TUDelft

Analyzing the Impact of Self-Admitted
Technical Debt on the Code Completion
Performance of Large Language Models

Lucas Witte!
Supervisor(s): Prof. Dr. Arie van Deursen',
Assistant Prof. Dr. Maliheh Izadi!,
Ir. Jonathan Katzy,!, and Ir. Razvan Mihai Popescu!

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Lucas Witte

Final project course: CSE3000 Research Project

Thesis committee: Prof. Dr. Arie van Deursen, Assistant Prof. Dr. Maliheh Izadi, Ir. Jonathan
Katzy, and Ir. Razvan Mihai Popescu, Associate Prof. Dr Avishek Anand

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Analyzing the Impact of Self-Admitted Technical Debt on the
Code Completion Performance of Large Language Models

Lucas Witte

Delft University of Technology
Delft, The Netherlands

Abstract

Large Language Models (LLMs) are increasingly integrated into
development workflows for tasks such as code completion, bug
fixing, and refactoring. While prior work has shown that removing
low-quality data—including data smells like Self-Admitted Tech-
nical Debt (SATD)—can reduce model performance, the isolated
effect of SATD at inference time remains unclear.

This study investigates the impact of SATD on LLM performance
during code completion. Using The Heap dataset, we annotate over
5 million Java files with SATD bitmasks and construct a set of in-
put-target pairs based on varying SATD contexts and masking
strategies. Three code generation models, SmolLM2, StarCoder2,
and Mellum, are evaluated on both comment and method genera-
tion tasks using standard text-based metrics and manual semantic
classification.

Our results show that the presence of SATD in input has a negli-
gible effect on generation quality. Instead, performance is primarily
driven by target method length, structural complexity, and context
size. We also find that metrics may misrepresent semantic correct-
ness in the presence of non-functional elements such as comments.
These findings suggest that careful control of input complexity is
more critical than the presence of SATD alone when evaluating
LLM performance on code.

Keywords

data smells, code generation, large language models, SATD

1 Introduction

Large Language Models (LLMs) have become widely used across
various applications. As LLMs become more integrated into develop-
ment tools and workflows, accurately evaluating their performance
is crucial. Practitioners rely on these models for tasks like code com-
pletion, bug fixing, and refactoring. Understanding how input to a
model can affect its behavior is essential to ensure its effectiveness
and reliability in practice.

A key factor influencing model performance is the quality of
training data. To ensure both efficiency and quality during training,
datasets are typically preprocessed to address common data quality
issues, such as duplicates, missing values, or outliers. In addition
to these more apparent problems, recent work has identified a
class of less obvious issues known as data smells [1][2]. In the
context of code-related tasks, these smells are analogous to code
smells in software engineering. One specific smell is self-admitted
technical debt (SATD). This refers to comments in the source code
where developers explicitly acknowledge technical debt (TD). TD is
suboptimal code that is often introduced in rushed development, as
quick and temporary fixes. The idea is that in the short term, these

design choices are valuable, but it also creates debt since it needs
to be paid off in the future. Common examples of SATD include
comments marked with TODO or FIXME.

Recent work has shown that removing data smells, including
SATD, from training data can reduce model performance [3]. How-
ever, this raises important questions about the nature and impact
of such data. Specifically, little is known about the isolated effect of
SATD on LLM performance, especially when SATD is provided at
inference time as part of the input.

Moreover, understanding the impact of SATD is critical for the
use and interpretation of benchmark datasets. If datasets used for
evaluation contain data smells like SATD, they may artificially in-
flate or deflate model performance metrics depending on whether
and how models leverage these artifacts. This can lead to misleading
conclusions about model capabilities and hinder fair comparison.
Thus, analyzing SATD’s effect informs better dataset curation and
evaluation strategies to improve the reliability and validity of bench-
marking LLMs.

To bridge this gap, this study investigates the impact of SATD on
code completion performance using LLMs. We base our analysis on
The Heap [4], a dataset that consists of source code which has been
decontaminated with respect to public training datasets, enabling
a fair evaluation. Specifically, we will be answering the following
research questions:

RQ1 What is the presence of SATD in The Heap?

RQ2 What is the impact of SATD on the performance of LLMs for
code completion tasks?

RQ3 Do models generate correct code, that doesn’t match (broken)
ground truth?

To answer these questions, we perform an experimental study.
First, we use a SATD detection tool to annotate The Heap with bit-
masks indicating the presence of SATD. Based on these annotations,
we construct input—target pairs for different scenarios and masking
strategies. These inputs are fed to three code-generating LLMs:
SmolLM2 [5], StarCoder2 [6], and Mellum [7], and its outputs are
evaluated quantitatively and qualitatively.

Our results show that while SATD is present in a relatively small
portion of The Heap dataset, it does not significantly impact the
code completion performance of the evaluated LLMs. Instead, we
find that other factors—such as target method length, structural
complexity, and available context—play a much more substantial
role in influencing generation quality. Furthermore, our qualitative
analysis reveals that models do not recover from flawed or broken
ground truth, and that automatic metrics may misrepresent seman-
tic correctness when non-functional elements, such as comments,
are present.

// TODO: implement proper login for admin
users

// FIXME: this method is too long and needs to
be refactored

// This is a workaround to ensure that the
directory stream is always closed

Figure 1: Examples of SATD comments

These findings contribute to a deeper understanding of how
contextual elements like SATD influence LLM behavior during
inference. They also underscore the importance of careful experi-
mental design when evaluating model performance. By isolating
the effect of SATD, we provide practical insights for researchers and
practitioners seeking to understand and improve the robustness of
LLM-based code generation systems.

2 Background Research

Technical debt has been a topic of active research, particularly its
impact on software quality and project management. Detection of
technical debt (TD) can be valuable because it allows developers to
estimate the extent and severity of the debt. With this information,
they can go and fix the TD to prevent it from further hindering
development. A particularly accessible form of TD is SATD, where
developers explicitly acknowledge suboptimal code or design in
comments. These comments can take many forms. Some illustrative
examples are shown in Figure 1.

SATD is appealing for detection because it can be found directly
by analyzing source code comments. Numerous tools have been
developed to detect SATD, initially using pattern-matching ap-
proaches. For instance, a foundational study manually analyzed
thousands of comments and identified 62 comment patterns that
indicate SATD [8]. With the rise of machine learning and natural
language processing, more advanced techniques have emerged, in-
cluding text mining, deep learning models, and neural networks [9-
11]. These newer tools often integrate additional data sources, such
as issue trackers, pull requests, and commit messages, to enhance
detection accuracy and provide a more comprehensive project-level
view of technical debt.

Despite these advancements, one persistent challenge is the
limited accessibility and reproducibility of SATD detection tools. A
recent systematic literature review found that out of 68 tools, only
8 were publicly available, and even fewer were functional or easy
to integrate into further research workflows [12].

Detection of SATD is also used to clean large datasets used to
train LLMs [2]. SATD is not desirable since it contains suboptimal
code that might negatively impact the performance of trained mod-
els. It has been shown that removing 12 categories of data smells,
including SATD, before training code summarization models leads
to a significant improvement on the performance of code summa-
rization [3]. However, there has been no research on the impact of
SATD in isolation, neither for training purposes nor for prompting
purposes.

Lucas Witte

3 Methodology

To answer the research questions, a multi-stage pipeline is con-
structed, illustrated in Figure 2. We first detect SATD in The
Heap (3.1). Then we generate input-target pairs (3.2), which are
used by models to generate code (3.3). Finally, the generated code
is evaluated both quantitatively and qualitatively (3.4). To support
reproducibility, all code and data used in this pipeline, including
intermediate results, are publicly available!.

3.1 SATD Detection

SATD detection is performed in The Heap. This is a dataset that
consists of source code that is not part of the training data for the
LLMs we will be evaluating. This ensures a fair evaluation of the
model’s performance on unseen code.

There are three steps for SATD detection. First, the comments
in a file are extracted using tree-sitter. Next, the comments are
preprocessed by removing: license comments, Javadoc comments,
and commented out code that do not contain a task annotation (i.e.
TODO, FIXME, or XXX). This follows the preprocessing steps done to
arrive at the dataset [13] used to train the SATD Detector [9], ensur-
ing consistency between our input data and the training conditions
of the model. Finally, we use the SATD Detector tool to identify the
comments likely to contain SATD. It uses a text-mining approach,
this method has been shown to outperform earlier pattern-matching
techniques in both accuracy and recall.

During detection, a bitmask is generated for each file, where ‘0°
indicates code not associated with SATD, and ‘1° marks code iden-
tified as SATD. These masks are stored as additional annotations in
the dataset.

To answer RQ1, we perform a presence analysis of SATD in the
annotated dataset. We quantify its prevalence both at the dataset
and file level, measuring overall SATD frequency, the proportion
of affected files, and SATD density per file.

3.2 Input and Target Generation

To evaluate the impact of SATD on LLM performance (RQ2) and
their ability to generate semantically correct but non-matching
code (RQ3), we construct various input-target pairs based on the
SATD annotations. Each case specifies a masked target region and
an input context constructed according to two masking strategies:
causal and Fill-in-the-Middle (FiM).

In causal masking, the input consists solely of tokens preceding
the target, and the model predicts the next tokens in left-to-right
order. In FiM masking, the input includes both prefix and suffix
surrounding the target. FiM is especially useful for tasks such as
inserting code between blocks or generating comments above meth-
ods, where both sides of the context are informative. FiM and causal
masking use the same context window size. When the input ex-
ceeds this limit, we prioritize the code closest to the target. For
causal masking, we truncate the start of the prefix. For FiM, we
symmetrically truncate both prefix and suffix to preserve balance
around the target.

We define 10 evaluation cases to study the effects of SATD on
model behavior. These are grouped into three categories as sum-
marized in Table 1. Each case is evaluated using both causal and

Lhttps://github.com/lewitte TUD/MLA4SE- toolkit-SATD

https://github.com/lcwitteTUD/ML4SE-toolkit-SATD

Analyzing the Impact of Self-Admitted Technical Debt on the Code Completion Performance of Large Language Models

The Heap Detection + AnnotationHIHPUt-TargEt COHStTUCtiOHH Code Generation H Evaluation }
T T
! !
| |
v v
RQ1 RQ2 and RQ3
Presence analysis Performance analysis
Figure 2: Overview of the methodology and its relation to the research questions
Table 1: Input-target cases grouped by research focus
Group Case Description
1 in-smell Target is a SATD comment
no-smell-comment Target is a random comment from a file without SATD
2 out-smell-distance{@,1,-13} Target is respectively the first, second or last method after the SATD
no-smell-method Target is a random method from a file without SATD
3 multi(-1)-out-smell-{0,-1} Method after the last SATD in files with multiple SATD comments

prep-multi(-1)-out-smell-{@,-1} Same method, but all SATD removed from the file

FiM masking strategies, for a total of 20 configurations per model.
The first group explores whether models reproduce SATD-like com-
ments. The second group allows us to analyze whether proximity to
SATD impacts model performance on method generation. The third
group investigates whether removing SATD, by preprocessing the
input, improves model performance, particularly in more realistic
multi-SATD scenarios.

To ensure broad coverage while keeping generation costs feasible,
we sample up to 4000 files for Group 1 (comment generation) and
1000 files for Groups 2 and 3 (method generation). However, the
final number of generated examples per case may be lower, as some
sampled files did not contain a valid method or comment matching
the case criteria.

3.3 Code Generation

For evaluation, we selected three small language models: SmolLM2-
135M, StarCoder2-3B, and MellumBase-4B. SmolLM2-135M uses
only the causal masking strategy, whereas StarCoder2-3B and
MellumBase-4B support both causal and Fill-in-the-Middle (FiM)
masking. These models generate code given an input, and the gen-
erated outputs are compared against the target to evaluate perfor-
mance.

To save computation time, generation is stopped early if repeated
token patterns are detected, preventing infinite loops of repetitive
output. We also limit the maximum number of tokens generated.
This limit is set to the average length plus two times the standard
deviation of target lengths, calculated separately for comments and
methods using all examples in the dataset.

All code generations were performed on the DelftBlue Super-
computer [14], using NVIDIA V100 GPUs with 32GB memory. Each
generation task used a single GPU. On average, comment genera-
tion cases (Group 1) required significantly less time than method

generation cases (Groups 2 and 3). This is primarily due to the lower
maximum token limit used when generating comments, leading
to shorter and faster outputs. As a result, Group 1 could be eval-
uated over a larger set of files within the same compute budget.
Overall, the full generation process across all models and cases took
approximately 106 hours.

3.4 Evaluation

Quantitative evaluation. The generated code is quantitatively
evaluated using standard text-based metrics widely adopted in code
generation research (RQ2): Exact Match, Edit Distance, BLEU [15],
METEOR [16], and ROUGE-L [17]. Exact Match calculates the per-
centage of generated outputs that exactly match the target code,
providing a strict correctness measure. Edit Distance (also known
as Levenshtein distance) quantifies the minimum number of single-
character edits (insertions, deletions, or substitutions) needed to
transform the generated code into the target, capturing how close
the outputs are textually. BLEU (Bilingual Evaluation Understudy)
measures the similarity between generated code and targets by
calculating the n-gram precision. METEOR (Metric for Evaluation
of Translation with Explicit ORdering) improves upon BLEU by
incorporating stemming, synonymy, and considering word order.
ROUGE-L measures the longest common subsequence between the
generated text and the target. This offers another perspective on
generation quality by focusing on sequence similarity rather than
just n-gram overlap.

Qualitative evaluation. The generated code is qualitatively evalu-
ated by examining 20 files for the method generation cases (RQ3, i.e.,
Groups 2 and 3). These files are selected to ensure that each includes
generations for all relevant cases within the groupings (out-smell

Table 2: SATD presence statistics in the Java subset of The
Heap

Measure Value
Total source files 5,168,193
Total SATD comments 914,347

Files with >1 SATD comment 431,145 (8.34%)

Average SATD comments per file 0.18
Median SATD comments per file 0
Max SATD comments in a single file 2,230
SATD comments per KLOC 1.26

10°

10*

10°

10?

Number of Files

10*

10°

ol

LUK TN IIIII [|I 1 . | .

0 50 100 150 200 250 300
Number of SATD Comments

Figure 3: Distribution of SATD comments per file in the The
Heap Java dataset

and preprocessed-multi-out-smell). Each generation is manually cat-
egorized into one of three classes based on its semantic alignment
with the target:

(1) Correct: The generated method is functionally equivalent
to the target.

(2) Partial: The method shares some semantics with the target
(e.g., similar signature or partial body logic) but differs in
completeness or intent.

(3) Incorrect: The method is functionally unrelated to the
target (e.g., generates a different method, hallucinates code,
or repeats context).

This classification enables us to better understand the types of
generation failures and to assess whether low metric scores may
still correspond to semantically valid outputs.

4 Results

In this section, we list the acquired results for every research ques-
tion in order. That is, first the presence of SATD in The Heap (4.1),
then the impact of SATD on the performance (4.2), and finally an
analysis of the generated code (4.3).

4.1 SATD Presence in The Heap

Statistics for the SATD presence in The Heap are summarized in
Table 2. Out of over 5 million source files, we detected a total

Lucas Witte

of 914,347 SATD comments. Despite the large volume, SATD is
sparsely distributed: only 8.34% of files contain at least one SATD
comment, with an average of 0.18 SATD comments per file and a
median of 0. Normalized by code size, we observe 1.26 SATD com-
ments per thousand lines of code (KLOC). The maximum number
of SATD comments observed in a single file was 2,230. This extreme
outlier was manually verified. The results are based on a filtered
set of SATD annotations in which common false positives, mostly
from auto-generated files, were removed to improve accuracy. See
subsection 5.1 for details.

Figure 3 shows the distribution of SATD comments per file in
the Java subset of The Heap. For readability, this version omits files
with zero SATD comments (91.66% of the dataset) and two extreme
outliers containing 2,230 and 1,118 comments, respectively. After
removing these, the highest remaining SATD count is 325, and the
distribution still exhibits a long tail. Most SATD-containing files
have fewer than 50 comments.

4.2 SATD Impact on the Performance of Code
Completion

We present performance results across all models and evaluation
cases in Figures 4 to 6, each corresponding to one of the three
case groups defined in Table 1. Each figure includes two subplots
showing BLEU and Edit Distance scores. In each subplot, boxplots
for every case in the group are shown for each model setup, with
mean values indicated by x-marks. We focus on these two metrics
for brevity, as all five metrics (BLEU, Edit Distance, Exact Match,
METEOR, ROUGE-L) exhibited consistent trends.

Due to a bug in suffix generation, FiM masking results were
found to be invalid and are therefore excluded from this analysis.
However, we include a detailed discussion of these invalid results,
along with the full metrics, in Appendix A.1 and Appendix A.2,
respectively.

Group 1: Reproduction of SATD-like Comments.

In the first group, which targets SATD and non-SATD comments, we
observe that the no-smell-comment case consistently outperforms
the in-smell case across all model setups.

Group 2: SATD Proximity in Method Generation.

In the second group, which evaluates method generation at varying
distances from SATD, we find that performance improves as the
distance from the SATD increases. Specifically, methods located
further from the SATD (e.g., distance = -1) yield higher scores than
those closer (e.g., distance = 0). Additionally, the no-smell-method
case, which uses a random method from a SATD-free file, outper-
forms all out-smell cases for most models.

Group 3: Multi-SATD and Preprocessing Effects.

In the third group, which focuses on multi-SATD scenarios and
preprocessing, two consistent trends emerge across all models and
metrics. First, models perform better when generating the method
furthest from the last SATD compared to the method immediately
after it. Second, retaining SATD comments slightly improves per-
formance over their removal, although the difference is modest.

Model Setup Performance.

When comparing model setups, SmolLM2 exhibits the weakest
performance across all groups and metrics. Both StarCoder2 and

Analyzing the Impact of Self-Admitted Technical Debt on the Code Completion Performance of Large Language Models

Table 3: Average target length, BLEU, and Edit Distance by
classification

Classification Target Length BLEU Edit Distance
Correct 126.17 + 112.43 0.728 £ 0.301 0.883 + 0.175
Partial 657.78 £703.15 0.288 £ 0.250 0.524 = 0.261
Incorrect 581.16 £ 1288.66 0.027 = 0.053 0.218 £ 0.159

MellumBase with causal masking perform substantially better, with
similar results between them.

4.3 Manual Analysis of Generated Code

Figure 7 shows how the generated methods were classified for each
case: as Correct, Partial, or Incorrect, based on semantic alignment
with the target method. These results largely follow the same trends
as the text-based metrics: cases with a higher proportion of seman-
tically correct generations also tend to achieve better scores on
BLEU and Edit Distance.

That said, there are clear examples where semantically correct
generations still receive low metric scores. One such case is shown
in Figure 8, where the generation is functionally equivalent to the
target but differs due to missing non-functional comments. This
leads to a low score despite the semantic match (it would be an
exact match if comments were ignored).

We further observe that short targets tend to receive higher
metric scores. This is often due to the frequent presence of common
boilerplate such as public void in Java, which can lead to high
n-gram overlap even in partially correct or incorrect generations.
We verified this by calculating the average target character lengths
for the three categories. As shown in Table 3, Correct generations
had much shorter targets on average (126.17 characters) compared
to Partial (657.78) and Incorrect (581.16). This difference is reflected
in the text-based metrics.

In several cases, notably no-smell and multi-out(-1), meth-
ods classified as Correct were also typically shorter and simpler
than those in out-smell(@). To better understand the relationship
between method complexity and generation quality, we also ana-
lyzed target lengths and line counts per evaluation case. Boxplots
showing the distribution of target lengths in characters and bar
plots representing the proportion of methods with three lines or
fewer are displayed in Figure 9. The mean values in the boxplots are
marked with x-marks. For all groups except Group 1, we observe
a clear correlation between metric scores and method complexity:
simpler methods, characterized by shorter target lengths and a
higher proportion of short methods, tend to receive higher scores.

For the preprocessing cases (prep-+), no major differences were
found between generations with and without SATD removal. In
many instances, the model produced near-identical outputs regard-
less of whether the SATD was present.

Finally, of the 40 analyzed files containing SATD comments
(out-smell and Group 3 cases), only 6 had the SATD located di-
rectly above the method of interest. Of those, only two comments
described TD that could be addressed in the corresponding method.
In both cases, the model failed to resolve the issue and instead
generated a incorrect method. In the remaining files, the SATD

comments were located earlier in the file, typically in the body
of the previous method, limiting their potential influence on the
generation.

5 Discussion

This section reflects on our findings regarding the presence of
SATD in The Heap dataset and its impact on code completion
using small language models. First, we analyze the output of the
SATD detector at scale and highlight the importance of validating
automated annotations to ensure meaningful results (5.1). Then,
we examine how SATD influences code completion performance
and correctness, based on both quantitative metrics and manual
evaluation (5.2). Together, these analyses offer insight into the
limitations of current models and the importance of contextual
factors beyond SATD alone.

5.1 SATD Presence in The Heap

The observation that most files contain no SATD comments (me-
dian = 0), and that the number of files decreases as the number
of SATD comments increases, aligns with the general expectation
that developers aim to minimize or avoid technical debt in their
codebases.

However, a notable number of files exhibited extreme SATD
counts: 11 files contained more than 10,000 SATD comments. To
better understand these cases, we manually inspected the 100 files
with the highest number of SATD annotations.

This investigation revealed that three specific comment patterns
were responsible for disproportionately high SATD counts. The
most significant involved the comment "regression assertion (cap-
tures the current behavior of the code)", which appeared over 210,000
times across 17 files. These files were generated by the Randoop test-
ing framework, which inserts this comment above each assertion.
As these comments are automatically generated and descriptive in
nature rather than indicators of technical debt, the corresponding
annotations were excluded.

Two additional false positive patterns were identified: one involv-
ing repeated scientific documentation-style comments across multi-
ple simulation files, and another involving blocks of commented-out
string declarations containing the prefix XXX. These also did not
represent self-admitted technical debt.

In total, annotations from 52 files were filtered, including 39
of the top 100 SATD-heavy files. These removals accounted for
215,879 SATD comments, approximately one-sixth of the original
total. The results reported in Section 4.1 are based on this cleaned
annotation set.

This case underscores the importance of validating automated
SATD detection results, especially when analyzing large-scale datasets.
Although the detector inevitably produces some false positives, we
found that just three recurring patterns accounted for a substantial
portion of the overall annotations.

5.2 Impact of SATD on Code Completion
Performance and Correctness

Our results provide insight into the relationship between SATD
and code completion performance, as well as the broader behavior
of small language models in this task.

Score

Score

Score

Lucas Witte

BLEU Edit Distance
1.0
0.8 4
0.6 1
2
s}
o
wn
0.4 4
0.0 - T
> ée{)a 50 AB{L A0
RSN GO 6& v \ GO 6‘?)
%&0‘6‘)‘5& %\»@ic@‘se& N\P\\g&’%ﬁ\ %‘0 %&@‘05‘06@ N\/&:@g&”\
[in-smell [no-smell-comment
Figure 4: Metric scores for group 1
BLEU Edit Distance
1.0
0.8 1
0.6 4
<
3
wn
0.4 A 1
0.2 4
0.0 - T T T
N 66‘{1‘ 2 W &{L
NN GO\ t&‘?’\ My CON TN
F® %@‘&0@ v\e\\\:@&b Fo® %“b‘g'z»“@ @e\\‘:@&m
3 out-smell-distance(0) 3 out-smell-distance(1) B out-smell-distance(-1) B no-smell-method
Figure 5: Metric scores for group 2
BLEU Edit Distance
1.0
0.8 4
0.6 1
£
I}
o
wn
0.4 4
0.2 4
0.0 = T
» y}q‘ 2% M e‘q‘
B ‘6 3 o %
g&‘:@\,e& %@&0 D &e \ﬁfa g,d\o o> %@&O S S\\\“ >

3 multi(-1)-out-smell-distance(0)

3 prep-multi(-1)-out-smell-distance(0) B multi(-1)-out-smell-distance(-1)

Figure 6: Metric scores for group 3

B prep-multi(-1)-out-smell-distance(-1)

Analyzing the Impact of Self-Admitted Technical Debt on the Code Completion Performance of Large Language Models

N II
10

Number of Generations

N
e\\@\ @e\\@ e\\@\ o "0\\&@ 'o&@ &@\ AO&@\
0\3\”% o\\v% o™ s e ¥ \0\\)\ 0\\3\&\ e
¢ Q@?’
Evaluation Case
B Correct [Partial [Incorrect

Figure 7: Qualitative evaluation of semantic generation cor-
rectness (causal only)

Case: no-smell-method
Model: StarCoder2_3B (causal)
Metrics: Edit Distance = 0.3416 BLEU = 0.0388

Target:

public HelpCtx getHelp() {
// Show no Help button for this panel:
return HelpCtx.DEFAULT_HELP;
// If you have context help:
// return new HelpCtx(
SampleWizardPanell.class);

}

Generation:

public HelpCtx getHelp() {
return HelpCtx.DEFAULT_HELP;
}

Figure 8: Semantically correct generation example where
metrics underestimate similarity

The clear trend in Group 2, where methods located further from
SATD achieve higher scores, may be influenced by two distinct
factors. First, we observed that methods further from SATD tend to
be shorter, and shorter targets generally yield higher metric scores
due to reduced complexity and greater n-gram overlap. Second,
because the models use causal masking, later methods benefit from
a larger context window that includes more preceding code. This
increased context may aid generation quality independently of
SATD proximity.

In contrast, the no-smell methods also achieve high scores, but
without the influence of SATD or additional context. Here, the ele-
vated scores are likely driven primarily by shorter target lengths
and simpler method structures. This highlights the importance of
controlling for target method complexity when evaluating model

performance. When comparing different evaluation cases, the target
methods should have similar average complexity to avoid introduc-
ing bias in the results.

In Group 3, we observed that removing SATD comments slightly
reduced performance. However, since the targets remain identical
between the preprocessed and unprocessed cases, this suggests that
the SATD comments, though not directly part of the method, may
still provide useful contextual signals for the model. Their removal
thus leads to marginal performance degradation.

Taken together, these observations indicate that the presence
of SATD itself does not significantly impact model performance.
Instead, factors such as target length, method complexity, and avail-
able context dominate the observed trends. SATD appears to play a
minimal role in determining output quality in this generation task.

As expected, the larger models, StarCoder2 and MellumBase,
consistently outperform the smaller SmolLM2 across all groups and
metrics. This aligns with general findings in LLM research, where
increased parameter count correlates with stronger generation ca-
pabilities and better generalization.

Overall, metric scores correlate well with semantic classifica-
tions: higher BLEU and Edit Distance scores often correspond to
semantically correct generations. However, this alignment is not
perfect. Several examples show that functionally equivalent genera-
tions can receive low scores due to textual mismatches, particularly
when the generation or target includes comments that the other
does not. This exposes a key limitation of n-gram-based metrics
when used to assess functional correctness. To address this, we
recommend removing non-functional elements such as comments
when the goal is to measure semantic similarity more accurately.
Furthermore, this underscores the importance of complementing
automatic metrics with qualitative analysis to better evaluate model
performance and interpret the real-world implications of the gen-
erated outputs.

In our manual analysis, we encountered very few cases where
the target method contained clearly broken or incomplete ground
truth. In those few cases, the models did not manage to generate
improved or correct replacements. This shows that when the target
code is flawed, the models typically do not recover or correct the
issues, but instead generate similarly flawed output.

6 Future Work

While this study provides initial insights into the influence of SATD
on code completion performance, several promising directions re-
main for future research.

First, our evaluation focused on relatively small models due to
resource constraints. A natural extension is to repeat the experi-
ments with larger foundation models, such as CodeLlama [18] or
GPT-based variants, to assess whether model scale amplifies or
mitigates the observed trends.

Second, our analysis was restricted to Java. Expanding to other
programming languages would provide a more comprehensive
understanding of SATD’s impact across all languages.

Third, our current design anchors generations at the method
level. However, we observed that SATD comments often do not
refer to the directly following method. Future studies could explore
more localized or semantically linked contexts, such as generating

Lucas Witte

1.0
1400 4
= 0.8
g 1200 4
< -
E 1000 Lo =
= 800 1 3
: s
5 600 o4 £
& 400
z
& 200 X 0.2
| = —
T T T T T T T T 0.0
\¥ N \¥
0’%&\ 5 o o e\\@ N e\\@ o \\\,x\ - o 0&@ D\\&@ \)&\,x\ o&\,x\
A\ o % 5 O X ¥ A ¥
(g\e\\/c o o i o\\\"‘: * o < \\\‘\x ‘0\)\0 ‘“\)\v
e & Q(eﬂ”
[Lengths [Proportions

Figure 9: Lengths (in characters) and proportions of short methods (three lines or fewer) per case

code that directly relates to the comment itself (e.g., the block or
line that immediately precedes or follows the SATD). This may
allow a more targeted investigation into how models interpret and
respond to SATD content during generation.

Fourth, our study focused exclusively on SATD as one instance of
abroader class of data smells. Future work could extend this analysis
to other unexplored data smells to understand how each uniquely
affects LLM behavior. Systematically evaluating the impact of data
smells on generation quality could guide data curation practices
for training and evaluation datasets.

Finally, our FiM experiments were invalidated due to a bug where
the suffix leaked into the target. While the results were excluded
from the main analysis, re-running these experiments with cor-
rected suffix boundaries would allow a proper comparison of causal
and FiM masking strategies. This is especially important for eval-
uating the effect of out-smell scenarios, FiM would eliminate the
factor of different context window sizes, allowing us to focus purely
on the impact of the proximity of the SATD.

7 Conclusion

In this study, we investigated the impact of self-admitted technical
debt (SATD) on the code completion performance of large language
models (LLMs). To do so, we annotated the full Java subset of The
Heap dataset, consisting of over 5 million files, with SATD bitmasks
and constructed evaluation cases based on different SATD contexts
and masking strategies.

Our analysis reveals that SATD is present in a small portion
of the dataset. We found that the presence of SATD in the input
has a negligible impact on model performance. Instead, generation
quality is primarily influenced by factors such as target method
length, structural complexity, and available context. Furthermore,
Metric scores generally aligned with semantic correctness, but were
sometimes misled by the presence of non-functional elements, such
as comments. Finally, we found no evidence that models were able
to generate correct completions in cases where the ground truth
was broken.

Together, these findings suggest that while SATD may provide
some contextual cues, it does not significantly affect code comple-
tion performance. Careful control over input context and target
complexity remains more important than the presence of SATD
alone.

8 Resposible Research

This study does not involve direct interaction with human subjects
but relies on publicly available source code from The Heap dataset,
which may include contributions from identifiable developers. The
Heap includes files under weak and strong copyleft licenses and
offers an opt-out mechanism via GitHub for developers who do not
wish their code to be included. We only use this data for evaluation,
not for training, to avoid legal and ethical concerns.

All code and data used to produce the results in this paper, includ-
ing annotations, input-target pairs, generated completions, metric
scores, and manually annotated generations, have been made pub-
licly available through a GitHub repository. This aligns with FAIR
data principles and makes every step reproducible. The models used
(SmolLM2, StarCoder2, Mellum) are openly available at Hugging-
Face, though GPU access is required to replicate our experiments.

We took care to minimize bias in manual evaluation through
clearly defined labeling criteria. Model selection may also influence
results, but we mitigated this by evaluating multiple models of
varying sizes. All results are reported transparently, and no data
have been excluded or manipulated.

By highlighting the limited impact of SATD on LLM performance,
this study contributes to a better understanding of model behavior
and encourages more nuanced evaluation practices. We believe our
work promotes the responsible development and deployment of
code-generating models.

References

[1] Harald Foidl, Michael Felderer, and Rudolf Ramler. Data smells: Categories,
causes and consequences, and detection of suspicious data in ai-based systems,
2022.

[2] Antonio Vitale, Rocco Oliveto, and Simone Scalabrino. A catalog of data smells
for coding tasks. ACM Trans. Softw. Eng. Methodol., 34(4), April 2025.

Analyzing the Impact of Self-Admitted Technical Debt on the Code Completion Performance of Large Language Models

(5]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Lin Shi, Fangwen Mu, Xiao Chen, Song Wang, Junjie Wang, Ye Yang, Ge Li, Xin
Xia, and Qing Wang. Are we building on the rock? on the importance of data
preprocessing for code summarization, 2022.

Jonathan Katzy, Razvan Mihai Popescu, Arie van Deursen, and Maliheh Izadi.
The heap: A contamination-free multilingual code dataset for evaluating large
language models, 2025.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martin Blazquez, Guil-
herme Penedo, Lewis Tunstall, Andrés Marafioti, Hynek Kydlicek, Agustin Pi-
queres Lajarin, Vaibhav Srivastav, Joshua Lochner, Caleb Fahlgren, Xuan-Son
Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo Larcher, Haojun Zhao,
Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and Thomas
Wolf. Smollm2: When smol goes big - data-centric training of a small language
model, 2025.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-
Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian
Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li,
Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii
Osae Osae Dade, Wenhao Yu, Lucas Krauf}, Naman Jain, Yixuan Su, Xuanli He,
Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muh-
tasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank
Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet,
Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary,
Nima Tajbakhsh, Yacine Jernite, Carlos Munoz Ferrandis, Lingming Zhang, Sean
Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
Starcoder 2 and the stack v2: The next generation, 2024.

Nikita Pavlichenko, Iurii Nazarov, Ivan Dolgov, Ekaterina Garanina, Karol
Lasocki, Julia Reshetnikova, Sergei Boitsov, Ivan Bondyrev, Dariia Karaeva,
Maksim Sheptyakov, Dmitry Ustalov, Artem Mukhin, Semyon Proshev, Nikita
Abramov, Olga Kolomyttseva, Kseniia Lysaniuk, Ilia Zavidnyi, Anton Semenkin,
Vladislav Tankov, and Uladzislau Sazanovich. Mellum-4b-base, 2025.

Aniket Potdar and Emad Shihab. An exploratory study on self-admitted technical
debt. In 2014 IEEE International Conference on Software Maintenance and Evolution,
pages 91-100, 2014.

Zhongxin Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping Li.
Satd detector: a text-mining-based self-admitted technical debt detection tool.
In Proceedings of the 40th International Conference on Software Engineering: Com-
panion Proceeedings, ICSE "18, page 9-12, New York, NY, USA, 2018. Association
for Computing Machinery.

Irene Sala, Antonela Tommasel, and Francesca Arcelli Fontana. Debthunter: A
machine learning-based approach for detecting self-admitted technical debt. In
Proceedings of the 25th International Conference on Evaluation and Assessment
in Software Engineering, EASE ’21, page 278-283, New York, NY, USA, 2021.
Association for Computing Machinery.

Yikun Li, Mohamed Soliman, and Paris Avgeriou. Automatic identification of
self-admitted technical debt from four different sources. Empirical Software
Engineering, 28(3), April 2023.

Edi Sutoyo and Andrea Capiluppi. Self-admitted technical debt detection ap-
proaches: A decade systematic review, 2024.

Everton da S. Maldonado and Emad Shihab. Detecting and quantifying different
types of self-admitted technical debt. In 2015 IEEE 7th International Workshop on
Managing Technical Debt (MTD), pages 9-15, 2015.

Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer
(Phase 2). https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2, 2024.
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, ACL *02, page 311-318,
USA, 2002. Association for Computational Linguistics.

Alon Lavie and Abhaya Agarwal. Meteor: an automatic metric for mt evaluation
with high levels of correlation with human judgments. In Proceedings of the
Second Workshop on Statistical Machine Translation, StatMT ’07, page 228-231,
USA, 2007. Association for Computational Linguistics.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In
Text Summarization Branches Out, pages 74-81, Barcelona, Spain, July 2004.
Association for Computational Linguistics.

Baptiste Roziére, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cris-
tian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code,
2024.

A Additional Results

This appendix presents extended results complementing the per-
formance evaluation discussed in Section 4.2. We provide the re-
maining metric scores (A.1) and the invalidated FiM results (A.2).

A.1 Remaining Metric Scores

This appendix provides a complete overview of the remaining evalu-
ation metrics not shown in the main paper. Specifically in Figures 10
to 12, we include plots for Exact Match, ROUGE-L, and METEOR
across all case groups and model setups. These results complement
the BLEU and Edit Distance trends discussed in subsection 4.2, and
consistently reflect similar patterns in model performance.

A.2 FiM Evaluation Results (Invalidated)

This appendix contains performance results for all FiM-based in-
put-target configurations. These results can be seen in Figures 13
to 15 are included for completeness, as they were part of the original
experimental design.

Due to a bug in the suffix generation during FiM masking, the
target was in many cases included in the input. This violates the non-
leakage assumption and inflates performance. Therefore, the results
presented here are invalid and should not be used for interpretation
or comparison. Future work may revisit FiM-based evaluation with
correctly constructed suffixes.

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2

Score

Score

Score

Exact Match

METEOR

Lucas Witte

ROUGE-L

1.0
0.8 1 E E
0.6 1 1
2 2
3 3
3] 7]
0.4
0.2 A
X X
0.0 —X X X
s> 0 & 0 W & 0
N 00X N NN o > N oo >
O SO W o° @ sV W) B SO NS
S @ c"@c R &56\0@“%% S @ %@c@\;‘a?’ S\e\db“gb S S %@0@\)‘5& Qe\db\‘%ﬁ
[in-smell [no-smell-comment
Figure 10: Metric scores for group 1
Exact Match METEOR ROUGE-L
1.0
0.8 1 1
0.6 1 1
(] o
8 8
7] 7]
0.4 A 1 1
0.2 . .
X X 9 X X
0.0 v x X x' X : : : . . .
N3 QD © W) QD © N 12 e
100\\):;\ 8 O&g \0“‘?’? 100\\):;\ 8 6:; \0“8’? 6\"@;\ § 6:; \0“8’%’
S o v\e\@\ﬁ‘b S o @e\eﬁ\g&‘b S o @6\0@0‘5/’
3 out-smell-distance(0) 3 out-smell-distance(1) B out-smell-distance(-1) B no-smell-method
Figure 11: Metric scores for group 2
Exact Match METEOR ROUGE-L
1.0
0.8 1 1
0.6 1 1
2 2
3 3
5] A
0.4 - . .
0.2 - . .
X X X X
X X X
0.0 XX T a . T T T T T
» ée‘q’ 2% M 56“7‘ 2% M 56“7‘ 0
My 0y e My 0y e My ooy e
™ ‘5@‘0@"%‘& &56\\\:%\’@\ Fa® ‘5@‘@"%@ yxe\\:b\;%““\ S ‘5@‘0@"9’% N\e\\;\’e’%\

3 multi(-1)-out-smell-distance(0)

3 prep-multi(-1)-out-smell-distance(0)

Figure 12: Metric scores for group 3

10

B multi(-1)-out-smell-distance(-1)

B prep-multi(-1)-out-smell-distance(-1)

Analyzing the Impact of Self-Admitted Technical Debt on the Code Completion Performance of Large Language Models

BLEU Edit Distance Exact Match METEOR ROUGE-L
1.0 7 E E E -
0.8 1 E E E
0.6 1 E E E
o [[[o
8 8 8 8 8
@ @ @ @ @
0.4 1 E E E
0.2 1 E E E
0.0 - T T X X -
Q e S e S Q Q e 2 e
Aet F aet 2° et o et o et o
CO O CO O o 0 N 0 N
S O R X S T SR R SRS
@ in-smell @ no-smell-comment
Figure 13: Metric scores for group 1
BLEU Edit Distance Exact Match METEOR ROUGE-L
1.0 - - - -
X X X X X X
0.8 1 E . E E
0.6 1 E E E E
fl [o il (]
8 8 8 8 8
@ @ A @ @
0.4 1 E . E E
0.2 - 1« y - -
0.0 - T T T T - T T T T
Q e 2 e 2 e d e 2 3
et o At o et o et o At o
o S of S o S o S o
%&’A‘%‘N\ v\e\\\%\ﬁ\ 5&?"%\“& ¥\e\\‘%®\ %@‘%\@' @\e\\‘%@ 5@‘%‘&\ v\e\\\%\ﬂ\ ‘5&?"%&& v\e\\\%&:ﬂ\
[out-smell-distance(0) 3 out-smell-distance(1) B out-smell-distance(-1) B no-smell-method
Figure 14: Metric scores for group 2
BLEU Edit Distance Exact Match METEOR ROUGE-L
| X x | | | X X
o o i [i o i o i
] 4] 8] 4]
@ @ @ @ @
X X X X
Q2 e U e U e 3 © 3 ©
et o s o et o G R Aet o
o S o s o o S o "
c‘,\‘&‘%\v\ RO e,@‘%&\ RO %@‘%&\ @\e\\‘%‘:ﬂ\ %\’b‘%\“\ RO e,@‘%s*\ RO

3 multi(-1)-out-smell-distance(0) ~ EEE prep-multi(-1)-out-smell-distance(0)

Figure 15: Metric scores for group 3

B multi(-1)-out-smell-distance(-1)

B prep-multi(-1)-out-smell-distance(-1)

	Abstract
	1 Introduction
	2 Background Research
	3 Methodology
	3.1 SATD Detection
	3.2 Input and Target Generation
	3.3 Code Generation
	3.4 Evaluation

	4 Results
	4.1 SATD Presence in The Heap
	4.2 SATD Impact on the Performance of Code Completion
	4.3 Manual Analysis of Generated Code

	5 Discussion
	5.1 SATD Presence in The Heap
	5.2 Impact of SATD on Code Completion Performance and Correctness

	6 Future Work
	7 Conclusion
	8 Resposible Research
	References
	A Additional Results
	A.1 Remaining Metric Scores
	A.2 FiM Evaluation Results (Invalidated)

