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Separation of hydrogen from carbon dioxide for sustainable Hy production and COy capture still faces great
challenges due to the smaller size of Hy and higher condensability of COs. Herein, a high-performance benz-
imidazole-linked polymer (BILP) membrane for hydrogen separation was directly prepared on a-Al,O3 substrate
through a facile interfacial polymerization approach at room temperature. The separation performance of the
BILP membrane were regulated by controlling the reaction time and the microstructure was systematically
characterized. Molecular simulations were performed to deep understand the separation mechanism in the BILP
membrane. The best performance membrane displays an extraordinary mixed gas selectivity of 40 for Hy/CO2
together with outstanding Hy permeance of 250 gas permeation units (GPU) at 473 K, far exceeding the Robe-
son’s upper bound. Besides, the membrane can withstand high temperature and pressure, and also shows good
Hy/N2 and Hy/CHj4 selectivity. The excellent separation performance, coupled with high temperature and
pressure resistance and easy preparation, render BILP membranes great potential for economic Hj purification,
H, recovery, and natural gas treatment.

1. Introduction undergo syngas cooling before separation [5,6]. To achieve desired

separation performance, manipulation of pore texture (e.g. aperture size,

Hydrogen, as a clean and reproducible energy source, holds great
promise to solve energy shortages and energy-related environmental
problems. However, great challenges exist to realize the hydrogen
economy considering the high capital cost of hydrogen separation and
purification processes, such as in steam methane reforming and
hydrogen recovery from ammonia synthesis [1,2]. In this sense,
membrane-based separation offers an effective and economic solution
for Hy separation and purification owing to the merits of greater energy
efficiency, smaller units, easier operation and good compatibility with
the environment [3,4]. Membrane materials that are highly selective for
Hy permeation over CO5 at syngas processing conditions (423 K and
above) are of particular industrial interest since they do not need to

* Corresponding authors.

aperture size distribution and surface chemistry) is necessary [7-9]. One
effective way to achieve superior Hy/CO; separation performance is to
tune membrane systems with molecular-sieving pore structures into the
desired size range since most of separations are based on a size-exclusion
mechanism [10]. For example, Chuang et al [11] incorporated three
sulfocalixarenes molecules with different mean bottom opening size into
poly[2,2-(m-phenylene)-5,5-bibenzimidazole] (PBI) to investigate the
effect of cavity size on membrane separation performance towards Hy/
CO3 and found that the prepared membranes with smallest cavity sizes
(~3.4 A) showed strongest size-sieving effect towards Hy/CO,. Yang
et al. [12] designed an impressive size-sieving supramolecular array
membrane using zero-dimensional 2-methylimidazole(mim) molecules
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through the precise design of the intermolecular spacing in the range
between the size of Hy and CO,. The designed membrane displayed an
unparalleled Ho/CO, separation coefficient of 3600, which is far higher
than the values reported for a broad range of membranes. Xiao etal. [13]
adopted a “prenucleation and slow growth” approach to prepare cova-
lent organic framework (COF) membrane with highly oriented meso-
porous channels and designed a gradient-channel segmentation
methodology to control the nanochannel environments, thus leading to
a remarkable Hy/CO, separation performance. However, such precise
pore size generally does not exist in polymer membranes as gas transport
mainly depends on the solution-diffusion mechanism. Gas molecules
initially dissolve into the polymer and subsequently diffuse in the
polymer network by breaking the interaction between polymer chains
(n-m, hydrogen bond interaction, etc.), and are finally released from the
membrane. In this case, promoting the diffusion of the small Hy mole-
cule to improve Hy/CO; selectivity is a valid approach to achieve
excellent Hy/CO; separation performance. Polymer chain packing and
chain stiffness play an important role in this Hy diffusion process [14].
Various methods like polymer blending [15], cross-linking [16,17],
inorganic particle incorporation [18], and chemical modification [19]
have been proposed to change the chain packing behavior or chain
stiffness to improve the gas permeability. For example, Wang et al. [14]
introduced hydrazide into the polyimide backbone aiming at generating
an abundant hydrogen-bond network to improve interchain interaction
and further enhance the Hy/COs size sieving selectivity.

Polybenzimidazoles (PBIs) [20-23], as the leading polymer for Hy/
CO, membrane separation, exhibit excellent thermal stability and
intrinsic Hy/CO4 selectivity even at elevated temperatures. However,
PBI shows low Hy permeability because of the tightly polymer chain
packing arising from n-t stacking and strong H-bond interactions. In
addition to chain packing, chain length, molecular weight also in-
fluences the permeation of gases [24]. Benzimidazole linked polymers
(BILPs) [25], composed of aromatic heterocyclic benzimidazole fused
ring similar to PBIs, hold great promise for hydrogen separation owing
to their high microporosity and robust organic backbone. Compared to
linear PBIs with tightly packing chains, BILPs may achieve high gas
permeability since they are composed by branched chains which will
result in higher microporosity. While the preparation of defect-free BILP
membrane in large-scale still faces great challenges since BILPs are
generally insoluble in common solvents and most BILPs used in the
membrane field is limited to blending with polymers to prepare mixed
matrix membranes [26,27]. Interfacial polymerization (IP) method is
facile to fabricate continuous and defect-free thin active layers in large
area at the two phase interface, which has recently aroused attractive
attention in preparing BILP membranes [28-34]. The possibility of room
temperature IP for the fabrication of BILP-101x membrane for Hy/CO4
separation was preliminarily identified in previous work [35]. The
prepared membrane can withstand high pressure, showed high Hy/CO2
selectivity (40 at 423 K) and exhibit excellent long-term hydro-thermal
stability over 800 h under alternating dry and humid feed gas condi-
tions, demonstrating the great potential of BILP membrane for H; sep-
aration under industrial relevant conditions. Despite its great potential,
new strategies to improve the BILP-101x membrane gas permeance are
still needed to increase the production of a membrane unit and cut costs
of hydrogen separation.

Considering the high controllability of IP method, the chain packing
behavior, chain length and the molecular weight of the formed mem-
branes can be designed through adjusting IP synthesis parameters
(monomer concentration, reaction solvent, reaction duration and tem-
perature, catalysis concentration etc. [36-39]) to achieve better Hy/CO2
separation performance. For example, Pinnau et al. [40] pointed out that
increasing the trimesoyl chloride monomer concentration in aqueous
solution or reaction temperature in organic phase can enhance the cross-
linking degree of the formed membrane. The tightened polyamide
membrane network greatly hindered the permeation of large molecules
while has no significant effect on the transport of small gas molecules,
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thus improved the selectivity towards Hy. Through optimizing interfa-
cial polymerization conditions, e. g. reaction time and monomer con-
centration, Livingston et al. [41] obtained an ultra-thin polyamide film
with crumpled morphology demonstrating an ultrahigh acetonitrile
permeance. From the above investigations, gas permeance and selec-
tivity of IP-formed BILP membranes could be enhanced through con-
trolling IP reaction conditions. Besides, the Hy/CO; separation
mechanism of BILP-101x membrane also need to be clarified.

In this research, an ultra-selective and highly permeable BILP thin
composite membrane was successfully prepared for Hy/CO5 separation
through controlling the IP reaction time. Single and mixed gas perme-
ation tests were carried out across a pressure range up to 7 bara and
temperatures up to 473 K. The microstructure of the prepared BILP-101x
membrane were systematically investigated by a series of character-
ization techniques. Specially, positron annihilation lifetime spectros-
copy (PALS) was performed to map the fraction free volume and pore
size content of the BILP membranes prepared for different reaction time.
In addition, molecular dynamic simulation was carried out to gain
insight onto the Hy/CO; separation mechanism.

2. Experimental section
2.1. Synthesis of free-standing BILP-101x films

A 0.5 wt% TFB toluene solution was slowly poured on top of an
aqueous BTA solution (1.5 wt%) in a big beaker at room temperature. A
brown layer was appeared at the interface between water and toluene
after several seconds. The interfacial polymerization reaction was left
for 1, 2 or 3 h and then washed with toluene and deionized water. The
prepared BILP-101x films were vacuum dried overnight at 373 K. A great
many of films were collected following the same preparation procedure
for further characterization.

2.2. Preparation of BILP-101x membranes

Alumina disks were first immersed in 1.5 wt% BTA aqueous solution
in a small petri dish under 0.2 bar reduced absolute pressure for 20 min.
The BTA containing substrates were dried using compressed air until no
droplet can be observed on the surface and then immersed in a TFB
toluene solution for 1, 2 and 3 h at room temperature, respectively. The
prepared membrane was then taken out from the petri dish, left over-
night in the fume hood and rinsed with toluene to remove residual
monomers. Finally, the membrane was dried at room temperature and
undergone performance test using a home-made permeation set-up [27].

2.3. Film and membrane characterization

Powder X-ray diffraction (PXRD) characterizations of BILP-101x
films were done on a Bruker-D8 Advanced diffractometer. A Nicolet
8700 FT-IR (Thermo Scientic) was used to do the diffuse reflectance
infrared Fourier transform (DRIFT) spectra. X-ray Photoelectron Spec-
troscopy (XPS) of BILP-101x film was carried out using a XPS PHI 5400
ESCA, mounted with a dual anode (Al/Mg). The morphology of BILP-
101x films were obtained by a JEOL JSM-6010LA InTouchScope mi-
croscope. The surface and cross-sectional images of the supported BILP-
101x membranes were acquired by a DualBeam Strata 235 microscope
FEI) and an AURIGA Compact (Zeiss) microscope. Ny (77 K) and CO,
(273 K) adsorption isotherms of BILP-101x films were acquired by a
Tristar II 3020 (Micromeritics). Thermogravimetric analysis (TGA) of
BILP-101x films was carried out using a Mettler Toledo TGA/SDTA851e
equipment. Positron annihilation lifetime spectroscopy measurements
were performed to measure the fractional free volume (FFV) of BILP-
101x films. Detailed characterization and calculation methods are pro-
vided in Supporting Information.
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2.4. Gas permeation test

The prepared BILP-101x membrane was put into a home-made
permeation setup for performance test. Single gas permeation tests
were performed at 373 K and 1 bara pressure drop between the feed and
permeate side. The mixed gas separation measurements were performed
using an equimolar mixture of Hy and CO5, N3 or CH4 (50 mL-min~! for
each gas) as feed. Helium (4.9 mL-min’l) was used in the permeate side.
The absolute feed pressure was adjusted in a range of 1-7 bara using a
back-pressure controller at the retentate side, and the permeate side was
left at atmospheric pressure. The testing temperature in the permeation
module was adjusted from 298 to 473 K through a convection oven. An
on-line gas chromatograph (Interscience Compact GC) equipped with a
packed Carboxen 1010 PLOT (30 m x 0.32 mm) column and TCD de-
tector was used to periodically analyze the permeate stream. The per-
meance for the component A (P;) can be calculated according to
Equation 1:

. Na . Fa
T ApoA T Ap,

a

where F, refers to the molar flux of component a (mol m 2 s’l), N,
represents rate of compound a (mol/s) in the permeate, A represents the
effective membrane area. Ap, represents the partial pressure difference
of compound a between the feed and permeate and is calculated based
on Equation 2.
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Apa = pfeed X Yafeed _pperm X Xa,perm

where pgeeq represents the absolute feed pressure and pperm is the
permeate pressure. Y, feed and Xa, perm refer to the mole ratios of com-
pound a in the feed and permeate gas flows, respectively.

The SI unit for describing the gas permeance is mol-s *-m 2PaL.
However, polymeric membranes usually use GPU (Gas Permeation Unit)
to assess the gas permeances, where 1 GPU = 3.35 x 1071°
mols~tm~2.pa~?,

The mixed gas selectivity (a) was evaluated by the fraction the faster
gas permeance (Hj in this study), to the lower gas permeance (e.g. COo,
Ny and CHy). For Hy/CO, separation, the a is written as equation 3.

PHZ
Pco

A, jco, =
2

The ideal selectivity is similarly calculated as the ratio of the single
component permeances.

3. Results and discussion
3.1. Characterization of BILP-101x films and membranes

The BILP-101x membrane was prepared onto an Aly,Os substrate
through an in situ interfacial polymerization method (Fig. 1a).

T P LR S NS NG RPN

Fig. 1. (a) Ilustration of the fabrication of BILP-101x membrane on Alumina substrate. (b-d) SEM images of free-standing films prepared with (b) 1 h (c) 2 h and (d)
3 h. Cross-sectional SEM images of (e)1h, (f) 2 h and (g) 3 h alumina substrate supported BILP-101x membrane.
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Specifically, the Al,O3 substrate was first immersed into 1.5 wt% BTA-
containing water solution for 20 mins under a reduced pressure of 0.2
bar. After sweeping out the excess water solution, the above BTA con-
taining substrate was further contacted with 0.5 wt% TFB dissolved in
toluene at the y-Al,0j3 side for different reaction duration (See details in
Table 1). For convenient characterization of the microstructure of the
membranes, free-standing BILP-101x films were also fabricated at the
toluene-water interface under the same conditions. The reaction time
shows a strong effect on the microstructure and separation performance
of BILP-101x membranes. SEM images of the free-standing films exhibit
a flexible, uniform, and continuous morphology (Fig. 1b-d). As can be
calculated from cross-sectional SEM images, the thickness of the pre-
pared membrane increases from 1.16 to 1.33 um upon extending the
reaction duration from 1 to 2 h and then stayed almost unchanged (the
thickness of 3 h membrane is around 1.31 pym) (Fig. le-g), reflecting no
further growth in thickness after 2 h.

TGA results demonstrate that all three membranes can withstand
high temperature up to 523 K under Air atmosphere (Fig. S1). DRIFT
spectroscopy of three samples (Fig. 2a) all revealed characteristic
stretching bands at 1610 cm ™! and skeleton vibration at 1468, 1381 and
1242 cm™}, confirming the successful formation of benzimidazole ring.
Specially, the 2 h membrane film shows a relatively small peak area at
1701 cm™! corresponding to the unreacted aldehyde monomers
compared with the 1 and 3 h membrane films. This can be explained as
follows: 1 h is not enough for finishing the reaction, as extending the
reaction time to 2 h, more aldehyde monomers will diffuse to the
interface and be consumed to form a defect-free film at the interface. As
continue extending the reaction time, the aldehyde monomers diffuse to
the interface while not react with BTA due to the barrier of defect-free
film, leaving the aldehyde monomers on the membrane surface. The
2 h membrane films show the lowest CO5 adsorption capacity (Fig. 2b),
which can be attributed to the fewer -NH; groups left on the membrane,
further supporting the more complete reaction of the 2 h membrane.
Furthermore, as indicated by XRD spectra (Fig. 2c), the d-spacing of 2 h
membrane chain is 3.5 A, slightly larger than the other two membranes.
The above observations are in agreement with the FFV results obtained
by PALS (Table 2, the detailed information can be found in Supporting
Information). As shown in Table 2, M2 membrane shows a slightly larger
cavity size and fractional free volume compared to the M1 and M3
membranes, helpful for achieving higher gas permeance as discussed
later.

Based on the above characterizations, we speculate that the chain
packing of the 2 h membrane is different from the 1 h and 3 h mem-
branes, possessing relatively more free volume and larger pore size. To
further understand the effect of reaction duration on the microstructure
of BILP-101x membranes, Fig. 3 illustrates the possible chain packing of
BILP membranes to better understand the gas transport behavior
through BILP-101x. Two kinds of possible gas transport in BILP-101x are
envisaged. Fig. 3a, c shows the tightly packed pores formed by parallel
chains, for which the strong n-n interaction and hydrogen bonding be-
tween polymer chains results in the compact chain packing [42]. In this
case, gas molecules need to break these interactions (to form transient
pores) to further travel in polymer membranes (Fig. 3f). Fig. 3b,

Table 1
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d denotes the loosely packed pores (intrinsic pores) formed by entangled
chains, where gas molecules can travel freely in the polymer membranes
(Fig. 3f).

For the 1 h membrane, the reaction time was not enough for com-
plete reaction thus leaving unreacted amine monomers in between the
membrane chains. By prolonging the reaction time to 2 h, more alde-
hyde monomers will encounter the reactive functional groups to finish
the reaction, forming polymer chains with fewer oligomers (Fig. 3f).
When further prolonging the reaction time to 3 h, aldehyde monomers in
the toluene solution may left among polymer chains. Overall, there are
some oligomers or monomers left along 1 and 3 h membrane chains,
forming hydrogen bonding with BILP-101x membranes which will in-
crease the chain packing density and further block Hy transportation to
some extent. In case of the 2 h membrane, the reaction was relatively
more complete with fewer monomers or oligomers left in the membrane,
forming a loosely packed chain as indicated by PALS and XRD results,
thus Hj can be transported more freely in the membrane (Fig. 3f).

3.2. Gas separation performance

Each type of membranes (reaction duration 1, 2 and 3 h) were syn-
thesized at least two times to make sure the separation results are
reproducible. The detailed preparation conditions and separation per-
formance of the prepared membranes are shown in Table 1. Fig. 4a
shows the gas permeance and Hy/CO selectivity of BILP-101x mem-
branes at 423 K prepared for 1, 2 and 3 h, respectively. Prolonging the
reaction time from 1 to 2 h increased both the Hy permeance and Hy/
CO; selectivity. As mentioned above, 1 h is not long enough for
completely finishing the reaction and the unreacted amine monomers or
small oligomers will increase the chain packing density through
hydrogen bonding interaction thus will block Hy transportation. Longer
reaction duration, i.e. 2 h, will consume more unreacted monomers and
leave more free volume for gas permeation [40], consistent with the FFV
results calculated by PALS. However, upon further extending the reac-
tion time to 3 h, the Hy permeance and Hy/CO5 selectivity start to
decrease compared to the 2 h membrane. Overall, the 2 h BILP-101x
membrane (M2) demonstrates the optimal separation performance to-
wards Hy/CO5 and is selected for further study.

Single gas permeation tests were performed at a constant feed
pressure of 1 bara and 373 K using industrially important gas molecules
including Hy, CO4, Ny and CHy (kinetic diameter of 2.89 A, 3.3 A, 3.64 A
and 3.8 A, respectively). The membrane shows a sharp permeance cutoff
between Hjy and the other three gases. The Hy/CO», Ho/N3y and Hy/CHy
selectivity are 21, 41, and 31, respectively, which are far exceeding the
corresponding Knudsen diffusion selectivities (Fig. 4b). Considering the
tightly chain packing of BILP-101x membranes, it is conceivably that the
small Hy molecules can diffuse through the transient pores while larger
gases like CO», Ny, CHy4 are blocked, leading to the high selectivity. The
higher CH4 permeance than N, is because BILPs shows preferable
adsorption on CH4 over Ny and similar observations have also been
found in imidazole-linked polymer membranes [37].

The study of feed temperature and pressure was also applied to the
other two duplicates of 2 h membranes, i.e., M2-2 and M2-3. The same

Summary of membrane preparation conditions and corresponding H,/CO; separation performance at 423 K, 1 bara.

Membranes Interfacial polymerization conditions Membrane performance
Aqueous amine phase (wt.%) Aldehyde in toluene phase (wt.%) IP time (h) H, Permeance (GPU) CO, Permeance (GPU) H,/CO, selectivity

Mi1-1 1.5 0.5 1 101.8 3.91 26

M1-2 1.5 0.5 1 76.5 2.3 329

M2-1 1.5 0.5 2 135.4 2.88 47

M2-2 1.5 0.5 2 152 3.38 45

M2-3 1.5 0.5 2 122 2.93 41.4

M3-1 1.5 0.5 3 116.8 7.69 15.2

M3-2 1.5 0.5 3 72.3 2.34 22
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Fig. 2. (a) DRIFT spectra of BILP-101x films prepared for 1, 2 and 3 h reaction duration. (b) CO, adsorption (closed symbols) and desorption (opened circles)
isotherms at 273 K and (c) PXRD patterns of BILP-101x films prepared for 1, 2 and 3 h reaction duration.

Table 2

The FFV% and free volume radius of three BILP-101x films calculated from PALS
data. The detailed information of PALS data can be found in supporting
Information.

Membrane 13 13 (%) Rg(;\) FFV%
M1 2.395 1.594 3.19 0.391
M2 2.569 1.813 3.33 0.504
M3 2.372 1.558 3.17 0.371

Fig. 3. Schematic diagram of pores formed by (a, c) the tightly-straight inter-
chain packing and (b, d) the loosely-entangled chain packing. (e) Illustration of
two kind of gas transport pores in BILP-101x membrane. Schematic diagrams of
H, molecule transport in two kinds of pores without (f) or with monomers or
oligomers (g) in BILP-101x membranes. (f) corresponds to IP duration of 2 h,
and (g) corresponds to 1 or 3 h.

trend was observed as M2-1 (Fig. 5a). Both the Hy and CO, gas per-
meance (in single and mixed gas test) increases with temperature,
reflecting an activated transport. The temperature dependency of the
permeation follows an Arrhenius equation for both the pure and mixed
gas measurements (see details in Supporting Information, Fig. S3 and

Table S1). BILP membrane shows higher CO, adsorption than Hs. In-
crease in temperature causes less adsorbed CO, which also causes a
lower permeance. This effect is stronger than for Hy due to its higher
adsorption enthalpy. Activation energy for permeance is the sum of the
intrinsic activation energy (expected to be higher for CO; due to its size)
and the enthalpy of adsorption (negative value). Apparently, the net
effect is that CO5 has a lower activation energy for permeation. This is
similar to that for zeolite membranes [43]. As shown in Table S1, the
activation energy for Hs is higher than CO5 for both pure and mixed gas
test, indicating that Hy benefits more from temperature which leads to
an enhancement in selectivity. Fig. 5b presents the pressure dependence
of the pure and mixed gas permeance at 373 K. The gas permeances in
the mixed gas measurement are slightly lower than that in the single gas
test attributed to the competitive permeation.

The temperature and pressure stability were verified by a contin-
uous, mixed gas permeation test. As presented in Fig. 6a, the 2 h
membrane (i.e. M2-1) was first activated by increasing the temperature
from 323 to 473 K. During this process, the Hy permeance and Hz/CO;
selectivity both increased dramatically. Specially, the membrane pre-
sented an outstanding Hy permeance of 250 GPU and ultrahigh Hy/CO4
selectivity of 40 at 473 K, which is of great interest for industrial pre-
combustion CO, capture [44]. When the temperature was slowly low-
ered from 473 to 298 K, the H; permeance and Hy/CO> selectivity were
even higher than during the heating-up procedure at the same temper-
ature due to the activation. As the temperature further increased to 423
K at 141 h, the separation performances are comparable to the value
tested at 67 h at the same conditions (1 bara, 423 K), pointing to good
membrane durability. Afterwards, the membrane was tested more than
20 h at different pressures under 423 K and still exhibits excellent sep-
aration performance. Overall, the membrane can keep the good sepa-
ration performance after high temperature and pressure treatment,
indicating the potential application for long-term use.

To evaluate the BILP membrane material performance, the thickness
of the membranes prepared under different reaction time were used for
normalization. Fig.S2 presents the gas permeability and Ha/CO> selec-
tivity of M1-M3 membranes, for which the 2 h membrane still exhibits
the best performance. The Hy/CO; separation performance was further
compared with the state-of-the-art PBI membranes and emerging porous
organic framework membranes (PIMs and COFs) in a Robeson plot
(Fig. 6b and Table S2) [45-48]. The supported BILP-101x membrane
exhibits a superior separation performance with a Hy permeability of
333 Barrer and Hy/CO4 selectivity of 40 at 473 K (the thickness of the
membrane was assumed as 1.33 pm based on cross-sectional SEM re-
sults), which far exceeds the Robeson upper bound line and are
competitive with emerging micro-porous organic framework mem-
branes such as PIMs and COFs. In addition to the application for Hy/CO>
separation, the membrane also exhibits attractive separation perfor-
mance towards Hy/Ny and Hy/CH4 (Fig. S4), demonstrating its great
potential application in Hy recovery and natural gas purification
processes.

In order to deep understand the Hy/CO- separation mechanism in the
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BILP-101x membrane, H, and CO, permeation behavior in the BILP-
101x membrane were investigated using molecular dynamic simula-
tions. Details of the simulation can be found in Supplementary Infor-
mation. As shown in Fig. 7a and c, the initial configuration contains 500
H, and 500 CO3 molecules in vacuum and 18 polymer chains of BILP-
101x as the membrane module. After 200 ns simulation under NVT
ensemble at 423 K, both Hy and CO, gas molecules in the vacuum
diffused into the polymer matrix (see end configurations in Fig. 7b and
d) and the diffusion coefficients of H calculated from the mean-square

displacement are higher than that of COy (Fig. 7e). This is reasonable
considering that hydrogen has a smaller molecular size than carbon
dioxide and moves easier from site to site in BILP-101x with narrow-pore
size. While the amount of adsorbed CO2 molecules is higher than Hj
(Fig. 7f), in line with previous research findings BILP shows strong
interaction with CO4 [50]. In this case, the adsorbed CO, will restrict the
mobility of other CO, molecules (rather than Hjy) due to the large
cohesive energy of CO, than Hjy. Thus, the permeation of Hy is much
faster than COj, resulting in the high selectivity.
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4. Conclusions

In conclusion, BILP-101x membranes with regulated micro-structure
were successfully synthesized through controlling interfacial polymeri-
zation reaction time. A series of characterization techniques like PALS,
PXRD, and CO5 adsorption identified that the membranes prepared
under different reaction time shows slight difference in the micro-
structure and 2 h membrane has relatively high free volume and per-
forms best for Hp/CO, separation. Molecular simulation demonstrates
that the faster diffusion of Hy and stronger adsorption of CO» in the
membrane results in high Hy/COy selectivity. In particular, the 2 h
membrane displays an excellent Hy permeance of 250 GPU and ultra-
high Hy/CO> selectivity of 40 at 473 K, far surpassing the 2008 Robeson
upper bound. In addition, the membrane also shows excellent Hy/N3 and
Hy/CH,4 separation performance and can withstand high temperature
and pressure. The excellent separation performance, outstanding high
temperature and pressure resistance together with feasible preparation,
make BILP-101x membranes promising candidates for industrial appli-
cation in Hy separation and purification areas.
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