
Natural Language Processing Techniques for Code
Generation

Hendrig Sellik
Delft University of Technology

ABSTRACT
Introduction: Software development is difficult and requires
knowledge on many different levels such as understanding
programming algorithms, languages, and frameworks. In
addition, before code is being worked on, the system re-
quirements and functionality are first discussed in natural
language, after which it is sometimes visualized for the devel-
opers in a more formal language such as Unified Modeling
Language.

Recently, researchers have tried to close the gap between
natural language description of the system and the actual
implementation in code using natural language processing
techniques. The techniques from NLP have also proven to
be useful at generating code snippets while developers work
on source code. This literature survey aims to present an
overview of the field of code generation using Natural Lan-
guage Processing techniques.
Method: Google Scholar search engine was used to search
for papers regarding code generation using NLP.
Results: A total of 428 abstracts were screened to reveal
36 papers suitable for the survey. The found papers were
categorized into 6 groups by application type.
Conclusion: Source code has similarities to natural lan-
guage, hence NLP techniques have been successfully used
to generate code. Additionally, the area has also benefited
from recent deep learning based advances in NLP.

KEYWORDS
Natural Language Processing, Code Generation, Software
Engineering, Machine Learning, Deep Learning

1 INTRODUCTION
Software, particularly writing source code, requires a lot of
technical background. Moreover, a person competent in one
programming language is not necessarily good at others.
One way to close the gap between the requirements written
in natural language and the implemented software would be
to generate the source code from the natural language, such
as English. This would require less knowledge and enable
writing software to non-developers such as personnel deal-
ing with business requirements or help existing developers
write code more effectively. In order to do so, researchers
have been looking into Natural Language Programming [37]
and using Natural Language Processing techniques to aid
developers at different stages of software development.

While the area of Natural Language Processing has come
a long way, generating code from Natural Language is still
a major obstacle and the practice is not widely used in the
industry. The aim of this paper is not only to gain knowledge
about the subject but to also look into the effectiveness and
current state of generating code from Natural Languages.
This study includes papers from reputable peer-reviewed
journals and conferences. To the best of the author’s knowl-
edge, no similar literature surveys have been attempted be-
fore and the results might help researchers to gain initial
knowledge about the research conducted in the area of code
generation using natural language processing techniques.
Structure In Section 2, the survey method is elaborated

with search strategy and data extraction. In Section 3, the
applications of the reviewed papers are described. In Section
4, some background knowledge is given about the main
NLP techniques used in the reviewed papers. In Section 5,
the sizes of the datasets are dicussed. Finally, the threats to
validity are examined and the survey is concluded.

Research questions
The survey aims to answer the following research questions:

(1) What are the applications of the papers? In other
words, what problems are being solved?

(2) What NLP techniques are used?
(3) How large are the datasets used in the selected papers?

2 SURVEY METHOD
This section describes the search criteria used to select the
papers using the Google Scholar search engine and the fol-
lowed data extraction process.

Search Criteria
Google Scholar search engine was used to search papers
focusing on partial or full code generation based on natural
language. The start date of the search was specified to be
2005 as the area of research is still maturing and knowledge
about recent researchwas desired. In this literature study, the
focus was on peer-reviewed conferences such as ICSE1, FSE2,
ASE3 and journals such as TSE4, EMSE5, TOSEM6. Hence

1http://www.icse-conferences.org/
2https://www.esec-fse.org
3https://2019.ase-conferences.org
4https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
5https://link.springer.com/journal/10664
6https://tosem.acm.org/

Delft University of Technology student report

http://www.icse-conferences.org/
https://www.esec-fse.org
https://2019.ase-conferences.org
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://link.springer.com/journal/10664
https://tosem.acm.org/

patents were not included in the search of Google Scholar.
Only works in English were examined as it is the language
that the author of this work is most familiar with and it is
also the language used at the aforementioned journals.
All the criteria resulted in a following Google Scholar

search query: "natural language processing" OR "NLP" AND
code generation source:ICSE OR source:FSE OR source:ASE OR
source:TSE OR source:EMSE OR source:TOSEM

The Google Scholar query returned a total of 100 results.
The search strategy used is depicted in Figure 1. Titles and
abstracts of the Google Scholar results were read to deter-
mine the most suitable papers for the literature survey. If the
title and abstract did not contain enough information, full
paper was read to determine suitability for data extraction.
Out of the 100 results returned from the original query,

13 results were suitable for the review. The backward snow-
balling [25] revealed another 328 papers (excluding dupli-
cated papers) out of which 23 were selected after analyzing
them as described above. This means that 36 papers in total
were selected for the data extraction phase. A table of all 428
papers analyzed during the survey can be found in figshare7.

Data Extraction
The following data was extracted from the chosen papers.

(1) Study reference
(2) Year of publication
(3) NLP technique used
(4) Dataset size (if applicable)
(5) Evaluation results
(6) Application domain

3 RQ 1: WHAT ARE THE APPLICATIONS OF THE
PAPERS?

In this section, research applications using NLP techniques
to generate code are discussed. In total, the applications were
divided into 7 different categories:
(1) Generating identifier, method or class names
(2) Generating code comments
(3) Generating code snippets from natural language
(4) Searching for code using NLP techniques
(5) Generating pseudocode from source code
(6) Generating UML models
(7) Code completion

In Table 1, applications and the referenced papers are shown.

Generating Identifier, Method, and Class Names
Generating proper identifier, method, and class names con-
sistently throughout the project is beneficial since it en-
hances the readability and maintainability of a project. Many
researchers have tackled this issue.

7https://figshare.com/articles/Survey_NLP_for_Code_Generation_
Screened_Papers_xls/11246510

Figure 1: Flow chart of included studies. The numbers ex-
clude duplicated papers.[47]

Allamanis et al. [2] and Lin et al. [34] created NATURAL-
IZE for consistent identifier naming and LEAR for method
naming respectively. They both use n-grams to generate
tokens from source code, although LEAR does not use all
textual tokens, but only lexical ones. They both later use
different techniques to propose names based on the vocab-
ulary. The authors of LEAR rated their results to be better
than the ones by NATURALIZE, but the approach suffers
from an unstable performance between different software
projects.

2

https://figshare.com/articles/Survey_NLP_for_Code_Generation_Screened_Papers_xls/11246510
https://figshare.com/articles/Survey_NLP_for_Code_Generation_Screened_Papers_xls/11246510

Inspired by probabilistic language models used in NLP, Al-
lamanis et al. [3] use a log-bilinear context model to generate
names for methods. This means that they first use a model
to assign each identifier in a method to a continuous vector
space. Hence, similar identifiers are assigned with similar
vectors or embeddings (see Section 4). After which the au-
thors use the embeddings of the identifiers from the method
body with the context model to predict method name word
by word. This means that the model can use words not seen
in the method body and combine these words in a way that
has never been seen in the dataset. The model was trained
on 20 popular GitHub projects and showed good results.
Alon et al. [5] further build on the idea of using word

embeddings for method naming used by [3], however, they
create an embedding for the entire method. Authors achieve
it by parsing methods to Abstract Syntax Trees (AST-s). A
deep learning model is then jointly trained to find the most
important paths in the AST and also aggregate the paths into
an embedding. This technique achieved a 75% improvement
over previous techniques.

Generating Code Comments
Comments help to reduce softwaremaintainability and there-
fore it is beneficial to have comments in source code.

Wong et al. [54] propose an automatic comment generator
which extracts comments from Stack Overflow data dump
and use tree-based NLP techniques to refine them. Finally,
token-based clone detection is used to match pre-existing
comments to code.
Sridhara et al. [49] generate comments to Java methods

using abstract syntax trees and different NLP methods such
as splitting, expanding abbreviations and extracting phrases
from names. While it does not need a corpus like [54], the ap-
proach is very dependent on the proper method and variable
naming in the source code. Movshovitz-Attias et al. [39] take
on a simpler problem of comment-completion using n-grams
and topic models, which proved to be more successful.

One of the earlier works to leverage the power of neural
networks for code comment generation was by Iyer et al.
[24]. They were inspired by the success of using neural
networks for abstractive sentence summarization by Rush et
al. [46]. Iyer at al. created CODE-NN, an end-to-end neural
network that jointly performs content selection using an
attentionmechanismwith Long Short TermMemory (LSTM)
networks. The authors trained the network on C (66,015)
and SQL (32,337) snippets from StackOverflow together with
the title of the post. Although the model was simple and
the dataset small, they managed to outperform the other
state-of-the-art models at the time.

Hu et al. [23] create DeepCom which uses later advance-
ments in NMT. They use a Seq2Seqmodel, also incorporating
AST paths to generate comments. They use structure-based
traversal to create a sequence of Java code AST to feed to
DeepCom with the aim of better presenting the structure

of the code compared to other traversal methods such as
pre-order traversal. Work by Alon et al. [4] also takes a very
similar approach to using a Seq2Seq model with a combi-
nation of AST. However, the key difference is the encoder.
Instead of using a sequence of AST, the model creates a vec-
tor representation of each AST path which brings additional
gains in precision.

Generating Code Snippets from Natural Language
While end-to-end source code generation from natural lan-
guage would be ideal, no research articles achieving it were
found. However, researchers are able to accomplish partial
code generation.
Earlier work in the found literature use more simplistic

statistical classification techniques. For example, Lei et al.
[32] use the Bayesian generative model to generate C++
input parsers from natural language descriptions along with
example input. Instead of generating code straight from
the description, authors first convert it into a specification
tree to map it into code. The tree is evaluated using their
sampling framework which judges the correspondence of
description with the tree in addition to the parsers’ ability
to parse the input.
Xiong et al. [55] use natural language processing to aid

bug fix generation. The authors analyze Javadoc found for
buggy methods and if possible, associate variable with an
exception to produce a guard condition for it.
Mou et al. [38] use Recurrent Neural Networks (RNN)

to generate small sections of code from natural language.
However, the generated code is buggy, which makes the
code hard to use.
An Eclipse IDE plugin by Nguyen et al. [40] is an effort

to generate code from natural language. They extract data
from Stack Overflow Data Dump 8, but instead of using
information retrieval techniques, they leveraged a graph-
based statistical machine translationmodel (SMT) to train on
the corpus. The result was a novel tool that generated a graph
of API elements that was synthesized into new source code.
However, the resulting T2API tool is limited only to API-s
while other solutions such as NLP2Code [9] can generate
code from arbitrary natural language queries.
SWIM by Raghothaman et al. [44] is similar to T2API as

it also uses SMT to train a model on clickthrough data from
Bing and 25,000 open source project from GitHub. Although
SWIM generates first code snippet in approximately 1.5 sec-
onds and can be therefore considered to be usable, it lacks
proper NLP techniques to distinguish similar API calls such
as Convert.ToDecimal and Convert.ToChar. In addition, it is
not language-agnostic by focusing only on C code and it
was not implemented as an IDE plugin. Essentially, it is a
less advanced version and predecessor of T2API.

Zhang et al. [57] generate test templates from test names.
The test name and class of the code are given as input to
8https://archive.org/details/stackexchange

3

https://archive.org/details/stackexchange

Table 1: Research Sorted by Application

Application Reference

Generating Code Comments [9], [49], [39], [24], [23]
Searching for Code Using NLP Techniques [20], [9], [16]
Generating Pseudocode from Source Code [15], [41]
Identifier, Method or Class naming [2], [34], [3], [5], [4]
Code generation [32], [55], [57], [18], [30], [43], [38], [40], [44]
Generating UML Models [12], [26], [29], [17]
Code Completion [8], [21], [45], [52], [14], [6], [33]

the system. The authors parse the name with the help of
an external parsing system followed by identifying parts of
the test relying on defined grammatical structure. Statistical
analysis is used on a class to map parts of the test to the
methods contained in the given class.

anyCode by Gvero et al. [18] is an Eclipse plugin that uses
unigram and probabilistic context-free grammar model. The
authors were able to synthesize small Java constructs and
library invocations from a large GitHub Java corpus. The
input is a mixture of natural language and Java code that a
developer uses to query for code. While the input is flexi-
ble and anyCode can synthesize combinations of methods
previously not seen in the corpus, the solution is limited by
the examples provided to the model and it can not produce
control flow constructs such as while loop and conditional
statements.
The aforementioned code generation tools are aimed at

developers and are at best realized as Eclipse plugins. How-
ever, there has been research which focuses on end-users as
well. Le et al. [30] created an interactive interface to Smart-
phone users to create automatic scripts. It uses known NLP
techniques such as bags-of-words, examining phrase length,
punctuation and parse tree to map natural language text to
API elements, after which program synthesis techniques are
used to create an automation script similar to the automa-
tion tasks generated with Tasker 9. Quirk et al. [43] use a
log-linear model with character and word n-gram features
to map natural language to if-this-then-that10 code snippets
using log-linear text classifier.

Searching for Code Using Natural Language
Processing Techniques
While not strictly code generation, searching code with nat-
ural language enables developers to make simple queries
against large code corpora, such as GitHub. Campbell et al.
[9] also point out that developers spend a lot of time switch-
ing context between integrated developing environments

9urlhttps://tasker.joaoapps.com
10https://ifttt.com/

(IDE) and web browsers to find suitable code snippets and
complete a programming task.

Early work, such as the one by Hill et al. [20] use the con-
cept of phrases instead of looking at each word separately.
However, they heavily rely on the method signature, disre-
garding the information in the method body. In addition, the
search query must be very close to the method signature.

Campbell et al. [9] propose an Eclipse plugin calledNLP2Code,
which enables developers to use their IDE to query for code
using natural language statements such as “add lines to a
text file“. The authors use 1,109,677 Stack Overflow threads
tagged with "Java" from Stack Overflow data dump to find
code snippets and their natural language descriptions. They
also empirically tested the solution on undergraduate stu-
dents and found the snippets to be helpful.
A very good example of the current capabilities is work

by Gu et al. [16]. The authors use recent advancements in
NLP such as word2vec (see Section 4) and neural machine
translation to tie query and code semantics into the same
vector space. This means that the queries can return semanti-
cally similar code instead of only returning similarly written
code.

Generating Pseudocode from Source Code
When working with unfamiliar languages, it is useful to
have a pseudo-code to better grasp the functionality of code.
Work by Fudaba et al. [15] and Oda et al. [41] convert

Python code into an abstract syntax tree (AST), which is
then translated to English or Japanese pseudocode using
statistical machine translation.

4

https://ifttt.com/

Generating UML Models
Deeptimahanti et al. [12] use various NLP tools such as Stan-
ford Parser11, WordNet 2.112, Stanford Named Entity Recog-
nizer13 and JavaRAP [42] to create SUGAR - a tool which
generates static UML models from natural language require-
ments. The authors prove the work by running SUGAR on
a small text of stakeholder requirements which were con-
sisted of simplistic sentences suitable for SUGAR. It was
not tested on realistic project requirements that have more
complicated, ambiguous or conflicting requirements.
As explained in Section 4, NLP methods have made sig-

nificant progress. However, the survey did not find break-
through progress in the area of generating UML models.
Works such as [26], [29] from 2012 and a relevant paper
by Gulia et al. [17] from 2016 still rely on POS tagging and
WordNet. At the same time, they also rely on clear struc-
tures of specification text and manual rules to extract useful
information.

Code Completion
A popular task among researchers is code completion since
it is one of the most used features meant to aid developers.
While code is not a natural language, research has been
shown that code has properties inherent to natural language
and therefore NLP techniques can be used to predict devel-
oper intent [21].
Bruch et al. [8] present the best matching neighbor code

completion system (BMNCSS) to outperform the Eclipse code
completion tool. The authors firstly capture the context of a
variable by one-hot-encoding in a way where positive value
is assigned to all methods and classes that call or encapsulate
the variable. By comparing the distance of the vectors of
code from existing corpora and the code to be completed,
the authors were able to make suggestions based on the
k-nearest neighbor algorithm. The algorithm is originally
from pattern recognition but also used in NLP research [11].

Later, Hindle et al. take a different approach and compare
source code to natural language [21]. They find that source
code, like natural languages, is repetitive and predictable by
statistical language models. They demonstrate the results by
creating a simple n-gram model that outperforms Eclipse’s
code completion. While they do acknowledge that more
advanced code completion algorithms existed at the time,
like the previously mentioned BMN, they do not perform
comparisons with their n-gram model. However, they share
the vision of Bruch et al. [7] which states that the plethora
of code available could be used for building models that help
developers.

11The Stanford Natural Language Processing Group, Stanford Parser 1.6,
http://nlp.stanford.edu/software/lex-parser.shtml
12Cognitive Science Laboratory, Princeton University, WordNet2.1, http:
//wordnet.princeton.edu/
13The Stanford Natural Language Processing Group, Stanford Named Entity
Recognizer 1.0, http://nlp.stanford.edu/software/CRF-NER.shtml

Raychev et al. [45] reduce the problem of code completion
to the natural language problem of predicting probabilities
of sentences. The authors use models based on RNN and
n-gram to fill holes regarding API usage and create a tool
called SLANG. The best result is achieved by combining the
two models with desired completion appearing in the top
3 results in 90% of the cases, proving that the approach is
feasible for smaller tasks.
Tu et al. [52] find that while n-gram models can be suc-

cessfully used on source code, they are unable to capture
local regularities of source code that human-written projects
have. Hence, they add a cache-component which works by
having n-grams for local code and n-grams for the whole
corpus. The final prediction is achieved by producing a lin-
ear interpolation of the two probabilities. Empirical testing
verifies that this approach improves results.

Franks et al. [14] use the improved n-gram cache model
and combine it with Eclipse’s original code completion tool,
creating CACHEA. The contribution combines the top 3
results of both of the models and improves the accuracy
results of Tu et al. original cache model by 5% for suggestion
results in the top 5.
Another solution to create a generative model for large

scale and replace naive n-grams is proposed by Bielik et
al. [6]. They navigate the Abstract Syntax Tree of code to
create a probabilistic higher-order grammar (PHOG) which
generalizes on probabilistic context-free grammar. This en-
ables more precise results with the same training time. The
authors consider it as a fundamental building block for other
probabilistic models.

Li et al. [33] also make use of the AST-s, more specifically
parent-child information. They use RNN with attention to
deal with the long-range dependencies that previous simi-
lar models were having a hard time with. Because softmax
neural language models have an output where each unique
word corresponds to a dimension, these kinds of models use
unknown tokens to limit vocabulary size. However, this is
not useful for code completions.

To deal with the unknown word problem, a pointer mech-
anism was used. The authors note that usually, developers
repeat the same tokens within the local code. The pointer
mechanism uses this intuition and chooses a token from the
local context to replace the unknown word. Both the atten-
tion and pointer mechanisms are techniques only recently
adapted in NLP deep learning models (see Section 4).

4 RQ 2: WHAT NLP TECHNIQUES ARE USED?
In this section, different techniques used in NLP, such as
different ML models and deep learning techniques are intro-
duced as background. These are required to understand the
key contributions of the analyzed papers. Many different
NLP techniques were used and the most commonly used
ones were selected for extension in this paper. Overall, the
main NLP techniques divide into:

5

http://nlp.stanford.edu/software/lex-parser.shtml
http://wordnet.princeton.edu/
http://wordnet.princeton.edu/
http://nlp.stanford.edu/software/CRF-NER.shtml

Table 2: Research Sorted by Technique

Method Reference

Deep learning model [38], [16],[33], [5], [3], [24], [23], [4], [45]
Embeddings [3], [5], [23], [4], [16],[33], [24]
Statistical Machine Translation [15], [41], [40], [44]
Machine Learning [2] (SVM), [32] (Bayesian generative model)
n-gram model [2], [39], [45], [52], [21], [14], [18], [43]
Probabilistic context-free grammar model [18], [6],[49], [34]
One-hot-encoding relevant methods and classes surrounding the target
code and using k-nearest neighbors algorithm to find similar vectors

[8]

Tree-based NLP techniques [9], [30], [32]
Token-based clone detection [9]
Word abbrevation [49], [20], [29]
Word splitting [49], [20], [17], [9], [57]
Word parsing [49], [20], [17], [29], [26], [12], [55], [9], [57]
POS tagging [17], [29], [29], [26], [12], [55], [9], [57]
WordNet [17], [29], [26], [12]

(1) Widely used NLP Tools such as Part-of-Speech Tag-
gers, Language Parsers and WordNet

(2) Statistical Machine Translation Models
(3) Word Embeddings
(4) Deep Learning Models
A summarizing overview of the papers using those tech-

niques can be seen in Table 2.

Common NLP Tools
POS Tagging. Part-of-Speech (POS) Tagging [50] is used

for assigning parts of speech, such as noun, verb, adjective,
etc. to each word observed in the target text. There are
several tools available for this, one commonly used tool is
the Stanford Log-linear Part-Of-Speech Tagger14.

Language Parser. Language Parsers are used to work out
the grammatical structure of the sentence. For example, find
which words in the sentence are subject and object to a
noun or identify phrases in sentences [27]. A commonly
used language parser for English is the Stanford Statistical
Parser15.

WordNet. WordNet [36] is a lexical database of English
wordswhere nouns, verbs, adjectives, and adverbs are grouped
into sets of synonyms. Thus it allows identifying semanti-
cally similar words.

Statistical Machine Translation
Before Neural Machine Translation (NMT), the field of NLP
was dominated by statistical machine translation. It is based
14https://nlp.stanford.edu/software/tagger.shtml
15https://nlp.stanford.edu/software/lex-parser.shtml

on the idea that statistical models can be created from a
bilingual text corpus. The models can be then used to create
a most probable translation to a new text which the model
has not seen before. The statistical models in NLP divide
intoword and phrase-based [56], syntax-based and structure-
based [1].
At the beginning of the 2010s, neural network compo-

nents were used in combination with the traditional statisti-
cal machine translation methods. However, Philipp Koehn
emphasizes that when in 2015 there was only one pure neu-
ral machine translation model at the shared task for machine
translation organized by the Conference on Machine Trans-
lation (WMT), then in 2016 neural systems won nearly all
language pairs and in 2017 most of the submissions were
neural systems [28].

Word Embeddings
Many earlier statistical and rule-basedNLP systems regarded
words as atomic symbols. This meant that simplistic models
such as N-grams needed a lot of quality data. Mikolov et
al. [35] made a novel contribution by assigning continuous
vector presentations to words while preserving a relatively
modest vector space (50-300). It was proved that one can
get a lot of value by representing the meaning of a word
by looking at the context in which it appears and taking
advantage of that knowledge.
The Word2Vec model [35] features 2 different architec-

tures, a Continuous Bag-of-Words Model to predict a word
based on context. Secondly, the Skip-gram model is used to
predict context based on a word.

6

https://nlp.stanford.edu/software/tagger.shtml
https://nlp.stanford.edu/software/lex-parser.shtml

Table 3: Research Sorted by Dataset Size

Dataset Size Reference

No training data [49], [20], [30], [26], [29], [17], [55], [57]
Not specified [38], [40], [34]
106 problem descriptions totaling 424 sentences [32]
18,805 Python and English pseudo-code pairs [15], [41]
27,000 example usages [8]
66,015 C# and 32,337 SQL code snippets with respective Stack-
overflow title and posts

[24]

114K - 132K code-description pairs [12], [43], [54]
2M tokens for n-grammodel 5K tokens for local n-grammodel [52]
7-10 open-source Java Projects [39], [21], [14], [3] (20 projects)
1,109,677 StackOverflow threads [9]
JavaScript or Python code containing 150,000 files [6], [33]
597.4MB equivalent to 6,989,349 snippets of code [45]
12M- 18MJava methods [5], [16], [4]
9,7K to 14.5K GitHub projects [2], [23], [18], [44] (25K)

The main advantages of Word2Vec are that it is extremely
fast compared to other similar solutions. In addition, the
vector-word vocabulary gained from word2vec can be easily
fed into neural networks or simply queried to detect sim-
ilarity between words. Moreover, the solution is not only
applicable to words, but to other text as well, such as source
code. Hence its popularity in recent novel Software Engi-
neering research solutions.

Deep Learning
The recent success of state-of-the-art NLPmodels is achieved
by using deep learning models [13] and hence it is essential
to understand them. A very good explanation of deep learn-
ing is provided by LeCun et al. [31] on which this section
mostly relies on. The very basic Deep Learning solutions
have an input vector fed into nodes of the first layer of deep
neural networks. These are in turn connected to the next
layer of nodes which are eventually connected to the out-
put nodes. After data makes its way to output nodes, an
objective function measures error (or distance) between the
desired pattern and the actual pattern.
The main idea is that each node in the layers between

input and output layer (also called hidden layers) has an
adjustable parameter (or weight) which can be imagined as
a knob that defines the input-output function. There could
be millions of those, essentially turning deep learning sys-
tems into big functions. A model learns by calculating the
objective function described earlier and trying to minimize
the next output with a gradient vector to adjust weights

in the hidden layers. Due to this structure, deep learning
models also require a lot of data.

Although the individual values of the weights can be ob-
served, they are a minuscule part of the whole and are there-
fore meaningless. Hence, some empirical testing is needed
to find optimal parameters for models. More advanced mod-
els rearrange layers in different ways and add more fea-
tures such as Long-Short-Term-Memory (LSTM)[22] and
Gated Recurrent Units (GRU)[10] to increase effectiveness
on longer sequences. Recently, breakthroughs have hap-
pened in the are of NLP thanks to attention, pointer and
coverage mechanisms which all enhance the models’ ability
to deal with long-range dependencies [19, 48, 51, 53]. Ad-
ditionally, models like BERT [13] allow training on a vast
amount of corpora (3,3 billion words) and later use a small
amount of computational resources and more a specialized
corpus to fine-tune the model for a specific task.

5 RQ 3: HOW LARGE ARE THE DATASETS USED
IN THE PAPERS?

It was found that different code generation techniques re-
quire datasets in various forms and sizes. This section is
focused on the size of the datasets. The results of the find-
ings can be seen in Table 3 which is approximately ordered
by dataset size.

It can be seen that there are 8 papers that do not use train-
ing data at all. This means that the authors take advantage of
grammatical rules and use the common NLP Tools discussed
in Section 4. For some research, the dataset did exist, but the
size could not be determined.

7

The rest of the datasets are quite diverse in size ranging
from 106 problem-description pairs to 14,500 GitHub Java
projects. It can be seen that while mining StackOverflow
post-code pairs is quite popular, they usually range from
32,337 to 132,000. Only one paper uses 1,1 million Stackover-
flow threads.
Papers using GitHub projects also have datasets diverse

in size. While there are papers that use 7-20 GitHub projects,
it can be seen that the datasets with the biggest size are also
from GitHub containing 12M - 18M Java methods and the
biggest datasets reach 9,700 - 14,500 GitHub projects. The
latter ones are deep learning models with state-of-the-art
results.

6 THREATS TO VALIDITY
Although the survey was constructed with the best system-
atic practices known to the author, there are some threats
to validity.

Firstly, this surveywas constructed in a limited time frame
given by the course which means that there might be re-
search that was not included in this survey. The final selec-
tion was confined to 36 papers.
Moreover, conferences such as ICML16 and ICLR17 were

not included in the search criteria. These conferences may
also contain research on software engineering. ICML espe-
cially may include state-of-the-art machine learning models
with excellent results. This is an area of future research.

Finally, the author of the survey is not an expert in the
field of code generation using NLP techniques. This affects
the selection of the main techniques discussed in the survey,
the categorization of the applications, also on selecting the
papers to include in the survey and emphasizing research or
techniques of some authors over the others. However, the
author of this survey gave his best to give a thorough and
complete overview.

7 CONCLUSION
Using techniques from the area of Natural Language Pro-
cessing has proved to be successful at code generation and
offers promising results. The area has followed the trends of
NLP as the initial techniques such as POS tagging, n-gram
and statistical models have been replaced by deep learning
models in recent years. Code generation techniques from
natural language have also greatly benefited from the recent
advances in attention and pointer mechanisms which help
with long-range dependencies. While using NLP techniques,
researchers also take advantage of the structural nature of
source code and use information from Abstract Syntax Trees.

While conducting the survey, the following observations
were made which could help to advance the field:

(1) While the NLP domain has recently started to produce
models that are trained on a vast amount of corpora

16https://icml.cc/
17https://iclr.cc/

and subsequently fine-tuned for a specific task, no sim-
ilar research was found for source code. This could be
an exciting future research area that has the potential
to produce promising results.

(2) The area of UML model generation has seen no signif-
icant advancements since 2012 and the simplistic NLP
techniques have remained almost the same. There is a
potential to take advantage of the novel deep learning
based techniques.

(3) The training and validations of the state-of-the-art
code generationmodels were conducted on open-source
software (OSS). No research was found focusing on
industrial closed-source code. This is an important
gap as a lot of solutions made for OSS might not work
properly on closed-source code which has local char-
acteristics.

As future research, this survey could be expanded to more
conferences such as ICML or ICL and more abstracts could
be scanned to get a more extensive overview of the field.

REFERENCES
[1] Amr Ahmed and Greg Hanneman. 2005. Syntax-based statistical

machine translation: A review. Computational Linguistics (2005).
[2] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton.

2014. Learning natural coding conventions. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 281–293.

[3] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton.
2015. Suggesting accurate method and class names. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 38–49.

[4] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2018. code2seq:
Generating sequences from structured representations of code. arXiv
preprint arXiv:1808.01400 (2018).

[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019.
code2vec: Learning distributed representations of code. Proceedings
of the ACM on Programming Languages 3, POPL (2019), 40.

[6] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2016. PHOG: prob-
abilistic model for code. In International Conference on Machine Learn-
ing. 2933–2942.

[7] Marcel Bruch, Eric Bodden, Martin Monperrus, and Mira Mezini. 2010.
IDE 2.0: collective intelligence in software development. In Proceedings
of the FSE/SDP workshop on Future of software engineering research.
ACM, 53–58.

[8] Marcel Bruch, Martin Monperrus, and Mira Mezini. 2009. Learning
from examples to improve code completion systems. In Proceedings of
the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software
engineering. ACM, 213–222.

[9] Brock Angus Campbell and Christoph Treude. 2017. NLP2Code: Code
snippet content assist via natural language tasks. In 2017 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).
IEEE, 628–632.

[10] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014.
Learning phrase representations using RNN encoder-decoder for sta-
tistical machine translation. arXiv preprint arXiv:1406.1078 (2014).

[11] Thomas Cover and Peter Hart. 1967. Nearest neighbor pattern classi-
fication. IEEE transactions on information theory 13, 1 (1967), 21–27.

[12] Deva Kumar Deeptimahanti and Ratna Sanyal. 2008. An innovative
approach for generating static UML models from natural language

8

https://icml.cc/
https://iclr.cc/

requirements. In International Conference on Advanced Software Engi-
neering and Its Applications. Springer, 147–163.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805 (2018).

[14] Christine Franks, Zhaopeng Tu, Premkumar Devanbu, and Vincent
Hellendoorn. 2015. Cacheca: A cache language model based code
suggestion tool. In Proceedings of the 37th International Conference on
Software Engineering-Volume 2. IEEE Press, 705–708.

[15] Hiroyuki Fudaba, Yusuke Oda, Koichi Akabe, GrahamNeubig, Hideaki
Hata, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura. 2015. Pseu-
dogen: A tool to automatically generate pseudo-code from source
code. In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 824–829.

[16] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code
search. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). IEEE, 933–944.

[17] Sarita Gulia and Tanupriya Choudhury. 2016. An efficient automated
design to generate UML diagram from Natural Language Specifica-
tions. In 2016 6th International Conference-Cloud System and Big Data
Engineering (Confluence). IEEE, 641–648.

[18] Tihomir Gvero and Viktor Kuncak. 2015. Synthesizing Java expres-
sions from free-form queries. In Acm Sigplan Notices, Vol. 50. ACM,
416–432.

[19] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Es-
peholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. 2015. Teaching
machines to read and comprehend. In Advances in neural information
processing systems. 1693–1701.

[20] Emily Hill, Lori Pollock, and K Vijay-Shanker. 2011. Improving source
code search with natural language phrasal representations of method
signatures. In Proceedings of the 2011 26th IEEE/ACM International Con-
ference on Automated Software Engineering. IEEE Computer Society,
524–527.

[21] AbramHindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar
Devanbu. 2012. On the naturalness of software. In 2012 34th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 837–847.

[22] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term
memory. Neural computation 9, 8 (1997), 1735–1780.

[23] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code
comment generation. In Proceedings of the 26th Conference on Program
Comprehension. ACM, 200–210.

[24] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer.
2016. Summarizing source code using a neural attention model. In
Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). 2073–2083.

[25] Samireh Jalali and Claes Wohlin. 2012. Systematic literature studies:
database searches vs. backward snowballing. In Proceedings of the 2012
ACM-IEEE international symposium on empirical software engineering
and measurement. IEEE, 29–38.

[26] SD Joshi and Dhanraj Deshpande. 2012. Textual requirement analysis
for UML diagram extraction by using NLP. International journal of
computer applications 50, 8 (2012), 42–46.

[27] Dan Klein and Christopher D Manning. 2003. Fast exact inference
with a factored model for natural language parsing. In Advances in
neural information processing systems. 3–10.

[28] Philipp Koehn. 2017. Neural Machine Translation. CoRR
abs/1709.07809 (2017). arXiv:1709.07809 http://arxiv.org/abs/1709.
07809

[29] Poonam R Kothari. 2012. Processing natural language requirement
to extract basic elements of a class. International Journal of Applied
Information Systems (IJAIS), ISSN (2012), 2249–0868.

[30] Vu Le, Sumit Gulwani, and Zhendong Su. 2013. Smartsynth: Syn-
thesizing smartphone automation scripts from natural language. In
Proceeding of the 11th annual international conference on Mobile sys-
tems, applications, and services. ACM, 193–206.

[31] Yann LeCun, Yoshua Bengio, andGeoffreyHinton. 2015. Deep learning.
nature 521, 7553 (2015), 436.

[32] Tao Lei, Fan Long, Regina Barzilay, and Martin Rinard. 2013. From
natural language specifications to program input parsers. In Proceed-
ings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 1294–1303.

[33] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. 2018. Code
Completion with Neural Attention and Pointer Networks. In Proceed-
ings of the 27th International Joint Conference on Artificial Intelligence
(IJCAI’18). AAAI Press, 4159–25. http://dl.acm.org/citation.cfm?id=
3304222.3304348

[34] Bin Lin, Simone Scalabrino, Andrea Mocci, Rocco Oliveto, Gabriele
Bavota, andMichele Lanza. 2017. Investigating the use of code analysis
and nlp to promote a consistent usage of identifiers. In 2017 IEEE
17th International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 81–90.

[35] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Efficient estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781 (2013).

[36] George A Miller. 1998. WordNet: An electronic lexical database. MIT
press.

[37] Lance A Miller. 1981. Natural language programming: Styles, strate-
gies, and contrasts. IBM Systems Journal 20, 2 (1981), 184–215.

[38] Lili Mou, Rui Men, Ge Li, Lu Zhang, and Zhi Jin. 2015. On end-to-end
program generation from user intention by deep neural networks.
arXiv preprint arXiv:1510.07211 (2015).

[39] Dana Movshovitz-Attias and William W Cohen. 2013. Natural lan-
guage models for predicting programming comments. In Proceedings
of the 51st Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), Vol. 2. 35–40.

[40] Thanh Nguyen, Peter C Rigby, Anh Tuan Nguyen, Mark Karanfil, and
Tien N Nguyen. 2016. T2API: synthesizing API code usage templates
from English texts with statistical translation. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 1013–1017.

[41] Yusuke Oda, Hiroyuki Fudaba, GrahamNeubig, Hideaki Hata, Sakriani
Sakti, Tomoki Toda, and Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical machine translation (t).
In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 574–584.

[42] Long Qiu, Min-Yen Kan, and Tat-Seng Chua. 2004. A public reference
implementation of the rap anaphora resolution algorithm. arXiv
preprint cs/0406031 (2004).

[43] Chris Quirk, Raymond Mooney, and Michel Galley. 2015. Language
to code: Learning semantic parsers for if-this-then-that recipes. In
Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). 878–888.

[44] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. Swim: Syn-
thesizing what i mean-code search and idiomatic snippet synthesis. In
2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE). IEEE, 357–367.

[45] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code comple-
tion with statistical language models. In Acm Sigplan Notices, Vol. 49.
ACM, 419–428.

[46] Alexander M Rush, Sumit Chopra, and Jason Weston. 2015. A neu-
ral attention model for abstractive sentence summarization. arXiv
preprint arXiv:1509.00685 (2015).

[47] CE Scheepers, GCWWendel-Vos, JM Den Broeder, EEMM Van Kem-
pen, PJV Van Wesemael, and AJ Schuit. 2014. Shifting from car to
active transport: a systematic review of the effectiveness of interven-
tions. Transportation research part A: policy and practice 70 (2014),
264–280.

9

http://arxiv.org/abs/1709.07809
http://arxiv.org/abs/1709.07809
http://arxiv.org/abs/1709.07809
http://dl.acm.org/citation.cfm?id=3304222.3304348
http://dl.acm.org/citation.cfm?id=3304222.3304348

[48] Abigail See, Peter J. Liu, and Christopher D.Manning. 2017. Get To The
Point: Summarization with Pointer-Generator Networks. In Proceed-
ings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Vancouver, Canada, 1073–1083. https://doi.org/10.18653/
v1/P17-1099

[49] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and
K Vijay-Shanker. 2010. Towards automatically generating summary
comments for java methods. In Proceedings of the IEEE/ACM interna-
tional conference on Automated software engineering. ACM, 43–52.

[50] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram
Singer. 2003. Feature-rich part-of-speech tagging with a cyclic de-
pendency network. In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on
Human Language Technology-Volume 1. Association for computational
Linguistics, 173–180.

[51] Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li.
2016. Modeling coverage for neuralmachine translation. arXiv preprint
arXiv:1601.04811 (2016).

[52] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. 2014. On
the localness of software. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM,
269–280.

[53] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer
networks. In Advances in Neural Information Processing Systems. 2692–
2700.

[54] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. Autocomment: Min-
ing question and answer sites for automatic comment generation. In
2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 562–567.

[55] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang
Huang, and Lu Zhang. 2017. Precise condition synthesis for program
repair. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 416–426.

[56] Richard Zens, Franz Josef Och, and Hermann Ney. 2002. Phrase-
based statistical machine translation. InAnnual Conference on Artificial
Intelligence. Springer, 18–32.

[57] Benwen Zhang, Emily Hill, and James Clause. 2015. Automatically
generating test templates from test names (n). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 506–511.

10

https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099

A RESEARCH ON NLP TECHNIQUES FOR CODE GENERATION

Table 4: Surveyed Research on NLP for Source Code Generation

Reference Year Method Dataset Size Evaluation Results Application

Campbell et al. [54] 2013 Tree-based NLP to refine comments
and token-based clone detection

132,767 code-
description
Mappings

- Generating Code
Comments

Sridhara et al. [49] 2010 AST and CFG for code, abbrevations,
splitting, expanding for NL

No training - Generating Code
Comments

Movshovitz et al.
[39]

2013 Topic models and n-gram 9 open-source
Java Projects

- Code comment
completion

Mou et al. [38] 2015 Seq2seq RNN model Not specified - Generating Code
Snippets from Nat-
ural language

Nguyen et al. [40] 2016 IBM Model (SMT) to map English
texts and corresponding sequences of
APIs. GraLan model to predict target
code from NL

“large number“
of StackOver-
flow posts

- Generating Code
Snippets from Nat-
ural language

Raghothaman et al.
[44]

2016 Mine API usage patterns fromGitHub
projects and map them to queries
from Bing based on clickthrough data

15 day click-
through data
From Bing and
25,000 GitHub
projects

For 70% of the queries, The
first suggested snippetWas
a relevant solution (30 com-
mon queries)

Generating Code
Snippets from Nat-
ural language

Hill et al. [20] 2011 Use method signatures from code to
extract words and use the information
to answer queries

No training Precision 59%, Recall 38%,
F-measure 37%

Searching for
Code Using NLP
Techniques

Campbell et al. [9] 2017 TaskNav algorithm and NLP tech-
niques to map text query to code in
StackOverflow posts

1,109,677
StackOverflow
threads

74 queries out of 101 con-
sidered helpful by test sub-
jects on the first invocation

Searching for
Code Using NLP
Techniques

Gu et al. [16] 2018 Create unified code and NL descrip-
tion embeddings using RNN, then use
cosine similarity to find matches

18,233,872
Java methods
from GitHub
with English
descriptions

0.46 success rate and preci-
sion on 1st try

Searching for
Code Using NLP
Techniques

Fudaba et al. [15] 2015 SMT techniques based on analyzing
AST of source code

18,805 Python
and English
pseudo-code
pairs

- Generating Pseu-
docode from
Source Code

Oda et al. [41] 2015 SMT techniques, especially phrase-
based machine translation and tree-
to-string machine translation from
AST

18,805 Python
and English
pseudo-code
pairs

54.08 BLEU score and 4.1/5
acceptability grade by de-
velopers

Generating Pseu-
docode from
Source Code

Allamanis et al. [2] 2014 Train n-gram language model or SVM
on code corpus (all code tokens), then
rename identifiers in code to create
candidates and list top suggestions
based on model

10,968 open
source projects

94% accuracy in top sugges-
tions

Consistent Identi-
fier Naming

11

Lin et al. [34] 2017 Static code analysis and NLP meth-
ods such as n-gram (on lexical code
tokens)

Not specified Precision 42.31% for sug-
gested renaming

Consistent
Method naming

Allamanis et al. [3] 2015 Log-bilinear neural network to model 20 GitHub
projects

Outperforms n-gram mod-
els

Method and class
naming

Alon et al. [5] 2019 Path-based neural attention model
that simultaneously learns the embed-
dings of an AST paths and how to ag-
gregate them to create an embedding
of a method

12,000,000 Java
methods

Precision 63.7, Recall 55.4,
F1 Score 59.3

Method naming

Iyer et al. [24] 2016 An end-to-end neural network LSTM
model with an attention mechanism

66,015 C#
and 32,337
SQL code
snippets with
respective
Stackoverflow
title and posts

BLEU-4 20.5% for C# and
18.4% for SQL

Generating Code
Comments

Hu et al. [23] 2018 Structure-based traversal is used to
feed sequences of Java code AST
paths to seq2seq Neural Machine
Translation model

9,714 GitHub
projects

BLEU-4 30% for C# and
30.94% for SQL

Generating Code
Comments

Alon et al [4] 2018 Same as code2vec [5], but returns a
sequence instead of classifying

16,000,000 Java
methods

Precision 64.03, Recall
55.02, F1 59,19

Code summariza-
tion

Lei et al. [32] 2013 Bayesian generative model 106 problem
descriptions
totaling 424
sentences

Recall 72.5, Precision 89.3,
F-Score 80.0

Generating C++
Input Parsers from
NL description

Xiong et al. [55] 2017 Ranking of which one criterion is
Javadoc analysis

No training Precision 78.3, Recall 8.0 Generate guard
conditions based
on Javadoc

Zhang et al. [57] 2015 Analyzing the grammatical structure
of a test name to create a test body

No training Generating correct tem-
plate from test name 80%
of the time

Generating test
templates from
test names

Gvero et al. [18] 2015 Unigram and probabilistic context-
free grammar model

14,500 Java
projects con-
taining over
1.8 million files
from GitHub

Qualitative analysis con-
cludes that the solution “of-
ten produces the expected
code fragments“

Synthesizing Java
code from NL and
code mixture

Le et al. [30] 2013 Parse-trees, bag-of-words, regular ex-
pressions, phrase length measuring,
punctuation detection

No training Generating correct code
for 90% of NL descriptions
(640)

Create automa-
tion scripts for
smartphones from
NL description

Quirk et al. [43] 2015 A log-linearmodel with character and
word n-gram features

114,408 code-
description
pairs

57.7% F1 score for produc-
ing correct snippet from
NL description

Create if-this-
then-that code
snippets

Deeptimahanti et al.
[12]

2008 Various NLP tools such as Stanford
Parser, WordNet2.1, JavaRAP, etc. to
identify actors, use cases and relation-
ships to draw UML model

114,408 code-
description
pairs

Qualitatively analyzed on
a simple description

Generating UML
Models

12

Joshi et al. [26] 2012 Lexical and syntactic parser tools to
analyze NL sentences, POS tagging,
WordNet to identify actors and rela-
tionships. Java Application interface
is used to extract domain ontology

No training No evaluation Generating UML
Models

Kothari et al. [29] 2012 NLP tools for POS tagging, tokeniza-
tion, WordNet2.1, identifying differ-
ent actors and relations in UML by
NLP

No training No evaluation Generating UML
Models

Gulia et al. [17] 2016 Cleaning sentences, tokenization, de-
tecting end-of-sentence, POS tagging
and similar simplistic are used

No training Qualitatively analyzed on
a simple description

Generating UML
Models

Bruch et al. [8] 2009 One-hot-encoding relevant methods
and classes surrounding the target
code and using k-nearest neighbors
algorithm to find similar vectors

27,000 exam-
ple usages

Recall 72%, Precision 82%,
F1 Score 77%

Code Completion

Hindle et al. [21] 2012 N-gram language model 10 Apache Java
projects

Useful completion found
67% more often if looked
at the top 2 suggestions
(compared to Eclipse de-
fault completion tool)

Code Completion

Raychev et al. [45] 2014 3-gram language model, RNNME-40,
and the combination of the two

597.4MB
equivalent
to 6,989,349
snippets of
code

90% of the cases the desired
completion appears in the
top 3 candidates

Code Completion

Tu et al. [52] 2014 Linear interpolation of global n-gram
and local (cache) n-gram models

2M tokens for
n-gram model
5K tokens for
local n-gram
model

65.07% MRR accuracy for
suggestions in Apache Ant
Java project

Code Completion

Franks et al. [14] 2015 Combine top 3 results from n-gram
cache model and Eclipse suggestion

7 Apache
projects
between
60KLOC and
367KLOC

52.9% MRR accuracy
for top1 suggestions in
Apache Ant Java project
(reported 48.11% for [52])

Code Completion

Bielik et al. [6] 2016 Generalized Probabilistic Context
Free Grammar on AST-s

JavaScript
code contain-
ing 150,000
files

18.5% error rate while pre-
dicting various JavaScript
elements

Code Completion

Li et al. [33] 2018 LSTM based RNN with attention
mechanism with added pointers to
deal with unknown tokens. Heavily
uses AST parent-child information

150,000
Javascript
and Python
program files

81% accuracy for the pre-
diction of the next value for
JavaScript code

Code Completion

13

	Abstract
	1 Introduction
	Research questions

	2 Survey Method
	Search Criteria
	Data Extraction

	3 RQ 1: What are the applications of the papers?
	Generating Identifier, Method, and Class Names
	Generating Code Comments
	Generating Code Snippets from Natural Language
	Searching for Code Using Natural Language Processing Techniques
	Generating Pseudocode from Source Code
	Generating UML Models
	Code Completion

	4 RQ 2: What NLP techniques are used?
	Common NLP Tools
	Statistical Machine Translation
	Word Embeddings
	Deep Learning

	5 RQ 3: How large are the datasets used in the papers?
	6 Threats to Validity
	7 Conclusion
	References
	Appendices
	A Research on NLP Techniques for Code Generation

