
if it is significantly smaller, the image will be oversampled, which introduces noise into the
image. In practice sampling with a sampling rate slightly below half the diffraction-limit gives
the best result.

In the current application, the effective pixel size is roughly 10 times smaller than the
diffraction-limited resolution. As is explained in the previous paragraph this implies the im-
age is oversampled significantly, introducing noise into the image. Denoising can be achieved
by low-pass filtering the image. In the next section a brief comparison of different low pass
filtering methods is given.
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A-1-1 Low pass filter design

The focus metric used by AiDx Medical was originally the variance of the Laplacian. To
compute the Laplacian, the image was first resized using a bilinear method from OpenCV.
This resizing acts as a type of low-pass filter. Different methods can be sued to execute the
resizing. The choice of the filter size and type significantly impact the information in the
resulting image as will be described in the following paragraph.

The width of the kernel used in the filter is inversely proportional to its bandwidth, mean-
ing that a wider kernel leads to a smaller bandwidth and more aggressive filtering. When
downsizing an image, the bandwidth should be reduced to a level that can be represented in
the new image to prevent aliasing. This requires an increase in the kernel size of the filter.
According to [14], the OpenCV resize method does not automatically adjust the kernel width
based on the downsize factor, while the Pillow module does.

To evaluate the impact of these differences, an out-of-focus image was resized to 1/12%" of its

original dimensions using both OpenCV and Pillow. The Laplacian of the resulting figures
was computed and is shown in Figure A-1. Displaying the Laplacian was chosen because it
amplifies the high-frequency content of the image.

0 0 250
25 25
200
50 50
150
75 75
100 100 100
125 125 50
150 150
0
0 50 100 150 200 0 50 100 150 200
(a) OpenCV (b) Pillow

Figure A-1: Laplacian filtered, out-of-focus images that have been resize to 1/12t" the original
size using bilinear image resizing with (a) OpenCV and (b) Pillow

Additionally, the choice of filter has a significant impact on the frequency distribution of the
down sampled image. An averaging kernel, which can be represented by a boxcar signal,
yields a sinc() function in the frequency domain. The lobes of the sinc() function amplify
high frequency content, i.e., noise, in the image. While one may consider using the Fourier
transform pair to obtain an ideal low pass filter, this method results in the removal of edge
details due to the sharp cut-off frequency. In practice, a Gaussian filter is found to be the
best choice, as it offers a favourable trade-off between noise suppression and edge preserva-
tion. Moreover, the Fourier transform of a Gaussian filter is also a Gaussian function, which
effectively mitigates ringing artefacts in the resulting image.

As a preprocessing operation all the figures in this report are filtered using a Gaussian filter.
The standard deviation of the filter is set to 7 pixels. This corresponds to the kernel width
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required to eliminate noise in the image due to oversampling (based on the diffraction limit
computed using the maximum wavelength in the visible spectrum).

0 0 250
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1250 1250 100
1500 1500 %
1750 1750
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

(a) Original (b) Standard deviation = 8 pixels

Figure A-2: Laplace filtered images of an in focus thin smear malaria sample. The original is
displayed in (a) and the Gaussian filtered image (b).

A-1-2 Colour selection

The malaria specimens utilised in this study were subjected to staining with Giemsa stain,
resulting in a distinctive purple hue exhibited by the malaria parasites. To exploit this charac-
teristic in the autofocus algorithm, the red-green-blue (RGB) colour channels were examined.
The greatest contrast was observed in the green colour channel. This observation can be
attributed to the fact that purple mainly comprises blue and red hues, resulting in minimal
green channel intensity within purple areas. In contrast, the rest of the image comprises grey
and white areas that show nearly uniform intensity across all channels. Consequently, the
blue channel lacks contrast, while the green channel exhibits high contrast. Therefore, only
the green colour channel is used to compute the focus metrics in this paper.

A-2 Focus metric selection

In order to determine which focus metric should be used to find the best in focus position a
comparison of 5 focus metrics was made, namely: the focus metric originally used by AiDx
medical, the mean gradient, the variance of the Laplacian, the normalised variance and the
JPEG file size.

These focus metrics were selected for the following reasons. Comparative studies on the
performance of focus metrics on biological specimen using brightfield microscopes by [19],
[20], [5] and [10] concluded that the normalised variance provide the best overall perfor-
mance. Additionally, they mentioned the derivative based metrics are fast, simple and robust
to subsampling. As these were originally applied by AiDx medical they were found worth
investigating further. Frequency based focus metrics were found to be to computationally
expensive to be ran on our system, which has a limited computational capacity. Using the
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JPEG file size however allows a computationally frequency based method that had shown
promising results [7]. The results obtained are described in the following section.

A-2-1 Deep learning

Deep learning methods have been applied to obtain in focus images of pathology slides. [3]
describes the different methods can be split up into two category, namely: 1) Defocus image
detection and 2) Virtual refocusing. In the first category deep learning methods are applied
in order to determine the distance from the measured, out of focus, image to the position
where the best in focus image can be made. The second category uses deep learning methods
to create a virtual in focus image from any image along the optical axis.

The paper by [3] reports promising results. The approach allows single-shot autofocusing and
requires no additional optical hardware. Thus enabling fast and economical autofocusing.
There are however also several disadvantage to this approach. First of all, the refocusing
range of this approach is relatively short. Secondly, a change in the optical hardware may
affect the autofocusing performance. Thirdly, the system may fail for new features or new
types of specimen on which the employed algorithms have not been trained. Lastly, the z-
stacks of the to be imaged specimens have to be available to train the algorithms. Obtaining
this data can be time consuming and costly.

This approach could be implemented complementary to a different autofocusing approach
which is based on first principles. As such the system will always be able to create an in focus
image of a variety of specimens and simultaneously collect data on which the complementary
deep learning model can be trained. If a trained deep learning algorithm is available for
a particular specimen it can be employed in order to speed up the autofocusing and hence
scanning procedure. Because of the disadvantages related to deep learning methods only first
principle based methods were implemented in this thesis work.

A-3 Results

Focus metric accuracy The performance of the focus metrics was evaluated using six stacks
obtained from different positions along a Giemsa-stained thin smear malaria pathology slide.
Prior to analysis, the stacks were preprocessed as outlined in section A-1. The average step
size along the z-axis used is 0.19 pum. The visually determined best in focus position of each
stack served as the reference for comparison with the focus metric based results, where the
best in focus position corresponds to the position of maximum focus metric value.

To determine the accuracy of the focus metrics, the mean difference between the reference
and focus metric based best in focus positions was calculated for the analysed stacks. The
results are presented in table A-1. Among the focus metrics examined, the frequency-based
approach performed the best.

Considering that a 60x objective lens has a depth of field of 1 um, a mean error of an order
of magnitude lower is desirable in focus metric analysis. Therefore, further improvement in
accuracy is desired. If computational power is available, it is recommended to explore the
implementation of additional frequency-based methods.
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Table A-1: Error of the tested focus metrics

Focus metric  Original = Mean grad. Var. of Lap. Norm. var. JPEG file size

Error 26.17 um 2.27 pm 2.20 pm 1.27 ym 0.97 um

The original autofocus approach performs poorly. This is mainly attributed to the prepro-
cessing steps. As is described in section A-1-1 improper resizing using Open CV amplifies
high frequency content (noise) in the image. A Laplacian filter is sensitive to a high frequency
content in the image and hence reaches its maximum variance in an out of focus position,
where the image contains a lot of noise.

Comparable results are obtained using the mean of the gradient and variance of the Laplacian
with the adjusted preprocessing method. It is thought that the latter slightly outperforms the
former because it is more sensitive to high frequency content in the image. The smallest error
is obtained using frequency based 'JPEG file size’. This is thought to be the case because
frequency based method is most sensitive to small changes in high-frequency details. The
generalisation of these findings to other specimens requires additional investigation. The
performance of focus metrics depends on the specimen specific features and the imaging
system.

It was chosen to use the normalised variance as a focus metric in the remainder of the report
because of its ease of online implementation, low computational burden and relatively high
accuracy.

Determining step size The step size used for acquiring a focused image must be chosen
carefully to balance image quality and acquisition time. A step size that is too large will
result in low-quality figures, while a step size that is too small will increase the acquisition
time. The depth of field of the objective lens used provides a logical limit for the step size (1
pum for a 60x objective lens). To determine the appropriate step size, the mean accuracy for

each focus metric at different step sizes is computed. The resulting plot is displayed in figure
A-3.

Surprisingly, the mean error did not increase immediately for all focus metrics as the step
size increased. This is because the maximum of the focus measure set with the smallest
step size does not always correspond to the best position. One or more subsampled sets
may contain maxima that are closer to the actual best position, leading to improved average
accuracy. However, when the sample rate becomes too high, a majority of the subsampled
focus measure lists maximum are worse than the original maximum, resulting in deteriorated
accuracy. The JPEG file size and normalised variance have sharper peaks and are more
accurate, and thus, the described effect is not as significant for those focus metrics.

The optimal step size depends on the features of the applied focus metric and the desired
image quality, and should therefore be determined by expert medical staff.
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Figure A-3: Analysis of the required step size.
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Appendix B

Observability

As is described in section 3-3-6 the observability of a state space model describes whether the
measurements contain sufficient information in order to reconstruct all the state variables.
The formal definition of the observability of a Linear Time Invariant (LTI) system is given
below.

Definition 1. The LTI system:
x(k+1) = Az(k) + Bu(k) (B-1)
y(k) = Cx(k) + Du(k) (B-2)

is observable if any initial state x(k,) is uniquely determined by the corresponding zero-input
response y(k) for k, < k < ky, with ky, finite.

There are two approaches that are commonly used to test whether a LTI system is observable.
The two approaches are described in the lemmas below:

Lemma 1. Observability rank condition ([16] ) The LTI system B-1 is observable if and
only if
rank(Oy) = n (B-3)

where Oy, is the observability matriz. The observability matriz is defined as

C

CA
On=| (B-4)

_CAn_l_

Lemma 2. Popov-Belevitch-Hautus observability test ([6]) The LTI system B-1 is
observable if and only if, for all X € C™,x # 0, such that Ax = Az, it holds that Cz # 0.

Below an example is given of how the state space models presented in the thesis will be shown
to be observable (or not) using one of the lemmas presented above.
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B-1 Conventional Kalman filters

The observability matrices in this section 3-3-6 correspond to the state space models presented
in section 3-3. For the presented zeroth order model the the observability matrix is {1] . This

matrix is full rank and hence the state is observable. For the first and second order systems
we obtain the following observability matrices:

10 0
s ]- 0 n
o — | 0" = |1 dr las? (B-5)
1 dz
1 2dz 2dz?
We can determine their rank through the following steps:
1st 1 O 1 O 1 0

1 dx 0 dx 01

1 0 0 1 0 0 1 0 0 100
0™ =11 dz Llda?| ~ |0 do Ldz?|~ [0 dz 0 |~|0 1 0 (B-7)
1 2dz 2dz? 0 0 dx? 0 0 dz? 00 1

It is shown that the observability matrices are full rank, and the system is observable if the
stepsize, dx, is chosen sufficiently large. If the step size dx becomes to small the observability
matrix may loose rank due to numerical precision issues and the accumulation of round-off
errors.
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Appendix C

NSHP system matrix iterations

In this appendix the iterations using the system matrices defined in section 4 are shown in
order to build intuition for the described steps. All the iterations corresponding to one row
of the to be scanned area are shown.

The positions along the first row and the first position on the second row are determined
using a Kalman filter as described by algorithm 1. This information is combined in the right
structure to form the input matrices of the NSHP Kalman filter. How the process model
propagates the states is shown in the steps below.

Regular case multiplication

«%10 01 00 0 0 O CQ Cg 04_ I9
Yo Vi Y2 V3 Ya Vs Ye Y7
“'0o'0’'e0‘e’'eof0 ®@® g I 00000 0 0 0]z
1615 1413 ;
% 0O00000 |90 o1 0 70000 0 0 0]z
X 17 18 19 20 21 22 Qb
: O 00000 T2 00710000 0 0f]|x
5 0000000 D
25 26 27 28 29 30 31— 3 zg | =10 0 0 I 00 0 0 O] |z
%O 00000 DD ;
x54b39©3803703503503b33© T4 0 0 0 O 0 0 0 O 5
X6 4b42043o440450460 db ASO *’BS 0 O O O O I 0 0 O :1:6
0 0 0" 000D 6 000000 I 0 0]z
27| [0 00000 0 I 0] as

Repetition of previous step
The previous multiplication is repeated to show the recursion (line 22, algorithm 3).
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NSHP system matrix iterations
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Several intermediate steps are not shown for briefity of notation.

previous and following step.
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First boundary case (line 8 of algorithm 3).
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The only difference with the previous system state transition matrix is that one less state is
included in the prior computation.
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Second boundary case (line 15 of algorithm 3)

In this case only two states are used to predict the next state. The identity matrices are placed
along the anti diagonal to ensure that the state vector is in the right order for recursion on
the following row.
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WSI
FM
FoV
DoF
NSHP
LSI

LTI
PSD
MAE
MMAE

Whole Slide Imaging

Focus Metric

Field of View

Depth of Field

Non-Symmetric Half-Plane

Linear Space Invariant

Linear Time Invariant

Power Spectral Density

Mean Absolute Error

Multiple Model Adaptive Estimators
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