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Multi-agent model predictive control for transportation networks
Serial versus parallel schemes

R.R. Negenbora* B. De Schuttef! J. Hellendoor®

aDelft University of Technology, Delft Center for Systemd &wontrol,
Mekelweg 2, 2628 CD Delft, The Netherlands

Abstract

We consider the control of large-scale transportation networks, likd t@dfic networks, power distribution networks, water distribution
networks, etc. Control of these networks is often not possible fromgespoint by a single intelligent control agent; instead control has to be
performed using multiple intelligent agents. We consider multi-agent dosthemes in which each agent employs a model-based predictive
control approach. Coordination between the agents is used to improigotiemaking. This coordination can be in the form of parallel or
serial schemes. We propose a novel serial coordination schered bad agrange theory and compare this with an existing parallel scheme.
Experiments by means of simulations on a particular type of transportegtwvork, viz., an electric power network, illustrate the performance
of both schemes. It is shown that the serial scheme has preferaigerfies compared to the parallel scheme in terms of the convergence
speed and the quality of the solution.

Key words: Multi-agent control, model predictive control, transptida networks, power systems.

1. Introduction cal issues arise from, e.g., communication delays and o hi
computational requirements. Some commercial issues are, e
1.1. Transportation networks and their Control Unavailability of information from one network Opel’ator{iD-

other, restricted control access, and costs of sensoredver,
robustness and reliability of the network may become a prob-

Transportation networks, like road traffic networks, power A .
lem in single-agent control, e.g., when the single contgelra

distribution networks, water distribution networks, gast-n breaks d
works, etc. are usually large in size, consist of multipliersi- reaxs down. . .

works, have many actuators and sensors, and exhibit compl xFOr these reasons, tra_nsportatlon_ne_tworks typically have
dynamics. These transportation networks can be considtred V%o_peraé[gg;Séng a mullg—glg.eg_tl,_ OI: dl'ztgfmle d, corr:trpre@ch

a generic level, at which commodity is brought into the net—( eIss, , oyeara, » Sljax, ). In such an aroa

work at sources, flows over links to sinks, and is influenced "{he overall network COﬂSIS.tS of multiple smaller subne_twor
its way of flowing by elements inside the network. The sim-I_Ea?h OT the sut')networks'ls controlled by' an agent with only
ilarities between several types of transportation netaate I|m|teql |r_1format|_o n gathe”_”_g. and processing Sk'l.ls anorgqo
the motivation for studying these networks in a generic way. over limited action capabilities. It is noted that in patar

Typical control goals for transportation networks involve duet tot tzet comtmerilaltr:s?ues m:JItl—agent contrr]ql IIS ntz;only
avoiding congestion of links, maximizing throughput, ng- restricted 1o networks that span large geographical ateas,

ing costs of control inputs, etc. In the daily operation afts- may also be used for cpntrol of relatively small networkg. E.
portation networks, network operators have to adjust tiie-ac in power networks typically the topology and system param-

ators in the network to meet these control objectives. @bntr eters of t_he networ_k in one_country_ are not made available to
from a single point by a single, centralized, control ageruft surrounding countries, making multi-agent control neegss

ten not possible due to technical or commercial issues.nfech
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1.2. Multi-agent model predictive control cc(;rétlrem

1.2.1. Model predictive control a) W agent 1

To determine which actions to take, an intelligent control 1 ! 1 1 P agent2
agent typically has some sort of model of the system it cdstro
a set of constraints under which it has to perform the control : ‘ ‘ ‘  agent1
and an objective function describing the goals of the contro  b) LR EHEHE oot 2
Using the model and the constraints the agent can to soma exte : : : : :
predict the consequences of its actions over a certain fiae s time
in the future. Using in addition to this the objective fuict]
the agent can determine those actions that are optimal witi9- 1- Two types of local computation and communication schereéseen
respect to its predictions. When such an approach to costrol gvo agents: a) s_erlfal, b) parallel. Solid arrows |nd|cafer_|rmat_|qn exchange.

. . . . - otted arrows indicate time spans. Vertical dotted linesicaig the end
used at each control step, i.e., in a receding horizon fasftio o a control cycle. Horizontal solid lines indicate localngputations being
is calledmodel predictive controflMPC) (Maciejowski, 2002; performed. A control cycle consists of a number of iteratidnsgach of
Mayne et al., 2000). which each agent performs a single step.

The major advantage of MPC is its straightforward desig . .
procedure. Given a model of the system, hard constraints C2|\r/1|pc to determine its actions.
be incorporated directly as inequalities and one only néeds cy
set up an objective function reflecting the control goal.tSof
constraints can also be accounted for in the objective bygusi
penalties for violations. Additional advantages of MPC itse

explicit way of integrating constraints and its straightfard ; ; . o ) ;
way of integrating forecasts. E.g., for transportationnoeks _hawor according _to a specified objective. This typically
involves communication.

MPC provides a convenient way to include capacity limitson ... " ) L
links, maximums on queue lengths, measurements from up_(|||) It implements the solution of the optimization probte
' ' of step ii.

stream sensors, profiles of demands, etc. .
P (iv) It moves on to the next control cycle.

We focus on the challenge in implementing step ii of such a

1.2.2. Single-agent MPC scheme. The actions that an agent takes influence both the evo

In a single-agent setting, MPC has shown successful applicaution of its own subsystem, and the evolution of the sulesyst
tion in the process industry over the last decades (Camawho aconnected to its subsystem. Since the agents in a multitagen
Bordons, 1995; Morari and Lee, 1999), and is now gaining insetting usually have no global overview and can only access
creasing attention in many other fields, like food procegsain- 3 relatively small number of sensors and actuators, piagdict
tomotive, and aerospace (Qin and Badgewell, 1997), andpowehe evolution of a subsystem over a horizon involves everemor
networks (Geyer et al., 2003), road traffic networks (Kdtsia uncertainty than when a single agent is employed. Thergfore
et al., 2006; Hegyi et al., 2005), sewer networks (Marinaki a ysually communication is used to reduce this uncertaiiniges
Papageorgiou, 2001), water networks (Wahlin, 2004), aitd ra this allows agents to inform one another about their playg- T
way networks (De Schutter et al., 2002). MPC thus has showpally, at each control cycle, the agents perform a number of
to be a promising control strategy, when a single-agent; ceriterations within which each agent performsi@cal computa-
tralized, control scheme can be implemented. However, whegion andcommunication steprhe agents can in this way take
this is not the case, due to technical or commercial reagons,into account the plans of other agents and anticipate any un-

In particular, at each control

cle, each agent performs the following:

(i) It obtains a measurement of the current state of its sub-
system, and receives information from other agents.

(i) It solves an optimization problem that finds over a certa
horizon the actions that result in the best subsystem be-

multi-agent MPC scheme has to be employed. desirable situation. Through communication agents magiobt
agreement on taking actions that yield a good overall perfor
1.2.3. Multi-agent MPC mance.

The theoretical research in multi-agent MPC started in the
90s (Aicardi etal., 1992; Acar, 1992; Katebi and Johnso8719 1.2.4. Parallel versus serial schemes
Jia and Krogh, 2001, 2002; Camponogara et al., 2002), with There are many ways in which a multi-agent MPC scheme
applications to water distribution systems (Georges, 1,98  can be implemented (Negenborn et al., 2006). For a giveri-mult
livery canals (Sawadogo et al., 1998), irrigation systefs ( agent MPC scheme, the quality of the solution that the agents
Fawal et al., 1998), multi-reach canals (Gomez et al., 1998)determine and the convergence and rate of convergencesto thi
dynamic routing (Baglietto et al., 1999), cascading fatim  solution depends on various aspects, e.g., the particujaet
power networks (Hines et al., 2005), distributed vehiclerde  mentation of the scheme, the way in which the agents perform
nation (Dunbar and Murray, 2006), and distributed emergenccommunication and local computations, the way in which in-
voltage control (Beccuti and Morari, 2006). formation received from other agents is used, etc. In thiepa

In multi-agent MPC it is usually assumed that the system tave focus on the second point, for which we distinguish betwee
be controlled has been divided into subsystems, and that easchemes that work iparallel and schemes that work 8erial,
subsystem has been assigned an agent. Each of the agents usssFig. 1. In the literature on multi-agent MPC mainly patal
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schemes have been proposed, e.g., (Hines et al., 2005; Camg., when linearizing equations describing instantaseou
ponogara et al., 2002; El Fawal et al., 1998; Georges, 1999), (power) flow distributions.

which all agents simultaneously perform a local step, then e  Thev; variables appear due to the fact that a subnetwork is
change information, then solve their next local step, andrso  connected to other subnetworksvilf, is known by ageni, this

In this paper we propose a novel serial scheme, in which onlagent can compute the dynamics of subnetwanklependently
one agent at a time performs a local step, sends information tof the other subnetworks.

a next agent, after which this next agent performs a localcom

putation step, sends information to a next agent, etc. Citéy a 2.2. Model predictive control of a single subnetwork

all agents have made a local step, the next round of locas step

is started. We compare the serial scheme with a parallehsehe

and assess the performance of both schemes experimental L . .
rates individually and that it therefore does not commateic

In experiments on a particular type of transportation netwo = . .
viz., a power network, we show that the proposed serial apw'th other agents. The agent employs MPC. to dgtermme.whlch
ctions to take. In MPC, an agent determines its local inputs

roach has preferable properties in terms of the conve encgl . - . . .
P P prop < y computing over a prediction horizon Nfsteps optimal in-

speed and the quality of the solution. ; o . .
puts according to an objective function, subject to a modlel o
the subnetwork and additional constraints. For notaticoat
1.3. Outline venience, in the following, a tilde over a variable is used to
denote variables over the horizon for the overall networty,, e
This paper is organized as follows. In Section 2 we formali.e., & = [ a,...,a},\_, |', or for a particular subnetwork
ize the control setting as consisting of interconnected ehod e.g., &k = | qu,...,alTk+N_l 1"
predictive control problems. In Section 3 we develop a g&iner  Gjven the measured initial local stdtet timek asx; o, local
multi-agent MPC scheme for dealing with the interconnewio known disturbances over the horizon &g, and locally pre-
between the control problems. In Section 4 we discuss aftexisgicted influences of the rest of the network over the preaficti

ing parallel implementation of this scheme and propose &Inov horizon asv, the following optimization problem is solved
serial implementation. In Section 5 we experimentally com-py agent:

pare and assess the performance of both schemes on a power

| Assume for now that the control agent of subnetwiodp-

network. - o T = _
min Jocali (K1, Gk, Vi) = > Jstagei (X115 Ui ke 15 Yier 1)
i =)
2. Control setting (2)
subject to

Assume that a transportation network is given with a parti- q
tioning into n subnetworks, each controlled by a control agent ~ Xik+1+1 = AX ket + Brilijert +Bzidi i +BaiVigr  (3)
that has a dynamical model of its subnetwork. Yikt! = CiXi k1 + Dbkt +D2idikr1 +D3iVika  (4)

forl =0,...,.N—1

2.1. Model of subnetwork dynamics Xik=X0 (5)
dix=do (6)
Let the dynamics of subnetwoikoe given by a determinis- Vik = Vi o, (7)

tic linear discrete-time time-invariant model (possibbtained
after symbolic or numerical linearization of a nonlineardab),
with noise-free outputs:

whereJstagei (+) is a twice differentiable (e.g., quadratic) func-
tion that gives the cost per prediction step given a certain |
cal state, local input, and local output. A typical choicetfte
stage cost is

1) T

Yik =CiXik+Dgjlix+D2;idi x+ D3;Vi iK1 i ki1 K11

Xike1 = AiXi k+ Byl k + Ba,id; k + B3jiVik

where at time stegk, for subnetworki, xx € R"x are lo-  Jstagei (Kik+1, Uik, Yik) = | G | Q| ik +fT G |-
cal statesuj € R"v are local inputsd;x € R™d are local - ~ ~
known disturbancesy;x € R"y are local outputsy; x € R"v Yik Yik Yik
are remaining variables influencing the local dynamicalwhereQ andf are a weighting matrix and vector respectively.
states and outputs, anfl € R"x*Mx By; € RMx*Mu Byj € After agent has solved the optimization problem and found the
RMxMd By € RMx*Mv, G e RMy*Mx Dyj € Ry Mu Dyj € actions over the horizon, it implements the actions deteeohi
RMy*Md Dy e RMy*Mv determine how the different variables until the next control cycle, waits for the physical subnerti
influence the local state and output of subnetwiofkote that  to transition to a new state, and starts the next controkcycl
for completeness inputs i are also allowed to influence out-

putsy;k at timek. Such a situation with direct feed-through 2 the measured initial local state is in this case the exadiriiical state,
terms typically appears when algebraic relations aretined,  since no measurement noise is considered.



We assumed that the agent does not use communication atefconnecting outputs from the control problem of agiewith
that it can locally predict the influence of the rest of the-net respect to agent since the variables of both control problems
work over the prediction horizow; i, included in the control model the same quantity. For agerhis thus gives rise to the
problem as (7). However, agentannot know this influence following interconnecting constraints
a priori, since actions taken by ageninfluence the dynam-
ics of its own subnetwork and therefore also the dynamics of
a neighboring subnetwork, which thus changgs Thus con-
straint (7) cannot be added explicitly, but has to be deal wi for j ¢ 4.

through the interconnecting constraints between contiab{ An interconnecting constraint cannot be added explicitly t
lems and communication between agents that enforces thegge control problems of any of the individual agents, sireehe

Win,ji = Woutij (12)
Wout ji = Win,ij » (13)

interconnecting constraints. interconnecting constraint depends on variables of twiedif
ent control problems. Instead the agents use communiciation
2.3. Interconnected control problems determine in an iterative way which values to give to therinte

connecting inputs and outputs.

The interconnections between control problems are modeled
using so-callednterconnecting variablesA particular variable 3. General multi-agent MPC scheme
of the control problem of agenmts an interconnecting variable
with respect to the control problem of aggnif the variable of One way for agent to deal with its interconnecting con-
agenti refers to the same quantity as a variable in the controstraints is to just ignore each neighboring agest 4 and sim-
problem of agenj. E.g., a flow going from subnetwoikinto  ply assume some values for the interconnecting outputsadf th
subnetwork] is represented with an interconnecting variableagent j, which essentially means solving problem (2). How-
in the control problems of both agents. ever, since the actions that an agent computes are optiryal on
Given the interconnecting variables of two agents refgrrin with respect to the predicted values of the interconnedtipgt
to the same quantity, it is convenient to define one of thes@ariableswiy ji for all j € .4, just assuming some values for the
variables as an interconnectimigput variable and the other interconnecting output variableg,j; of agentj introduces
as an interconnectingutput variable. On the one hand, an high uncertainty, potentially deteriorating the perforoa of
interconnecting input variablei, ji of the control problem of  the control. To reduce this uncertainty agemias to come to
agenti with respect to agent can be seen as an input causedan agreement with ageijitc .4 on the values of its intercon-
by agentj on the control problem of agent On the other necting output variablesoy;. Each agenitobtains agreement
hand, an interconnecting output varialgy,j; of the control  through iterations that inform the neighboring agepts .4/
problem of agenf with respect to the control problem of agent about what ageritprefers the values of interconnecting inputs
i can be seen as the influence that agehas on the control to pe.
problem of agent In general the interconnecting variables can  To obtain this agreement, an agémoes not only compute
come from any domain, in the following, however, we consideroptimal local variables for its own subnetwork, but alsoi-opt
interconnecting variablesi, ji € R win ,Woutji € R"ivout, mal interconnecting input variableg, ;. Moreover, the other
Define the interconnecting inputs and outputs for age®t  agentsj € .4 compute both their optimal local variables and
optimal interconnecting output variablég,ij. Through ex-
- change of these desired interconnecting variables, theyalf
Wouti = Ei &', 4 Ty y{k} , (9) the interconnecting output and input variables should eoye/
' ' to each other, and a set of local inputs that is overall optima
whereE; is an interconnecting-output selection matrix that con-gpould be found.
tains zeros everywhere, except for a single 1 per row corre- A general scheme that implements these ideas is obtained in
sponding to a local variable that relates to an intercomm@ct  tnree steps: 1) formulating the combined overall controbpr
input variable of another agent. lem, i.e., aggregating the subproblems including the dater
Remark 2.1 For the sake of simplicity of notation the subscript necting constraints; 2) constructing an augmented Lagrang
k for the time step and the tilde for variables of the predicti  f5rmulation by replacing each interconnecting constraiith

Win i = Vi (8)

horizon are not used for the interconnecting variables. an additional linear cost term, based on Lagrange multiplie
The variableswin i, Woutj are partitioned such that and a quadratic penalty term (Boyd and Vandenberghe, 2004;
. . T Bertsekas, 1982); 3 ) decomposing this formulation baok int
Win,i = [Win,juh”'vWin,jizmii} (10) subproblems for each agent.
T
= wl L r
Wouti = [WOULM"""WOULJiVmi'} ’ (1) 3.1, Combined overall control problem

where 4 = {ji1,..., jim} is the set of indexes of the sub-

networks connected to subnetwdtk.e., the set of neighbors  We define the combined overall control problem as the prob-
of subnetwork. The interconnecting inputs to the control prob- lem formed by the aggregation of the local control problems
lem of agent with respect to agenit must be equal to the in- without assuming the influence from the rest of the network
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formulated through equation (7) know, but including the -defi
nition of the interconnecting inputs and outputs (8)—(9) tre
interconnecting constraints (12)—(13), i.e.,

. . min
X1 k4 1,U1 kY1 ks

n
ZJlocaLi (Kikr1, G, Vi) (14)

7)‘€n7k+l~,ﬁn.k:yn.k i=

subject to, fori =1,...,n,
Win,ji 1i = Woutij; , (15)

(16)

and the dynamics (3)—(4) of subnetwarver the horizon, and
the initial constraints (5)—(6) of subnetworkNote that it is
sufficient to include in the combined overall control prahle
formulation only the interconnecting input constraint$ {&

Win, ji mi = Woutiji m

each agent, since the interconnecting output constraints (9) of

Under convexity assumptions on the objective functions and
affinity of the subnetwork model constraints it can be proved
that a minimum of the original problem (14) can be found
iteratively through repeatedly solving of the minimizatipart
of (18) for fixed Lagrange multipliers, followed by updatiof
the Lagrange multipliers using the solution of the minintia,
until the Lagrange multipliers do not change anymore from on
iteration to the next (Bertsekas, 1982).

3.3. Distributing the solution approach

The iterations to compute the solution of the combined over-
all control problem based on the augmented Lagrange formu-
lation (17) include quadratic terms and can therefore not di
rectly be distributed over the agents. To deal with this thie-n
separable problem (17) can be approximated by solniggp-
arated problems of the form:

agenti will also appear as interconnecting input constraints of

its neighboring agents.

3.2. Augmented Lagrange formulation

mln
i k-1:Gi koY1 ko
Win,jj 11+ - Win, jimi

Woutj, s Wout.]I m

Jocali (%i.k+1, Gi k, ik

+ Jinteri | Win, ||7Wout1|7/\<) 7/\<S)
]ez/V ( in,ji out,lj)

(19)

The overall control problem (14) is not separable into subsybject to the dynamics (3)—(4) of subnetworkver the hori-

problems using only local variableg, 1, i k, Vi k of one agenit
alone due to the interconnecting constraints (15)—(16)rdier
to deal with the interconnecting constraints, an augmebhéed
grangian formulation of this problem can be formulated (@oy
and Vandenberghe, 2004; Bertsekas, 1982). Using such an
proach, the interconnecting constraints are removed fiwan t
constraint set and added to the objective function in thenfor
of additional linear cost terms, based on Lagrange mugtig]i

zon, and the initial constraints (5)—(6) of subnetwarkvhere

the additional cost termdinei(-) deals with the interconnect-
ing variables. At iteratior(s), the vanables'\lgw)i are the La-
range multipliers computed by agerfor its mterconnectlng
%onstramtSN,n Jji = Woutjj, and the Val’lab|eﬁc<)u)“ are the La-
grange multlphers for its interconnecting constraim@tji =

Win jj - The)\Outl variables are received by agehrough com-

and additional quadratic terms. The augmented Lagrange funmunication with agenf, that computed these variables for its

tion is defined as

L(il,k+la Gl,k7yl,k7 e 7in,k+l7 Gn,kyyn,k7)\in,j1711, ce 7Ain,jn‘mnn)

n
= Zi <J|oca|,i (R k1, Gi e, Vi ks )
=

c 2
+ Z <)\in,ji(Win,ji —Wout,ij)+§ HWin,ji — Woutij H2> >,
jeMm
(17)

wherec is a positive constant andl, j; is the Lagrange mul-
tiplier associated with the interconnecting constraig i =
Wout jii -

By duality theory (Boyd and Vandenberghe, 2004; Bertsekas,

1982), the resulting optimization problem follows as maixin
tion over the Lagrange multipliers while minimizing oveeth
other variables,

max m|n

7)zn,k+l; ﬁn,kayn,kv
/\|n ]1 11 Xl k+lvul ko yl k>

(18)

L (R k1,01, Y1k, - - -

)\in,jl.lla R 7/\in,jn‘mnn)>

% (TR
/\inAjn‘,mnn n,k+1:Un k>¥Yn k

subject to, fori = 1,...,n, the dynamics (3)—(4) of subnetwork

i over the horizon, and the initial constraints (5)—(6) ofrseth
work i.

interconnecting constraints with respect to agefte general
multi-agent MPC scheme that results from this comprises at
control cyclek the following:

() Fori=1,...,n, agent makes a measurement of the cur-
rent state of the subnetworko and estimates expected
dlsturbancesi. 0-

(i) The agents cooperatively solve their control probldms
the following iterative way:

(a) Set the iteration counterto 1 and initialize the
(8 40

Lagrange multipliers\,";, Ag y;; arbitrarily.
(b) Either serially orin parallel for=1,...,n, agent
determinesq’ . 05 wiyo Y, gwf, for je M,

by solving:

min Jocali (% k-1, ik, Vi k)
w K k1 Ul\b ik 9 9
in,jj 115+ Win, jj . . - AN B
WOULji,li""aWOULijii . z Jlmer’l <W|n’“ ’WOUt’“ ’/\In,jl ’)\OULIJ) ’

jes
(20)

subject to the local dynamics (3)—(4) of subnetwork
i over the horizon and the initial constraints (5)—(6)
of subnetworki.

(c) Update the Lagrange multipliers,

A (s+1) _

s+1
in,ji ( ( :

s+l
= A e in,ji *Wgutij))-

in, ji

(21)



(d) Move on to the next iteratios+ 1 and repeat steps 2

ii.(a)—ii.(c). The iterations stop when the following
stopping condition is satisfied:

b—c Win,ji — Win,prevji
+ 2

Wout, ji — Wout,prevji o

A 30 This scheme uses only information computed during the last
injial 7injaal iteration s— 1. The parallel implementation of step ii.(b) of
: <g, the general multi-agent MPC scheme therefore consistseof th
(st1) © fol!pwing steps at decis_ion stdp iterations: _
in,jnmn — 2Ninjnmnd e (i) (b) Forall agents € {1,...,n}, at the same timeagent

i solves th lem (20) to determix&™ a&"Y
wheree is a small positive scalar and ||.. denotes |s(i\1/)es (:l?mb em (20) to de ermm@fbh ’

the infinity norm. Note that satisfaction of this stop- Win ji "+ Woueji » @nd sends to agente .4/ the com-
ping condition can be determined in a distributed s+1)

D€ Qe : puted value;wf)u”i.
way, because each individual component of the in-  The positive scalac penalizes the deviation from the in-

finity norm depends only on variables of one par-terconnecting variable iterates that were computed duttieg

ticular agent Negenborn et al. (2007).

last iteration. This makes that the interconnecting vaemb

(i) The agents implement the actions until the beginnifig 0 that agenti computes at the current iteration will stay close

the next control cycle.
(iv) The next control cycle is started.

to the interconnecting variables that neighboring agent4{
computed earlier when is chosen larger. With increasing

Remark 3.1 The Lagrange multipliers can be initialized ar- jt becomes more expensive for an agent to deviate from the
bitrarily, however, |n|t|al|Z|ng them with values close the interconnecting-variab|e values Computed by the othenmge
optimal Lagrange multipliers will increase the convergeraf  This results in a faster convergence of the interconnestinig
the decision making process. Therefore, also initializthg  aples to values that satisfy the interconnecting constraifow-
Lagrange multipliers with values obtained from the pregiou ever, it may still take some iterations to obtain optimales
decision-making step is beneficial, since typically theae L for the local variables. On the one hand a higheesults in
grange multipliers will be good initial guesses for the new s 3 higher number of iterations before reaching optimality, a
lution. We refer to this as arm start though the interconnecting constraints will be satisfieidkjy.

The schemes proposed in the literature implement step ii.(kon the other hand, whea is smaller a large number of it-
in a parallel fashion, e.g., (Camponogara et al., 2002; ®dFa  erations will be necessary before reaching optimality, ted
etal., 1998; Georges, 1999). In the following we first discais  interconnecting constraints will not be satisfied quickly.
scheme thatimplements step ii.(b) in a parallel fashiontaed As additional parameter this scheme uses a positive scalar
propose a novel scheme that implements it in a serial fashiom, |f b > ¢, then the term penalizes the deviation between the
We then assess the performance of both schemes experimefiterconnecting variables of the current iteration and ithe
tally. terconnecting variables of the last iteration of agernt thus
gives the agent less incentive to change its interconrgpetin-
ables from one iteration to the next. Whken> 2¢c, and more-
over the overall combined problem is convex, it can be proved
that the iterations converge toward the overall minimum for
sufficiently smalle (Bertsekas and Tsitsiklis, 1997; Kim and
Baldick, 1997).

4, Serial versus parallel schemes
4.1. Parallel implementation

The parallel implementation is the result of using thex-
iliary problem principle (Batut and Renaud, 1992; Kim and 42 Serial implementation
Baldick, 1997; Royo, 2001) of approximating the non-seplgra
guadratic term in the augmented Lagrangian formulation of
the combined overall control problem. The parallel scheme i
volves a number of parallel iterations in which all agents pe
form their local computing step at the same time.

Given the previous informatiowprey;j :wi(js), andWprey ji =

w<-is) of the agentg € .4{ of the last iteration s- 1, agent solves

problem (20) using the following additional objective ftion
term for the interconnecting constraints:

The novel serial implementation that we propose is the re-
sult of using ablock coordinate descerfBertsekas and Tsit-
siklis, 1997; Royo, 2001) for dealing with the non-sepagabl
quadratic term in the augmented Lagrange formulation of the
combined overall control problem (17). The approach mini-
mizes the quadratic term directly, in a serial way. Conlydd

the parallel implementation, in the serial implementatiore
agent after another minimizes its local and interconngatari-
ables while the other variables stay fixed.

s) s) . . . st+1
Jinter,i (Win’ji,Woutji,Ail(,]7ji,A(guLij> Given the informationwin, previj = Wi(n,”- >,W0ut, previj =

IC T ) 2 wSHD computed at the current iteratisifior each agenj € 4/

o I W oreuii — Wout i outij _ o .
— : + = In.previ) out i that has solved its probletveforeagenti in the currentitera-
- 2 Wout,previj — Win,ji | ||, tion s, and given the previous informatiavpyreyij = wi(]-s> of the



lastiterations— 1 for the other agents, ageinsolves problem
(19) using the following additional objective function:

Jinteri (Win,ji , Wout ji 7Ai515,)ji J‘éﬁ)ﬂj )
T 2

A Win ji c
difc

in, ji
) (9

outij

Win, previj — Wout ji

Wout ji Wout, previj — Win,ji

2

Thus, contrarily to the parallel implementation, the deria
plementation uses both information from the current iterat
and from the last iteration. The serial implementation enapl

ments step ii.(b) of the general scheme as follows at detisio

stepk, iterations:
(i) (b) Fori=1,...,n, one agent after anothemrgenti
. 1) ~(st+1 1 1 .
determlnesg("“T:rl),ui(i+ ), wl(rﬁl ), wfﬁtjf by solving
(20), and sends to each aggrt .4 the computed

val ueswgsutjli) .
The role of the scalac is similar as for the parallel imple-
mentation, except for that now penalizes the deviation from

the interconnecting variable iterates that were compuyettid

agents before agenmtin the current iteration and by the other

agents during the last iteration. Note that when for thelfgra

Oi
Qi

subnetwork 1

—O
D

subnetwork 2

dist1 =Woutz1 Win12=4A% N DPyist2!

APyen 1 Afy, A8 Afp,Ad Apgenzi

— —
o . J

A&y =Win 21 Woulej: A&,

model of subnetwork 1 model of subnetwork 2

Fig. 2. lllustration of the physical network and the var&gbf the subnetwork
models. In the top illustration a circle represents poweregaiion and a
triangle power consumption.

take the interconnections between subnetworks explititly
account. In (Camponogara et al., 2002) a distributed MPC
scheme is proposed for load-frequency control assuming tha
only once per control step information between agents can be
exchanged. Also in (Venkat et al., 2006) a distributed MPC
scheme is applied to a load-frequency control example. The

schemeb = ¢ the additional objective functions are the same,scheme uses distributed state estimation to provide némina

except for the previous information used: the parallel enpl
mentation uses only information from the last iteratiorm, $le-
rial also from the current.

5. Experiments

stability and performance properties. We consider disteitd
MPC using the parallel and serial scheme.

In a power network, each subnetwork has power generation
capabilities and power consumption, see Fig. 2. Each dontro
agent has to keep the frequency deviation within its subowtw
close to zero under minimal control input, accessing ondgalo
variables. For political and/or security reasons the agenty

In this section we perform simulation experiments on a parknow the topology of their own subnetwork. Furthermore heac

ticular type of transportation network, viz., a power netkydo

control agent can only sens the power consumption and change

compare and assess the performance of the schemes of Sectigg power generation in its own subnetwork. Therefore this

4. A power network consists of all generating units, substais a typical situation in which multi-agent control has to be
tions, and interconnecting power lines whose purpose isdo P employed.

vide the necessary energy to consumers. The frequency is one

of the main variables characterizing the system. The perposs 1 control setup

of load-frequency control is to keep power generation etpal

power consumption under consumption disturbances, sath th? 1.1. Dynamical subnetwork models

the frequency is maintained close to a nominal frequency o . . . . .
d y 9 Y The continuous-time dynamics of subnetwoeke described

typically 50 or 60Hz (Kundur, 1994). In a distributed settin .
agents have to obtain agreement on power flowing over Iine%(gotg)e.3 following second-order system (Camponogara et al.

between subnetworks in order to be able to perform adequate

local frequency control. EA(E (t) = 2mAfi (t)

A large number of control strategies has been developed dt
for load frequency control (Ibraheem et al., 2005). In the EAfi(t) — _iAfi(t)+ﬁ(APgeni(t)—APdist,i(t)+
70s, load-frequency control started being developed vatit ¢ dt T Tr
trol strategies based on centralized, non-MPC, contrat (se Ks; A () — AG (¢
(Quazza, 1966; Elgerd and Fosha, 1970; Fosha and Elgerd, . Mﬁ( i(0- ()))
1970)). From the 80s on also, distributed, non-MPC, schemes 1=
appeared (Kawabata and Kido, 1982; Park and Lee, 1984; A&(t)
Aldeen and Marsh, 1990; Yang et al., 1998, 2002). Recently, yi(t) = Afi(t)

also MPC-based schemes have been proposed. A centralized
MPC scheme for load-frequency control was proposed irwhere at time, for subnetworki € {1,...,n}, Ag is the angle
(Rerkpreedapong et al., 2003). A decentralized MPC schemgeviation,Af; is the frequency deviatiof\Pyen; is the change
for load-frequency control was proposed in (Atic et al., 200 in power generatiom)Pyisti is a disturbance in the loag is

The latter approach is a decentralized approach, that dutes rthe measurement of the state, atgl, Tp,Kg; are constants.
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The values for the parameters &g = 120,Kg; =Ks; = 0.5,  5.2. Simulations
Tp =20, fori=1,...,n, j € 4. Because we assume that the
outputsy; measure the full state noise-free, we will without 52 1. Scenario

loss of generality leave out the outpytsand only focus onthe e consider a network divided into two subnetworks, each
states in the following. controlled by a control agent, see Fig. 2. We simulate the net
Defining the local control inputi i = [APy; ], local distur-  \ork in Matlab 7.1 and solve the optimization problems of the
bancesd; x = [APy; ], local statex k = [Ad k, Afix]", remain-  controllers using the CPLEX v10 Barrier QP solver, through
ing variablesv x = [Aj , k.-, A0, k|T, and discretizing the  the Tomlab interface to Matlab. The network is simulated in
continuous-time model using an Euler approximation (with agjscrete time steps of 0.25s, fkr= 20 steps, thus yielding a
step size off = 0.25s), the model can be written as: total simulation time of to 5s. The subnetworks are iniiai
X k1 = AXik+ Boili k + Bt + BajVi ste_ady state, unti! a consumption disturbancARysi> = 1 per
unit (p.u.) occurs in subnetwork 2 afteBGeconds. At that time

where ) the dynamics of the subnetworks become highly dependent on
1 217 0 each other, and the agents cannot make adequate predictions
A= | —KpKs, 1 Bri= | Kp on the evolution of their own su_bnetvvorks unl_ess thgy obtain
TW 1- T.I.f TT* agreement on the values of their interconnecting varialhes
- R R A the following we first consider the uncontrolled situatiamd
0 0 0 then compare three controlled situations: 1) a hypothletia:
Boi = Kp Bsi= | KpKs; ) KrKs; | tralized agent uses the overall combined control probledeto
T ST . - inei i :
Th 271Th 271Th termine its actions for all subnetworks; 2) the agents oftite

networks use the serial multi-agent MPC scheme; 3) the agent
of the subnetworks use the parallel multi-agent MPC scheme.
We first consider the performance of the resulting contreirov
all control cycles in the full simulation span of 5s for a @t
ular setting of the parameters, and then focus on a particula
) ) control cycle to consider the iterations within that cohtiycle

10 0 and gain more insight into how the parameters influence the
performance of the multi-agent controllers.

5.1.2. Interconnecting variables

The interconnecting inputs for ageinare defined as in (8),
and the interconnecting outputs for ageate defined as in (9),
with

10 0 5.2.2. Full simulation evaluation criterion
To compare and assess the performance of the overall com-

Ei= bined, the serial, and the parallel scheme over the full Eimu
10 0 tion period, costs are computed over the full simulationetim
span, i.e.,
D : n k-1
10 0 Jsimulatior(-) = Z Zﬁ Jstagei (X141, Ui 1, Vil )
L - i=11=

where the bar indicates that the value of the variable istheh
and not predicted value, e.g refers to the actual state of
subnetwork at timek, and not the state predicted by an agent.

5.1.3. Local control goals
Since agent has to minimize the frequency deviation and
control input changes in its subnetwork, it uses the foliayyvi

quadratic local objective function: . _
5.2.3. Uncontrolled simulation

T . . T
5 y N=1 1 % 141 Qx O Xkt 141 Fig. 3 shows the evolut|qn of the frequency deylatlon in both
Jiocal, (Xi.k+1»ui7k) = subnetworks when no actions are taken, and Fig. 4 shows the
1=0 | Uik 0 Qu Ui et resulting power exported from subnetwork 1 to subnetwork 2.
where Due to the increase in power consumption in subnetwork 2,

the frequency in subnetwork 2 decreases, since the gemerati
capacity of subnetwork 2 cannot directly provide the resplir
new amount of power. Subnetwork 1 responds by automati-
cally exporting some power to subnetwork 2, making that in
A quadratic function has the advantage that larger deviatio subnetwork 1 a shortage of power appears, causing a drop in
are penalized more, and moreover that the objective fumctiothe frequency of subnetwork 1. This again triggers subngtwo

IS convex. 2 to export some power to subnetwork 1, but as can be seen
Remark 5.1 Note that the defined subnetwork models, inter-in the figure, the natural power flows over the interconnectin
connecting variables, and local control goals lead to anralle  |ine destabilize the frequency in both subnetworks. Théoper
combined control probler(l4) that is convex. mance over the full simulation period dgimylatior(-) = 9042.

00
Qi,x = s Qi,u = {50}
0 100
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_15 1 1 1 1 J
0 1 2 i ( )3 4 5 Fig. 5. Controlled simulation of frequency deviation usimg toverall com-
ime (s

bined scheme, the serial scheme, and the parallel scheme. INot&Egif-
icantly smaller range ofAf, compared with the range in the uncontrolled
Fig. 3. Uncontrolled simulation of frequency deviation aféedisturbance in

evolution in Fig. 3.
subnetwork 2.
’:'5:‘ 101 ; 077**)679‘(
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s |
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o | x
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E % l‘ //x
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% e | %
& E -1r \‘ o overall
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20" : . : 3 \ / al
) = --x--seria
time (s) £ 19l N )/,X
© N -—<—parallel
Fig. 4. Resulting power flowing from subnetwork 1 to subnet® for the g 14
uncontrolled simulation. S 1 2 4 5
time (s)
5.2.4. Controlled simulation

Now consider the situation that appears when every 0.258ig. 6. Resulting power flowing from subnetwork 1 to subnetw® for the
new actions are determined by an overall MPC scheme baségntrolled simulations. Note the significantly smaller ramgehe change in
on 1) a hypothetical centralized agent that uses the combin he power flow, compared with the range in the uncontrolledutiam in

) : .4
overall control problem defined in (14), or 2) agents that use 9

the serial scheme with warm start, or 3) agents that use th i  subnetwork L, overall
parallel scheme with warm start. For now we choose as paran f«\ o subnetwork 2, overall
eters a prediction horizon &f = 5 (corresponding to a horizon /A [, ooubnetwork 1, sera
of 1.25s),c =1, € = 1le 4, b = 2c (which for overall convex 5 05f / \ ~-«~ subnetwork 1, parallel
problems guarantees convergence). In Section 5.3 we discu < [ ~-o subnetwork 2, parallel
the influence of different values for the parameters on tlie pe  o® o T
formance. T gee g o00——6-—0-0
Fig. 5 shows the controlled evolution of the frequency de- No—oo-eme OO
viations, Fig. 6 shows the resulting power exported from-sub
network 1, and Fig. 7 shows the inputs that have been imple —0.55 1 : : ‘ ‘

mented, obtained using each of the three control approache.
We mentioned before, that the overall combined control prob

| . d th f d f f th It Fig. 7. Controlled evolution of inputs computed by overalintbned scheme,
em 1S convex, E_m erefore good perrormance o € Mullie serial scheme, and the parallel scheme.
agent schemes is expected. Indeed, for the chosen parameter

the difference between the performance of overall combinetions and changes in power generation to zero and in this way
control problem and the two distributed schemes is nedégib the agents stabilize the system. The agents have in a distib
the performance over the full simulationJgmulation(-) = 198  way obtained the performance of a centralized controller.

for each of the schemes, which is clearly an improvement over The number of iterations performed by the serial and paral-
the uncontrolled situation. Furthermore, each of the ailetrs  lel scheme is shown in Fig. 8. Initially, when the disturbanc
takes actions that in the end bring back the frequency devidias not appeared yet, the agents require few iterationsin th

time (s)

9
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Fig. 8. Number of iterations required per control cycle of terial and
parallel scheme. Fig. 9. For varyingN and varyingc, the number of iterations that the parallel
and the serial scheme require before stopping.

control cycles making. After the disturbance at 0.5s has ap-

peared the agents require significantly more iteratiofiilgated 25¢
by the increasing number of iterations at time 0.75s. Weceoti ——parallel, c=1
that the serial scheme requires fewer iterations than the-pa Z*jZ:Z'I’eff; o | e
lel scheme, explained by the fact that the serial schemes us || o seral c=0 !
information from both the previous and the current iteratio g | ¢ paalel oo

g, ~ Serel e e Q9 RS9 R R
5.3. A single control cycle el I

,_,*/
0 = ,;a—/—g'/‘k

To gain more insight in the role of the parameters and ir
the iterations that the serial and the parallel scheme perfo ‘ ‘
at a single control cycle we now focus on the iterations of «

a single, representative, control cycle among the agen¢és. W

consider the iterations of the serial and parallel scheigt ri Fig. 10. For varying\ and varyingc, the additional cost of the parallel and
after a disturbance has taken place. Consider the situation the serial scheme compared to the overall optimal costs.

which the state of subnetwork 1 3s o = [0,0]" and the state
of subnetwork 2 is¢ o = [0,0.5]".

both the parallel and the serial scheme vanishes, makirig tha
the difference between the two schemes vanishes as well.
) o When increasing the prediction horizbh it is expected that
5.3.1. Control cycle eval_uatlon criterion - _ the number of iterations required increases as well, siritte w
To evaluate the solution over the prediction horizon detery, |onqer horizon the number of interconnecting variables in
mined by the different schemes at a single control cycle, the o ses we see in Fig. 9 that the number of iterations does
inputs coming from the different schemes are implemented tg, v ase with an increasing prediction horizon lengthalgh
determine the resulting state trajectory, after which hel&c 1 5 0 a certain prediction horizon length. Interesting

performance is as from a certain prediction horizon length the number of itera
n N-1 tions decreases again, when compared to a smaller predictio
Jeyele(-) = Zl Z) Jstagei (X, 1415 Ui 1, Yil)- horizon. This behavior is due to the inputs of the subnetwork
i=11= over the first prediction steps being relatively more imaott

for obtaining low costs, than the inputs at later predicsteps.

5.3.2. Varying ¢ and prediction horizon N Therefore, obtaining satisfying interconnecting coristsafor
We vary the parametefs andc, while keeping the stopping the earlier prediction horizon steps involves more iterati

tolerances = 1e~4, andb = 2c. For values ot € {1,10,100}, From a certain prediction horizon length, the informatibatt
the number of iterations required by the parallel scheme anthe agents obtain from the communicated interconnecting in
the number of iterations required by the serial scheme iwsho puts and outputs for later prediction horizon steps resttiee
in Fig. 9. For a given value of, the serial scheme requires values for the interconnecting variables of earlier preoiic
fewer iterations than the parallel scheme for all except allsm horizon steps, thus resulting in faster convergence.
interval of prediction horizon lengths. For valuescoflose to Fig. 10 shows the additional cost imposed by using the serial
zero, the influence of the additional objective functafer; of or the parallel scheme instead of the overall control sch&ime
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6. Conclusions and future research

10r
ol ¥ parallel, N=5 . . .
serial, N=5 i In this paper we have considered multi-agent model pre-
8[| -« parallel, N=15 ; ; dictive control for the control of large-scale transpadat
7t =~ serial, N=15 | networks, like road traffic networks, power networks, sewer
‘g g| ~parallel, N=30 ek networks, etc. In particular, we have proposed a novel Iseria
T g _© serial, N=30 N scheme for agents to deal with the interconnections between
2 subnetworks. We compared this with an existing parallel
B 4 e ) scheme and an centralized overall scheme. For the serial and
3r X the parallel schemes, the performance of the solution ddali
ol o g ' converges toward the performance of the solution obtairyed b
Al / the overall control problem, provided that the overall coht
, - problem is convex. We have discussed the schemes theoreti-
= 0 R cally and assessed their performance experimentally byisnea

3 of simulation studies on a power network.
Although the parallel scheme is more frequently used
Fig. 11: For varyinge ar_ld N, the numbe_r of iterations that the parallel and throughout the literature, for the networks we have comsitle
the serial scheme require before stopping. the proposed serial scheme shows to have preferable proper-
ties in terms of solution speed, by requiring fewer itenagio
and solution quality, by providing performance closer te th
centralized overall control problem.

900} < parallel, N=5 Future research consists of deriving analytical bound$ien t

8ol serial, N=5 rate of convergence and assessing the performance of the ser
2 700k - parallel, N=15 and parallel approach for networks with a Igrger size arfé_rdlf
S = serial, N=15 ent topology. Furthermore, the methods will be extendedt+o s
B 600¢ -~ parallel, N=30 uations in which the problem of controlling the transpaatat
2 500t --o--serial, N=30 network cannot be formulated as a convex problem. In particu
- 2000 . lar we will extend the methods to deal with networks modeled
£ as hybrid systems in which both continuous and discrete dy-
2 300’*»&\ namics appeatr, a situation typically appearing when, ean;

200y e tinuous flows together with discrete actions are present.
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smaller prediction horizons, the serial and the parallebste
perform comparable to the overall scheme. For larger ptiedic
horizons the performance of the parallel scheme deteesrat
faster than the serial scheme. i

Appendix A. List of most frequent notations

number of subnetworks
index of an agent or subnetwork

M set of indexes of neighboring agents of agent
i index of a neighboring agent, i.gj.,€ A
Jig index of gth neighbor ofi
5.3.3. Varying the stopping tolerance m number of neighbors of
With increasing stopping toleraneethe stopping condition k control cycle step
will be satisfied within fewer iterations, at the price of are® X« :ggz: isrfgti g?i 2t5;g%kk
solution. Indeed, this characteristic behavior is showrign 11 d:t local disturbance of at stepk

and Fig. 12. Fig. 11 shows far=10,b = 2c, varyingN, and

varying g, that with € increasing fewer iterations are required, y;x local output variable of at stepk

while Fig. 12 shows that the additional cost of the solutionAi;Bu,.Bzi.Bsj matrices to describe linear time-invariant state equations

increases when compared to the overall combined scheme. Tﬁ'eDLiaDZ.in&i matrices to describe linear time-invariant output equations
. L prediction horizon length

cost of the serial scheme shows slower deviation from the cos sample step within prediction period

of the overall combined scheme than the cost of the parallg],

=lagagy 1"
scheme. &k =[aalna ]’

remaining variable of at stepk
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