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Abstract: Lattice distortions constitute one of the main features characterizing high entropy alloys.
Local lattice distortions have, however, only rarely been investigated in these multi-component alloys.
We, therefore, employ a combined theoretical electronic structure and experimental approach to study
the atomistic distortions in the FeCoNiCrMn high entropy (Cantor) alloy by means of density-functional
theory and extended X-ray absorption fine structure spectroscopy. Particular attention is paid to
element-resolved distortions for each constituent. The individual mean distortions are small on
average, <1%, but their fluctuations (i.e., standard deviations) are an order of magnitude larger,
in particular for Cr and Mn. Good agreement between theory and experiment is found.

Keywords: high entropy alloy; lattice distortions; density functional theory; extended X-ray
absorption fine-structure spectroscopy

1. Introduction

High configurational entropy, sluggish diffusion, the cocktail effect and lattice distortions
constitute the four main features, also referred to as core effects, characterizing the broad class of
multi-principal element solid solution alloys known as high entropy alloys (HEAs) [1–3]. The term
cocktail effect refers to the fact that some properties (e.g., mechanical or magnetic ones) cannot
be approximated from linear interactions among the different elements and phases. This class of
alloys has attracted a lot of attention due to promising mechanical [4–8], electric [9,10] and magnetic
properties [11,12]. The core effects have originally been assumed to be responsible for the excellent
properties of HEAs. Recently, it was shown, however, that the efficiency and relevance of the core
effects need to be critically examined for each specific system under consideration. For example, in the
FeCoNiCrMn alloy, other entropy contributions, i.e., lattice vibrations, electrons and magnetism, were
shown to be of similar importance as the configurational entropy [13].

In the present study, we focus on lattice distortions that control the solid solution strengthening
in metals. Due to random fluctuations, these lattice distortions can introduce energy barriers against
dislocation motion. This strengthening mechanism was originally introduced by Labusch [14,15] and
recently extended to HEAs by Varvenne et al. [16]. The key parameter that controls this strengthening
mechanism is the solute-dislocation interaction energy.
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For fcc materials, solutes can be approximated as point dilatational sources. In this case,
the interaction energy between a dislocation at the origin and a solute at position~r is:

U (~r) = −p (~r)∆Vm, (1)

where p (~r) is the dislocation pressure field and ∆Vm is the misfit volume of the solute, which is defined
here as the difference between the volume of the solute in the alloy and the average atomic volume [17].
For dilute alloys, the average atomic volume can be well approximated by the volume of the host
matrix, which means that the matrix atoms essentially have zero misfit in the alloy. In HEAs, however,
the average effective medium does not correspond to any specific constituent element. The atoms in
an HEA can, therefore, be seen as “solutes” with respect to the effective medium (i.e., each atom has
a misfit volume) [16]. Further, the misfit volume of an element in this class of materials is not only
dependent on the element itself, but also on the local chemical environment in which the element is
embedded. The misfit volume of element i can be expressed as,

∆Vi
m (~r) = ∆Vi

m + δVi
m (~r) , (2)

where ∆Vi
m is the mean misfit volume of element i and δVi

m (~r) is the fluctuation of the misfit
volume due to the local chemical environment, which will have a characteristic distribution for
a given alloy. Solute strengthening arises from fluctuations in the solute-dislocation interaction
energy [14,15]. In dilute alloys, these fluctuations originate from spatial fluctuations in the
solute concentration. In HEAs, however, there is an additional contribution due to the fluctuations in
the misfit volumes themselves. In order to understand solute strengthening in HEAs, it is important to
understand not only the average misfit ∆Vi

m, but also its distribution around the mean.
Wang [18] employed empirical pair-potentials to study lattice distortions in fcc and bcc HEAs.

However, empirical pair-potentials do not take the underlying electronic structure and magnetic
effects into account, both of which may cause additional distortion effects. Density-functional-theory
(DFT) calculations for FeCoNiCr and FeCoNi revealed that electronic charge transfer causes a local
atomic pressure on the individual constituents, which could result in local volume fluctuations [19].
Further DFT studies revealed strong element-specific magnetic moment fluctuations in fcc FeCoNiCr,
which are ultimately rooted in local electronic structure effects [20–22]. In particular anti-ferromagnetic
Cr plays a crucial role [20]. By mixing ferro- and anti-ferromagnetic elements, significant
element-specific local lattice fluctuations can be expected. At the same time, a small amount of
local distortions is intrinsically assumed in many recent DFT studies relying on perfect (distortion free)
crystal structures by employing the coherent potential approximation [11,13,23–26]. A pragmatic
reason behind this assumption is the significantly larger computational demands of alternative
supercell approaches.

Experimental studies identifying the role of local distortions are mostly carried out by standard
X-ray or neutron diffraction techniques, providing, however, only information on lattice distortions
averaged over all elements [27,28]. An alternative is given by the more recent technique of
extended X-ray absorption fine structure (EXAFS) giving access to element-specific mean distortions.
Local fluctuations (standard deviations) due to the chemical environment are very difficult to
experimentally extract due to additional thermal fluctuations [27]. The latter can be “switched off” in
electronic structure calculations, such as DFT. The same holds true for the impact of magnetism, which
can be estimated in DFT simulations by performing non-spin polarized calculations.

In this work we, therefore, conducted a combined experimental (EXAFS) and theoretical (DFT)
study to investigate element resolved local-distortions and their impact on magnetism and the relation
to solid solution strengthening. As an application, we have chosen the well-studied prototype
equi-atomic fcc FeCoNiCrMn HEA, also known as Cantor alloy. We discuss not only the mean
distortions, but also the element resolved distortion fluctuations, which are, as mentioned above,
a critical input to state-of-the-art solid-solution strengthening models.
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2. Materials and Methods

The FeCoNiCrMn HEA was cast in a vacuum induction furnace using metallurgical ingredients
above 99.8 wt % purity. To remove artifacts, such as pores or elemental segregation, as well as to
enhance the overall quality of the homogenized sample, the as-cast ingot was hot rolled at 900 ◦C with
a rolling reduction ratio of 50%, followed by homogenization at 1200 ◦C for 3 h in an Ar atmosphere
and eventually quenched in water. The bulk sample was mechanically ground into a 15 µm-thick
ribbon, with SiC abrasive paper down to P4000. Chemical analysis revealed a nearly equi-atomic
composition of Fe 20.4−Co 20.1−Ni 20.1−Cr 19.7−Mn 19.7 at %.

Recent findings showed phase decomposition in the FeCoNiCrMn alloy [29], and we, therefore,
probed the compositional homogeneity at the atomic scale using atom probe tomography (LEAP
5000 XS, Cameca Inc., Düsseldorf, Germany) to verify a single-phase solid solution in the present
samples. The results shown in Figure 1 reveal no indication of any compositional decomposition on the
nm-scale. The normalized homogenization parameter µ obtained by a frequency distribution analysis
is close to 0 for all five elements (not shown), revealing a random distribution of the involved elements
in the present alloy. This is a direct consequence of our sample preparation and the sufficiently high
enough temperatures chosen for homogenization.

Cr 
20nm 

Mn 
20nm 

Fe 
20nm 

Co 
20nm 

Ni 
20nm 

Figure 1. Atom probe tomography results for the investigated samples.

X-ray absorption measurements were carried out on the 7D beamline of the Pohang Accelerator
Laboratory (PLS-II, 3.0 GeV, Pohang, Korea). The X-ray absorption spectra for Cr, Mn, Fe, Co and
Ni were taken in a transmission mode under a He atmosphere. Higher-order harmonic rejection
was achieved by detuning the Si(111) monochromator crystals to 15%–30% for each element edge.
The beam size was 1.5× 4 mm in the horizontal and vertical directions to include more than 100 grains
for uniformity. The X-ray absorption spectra for Cr, Mn, Fe, Co and Ni were taken in a transmission
mode under ambient conditions. All element foils were measured as a reference to calibrate for any
inconsistency in the energy shifts during the data collection. The obtained datasets were properly
aligned and processed using the program Athena in the IFEFFIT 1.2.11d suite of software programs [30].
The smooth pre-edge function has been removed by linear extrapolation to avoid instrumental
background and absorption from other edges [31]. The resulting element-resolved absorption µ(E)
was afterwards normalized by using atomic-like absorption profiles. Careful fits to the measured data
were carried out using the Artemis program included in the IFEFFIT software package. The fitted data
for the first single scattering path included photoelectron waves with wave numbers of 3–10.5 Å−1

and interatomic distances of 1–3 Å for each element (Cr, Mn, Fe, Co, Ni).
First-principles calculations were carried out in the framework of density functional theory

(DFT) with the VASP code [32,33] employing the projector-augmented wave (PAW) method [34]
within the generalized gradient approximation (GGA) in the Perdew–Burke–Ernzerhof (PBE)
parametrization [35]. The provided PAW potentials [36] with 3d and 4s electrons in the valence
were employed. The planewave cutoff was set to 350 eV. Chemical disorder was simulated utilizing
the concept of special quasi-random structures (SQS) [37]. The SQS approach enables an efficient
simulation of chemical disorder within a (limited) supercell through optimizing the atomic distribution
by minimizing the pair correlation functions. For a recent application of the SQS technique to high
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entropy alloys, we refer to [38]. The supercell size for the SQS is usually chosen under three conditions:
it should (a) resemble chemical disorder as good as possible, (b) match the experimental composition
and (c) should be computationally efficient (i.e., not too large). An artificial ordering could impact
total energies, as well as bond lengths. We, therefore, used a 125 atom SQS (5× 5× 5 primitive
cells) minimizing the nearest and next-nearest neighbor pair correlation functions. Permutation
of the five components results in 25 distinguishable SQS realizations for the chosen supercell.
We have checked 5 such different permutations, and the results showed almost degenerate energies,
as well as very similar bond lengths. This simulation result indicates that the chosen supercell
provides a good representation of the random solid solution at reasonable computational efficiency.
Each 125 atom supercell consisted of 25 atoms for each species, ideally resembling the equi-atomic
composition. A 4× 4× 4 Γ-centered k-point mesh and the Methfessel–Paxton method (order 1)
with a smearing parameter of 0.1 eV were chosen for the Brillouin zone sampling. To study the
impact of lattice expansion, all calculations were performed at 6 different lattice constants around the
theoretical equilibrium. Magnetism was taken into account, and according to previous studies [11,13],
a ferrimagnetic structure was initialized with Cr and Mn spins being aligned anti-parallel to the Fe, Co
and Ni atomic spins.

Despite recent progress in describing vibrations in magnetic materials for pure elements and
selected ordered magnetic alloys from DFT [39–42], these methods are not yet advanced to a stage
being applicable to the present magnetic multi-component alloy and are therefore neglected in the
present work. In order to elucidate the impact of magnetism, all calculations were additionally
performed within non-spin polarized DFT.

3. Results and Discussion

The concept of computing element-specific lattice distortions is illustrated in Figure 2. From the
different SQS supercell realizations, we extracted 1500 individual element-specific bonds for each
of the five constituents. We considered an undistorted, ideal FCC lattice as the reference structure
to quantify the experimentally-, as well as the theoretically-extracted bond length variations. As an
example, Figure 2a indicates a few of the bonds for Mn for a specific SQS supercell, and Figure 2b
shows the local bond variation of Mn averaged over all 1500 different bonds. In order to quantify
the mean value, as well as the fluctuations (standard deviations), we performed Gaussian fits over
the element-resolved data (the black line in Figure 2b). A direct outcome of the theoretical analysis is
the comparably small mean distortion (<1%) compared to the fluctuation (standard deviation) of the
individual bond lengths, which can be in the order of a few percent.

-5 0 5
Local bond distortion (%)

0

5

10
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(b) Locally resolved lattice distortions 

Experiment 
(EXAFS) 

Mn 

(a) SQS supercell 

Theory 

Mn Ni Co Cr Fe 

 2×std. dev.  

Figure 2. (a) Projection of one of the employed special quasi-random structure (SQS) supercells onto
the (100) plane. The black arrows indicate the nearest neighbor bonds for the Mn atoms that are used
to extract the distribution of the local bond distortions as shown in (b). In (b), the first-principles
computed lattice distortion histogram of Mn-bonds in FeCoNiCrMn is based on 1500 evaluated
Mn-bonds. The theoretical data are further analyzed by Gaussian fits (see the text for details).
The experimentally-measured averaged distortion is indicated by the red solid line. Although the mean
distortion is rather small (<0.5%), the range of local distortions at the standard deviation is significant
(≈2%), as indicated in (b).
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The same analysis has been carried out for all individual elements. The bond distortion
distributions are shown in Figure 3a–e, revealing the strongest variation for Cr and Mn. In Figure 3f–o,
we also show the mean values of the bond distributions and the corresponding standard deviations
versus mean bond length. This allows us to reveal the impact of volumetric changes, which could
arise from temperature or pressure variations. The theoretical mean values in Figure 3f–j derived
from the Gaussian fits (open black circles), as well as the standard mean values (filled black circles)
agree well with the experimentally obtained EXAFS data (red open squares). The largest fluctuation
in the theoretical (Figure 3k–o) and experimental data (red error bars in Figure 3f–j) is consistently
found for Cr and Mn. Note that the overall magnitude of the local bond fluctuations quantified by
the standard deviations in Figure 3k–o is almost an order of magnitude larger than the corresponding
mean averaged distortions. They are also much larger than the actual deviation between theory and
experiment for the mean averaged distortions. For example, the largest deviation between theory and
experiment is found for the mean bond distortions of Mn (shown in Figure 3j). However, comparing
in Figure 2b the peak of the Gaussian fit (black solid line) and the EXAFS data (red dashed line) with
the fluctuations indicated by the standard deviation relativizes the seemingly large deviation of the
mean values. Note that at room temperature, harmonic thermal excitations (phonons), which are
not considered in our current theoretical framework, can further broaden the resulting bond length
distribution, but will not significantly affect the derived mean bond lengths which are compared to the
experiment. Further analyzing the theoretical volume-dependent data shown in Figure 3f–o reveals
that the mean distortions are rather robust with respect to changes in volume. However, this is in
contrast to the standard deviations revealing a strong volume dependence. This indicates a sensitive
interplay between temperature or pressure induced volume changes and local bond fluctuations.
Overall a good agreement between the theoretical and experimental data is found.
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Figure 3. (a–e) Pair-resolved distribution of relative local bond distortions for Fe, Co, Ni, Cr and Mn
determined from first-principles calculations of in total 3750 individual atomic bonds. The standard
deviations of the bond distribution are an order of magnitude larger than the actual mean displacement.
(f–j) Experimental EXAFS data (red open squares) compared to the theoretical mean bond length
(black filled circles), as well as the mean value derived from a Gaussian fit (black open circles)
for different volumes. Non-spin polarized calculations are shown for comparison (open and filled
orange circles). (k–o) Standard deviation of the Gaussian fits revealing the much larger local bond
distortions compared to actual mean, averaged values.
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In all cases, the standard deviation of the local bond lengths σb is about an order of magnitude
greater than the mean difference between the local bond length and the global average bond length ∆b.
This observation has great implications for the solute strengthening mechanism in HEAs. A full
derivation of the solute strengthening model in systems with fluctuating misfit volumes is beyond
the scope of this work, but the relative importance of the σb can be seen by examining how it affects
the fluctuation in solute-dislocation interaction energy. This term is closely related to Labusch-type
strengthening [14,15].

When the local bond length (and hence, the local misfit) is small, the bond length is proportional
to the misfit volume,

∆Vi

V
=

8πK√
2

∆bi

b◦
, (3)

where K = 3(1− ν)/(1+ ν) is the Eshelby constant, ν is Poisson’s ratio and ∆bi is the relative distortion
of a solute of type i [43].

In this case, the interaction energy between a dislocation at the origin and a solute can be
expressed as:

Ui (~r) = p (~r)KV
(

∆b
i
+ δbi (~ri)

)
/b◦, (4)

where ∆b
i

is the mean difference between the bond length of solute i, the global mean bond length
b◦, δbi is the local fluctuating part of the bond length and V is the mean atomic volume of the alloy.
The mean interaction energy is then:

Ui
(~r) = p (~r)KV∆b

i
/b◦, (5)

and the standard deviation of the interaction energy is:

σi
U (~r) = p (~r)KVσi

b/b◦. (6)

From Figure 3, it is clear that Ui � σi
U . That is, for HEAs, the fluctuation of the local bond length

(and hence, the local misfit volume) cannot be ignored.
As mentioned above, the strongest fluctuations in local bonds have been identified for Cr and Mn.

As both are anti-ferromagnetic elements in contrast to the other three ferromagnetic constituents Fe,
Co and Ni, it stands to reason that magnetism is responsible for this effect. In order to estimate the
impact of magnetism, we performed all of the calculations in the non-spin polarized formulation
of DFT. The results for the mean values are shown in Figure 3f–o (orange circles). We find that the
agreement between theory and experiment for the mean bond distortions, which we have found for the
magnetic results, is completely lost when comparing to the non-magnetic calculations. Inspecting the
results in more detail, we find that Ni, the element with the smallest atomic radius, reveals the largest
mean bonds in the alloy. This shows that non-spin polarized simulations are clearly not sufficient to
describe the properties of the real alloy. Interestingly, the fluctuations of all constituents are increased
if magnetism is switched off. In this case, even Fe reveals strong local bond fluctuations. The unique
dominant role of Cr and Mn in for local bond fluctuations is, however, lost without taking magnetism
into account. We can, therefore, conclude that magnetism is responsible for the unique character of
local bond fluctuations in this alloy and is critically required for realistic simulations.

In order to further elucidate the important role of Cr and Mn, we show in Figure 4 the
individually element-element resolved mean bond distortions and corresponding standard deviations.
Consistent with our discussion above, the mean distortions are much smaller than the corresponding
standard deviations. An important outcome of this analysis is that Cr and Mn not only induce
strong local bond fluctuations among themselves, i.e., for Cr-Cr, Cr-Mn and Mn-Mn bonds, but
also in combination with the other elements, e.g., for Cr-Fe and Mn-Fe. This indicates that alloying
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multi-component alloys with Cr and Mn can induce serious local bond fluctuations, although the
overall mean alloy distortions appear to be rather small. In fact, a strong relation between alloying
with Cr and Mn and mechanical properties for different HEAs has been reported. The relation to local
bond fluctuation will be discussed elsewhere.

Mean distortion (in %) Standard deviation (in % of  distortion)
Fe Co Ni Cr Mn

Fe 1.58 1.21 1.15 2.09 1.99
Co 1.21 1.14 1.03 1.88 1.40
Ni 1.15 1.03 0.89 1.38 1.16
Cr 2.09 1.88 1.38 3.06 3.01

Fe Co Ni Cr Mn 
Fe  0.34 -0.72 -0.06 0.18 0.22 
Co -0.72 -0.43 -0.08 -0.67 -0.22 
Ni -0.06 -0.08 0.04 0.02 0.12 
Cr 0.18 -0.67 0.02 0.66 0.54 
Mn 0.22 -0.22  0.12 0.54  0.71 Mn 1.99 1.40 1.16 3.01 2.74

Figure 4. Element-resolved mean bond distortions and standard deviation in the fcc FeCoNiCrMn HEA.
Cr and Mn induce strong local bond fluctuations for all considered elemental pairs.

4. Conclusions

Element-resolved local distortions have been investigated in fcc FeCoNiCrMn combining EXAFS
measurements and electronic structure calculations. Good agreement between the experimental and
theoretical data is found for the element-resolved mean lattice distortions. These turned out to be
relatively small (∼0.1%), explaining the recent success of theoretical simulations assuming undistorted
perfect lattices.

However, the local fluctuations of the lattice distortions are an order of magnitude larger than the
mean and can significantly impact solute strengthening in these class of materials. Therefore, using
results from mean field theories is not well suited to predict quantities that depend on the fluctuations
in the local lattice distortions (such as the yield strength), since these methods cannot capture these local
fluctuations, which can amount up to 2%–3%. The local bond fluctuations can impact dislocation-solute
interaction energies and, hence, contribute to solid-solution strengthening much stronger than the
actual mean bond distortions. These insights provide vital input for solid solution strengthening
models in HEAs [16] and enable more physically-sound simulations of the distortions and dislocation
mechanics in this new and promising class of alloys.
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