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Abstract. Parikh’s game logic is a PDL-like fixpoint logic interpreted
on monotone neighbourhood frames that represent the strategic power
of players in determined two-player games. Game logic translates into
a fragment of the monotone µ-calculus, which in turn is expressively
equivalent to monotone modal automata. Parity games and automata are
important tools for dealing with the combinatorial complexity of nested
fixpoints in modal fixpoint logics, such as the modal µ-calculus. In this
paper, we (1) discuss the semantics a of game logic over neighbourhood
structures in terms of parity games, and (2) use these games to obtain
an automata-theoretic characterisation of the fragment of the monotone
µ-calculus that corresponds to game logic. Our proof makes extensive use
of structures that we call syntax graphs that combine the ease-of-use of
syntax trees of formulas with the flexibility and succinctness of automata.
They are essentially a graph-based view of the alternating tree automata
that were introduced by Wilke in the study of modal µ-calculus.

1 Introduction

Game logic was introduced by Parikh [23] as a modal logic for reasoning about
strategic power in determined 2-player games, and it can be seen as a gener-
alisation of PDL [16] both in terms of syntax and semantics. On the syntax
side, game logic is a multi-modal language in which modalities are labelled by
games, which in turn are built from atomic games, the PDL program constructs
together with the operation dual which switches the role of the players. A modal
formula 〈α〉ϕ should be read as “player 1 has a strategy in the game α to achieve
an outcome that satisfies the formula ϕ”. On the semantic side, one goes from
PDL to game logic by moving from Kripke frames to monotone neighbourhood
frames. A game perspective on this generalisation is that nondeterministic pro-
grams (i.e., relations) are 1-player games in which the player chooses his move
from a set of successors, and monotone neighbourhood frames are 2-player games
where player 1 first chooses a neighbourhood U , and then player 2 chooses an
element in U . The shift from Kripke frames to monotone neighbourhood frames
also means that we go from normal modal logic to monotone modal logic. Just
as PDL (and other fixpoint logics such as LTL and CTL∗) can be viewed as a
fragment of the modal µ-calculus [20, 2], game logic can be naturally viewed as
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a fragment of the monotone µ-calculus [24], which is monotone (multi-) modal
logic with explicit fixpoint operators. A notable difference is that PDL, LTL and
CTL∗ are all contained in level 1 or 2 of the alternation hierarchy whereas game
logic, due to the combination of dual and iteration, spans all levels of the alter-
nation hierarchy [1]. This high level of expressiveness could be an explanation
for why a completeness proof for game logic is still missing.

In this paper we contribute to the theory of game logic. We discuss the seman-
tics of game logic over neighbourhood structures using parity games and then
use these games to characterise a class of automata that is exactly as expressive
as formulas in game logic. Parity games are an intuitive way of dealing with
the nesting of least and greatest fixpoint operators, and together with automata
they play a fundamental role in the theory of fixpoint logics [12]. For instance,
parity games and automata have been used in proving complexity results for the
modal µ-calculus [8, 7] and also Walukiewicz’ completeness result [27] is proved
by automata-theoretic means. Some of these results have been extended to the
setting of coalgebraic fixpoint logic [10]. In particular, they are applicable to the
monotone µ-calculus. Since monotone modal µ-calculus is expressively equiva-
lent to a naturally defined class of (unguarded) monotone modal automata [11],
it is of interest to find out which subclass of these automata corresponds to game
logic. The main result in our paper is a characterisation of a class of unguarded
monotone modal automata that effectively corresponds to game logic, in the
sense that there are effective translations in both directions. This result can be
seen as the game logic analogue of the characterisation of PDL in automata-
theoretic terms [3]. The case of game logic, however, is more involved because
composition of games does not distribute from the left over choice as is the case
for the programs in PDL. This is related to the fact that in the relational se-
mantics of PDL, diamonds distribute over disjunctions; this property, which is
heavily exploited in the mentioned results on PDL, does not apply to the di-
amonds of game logic. Finally, note that our characterisation can also be seen
as an automata-theoretic counterpart to the results in [4, sec. 3.3] that charac-
terise a fragment of the µ-calculus that is expressively equivalent to game logic
interpreted over Kripke frames.

Our characterisation goes via a class of structures that we call syntax graphs.
Syntax graphs combine the ease-of-use of syntax trees of formulas with the flex-
ibility and succinctness of automata. They are essentially the same as Wilke’s
alternating tree automata (ATAs) [29] except they are described in terms of their
transition graphs, and they run on monotone neighbourhood models rather than
Kripke models. Unguarded monotone modal automata can, in turn, be viewed
as Wilke’s ATAs with complex transition condition [29] (again with a seman-
tics over monotone neighbourhood models). As noted in [29, 19] an ATA with
complex transition conditions can be effectively translated into an equivalent
ATA, and this construction is easily seen to work also for monotone semantics.
Concretely, our characterisation consists of a number of conditions that define a
subclass GG of syntax graphs that correspond to game logic formulas. We call
these game logic graphs. A game automaton is then a monotone modal automa-
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ton whose corresponding syntax graph (i.e. ATA) is in GG. The translation
from formulas to game logic graphs is an inductive construction similar to the
construction of a nondeterministic automaton from a regular expression. Con-
versely, the defining conditions on game logic graphs allow us to decompose a
game logic graph into components that correspond to formulas.

The rest of the paper is structured as follows. In Section 2 we recall the syntax
and neighbourhood semantics of game logic and describe a normal form that is
needed for our results. In Section 3 we introduce the game semantics for game
logic and prove it to be equivalent to the neighbourhood semantics. In Section 4
we discuss syntax graphs and their game semantics. In Section 5 we define game
logic graphs and prove them to be expressively equivalent to formulas in game
logic. Due to space constraints, proofs are provided in an extended version of
this paper [15].

2 Game Logic

Most definitions and results in this section are from [23, 25]. The syntax of game
logic is based on the syntax of propositional modal logic with the additional
feature that modal operators are labelled with terms that denote games. Since we
have “test games” of the form ϕ?, the definition of the syntax is a simultaneous
recursion on the structure of formulas and games.

Definition 1. Throughout the paper we fix a countable set Prop of atomic propo-
sitions (proposition letters) and a set Gam of atomic games. The sets F of for-
mulas and G of game terms of game logic are defined recursively as follows:

F 3 ϕ ::= p ∈ Prop | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈α〉ϕ, where α ∈ G
G 3 α ::= g ∈ Gam | αd | α ∪ α | α ∩ α | α;α | α∗ | α× | ϕ? | ϕ!, where ϕ ∈ F

We use the standard definitions of → and ↔, and note that > can be defined as
p ∨ ¬p for any p ∈ Prop. In the following we denote formulas by ϕ,ψ, . . . and
game terms with α, β, ρ, . . . . We use the letter χ to denote arbitrary terms that
could either be a formula or a game term.

The formulas of game logic express strategic power in 2-player determined,
zero-sum games. A formula 〈α〉ϕ says that player 1 has a strategy in the game
α to ensure that the outcome of the game satisfies ϕ. The assumption that the
games are determined and zero-sum means that in a given game α, player 2 has
a strategy to achieve ϕ iff player 1 does not have a strategy to achieve ¬ϕ. Hence
the formula ¬〈α〉¬ϕ, usually written as [α]ϕ, says that player 2 has a strategy in
α to ensure an outcome that satisfies ϕ. For technical reasons we do not include
boxes as primitive operators.

It will be convenient to refer to player 1 as Angel and player 2 as Demon.
The game operations can then be explained as follows. The composition α ;β is
the game consisting of playing α followed by β. The angelic choice α ∪ β (resp.
demonic choice α∩β) is the game in which Angel (resp. Demon) chooses whether
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to play α or β. The angelic iteration α∗ is the game in which α is played 0 or
more times, and after each time, Angel chooses whether to stop or play again,
but she must stop after some finite number of iterations. The demonic iteration
α× is the iterated game in which Demon chooses when to stop, and he may
choose to play forever. The formula 〈α∗〉ϕ thus says that Angel has a strategy to
reach a ϕ-state by playing α some finite number of rounds (where her strategy
may depend on what Demon did in previous rounds, so that in particular, the
number of rounds needed to reach ϕ is not determined at the start of the game).
The formula 〈α×〉ϕ says that Angel has a strategy for maintaining ϕ indefinitely
when playing α repeatedly. Finally, the dual game αd is the same as α but with
the roles of the two players reversed, i.e., Angel has a strategy to achieve ϕ in
αd iff Demon has a strategy to achieve ϕ in α, and vice versa.

In [23, 25], the language of game logic only contained the game operations
; ,∪,∗ ,d, and the demonic operations were defined as α ∩ β = (αd ∪ βd)d and
α× = ((αd)

∗
)d. We take the demonic operations as primitives, since later we

want to reduce formulas to dual and negation normal form.
The formal semantics of game logic is given by representing games as mono-

tone neighbourhood frames. These are well known semantic structures in modal
logic [5, 13].

Definition 2. Let S be a set. We denote by M(S) the set of up-closed subsets
of P(S), i.e., M(S) = {N ⊆ P(S) | ∀U,U ′ : U ∈ N,U ⊆ U ′ ⇒ U ′ ∈ N}. A
monotone neighbourhood frame on S is a function f : S → M(S). We denote
by MF(S) the set of all monotone neighbourhood frames on S.

For f ∈ MF(S) and s ∈ S, the subsets U in f(s) are called the neighbour-
hoods of s. We point out that such neighbourhoods are not necessarily neigh-
bourhoods in the topological sense. In particular, we do not require that a state
s is an element of all its neighbourhoods. In our setting, the neighbourhoods will
be the subsets that Angel can force in the game represented by f .

We note that (M(S),⊆) is a complete partial order with associated join and
meet given by union and intersection of neighbourhood collections. This CPO
structure lifts pointwise to a CPO (MF(S),v) in which we also denote join and
meet by ∪ and ∩.

In analogue with how the PDL program operations are interpreted in relation
algebra, we interpret game operations via algebraic structure on MF(S).4

Definition 3 (Game operations). Let f, f1, f2 ∈ MF(S) be monotone neigh-
bourhood frames. We define

– the unit frame ηS by: U ∈ ηS(s) iff s ∈ U for s ∈ S and U ⊆ S.
– the composition f1 ; f2 by:

U ∈ (f1 ; f2)(s) iff {s′ ∈ S | U ∈ f2(s′)} ∈ f1(s) for s ∈ S and U ⊆ S.
4 It is well-known that M is a monad, [14]. Readers who are familiar with monads will

recognise that unit and composition correspond to the unit and Kleisli composition.
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– the Angelic choice and Demonic choice between f1 and f2 by:

(f ∪ g)(s) = f(s) ∪ g(s) (f ∩ g)(s) = f(s) ∩ g(s), for s ∈ S.

– the dual fd by: U ∈ fd(s) iff S \ U /∈ f(s) for s ∈ S and U ⊆ S.
– the angelic iteration f∗ := LFP(Af ),

– the demonic iteration f× := GFP(Df ),

where LFP(Af ) and GFP(Df ) are the least and greatest fixed points of the maps

Af : MF(S)→ MF(S) Df : MF(S)→ MF(S)
g 7→ ηS ∪ (f ; g) g 7→ ηS ∩ (f ; g)

Note that for any f ∈ MF(S), the map g 7→ f ; g is a monotone operation on
(MF(S),v) and hence so are Af and Df . By the Knaster-Tarski theorem, Af
and Df have unique least and greatest fixed points.

It is straightforward to verify that MF(S) is closed under the above oper-
ations. The following lemma lists a number of identities that will be useful in
reasoning about game logic semantics.

Lemma 1. For all f, g ∈ MF(S), we have:

1. (fd)d = f 4. (f ∪ g)d = fd ∩ gd 7. (f∗)d = (fd)
×

2. (f ; g)d = fd ; gd 5. (f ∩ g)d = fd ∪ gd 8. (f×)d = (fd)
∗

3. (ηS)d = ηS 6. f ⊆ g ⇒ gd ⊆ fd

We now have all the definitions in place to define game models and the
semantics of formulas and games. We first give some intuitions. A game model
consists of a state space together with interpretations of atomic propositions
(as subsets of the state space) and atomic games (as monotone neighbourhood
frames). The semantics of complex formulas and complex games is then defined
by mutual induction. For a formula ϕ, the semantics [[ϕ]] is defined via the usual
definitions from monotone modal logic. For a game α, the semantics 〈|α|〉 is a
monotone neighbourhood frame defined via the game constructions given above.
The subsets U in 〈|α|〉(s) are the sets of outcomes that Angel can “force” when
playing the game α in state s.

Definition 4. A game model is a triple S = (S, γ, Υ ) where S is a set of states,
γ : Gam → MF(S) is a Gam-indexed collection of monotone neighbourhood
frames, which provides an interpretation of atomic games, and Υ : Prop→ P(S)
is a valuation of atomic propositions. For ϕ ∈ F and α ∈ G we define the
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semantics [[ϕ]]S ⊆ S and 〈|α|〉S ∈ MF(S) by induction on the term structure:

[[p]]S := Υ (p) for p ∈ Prop [[¬ϕ]]S := S \ [[ϕ]]S

[[ϕ1 ∨ ϕ2]]S := [[ϕ1]]S ∪ [[ϕ2]]S [[ϕ1 ∧ ϕ2]]S := [[ϕ1]]S ∩ [[ϕ2]]S

[[〈α〉ϕ]]S := {s ∈ S | [[ϕ]]S ∈ 〈|α|〉S(s)} 〈|α;β|〉S := 〈|α|〉S ; 〈|β|〉S
〈|g|〉S := γ(g) for g ∈ Gam 〈|αd|〉S := (〈|α|〉S)d

〈|α ∪ β|〉S := 〈|α|〉S ∪ 〈|β|〉S 〈|α ∩ β|〉S := 〈|α|〉S ∩ 〈|β|〉S
〈|α∗|〉S := (〈|α|〉S)

∗ 〈|α×|〉S := (〈|α|〉S)
×

〈|ψ?|〉S := λx.

{
ηS(x) if x ∈ [[ψ]]S
∅ otherwise.

〈|ψ!|〉S := λx.

{
ηS(x) if x 6∈ [[ψ]]S
PS otherwise.

We write ϕ ≡ ψ if for all S, [[ϕ]]S = [[ψ]]S. Similarly, we write α ≡ β if for all S,
〈|α|〉S = 〈|β|〉S. We will often omit the subscript S, if S is clear from the context,
or irrelevant.

The following lemma states some basic identities involving the dual operator,
and a congruence property.

Lemma 2. Let ϕ,ψ ∈ F and α, β ∈ G. We have:

1. (αd)d ≡ α 2. (α;β)d ≡ αd;βd
3. (α ∪ β)d ≡ αd ∩ βd 4. (α ∩ β)d ≡ αd ∪ βd

5. (α∗)d ≡ (αd)
×

6. (α×)d ≡ (αd)
∗

7. (ψ?)d ≡ (¬ψ)! 8. (ψ!)d ≡ (¬ψ)?
9. 〈αd〉ϕ ≡ ¬〈α〉¬ϕ 10. If α ≡ β and ϕ ≡ ψ then 〈α〉ϕ ≡ 〈β〉ψ

We will make frequent use of the fact that all formulas and game terms can
be reduced to a dual and negation normal form.

Definition 5. A formula ϕ ∈ F , resp. game term α ∈ G, is in dual and negation
normal form (DNNF) if dual is only applied to atomic games and negations occur
only in front of proposition letters. We denote by FDNNF the set of formulas in
DNNF, and by GDNNF the set of game terms in DNNF.

Lemma 3. For all ϕ ∈ F , there is a DNNF formula nf(ϕ) such that ϕ ≡ nf(ϕ).
For all α ∈ G, there is a DNNF game term nf(α) such that α ≡ nf(α).

From now on we will generally assume that formulas are in DNNF. The
following lemma lists some crucial validities that form the basis for the definition
of the game semantics in the next section. It is straightforward to verify that
these formulas are valid.

Lemma 4. The following formulas are valid in all game models:

〈α;β〉ϕ↔ 〈α〉〈β〉ϕ 〈αd〉ϕ↔ ¬〈α〉¬ϕ
〈α ∪ β〉ϕ↔ 〈α〉ϕ ∨ 〈β〉ϕ 〈α ∩ β〉ϕ↔ 〈α〉ϕ ∧ 〈β〉ϕ
〈α∗〉ϕ↔ ϕ ∨ 〈α〉〈α∗〉ϕ 〈α×〉ϕ↔ ϕ ∧ 〈α〉〈α×〉ϕ
〈ψ?〉ϕ↔ ψ ∧ ϕ 〈ψ!〉ϕ↔ ψ ∨ ϕ
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3 Game Semantics for Game Logic

In this section we will see how games provide an operational semantics for
game logic. In particular, we will develop a two-player evaluation game for game
logic, very much in the spirit of Berwanger [1]. Note however, that the ambient
model-theoretic structures in our setting are monotone neighbourhood structures,
whereas Berwanger restricts to (relational) Kripke structures. Our approach al-
lows for a neat formulation of some useful additional observations involving the
unfolding games related to monotone operations on full powersets [26].

3.1 Game Preliminaries

Two-player graph games are an important tool for fixpoint logics. We will briefly
recall their definition and the related terminology. For a more comprehensive
account of these games, the reader is referred to [12]. A graph game is played
on a board B, that is, a set of positions. Each position b ∈ B belongs to one
of the two players, Eloise (abbr. ∃) and Abelard (abbr. ∀). Formally we write
B = B∃ ∪ B∀, and for each position b we use P (b) to denote the player i such
that b ∈ Bi. Furthermore, the board is endowed with a binary relation E, so
that each position b ∈ B comes with a set E[b] ⊆ B of successors. Note that we
do not require the games to be strictly alternating, i.e., successors of positions
in B∃ or B∀ can lie again in B∃ or B∀, respectively. Formally, we say that the
arena of the game consists of a directed two-sorted graph B = (B∃, B∀, E).

A match or play of the game consists of the two players moving a pebble
around the board, starting from some initial position b0. When the pebble arrives
at a position b ∈ B, it is player P (b)’s turn to move; (s)he can move the pebble
to a new position of their liking, but the choice is restricted to a successor of b.
Should E[b] be empty then we say that player P (b) got stuck at the position.
A match or play of the game thus constitutes a (finite or infinite) sequence
of positions b0b1b2 . . . such that biEbi+1 (for each i such that bi and bi+1 are
defined). A full play is either (i) an infinite play or (ii) a finite play in which the
last player got stuck. A non-full play is called a partial play. Each full play of
the game has a winner and a loser. A finite full play is lost by the player who
got stuck; the winning condition for infinite games is usually specified using a
so-called parity function, ie., a function Ω : B → N that maps each position
to a natural number (its priority) and that has finite range. An infinite play
Π = b0b1 . . . bn · · · ∈ Bω is won by Eloise if max{Ω(b) | b ∈ Inf(Π)} is even,
where Inf(Π) denotes the positions from B that occur infinitely often in Π.
Otherwise Abelard wins this play. A graph game with parity function Ω is a
parity game. All graph games used in this paper are parity games, but we will
not specify the parity function explicitly in simple cases (e.g. when one of the
players is supposed to win all infinite plays).

A strategy for player i tells player i how to play at all positions where it is i’s
turn to move. A strategy can be represented as a partial function which maps
partial plays β = b0 · · · bn with P (bn) = i to legal next positions (that is, to
elements of E[bn]), and which is undefined for partial plays β = b0 · · · bn with
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E[bn] = ∅. We say that a play Π = b1 . . . bn · · · ∈ B∗ ∪ Bω follows a strategy
f if for all positions bj in Π on which f is defined we have f(bj) = bj+1. A
strategy is positional if it only depends on the current position of the match.
A strategy is winning for player i from position b ∈ B if it guarantees i to win
any match with initial position b, no matter how the adversary plays — note
that this definition also applies to positions b for which P (b) 6= i. A position
b ∈ B is called a winning position for player i, if i has a winning strategy from
position b; the set of winning positions for i in a game F is denoted as Wini(F).
Parity games are positionally determined, i.e., at each position of the game board
exactly one of the players has a positional winning strategy (cf. [22, 9]).

3.2 Definition of the Evaluation Game

In order to be able to trace the unfoldings of fixpoint operators within games
we need some terminology concerning the nesting of fixpoints. Firstly, we need
notation for the subterm relation and the definition of a parity map for a formula.

Definition 6. We let / ⊆ (F ∪ G)2 be the subterm relation on formulas and
game terms, ie., ξ1 / ξ2 if either ξ1 = ξ2 or ξ1 is a proper subterm of ξ2.

Definition 7. For a term ξ ∈ F ∪G we let Fix(ξ) := {α∗ | α ∈ G, α∗ /ξ}∪{α× |
α ∈ G, α× / ξ}. A parity function for a formula ϕ in DNNF is a partial map
Ω : Fix(ϕ)→ ω such that

1. α1 / α2 implies Ω(α1) < Ω(α2) for all α1, α2 ∈ Fix(ϕ) with α1 6= α2, and
2. for all α ∈ Fix(ϕ), Ω(α) is even iff α = ρ× is a demonic iteration.

We define the canonical parity function Ωcan : Fix(ϕ) → ω associated with ϕ
as the partial function given by Ωcan(α∗) = 2n + 1 and Ωcan(α×) = 2n where
n = #Fix(α∗) and n = #Fix(α×), respectively. The canonical parity function
formalises the fact that any fixpoint operator dominates any other fixpoint oper-
ator in its scope.

Definition 8. Let S = (S, γ, Υ ) be a game model, let ϕ ∈ F be a formula
in DNNF and let Ω : Fix(ϕ) → ω be a parity function for ϕ. We define the
evaluation game E(S, ϕ) as the parity graph game with the game board specified
in Fig. 1 and the parity function ΩE given by

ΩE(b) :=

{
Ω(α) if b = (x, 〈α〉ψ) for some α ∈ Fix(ϕ)
0 otherwise.

3.3 Adequacy of Game Semantics

In this section we show that the game semantics of Definition 8 is equivalent to
the standard semantics of game logic from Definition 4 where we assume w.l.o.g.
that formulas are in DNNF.
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Formula Part Game Part

Position b P(b) Moves E[b]

(s, p), s ∈ Υ (p) ∀ ∅
(s, p), s /∈ Υ (p) ∃ ∅
(s,¬p), s ∈ Υ (p) ∃ ∅
(s,¬p), s 6∈ Υ (p) ∀ ∅
(s, ϕ ∧ ψ) ∀ {(s, ϕ), (s, ψ)}
(s, ϕ ∨ ψ) ∃ {(s, ϕ), (s, ψ)}
(s, 〈g〉ϕ) ∃ {(U, 〈g〉ϕ) | U ∈ 〈|g|〉(s)}
(U, 〈g〉ϕ) ∀ {(s, ϕ) | s ∈ U}
(s, 〈gd〉ϕ) ∀ {(U, 〈gd〉ϕ) | U ∈ 〈|g|〉(s)}
(U, 〈gd〉ϕ) ∃ {(s, ϕ) | s ∈ U}

Position b P(b) Moves E[b]

(s, 〈α ;β〉ϕ) ? {(s, 〈α〉〈β〉ϕ)}
(s, 〈α ∪ β〉ϕ) ? {(s, 〈α〉ϕ ∨ 〈β〉ϕ)}
(s, 〈α ∩ β〉ϕ) ? {(s, 〈α〉ϕ ∧ 〈β〉ϕ)}
(s, 〈α∗〉ϕ) ? {(s, ϕ ∨ 〈α〉〈α∗〉ϕ)}
(s, 〈α×〉ϕ) ? {(s, ϕ ∧ 〈α〉〈α×〉ϕ)}
(s, 〈ψ?〉ϕ) ? {(s, ψ ∧ ϕ)}
(s, 〈ψ!〉ϕ) ? {(s, ψ ∨ ϕ)}

Fig. 1. Game board of the evaluation game. We use P (b) = ? to express that it is
irrelevant which player moves, since there is exactly one possible move.

To compare the two different semantics we need a game characterisation of
the ( )

∗
and ( )

×
-operations. As both operations are defined as fixpoints they can

be characterised via fixpoint games (these games are straightforward adaptation
of the unfolding game described in [26]). We provide some intuition below the
definition.

Definition 9. Let α ∈ G be a game term, let S = (S, γ, Υ ) be a game model
and let U ⊆ S. The games F(S, α∗, U) and F(S, α×, U) have the following game
boards:

Board of F(S, α∗, U): Board of F(S, α×, U):
Pos. b P (b) Moves E[b]

s ∈ S ∃
{
{∅} if s ∈ U
〈|α|〉(s) otherwise.

U ′ ∈ P(S) ∀ U ′

Pos. b P (b) Moves E[b]

s ∈ S ∃
{
〈|α|〉(s) if s ∈ U
∅ otherwise.

U ′ ∈ P(S) ∀ U ′

The winning conditions in these games are as usual: finite complete plays are
lost by the player that gets stuck. Infinite plays of F(S, α∗, U) and F(S, α×, U)
are won by Abelard and Eloise, respectively.

The fixpoint game F(S, α∗, U) works as follows. The objective of Eloise is to
reach U in finitely many rounds of α. At a position s ∈ U , Eloise can win by
choosing the move ∅ which causes Abelard to get stuck in the next step, since he
must choose from the empty set of moves. At a position s 6∈ U , Eloise chooses
an α-neighbourhood U ′ of s, and in the next step Abelard then chooses a state
s′ ∈ U ′, and the game continues. In the game F(S, α×, U), the objective of Eloise
is to stay in U indefinitely. At a position s /∈ U , she therefore loses immediately
(indeed, she is stuck at such positions, since her set of moves is empty). But at
a position s ∈ U , the players play another round of α, and the game continues.
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Lemma 5. For all S = (S, γ, Υ ), α ∈ G, s ∈ S and U ⊆ S, we have:

s ∈Win∃(F(S, α∗, U)) iff U ∈ 〈|α∗|〉(s), and
s ∈Win∃(F(S, α×, U)) iff U ∈ 〈|α×|〉(s).

The lemma easily follows because the games F(S, α∗, U) and F(S, α×, U) are
instances of Tarski’s fixpoint games that characterise least and greatest fixpoints
of a monotone operator.

The following technical lemma demonstrates that winning strategies for Eloise
in the evaluation game entail the existence of certain neighbourhood sets in the
game model that witness the truth of a modal formula. There is no requirement
on the witness to be non-empty, e.g., s |= 〈α〉⊥ if ∅ ∈ 〈|α|〉(s).

Lemma 6. Let ϕ ∈ F , let S = (S, γ, Υ ) be a game model and consider the game
E = E(S, ϕ). Assume that f∃ is a winning strategy for Eloise in E, and that
(s, 〈α〉ψ) ∈ Win∃(E). Let Winψ(E) := {s′ ∈ S | (s′, ψ) ∈Win∃(E)} and suppose
Winψ(E) ⊆ [[ψ]]. Then Winψ(E) ∈ 〈|α|〉(s).

The lemma is the key to prove one direction of the adequacy of our game
semantics.

Proposition 1. Let ϕ ∈ F , let S = (S, γ, Υ ) be a game model and consider
E = E(S, ϕ). For all ψ occurring in E we have Winψ(E) ⊆ [[ψ]]S.

The claim is proven by induction on ψ and follows easily from Lemma 6. For the
second half of the adequacy theorem we again need a technical lemma.

Lemma 7. Let S = (S, γ, Υ ) be a game model and let ϕ ∈ F . For any position
(s, 〈α〉ψ) of the game E = E(S, ϕ) and for all U ⊆ [[ψ]]S with U ∈ 〈|α|〉(s) Eloise
has a strategy f∃ such that for each finite E-play Π starting at (s, 〈α〉ψ) and
following f∃ either Abelard gets stuck or Π reaches a state (s′, ξ′) ∈ S × F that
satisfies one of the following conditions: (i) ξ′ / α and s′ ∈ [[ξ′]], or (ii) ξ′ = ψ
and s′ ∈ U .

Proposition 2. Let S = (S, γ, Υ ) be a game model and consider the game E =
E(S, ϕ) for some ϕ ∈ F . There is a strategy f∃ for Eloise that is winning for
Eloise for all game positions (s, ψ) such that s ∈ [[ψ]]S.

In summary, Proposition 1 and Proposition 2 imply that our game semantics
for game logic is adequate:

Theorem 1. Let S = (S, γ, Υ ) be a game model and consider the game E =
E(S, ϕ) for some ϕ ∈ F . Then for all positions (s, ψ) in E we have (s, ψ) ∈
Win∃(E) iff S, s |= ψ.
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4 Syntax Graphs

In this section we introduce syntax graphs which we then use later to provide
an automata-theoretic characterisation of game logic. Syntax graphs are a gen-
eralisation of syntax trees that allow cycles and sharing of subterms. Another
perspective is that they are a graph-based description of the alternating tree
automata from [29, 19]. We discuss the precise connection after the definition of
syntax graphs and their game semantics.

4.1 Graph Basics

We first recall some basic notions and fix notation. A graph is a pair G = (V,E)
where V is a set of vertices V and E ⊆ V × V is a set of edges. We will use the
following notation: vEw iff (v, w) ∈ E iff w ∈ E(v), and call w a successor of v.

Let G = (V,E) be a graph. A path p in G is a sequence of vertices p = v1 . . . vn
such that viEvi+1 for all i < n. We say that vn is reachable from v1 if a path
p = v1 . . . vn exists. Note that every vertex is always reachable from itself. A
cycle c = v1 . . . vn is any path such that v1 = vn and n ≥ 2.

A path p = v1 . . . vn is simple if all the vi for i ≤ n are distinct. A cycle
c = v1 . . . vn is simple if all the vi for i < n are distinct Every path can be
contracted to a simple path with the same start and end points, To see how this
works consider a path p that contains a repetition of some vertex u ∈ V . This
means that p is of the form p = qumur, for paths q, m and r. We contract p to
the path qur with the same starting and end points, in which there is one less
occurrence of u. We can repeat this procedure until we obtain a simple path.

A pointed graph G = (V,E, vI) is a graph (V,E) together with a vI ∈ V
that we call the initial vertex of G. If G is a graph (V,E) or a pointed graph
(V,E, v) and vI is a vertex in G, we define G@vI = (V ′, E′, vI) to be the subgraph
generated by vI in G, i.e., V ′ is the set of vertices that are reachable from vI and
E′ = E ∩ (V ′ × V ′).

A pointed graph G = (V,E, vI) is reachable if every v ∈ V is reachable from
vI . Note that G@vI is always reachable.

4.2 Syntax Graphs

We define the following sets of label symbols: Lit = Lb0 := {p,¬p | p ∈ Prop},
Latt = Lb2 := {∧,∨} and Mod = Lb1 := {〈g〉 | g ∈ Gam} ∪ {〈gd〉 | g ∈ Gam}.
The labels Lb0, Lb1, Lb2 can be given an arity in the expected manner, namely,
for l ∈ Lbi, arity(l) = i. We let Lb := Lb0 ∪ Lb1 ∪ Lb2.

Definition 10. A syntax graph G = (V,E, L,Ω) is a finite graph (V,E) to-
gether with a labelling function L : V → Lb and a partial priority function
Ω : V ⇀ ω satisfying the following two conditions:

(arity condition) For all v ∈ V , |E(v)| = arity(L(v)).
(priority condition) On every simple cycle of (V,E) there is at least one ver-

tex on which Ω is defined.
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Later we will show that formulas correspond to syntax graphs, and game
terms correspond to syntax graphs with a special atomic proposition that marks
an “exit” from the graph. The idea is that a game term α is viewed as the
modality 〈α〉 which still needs a formula ϕ in order to become a formula 〈α〉ϕ,
and an exit marks a place in the graph where ϕ can be inserted.

Definition 11. A proposition letter e is an exit of a syntax graph G = (V,E, L,Ω)
if there is a vertex v ∈ V with L(v) = e and there is no v ∈ V with L(v) = ¬e.

We say that a proposition letter p is reachable from a vertex v in G if there
is some vertex u that is reachable from v in G with L(u) = p or L(u) = ¬p. The
priority of a path (or cycle) p = v1 . . . vn is defined by

Ω(p) = max ({−1} ∪ {Ω(vi) | 1 ≤ i ≤ n}) ,

i.e., Ω(p) = −1 if Ω is undefined on all the vi.

Due to the close connection between formulas and syntax graphs, we can
define an acceptance game for syntax graphs in essentially the same way as
in Definition 8, using that successors in the syntax graph can be viewed as
subformulas.

Definition 12. Let G = (V,E,L,Ω, vI) be a pointed syntax graph and S =
(S, γ, Υ, sI) be a pointed game model. We define the acceptance game A =
A(G,S) as a parity game with the game board as specified in Fig. 2, initial
position (vI , sI) and priority function ΩA such that ΩA(v, s) = Ω(v) if Ω(v) is
defined and ΩA(v, s) = 0 otherwise. If Eloise has a winning strategy in the game
A(G,S) then we say that G accepts S. We also write S, s |= G to mean that
Eloise has a winning strategy in the game A(G,S) starting from position (vI , s).

Given a pointed syntax graph G and a formula ϕ, we write G ≡ ϕ if for all
S, Eloise has a winning strategy in E(S, ϕ) iff she has one in A(G,S).

Position b P (b) Moves E[b]

(v, s), L(v) = p, s ∈ Υ (p) ∀ ∅
(v, s), L(v) = p, s /∈ Υ (p) ∃ ∅
(v, s), L(v) = ¬p, s ∈ Υ (p) ∃ ∅
(v, s), L(v) = ¬p, s /∈ Υ (p) ∀ ∅
(v, s), L(v) = ∧ ∀ {(w0, s), (w1, s)}, where E(v) = {w0, w1}
(v, s), L(v) = ∨ ∃ {(w0, s), (w1, s)}, where E(v) = {w0, w1}
(v, s), L(v) = 〈g〉 ∃ {(v, U) | U ∈ 〈|g|〉(s)}
(v, U), L(v) = 〈g〉 ∀ {(w, s) | s ∈ U,L(v) = {w}}
(v, s), L(v) = 〈gd〉 ∀ {(v, U) | U ∈ 〈|g|〉(s)}
(v, U), L(v) = 〈gd〉 ∃ {(w, s) | s ∈ U,L(v) = {w}}

Fig. 2. Game board of the acceptance game A(G, S)
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A syntax graph is essentially a multi-modal version of an alternating tree
automaton (ATA) with partial priority function as described in [29, sec. 2.2.5].
Namely, taking the transition graph of an ATA as defined in [29, sec. 2.2.4] and
equipping this graph with the evident labelling function, yields a syntax graph.
Conversely, given a syntax graph one constructs for each vertex a transition
condition from its label and successors in the obvious manner. If desired, a partial
priority function Ω can be made into a total map Ω′ by defining Ω′(v) = Ω(v)+2
if v ∈ VP and Ω′(v) = 0 otherwise. One easily adapts the notion of a run on a
pointed Kripke structure from [29] to a run on a pointed game model (by dealing
with modal transition conditions as in the modal positions of Definition 12) such
that there exists an accepting run for the ATA on S iff Eloise has a winning
strategy in the acceptance game for the corresponding syntax graph on S.

As described in [29, sec. 2.2.5] and in more detail in [19, sec. 9.3.4] ATAs can
be generalised to allow complex transition conditions (i.e. arbitrary formulas)
without increasing their expressive power. The basic idea in transforming an
ATA with complex transition condition into an equivalent ATA is to introduce
new states for each node in the syntax tree of the transition conditions.

Monotone modal automata are obtained by instantiating the definition of Λ-
automaton from [11] with the functorMGam and taking Λ to be a suitable set of
predicate liftings. Monotone modal automata and their unguarded variants are
expressively complete for the monotone (multi-modal) µ-calculus. On the other
hand, unguarded monotone modal automata are essentially the same as ATAs
with complex transition condition (running on monotone neighbourhood models
for a multi-modal signature), hence by the above transformation, unguarded
monotone modal automata can be viewed as syntax graphs, and vice versa.

We have chosen to work with syntax graphs rather than ATAs or monotone
modal automata, since we characterise the game logic fragment mainly in terms
of the graph structure. In the following section, we identify a class GG of syn-
tax graphs that correspond to game logic formulas. By the correspondence just
outlined, we can define game automata as those unguarded monotone modal
automata for which the corresponding syntax graph (ATA) is in GG.

5 The Game Logic Fragment

In this section we define game logic graphs, which are a class of syntax graphs
that has the same expressivity over neighbourhood frames as formulas in game
logic. After giving the definition of game logic graphs, we show that for each
game logic formula there is a game logic graph that accepts a pointed game
model iff the formula is true at the model and, vice versa, for every game logic
graph there is a game logic formula that is true at a pointed game model iff the
game logic graphs accepts the model.

5.1 Game Logic Graphs

The idea behind the definition of game logic graphs is that cycles in the graph
correspond to formulas of the form 〈α∗〉ϕ and 〈α×〉ϕ. Consider e.g. the axiom for
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〈α∗〉ϕ (in Lem. 4). We see that the vertex v corresponding to the disjunction in
ϕ ∨ 〈α〉〈α∗〉ϕ has a special role as a vertex on the corresponding cycle. Namely,
let vl and vr be the two successors of v where going to vl means leaving the
cycle (going to subformula ϕ) and going to vr means remaining on the cycle
(going to subformula 〈α〉〈α∗〉ϕ). We will refer to this v as the head of the cycle
corresponding to 〈α∗〉ϕ. If the cycles in the syntax graph arise from a nesting of
fixpoint formulas, and Ω is the parity function of some formula (cf. Def. 7), then
certain conditions will need to hold for the cycles and Ω. This is made precise
in the following definition.

Definition 13. Given a syntax graph G = (V,E, L,Ω) in which Ω is injective,
we let h := Ω−1 : ran(Ω)→ V denote the inverse of Ω on its range. We use the
abbreviation hn := h(n) and call hn the head of priority n. Whenever we write
hn, we presuppose that n ∈ ran(Ω).

A game logic graph is a syntax graph G = (V,E,L,Ω) in which Ω is injective
and the following conditions hold for all n ∈ ran(Ω):

(parity) L(hn) = ∨ if n is odd and L(hn) = ∧ if n is even.
(head) There are maps r, l : ran(Ω)→ V , for which we also use the abbrevia-

tions rn := r(n) and ln := l(n), such that E(hn) = {ln, rn} and
(leave) For all simple paths p = ln . . . hn we have that Ω(p) > n.
(remain) There is no simple path hnrn . . . hm for any m > n.

A game logic graph with exit is a syntax graph with exit G = (V,E, L,Ω, e)
for which (V,E, L,Ω) is a game logic graph that additionally satisfies:

(exit) For all n ∈ ran(Ω) and all v ∈ V with L(v) = e, there is no simple path
hnrn . . . v.

5.2 From Formulas to Game Logic Graphs

Our first result in characterising the game logic fragment of syntax graphs shows
that we can translate game logic formulas into equivalent game logic graphs.

Theorem 2. For every game α ∈ GDNNF in which the proposition letter e does
not occur, there is a pointed syntax graph G with exit e such that G ≡ 〈α〉e. For
every game logic formula ϕ ∈ FDNNF there is a pointed syntax graph G such that
G ≡ ϕ.

The proof of Theorem 2 is by a mutual induction on the structure of games
and formulas, and is similar to the construction of a nondeterministic finite
automaton from a regular expression [17], that is, we define constructions on
syntax graphs that correspond to game operations and logical connectives. The
recursive procedure itself is similar to the translation of game logic into the µ-
calculus [24], with the difference that we directly translate into syntax graphs
instead of formulas of the µ-calculus.

For example, we construct G1 ;G2 where G1 and G2 are given by the induc-
tion hypothesis by rerouting the edges that went to an exit vertex in G1 to go to
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the initial state of G2. The priority function Ω for G1 ;G2 is unchanged on the
G2 part, but in order to make sure Ω is injective we shift all priority values in
G1 by adding to them a number k that preserves the parity and ensures that all
priorities in the G1 part are higher than those in the G2 part. The correctness of
the construction is proved by constructing winning strategies in the evaluation
game from winning strategies in the acceptance game, and vice versa. A detailed
proof is provided in [15].

Example 1. Below we show the syntax graphs of some formulas. The initial ver-
tex is the topmost vertex, and priorities are indicated as subscripts on the vertex
labels.

∧2

∧ e

∨1 p

〈g〉

∨

∨ ∧

p 〈g〉 q e

e

∧2

∨ e

∨1 〈h〉

∧

¬p 〈g〉

ϕ = 〈(p?; g∗)
×〉e ϕ = 〈(p!; g) ∪ q?〉e ϕ = 〈(((¬p)?; g)

∗ ∪ h)
×〉e

5.3 From Game Logic Graphs to Formulas

We now show how to transform game logic graphs into equivalent game logic
formulas.

Theorem 3. For every pointed game logic graph with exit G = (V,E, L,Ω, e, vI)
there is a game term δ ∈ G, not containing e and only containing propositional
letters that are reachable from vI , such that G ≡ 〈δ〉e.

The proof of Theorem 3 is by induction on the number of heads in the game
logic graph. In the base case there are no heads which implies that there are no
cycles in the graph, which makes it easy to recursively decompose the graph into
a game term. In the inductive step we use a construction that removes some of
the edges at the head with the highest priority and thus cutting all cycles that
pass through the highest priority head. This allows us to remove the priority
from this head and obtain a simpler game logic graph to which we can apply the
induction hypothesis. A detailed proof is provided in [15].

Because any propositional letter e that does not occur in G can be added as an
exit to a game logic graph G we obtain the following corollary from Theorem 3:

Corollary 1. For every pointed game logic syntax graph G there is a formula
ϕ ∈ F such that G ≡ ϕ.

Example 2. We apply the construction from Theorem 3 to the graph on the left
in Example 1. The heads h1 and h2 are the disjunction with priority 1 and the
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conjunction with priority 2, respectively. We start the decomposition at h2. We
then first obtain a game δ2 = λ×2 , where λ×2 is a dummy game term that is a
place holder for the game through the left child of h2, that describes how to
reach the exit from the initial state without iterating at h2. We also apply the
induction hypothesis to obtain a new game λ2 that describes one iteration from
the left node to h2, which we replace by a fresh exit e′. In this inductive step
we then need to cut h1. At h1 we have δ1 = λ∗1 ∩ p? ; p! and λ1 = 〈g〉. We then
obtain λ2 by substituting λ∗1 in δ1 with λ∗1 and thus obtain λ1 = g∗ ∩ (p? ; p!).

Substituting λ×1 for λ×1 in δ2 yields the overall game (g∗ ∩ (p? ; p!))×. Hence the

game graph is equivalent to the formula 〈(g∗ ∩ (p? ; p!))×〉e.

6 Conclusion

We have provided a semantics for game logic in terms of parity games. This was
the key to obtain our main technical result, the characterisation of game logic
graphs, i.e., a class of parity automata that correspond to game logic formulas.

These automata open several avenues for future research: Firstly, we would
like to study normal forms in game logic. In the µ-calculus, automata are the
key to obtain the (semi-)disjunctive normal forms of formulas which can be used
to prove further results, e.g., completeness, interpolation and the characterisa-
tion of the expressivity of the logic [18, 28, 6]. Our experience suggests that a
similar normal form for game logic is out of reach, but a careful analysis of the
cycle structure of game logic graphs might yield useful insights concerning the
structure of game logic formulas. As a first step in this direction we are cur-
rently investigating how to obtain guarded game logic graphs and, consequently,
a definition of guarded game logic formulas.

Furthermore, game logic constitutes a very general dynamic logic that makes
very few assumptions on the algebraic properties of the modal operators. There-
fore we believe that our game logic automata have the potential to help us
understand a wider class of automata for families of dynamic logics such as coal-
gebraic dynamic logics [14] or many-valued dynamic logics as described in [21]
or for a combination of these frameworks.
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A Proofs from Section 2

Lemma 1. For all f, g ∈ MF(S), we have:

1. (fd)d = f 4. (f ∪ g)d = fd ∩ gd 7. (f∗)d = (fd)
×

2. (f ; g)d = fd ; gd 5. (f ∩ g)d = fd ∪ gd 8. (f×)d = (fd)
∗

3. (ηS)d = ηS 6. f ⊆ g ⇒ gd ⊆ fd

Proof. Items 1, 3, 4, 5, 6 are straightforward. To see why item 2 holds:

U ∈ (f ; g)d(s) iff S \ U /∈ (f ; g)(s)
(by mon.) iff ∀V ∈ f(s) ∃t ∈ V : S \ U /∈ g(t)

iff {s′ ∈ S | S \ U ∈ g(s′)} /∈ f(s)
iff {s′ ∈ S | S \ U /∈ g(s′)} ∈ fd(s)
iff {s′ ∈ S | U ∈ gd(s′)} ∈ fd(s)
iff U ∈ (fd ; gd)(s)

Item 7: First observe that U ∈ (f∗)d(s) iff S \ U /∈ f∗(s) = LFP(Af )(s) iff

there is a g ∈ MF(S) : S \ U /∈ g(s) and ηS(s) ∪ (f ; g)(s) ⊆ g(s) (1)

and U ∈ (fd)
×

(s) = GFP(Dfd) iff

there is a h ∈ MF(S) : U ∈ h(s) and h(s) ⊆ ηS(s) ∩ (fd ; h)(s) (2)

To see that (1) implies (2), take h = gd. First, S \ U /∈ g(s) iff U ∈ gd(s) =
h(s). Second, gd(s) ⊆ ηS(s) follows from ηS(s) ⊆ g(s) and items 3 and 6. Sim-
ilarly, gd(s) ⊆ (fd ; gd)(s) follows from (f ; g)(s) ⊆ g(s) and items 2, 3 and 6.
The implication (2) ⇒ (1) follows by a similar argument taking g = hd. Item 8
is proved in a similar manner as item 7. ut

Lemma 2. Let ϕ,ψ ∈ F and α, β ∈ G. We have:

1. (αd)d ≡ α 2. (α;β)d ≡ αd;βd
3. (α ∪ β)d ≡ αd ∩ βd 4. (α ∩ β)d ≡ αd ∪ βd

5. (α∗)d ≡ (αd)
×

6. (α×)d ≡ (αd)
∗

7. (ψ?)d ≡ (¬ψ)! 8. (ψ!)d ≡ (¬ψ)?
9. 〈αd〉ϕ ≡ ¬〈α〉¬ϕ 10. If α ≡ β and ϕ ≡ ψ then 〈α〉ϕ ≡ 〈β〉ψ

Proof. Items 1-6 follow from Lemma 1, using the compositional semantics of the
game operations. We show item 7 (item 8 can be proved similarly).

Case s ∈ [[ψ]]S : U ∈ 〈|((ψ)?)d|〉(s) iff S \ U /∈ 〈|(ψ)?|〉(s)
iff s /∈ S \ U
iff s ∈ U
iff U ∈ ηS(s) = 〈|¬ψ!|〉(s).
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Case s ∈ [[ψ]]S : U ∈ 〈|((ψ)?)d|〉(s) iff S \ U /∈ 〈|(ψ)?|〉(s)
iff S \ U /∈ ∅
iff true
iff U ∈ P(S) = 〈|¬ψ!|〉(s).

Items 9 and 10 are also straightforward to prove using the standard semantics
in Definition 4. ut

Lemma 3. For all ϕ ∈ F , there is a DNNF formula nf(ϕ) such that ϕ ≡ nf(ϕ).
For all α ∈ G, there is a DNNF game term nf(α) such that α ≡ nf(α).

Proof. We define nf(ϕ) and nf(α) inductively over formulas and game terms.
On atomic propositions and atomic games, nf(−) acts as identity. On formulas
with main connective different from ¬ and game terms with main constructor
different from d, nf(−) just distributes over the main connective/constructor. In
particular, nf(〈α〉ϕ) = 〈nf(α)〉nf(ϕ). For the remaining cases, nf(ϕ) and nf(α)
are defined as follows:

nf(¬p) = ¬p,
nf(¬¬ϕ) = nf(ϕ),
nf(¬(ϕ ∧ ψ)) = nf(¬ϕ) ∨ nf(¬ψ),
nf(¬(ϕ ∨ ψ)) = nf(¬ϕ) ∧ nf(¬ψ),
nf(¬〈α〉ϕ) = 〈nf(αd)〉nf(¬ϕ),
nf((ϕ?)d) = nf(¬ϕ)!,
nf((ϕ!)d) = nf(¬ϕ)?,

nf(gd) = gd,
nf((αd)d) = nf(α),
nf((α ∪ β)d) = nf(αd) ∩ nf(βd),
nf((α ∩ β)d) = nf(αd) ∪ nf(βd),
nf((α;β)d) = nf(αd); nf(βd),

nf((α∗)d) = nf(αd)
×
,

nf((α×)d) = nf(αd)
∗
,

We prove that ϕ ≡ nf(ϕ) and α ≡ nf(α) by induction on the length of formu-
las and game terms, i.e. the number of symbols, not counting parentheses. For
example the length of 〈(p?; gd)∗〉(¬p ∧ q) is 10.

Base case: For atomic propositions and atomic games (which have length 1),
it is trivial. Similarly for formulas and games of length 2. So assume the lemma
holds for formulas and games of strictly shorter length.

Step: The induction step is straightforward using the IH and Lemma 2. For
example, nf(¬〈α〉ϕ) = 〈nf(αd)〉nf(¬ϕ) ≡ 〈αd〉¬ϕ ≡ ¬〈α〉¬¬ϕ ≡ ¬〈α〉ϕ where
the second step uses the IH and Lemma 2(10). Note here that the length of αd

and ¬ϕ are both less than the length of ¬〈α〉ϕ. The third step uses Lemma 2(9).
ut

B Proofs from Section 3

As a preparation for proving Lemma 6 we need to introduce some terminology.

Definition 14. Let ϕ ∈ F , let S = (S, γ, Υ ) be a game model and consider
the game E = E(S, ϕ). Furthermore we let f∃ denote a strategy for Eloise. For
(s, 〈α〉ψ) we denote by Sucf∃(s, 〈α〉ψ) ⊆ S the collection of all states s′ ∈ S such
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that there exists a (possibly partial) E-play that follows f∃, that is of the form
(s, 〈α〉ψ) . . . (s′, ψ) and no position in between (s, 〈α〉ψ) and (s′, ψ) is of the form
(s′′, ψ).

Remark 1. We spell out the definition of Suc for the test cases, as these cases
tend to cause unnecessary confusion. For α = ξ? we have Sucf∃(s, 〈α〉ψ) = {s}.
For α = ξ! we have Sucf∃(s, 〈α〉ψ) = ∅ if f∃ requires to move from (s, 〈α〉ψ) to
(s, ξ) and we have Sucf∃(s, 〈α〉ψ) = {s} if f∃ requires to move from (s, 〈α〉ψ) to
(s, ψ).

Lemma 6. Let ϕ ∈ F , let S = (S, γ, Υ ) be a game model and consider the game
E = E(S, ϕ). Assume that f∃ is a winning strategy for Eloise in E, and that
(s, 〈α〉ψ) ∈ Win∃(E). Let Winψ(E) := {s′ ∈ S | (s′, ψ) ∈Win∃(E)} and suppose
Winψ(E) ⊆ [[ψ]]. Then (i) Sucf∃(s, 〈α〉ψ) ∈ 〈|α|〉(s), and (ii) Winψ(E) ∈ 〈|α|〉(s).

Proof. The second item follows easily from the first, as all states that are reach-
able via some winning strategy of Eloise from a winning position must again be
winning positions. In other words, Sucf∃(s, 〈α〉ψ) ⊆ Winψ(E), hence by mono-
tonicity (i) implies (ii). The first item can be proven by induction on the structure
of α. We only discuss the fixpoint operators and angelic tests. All other cases
are a matter of routine checking.

Case α = α′
∗
. By our assumption Eloise has a winning strategy at position

(s, 〈α〉ψ) in E . We show that she also has a winning strategy in the game
F = F(S, α∗,Sucf∃(s, 〈α〉ψ)) ∈ 〈|α|〉(s) at position s. To see this we equip
Eloise with a strategy in F such that for any play

sU1s1 . . . Unsn

there is a “shadow play” in E of the form

(s, 〈α′∗〉ψ) . . . (s1, 〈α′
∗〉ψ) . . . (sn, 〈α′

∗〉ψ)

that follows Eloise’s winning strategy in E . Suppose this connection has been
established for n rounds (ie. for all plays of F of where Eloise moved at most
n times) we are going to describe how to extend it to games with n + 1
rounds: Consider a F-play of n rounds ending in position sn and assume
that Eloise has played according to the strategy that we are providing for
her. By assumption there is an E-play according to Eloise’s winning strategy
in E that reaches state (sn, 〈α′∗〉ψ).

Subcase Eloise’s E-strategy f∃ requires a move to (sn, ψ). In this case we
have sn ∈ Sucf∃(s, 〈α′

∗〉ψ) ⊆ Win∃. Therefore the F-play ending in sn
is complete and winning for Eloise as required.
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Subcase Eloise’s E-strategy requires to move to (sn, 〈α′〉〈α′∗〉ψ). As Eloise’s
strategy is winning we have (sn, 〈α′〉〈α′∗〉ψ) ∈Win∃ and by I.H. we get
Un+1 := Sucf∃((sn, 〈α′〉〈α′

∗〉ψ) ∈ 〈|α′|〉(sn). We define Eloise’s strat-
egy in F to move from sn to Un+1. If Un+1 = ∅ we have that the
F-play is complete and Eloise wins as required. Otherwise Abelard picks
some sn+1 ∈ Un+1. By the definition of Un+1 this implies that the E-
shadow play can be prolonged from (sn, 〈α′∗〉ψ) to (sn+1, 〈α′∗〉ψ) follow-
ing Eloise’s winning strategy f∃.

In either subcase we showed how Eloise can prolong the F-play - unless
Abelard gets stuck - such that there is a suitable parallel E-play that follows
Eloise’s winning strategy f∃. Furthermore, by Def. 14 of Suc we have that α∗

is the fixpoint with the highest priority that is unfolded within this parallel
E-play. This means - as the E-play is winning for Eloise- the parallel E-play
has to stop eventually which implies that Abelard has to get eventually stuck
in the F-play as well. In other words, Eloise wins each F-play that starts in
s and that is played according to the strategy that we devised for her. Thus
U ∈ 〈|α′∗|〉(s) as required.

Case α = α′
×

. The proof for this case is analogous to the previous one.
Case α = ξ?. By assumption Eloise has a winning strategy at 〈ξ?〉ψ and we

have Winψ ⊆ [[ψ]]. As (s, 〈ξ?〉ψ) is winning for Eloise, we also have (s, ψ) ∈
Win∃ and thus s ∈ Winψ ⊆ [[ψ]]. Therefore 〈|ξ?|〉(s) = ηS(s) and hence
Sucf∃(s, 〈ξ?〉ψ) = {s} ∈ 〈|ξ?|〉(s) as required. ut

Lemma 7. Let S = (S, γ, Υ ) be a game model and let ϕ ∈ F . For any position
(s, 〈α〉ψ) of the game E = E(S, ϕ) and for all U ⊆ [[ψ]]S with U ∈ 〈|α|〉(s) Eloise
has a strategy f∃ such that for each finite E-play Π starting at (s, 〈α〉ψ) and
following f∃ either Abelard gets stuck or Π reaches a state (s′, ξ′) ∈ S × F that
satisfies one of the following conditions: (i) ξ′ / α and s′ ∈ [[ξ′]], or (ii) ξ′ = ψ
and s′ ∈ U .

Proof. The claim is proven by induction on α.

α = g If U ∈ 〈|g|〉(s) for some U ⊆ [[ψ]], Eloise’s strategy consists of moving to
U , which obviously fulfils the conditions of the lemma.

α = α1;α2 Let U ∈ 〈|α1;α2|〉(s) with U ⊆ [[ψ]]. This implies U ∈ (〈|α1|〉 ;
〈|α2|〉)(s), ie., U ′ := {s′ ∈ S | U ∈ 〈|α2|〉(s′)} ∈ 〈|α1|〉(s). It is easy to see
that U ′ ⊆ [[〈α2〉ψ]]. Eloise has to move in E from position (s, 〈α1;α2〉) to
(s, 〈α1〉〈α2〉ψ). To the latter position we can apply the I.H. which yields a
strategy g for Eloise such that:
– Any play following g starting in (s, 〈α1〉〈α2〉ψ) either leads to some posi-

tion (s′, 〈α2〉ψ) with s′ ∈ U ′ or a position (s′, ξ) with s′ ∈ [[ξ]] and ξ / α1

or Abelard gets stuck before any of the above happens.
– Applying for each state of the form σ = (s′, 〈α2〉ψ) with s′ ∈ U ′ the I.H.

yields a strategy gσ such that each E-play that starts at (s′, 〈α2〉ψ) and
that follows gσ ends in a state of the form (s′′, ψ) with s′′ ∈ [[ψ]] or to a
state of the form (s′′, ξ′) with s′′ ∈ [[ξ′]] or Abelard gets stuck.
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These facts show that a combination of the gσ strategies with g will describe
a suitable strategy f∃ for Eloise at position (s, 〈α1;α2〉ψ).

α = gd If U ∈ 〈|gd|〉(s) for some U ⊆ [[ψ]] then for all U ′ ∈ 〈|gd|〉(s) we have
U ′ ∩ U 6= ∅. For any possible choice U ′ ∈ 〈|gd|〉(s) by Abelard we define
Eloise’s response according to her strategy f∃ to be some element of U ∩U ′.

α = ξ? If U ∈ 〈|ξ?|〉(s) for some U ⊆ [[ψ]] we have s ∈ U and Eloise will move to
position (s, ψ).

α = ξ! If U ∈ 〈|ξ!|〉(s) for some U ⊆ [[ψ]] then either s ∈ [[ξ]] of s ∈ U . In the first
case Eloise’s strategy is to move to (s, ξ) In case s ∈ U , Eloise’s strategy is
to move to (s, ψ).

α = α′
∗

Consider some U ∈ 〈|α′∗|〉(s) with U ⊆ [[ψ]]. Thus Eloise has a winning
strategy in F = F(S, α′∗, U) at position s. Suppose her strategy in F is to
move to some U∃ ⊆ S.

Subcase If s ∈ U we can assume that w.l.o.g. U∃ = ∅. Then by I.H. there
is a strategy for Eloise in E such that in any play following that strategy
either Abelard gets stuck or a position (s′, ξ′) is reached with ξ′ /α′ and
s′ ∈ [[ξ′]]. As ξ′ / 〈α′∗〉ψ this case meets the requirements of the lemma.

Subcase Otherwise we know that U∃ ∈ 〈|α′|〉(s) and - as Eloise’s strategy
in F is winning - we can assume that U∃ ⊆Win∃(F) = U . Furthermore
U ∈ 〈|α′|〉 ; 〈|α′∗|〉(s) and hence V := {s′ ∈ S | U ∈ 〈|α′∗|〉(s′)} ∈ 〈|α′|〉(s).
Because V ⊆ {s′ ∈ S | [[ψ]] ∈ 〈|α′∗|〉(s′)} we have V ⊆ [[〈α′∗〉ψ]]. This
implies that U ⊆ V as s′ ∈ U implies U ∈ 〈|α′∗|〉(s′).
Collectively this shows that U∃ ∈ 〈|α′|〉(s) and U∃ ⊆ U ⊆ V ⊆ [[〈α′∗〉ψ]],
ie, we can apply the I.H. to UE and 〈α′∗〉ψ.
We obtain a strategy g for Eloise in E such that in any play Π following
g starting at (s, 〈α′〉〈α′∗〉ψ) either Abelard gets stuck or Π reaches a
position (s′, ξ′) with s ∈ [[ξ′]] (in these two cases we do not continue the
play as the conditions of the lemma are met) or such that Π reaches
a position (s′′, 〈α′∗〉ψ) with s′′ ∈ U∃. In the latter case we note that
there is a shadow play s → U∃ → s′′ of F that follows Eloise’s winning
strategy and thus we can apply the same reasoning that we applied to
(s, 〈α′∗〉ψ) to the new state (s′′, 〈α′∗〉ψ) and so forth.

This implies that the second subcase can only occur finitely often as any
corresponding F-play has to be won be Eloise and thus needs to be finite.
In other word, after finitely many iterations of our argument, either Abelard
will get stuck or the play will reach a position of the form (s′′′, ψ) with
s′′′ ∈ [[ψ]] as required. ut

Proposition 2. Let S = (S, γ, Υ ) be a game model and consider the game E =
E(S, ϕ) for some ϕ ∈ F . There is a strategy f∃ for Eloise that is winning for
Eloise for all game positions (s, ψ) such that s ∈ [[ψ]]S.

Proof. The claim is proven by induction on the order / on formulas. We provide
the details for some important cases:
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ψ = p In this case s ∈ [[p]] implies s ∈ Υ (p) and Eloise wins the play immediately.
ψ = ¬p similar to previous case.
ψ = ψ1 ∧ ψ2 In this case s ∈ [[ψ1 ∧ ψ2]] means that s ∈ [[ψi]] for i = 1, 2. A move

of Abelard from (s, ψ) to (s, ψi) will be answered by Eloise following her
winning strategy f∃ that is defined at (s, ψi) by the I.H.
...

ψ = 〈α〉ξ In this case, by Lemma 7, Eloise has a strategy f such that each play
following f eventually reaches a position of the form (s′, ξ′) with s′ ∈ [[ξ′]],
ξ′ 6= ψ and ξ′/ψ or Abelard gets stuck. We define Eloise’s strategy at (s, 〈α〉ξ)
to be f until in the resulting play one of those two possibilities happens: If
Abelard gets stuck, Eloise wins the play and we are done. If the play reaches
a position of the form (s′, ξ′) with s′ ∈ [[ξ′]] we let Eloise continue to play
her winning strategy f∃ that exists by I.H. ut

C Proofs from Section 5

Theorem 2. For every game α ∈ GDNNF in which the proposition letter e does
not occur, there is a pointed syntax graph G with exit e such that G ≡ 〈α〉e. For
every game logic formula ϕ ∈ FDNNF there is a pointed syntax graph G such that
G ≡ ϕ.

Proof. The proof is by a mutual induction on the structure of games and for-
mulas. As mentioned before, games will correspond to syntax graphs with exit,
and formulas will correspond to syntax graphs. The base cases consist of atomic
games, their duals and literals. For all cases we describe the construction of the
syntax graph and we argue that it satisfies the conditions from Definition 13.
We leave it to the reader to verify, using the game semantics from Definitions
8 and 12 that that construction is adequate in the sense that G ≡ 〈α〉e in the
case of games and that G ≡ ϕ in the case for formulas. These arguments are
tedious but in most cases straight-forward.

Atomic games. For α = g or α = gd where g ∈ Gam, we define the pointed
syntax graph with exit G = (V,E,L,Ω, e, vI) by taking V = {vI , w} to be
any two element set, E = {(vI , w)}, L(vI) = 〈α〉 and L(w) = e. The priority
function Ω can be taken to be the empty map, because there are no cycles in
(V,E). Hence, G is trivially a game logic graph with exit e.

Literals. For ϕ = p or α = ¬p for p ∈ Prop, we define the pointed syntax
graph G = (V,E, L,Ω, vI) by taking V = {v} to be any singleton set, E(v) = ∅,
L(v) = α, vI = v and Ω as the empty map, since there are no cycles in (V,E).
Again, G is trivially a game logic graph.

For the induction step, we define operations on syntax graphs that correspond
to game constructs and formula constructs.

Demonic choice. Let α = α1 ∩ α2 be such that e does not occur in α.
By the induction hypothesis, there are pointed syntax graphs with exit G1 =
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(V1, E1, L1, Ω1, e, vI1) and G2 = (V2, E2, L2, Ω2, e, vI2) such that G1 ≡ 〈α1〉e and
G2 ≡ 〈α2〉e. We define G1∩G2 = (V,E, L,Ω, e, vI) by taking V = {vI}+V1+V2
and E = E1∪E2∪{(vI , vI1), (vI , vI2)}, and defining the labelling by L(vI) = ∧,
L(v) = Li(v) if v ∈ Vi for i = 1, 2. When defining the priority function Ω we lift
all the priorities in G1 above all those in G2 to guarantee that Ω is injective.
Thus, let k be the smallest even number that is strictly larger than the maximal
priority occurring in G2. Then set

Ω(v) =

{
k +Ω1(v) if v ∈ V1 and Ω1(v) is defined,
Ω2(v) if v ∈ V2 and Ω2(v) is defined.

Since the cycles of G1 and G2 cannot interfere with each other, G1 ∩ G2 is a
game logic graph with exit e.

Angelic choice. The syntax graph G1 ∪G2 is defined analogously to G1 ∩G2

above, just replacing the conjunction at the initial state with a disjunction.
Composition. Let α = α1 ;α2. By induction hypothesis there are pointed syn-

tax graphs with exit G1 = (V1, E1, L1, Ω1, e, vI1) and G2 = (V2, E2, L2, Ω2, e, vI2)
such that G1 ≡ 〈α1〉e and G2 ≡ 〈α2〉e. We define G1 ;G2 = (V,E, L,Ω, e, vI) by
taking V = V1 + V2 and

E(v) =

{
g[E1(v)] if v ∈ V1,
E2(v) if v ∈ V2

where g(v) =

{
vI2 if L(v) = e,
v if L(v) 6= e.

That is, we reroute all edges in G1 that lead to the exit of G1 to the initial state
of G2. Note that all vertices that were labelled with e in G1 become unreachable
from vI in G1 ;G2. The labelling is unchanged, i.e., L = L1∪L2. Again, to ensure
the priority map is injective, let k be the smallest even number that is strictly
larger than the maximal priority occurring in G2, and define

Ω(v) =

{
k +Ω1(v) if v ∈ V1 and Ω1(v) is defined,
Ω2(v) if v ∈ V2 and Ω2(v) is defined.

Finally, we set vI = vI1. We check that G1 ;G2 satisfies the conditions from
Definition 13. Condition (parity) holds, since it holds for G1 and G2. Condi-
tion (leave) holds since every cycle of form hnln . . . hn in G1 ;G2 either stays
completely G1 or completely in G2, because there are no connections from the
G2-part into the G1-part of G1 ;G2. To check Condition (remain), note that all
priorities in the G2-part of G1 ;G2 are lower than those in the G1-part and there
are no paths from the G2-part into the G1-part. To see that Condition (exit)
holds observe that every path from a head in the G1-part of G1 ;G2 to the exit
e in G1 ;G2 needs to pass through the G2-part and hence by the definition of E
gives rise to a path to an exit e in G1.

Angelic tests. Let α = ϕ? for some ϕ ∈ FDNNF in which e does not occur. By
induction hypothesis, there is a pointed syntax graph G = (V,E, L,Ω, vI) with
G ≡ ϕ. We define a pointed syntax graph with exit G? = (V ′, E′, L′, Ω′, e, v′I)
such that G? ≡ 〈ϕ?〉e using the axiom 〈ϕ?〉ψ ↔ ϕ ∧ ψ.

We define G? by adding a new initial vertex vI and an auxiliary vertex
w′, i.e., we take V ′ = {v′I , w′} + V , where v′I and w′ are distinct, and E′ =
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{(v′I , vI), (v′I , w′)}∪E. The labelling function is defined by L′(v′I) = ∧, L′(w′) =
e, and for all v ∈ V , L′(v) = L(v). Finally, we take Ω′ = Ω. Since all cycles in G?
are already cycles in G, it follows that G? satisfies Conditions (head), (leave)
and (remain), since G does. To see that Condition (exit) holds observe that
the new exit vertex w′ is not reachable from any of the heads in the G-part of
G?

Demonic tests. We define G! analogously to G?, replacing the conjunction at
v′I with a disjunction.

Angelic iteration. Let α = β∗. By induction hypothesis, there is a a pointed
syntax graph with exit G = (V,E, L,Ω, e, vI) such that G ≡ 〈β〉e. We define
G∗ = (V ′, E′, L′, Ω′, e, v′I) using that 〈α∗〉e ↔ e ∨ 〈α〉〈α∗〉e. We take V ′ =
{v′I , w′}+V where v′I and w′ are distinct, and define the labelling by L′(v′I) = ∨,
L′(w′) = e and L′(v) = L(v) for all v ∈ V . The edge relation is given by
adding edges from v′I to vI and w′ and rerouting edges in G with an exit as
destination to have destination v′I : E

′(v′I) = {vI , w′}, E(w′) = ∅ and for all
v ∈ V : E(v) = g[E(v)] where g(v) = v′I if L(v) = e, and g(v) = v if L(v) 6= e.
Note that all vertices that were labelled with e in G become unreachable from
v′I in G∗. To define the priority function let n be the smallest odd priority that
is strictly larger than any priorities occurring in G, and define Ω′ by

Ω′(v′) =

{
n if v′ = v′I ,
Ω(v′) if v′ ∈ V and Ω(v′) is defined.

This definition of G∗ satisfies the priority condition for syntax graphs, because all
simple cycles in G∗ either stay completely inside G in which case they satisfy the
priority condition because G does, or they go out of G, in which case they pass
through v′I and hence contain a vertex in the domain of Ω′. Condition (parity)
is satisfied at hn because n is chosen to be odd and L(hn) = ∨. For all other
heads in G it is satisfied because G is a game logic graph.

To check Condition (head) we let ln = w′ and rn = vI . Condition (leave) is
then trivially satisfied for hn. It is satisfied for all other heads h′m in the V -part
because either the path stays entirely in the G-part in which case the condition
is satisfied by the assumption on G, or the cycles leaves the G-part in which case
it passes through hn with priority n.

Condition (remain) is satisfied by the head hn because by the choice of n
there are no heads of higher priority than n. To see that Condition (remain)
is satisfied by all other heads hm, with m < n in the G-part assume for a
contradiction that there is a simple path p = hmrm . . . hk for some k > m. If
p stays entirely in the G-part of G∗ then we obtain a contradiction with the
assumption that G is a game logic graph. So we only need to consider the case
where p at one point leaves the G-part. But by inspecting the definition of
E one finds that this can only happen if in G there is a corresponding path
q = hmrm . . . v where L(v) = e, which with the exception of the end point is
an initial segment of the simple path p. Hence, q is almost a simple path with
the possible exception that there might be a contraction with the end point v.
Because L(hm) 6= e, since hm is a head, we know that such a contraction again
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leads to a path of the form hmrm . . . v. As we can repeat this contractions until
we obtain a simple path we can then assume that q = hmrm . . . v is actually
a simple path in G where L(v) = e. This contradicts Condition (exit) for the
game logic graph with exit G.

Last, we check that Condition (exit) is satisfied by G∗ with exit e. This is
trivially the case for the head hn = v′I . For any other head we might reason
similarly to the last part of the argument in the previous section. If there was a
simple path rm . . . w

′ then this path must pass through v′I and hence there would
be a path in G of the form hmrm . . . v in G with L(v) = e, which contradicts the
Condition (exit) for G.

Finally, let us make a remark about how to show that G∗ ≡ 〈β∗〉e. The
argument uses the fixpoint game from Definition 9 and Lemma 5. It is similar
to the reasoning about λ∗ in the proof of Theorem 3 below.

Demonic iteration. We define G× similarly to G∗, but we label the initial
node v′I with ∧ instead of ∨, and we take n to be the least even priority that is
strictly larger than any priority in G.

Conjunction and disjunction. In the case ϕ = ϕ1 ∧ ϕ2 or ϕ = ϕ1 ∨ ϕ2, we
define G1 ∧G2 and G1 ∨G2 of two pointed syntax graphs G1 and G2 basically
in the same way as G1 ∩G2 and G1 ∪G2, except that we do not need to handle
the exits.

Modal operators. In the case ϕ = 〈α〉ψ, we obtain by induction hypothesis a
pointed syntax graph G1 with exit e and a pointed syntax graph G2 such that
G1 ≡ 〈α〉e and G2 ≡ ψ. We define the pointed syntax graph 〈G1〉G2 similarly to
the composition G1 ;G2, but since there is no exit in G2 there is also no exit in
〈G1〉G2. ut

Theorem 3. For every pointed game logic graph with exit G = (V,E, L,Ω, e, vI)
there is a game term δ ∈ G, not containing e and only containing propositional
letters that are reachable from vI , such that G ≡ 〈δ〉e.

Proof. We prove the theorem by induction on the size of the domain of Ω.
In case dom(Ω) = ∅, this means that G has no cycles, and so we can do

a straightforward subinduction on the edge relation (or more precisely, on the
well-order consisting of the inverse of the transitive closure of the edge relation).
That is, we can define, for every vertex v ∈ V a game δv as follows:

δv :=


(L(v)?) ;(L(v)!) if L(v) is a literal distinct from e
(p ∨ ¬p)? if L(v) = e and p 6= e
δv1 ∩ δv2 if L(v) = ∧ and E(v) = {v1, v2}
δv1 ∪ δv2 if L(v) = ∨ and E(v) = {v1, v2}
L(v); δu if L(v) ∈ {g, gd | g ∈ Gam} and E(v) = {u}

It is routine to prove that this definition is correct, i.e., that G@v ≡ 〈δv〉e for all
v ∈ V . From this it follows that G ≡ 〈δvI 〉e
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In case dom(Ω) 6= ∅ we may by assumption consider the head h with highest
priority in dom(Ω); let l and r be the successors of h (i.e., we omit subscripts).

Let us first note for further reference that:

h is not reachable from l in G. (3)

To see that h = hn is not reachable from l = ln in G assume for a contradiction
that there is a path p = ln . . . hn in G. We can contract duplications of vertices
on p until we have a simple path p′ = ln . . . hn in G. By Condition (leave)
it follows that Ω(p′) > n, which is impossible because n was chose to be the
maximal priority occurring in G.

We define the two pointed syntax graphs with exit G′ and G′′: Let λ∗ be a
fresh atomic game, and let e′ be a fresh variable.

– G′ := (V,E′, L′, Ω′, e, vI), where

E′ := E \ {(h, r)}

L′(u) :=

{
L(u) if u 6= h
λ∗ if u = h

Ω′(u) :=

{
Ω(u) if u 6= h
↑ if u = h

In words, we obtain G′ from G by dropping the edge from h to r, relabelling
h with the dummy atomic game λ∗, and removing it from the domain of Ω.
Observe that every path that exists in G′ also exists in G.
We need to argue that G′ is a game logic graph with exit.
It is not immediately obvious that G′ satisfies the priority condition on
syntax graphs because we removed the priority from the state h. This is not
a problem, however, because if there was any cycle in G′ that passes through
h it would by the definition of E′ need to continue to l and hence lead to a
contradiction with (3).
It satisfies Condition (parity) because all it the remaining heads in G′ are
also heads in G and their label did not change.
To see that G′ satisfies Condition (leave) take any simple path p = lm . . . hm
in G′. Because h = hn, where n is maximal priority in G, we have thatm < n.
This path p also exists G. We distinguish cases depending on whether hn
lies on p. If hn does not lie on p then clearly Ω′(p) = Ω(p) and Ω(p) > m
because G′ satisfies Condition (leave). We can show that it is not possible
that h lies on p. Assume this was the case. Then h is followed by l = ln
on p, because p is also a path in G′ and the only connection out of h in
G′ is via l. So we have a path of the form p = lm . . . hnln . . . hm. Because
there is an edge from hm to lm we can rotate this path until it is of the
form p′ = ln . . . hmln . . . hn. By Condition (leave) it follows that Ω(p′) > n,
which is not possible, because n is the maximal priority in G.
Condition (remain) holds in G′ because any path of form hmrm . . . hk with
k > m in G′ would also exist and violate Condition (remain) in G.
Similarly, Condition (exit) holds in G′ because any violating path would
also do so in G.
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– G′′ := (V,E′′, L′′, Ω′′, e′, r), where e′ is a fresh propositional letter not oc-
curring in G and

E′′ := E \ {(h, r), (h, l)}

L′′(u) :=

{
L(u) if u 6= h
e′ if u = h

Ω′′(u) :=

{
Ω(u) if u 6= h
↑ if u = h

In words, we obtain G′′ from G by initialising it at r, dropping the edges
from h to l and r, relabelling h with a new exit variable e′, and removing h
from the domain of Ω.

Observe that every path that exists in G′′ also exists in G.

We need to argue that G′′ is a game logic graph with exit. It satisfies Con-
dition (parity) because all it’s heads are also heads in G and their label did
not change.

Preservation of Conditions (parity) and 13 from G to G′′ is equally trivial
as in the case of G′ discussed above.

To see that Condition (leave) holds in G′′ consider any path p = lm . . . hm
for some m < n. Note that h = hn can not lie on p. It could only be its
last vertex because h has no successors in G′′ but then hn = hm which is
impossible because n < n and the function h is injective. Hence Ω′(p) = Ω(p)
and Ω(p) > m because G satisfies Condition (leave).

To see that Condition (exit) holds in G′′ assume for a contradiction that
there was a path p = hm . . . v with L(v) = e in G. Because hm is a head in
G we have that m < n. Because h = hn is the only vertex in G that has the
propositional letter e in G′′ it follows that p is of the form hm . . . hn in G.
This is a contradiction to Condition (leave) for G.

We make one more observations about our constructions that we need later:

e is not reachable from r in G′′. (4)

To check that e is not reachable from r in G′′ assume for a contradiction that
there is a path p = rn . . . u in G′′ from rn to some vertex u that is labelled with
e. This path p does not contain hn because hn has no successors in G′′ and hn is
distinct from the last vertex u on p because hn it is labelled with e′ in G′′ which
was fresh and hence distinct from the letter e that labels u. The path p = rn . . . u
then also exists in G where it extends to a path of the form hnp = hnrn . . . u.
This path can be contracted to a simple path that is still of this form because
no contraction is possible at the initial vertex hn since hn does not lie on p.
Thus we obtain a contradiction with Condition (exit) for the game logic graph
G with exit e.

The induction hypothesis applies to both G′ and G′′, so that:

– There is an Gam∪{λ∗}-game δ0 not containing e or e′ such that G′ ≡ 〈δ0〉e.
– There is a Gam-game λ not involving e or e′ such that G′′ ≡ 〈λ〉e′
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To see that δ0 does not contain e′ observe that e′ is only used in the definition
of G′′, where it is assumed to be fresh.

To see that λ does not contain e note that the induction hypothesis guaran-
tees that all propositional letters that occur in δ0 are reachable in G′′, but by
(4) we have that e is not reachable from r, which is the initial vertex of G′′.

Now define
δ := δ0[λ∗/λ∗],

that is, everywhere in δ0 we substitute the actual game λ∗ for the formal atomic
game λ∗. It will be our purpose to prove that

G ≡ 〈δ〉e. (5)

Before we set up our proof, we need some auxiliary definitions. First, a Gam-
model is a game model over the set Gam of atomic games.

– Given a Gam-model S = (S, γ, Υ ), we define S• as the Gam ∪ {λ∗}-model
(S, γ•, Υ ), where γ•(g) := γ(g) if g 6= λ∗ and γ•(λ∗) := γλ∗ , that is, γ•(λ∗)
is the actual interpretation of λ∗ by γ.

The following claim then should be obvious (its proof is a standard inductive
substitution argument).

Claim 1 For any Gam-model S = (S, γ, Υ ) we have that

γ•(δ0) = γ(δ).

The key observation in our proof is the following claim.

Claim 2 For any Gam-model S = (S, γ, Υ ) and any state sI ∈ S we have that

S, sI  G iff S•, sI  G′.

To see how (5) follows from this, observe that for any Gam-model S = (S, γ, Υ )
and any state sI ∈ S we have

S, sI  G iff S•, sI  G′ (Claim 2)

iff S•, sI  〈δ0〉e (induction hypothesis on G′)
iff S, sI  〈δ〉e (Claim 1)

Hence it suffices to prove the key claim.

Proof of Claim 2. We only consider the direction from left to right, the proof
for the opposite direction being simpler/similar. Let f be a positional winning
strategy for Eloise in the evaluation game E := E(G,S•), and suppose that
(vI , sI) is a winning position in this game. We need to supply Eloise with a
winning strategy in the game E ′ := E(G′,S), starting at position (vI , sI). Observe
that the game boards of these two games are almost the same: the only difference
lies in positions of the form (h, s), since L(h) = ∨ 6= λ∗ = L′(h). For this reason,
the strategy f can be used in E ′ as well, for all positions (v, s) where v 6= s.

Eloise’s strategy in position (vI , s) will be as follows:



30 Helle Hvid Hansen, Clemens Kupke, Johannes Marti ?, and Yde Venema

1. She starts with playing the strategy f . It is easy to see that this guarantees
her to win any match that does not pass through a position of the form
(h, s).

2. If, on the other hand, at some stage a position of the form (h, s) is reached,
she continues as follows. Let U ⊆ S be the set of states t such that (h, t) ∈
Win∃(E) and at this position (h, t) Eloise’s strategy f picks the left successor
of h:

U := {t ∈ S | (h, t) ∈Win∃(E) and f(h, t) = (l, t)}.

We claim that U is a legitimate move for Eloise in E ′ at position (h, s):

U ∈ γ•(λ∗)(s), (6)

and let Eloise play this move indeed.
3. Suppose that Abelard responds to this move by picking t ∈ U , so that (l, t)

is the next position in the E ′-match. Then by definition of U we have that
(h, t) ∈Win∃(E) and Eloise’s winning strategy f in E picks the position (l, t)
at (h, t). This means in particular that (l, t) is a winning position for Eloise
in E .
Since h is the only vertex at which G and G′ differ, but from (3) we know
that h is not reachable from l in G, it follows that the the syntax graphs
G@l and G′@l are identical. This means that from this moment on, Eloise
can resume playing her winning E-strategy f in E ′ again, and it is easy to
see that any resulting full E ′-match is a win for Eloise.

It is left to prove (6). By definition of γ• this means that we need to show
that U ∈ γλ∗(s), and by Lemma 5 it suffices to show that s ∈ Win∃(F), where
F := F(λ∗,S, U) is the game defined in Definition 9. In other words, we have to
supply Eloise with a winning strategy for position s in F .

To define this strategy f , take an arbitrary point t ∈ S, and make the fol-
lowing case distinction:

– If (h, t) 6∈ Win∃(E), Eloise makes a random move (we will make sure that
this situation never occurs).

– If (h, t) ∈ Win∃(E) and t ∈ U , f picks the empty set as a move for Eloise.
Clearly this is legitimate and it causes an immediate win for Eloise in F .

– If (h, t) ∈ Win∃(E) but t 6∈ U , then by definition of U Eloise’s winning
strategy f picks the right successor r of h at the position (h, t) in E . This
means that (r, t) ∈ Win∃(E). Define Wt to be the set of points u ∈ S for
which there is a partial f -guided E-match Π = (v0, s0) · · · (vn, sn) such that
(v0, s0) = (r, t), (vn, sn) = (h, u) and vi 6= h for all 0 < i < n. It should then
be obvious that

Wt ⊆ {u ∈ S | (h, u) ∈Win∃(E)}. (7)

We define f(t) := Wt, that is we let Wt be Eloise’s move at position t in F ,
and first show its legitimacy:

Wt ∈ γλ(t). (8)
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In order to prove (7) we turn to the evaluation game E ′′ := E(G′′,S◦), where
S◦ := (S, γ, Υ [e′ 7→ Wt]). Here we use Υ [e′ 7→ Wt] to denote the valuation
that is just like Υ but maps the propositional letter e′ to the set Wt ⊆ S. It
follows from the inductive hypothesis on G′′ that

(r, t) ∈Win∃(E ′′) iff S◦, t  〈λ〉e′,

so that by definition of S◦ we find that

(r, t) ∈Win∃(E ′′) iff Wt ∈ γλ(t).

Hence, in order to prove (8) it suffices to show that

(r, t) ∈Win∃(E ′′), (9)

that is, we have to supply Eloise with a winning strategy in the game E ′′
at position (r, t). However, given the similarities between G and G′′ and
between S and S◦, she can simply use her E-strategy f once more. Consider
a full E ′′-match Π where she plays like this. If Π does not pass through a
position of the form (h, u) then this match is also an E-match, and it is easy
to see that Eloise wins. On the other hand, if Π does pass through such a
position (h, u), this can only mean that in E ′′ this is the final position of Π.
It then follows by definition of Wt that u ∈Wt, so that u ∈ Υ [e′ 7→Wf ](e′),
and again Eloise is the winner of the E ′′-match Π. This proves (9).

It remains to prove that this strategy f is winning for Eloise at position s in
F . So consider a full f -guided match Σ in F starting at s. It follows from (7)
that all positions t reached in this match are such that (h, t) ∈Win∃(E), so that
we can make the following case distinction.

If some position t of Σ belongs to U , then f picks the empty set and Eloise
wins immediately. If, on the other hand, all positions of Σ are such that (h, t) ∈
Win∃(E) but t 6∈ U , then we only have to worry that Σ might be infinite (since
Eloise has a legitimate move Wt for all t on Σ, Σ being finite means that Abelard
got stuck). So assume for contradiction that Σ is of the form Σ = t0W0t1W1 · · ·
with t0 = s. Given the definition of f it is easy to see that for every n ∈
ω there is a partial f -guided E-match Σn = (h, tn) · · · (h, tn+1). But then we
could glue these partial matches together, forming one infinite E-match Σ′ =
(h, t0) · · · (h, t1) · · · . This provides the desired contradiction, since this Σ′ would
be a loss for Eloise since it passes h infinitely often, whereas at the same time it
is guided by Eloise’s winning strategy f . In other words, f is a winning strategy
for Eloise in the game F starting from s. ut

This finishes the proof of Theorem 3. ut


