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Abstract

Algorithmic bias due to training from biased data
is a widespread issue. Bias mitigation techniques
such as fairness-oriented data pre-, in-, and post-
processing can help but usually come at the cost
of model accuracy. For this contribution, we
first conducted a literature review to get a bet-
ter insight into the potential trade-offs. We fol-
lowed by implementing a Python program to test
how the Disparate Impact Remover (DIR) pre-
processing and Reject Option Classification (ROC)
post-processing techniques impacted the fairness
and accuracy metric values of a Logistic Regres-
sion model trained on data from the Adult Income
dataset. The implementation also allows for build-
ing Pareto fronts that trade off fairness and accu-
racy metrics of choice, thus offering a blend of
perspectives on fairness. Our findings give in-
sight into how combined fairness methods influ-
ence the trade-off, but our implementation can be
extended to explore such trade-offs using other
datasets, models, and fairness methods.

1 Introduction
Our society increasingly relies on algorithms; from machine
learning (ML) models detecting data patterns, chatbots,
navigation systems, and facial recognition. However,
this dependency raises concerns about algorithmic bias
distorting outcomes unintentionally, which can be defined
as systemic and repeatable errors in a computer system
that create unfair outcomes, such as privileging one ar-
bitrary group of users over others [1]. Various solutions
can help mitigate such bias, such as using more diverse
and representative data, documentation transparency, and
implementing statistical data fairness manipulation [1;
2]. This paper analyzes the fairness improvement from
various statistical data manipulation methods, namely
data pre-, in-, and post-processing, since these typically
come at the cost of model accuracy, thus leading to a
potential trade-off. As AI systems are commonly used for
daily functions like mortgage approvals and recommender
systems, maintaining their reliability despite these inter-
ventions is crucial to avoid significant potential losses [3;
4].

Despite the uncertainty on how statistical fairness methods
influence model accuracy, multiple papers exist that help
tackle this gap. A study on an ML model for home mortgage
approvals revealed an inherent bias against black applicants
compared to white ones. Attempts to correct this using an
alternative model exacerbated the bias, and efforts to apply
ML fairness methods resulted in negative outcomes for all
stakeholders, underscoring the need for human oversight in
ML implementations [4]. Another paper introduces a uni-
versal framework to identify the optimal trade-off between
fairness and accuracy using diverse measures, analyzing how
different techniques were applied in other studies to reduce

data bias. Although it tested the effectiveness of several
fairness methods in a case study, only a limited subset was
examined individually, leaving plenty of room for further
research [5].

1.1 Research Scope
Our study will explore how two selected methods working to-
gether can enhance this trade-off across various metrics, po-
tentially revolutionizing bias mitigation overall. We will plot
the trade-offs using Pareto fronts, which are graphs that illus-
trate a ”set of solutions that are non-dominated to each other
but are superior to the rest of solutions in the search space”
[6]. Therefore, our main research question is:

How can combining pre- and post-processing techniques
optimize the fairness vs. accuracy trade-off within a

Pareto front framework?
The sub-questions that we aim to answer in this research pa-
per are:

• How much could the selected fairness methods mitigate
the group bias of a given (biased) dataset and system?

• How could we use a Pareto-front to set a good accuracy
vs. fairness trade-off?

• How generalizable would the proposed fairness frame-
work be with other datasets, models, and fairness meth-
ods?

1.2 Contribution
Combined with our literature review’s findings, we built
a Python program that uses Disparate Impact Removal
(DIR) for pre-processing and Reject Option Classification
(ROC) for post-processing, separately and together. These
techniques aim to reduce the data imbalance on the tested
binary classification Adult Income dataset which we used
to train a Logistic Regression model with each protected
attribute separately accounted for.

Our findings revealed an overall improvement by com-
bining both fairness methods, but future research can be done
to see how other data processing techniques and metrics can
build a Pareto front depending on the application, along with
testing with other ML models and datasets with different
bias types. We justify our method and model selection in
subsection 3.2 and subsection 3.3, respectively.

1.3 Structure
To answer our main research question and related sub-
questions, we conducted a literature review to understand
existing fairness methods and their impact on accuracy and
other metrics, alongside a fairness experiment on our dataset.
This experiment investigated how our selected fairness
methods, both separately and combined, affect the trade-off
between fairness and accuracy using various metrics, thus
providing insights for implications and future research to
bridge our research gap.

The structure of this paper is as follows. First, in sec-
tion 2, we give a more detailed overview of our research



scope and relevant findings. Next, in section 3, we describe
our experimental setup, further explaining the fairness meth-
ods and metrics we used for building our trade-off analysis.
In section 4, we explore the results of our experiment,
comparing the performance of our selected fairness methods
and their respective Pareto fronts built using various metrics.
We follow in section 5 with a discussion of our findings,
their implications, and their impacts. Then, in section 6, we
give our conclusions and insights for future work. Finally, in
section 7, we discuss relevant ethical matters of this research.

2 Literature Review
We found various literature that explored the fairness vs. ac-
curacy trade-off using various bias mitigation techniques. We
first discuss our general findings in subsection 2.1, followed
by a summary of closely related work in subsection 2.2, and
finally briefly summarizing additional related work in sub-
section 2.3. We will further discuss the relevance of these
findings in section 5.

2.1 General Findings
When searching for ways to build our fairness vs. accuracy
trade-off framework, we made two key observations. One,
there is a plethora of data pre- and post-processing techniques
with slightly different use cases and applicable situations [7;
8; 9]. And two, such technique selection can substantially
impact how the trade-off would look depending on the tested
dataset and metrics.

We found many different data processing techniques aimed
at improving the fairness of the input data and predictions of
a machine learning (ML) model. For pre-processing, these
include Disparate Impact Removal (DIR), Learning Fair Rep-
resentations (LFR), Optimized Pre-Processing, Reweighing,
and several more. And for post-processing, we found ones
such as Reject Option Classification and Equalized Odds [5;
8; 10]. As our focus is to examine how effective these two
data processing types are, we will be selecting one of each in
our model experiment as explained in section 3.

To visualize the trade-off, we can use a Pareto front.
We found in various applications that it tends to work well
for finding an optimal trade-off between two competing
variables, which is also fairly easy to visualize [3; 5; 11;
12]. Therefore, this will require selecting one fairness metric
and one accuracy metric to evaluate the model under test
and generate its respective Pareto front, which is further
explained in section 3.

2.2 Closely Related Work
Two related studies are particularly relevant to our research
due to their focus on binary classification bias and similar
data processing techniques. Leying Zou et al. looked into
discrimination in mortgage application acceptance between
white and black applicants [4]. Christian Haas established
a framework for exploring the fairness vs. accuracy trade-
off, testing various fairness methods and metrics for building
Pareto fronts [5]. We will summarize each study’s approach,
methodology, and key findings.

Mortgage Application Discrimination
Leying Zou et al. explored racial discrimination in mortgage
application acceptance towards black applicants, which
has been a historic trend from the value/risk proposition
perspective [4]. They analyzed an existing dataset to detect
racial bias, trained an off-the-shelf ML model with the data,
evaluated its bias, and attempted to debias it.

The above methodology gave various insights. Firstly,
it confirmed the existence of racial bias against black people
in the dataset, highlighting the importance of mitigating
any biases present in datasets used for training ML models.
Secondly, it tested an off-the-shelf AI model trained with
the dataset to see how it would perform, finding that it unin-
tentionally further amplified the existing bias. Finally, they
tested the model’s fairness and accuracy with and without
the fairness methods, finding that the methods worked but at
the cost of accuracy, particularly with a substantial increase
in false positives.

The findings highlight two key points. First, ML mod-
els can propagate or even amplify biases from their training
datasets, highlighting the need for pre-processing to enhance
pre-training fairness. Second, the fairness vs. accuracy
trade-off is critical, particularly when accuracy loss could
heavily impact stakeholders; in this case, the increased false
positives raised risks for lenders, highlighting the importance
of checking even small changes on either side. Their
conclusion stresses the importance of exercising caution
when training and using ML models, along with considering
potential long-term risks.

Framework to Explore Trade-Offs in Algorithmic
Fairness
Christian Haas developed a framework intended for exploring
the fairness vs. accuracy trade-off when debiasing datasets
and ML models [5]. It explores various fairness methods for
pre-, in-, and post-processing, to then apply these methods
and metrics in two combinations on a dataset to construct a
Pareto front for each combination.

The step-by-step process of the framework is illustrated
in Figure 1. The documented approach then proceeds to
apply the framework using various fairness methods and met-
rics on the Statlog (German Credit risk) dataset. Specifically,
it runs in four configurations, each using one of the following
fairness methods. First, it models on a Support Vector
Machine (SVM) without applied fairness methods. Two
other configurations test both Reweighing and Reject Option
Classification (ROC) as fairness pre- and post-processing
techniques respectively, separately on the same model. The
last configuration runs solely on the Meta-Fair classifier. It
then tests these four configurations using Statistical (aka.
Demographic) Parity and Theil Index as fairness metrics
for two scenarios, both compared against their respective
Area Under Curve (AUC) values to generate their Pareto
fronts. Furthermore, it gives other statistics showing each
configuration’s performance and fairness metric values, such
as Recall, Equalized Odds, Disparate Impact (DI), etc.



Figure 1: Framework to explore Algorithmic Fairness Trade-offs
[5].

The above methodology led to two key takeaways. One, it
confirmed their hypothesized non-linear trade-off between
various fairness methods and model accuracy, as evidenced
by the Pareto fronts, giving the ability to perform cost-based
decision-making. Two, different fairness methods influenced
different fairness metrics at various magnitudes, with the
ROC post-processing technique showing superior perfor-
mance in both scenarios. Their conclusion is that various
fairness methods can mitigate data and model bias, each with
its trade-offs and different Pareto-optimal levels dependent
on the tested dataset and fairness metrics used.

2.3 Additional Related Work
We found other papers that also gave great insights, three
of which we will summarize. As done in the previous
subsection, we will briefly discuss the methodology and key
takeaways of each.

The first paper, from Lele Sha et al., proposes measures that
can be taken to detect and reduce bias in education environ-
ments and how to mitigate them with minimal accuracy loss
[13]. They selected five datasets, each with their respective
classification tasks to test, and they then measured their
respective distribution (Dist-bias) and hardness biases. They
pre-processed their datasets using multiple Class Balancing
Techniques (CBTs) and Balanced Data Samples by Task
and Demographic Labels with gender and first-language
background as protected attributes. Afterward, they tested
the dataset with and without different combinations of their
pre-processing techniques applied, showing a noticeable im-
provement in model fairness. Overall, the paper highlighted
the importance of checking for and mitigating any dataset
bias before using it to train ML models, along with showing
how their tested data processing techniques led to significant
bias reduction with minimal accuracy loss (less than 1%).

The second paper, from Patrick Janssen et al., examines the
effects of different fairness methods on model accuracy and
social welfare from the debiased model [8]. Unlike the other
papers we have studied, it generated synthetically biased
datasets with one protected attribute to train and test a Logis-
tic Regression ML model. It subsequently used the AIF360
library to train the models with the raw and debiased datasets,
using two techniques from the pre-, in-, and post-processing

technique categories respectively (a total of six techniques).
With the trained models, they then evaluated their overall
accuracy, false-positive rates, and social welfare scores
(calculated using various other metrics). They found that the
different fairness techniques collectively reduced overall bias
as intended with a minor reduction in accuracy with some
outliers having a stronger reduction or even an improvement.
A notable decrease in social welfare from the different
techniques was also found, highlighting the importance of
also assessing this metric when building fairness frameworks.

The final paper, from Zhenpeng Chen et al., highlights
the importance of checking the fairness and accuracy re-
garding unconsidered protected attributes when applying
fairness metrics to other protected attributes [10]. They indi-
vidually tested eleven fairness pre-, in-, and post-processing
techniques (including the ones we tested) on five different
datasets to train four different ML models. For measuring
overall accuracy, combined with the typical metrics used in
other papers, they also used the F1-Score metric for a clearer
view of the indirect recall and precision impact of the tested
techniques. Overall, they highlighted the effects that different
fairness methods could have on unrelated protected attributes
along with the accuracy and values of other metrics, such as
the F1-Score, underscoring the importance of using multiple
metrics aside from accuracy to thoroughly measure a model’s
performance.

3 Methodology
In our investigation on dataset bias, we first explain the
dataset we worked with in subsection 3.1. We then tested
one fairness data pre-processing and one post-processing
technique, separately and together, to see how they would
reduce our model’s prediction bias, being judged by a core
fairness metric and a few others to give further insights. The
experiment’s process is explained in subsection 3.2, and
the evaluation process of our trained model is explained in
subsection 3.3.

Our experiment was coded in the Python language with
various libraries and frameworks used to run our data
processing algorithms, modeling, and data collection. These
include AIF360 for data processing and metrics, TensorFlow
for neural network modeling, scikit-learn for the remaining
machine learning models we tested, and Matplotlib for
generating our plots. Our pre-processing and modeling
implementations are loosely based on the AIF360’s example
of using the Disparate Impact Remover (DIR) whereas our
post-processing was written from the ground up [14].

3.1 Dataset
We tested our implementation on the open-source Adult
Income dataset provided by the UCI Machine Learning
Repository [15]. It comprises data extracted from the U.S.
1994 Census Bureau database, which includes demographic
information from thousands of individuals. The predic-
tion task on this dataset is to determine whether or not a
person’s income exceeds $50k/year based on their listed stats.



Figure 2: Adult dataset’s statistics on gender and race (simplified).
The percentages for the graphs on the right indicate the acceptance
rate for the listed group.

Figure 3: Same structure as Figure 2 but with statistics for all races.

We selected this dataset for its relevance to our research,
which focuses on binary classification involving two pro-
tected attributes: race and gender. Our copy had 32,561 out
of over 48,000 total entries, therefore still providing a diverse
range of data. However, it’s imbalanced, predominantly
featuring males and white people, which incurs a risk for
bias propagation during model training, which is a key
issue we aim to address and test. Figure 2 and Figure 3
give an overview of the race and gender acceptance rates.
Notice how males and white people make up the majority
of the dataset entries and have higher acceptance rates,
highlighting the dataset’s selection and historical biases [16;
17].

3.2 Experiment Setup
To ensure data integrity for our model training and testing,
we cleaned our dataset by removing the redundant ”edu-
cation” feature, converting categorical features to numeric
values, and eliminating duplicate or incomplete rows. This
process only reduced the dataset from 32,561 to 32,537 rows,
ensuring a minimal data loss of 24 rows.

We then tested our machine learning model, separately
with ”race” and ”gender” as protected attributes, in four
different configurations:

1. No fairness methods applied.

2. Only fairness pre-processing applied.

3. Only fairness post-processing applied.

4. Both fairness pre- and post-processing applied.

For fairness pre-processing, we used the Disparate-Impact
Remover (DIR) technique at ten different repair strength
levels between 0 and 1. For post-processing, we used the
Reject Option Classification (ROC) guided by the Statistical
Parity Difference (SPD) metric. We selected the DIR due to
its simplicity and because the other techniques had too many
parameters, were too accommodating for protected attributes,
or unintentionally intervened with the model [18]. And we
chose the ROC for its proven effectiveness [5]. We used the
Logistic Regression classifier as our ML model since out of
the five models we initially tested, only this and the Support
Vector Machine classifier performed well, and the latter was
already tested by Haas [5].

In summary, our experiment was conducted as follows:

1. Cleaned up our dataset to prepare it for further process-
ing.

2. If applicable, apply the DIR pre-processing to the train-
ing data.

3. Train the model with the prepared data.

4. Run the data’s test set through the model. If applica-
ble, tweak the model’s predictions using the ROC post-
processing technique to optimize its final predictions.

5. Proceed with using our fairness and accuracy metrics to
evaluate the model’s performance, as explained in sub-
section 3.3.

3.3 Model Evaluation
We evaluated our model in each configuration using various
fairness and accuracy metrics, allowing us to construct their
respective Pareto fronts. Our implementation generates two
Pareto fronts per run, one with and one without the ROC
applied. Each front has 10 data points corresponding to their
respective DIR repair level. Therefore, each generated front
pair displays the results across all four configurations for the
selected protected attribute and metrics.

Each generated front’s points are ranked using a linear
scoring function that calculates a point’s accuracy minus any
deviation from the optimal fairness metric value (0 for all
except Disparate Impact (DI), which is 1). Each point is
then annotated with its score ranking and DIR repair level,
where then the best scores from the pre- and post-ROC fronts
determine if the ROC yields an optimal result. Therefore, our
implementation allows for selecting the optimal DIR repair
level and assessing the ROC’s effectiveness for each metric
pair. In addition, one can also adjust the score function’s
fairness penalty weight to emphasize fairness as needed.

Our implementation allows for selecting any of the fol-
lowing fairness metrics:



• Statistical parity difference (SPD)
• Disparate impact (DI)
• Average odds difference
• Equal opportunity difference
• Equalized odds difference
• Theil index

And the following accuracy metrics:
• Recall (i.e., True positive rate; TP )
• False positive rate (FP )
• True negative rate (TN )
• False negative rate (FN )
• Accuracy: (TP + TN)/(P +N)1 [18]

• Balanced accuracy: (TP + TN)/2

• Precision: TP/(TP + FP ) [18]

In our analysis, we will focus on using the DI and SPD met-
rics for fairness, and Accuracy and Balanced Accuracy for
accuracy, aiming to ensure equal acceptance rates between
majority and minority groups. We hypothesized that guiding
the ROC using the SPD metric over the other two possible
metrics would yield the best outcome, which we will prove in
subsection 4.1.

4 Results
Running our experiment on both protected attributes sepa-
rately yielded robust results. We will focus primarily on the
”gender” model as it provided clearer visualizations of our
metrics, though the results for ”race” were similar. We first
present our core fairness metric results from all four config-
urations in subsection 4.1, where we also show our findings
when we test our post-processing with different guiding met-
rics. We then detail our generated Pareto fronts using a subset
of our metrics in subsection 4.2.

4.1 Data Modeling and Processing
Across all four configurations for the ”gender” model, the re-
sults largely met our expectations. Without fairness meth-
ods applied, the model generally had the worst fairness met-
ric scores and highest accuracy. Increasing our DIR pre-
processing repair level slightly improved our fairness metrics
at a slight cost of accuracy. However, applying ROC post-
processing significantly improved our fairness metrics across
all repair levels. We will summarize the findings of our core
fairness metrics and then for the accuracy metrics to then con-
clude with results from testing the ROC alone.

Fairness Results
For fairness, both of our data processing techniques were
generally effective at mitigating the dataset’s bias. Figure 4
shows the trends for our metrics for each DIR repair level
before and after using the ROC post-processing.

Before applying the ROC, the results aligned with our ex-
pectations. Increasing DIR repair levels modestly improved

1P = Positive rate; N = Negative rate

Figure 4: Each row shows the Disparate Impact (DI) and Statistical
Parity Difference (SPD) of the dataset at each DIR repair level, from
0.0 to 1.0. The top row shows the measurements before applying the
ROC post-processing, and the bottom one after. Each graph has a
red line of best fit to show its overall trend.

our fairness metrics but showed diminishing returns at higher
levels, suggesting a potential optimal midpoint. Even at
the highest repair level, both metrics were still not within
an acceptable fair range, typically from 0.8 to 1.2 for DI, 0
to 0.1 for Theil Index, and -0.1 to 0.1 for all other metrics,
but can vary depending on sociotechnical situations and
preferences [19]. We also tested the Average Odds and
Equal Opportunity difference metrics, with both remaining
consistent at all repair levels but with suboptimal values at
around -0.22 and -0.33 respectively. The ”race” model gave
similar results, except that the last two discussed metrics had
an overall incline due to a dramatic upward shift at the center
repair level, showing the threshold where the DIR became
effective at bias mitigation.

After applying the ROC, all four fairness metrics we
discussed earlier changed slightly at all repair levels but
declined slightly by around -0.01. However, their values
were far closer to their optimal levels, hovering at around
0.90 and -0.04, respectively, and with Average Odds and
Equal Opportunity difference around -0.01 and -0.11, re-
spectively. The ”race” model displayed the same trend but
with more variation in metric values, showing pronounced
peaks and drops, likely due to the ROC’s decision boundary
adjustments not being tailored for these metrics. Depending
on the target optimal value, such extremes would likely yield
an optimal or fully suboptimal result.

Accuracy Results
As expected, both fairness methods caused a minor overall
drop in accuracy for each model trained with the protected
attributes. For each DIR repair level before and after using
the ROC, the results of two of our four discussed accuracy
metrics are plotted in Figure 5.



Figure 5: The same structure as in Figure 4 but showing the model’s
accuracy using our Accuracy and Balanced Accuracy metrics for
each ROC stage.

For the pre-ROC model, both metrics displayed a downward
trend, reducing by around 0.007 and 0.005, respectively,
and with Precision reducing slightly more but with Recall
remaining the same. However, as shown on the graph, the
metrics had decent variations, which was also the case for
Precision and Recall. For the ”race” model, both Accuracy
and Precision unexpectedly rose by around 0.005, possibly
due to the DIR breaking the model’s reliance on the selected
protected attributes or reducing dataset noise. The other two
metrics, however, experienced a drop as expected. As with
the ”gender” model, the values had strong variations between
the repair levels.

For the post-ROC model, the first three metrics expe-
rienced a smaller decline of around 0.003 while Recall
remained stagnant. Interestingly, all four metrics had signif-
icantly more variation between the repair levels. Peaks in
these variations would likely yield either a Pareto-optimal
solution or the opposite. For the ”race” model, however, the
results were quite different. Except for Balanced Accuracy,
all four metrics changed direction, but with smaller changes
ranging from 0.001 to 0.005 across the repair levels, likely
due to the ROC reducing the model’s tendency to overfit with
the data at higher DIR repair levels.

Testing our Post-Processing on Different Guiding Metrics
As we observed earlier, the ROC post-processing had a
significantly positive impact on our fairness metrics. As
mentioned in subsection 3.2, we ran our whole experiment
with only the SPD metric to guide the ROC. However, we
also guided the ROC in another instance using Average Odds
and Equal Opportunity difference to see how well they would
perform.

Figure 6 compares the performance of the three metrics
when testing the ”gender” model where all three guiding
metrics yielded similar results, with SPD being in the middle.
However, when post-processing the model’s predictions with

Figure 6: The performance of the ROC post-processing based on
the four shown fairness metrics, tested on all three different guiding
metrics.

”race” as the protected attribute, using the SPD gave by far
the best fairness ratings. Overall, these findings prove our
hypothesis made in subsection 3.3.

4.2 Pareto Fronts
After running our models for both protected attributes, we
generated several Pareto front pairs; the left front corre-
sponds to before the ROC post-processing and the right
after. Each pair represents a combination of one fairness and
one accuracy metric of choice. With six supported fairness
metrics and seven accuracy metrics, our implementation
allows for creating 42 combinations for extensive testing
to identify optimal trade-offs. The fairness weight of the
scoring function is also adjustable (default = 1.0), allowing
for further customization. However, due to space constraints,
we only show our four most significant Pareto front pairs of
three different metric combinations, all from the ”gender”
model.

Figure 7 shows our first Pareto front combination goes
between SPD and Accuracy. The optimal points of each
front exhibit a trade-off, where the left point scores lower
in fairness but higher in accuracy, while the right has the
opposite. Overall, the right point has the best trade-off given
the selected metrics and fairness weight, which is the case
for most of the other generated front pairs.

Our next combination is similar to the previous one but with
Balanced Accuracy as the accuracy metric, as shown in Fig-
ure 8. We get a similar situation as the previous pair but with a
smaller front for the right graph due to it having fewer Pareto-
optimal points. This occurs when the selected metrics have
greater variation with jagged peaks and dips, as these would
lead to more Pareto-dominated points. Adjusting the fairness
weight to 0.3 yielded a different optimal trade-off point for



Figure 7: Our first Pareto front pair, comparing model performance
before and after applying the ROC. Each point is labeled with its
DIR repair level and trade-off score, and the best points additionally
show their fairness and accuracy. The title indicates the fairness
weight value used for the scoring function and indicates which graph
presents the optimal trade-off.

Figure 8: Another Pareto front pair; with Balanced Accuracy as its
accuracy metric.

both fronts, as shown in Figure 9. However, once again the
post-ROC point yielded the best result of both fronts.

The final combination we will illustrate is between the Theil
Index and Balanced Accuracy metrics, which is shown in Fig-
ure 10. We selected this combination because unlike the oth-
ers, the pre-ROC front yielded the optimal trade-off of both
ROC configurations, showing how combining fairness pre-
and post-processing does not always give an optimal result,
thus highlighting the importance of making decisions based
on which metrics matter most.

The four front pairs we just discussed gave great insights, but
we explored many more combinations for both models. A key
observation is that for each plotted pair, both optimal points
corresponded to DIR repair levels at 0.5 or below. All of our
generated fronts, including for the ”race” model, had their
highest-ranking points within this repair range, highlighting
the diminishing returns from excessive pre-processing. How-
ever, almost all generated fronts showed the post-ROC point
being optimal, illustrating how in most cases, combining the
DIR and ROC techniques yielded the best trade-off.

Figure 9: Same Pareto front pair as in Figure 8, but with the fairness
weight set to 0.3 instead of 1.0.

Figure 10: Pareto front pair with the Theil Index as its fairness met-
ric.

5 Discussion
Our literature review and data modeling experiment pro-
duced numerous findings that generally supported each other
but also revealed some differences and surprises. We first
explain the key connections between our literature review
and experiment findings and their implications, followed by
an overview of our work’s limitations and their impacts.

Our experiment’s findings generally matched what we
found in our studied literature. We confirmed the existence
of the non-linear trade-off between fairness and accu-
racy, as seen by Haas [5]. However, as seen by Patrick
Janssen et al., despite using different methods, we also
found cases where the model accuracy unexpectedly im-
proved after applying fairness methods [8]. Lastly, we
noticed that some fairness metrics showed no improvement
or even degraded after applying our fairness methods,
as noted by Janssen et al., Zou et al., and others [4;
8]. As another example, in our generated Theil Index vs.
Balanced Accuracy front pair, the pre-ROC stage gave the
best trade-off, which shows that combining the DIR and
ROC techniques is not always optimal.

Our findings led to two main implications. First, since
the Pareto fronts vary greatly between fairness-accuracy
metric combinations, careful metric selection is critical to
prioritize specific fairness and accuracy aspects, ensuring
optimal decisions regarding selecting an optimal DIR repair



level and whether also using the ROC gives desired results.
For example, Zou et al. mentioned the importance of
minimizing false positives to avoid hefty costs for the lenders
despite the fairness implications of increased false negatives
[4]. Second, while some metric pairs may show minimal
trade-offs, others may not perform as well, highlighting
the need to consider other combinations to achieve optimal
outcomes.

Our contribution has notable limitations. While our lit-
erature review uncovered many key fairness aspects and
their accuracy trade-offs, our experiment contained three
limitations. First, we only tested the DIR pre-processing
and ROC post-processing techniques, and different data
processing techniques could yield vastly different Pareto
fronts and values for the tested metrics. Second, we only
tested our implementation on the Adult dataset, and different
datasets could yield varying results. Third, we only thor-
oughly tested using a Logistic Regression model, and other
model types could behave vastly different depending on their
data input and manipulation. Fourth, due to time constraints,
we were unable to generate an error bar showing the metric
trends between multiple model runs, therefore increasing the
margin of error of our findings. These limitations suggest
that our findings, including metric findings and generated
Pareto fronts, are likely not generalizable for other datasets
with different biases and protected attributes.

6 Conclusions
We conclude that our research consistently demonstrates
a trade-off between fairness and accuracy, with occasional
exceptions where fairness methods negatively impact fairness
metrics or enhance accuracy. Our implementation allows
for building Pareto fronts on several metric combinations,
allowing customizable evaluations of fairness through the
implemented pre- and post-processing methods. However,
different datasets will likely have different fairness and ac-
curacy metric values from different pre- and post-processing
methods.

Answering our research questions: for the first one, the
DIR pre-processing performed modestly on most of our fair-
ness metrics, and the ROC post-processing was substantially
more effective with optimal results often combining both at
lower DIR repair levels. Answering our second question, we
generate Pareto fronts with metrics of choice, using a scoring
function that highlights the best trade-off point with its
respective DIR repair level and whether the ROC qualifies.
Answering our final question, our implementation can be
adapted for other datasets, models, and fairness methods by
changing its dataset parser, selected model (it has 6 to choose
from), and methods as desired, therefore being generalizable.

Our contribution gives plenty of room for future work.
We could explore the impacts of different combinations of
pre- and post-processing techniques, including in-processing
adjustments directly to the model. Adding more fairness
and accuracy metrics would allow for more thorough testing,

along with applying our implementation to other datasets
with varying biases and considering impacts on other pro-
tected attributes; modifying our dataset reading function
would allow for easy adaptation to new datasets. Our frame-
work can also be tested on any of the five other supported
models or with an added one, such as experimenting with
the K-Nearest Neighbors or Support Vector Machine (SVM)
classifier, which we found sometimes showed promising
results compared to Logistic Regression and could reveal
additional research opportunities. Finally, having multiple
model runs to create error bars showing the metric trends
would reduce the margin of error and therefore increase the
generalizability of the findings.

7 Responsible Research
Our research has various ethical implications that will likely
influence how data and algorithms are evaluated and assessed
for fairness and accuracy. To start, we used ChatGPT to
help with paraphrasing, code augmentation, and debugging.
All generated content was thoroughly checked for errors to
ensure integrity. Additionally, to ensure that informed and
thoughtful decisions are made based on our findings, we
will discuss the ethical integrity and reproducibility of our
methodology.

Various ethical aspects relate to both when running our
implementation and interpreting its results. During the data
processing, one should ensure that it does not compromise
the dataset integrity or introduce new biases, which may
invalidate the findings if not dealt with properly, and keep
in mind that the metrics selected to generate the Pareto
fronts can have significant ethical implications on influenced
decisions. Therefore, including a broad metric range to cover
different ethical perspectives is advised. Interpreting the
results should also be taken with care, where decisions re-
garding the trade-offs should not rely solely on the generated
Pareto fronts but also consider metrics or features outside the
experiment’s scope. Engaging with relevant domain experts
and stakeholders to assess the real-world impacts of the
findings is also advised, as such decisions will likely impact
large stakeholder groups (such as those for employment,
banking, and more).

Our methodology’s reproducibility is well-supported.
Our literature review is fully replicable by examining the
relevant papers of the different tested techniques and metrics.
Regarding our experiment setup, we concisely outline it
in subsection 3.2. Our GitHub repository2 contains both a
README file with comprehensive implementation details
and thoroughly commented code files, allowing users with
some knowledge in the field to follow along. The code is
easily customizable, allowing for the selection of different
fairness and accuracy metrics for the Pareto fronts, selecting
the ROC guiding metric, choosing different models, and
modifying graph formatting to thus enhance its adaptability
for various research needs.

2Link to repository: https://github.com/1Sulture/Fairness-vs.
-Accuracy-Pareto-Front-Builder

https://github.com/1Sulture/Fairness-vs.-Accuracy-Pareto-Front-Builder
https://github.com/1Sulture/Fairness-vs.-Accuracy-Pareto-Front-Builder


References
[1] Simon Friis and James Riley. Eliminating algorithmic

bias is just the beginning of equitable ai, Sep 2023.
[2] Stefan Buijsman. Navigating fairness measures and

trade-offs. AI and Ethics, July 2023.
[3] Shizhou Xu and Thomas Strohmer. Fair data represen-

tation for machine learning at the pareto frontier, Nov
2023.

[4] Leying Zou and Warut Khern-am nuai. Ai and housing
discrimination: the case of mortgage applications. AI
and Ethics, 3(4):1271–1281, November 2022.

[5] Christian Haas. The price of fairness - a framework to
explore trade-offs in algorithmic fairness, 2019.

[6] M. Akbari, P. Asadi, M.K. Besharati Givi, and G. Khod-
abandehlouie. 13 - artificial neural network and op-
timization. In Mohammad Kazem Besharati Givi and
Parviz Asadi, editors, Advances in Friction-Stir Welding
and Processing, Woodhead Publishing Series in Weld-
ing and Other Joining Technologies, pages 543–599.
Woodhead Publishing, 2014.

[7] Flavio P. Calmon, Dennis Wei, Karthikeyan Natesan
Ramamurthy, and Kush R. Varshney. Optimized data
pre-processing for discrimination prevention, Apr 2017.

[8] Patrick Janssen and Bert M. Sadowski. Bias in algo-
rithms: On the trade-off between accuracy and fairness,
Jan 2021.

[9] Preetam Nandy, Cyrus Diciccio, Divya Venugopalan,
Heloise Logan, Kinjal Basu, and Noureddine El Karoui.
Achieving fairness via post-processing in web-scale rec-
ommender systems, Aug 2022.

[10] Zhenpeng Chen, Jie M. Zhang, Federica Sarro, and
Mark Harman. Fairness improvement with multiple pro-
tected attributes: How far are we?, Apr 2024.

[11] Annie Liang, Jay Lu, and Xiaosheng Mu. Algorithmic
design: Fairness versus accuracy: Proceedings of the
23rd acm conference on economics and computation,
Jul 2022.

[12] Susan Wei and Marc Niethammer. The fairness-
accuracy pareto front, Nov 2021.

[13] Lele Sha, Dragan Gašević, and Guanliang Chen.
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