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Abstract

Building heights are important information for a variety of subjects, such as wind analysis, energy
demand simulations and solar potential assessment, yet large-scale LiDAR scanning is costly. This
thesis introduces PHYSHADE: a set of physics-guided U-Net-based models. It employs shadow pro-
jections derived from building footprints and solar geometry into an aerial image shadow segmentation
pipeline, for the purposes of building shadow extraction and consequently the large-scale estimation of
building heights. Thirty-five aerial images in the Netherlands were manually annotated for buildings
and their associated buildings. By employing transfer learning, based on a general purpose shadow-
segmentation model, a total of 130 models were trained, which can be categorized into three different
implementations of PHYSHADE. Through these different configurations, the performance impact
of the various methods of addition of pseudo-shadows to the models was ablated. Afterwards, the
best-performing PHYSHADE configurations were used with a raycasting algorithm to convert shadow
lengths and solar altitudes back into building heights. The inclusion of pseudo-shadows lifted the mean
Dice scores from 0.53 to 0.85, with an average gain of 0.32 and statistical significance across different
folds. Physics-guided loss, based on the pseudo-shadows, was not found to be significantly different in
most cases, whilst hurting model performance in some cases compared to the pseudo-shadow enabled
models. On six out-of-fold test tiles the best PHYSHADE variants retained Dice scores of 0.72 –
0.95, although recall declined in one winter scene. Finally, height estimation on these tiles using the
inference from the best PHYSHADE variants resulted in mean RMSE of ≈ 1.9m and MAE of ≈ 1.5m.
While its application needs to be tested in broader contexts, PHYSHADE offers a viable low-cost
complement to LiDAR for building height estimation.

Keywords: Building Height Estimation, Shadow Segmentation, Physics-Informed Neural Network,
PHYSHADE, Aerial Imagery, U-Net, Remote Sensing
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Chapter 1 INTRODUCTION 1

1 Introduction

Building-height information is a useful metric in a variety of fields. It can be used to construct datasets
such as the 3D BAG (Peters et al., 2022), extruding two-dimensional footprints into three dimensional
structures by matching up the planar coordinates with heights from a digital surface model (DSM).
In turn, these datasets can then be used to power e.g. energy demand simulations (León-Sánchez
et al., 2021), solar potential assessment for solar panels (Apra et al., 2021) among other use cases
where a digital twin may be useful. In broader societal terms, building height is a vital metric for the
simulation of microclimates in urban environments through windflow analysis (Ng et al., 2011), which
is an important topic of study in the global context of climate change.

A popular method for inferring surface heights for both buildings and terrain is through LiDAR. In
the Netherlands, the ”Actueel Hoogtebestand Nederland” (freely translated to ”Current Dutch Elevation
Record”, often abbreviated to AHN) is a national dataset collected either by helicopter or airplane,
with the fourth edition of the dataset sporting a height accuracy of up to 5 cm and an estimated average
point density of 10-14 points per square meter (AHN, 2020).

While the AHN and similar point cloud datasets collected through airborne laser scanning work
well for determining the height of broad and well-defined objects such as buildings, they are often
comparatively expensive to collect at scale and require significant investment costs, meaning that if
such data is not available publicly it is difficult for individuals to finance. While the Dutch government
is able to freely provide such data, countries with financial resource limitations may find LiDAR as a
method cost prohibitive, leading to less data being available. As such, finding new methods for the
estimation of building heights at scale would promote economic equity, which in turn would provide
opportunities for those economically disadvantaged to have a more direct impact at helping shape their
communities through scientific discovery, informed policy, education and awareness raising (Craglia &
Shanley, 2015).

Democratizing data access is therefore crucial, which results in a persistent need for new methods
of data collection. Given the economic limitations inherent to building height data collection through
LiDAR, an opportunity lies in the exploration of alternative methods that rely on cheaper and more
accessible data sources. One such approach is through the inference and processing of building
shadows from aerial imagery. By measuring the length of the shadow and multiplying it with the
tangent of the sun’s altitude, it becomes possible to calculate the height of the object that casts the
shadow. Since data collection through e.g. aerial photography and satellite imagery is comparatively
cheaper than airborne laser scanning, they can be a viable alternative for height estimation.

1.1 Problem Statement
In order to estimate building heights through shadows, the accurate segmentation of building shadows
from aerial imagery is required. However, large scale shadow detection can struggle in terms of
robustness. For example, classical filtering techniques which historically were the most performant
(Adeline et al., 2013) may require manual selection of thresholding parameters to lead to accurate
segmentation results, which turns labour intensive if large amounts of imagery need to be processed.
Recent developments however in the field of Artificial Intelligence and the advent of deep-learning
based solutions have led to significant improvements in shadow detection and segmentation accuracy,
resulting in comparable accuracies to the filter-based methods (Luo et al., 2020). However, the accurate
extraction of shadows from aerial imagery remains difficult for a number of reasons. For example,
time of day and illumination have a large influence on contrast, colour and saturation which may
lead to variations in segmentation performance if the method employed is not robust to them. Other
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issues that degrade segmentation quality are occlusions from objects such as trees and street furniture,
atmospheric effects such as fog that can reduce the contrast and reflectance characteristics of the
surfaces in the imagery.

Given these challenges, the improvement of shadow segmentation could potentially be achieved by
combining multiple data sources to compensate for the individual shortcomings of the data. Conven-
tional neural networks (CNNs) generally rely on large-scale training using input-output data pairs and
relies purely on statistical inference of the data in itself. However, these models have no situational
context of the site or the conditions under which the data came to be. Since the existence of shadows is
dependent on a combination of solar characteristics (i.e. height and direction) and the geometry of the
object (i.e. the building) casting the shadows, it follows that the position and boundary of a shadow
would become easier to predict if a CNN is given the context that allows a shadow to be formed.

Building on this notion, an opportunity lies in taking inspiration from Physics-Informed Neural
Networks (PINNs) (Raissi et al., 2017) which use known rules and laws that describe a given dataset
to regularize the learning and inference process to improve upon the generalisability of the models,
while also requiring lower amounts of training data. For example, PINNs have been employed to solve
fluid dynamics problems such as in the work by Jin et al. (2021), where promising results in flow
simulation were delivered by giving the model knowledge of fluid dynamics through the inclusion of
the Navier-Stokes equations.

For the segmentation of building shadows, the use of pre-calculated shadow projections based upon
building footprints (henceforth ”geometrical priors” or ”pseudo-shadows”) is hypothesized to serve
as a fitting method of regularization, thus incorporating real-world geometrical context into the model
to reach more accurate and robust segmentation than normal segmentation would achieve.

As of writing, no papers have yet considered the explicit usage of building footprints as geometric
priors for shadow segmentation. While Masquil et al. (2025) have a similar method where they
predict shadows by raycasting based upon combining the solar azimuth, solar altitude and a DSM,
it presupposes that one has access to a DSM which goes against the purpose of estimating heights
through shadows as a low-cost alternative to other methods.

Thus, following the ever-existing need for alternative methods for data collection, this thesis will
propose a new set of physics-guided CNNs named ”PHYSHADE”, which will use domain-informed
geometrical priors in the form of pre-calculated shadow projections derived from building footprints and
solar positions as an additional mode for regularization and as input. The end goal is for PHYSHADE
to see an increase in quality of shadow inference compared to its non-physics-guided counterparts,
with the idea that this in turn will lead to robust and usable height estimations at scale. For the height
estimations, an algorithm based on raycasting within rasters is proposed that can be used to estimate
building heights and relate them back to the relevant buildings.
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1.2 Research Questions
To address the gap in research as posed above, this thesis will be guided by the following research
questions:

Q Main. How and to what extent does injecting geometric priors in the form of shadow masks
derived from building footprints into a U-Net architecture improve the accuracy and
robustness of building-shadow segmentation in aerial imagery?

Q1. What is the baseline performance of an RGB U-Net trained on the Luo et al. (2020) data
set when evaluated on Dutch aerial imagery and compared to the original dataset?

Q2. How does adding the pre-calculated shadow mask channel derived from building footprints
affect segmentation accuracy across different urban morphologies, seasons, and solar
geometries?

Q3. Which loss formulations and weighting schemes most effectively balance appearance-based
learning with the geometric prior?

Q4. How effective are the inferred building shadows at estimating building height using the
raster-based raycasting algorithm?

1.3 Research Scope
This thesis will focus on the creation of a Physics-Guided Neural Network designed to segment shadows
from aerial photography and the subsequent estimation of building heights from these shadows. The
study will be limited to:

• Adapting an existing CNN model (U-Net) for shadow segmentation, thereby using an existing
neural architecture.

• The use of pre-calculated shadow masks based upon building footprints as site-specific priors
for the informing and regularization of CNNs.

• The evaluation of performance of the newly proposed models using default metrics such as Dice
score among others.

• Using aerial photography datasets with known metadata (solar angle, shadow position), in
particular the imagery as provided by Beeldmateriaal (Nederland, 2023).

• The association of buildings with their cast shadows, thereafter using raycasting-based height
estimation algorithms.

As such, this study will not focus on:

• Object classification except for shadow segmentation.

• Exploring physics-based constraints other than the usage of geometric priors that can be generated
from building footprints for shadow segmentation, i.e. atmospheric scattering.
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• Similarly, whereas true Physics-Informed Neural Networks make use of partial differential
equations as a part of their loss functions, the models proposed in this thesis cannot be considered
as ”true” PINNs because of the the absence of physics-grounded rules and equations integrated
directly into the architecture. Instead, the proposed PHYSHADE models will be referred to
as ”Physics-Guided” to reflect the added knowledge of solar positions combined with shadow-
casting geometry.
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2 Related Work

In order to contextualize the thesis, this section will review existing works and methods related to the
estimation of object heights and shadow segmentation. Firstly, different methods for the segmentation
of shadows from aerial imagery are discussed as these are a core component for the envisioned height
estimation later on. Secondly, some relevant work in the field of AI computer vision is mentioned,
followed by Physics-Informed Neural Networks. Finally, some height estimation and point cloud
generation methods are discussed. In the end, a summary of the research gap is provided.

2.1 Classic Shadow Segmentation
According to Liasis and Stavrou (2016), the methods by which to detect shadows can be mostly
described by two categories, namely the property-based methods and the model-based methods. With
property-based methods, the spectral and spatial features of shadowed regions themselves are utilized,
whereas model-based methods employ the use of additional site-specific information, such as the solar
altitude and the object’s geometry.

Filter methods are property-based methods that analyse shadows based on e.g. intensity values or
textures. The most simple example are histogram-based techniques that work based on the assumption
that sunlit and shadowed regions have a clear separation between them in terms histogram levels
(Adeline et al., 2013). A threshold by which to segment the different areas may then either be set
automatically through statistical means (Otsu, 1979) or may be selected manually (Yamazaki et al.,
2009). Another example of such a filter includes Gabor filters (Granlund, 1978), which are linear filters
consisting of a Gaussian function and a sine-wave sensitive to edges and ridges that are oriented in a
particular direction.

Model-based approaches consider a priori knowledge about the site of study. If one has pre-gathered
geometrical information about the object casting a shadow as well as knowledge on the then-current
standing of the sun, segmentation would become easier since its shadows can be precisely calculated
instead of needing to interpret images. An example of this is Volumetric Shadow Analysis as performed
by Lee and Kim (2010) which assumes that the ground sample distance, elevation and solar azimuth are
known. It works by generating a frame representing the building, and manually generating a shadow
based on the frame. By adjusting the height of the frame, the simulated-projected shadow is matched
up to the real shadow, with the frame height then serving as the actual height (see Figure 1).

2.2 Machine Learning-based Shadow Segmentation
In 2012, Adeline et al. (2013) conducted a comparative study where they evaluated and ranked the
above mentioned shadow-detection techniques on their F-scores. The conclusion was that histogram
thresholding using the methods of Nagao et al. (1979) performed the best, followed by a physics based
method by Richter and Müller (2005), a support vector machine-based (SVM) method and respectively
in last a K-means clustering method and the SMACC method.

Property-based methods Physics-based methods Machine-learning methods
Histogram thresholding

(Nagao et al., 1979)
RGB combination

model
Richter and Müller (2005)

method SMACC SVM

Average F-score 92.5 87.5 90.0 83.9 87.7

Table 1: The results of the comparative study by Adeline et al. (2013)
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Figure 1: The processing steps used by VSA to extract building height. Image from Lee and Kim
(2013)

Since then however, the traditional machine learning methods such as SVM and K-means have
largely been outpaced by deep learning algorithms. Deep learning is a subset of machine learning
where neural networks with multiple layers are used to interpret data. One of the foremost examples of
deep learning methods is the Convolutional Neural Network (CNN), which are commonly employed
for the purposes of computer vision. A CNN consists of multiple layers through which input data is
fed, with each layer performing specific operations to extract and process features.

CNNs have been employed in various papers for shadow segmentation. For example, a widely
used CNN architecture named U-Net (Ronneberger et al., 2015) was adapted by Jiao et al. (2020) for
the segmentation of clouds and cloud shadows. This is then followed by Dense Conditional Random
Field (Dense CRF) refinement, where the inference of a given pixel is not only dictated by its local
context but by its global context (Krähenbühl & Koltun, 2011) as well. In another example, Luo
et al. (2020) created a CNN named ”DSSDNET” in an encoder-decoder residual structure similar
to U-Net, which was trained using an auxiliary supervision structure giving each level the ability to
train directly on the ground truth, thus avoiding vanishing gradient issues. It differs from conventional
CNNs and deep-supervision networks in the sense that the outputs of the intermediate auxiliary layers
are combined and refined into a final prediction, instead of only fusing from the last levels of the
network. In their testing, the model reached an average F-score of 91.78%, outcompeting other shadow
detection methods such as U-Net (in its original form per Ronneberger et al. (2015)), which scored an
F-score of 87.84%.

2.3 Building Footprint Segmentation

Since the goal of this thesis is to enhance the robustness of shadow segmentation by employing
geometric priors consistent of building footprints combined with solar geometry, an ideal pipeline
would involve the automatic segmentation of building footprints first, such that these building footprints
may then help inform the shadow segmentation. As an example, in W. Li et al. (2019), automatic
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building footprint extraction from aerial photography was explored using a U-Net based model
architecture alongside some post-processing steps, reaching Dice scores of up to 0.704. Another paper
by Kang et al. (2021) used a DeepLabV3+ based model and employed additional loss terms based on
contrast, in the end reaching Dice scores of up to 0.8482 when segmenting for building footprints.

While these are promising results and could potentially be applied for the purposes of physics-
guided building shadow segmentation as proposed in this thesis, the decision was made to instead
manually annotate the building footprints. This way, potential downstream negatives of imperfect
building footprints can be minimized whilst keeping the scope of the thesis tight. Further developments
within the segmentation of building footprints could lead to a comprehensive pipeline combined
with the physics-guided shadow segmentation methods where low-cost, large-scale building height
estimation can be performed automatically.

2.4 Physics-Informed Neural Networks for Shadow Segmentation
In the current body of research, most of the work on shadow segmentation through neural networks is
purely driven by a data-centric approach; that is, any inference or training is only based on the relations
encoded within the data. However, if one has knowledge on the laws that this data has to abide by
(often the laws of physics), it becomes possible to fine-tune the learning process to reach more robust
and accurate results. This is the basis of Physics-Informed Neural Networks (PINNs), as originally
proposed by Raissi et al. (2017).

Earlier mentioned in the comparative analysis by Adeline et al. (2013), one may have noticed
that two physics-based methods were mentioned for the segmentation of shadows, with the method
employed by Richter and Müller (2005) coming in second when compared to the other methods. Their
method operates by the same philosophy as that a PINN would; both use physics-based constraints.
However, they differ greatly since Richter and Müller (2005) in practice is a deterministic method that
does not employ neural networks, whereas a PINN relies specifically on a neural network to generalize
and infer without needing manual calibration under different circumstances.

As of writing, while PINNs have been used in various remote sensing tasks such as for the
reconstruction of hyperspectral imagery from standard RGB images (Liu et al., 2022) or the estimation
of surface temperatures in urban environments (Chen et al., 2022), its application to geospatial contexts
remains limited. In this sense, the concept of employing building geometry and solar positions as a
physical prior to regularize the segmentation of building shadows remains a novel application.

2.5 Structure-from-Motion
Structure-from-Motion (SfM) as originally proposed by Ullman and Brenner (1979) and brought in
practice by Tomasi and Kanade (1992) is a method where by taking multiple images of the same object
from different perspectives, sparse pointclouds can be generated by matching feature points seen in
multiple images. Then, through Singular Value Decomposition (SVD) and awareness of the orthogonal
nature of the imagery, the camera motions and 3D structure can be estimated.

Since then, SfM has been developed further and is able to produce relatively dense and accurate
point clouds. However, the reconstruction of high quality 3D urban models and similar goals requires
high amounts of multi-perspective imagery which more often than not is unavailable. Additionally,
SfM pipelines often require a lot of computational power, making them unfeasible at larger scales. As
such, while SfM does have a place in the reconstruction of urban geometry if accurate data is required,
alternatives that have less data-intensive requirements and could work with single images such as the
shadow-based height estimation proposed in this thesis remain relevant to explore.



8 Chapter 2 RELATED WORK

2.6 Semi-Global Matching
Another method also relying on epipolar geometry like SfM is Semi-Global Matching (SGM)
(Hirschmuller, 2008). This method allows for the estimation of depth of a given object by rely-
ing on stereo-aligned images; that is, the cameras taking the images are aligned such that corresponding
points between the different images lie on the same horizontal line. For a set of corresponding pixels,
their horizontal shift is calculated which can then be combined with the camera characteristics to return
the depth of the object in relation to the cameras. In the Netherlands, this methodology is used to
determine the heights in the Topographic Registry (BRT), Large-Scale Topographic Registry (BGT)
and the building and addresses registry (BAG) (Kadaster, 2023).

While SGM does not have the same dense data sampling requirements like SfM, it still rests
upon having an accurate set of cameras that are well calibrated. While this data is available in the
Netherlands, SGM cannot be applied in contexts where only single images are available. Consequently,
shadow-based height estimation from single images is still a valid alternative avenue.

2.7 Research Gap
Despite various methods both classical and through the usage of deep-learning exist for the segmenta-
tion of shadows, as of current there are no approaches where a deep-learning approach is combined
with the physical constraints that presuppose the existence of shadows, i.e. building geometry and the
position of the sun. The usage of physical laws and rules are applied effectively mostly for remote
sensing tasks through PINNs, but its usage remains limited for the purposes of shadow segmentation.

Likewise, there are various methods for the height estimation of buildings, but factors such as
operational complexity, computational power required and investment costs for data acquirement
constitute barriers to entry. Considering the fact that height estimation from shadows can be done from
relatively inexpensive aerial photography which is more widely accessible than other modes of data,
there exists an incentive to explore avenues for improving such methodology. The niche this research
aims to fill therefore is two-fold: through the improvement of the segmentation of building shadows, it
is hoped that a more robust basis is provided to perform shadow-based height estimation upon.
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3 Theoretical Background

This section will provide an outline for the theory driving the methodology. First of all, the concept
of height estimation of objects from shadows will be explained as well as potential issues due to
ambiguity. Then, the basis of Convolutional Neural Networks (CNNs) will be outlined in the context
of image recognition. Building on this, the U-Net CNN architecture will be outlined, considering that
the PHYSHADE model proposed in this thesis is based upon it. From there the theory of loss functions
will be described, as these influence the way that CNNs train from data by punishing deviations
and rewarding adherence to a given ground truth. Since the proposed methodology is inspired by
Physics-Informed Neural Networks (PINNs), a short description of these will provided as well.

3.1 Shadow-based height estimation
The estimation of heights from shadows relies on the geometric relationship between shadow length
(ls), solar altitude angle (̸ Solaralt) and object height (ho).

(1) ho = ls · tan(̸ Solaralt)

However, this formula makes the assumption that the shadow a given object casts falls on flat
ground. As soon as the terrain becomes uneven, or the shadow falls on top of other objects additional
measures need to be taken to ensure that the calculation is accurate. For example, adding the difference
in height between the base of the building and the tip of shadow is required to come to an accurate
height:

(2) ho = L · tan(̸ Solaralt)+(htip−hbase)

Note in the above equation that L is the planimetric horizontal length of a given shadow. To ensure
an accurate height, L should be measured from the tip of the shadow to the point directly vertical
from the highest point of the building. Considering that the goal of this research is to determine the
height of a building without supplemental height information such as DSMs, the more simple equation
(eq.1) of the two will be used, considering that the error the difference would introduce is likely to be
small in a flat country such as the Netherlands. In order to find the length of the shadow (ls), accurate
segmentation must occur first.

3.2 Height Estimation of Buildings

3.2.1 Ambiguities from shadows

The estimation of heights from buildings follows the same mathematical principles as described in
the section above. However, there are a few issues inherent to the way buildings cast shadows. For
example, the geometry of a given building and its rooftop in combination with variations in solar
altitude may lead to wildly different results. In Figure 8, it can be seen that with higher solar altitudes
a shadow is cast based on the top of the roof, whereas with lower solar altitudes a shadow is cast based
on the gutter of the roof. Unfortunately, this may lead the shadow-based height estimation unsuitable
in cases where aerial imagery with higher solar altitudes is not available.

In the bottom example of Figure 8 with the building extension, it can be seen that there essentially
are two shadows being cast from the same building, with shadow 1’s length encoding the height
information associated with the extension and shadow 2 the absolute top of the building.
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1

2

Figure 2: Image showcasing the difficulty with deriving building height from shadows depending on
the interplay between building geometry and solar positions.

In addition, ambiguity may exist when trying to match a shadow to a given building, as more
often than not shadows cast by buildings melt together into one continuous shadow. In some cases,
overlapping shadows may even lead to the loss of information altogether. This concept is visualized
in Figure 3 with a top-down schematic view of three pairs of buildings. While the buildings of pairs
1 and 2 share one continuous shadow encoding the heights encoded both by the bigger and smaller
buildings, the bigger building of set 3 completely envelopes the smaller building, meaning that it is
impossible to make a good estimation of its height without additional information.

For the buildings of set 1, if it can be assumed that the ambiguous orange areas do not have
sporadic higher geometries (i.e. towers), the continuity of the shadow can be relatively easily resolved
by taking the building footprint and sliding it from a distant point further down the solar azimuth
back to the footprint origin, assigning the shadow pixels underneath with a unique ID associated with
the building as it travels over the pixels back towards its origin (a more in-depth description of this
procedure alongside clarifying images is given in subsubsection 4.6.2 and Figure 10). On the other
hand, this operation for assigning shadows pixels to buildings would not work for building set 2, as
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this would attribute the longer part of the ambiguous shadow region back to the smaller building since
the associated building footprint passes over the ambiguous region last, which would be erroneous
under the assumption that the buildings have constant heights. For more robust shadow-to-building
classification, an alternative method would be required.

1 2 3

Figure 3: Image showcasing the loss of height information that occurs when shadows start to overlap
one another. The orange areas of the buildings indicate about what part of the building suffers from
ambiguity.

3.3 CNNs and the basis of Segmentation
A Convolutional Neural Network (CNN) is a deep-learning model that is often used for the purposes of
computer vision, or any other field where innate structures in large datasets are exploited for inference.
A CNN consists of multiple layers through which data is processed. Generally speaking, the following
layers can be identified in a CNN (LeCun et al., 2015):

• Convolutional Layers: Layers where input data is scanned using filter banks to detect specific
patterns such as textures and shapes. These filter banks are also called kernels.

• Activation Layer: The output of each individual node in a convolutional layer here is fed
into an activation function, which calculates the output of a neuron. Depending on the type of
function used by which to calculate the output, the main goal of this layer is to allow for the
approximation of non-linear relations in the data.

• Pooling Layer: Downsamples the information coming in to reduce spatial dimension, removing
redundant information and reducing computational complexity.

• Dense Layer: A fully connected layer that combines all extracted features to provide a final
output (Lecun et al., 1998).

For example, an image inserted into a CNN is first processed by the convolutional layers where
features such as edges and textures are detected. As these features flow further into the model through
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more pooling and convolutional layers, the data is progressively abstracted. In the end, a dense fully
connected layer maps these features back into specific output (Lecun et al., 1998; LeCun et al., 2015).

Input Convolution Pooling Fully
Connected Out

Feature Extraction Classification

Figure 4: Schema of a typical CNN layout. Input is moved into the convolutional layer, where filters
are applied to recognize patterns. Between input and convolution, an activation layer is used to enforce
non-linearity. They are then connected to pooling layers that downsample the imagery, before then
entering the fully connected layer that actively classifies the input. Schema adapted from Phung and
Rhee (2018).

In order to train a basic CNN, a training dataset is fed into the network and the kernels in the
convolutional layers are randomly initialized. After passing through the layers, the performance of
the neural network is calculated through a loss function, which measures the difference between the
predicted output and the ground truth. As an example of a loss function, in cases where the output is
binary (i.e. a pixel is shadowed or non-shadowed), binary cross-entropy can be used which measures
difference between the output and the ground truth:

(3) LBCE =− 1
N

N

∑
i=1

[yilog(ŷi)+(1− yi)log(1− ŷi)]

where i is a pixel in image N, yi is the binary label of a given pixel i, and ŷi the probability that
pixel i belongs to the ground-truth label. Through a process called backpropagation, this loss function
is then used to define how much each individual parameter in the convolutional layers has contributed
to the loss. Based on the result of backpropagation, the weights are then finally adjusted through an
algorithm like gradient descent to minimize the error (LeCun et al., 2015)

The ways in which a neural network can be trained can be split up into three categories depending
on the data available; Firstly, supervised training relies on labeled datasets. This means that for a
given input, the output is compared to a validation set. Secondly, unsupervised training relies on the
algorithm to learn patterns from unlabeled data, meaning that there is no known mapping from input to
output. Finally, there is semi-supervised learning which utilizes both labeled and unlabeled datasets
(Nan, 2023). Such a method is advantageous, as fully supervised training requires large amounts of
data which is either expensive or time consuming to procure, which is not feasible in all cases.

However, transfer learning offers an alternative method for reducing the costs of training. Originally
introduced by Pratt et al. (1991), transfer learning relies on the concept of taking a neural network
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originally made for a similar purpose and using the same weights instead of training a new model
with randomly initialized weights. For example, in order to train a neural network that can recognize
cats, it might make sense to start out with the weights of a CNN already trained for dogs, as they
are morphologically relatively similar. From there, the model can be further trained and fine-tuned
into specifically recognizing cats, and will require relatively less paired input-output data than if the
weights were randomly initialized.

Still, in order to validate a model’s performance, it is important to have a set of annotated data on
which the model has not been trained. As such, in circumstances were data are ample, data is often
split up into training and validation sets so that the model does not have a-priori knowledge of the
ground-truths in the validation set. However, if the dataset is small, such a split may lead to poor
training outcomes due to a lack of data. In these cases, an alternative procedure can be found in the
concept of K-Fold Cross-Validation. The method involves dividing the dataset into k-subsets (or folds),
where each time the model is trained on the remaining folds and validated on the current fold, resulting
in the training of five different models. The error can then be estimated by averaging them across all
of the folds, leading to an estimation of model performance as if it was trained on the full dataset
(Goodfellow et al., 2016).

3.4 U-Net Architecture

U-Net is an architecture developed by Ronneberger et al. (2015) originally for use in the biomedical
field. At the time, the typical use for CNNs was to do classification where the entirety of an image
was classified as one single class, as opposed to local pixel-wise classification. Although there were
models that were able to perform tasks like these, such as the one described by Ciresan et al. (2012),
where a sliding window is used to provide local context (in the form of patches) to help classify pixels.
This patching approach which is still typically used in modern training approaches, although effective
as a way to augment a dataset if data is scarce and giving the model a means to learn local context, has
a few drawbacks. For example, it is relatively slow considering that the model has to train off of each
individual patch. In addition, the patch size is of heavy influence to the ability for a model to either be
able to localize well or to see context.

U-Net improved upon Ciresan et al. (2012)’s architecture by introducing an encoder-decoder
structure where the valid content of the feature maps learned in the encoder are concatenated to the
decoder allowing the model to provide context in the upsampling stages (see figure 5). The end result
was a model that was able to perform very well with only little training data.

3.5 Loss Functions

The way a CNN trains is by evaluating the difference between the ground truth and its output, and using
this difference backpropagation can be performed to tune the parameters and minimize the error. This
error is also called loss, with the functions describing these being titled as loss functions. Depending
on the task at hand for a CNN, different loss functions will provide different outcomes and as such
may be better suited than others. Section 4.4.1 will provide an overview of the different loss functions
considered for this research.
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Figure 5: A schematic representation of the U-net architecture. The convolutional layers in the model
are indicated with blue boxes, whereas copied layers are indicated with white boxes. On top of the
convolutional layers the amount of channels (or feature maps) can be seen, with the size of these layers
represented on the side. Note how the skip connections concatenate the feature maps from the encoder
to the decoder. Diagram from Ronneberger et al. (2015)

3.6 Physics-Guided Loss Functions
A CNN can be turned into a Physics-Informed Neural Network (PINN) by integrating physical
constraints into the loss function used during training. In the traditional sense, this means the integration
of partial differential equations describing real-world phenomena. While the definition of physics-
informed loss can differ greatly depending on the physical laws it describes, its implementation into an
existing loss term for a model can be simple:

(4) Ltotal = λBCE ·LBCE +λPhys ·LPhys

where LPhys is a loss function that penalizes based upon a partial differential equation. In the case
of the shadow segmentation model with additional geometric priors, this loss can be based upon a
precomputed shadow mask that abides by real-world constraints. In order to constrain or exaggerate
the effects of the components that make up a loss term, i.e. LBCE and LPhys, they are multiplied with
a weighting term λ, which is considered to be a hyperparameter. A more in-depth description of the
physics-guided loss function employed in this paper can be found in section 4.4.1.
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4 Methodology

In this section, the methodology for creating and assessing the PHYSHADE models and height
estimation pipeline will be outlined. Firstly, the case study area will be described and the collection
and annotation of data for the new dataset will be described. Since this thesis uses transfer learning
to minimize the issues caused by small dataset size, attention will be given to the training of the
baseline Luo et al. (2020) U-Net model, as well as the dataset originally used to train this model. Some
other strategies such as data augmentation and k-fold cross validation are then discussed, as these are
helpful in combatting the issues caused by small-sized datasets. From here on, the architecture and
learning procedures for the novel PHYSHADE models are proposed alongside the ablation strategy
used to evaluate the performance of the added geometric priors. Finally, a description is given for
the application the height estimation algorithm on the output of the PHYSHADE models. It is
recommended to the reader to have a look at the pipeline in the appendices to gain a general idea of the
full extent of the thesis first, Figure A.1 to Figure C.1.

4.1 Data Collection & Preprocessing

4.1.1 Case Study Area

The chosen case study area is split over 5 different areas, all of them in the Netherlands and most
of them in the Midden-Delflanden. A map showing the exact locations of the areas can be seen in
figure 6. Dense urban areas such as cityscapes were avoided, as they would pose a significant effort in
terms of the volume of annotations necessary to create a dataset. Instead, the chosen areas of research
have relatively simple spatial contexts which makes more accurate annotation easier and thus more
time-effective.

Initially, a total of 206 512x512 tiles were initally roughly selected. As the urban morphology here
can be best attributed to ribbon development and buildings being relatively sparse, a majority of the
tiles were easily discardable. An overview of the procedures used to generate the tiles can be found in
appendix D. These images were selected based upon the following criteria

• The image had at least one building with a clearly visible shadow.

• The majority of the shadows in the image are relatively clearly discernible.

• The image contains shadows that do not belong to buildings, as to provide a negative case as
well.

• A few tiles including water were selected, as these are often misclassified as shadows.

Out of these 206 tiles, in the end a total of 42 were left after assessment of viability for the dataset.
Out of these 42, six images were filtered out due to them containing no buildings for a total of 36.
The initial reason for including them was to teach the model to disregard shadows not associated
with a geometric prior. However, they may lead to negative accuracy outcomes with models using
pixel-wise loss functions such as binary cross-entropy, as it may bias the model towards always
predicting background. Since these issues would be exacerbated by the small size of the dataset, the
decision was made to leave the images containing no buildings out.

The majority of these 36 images are summer-winter paired, meaning that there are images of
the same geographic locations, but taken at different times during the year. This decision was made
to ensure that the model is more robust to seasonal changes in lighting, vegetation, and is able to
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generalize better with differing sun angles and shadow lengths. Specifically, this allows for the testing
of the model generalisability under different solar geometries and environmental conditions. A full
mosaic of the entire PHYSHADE dataset can be seen in Figure E.1. As can be seen there, there are a
total of 15 summer-winter pairs and five singular images whose pairs got filtered out in the previous
viability assessment.

Figure 6: An overview map showcasing the various locations used for data collection

4.1.2 Data Annotation

The data was then uploaded to Supervisely, which is an online platform that can be used to collabora-
tively annotate data for computer vision tasks. In total, five different people have helped to put together
the dataset. In order to ensure consistency, an annotation guide was written to assist in labelling which
can be found in Appendix F. To summarize, the following instructions were given to those labeling the
aerial photography:

• Buildings: Always start with drawing buildings first. A building is considered to be a permanent
(immobile) man-made structure that has a roof. Include any part of the building that is visible,
including the facade. Only draw what is visible.

• Shadow: Label only shadows cast by buildings onto ground-level surfaces (e.g. streets, veg-
etation, parked cars), with no gap existing between the building and shadow labels. Exclude
shadows from non-buildings or those falling from one building on another; the building label
takes priority.

• Precision/Consistency: Try to be as pixel accurate as possible, carefully tracing all visible
edges. Underestimate shadows rather than overestimate.
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Labelling took place over the course of roughly a week. After annotation was completed, the masks
were once more looked over to ensure that the labels were appropriate and seemed consistent. A few
examples can be seen in figure G.1. One image was removed at this point due to a lack of annotation
quality, finally dropping the main dataset size down to 35 images.

4.1.3 Baseline Dataset

Luo et al. (2020) provide a dataset for training named the AISD (Aerial Imagery dataset for Shadow
Detection). It contains 412 images for training, 51 for validation and 51 for training, at sizes ranging
from 256x2256 to 1688x1688, with the majority in 512x512. It is based upon the Inria dataset
(Maggiori et al., 2017), containing aerial imagery in a wide gamut of contexts such as cities, forests
and so on. The Inria dataset originally contained 360 images at a resolution of 5000x5000 pixels,
each covering a surface of 1500x1500m. A table describing the geographical locations of the imagery
within the AISD, as well as their distribution over the train, validation and test sets can be found in
table 2.

As Luo et al. (2020) point out, the creation of the AISD was not easy, as the act of discriminating
shadows from non-shadowed regions can turn out to be very difficult depending on the surfaces
or objects. To counteract the creation of incorrect labels which in turn may lead to poor model
performance, they carefully selected regions in the imagery that contained ”obvious” shadow regions.

Considering that the AISD dataset does not include any Dutch imagery it should be noted that the
base-line model will effectively be used across domains, meaning that the accuracy of segmentation
is not guaranteed due to differences in landscape and urban morphology. To establish a baseline
performance of the base-line model in the case-study area, three images from the case study area were
manually annotated for comparison.

Region Austin, USA Chicago, USA Tyrol, Austria Vienna, Austria Innsbruck, Austria Total

Number 150 127 100 79 58 514
Ratio 29.18% 24.71% 19.46% 15.37% 11.28% 100%
Train 80% 120 103 80 63 46 412
Val. 10% 15 12 10 8 6 51
Test 10% 15 12 10 8 6 51

Table 2: Table indicating the geographical spread and split of the AISD dataset. Adapted from Luo
et al. (2020)

4.1.4 Out-of-Fold Dataset

For the purposes of allowing the best performing PHYSHADE models to be trained on the full dataset
instead of individual folds and for the assessment of the height algorithm, six out-of-fold images were
annotated as well. Four of these images (Tiles 7 and 8) were taken in the vicinity of Groningen/Eelde
Airport, while the remaining two were taken over the city of Utrecht (Tile 6). See Figure K.1 for an
overview of the images and Figure 7 for an overview of where the images were taken. Tiles six and
seven were chosen for their generally unobstructed terrain, but with buildings types not seen in the
in-fold dataset before to see whether PHYSHADE is able to generalize using the current dataset. Tile 8
was chosen for its relative similarity to the in-fold dataset while being in a completely different location,
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to see whether or not any unseen variables unique to the in-fold domain could trouble PHYSHADE
performance.

Figure 7: An overview of the locations where the aerial imagery of Tiles 6, 7 and 8 from the out-of-fold
dataset were taken.

4.1.5 Data Augmentation

Since the original size of the dataset is small containing only 35 images, data augmentation was
performed to stretch the dataset. For each image in the original dataset (i.e. 35 images), seven
additional images were created using the set of operations found in Table 3. Through this augmentation,
the size of the dataset was increased eightfold, from 35 to 280.

Table 3: An overview of the different augmentation operations, based upon a multiplicative factor.

Multiplication Operation

1 Original Image
2 Horizontal Flip
3 Vertical Flip
4 Rotated 90 Degrees
5 Rotated 180 Degrees
6 Rotated 270 Degrees
7 Horizontal Flip, Rotated 90 Degrees
8 Vertical Flip, Rotated 90 Degrees

4.1.6 Data Splitting and Cross-Validation

To gain the most benefit out of a small dataset, five-fold cross-validation was used. This entails the
randomized creation of five different training/validation folds, with each unique model as described in
Appendix H.1 being trained and validated five times over these folds. Per fold, the validation and loss
metrics were saved, and in the end averaged to generalize the performance over the different folds.
Winter/Summer paired images were kept together within training/validation splits to ensure the model
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would not be able to cheat by already having seen a similar ground truth.

4.2 Baseline Model Development and Transfer Learning
For this study, U-Net (Ronneberger et al., 2015) will be used as a base model before transfer learning
is used, as it is a popular, tried and tested image classification model. In addition, Luo et al. (2020) in
their study on shadow segmentation compared their own DSSDNet to U-Net, mentioning that although
U-Net did not show significant errors during evaluation, it had the propensity to mistakenly identify
dark surfaces such as dark cars and roofs as shadows. With this in mind, the decision to use U-Net as
a base-model for transfer learning was deemed viable as the addition of geometric priors could help
alleviate the issues Luo et al. (2020) found. In the pretraining phase, the model will be trained on their
dataset to function as a baseline. The training loss function employed here will be typical for a U-Net
model, using Binary Cross-Entropy (lBCE , see eq.8):

(5) Lpretrain = LBCE

The training of the base U-Net model for the later purposes of transfer learning took place using the
AISD dataset, which is described in the next subsection. The encoder weights from the here-trained
U-Net baseline were transferred to be used as a starting point for the PHYSHADE models. An overview
of the parameters used to train the base U-net model can be found in appendix I.1.

4.3 Proposed Model Structure: PHYSHADE
The methodology proposed in this thesis will integrate shadow priors into a standard convolutional
segmentation pipeline in order to enhance the segmentation of building shadows. The shadow priors
(henceforth pseudo-shadows) are simulated by combining the footprint of a building together with
the solar azimuth and altitude. The underlying hypothesis is that the inclusion of context-specific
information relevant to shadows, such as solar positioning and building geometry, can regularize the
segmentation, especially in cases where shadows are degraded. In addition, the addition of pseudo-
shadows may also bias the model towards only segmenting shadows that are attributed specifically to
buildings. This can be advantageous in situations where building shadows need to be distinguished
from those cast by other objects such as vegetation or cars. Likewise, the reverse may also be true
where poor quality pseudo-shadow priors may lead to misses during segmentation.

To test the hypothesis, three different approaches were taken to implementing pseudo-shadows into
a U-Net model:

• The first approach will be characterized by the addition of the pseudo-shadows as a 4th binary
channel into an existing U-Net model.

• The second approach will implement the pseudo-shadows into the loss functions employed,
following the philosophy behind Physics-Guided Neural Networks.

• The third and final model will be a hybrid of the first two, where the model is both regulated by
a physics-constrained loss function and is able to see the 4th channel pseudo-shadow directly.

The derivative CNNs resultant of these methods will be evaluated in tandem and to one another to
assess the the individual and combined effects of pseudo-shadows as input features, as constraints in
the form of physics-guided loss, or both on segmentation accuracy.



20 Chapter 4 METHODOLOGY

4.3.1 Generation and Integration of Pseudo-Shadow Priors

To give the new model the ability to take into account the geometric priors of the building footprints
into account, an algorithm was created that takes the original building footprint raster, solar azimuth
and a given shadow length and constantly shifts it into the opposite direction of the solar azimuth,
each time writing values to each cell overlapping with the shifting building footprint. The result is a
smeared-out building footprint that simulates a shadow falling in a direction. The pseudocode for the
shadow smearing algorithm can be found in the appendices as J.1 and a step-by-step visual in Figure 9.

The algorithm has a few parameters for defining the gradient of the footprint smear: l min and
l max. l min define the distance from the base of a footprint away from the solar azimuth where the
pseudo-shadow raster is set to a solid value of 1. After a building footprint has been shifted an l min
amount of meters the gradient starts, which will diminish gradually until l max. The reason a smooth
gradient was selected, is because of the uncertainty of building heights beyond l min. By expressing
the confidence a shadow occurs at a given place using a gradient as opposed to a binary classification,
where a value of 1 expresses high certainty down towards a 0 for no certainty, it is hoped that this
provides the model a decision boundary where it has the freedom to not feel obligated to predict
thereby minimizing the risk of false positives induced by the pseudo-shadows. A drawing showcasing
this behaviour can be seen in figure Figure 8.

As distance from house increases, Pseudo-Shadow
decays to reflect lower odds of shadow existing there.

l min l max

Figure 8: A schematic overview of the intensity of the pseudo-shadows decreasing as the distance
increases from the base of the building. Note how the pseudo-shadow is solidly black from the base
of the building to l min; this reflects the assumption that building structures have a minimum height
before being considered buildings.

In order to select appropriate values for l min and l max, the LoD 1.2 building data from the 3D
BAG by tudelft3d and 3DGI, a dataset made by combining the Register of Buildings and Addresses
(BAG) and National Height Model (AHN) of the Netherlands (Peters et al., 2022), was used to find the
95th percentile height of all buildings. This way, by removing tall outliers above the 95th percentile,
relatively nationally representative pseudo-shadows can be generated that would fit for the most
buildings in the Netherlands. Since the 3D BAG has its building heights determined through LiDAR
scanning, the height used was the 70th percentile of all roof-surface points as this number is used
to most reliably mitigate potential noise. In addition, it also foregoes any issues where small raised
structures (e.g. access stairwells) on top of the roofs. Through this, it was found that the 95th percentile
of all buildings was 42.90. To convert that into the appropriate l max, the formula for estimating
building heights as mentioned in Equation 1 is adapted:
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(6) l max =
42.90

tan(̸ Solaralt)

Since the angle of the sun changes between images due to temporal differences, the final value of
l max can vary. The height value for l min was chosen under the assumption that most structures that
can be considered buildings are at least 2 meters high, therefore:

(7) l min =
2

tan(̸ Solaralt)
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Figure 9: An overview of the smearing algorithm working step-by-step to generate pseudo-shadows from a building footprint. For showcasing
purposes, lmin = 5 and lmax = 20, meaning that the gradient up until 5 meters (between steps 1 and 14) is solid, and slowly decaying thereafter
until 20 meters. The brightness of the smear represents a confidence that aims to give the model a dynamic decision boundary.
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4.3.2 Model Configurations

To evaluate the effects of the addition of pseudo-shadow priors on segmentation performance, a
variety of models were trained, each with different hyperparameters so as to evaluate the impact of the
additions through ablation. The model configurations can be broken up into four experimental subsets,
each tackling to evaluate a different performance metric. An overview of the ran model training
configurations can be found in Appendix H.1. In total, the subsets contain 26 different configurations,
meaning with 5-fold cross validation, a total of 130 models were trained. A quick overview of the
purpose of each experimental subset for the purposes of for ablation can be seen in table 13. What
follows is a description of the purpose of each experimental subset, and how they will be interpreted:

Experimental Subset A: Baseline Performance
This subset serves to give a baseline performance metric against the other models that do contain some
sort of pseudo-shadow priors. Thus, this model will be trained without any of the pseudo-shadows. It is
hypothesized that this model is likely to perform poorly in segmenting building shadows and ignoring
other shadows, as the dataset by itself is too small for it to learn the relatively advanced contexts (e.g.
building geometry) needed to differentiate between them.

Experimental Subset B: 4th Channel Pseudo-Shadow Priors
This subset of models is meant to elucidate the effect of adding pseudo-shadow on segmentation
performance when the model gets to freely interpret them. Models labelled as RGB will not see the
pseudo-shadows, whereas models labelled as RGBS will. All models in this subsection will be using a
combination of binary cross-entropy and Dice loss. A grid-search is performed on the hyperparameters
balancing the weighting of BCE based loss and Dice loss, to see what performs best for the model.
Half of the models will be able to a access the 4th channel, whereas the other half will run using the
same parameters without access so that the influence of the pseudo-shadows on model performance can
be considered in isolation by comparing the halves to one another (i.e. model B1 RGB is compared
to model B1 RGBS as per Appendix H.1) It is hypothesized that the Dice-based models will have a
higher performance than the BCE models due to their ability to handle class imbalance better.

Experimental Subset C: Physics-Guided Losses
These models will not directly be able to see the pseudo-shadow. Instead, the loss function will be
modified in such a way that the pseudo-shadow information will be used to supervise the losses rather
than directly inform the model as a feature. Like in the previous subsets, BCE and Dice loss will
be used. A third model has been added as well which places extra weight on segmentation errors
within the pseudo-shadow. This loss function differs from the first two models by pseudo-shadows not
being interpreted as a label the model needs to take into account, but rather as an amplification of any
existing loss that falls within the regions of the pseudo-shadow priors. Out of these three models, it is
hypothesized that experiments PHYS BCE and PHYS DICE will end up with a lower validation score
than the PHYS ATT experiments, but a higher score than the BASE models.

Experimental Subset D: Hybrid Models
Finally, this subset of models will combine the components of subset B and C. The model will get
direct access to the pseudo-shadows concatenated in the fourth channel as described in B, and will
be additionally regulated by physics-guided losses described in C. Here it is hypothesized that the
combination of access to the pseudo-shadows combined with the physics-guided loss will lead to
increased performance and faster convergence time during training, as loss is weighed more heavily
near the building shadow pixels.



24 Chapter 4 METHODOLOGY

Table 4: Summary table indicating the purpose of each individual ablation.

Ablation Subsets Purpose

A & B To establish the performance difference unique
to the models’ interpretation of the pseudo-
shadows as an extra channel.

A & C To establish the performance difference unique
to the usage of physics-guided loss based on the
pseudo-shadows without vision on the pseudo-
shadows.

B & D To establish the performance difference unique
to the usage of various physics-guided losses
based on the pseudo-shadows with vision on the
pseudo-shadows.

4.4 Loss Functions

4.4.1 Standard Losses

As mentioned in the above section, a variety of different loss functions will be tested to see which
will give the best performance for building shadow segmentation. This subsection will give a short
overview of the mathematical definitions, as well as the reasoning behind their usage

Binary Cross Entropy (BCE)
Binary Cross-Entropy defines the error as the negative logarithm of the likelihood of belonging to a
ground-truth label (Bishop, 2006). Its usage is commonplace in vision models that only need to do
binary classification. Since the resultant gradients are smooth, they are a good fit for optimization since
they respond predictably. However, when classes are imbalanced (i.e. too high of a difference between
ground truth shadows and background) it can learn to learn to predict the majority class, which may
lead to a loss of performance.

(8) LBCE =− 1
N

N

∑
i=1

[yi log(pi)+(1− yi) log(1− pi)]

where pi is the predicted probability, and yi is the ground-truth label.

Dice Coefficient, Jaccard Index and F1-Score
Originally created by Dice (1945), the Dice Coefficient is a statistical instrument used to measure the
similarity between two sets. For the purposes of classification, it is the overlap between ground truth
and prediction divided over the total area of the sets. It is very similar to the Jaccard Index (also known
as Intersection over Union, or IoU), and is defined as follows:

(9) Dice(A,B) =
2|A∩B|
|A|+ |B|

By comparison, the Jaccard Index is defined as:

(10) IoU(A,B) =
A∩B
A∪B

=
A∩B

|A|+ |B|− |A∩B|
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Both of these statistical measures give the overlap between datasets. However, by nature of the
Jaccard Index having a larger denominator, it produces lower scores than the Dice coefficient which
means that false positives and negatives are penalized harder. Inherently, this means that the Jaccard
index is slightly more unstable and thus less fit for imbalanced data than the Dice coefficient which
is relatively smoother. For this reason, the decision was made to perform training using the Dice
coefficient.

A common statistic to evaluate model performance is the F1-Score, which is similar in definition
to the Dice coefficient in binary classification tasks as can be seen in eq. 11 when compared to eq.9.
However, to keep consistent terminology, we will continue to use Dice score to talk about the same
thing.

(11) F1/Dice =
2T P

2T P+FP+FN

In deep learning, Dice loss is implemented in the following form:

(12) LDice = 1− 2∑i piyi + ε

∑i(pi + yi)+ ε

where pi is the predicted probability, and yi is the ground truth label.

4.4.2 Physics-Guided Losses

Besides BCE and Dice loss, a few PINN-inspired loss functions are introduced that will modulate
the losses based on the pseudo-shadow. Firstly, the attentive variants of the physics-guided loss
functions will weigh the error and subsequent loss of false negatives and false positives within the
pseudo-shadows harder. It takes a slight redefinition to the old LBCE and LDice functions:

(13) Latt
BCE =

1
N

N

∑
i=1

(
1+αsi

)[
−yi log pi− (1− yi) log(1− pi)

]

(14) Latt
Dice = 1− 2∑i(1+αsi) pi yi + ε

∑i(1+αsi)(pi + yi)+ ε

Where α controls the extra weight given to the pixels within the pseudo-shadow, si is a weighting
value between [0, 1] based on the pseudo-shadows generated by algorithm J.1, yi the ground truth label
and pi the label predicted by the model. Setting the weight of α to 0.2 means that the pixels will be
emphasized 20% more.

The other version of loss involves the usage of regular BCE and Dice loss, but with the addition of
an extra loss term (which can be either BCE or Dice) that gives the CNN an extra objective to match
its predictions to the pseudo-shadow channel by comparing the predictions to the pseudo-shadow map.
In this sense, the difference between Equation 13 and Equation 14 versus Equation 15 lies in how the
pseudo-shadow is used. The attentive losses emphasize learning within the pseudo-shadows through a
more intense weighting of the regular losses within the region of the pseudo-shadow. The Physics-loss
described in Equation 15 on the other hand adds an explicit loss term that discourages models from
predicting outside of the pseudo-shadow regions, forcing it to respect the pseudo-shadow priors even if
it conflicts with the ground-truth.
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(15) LPhys
BCE/Dice = λBCE ·LBCE +λDice ·LDice +λPhys ·LPhys

where λBCE , λDice, and λPhys are weighting hyperparameters controlling the contribution of each
loss component. The physics loss term, LPhys, measures the agreement between the model’s predictions
and the pseudo-shadow map using either BCE or Dice loss:

(16) LPhys =−
1
N

N

∑
i=1

[si log(pi)+(1− si)log(1− pi)]

or

(17) LPhys = 1− 2∑i pisi + ε

∑i(pi + si)+ ε

Where pi is the predicted value and si is the pseudo-shadow value. Here it is important to note the
distinction between the above two loss equations to their regular BCE and Dice counterparts; whereas
the original loss formulations compare the predictions to the ground truth, the above physics-guided
losses compare the predictions to the value of the pseudo-shadow.

4.5 Model Training

4.5.1 Training Protocol

All of the different configurations of PHYSHADE described in Table H.1 were trained using the
AdamW optimizer, starting out with a learning rate of 1e-4 and weight decay of 1e-4. For a scheduler,
the ReduceLROnPlateau scheduler was selected with a patience of 5 epochs and a minimum learning
rate of 1e-6.

Training was conducted using a maximum of 150 epochs, with early stopping if the validation
score plateaued for 25 epochs. The batch size was kept consistent over all models to a value of 8. To
speed up training, mixed precision was enabled.

To ensure reproducibility, the seeds used to drive the randomization of the folds and data augmenta-
tions were kept fixed and reset every new cross validation to ensure that the models within and outside
the subsets could be properly compared to one another. The training was ran on an Nvidia Blackwell
RTX 5070Ti GPU with 16Gb of VRAM paired with an AMD Ryzen 5600X CPU on a Windows
machine. Since this GPU as of writing is relatively new, a nightly build of PyTorch had to be used to
ensure compatibility (Version 2.8.0.dev20250418+cu128). More details on other relevant parameters
for reproducibility can be found in Appendix Table I.1.

4.5.2 Evaluation Metrics

For the evaluation of the performance of the different configurations of PHYSHADE, Dice (or F1)
score will be used as it is a common metric by which to rate the performance of a segmentation model.
For the height estimation algorithms, the ground truth building height will be defined by the 70th
percentile of LiDAR hits, obtained from the 3D BAG. Because the 3D BAG’s footprints do not line
up one-to-one with the building footprints produced by the annotation efforts considering that the 3D
BAG registers heights per administrative unit as opposed to entire buildings, a few data transformations
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needed to be applied to gain representative ground truth heights. Firstly, each administrative unit was
scaled up slightly to ensure spatial overlap. Then, a dissolve operation was performed to combine each
administrative unit into one building unit. Since each administrative unit has their own 70th percentile
height value, the most representative value was inferred by selecting the value corresponding to the
unit with the largest area. Since the 70th percentile height value does not report building height (i.e.
roof to ground) but rather the height above sea level, an additional operation was performed to obtain
the true building height. A buffer of 5 meters was created around each building unit. Over the entire
buffer, a DTM was sampled obtaining the 90th percentile ground height. Subtracting this value from
the buildings resulted in the true building height. For the reporting of the performance of the height
estimation algorithm, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and deviations
of the residuals will be utilized.

4.6 Height Estimation from Segmented Shadows

4.6.1 Preprocessing Steps

Before the height estimation can be ran on the inference results, some preprocessing is required to
ensure that the data is fit for input into the algorithm. For example, in some cases shadows from
buildings will amalgamate into one continuous blob, requiring it to be broken up first so that height
estimation can be ran on individual blobs that belong to specific buildings. To do so, an operation
similar in spirit to the smearing algorithm was performed but in reverse: instead of smearing the
building footprint outward from its origin in the direction the sun is shining, the building footprints
are moved to an arbitrary distance outside of the grid. Then, is continually stepped back towards its
origin. Every time a building footprint moves over a pixel in the inferred shadow mask, it is assigned
a unique value that references the building footprint. When the footprints reached their origins, the
relevant pixels for shadow estimation will have been marked, and an operation can be performed where
continuous shadows representing multiple buildings can be spatially separated by setting each pixel
with a unique id to zero, if one of its 8-direction neighbours has a different unique id. This way, unique
separated shadow blobs are created which can be used as input for the height estimation algorithm. An
overview of this assign-and-break operation can be found in Figure 10.
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Figure 10: An overview of the assign-and-break algorithm assigning a unique ID to the shadows by moving the building footprint back towards
its origin. Note how the smaller buildings reassign the shadows already touched by the larger buildings. After this processing step, a gap between
the shadows can be created by using a 8-neighbour search, removing any pixel that has neighbours of a different class than itself
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4.6.2 Shadow Length Estimation Algorithm

An algorithm was created based on ray-casting to retrieve shadow lengths, which in turn can be
combined with the solar altitude to calculate back the size of a building. The pseudocode for this
algorithm can be found in appendix J.2. In order to find a representative line that corresponds with the
direction the sun is shining, the solar azimuth is first used to calculate a direction vector. In order to
filter out potential blobs that do not match up with buildings, for each pixel in a given shadow blob, a
ray is cast for five pixels opposite the direction vector. If no building is hit with this ray, the blob is
thrown out (see Figure 11). In addition, any blobs that have an area of under 30 pixels are filtered out
as well to get rid of potential noise. To get the height of the blob, the pixels on the edge facing the
sun are found by stepping once from each pixel in the blob in the direction opposite the vector and
checking the value of the pixel. If it is outside the blob, the previous pixel is marked as an edge pixel.
Starting from each of the edge pixels, rays are then shot in the direction vector, stopping as soon as
a ray steps outside of the shadow blob. When it does, the amount of steps taken (aka ray length) is
appended to a list. From this list, an interpolated percentile is taken and finally multiplied by the pixel
size to get the shadow length, from which it is possible to calculate back the object height through
h = l · tan(alt). In cases where multiple blobs are linked back to the same building through the above
method, for example in cases where the shadow is non-continuous, the final height of a building is
defined by the blob with the biggest surface area.

Figure 11: Image showcasing acceptance of close-by blobs and rejection of far-away blobs from
buildings on the left, and the edge finding mechanism for finding the starting points for the height
estimation ray-casts on the right.
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5 Results

5.1 Baseline Model Performance
In order to establish a baseline performance for the standard RGB U-Net model trained on the (Luo
et al., 2020) dataset (henceforth LUO U-NET) before transfer learning, shadows were inferred using
two different images from the dataset. These were then compared to manually annotated ground truth
masks using Dice, precision and recall. An overview of these statistics can be seen in Table 5, while
inference results can be seen in Figure 12.

Although it should be minded that the test size here is small, the performance as tested is a
downgrade from the Dice scores attained during training; whereas Luo et al. (2020) reported a Dice
score of 0.8784, across domains the model loses out on accuracy, at worst by 0.4023 compared to
data winter loc2 27. Looking at Figure 12, it is revealed that the model both under- and overpredicts,
with false positives and negatives scattered throughout. There seems to be a low recall in situations that
should be relatively simple to predict; the large horizontal building in the middle of data winter loc1 5
has the north side of its roof shadowed, but the model only catches part of it. Such performance
degradation is expected in cross-domain situations, considering that the original model was trained on
imagery from Austin, Texas and Vienna, Austria and does not recognize the Dutch contexts.

Image Dice Precision Recall

data winter loc1 5 0.6587 0.6937 0.6271
data winter loc2 27 0.4761 0.5468 0.4215
Average 0.5674 0.6203 0.5243

Table 5: LUO U-NET performance evaluated over two fully-annotated images from the dataset.

5.2 Fold Statistics
Before looking at the performance of the models, it is important to mention some general statistics on
how each separate fold performed during training. Since the folds were picked out semi-randomly
while respecting winter/summer pairs, some folds may prove more difficult for the model to train and
validate on than others depending on the complexity of the image. As an example, if one fold generally
scores lower than others, it may be an indicator that the model has difficulty generalizing if the fold
contains contexts that other folds does not have. It also becomes possible to analyse the consistency a
model has over the various folds. Some models may perform more consistently, whereas others may
have high error variance. Fold performance metrics also provide a basis for qualitative analysis, where
the fold datasets can be compared to one another to see differences in landscapes or geometry. These
differences can in turn help guide future dataset creation by identifying information gaps the models
are suffering under.
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Figure 12: Side-by-side imagery showing the segmentation results for the U-Net model trained on the Luo et al. (2020) dataset, applied to the
Dutch case study area. From top to bottom: data winter loc1 5 and data winter loc2 27, with the original RGB image on the left and on the right
the inference results, with the true positives (green), the false positives (red) and the false negatives (blue).
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5.3 Per-fold analysis
An overview of the per-fold statistics can be found in Table 6. As can be seen, fold 5 was the
highest-performing fold over all trained models, suggesting that the training/validation combo was the
most predictable. Fold 2 scored the worst scores over Dice and loss, meaning that the fold was more
difficult to train on. Fold two also fields the highest standard deviation, meaning that the difference in
performance between the different configurations of PHYSHADE is higher. Folds 1 and 2 represent
the lowest-performing cases in the set, whereas folds 4 and 5 were the easiest to train/validate on.

To further elucidate the reason behind why some folds performed worse compared to the others, the
training and validation images were manually assessed to see if anything obvious is noticeable at first
sight. While no systemic errors were found between the folds such as size or training/validation leakage,
qualitative assessment at first glance does not reveal any major difference in terms of environment
or lighting conditions besides the impression that the validation set of fold 2 contains slightly more
occlusions blocking out the building shadow annotations. Since these occlusions add to the complexity
of a given shadow, annotation quality during dataset creation could potentially suffer which likewise
would also influence PHYSHADE’s ability to interpret the imagery. It is important to note however
that no formal quantifiable differences were established between the folds; for example, annotation
quality and per-fold annotation quality could be assessed by measuring the inter-annotator agreement,
which could have been computed by comparing two annotations by different annotators over the same
image using a statistical measure like intersection-over-union. However, due to time constraints such
metrics are unfortunately out of scope.

Table 6: An overview of the average fold statistics over all training configurations.

Fold Mean Dice Std. Dice Mean Precision Std. Precision Mean Recall Std. Recall Mean Loss Std. Loss

1 0.6493 0.1633 0.6646 0.1562 0.5894 0.2024 0.2768 0.1468
2 0.6432 0.1825 0.5698 0.1880 0.6489 0.1922 0.2420 0.1381
3 0.6688 0.1406 0.6530 0.1259 0.6236 0.1977 0.2582 0.1288
4 0.6904 0.1473 0.7529 0.0910 0.5936 0.2247 0.2377 0.1252
5 0.7017 0.1714 0.7180 0.1485 0.6098 0.2504 0.2443 0.1427
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5.4 Experimental Subset A: Baseline Performance
As predicted, the performance of both baseline models without any reference to the pseudo-shadows is
relatively poor. BASE DICE was able to score≈ 0.03 points higher on the Dice mean than BASE BCE,
but considering the large overlap between their confidence intervals (0.4387-0.5569 and 0.4764-0.5598
≈ 0.0805), no claims can be made that BASE DICE is actually better than BASE BCE.

Table 7: An overview of the averaged fold statistics for experimental subset A.

Experiment
Mean
Dice

Std.
Dice

Mean
Precision

Std.
Precision

Mean
Recall

Std.
Recall

Mean
Loss

Std
Loss

Mean
Epochs Run

Dice CI95
Lower

Dice CI95
Upper

BASE BCE 0.4978 0.0674 0.5447 0.1145 0.3778 0.0335 0.0418 0.0136 39.4000 0.4387 0.5569
BASE DICE 0.5309 0.0331 0.5885 0.0944 0.4301 0.0610 0.4915 0.0566 46.8000 0.5019 0.5598

5.5 Experimental Subset B: 4th Channel Pseudo-Shadow Addition
With Subset B, the goal is to analyse the effect of adding a fourth channel to the RGB image, containing
the pseudo-shadows as generated by the smearing algorithm. By comparing the RGB models to the
RGBS models, the effect of the additional fourth channel containing the pseudo-shadows can be
established in isolation. An overview of the statistics for Subset B can be seen in Table 8, with
the ablation isolating the effect of the pseudo-shadows in Table 9. At first glance, the addition of
pseudo-shadows majorly increases segmentation quality, leading to around ≈ 0.32 increase in mean
Dice score. To statistically test the difference in Dice score between the RGB and RGBS models, a
paired t-test was ran between over the individual folds. With all p-values testing below α = 0.05, the
null hypothesis that the means between the RGB and RGBS configurations are similar can be rejected.
As such, the difference in Dice score is significant meaning that the RGBS models can be accepted as
scoring higher in Dice than their RGB counterparts. Of the RGBS models, the BCE70 DICE30 scored
the highest mean Dice score of 0.8487.

Table 8: An overview of the averaged fold statistics for Experimental Subset B, comparing the RGB vs
the RGBS models.

Experiment ID
Mean
Dice

Std.
Dice

Mean
Precision

Std.
Precision

Mean
Recall

Std.
Recall

Mean
Loss

Std.
Loss

Dice CI95
Lower

Dice CI95
Upper

RGBS BCE30 DICE70 0.8475 0.0259 0.8435 0.0552 0.8239 0.0283 0.1245 0.0126 0.8248 0.8702
RGBS BCE50 DICE50 0.8455 0.0242 0.8488 0.0380 0.8172 0.0321 0.0971 0.0095 0.8242 0.8667
RGBS BCE70 DICE30 0.8487 0.0277 0.8470 0.0403 0.8118 0.0391 0.0672 0.0097 0.8244 0.8730
RGB BCE30 DICE70 0.5225 0.0313 0.5662 0.1033 0.4295 0.0754 0.3837 0.0323 0.4951 0.5499
RGB BCE50 DICE50 0.5208 0.0271 0.5578 0.0875 0.4186 0.0744 0.3007 0.0301 0.4971 0.5446
RGB BCE70 DICE30 0.5249 0.0230 0.5550 0.0955 0.4070 0.0349 0.2011 0.0219 0.5047 0.5451

Table 9: An overview of the Experimental Subset B ablation using paired t-testing, ran between RGB
versus RGBS channels.

Experiment
RGBS
Mean Dice

RGB
Mean Dice

Delta
Mean Dice

Delta
Std. Dice

Delta Mean
Precision

Delta Std.
Precision

Delta Mean
Recall

Delta Std.
Recall

Delta Dice
CI95 Lower

Delta Dice
CI95 Upper p-value (Dice)

BCE30 DICE70 0.8475 0.5225 0.3250 0.0264 0.2772 0.0556 0.3944 0.0709 0.2991 0.3509 0.0000
BCE50 DICE50 0.8455 0.5208 0.3247 0.0242 0.2910 0.0579 0.3986 0.0693 0.3009 0.3484 0.0000
BCE70 DICE30 0.8487 0.5249 0.3239 0.0280 0.2920 0.0649 0.4048 0.0415 0.2964 0.3513 0.0000
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5.6 Experimental Subset C: Physics-Guided Loss
To establish the effect of Physics-Guided loss in isolation, the models of Experimental Subset C
were compared to their equivalent baseline models from Subset A based on hyperparameters and
loss used. As predicted in the methodology, the introduction of only a physics-guided loss without
any access to the pseudo-shadows does not improve performance into acceptable levels. Over all
the different configurations Subset C, none of them tested to score significantly differently to their
non-physics-guided counterparts. This is unsurprising, as the model is not given any extra methods
through which to distinguish between building shadows and other shadows.

One potential reason why BCE seems to have a slight edge over Dice loss in terms of delta Dice
with the addition of physics-guided terms, may lie in the inherent differences in locality of both
functions; whereas BCE works by looking at the pixels on an individual and local basis, Dice loss
looks at the full mask globally instead. Based on this, Dice loss will struggle since it has to both agree
with the ground-truth mask and the pseudo-shadow mask, which is impossible considering that the
pseudo-shadow mask is an imperfect representation. This conflict in objectives then leads to a decrease
in the model’s performance. However, considering that none of the paired t-testing came back as
significant, any claims made about the differences between the Dice and BCE variants in this case
should be considered conjecture that would require further study to confirm.

Table 10: An overview of the ablation ran using Experimental Subset C.

Physics
Config

Mean
Dice

Std.
Dice

Mean
Precision

Std.
Precision

Mean
Recall

Std.
Recall

Base
Mean Dice

Delta
Mean Dice

Delta
Std. Dice

Delta Dice
CI95 Lower

Delta Dice
CI95 Upper p-value Significant?

ATT 0.1 0.5264 0.0177 0.5436 0.0783 0.4153 0.0591 0.5208 0.0055 0.0096 -0.0038 0.0149 0.3105 No
ATT 0.5 0.5394 0.0268 0.5465 0.1029 0.4119 0.0628 0.5208 0.0186 0.0156 0.0033 0.0338 0.0752 No
ATT 1.0 0.5325 0.0214 0.5578 0.0812 0.4307 0.0564 0.5208 0.0116 0.0135 -0.0016 0.0249 0.1597 No
BCE 10 0.5306 0.0341 0.5754 0.0965 0.4346 0.0365 0.4978 0.0328 0.0368 -0.0033 0.0689 0.1497 No
BCE 33 0.5234 0.0577 0.5543 0.1317 0.4161 0.0397 0.4978 0.0256 0.0203 0.0058 0.0455 0.0647 No
BCE 50 0.5108 0.0774 0.5076 0.1378 0.4384 0.0359 0.4978 0.0130 0.0136 -0.0003 0.0264 0.1275 No
DICE 10 0.5327 0.0247 0.5548 0.0914 0.4149 0.0517 0.5309 0.0019 0.0297 -0.0272 0.0310 0.9047 No
DICE 33 0.5267 0.0292 0.5479 0.0875 0.4330 0.0480 0.5309 -0.0041 0.0346 -0.0381 0.0298 0.8229 No
DICE 50 0.5396 0.0413 0.5108 0.0832 0.4413 0.0343 0.5309 0.0087 0.0429 -0.0333 0.0508 0.7052 No

5.7 Experimental Subset D: Effect of Hybrid Model
In subset D, the combination of the RGBS input together with the physics-guided loss is evaluated.
For the ablation for this subset, the models were compared to the B3 RGBS model from Subset B,
making it possible to see the effect of the addition of physics-guided loss. As can be seen in table
11, only two models tested as significantly different in Dice means compared to BCE50 DICE50.
Both D3 BCE and D3 Dice saw drops in their mean Dice scores as well as increases in their standard
deviations, meaning that the addition of physics-guided loss to models already having access to the
pseudo-shadows is harming performance. In general for the different configurations of the Dice and
BCE models in Subset D, a downward trend can be seen in Dice score the higher the weighting given
to the physics-guided loss is.

5.8 Epoch Ablation
Since it was noted that the models of Subset B required more epochs to reach convergence, a general
ablation based on epochs ran was performed to see whether any of the models saw any significant
differences compared to their ablation counterparts, the results of which can be found in Table 12.
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Table 11: An overview of the ablation ran using Experimental Subset D

Physics
Config Mean Dice Std. Dice

Mean
Precision

Std.
Precision

Mean
Recall

Std.
Recall

Base
Mean Dice

Delta
Mean Dice

Delta
Std. Dice

Delta Dice
CI95 Lower

Delta Dice
CI95 Upper p-value Significant?

BCE PHYS10 0.8523 0.0258 0.8498 0.0344 0.8320 0.0222 0.8455 0.0068 0.0031 0.0038 0.0099 0.0119 Yes
BCE PHYS30 0.8349 0.0270 0.8036 0.0402 0.8453 0.0253 0.8455 -0.0105 0.0075 -0.0179 -0.0032 0.0475 Yes
BCE PHYS50 0.8077 0.0327 0.7237 0.0599 0.8669 0.0288 0.8455 -0.0377 0.0097 -0.0472 -0.0282 0.0015 Yes
DICE PHYS10 0.8443 0.0266 0.8329 0.0494 0.8317 0.0277 0.8455 -0.0012 0.0029 -0.0040 0.0016 0.4546 No
DICE PHYS30 0.8447 0.0286 0.8139 0.0544 0.8540 0.0310 0.8455 -0.0008 0.0041 -0.0048 0.0032 0.7065 No
DICE PHYS50 0.8182 0.0267 0.6569 0.1132 0.8944 0.0185 0.8455 -0.0273 0.0087 -0.0358 -0.0187 0.0033 Yes
ATT 0.1 0.8472 0.0235 0.8433 0.0395 0.8205 0.0245 0.8455 0.0017 0.0019 -0.0002 0.0035 0.1476 No
ATT 0.5 0.8467 0.0277 0.8489 0.0378 0.8235 0.0333 0.8455 0.0012 0.0034 -0.0021 0.0045 0.5237 No
ATT 1.0 0.8417 0.0243 0.8403 0.0387 0.8189 0.0273 0.8455 -0.0038 0.0033 -0.0071 -0.0005 0.0847 No

Firstly, it becomes clear that the Addition of the pseudo-shadow in Subset B caused model
convergence to take longer, with on average about 20 epochs more to reach training loss stagnation.
Over the models in Subset C the difference in Delta Mean Epochs trained was tested as insignificant,
meaning that the addition of physics-guided loss to models not having access to the pseudo-shadow
channels led to no difference in epochs necessary to train to convergence. Finally, the models of Subset
D were tested, with one model (RGBS BCE50 DICE50 vs HYB BCE50 DICE5) testing as the only
model where the addition of physics-guided loss led to a meaningful decrease of 7.4 in the amount
of epochs necessary to reach convergence. Since physics-guided loss weighs mistakes and correct
predictions within the pseudo-shadows harder, it would follow that this would allow the model to
converge faster. However, this was not established over the other models. In addition, it should be
noted that in all cases the standard deviation also increases, meaning that there is more variability
within the folds on epochs trained. This would suggest that while the addition of physics-guided loss
in some cases is a good predictor for the ground truth, in other cases where it is more ambiguous they
may lead to confusion for the model, increasing variability in training speed.

Table 12: An overview of the total epochs needed to train each model compared to their ablation
counterparts.

Subset Comparison
Group A
Mean Epochs

Group B
Mean Epochs

Delta Mean
Epochs

Delta Std.
Epochs CI95 Lower CI95 Upper p-value Significant?

B RGB BCE30 DICE70 vs RGBS BCE30 DICE70 38.6 58.6 20 11.4368 8.792 31.208 0.025 Yes
B RGB BCE50 DICE50 vs RGBS BCE50 DICE50 37.6 54.2 16.6 9.1782 7.6053 25.5947 0.0224 Yes
B RGB BCE70 DICE30 vs RGBS BCE30 DICE70 35.2 58.6 23.4 14.3889 9.2989 37.5011 0.0313 Yes
C RGB BCE50 DICE50 vs PHYS ATT 0.1 37.6 38.2 0.6 3.1369 -2.4741 3.6741 0.7215 No
C RGB BCE50 DICE50 vs PHYS ATT 0.5 37.6 37.8 0.2 4.1665 -3.8832 4.2832 0.9281 No
C RGB BCE50 DICE50 vs PHYS ATT 1.0 37.6 36.2 -1.4 6.375 -7.6475 4.8475 0.6832 No
C BASE BCE vs PHYS BCE 10 39.4 41.4 2 3.5214 -1.4509 5.4509 0.3194 No
C BASE BCE vs PHYS BCE 33 39.4 43.8 4.4 5.5353 -1.0246 9.8246 0.1871 No
C BASE BCE vs PHYS BCE 50 39.4 43.8 4.4 7.4993 -2.9493 11.7493 0.3057 No
C BASE DICE vs PHYS DICE 10 46.8 42 -4.8 7.8333 -12.4766 2.8766 0.2876 No
C BASE DICE vs PHYS DICE 33 46.8 42 -4.8 11.3031 -15.877 6.277 0.4435 No
C BASE DICE vs PHYS DICE 50 46.8 39.2 -7.6 11.9097 -19.2715 4.0715 0.2709 No
D RGBS BCE50 DICE50 vs HYB BCE PHYS10 54.2 58.2 4 8.7636 -4.5883 12.5883 0.413 No
D RGBS BCE50 DICE50 vs HYB BCE PHYS30 54.2 55.4 1.2 10.9618 -9.5425 11.9425 0.8374 No
D RGBS BCE50 DICE50 vs HYB BCE PHYS50 54.2 57.8 3.6 6.4062 -2.6781 9.8781 0.3239 No
D RGBS BCE50 DICE50 vs HYB DICE PHYS10 54.2 55.2 1 2.0976 -1.0557 3.0557 0.3943 No
D RGBS BCE50 DICE50 vs HYB DICE PHYS30 54.2 58.8 4.6 7.4993 -2.7493 11.9493 0.2872 No
D RGBS BCE50 DICE50 vs HYB DICE PHYS50 54.2 46.8 -7.4 4.5869 -11.8952 -2.9048 0.0321 Yes
D RGBS BCE50 DICE50 vs HYB ATT 0.1 54.2 50.2 -4 7.9246 -11.7662 3.7662 0.3698 No
D RGBS BCE50 DICE50 vs HYB ATT 0.5 54.2 55.2 1 6.8702 -5.7328 7.7328 0.7854 No
D RGBS BCE50 DICE50 vs HYB ATT 1.0 54.2 52.6 -1.6 4.3174 -5.8311 2.6311 0.4997 No
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5.9 Ablation Summary & Model Selection
In order to select a PHYSHADE model configuration that will be trained on the full dataset for the final
height estimations, Table 13 was produced ranking all different experiments by their mean Dice scores.
Overall, HYB BCE PHYS10 was the best scoring model overall (0.8523±0.0258), followed by RGBS
BCE70 DICE30 (0.8487± 0.0277). Five positions down from HYB BCE PHYS10, its ablational
counterpart RGBS BCE50 DICE50 can be found which managed to score middle-of-the-pack between
the subset B and D models.

For the purposes of cross comparison later on for the height estimation, the decision was made to
train three different models on the full dataset, with validation on the out-of-fold dataset:

1. HYB BCE PHYS10, as this model scored the best Dice overall and includes the physics-guided
loss.

2. RGBS BCE50 DICE50, as this model has the exact same architecture and BCE/Dice weighting
parameters, and can be used to ablate the effect of physics-guided loss.

3. RGBS BCE70 DICE30, as this model was the best performing model not containing physics-
guided loss

Table 13: Table of all experimental configurations trained, averaged and sorted by mean Dice score.

Experiment ID Mean Dice Std. Dice Mean Precision Std. Precision Mean Recall Std. Recall Mean Loss Std. Loss Mean Epochs Run

HYB BCE PHYS10 0.8523 0.0258 0.8498 0.0344 0.8320 0.0222 0.1402 0.0214 58.2
RGBS BCE70 DICE30 0.8487 0.0277 0.8470 0.0403 0.8118 0.0391 0.0672 0.0097 53.2
RGBS BCE30 DICE70 0.8475 0.0259 0.8435 0.0552 0.8239 0.0283 0.1245 0.0126 58.6
HYB ATT 0.1 0.8472 0.0235 0.8433 0.0395 0.8205 0.0245 0.0975 0.0097 50.2
HYB ATT 0.5 0.8467 0.0277 0.8489 0.0378 0.8235 0.0333 0.0963 0.0127 55.2
RGBS BCE50 DICE50 0.8455 0.0242 0.8488 0.0380 0.8172 0.0321 0.0971 0.0095 54.2
HYB DICE PHYS30 0.8447 0.0286 0.8139 0.0544 0.8540 0.0310 0.2614 0.0241 58.8
HYB DICE PHYS10 0.8443 0.0266 0.8329 0.0494 0.8317 0.0277 0.1573 0.0147 55.2
HYB ATT 1.0 0.8417 0.0243 0.8403 0.0387 0.8189 0.0273 0.1018 0.0125 52.6
HYB BCE PHYS30 0.8349 0.0270 0.8036 0.0402 0.8453 0.0253 0.1947 0.0301 55.4
HYB DICE PHYS50 0.8182 0.0267 0.6569 0.1132 0.8944 0.0185 0.3782 0.0347 46.8
HYB BCE PHYS50 0.8077 0.0327 0.7237 0.0599 0.8669 0.0288 0.2433 0.0390 57.8
PHYS DICE 50 0.5396 0.0413 0.5108 0.0832 0.4413 0.0343 0.5432 0.0231 39.2
PHYS ATT 0.5 0.5394 0.0268 0.5465 0.1029 0.4119 0.0628 0.2841 0.0321 37.8
PHYS DICE 10 0.5327 0.0247 0.5548 0.0914 0.4149 0.0517 0.3451 0.0263 42.0
PHYS ATT 1.0 0.5325 0.0214 0.5578 0.0812 0.4307 0.0564 0.2810 0.0295 36.2
BASE DICE 0.5309 0.0331 0.5885 0.0944 0.4301 0.0610 0.4915 0.0566 46.8
PHYS BCE 10 0.5306 0.0341 0.5754 0.0965 0.4346 0.0365 0.3244 0.0244 41.4
PHYS DICE 33 0.5267 0.0292 0.5479 0.0875 0.4330 0.0480 0.4183 0.0136 42.0
PHYS ATT 0.1 0.5264 0.0177 0.5436 0.0783 0.4153 0.0591 0.2913 0.0275 38.2
RGB BCE70 DICE30 0.5249 0.0230 0.5550 0.0955 0.4070 0.0349 0.2011 0.0219 35.2
PHYS BCE 33 0.5234 0.0577 0.5543 0.1317 0.4161 0.0397 0.3242 0.0372 43.8
RGB BCE30 DICE70 0.5225 0.0313 0.5662 0.1033 0.4295 0.0754 0.3837 0.0323 38.6
RGB BCE50 DICE50 0.5208 0.0271 0.5578 0.0875 0.4186 0.0744 0.3007 0.0301 37.6
PHYS BCE 50 0.5108 0.0774 0.5076 0.1378 0.4384 0.0359 0.3570 0.0462 43.8
BASE BCE 0.4978 0.0674 0.5447 0.1145 0.3778 0.0335 0.0418 0.0136 39.4
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5.10 Model Training on Full Dataset & Results
For the purposes of evaluating PHYSHADE’s ability to generalize outside its current domain, the three
model configurations posed in subsection 5.9 were trained on the full dataset of 35 images, similarly
multiplied using data augmentation to a total of 280 training images. The out-of-fold dataset was
used to validate the training, and to guide early stopping as soon the validation Dice starts to stagnate.
Besides this, all other training parameters were kept identical to those posed in Table I.1.

Before looking at the individual model performance, the individual images were evaluated to see
how they compare to each other in terms of Dice score, precision and recall. To do so, inference was
ran on each individual image using all three models, after which the three resulting testing statistics
were averaged. The results of this can be seen in Table 14. Here, a clear distinction can be seen
between the Dice means between the summer and winter tiles, where winter scores lower Dice ranges
and higher standard deviations. These winter tiles will be assessed during the qualitative analysis to see
if and how they may differ in comparison to their summer counterparts, which is especially the case for
winter Tile 7 even compared to the other winter tiles. To see whether there are any visible reasons for
this, the tile will be evaluated during the qualitative analysis. Finally, an overview of the performance
of the individual configurations of PHYSHADE on the out-of-fold dataset can be found in Table 15.
For comparison’s sake, the baseline model LUO UNET was added which was the model trained on the
Luo et al. (2020) dataset and used for transfer learning. As can be seen, the performance of the models
when applied to imagery outside of the domain of the PHYSHADE dataset drops, leading to a ≈ 0.11
decrease in Dice score. Interestingly enough, even though RGBS BCE70 DICE30 was ranked as the
second best performing model based on the 5-fold cross validation, it scored considerably lower here
when compared to RGBS BCE50 DICE50 which ranked four positions below before. The decrease in
Dice score for this model can mostly be attributed to the considerable drop in precision and relatively
smaller increase in recall, which would suggest that the model is predicting less conservatively at the
cost of more false negatives. RGBS BCE50 DICE50 sees a similar pattern, but the trade-off works out
to a favourable Dice score where although the share of false negatives increases, it is compensated
with the highest mean recall score of all. Due to the domain shift, it may be possible that the features
that PHYSHADE were using inside the domain may not be reliably found in the new domain. In this
sense, it seems that the pseudo-shadow geometric priors are good at forcing the model to not predict
shadows that fall outside them, but are less valuable in helping find actual shadows within the bounds
of the pseudo-shadow. As expected, the precision of the LUO UNET model comparatively is poor,
since the model is trained originally for predicting all shadows and not only building shadows leading
to mismatches with the ground truth. However, its recall is the highest of all models, which either may
lead to overestimation of heights if preprocessing is insufficient.

When compared to the results of the 5-fold cross validation, HYB BCE PHYS10 and RGBS BCE70
DICE30 saw increases in their precision, offset by a more or equally hefty decrease in recall. RGBS
BCE50 DICE50 saw decreases in both precision and recall but not as severe, leading it to become the
second-best performing model in the out-of-fold dataset.
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Table 14: An overview of the per-image statistics in the out-of-fold dataset, calculated by averaging
the statistics of HYB BCE PHYS10, RGBS BCE70 DICE30 and RGBS BCE50 DICE50.

Image
Dice
Mean

Std.
Dice

Precision
Mean

Std.
Precision

Mean
Recall

Std.
Recall

Summer Tile 6 0.8996 0.0149 0.9357 0.0135 0.8671 0.0385
Summer Tile 7 0.9526 0.0288 0.9749 0.0052 0.9321 0.0515
Summer Tile 8 0.8294 0.1012 0.7854 0.1338 0.8827 0.0695
Winter Tile 6 0.7819 0.1497 0.8614 0.0485 0.7517 0.2568
Winter Tile 7 0.2836 0.1895 0.8926 0.1348 0.1872 0.1475
Winter Tile 8 0.7159 0.1627 0.6557 0.2224 0.8273 0.1289

Table 15: An overview of the statistics when applying the final models to the out-of-fold dataset.

Experiment
Mean
Dice

Std.
Dice

Mean
Precision

Std.
Precision

Mean
Recall

Std.
Recall

Delta
Dice

Delta
Precision

Delta
Recall

HYB BCE PHYS10 0.7636 0.2612 0.9327 0.043 0.7109 0.3196 -0.0887 0.0829 -0.1211
RGBS BCE70 DICE30 0.7213 0.3266 0.8654 0.1267 0.7192 0.3439 -0.1275 0.0184 -0.0926
RGBS BCE50 DICE50 0.7466 0.1897 0.7548 0.1951 0.7939 0.2279 -0.0989 -0.094 -0.0233

LUO UNET 0.4483 0.2049 0.3562 0.1828 0.8593 0.2443 - - -
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5.11 Qualitative Analysis: Final Models

Figure 13: Overview of the results per configuration for Summer Tile 6. Overall, segmentation quality was relatively
good across all three models. RGBS BCE50 DICE50 had the least false negatives but at the cost of higher false positives.
Between HYB BCE PHYS10 and RGBS BCE50 DICE50, the addition of physics-guided loss helps avoid these false
positives but slightly worsens recall. RGBS BCE70 DICE30 shows a good balance between precision and recall, although
false negatives are distributed more sporadically throughout the shadow.
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Figure 14: Overview of the results per configuration for Summer Tile 7. All models performed well here, following
similar trends as described in Figure 13. In the hangar shadow on the left, a small black sliver is visible in each model’s
output. Upon inspection, this turned out to be a few missed pixels in the dataset, leading to an erroneous false positive.
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Figure 15: Overview of the results per configuration for Summer Tile 8. Here it can be seen that HYB BCE PHYS10 is
the clear winner compared to the other two models; it has next to no false positives, and very little false negatives. In this
sense, the addition of the benefits of physics-guided loss over RGBS BCE50 DICE50 are clear, which suffers from more
false positives and negatives.
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Figure 16: Overview of the results per configuration for Winter Tile 6. Compared to its summer equivalent, the
performance for the HYB BCE PHYS10 drops drastically, as can be seen in the large vertical swaths of false negatives.
The specific reason for this is unclear; the middle building has a patch of grass next to the paved parking lot that seems to
loosely follow the TP/FN divide which could be explanatory, but this same pattern is not seen in the left building whose
shadows fall over grassland, even though it has this same TP/FN division. For these images, RGBS BCE50 DICE50
seems to perform the best as it is not as conservative at guessing, getting almost all of the true positive. RGBS BCE70
DICE30 is the middle-ground model here; having both a relatively good true-positive rate whilst avoiding some (but not
all) of the vertical swaths of false negatives.
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Figure 17: Overview of the results per configuration for Winter Tile 7. Of all tiles, the performance of all models was the
worst here as can be seen by the huge share of false negatives. RGBS BCE70 DICE30 scored the lowest of all, making
almost zero predictions. In terms of Dice scores, HYB BCE PHYS10 and RGBS BCE50 DICE50 are very similar, with
the first being more conservative avoiding false positives and the latter more aggressive in its inference. Interestingly
enough, RGBS BCE50 DICE50 predicts outside of the pseudo-shadows for the first time here, which is a phenomenon
not yet seen in any of the other images or other models. One guess for why this image performed so poorly overall is the
lighting conditions; it has a more yellowish tint than the images in the training dataset or the other validation imagery,
meaning that the model is not generalizing well to all potential out-of-fold conditions despite augmentation.
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Figure 18: Overview of the results per configuration for Winter Tile 8. This image and the resulting model inference has
a lot of similar charateristics to its summer counterpart, where HYB BCE PHYS10 performs the best, RGBS BCE50
DICE50 overestimates and RGBS BCE70 DICE30 falls in the middle ground between them. One difference between
summer and winter inferences is that the false positive rate for both RGBS models has increased likely due to the different
lighting conditions. However, HYB BCE PHYS10 seems to not have suffered much under the change in seasons. Once
again, it can be seen here that RGBS BCE50 DICE50 seems to wrongly infer outside of the pseudo-shadows below the
top-left building, which is not reflected in the other two models.
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Figure 19: An assorted overview of results when applying the LUO UNET model to the dataset. Note that the ground truth here is
still dictated by building shadows only; it is therefore not fully representative of the performance of the LUO UNET when applied
for the purposes of detecting all shadows. Interestingly, what can be seen here is that the performance of the LUO UNET model is
reversed for the Summer and Winter pairs of tile 7; whereas the PHYSHADE models all have trouble segmenting Winter Tile 7 for
shadows, LUO UNET seems to have no issue and has a high recall as a result. At the same time, recall drops for the summer version,
where the PHYSHADE models did better. Outside of LUO UNET being trained on data outside far outside the current domain,
the specific explanation for this switch remains unclear. In Summer Tile 8, it can be seen that while the model has high recall, its
precision is poor in some cases, segmenting objects such as trees erroneously in addition. This is a trend for the other images in the
out-of-fold datset as well.
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5.12 Height Estimation from Shadows

To estimate the heights using the inference from the PHYSHADE models, an algorithm based on
raymarching was created to extrapolate the height back from a raster containing building shadows.
The algorithm can be found described with pseudocode in the appendices as Algorithm J.2. Since the
rays may have to traverse the grid outside of the 8 compass directions (i.e. not perfectly diagonal)
depending on the solar azimuth, pixel stepping may lead to jagged paths which hurts the precision of
the algorithm. At lower resolutions, these effects become more pronounced thus leading to higher
errors.

5.12.1 Height Estimation Algorithm Baseline Error

To verify the error-proneness inherent to raster-based raymarching operations as described above, a
controlled validation was first ran using building footprints and solar metadata to generate synthetic
shadows with known lengths. By running these shadows with known lengths through the height
estimation algorithm, it becomes possible to see what potential error is inherent within the algorithm
itself as opposed to the errors introduced by the inference of real-world shadows, thus giving a better
idea of what term of the error can be attributed to the algorithm and what term can be attributed to the
PHYSHADE models. For evaluation, synthetic shadows were generated using the building footprints
of the out-of-fold dataset at azimuths of 60, 120, 180, 240 and 300. Since shadows falling outside of
the raster are unable to lead to accurate results as any shadow information outside the extents are lost,
these were omitted for the benchmark. With the raymarching algorithm, selecting the ray that is most
representative for the actual height is dependent on the spread of outliers. Due to this, the benchmark
was ran at various ray length percentiles, which are defined as the accepted ray percentile from the
group of all collected rays per a given shadow blob. The statistics by the benchmark can be found in
Table 16.

Table 16: An overview of the error statistics when running the raster algorithm on synthetic shadows
generated by the smearing algorithm.

Ray Length Percentile Mean Error RMSE Std. Error Median Error P90 Error P95 Error Max Error

100 0.0169 0.0822 0.0807 0.0 0.0 0.0 0.5
99 0.0056 0.0317 0.0313 0.0 0.0 0.0 0.25
95 0.0236 0.0964 0.0938 0.0 0.0 0.25 0.75
90 0.0446 0.2113 0.2073 0.0 0.0 0.25 2.0
75 0.2183 0.8021 0.7744 0.0 0.325 1.4125 5.625

Looking at the Table 16, the best performing percentile parameter for the height estimation
algorithm is 99, sporting the lowest RMSE, standard deviation and maximum error. The 99th percentile
fits a good niche between 100 and 95 where its associated errors are minimized, making it a good
sampling strategy when the algorithm is applied to synthetic shadows. That said, as can be seen for all
of the rays, the median error is 0, meaning that the majority of rays cast matched with the ground truth.
Considering the fact that the rasters on which the algorithm was ran are 25cm/pixel, the performance
of the algorithm overall is very good and unlikely to lead to large error terms.
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5.12.2 Height Estimation Quality on Out-of-Fold Dataset

After the statistics for the height estimation algorithm’s error-proneness were produced using known
synthetic data, the height estimator was then deployed on the out-of-fold domain dataset using the
inferred shadows produced by the PHYSHADE models HYB BCE PHYS10, RGBS BCE50 DICE50
and RGBS BCE70 DICE30. To gain an impression of the height estimation error per image in the
out-of-fold dataset, Table 17 was generated. These statistics were generated based upon valid blobs,
meaning that they are the blobs that were able to get through the filtering process as described in the
methodology and were the final singular largest blob picked per building. The blob weighted average
takes into account the amount of blobs generated per tile, as opposed to simply combining the statistics
per tile and dividing over six. In Table 17, it can be seen that the average error hovers at ≈−0.3036,
meaning that the model on average tends to slightly underestimate the building height as opposed to
overestimation within the out-of-fold dataset. Generally, height estimation performance is linked in
part to the performance of segmentation; Winter Tile 7 has the highest RMSE term, whereas Summer
Tiles 7 and 8 have the lowest. Generally the RMSE averages at around ≈ 1.91 meters, with Summer
Tile 6, Winter Tile 6 and Winter Tile 7 having a higher RMSE than average. During the qualitative
analysis on the height estimation, these will be regarded in particular to see why this might be the case.

Table 17: An overview of the averaged height estimation performances per image produced by HYB
BCE PHYS10, RGBS BCE50 DICE50 and RGBS BCE30 DICE70.

Image Mean Error
Mean Absolute
Error RMSE

Std.
Residuals

Mean Est.
Height

Mean True
Height

Min Est.
Height

Max Est.
Height

Summer Tile 6 1.8106 2.0248 2.6009 1.9214 9.818 8.0073 1.851 14.7363
Summer Tile 7 0.3654 0.7393 0.7725 0.786 8.8688 8.5034 6.6386 9.958
Summer Tile 8 -0.4708 0.7234 0.8748 0.7587 4.8645 5.3353 2.4865 6.4235
Winter Tile 6 -1.3822 1.561 2.7984 2.5186 7.6386 9.0209 2.3961 13.7778
Winter Tile 7 -3.5174 3.5174 3.7343 1.402 4.7626 8.28 2.8361 7.4953
Winter Tile 8 -0.2743 1.1711 1.3999 1.4067 4.6934 4.9677 2.397 7.3907
Blob Weighted Average -0.3036 1.4899 1.9135 1.4892 6.5275 6.8311 2.5997 9.8472

The performance of the height estimation algorithm per individual model of PHYSHADE can be
seen in Table 18. In addition, inference was ran using the LUO UNET basemodel to see whether or
not PHYSHADE built to segment only building shadows would perform better than a general purpose
shadow segmentation model. Of the PHYSHADE models, RGBS BCE50 DICE50 scored the lowest
Mean Absolute Error. Considering the fact that the Dice score for that model was the lowest, it is
interesting to see that it outperforms RGBS BCE70 DICE30 by a bit and HYB BCE PHYS10 by a lot,
even though that model scored the best Dice score. A possible explanation for this is that although
precision is an important metric if one wants accurate estimations of shadows themselves, the height
estimation algorithm performs better in cases where the recall is high and is able to deal with the lower
precision through the filtering steps taken. In addition, the standard deviation of the residual errors is
low, meaning that there is a low variation in the error statistics produced by this model.

However, all of the PHYSHADE models were outperformed by the LUO UNET model. This
likely has to do with the combination of high recall and the preprocessing steps taken to go from
inference towards height estimation, as the preprocessing steps taken may be relatively robust to over-
segmentation. Looking at Table M.1, it can be seen that the LUO Model has about equal non-highest
blobs to the other models, meaning that the pre-processing was effective in getting rid of shadow
blobs unrelated to the buildings. In addition, for each blob, the height is determined by taking the
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99th percentile of all rays cast for that blob which could clamp down on outliers produced by height
estimation from LUO UNET inference.

To see the differences in how the height estimation algorithm determined the heights per the
different models of PHYSHADE and LUO UNET, visualisations of the representative raycast line
were created as seen in figures 20 to 25. Additionally, Table 19 contains the individual statistics per
model per image. Here, it can be seen why HYB BCE PHYS10 sees such an increase in RMSE: Winter
Tile 6 and 7 were especially difficult to estimate, even though the other two model configurations were
able to score much lower terms. That said, RGBS BCE50 DICE50 and RGBS BCE70 DICE30 seem
to score better regardless; across all images except two, they outperformed the HYB BCE PHYS10
model, further strengthening the idea that recall is a more important metric than precision for the
purposes of height estimation. LUO UNET seems to not have any major outliers when compared to
the PHYSHADE models which contributes to its relative mean performance.

Table 18: An overview of the average performance of height estimation per model of PHYSHADE
applied to the out-of-fold dataset.

Model
Mean
Error

Mean Absolute
Error RMSE

Std.
Residuals

Mean Est.
Height

Mean True
Height

Min Est.
Height

Max Est.
Height

HYB BCE PHYS10 -0.8976 1.9068 2.7489 2.6477 5.9569 6.8545 1.851 14.7363
RGBS BCE50 DICE50 0.3397 1.1832 1.6948 1.6909 7.2132 6.8735 2.5958 14.5126
RGBS BCE70 DICE30 -0.1453 1.2849 1.774 1.8031 6.6888 6.834 2.0889 14.5126
Blob Weighted Average -0.2284 1.4571 2.0716 2.0458 6.6261 6.8545 2.1848 14.5872

LUO UNET 0.2616 1.0805 1.5315 1.5377 7.1161 6.8545 1.6559 15.2264
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Table 19: An overview of the metrics of height estimation for each model of PHYSHADE per image.

Model Image
Mean
Error

Mean Absolute
Error RMSE

Std.
Residuals

Mean Est.
Height

Mean True
Height

Min Est.
Height

Max Est.
Height

HYB BCE PHYS10 Summer Tile 6 1.6646 2.0255 2.5509 2.1175 9.6719 8.0073 1.851 14.7363
Summer Tile 7 1.0823 1.0823 1.0823 - 9.958 8.8757 9.958 9.958
Summer Tile 8 -0.4817 0.6269 0.8623 0.7834 4.8536 5.3353 2.4865 6.4235
Winter Tile 6 -3.8292 3.8292 4.7869 3.2115 5.1916 9.0209 2.3961 8.3865
Winter Tile 7 -4.1808 4.1808 4.1971 0.5226 3.9502 8.1311 2.8361 5.0644
Winter Tile 8 -0.701 0.9971 1.1674 1.0082 4.2666 4.9677 2.397 5.6808

RGBS BCE50 DICE50 Summer Tile 6 2.303 2.303 2.9424 2.0063 10.3103 8.0073 5.4149 14.5126
Summer Tile 7 -0.144 0.6038 0.6208 0.854 7.9871 8.1311 6.6386 9.3356
Summer Tile 8 -0.5014 0.7366 0.8605 0.7661 4.8339 5.3353 2.9009 5.8848
Winter Tile 6 0.0445 0.4186 0.4947 0.5508 9.0654 9.0209 2.5958 13.7778
Winter Tile 7 -2.1753 2.1753 2.316 1.1242 5.9557 8.1311 4.4162 7.4953
Winter Tile 8 0.4455 1.0346 1.2715 1.2864 5.4132 4.9677 3.196 7.3907

RGBS BCE70 DICE30 Summer Tile 6 1.4643 1.746 2.2649 1.8927 9.4717 8.0073 2.0889 14.5126
Summer Tile 7 0.6673 0.6673 0.6673 - 9.543 8.8757 9.543 9.543
Summer Tile 8 -0.4292 0.8067 0.9009 0.8677 4.9061 5.3353 2.9009 6.2287
Winter Tile 6 -0.362 0.4353 0.5782 0.5041 8.6588 9.0209 2.3961 13.1788
Winter Tile 7 -4.8748 4.8748 4.8748 - 4.0009 8.8757 4.0009 4.0009
Winter Tile 8 -0.5672 1.4818 1.7029 1.7343 4.4004 4.9677 2.7965 6.5917

LUO UNET Summer Tile 6 1.9179 2.3439 2.7906 2.2206 9.9253 8.0073 1.6559 15.2264
Summer Tile 7 -0.9923 0.9923 0.9923 - 7.8834 8.8757 7.8834 7.8834
Summer Tile 8 -0.4019 0.5789 0.8387 0.8064 4.9333 5.3353 2.4554 6.6307
Winter Tile 6 -0.0865 0.5207 0.5949 0.6581 8.9344 9.0209 2.1965 13.7219
Winter Tile 7 1.0598 1.0598 1.3285 1.1328 9.1909 8.1311 7.6452 10.7365
Winter Tile 8 -0.3897 0.846 0.9333 0.916 4.5779 4.9677 2.7965 6.1642

Table 20: Results of Paired T-Testing between the LUO UNET baseline vs the PHYSHADE models
for height estimation.

Comparison Metric LUO UNET Mean vs. Mean t-statistic p-value Significant?

LUO UNET vs HYB BCE PHYS10 Mean Error 0.1846 -1.0743 1.1423 0.3051 No
LUO UNET vs HYB BCE PHYS10 Mean Absolute Error 1.0569 2.1236 -1.5618 0.1791 No
LUO UNET vs HYB BCE PHYS10 RMSE 1.2464 2.4412 -1.5707 0.177 No
LUO UNET vs HYB BCE PHYS10 Std. Residuals 1.1468 1.5286 -0.6868 0.53 No
LUO UNET vs RGBS BCE50 DICE50 Mean Error 0.1846 -0.0046 0.3011 0.7755 No
LUO UNET vs RGBS BCE50 DICE50 Mean Absolute Error 1.0569 1.212 -0.7382 0.4936 No
LUO UNET vs RGBS BCE50 DICE50 RMSE 1.2464 1.4176 -0.9005 0.4091 No
LUO UNET vs RGBS BCE50 DICE50 Std. Residuals 1.1468 1.1468 0.0002 0.9998 No
LUO UNET vs RGBS BCE70 DICE30 Mean Error 0.1846 -0.6836 0.8183 0.4504 No
LUO UNET vs RGBS BCE70 DICE30 Mean Absolute Error 1.0569 1.6686 -0.921 0.3993 No
LUO UNET vs RGBS BCE70 DICE30 RMSE 1.2464 1.8315 -0.945 0.388 No
LUO UNET vs RGBS BCE70 DICE30 Std. Residuals 1.1503 1.2497 -0.3938 0.7201 No
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Figure 20: Overview of the lines fitted for height estimation on the different models of PHYSHADE
and LUO UNET in Summer Tile 6. It can be seen here that generally speaking, all models performed
comparably. As can be seen with blob 2, in some cases the height of a building can be vastly
overestimated if the shadow of a neighbouring building falls over it. Attributing the correct parts of a
shadow beyond what was done in the height-estimation pipeline already would be required to increase
the robustness in such cases. Note how the shadow blobs after filtering for LUO UNET look very
similar to the others, although with some additional blobs that were ignored by the height estimation
algorithm; the selection process is robust enough to not be heavily influenced by these cases. LUO
UNET performed the worst here in terms of inference, but is able to salvage this with a relatively good
height estimation on blob 2.
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Figure 21: Overview of the lines fitted for height estimation on the different models of PHYSHADE in
Summer Tile 7. Considering the simplicity of this image in terms of building number and geometry,
the performance over all models was very good. HYB BCE PHYS10 performed the best for Blob
1, whereas RGBS BCE50 DICE50 did the best for Blob 2. RGBS BCE70 DICE30 saw a slight
overestimation for Blob 1, leading to a higher-than-truth estimation. Overall though, the differences in
most cases are only a few pixels off. The difference in True Height in Table 18 and Table 19 can be
explained due to the building in the top right not being counted by HYB BCE PHYS10 and RGBS
BCE70 DICE30 compared to RGBS BCE50 DICE50, since their shadow blobs were truncated as they
were connected to the edge of the raster and thus filtered.
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Figure 22: Overview of the lines fitted for height estimation on the different models of PHYSHADE
in Summer Tile 8. Not much can be said about the differences between the rays cast here; Most of
them are calculate into relatively good representations of building height, with the buildings having
multiple blobs associated with them needing the extra step of filtering for the ”correct” blob by looking
at what blob has the largest surface area. In all cases here, this corresponded with the building with
the most correct line. Once again the LUO UNET model has the most noise from inference, but the
blob-to-building processing is robust enough to guard against this.
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Figure 23: Overview of the lines fitted for height estimation on the different models of PHYSHADE
and LUO UNET in Winter Tile 6. While RGBS BCE50 DICE50 and RGBS BCE30 DICE70 were
able to score better on the height estimation due to their higher recalls, HYB BCE PHYS 10 suffered
a lot on this imagery with the middle building under blob 2 underestimating the building height by
around ≈ 9.2 meters. It should be mentioned here that the overeagerness for RGBS BCE50 DICE50
to predict led it close to overestimating more than it did; a large part of the shadow associated with
blob 1 was a false positive, which could have negatively influenced the quality of height estimation if
it were to fall in one continouous line from the building footprint. The inference from LUO UNET
looks very similar to RGBS BCE50 DICE50 here, and as such they share a lot of similarities, although
LUO UNET found two more blobs that were eligible for getting rays cast.
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Figure 24: Overview of the lines fitted for height estimation on the different models of PHYSHADE
and LUO UNET in Winter Tile 7. This image had the largest errors of the entire out-of-fold dataset
for the PHYSHADE, as the inference over this image was weak. Here, it is the high recall of RGBS
BCE50 DICE50 that help it still come to a relatively good estimate for building height with the error for
blob 1 being less than two meters. In stark contrast, LUO UNET performed the best here as opposed
to the PHYSHADE models due to inference quality being much better; although its precision is not
great and is overestimating the blobs to the top left, it was able to nearly perfectly capture the building
shadows leading to relatively accurate height estimations. As with Summer Tile 7, the difference in
true height for this image when comparing to Table 17 and Table 18 in the statistics can be explained
due to the building in the top right being filtered out in two of the images.



Chapter 5 RESULTS 55

Figure 25: Overview of the lines fitted for height estimation on the different models of PHYSHADE
and LUO UNET in Winter Tile 8. For this image, HYB BCE PHYS10 was able to perform best overall
when compared to RGBS BCE50 DICE50, whose inference output was noisier in turn leading to more
outliers.
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6 Discussion and Conclusions

In this thesis, pseudo-shadows derived from building footprints were employed as geometric priors
to help steer a U-Net based model into recognizing building shadows for the purposes of shadow
inference and subsequent height estimation. Through this, it was hoped that the quality of segmentation
aided by the pseudo-shadows would subsequently help increase the robustness of height estimation.

6.1 Discussion of Results

Q1: What is the baseline performance of an RGB U-Net trained on the Luo et al. (2020) dataset
when evaluated on Dutch aerial imagery compared to the original dataset?
Before the different configurations of PHYSHADE were trained, its predecessor U-Net model used for
transfer learning trained on the dataset by Luo et al. (2020) was evaluated on two intra-domain images
where all shadows as opposed to only building shadows were annotated as ground truth. Since the
original dataset was created from imagery of different countries and urban morphologies, this step was
taken to assess the difference in performance . It was found that the cross-domain application caused
deficiencies in performance; whereas Luo et al. (2020) reported Dice scores of ≈ 0.88, performance
for the two fully annotated images of the intra-domain dataset dropped to ≈ 0.57. Although the sample
size here is small and would require a larger fully annotated Dutch shadow dataset before this statistic
can be considered reliable, it is indicative of cross-domain performance loss meaning that the model
would need to be fine-tuned before it can be used to reliably detect shadows in the Dutch domain
inhabited by the PHYSHADE dataset.

Q2/3: How does adding the pre-calculated shadow mask channel derived from building footprints
affect segmentation accuracy across different urban morphologies, seasons, and solar geometries?
What are the most effective formulations and weighting schemes to effectively balance appearance
learning with the geometric prior?
After the application of transfer learning to turn the Luo et al. (2020) into PHYSHADE, it was found
that the injection of geometric priors in the form of pseudo-shadows allowed for PHYSHADE to
perform better when segmenting building shadows, leading to an increase in Dice score of≈ 0.32 when
comparing the models without access to fourth channel pseudo shadows (those found in Experimental
Subset A) to the models with access to the pseudo-shadows (Experimental Subset B). As such, the
model architecture after training is able to interpret the pseudo-shadows and learns to respect them by
not inferring shadows that fall outside them, leading to much higher precision statistics.

Besides the addition of pseudo-shadows as a fourth channel to model input, the inclusion of
pseudo-shadows through loss functions was explored as well. Here, it was found that between the
baseline models configurations of Subset A and the models of Subset C, no significant difference could
be found in Dice score. This result was unsurprising, as while the physics guided loss is pushing the
model to weigh predictions surrounding the pseudo-shadows more heavily and in this sense should
guide the model to focus there, it was unable to learn the context necessary for understanding that the
ground truth shadows are specifically building shadows.

During the comparison of Subset B and D, the addition of physics-guided loss was examined for the
PHYSHADE models that did have access to the pseudo-shadows as fourth channels in their input. With
the added context of what can and cannot be considered a building shadow through the pseudo-shadow,
it was hoped that the physics-guided loss would either help improve segmentation quality through
increases in Dice score, or that it would help the models converge faster by focussing the models’
attention on the relevant pixels within the pseudo-shadows. While the addition of physics-guided loss
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did not lead to significant increases in Dice score (in fact, out of the four significantly tested models,
three saw decreases in Dice score), one model saw an increase of 0.0068 in their mean Dice score
when compared to its Subset B counterpart, making it the highest scoring model of all experimental
configurations with a mean Dice score of 0.8523, precision of 0.8498 and recall of 0.8320. As for the
difference in time needed for convergence when comparing the models from subsets B and D, HYB
DICE HYS50 saw a significant decrease in epochs needed to converge, taking on average 7.4 epochs
less to reach training completion compared to RGBS BCE50 DICE50. However, in the majority of
cases the physics-guided loss term did not lead to significant decreases in training epochs required
and in some cases even caused it to go up (albeit non-significantly). As for the weighting used in
the configurations of subset B and D, it seems that in the RGBS models without physics-guided loss
the performance is roughly similar for higher weightings of BCE loss vs Dice loss making them
equally fit for the application of segmenting building shadows. For the hybrid models containing the
physics-guided loss, it generally is true that the higher the weighting for the loss, the more it will
negatively impact performance. Since the added physics-guided loss increased the performance for
HYB BCE PHYS10 by only 0.0068, it may be a valid decision to use the simpler RGBS models
over the hybrid models. That said, for the purposes of ablation and limitations in computational time
available for experimentation, the weighting for the HYB models of Subset D was kept constantly at
BCE 50 and DICE 50, which means that only part of the possible configurations for the hybrid models
were tested. As such, there may be hyper-parameter configurations for the models that could result in
higher performance than what was trained within the purviews of this thesis.

The results described above were derived through five-fold cross validation, where the dataset is
divided into five parts (or folds). The dataset is then iterated over five times, each time using four of
the folds for training the models and one fold for validation, such that each image gets trained on four
times and validated on once. This way, the error statistics produced over each of the five folds can
be averaged to get a more representative idea of the performance using the full dataset, since some
(especially randomized) selections of validation imagery may not provide an adequate representation
of the domain they depict.

To get a true idea of what the model performance might look like if it were trained on the full
size of the dataset without splitting, six additional images were annotated outside of the domain.
The PHYSHADE configurations selected were the top two performing models (HYB BCE PHYS10,
RGBS BCE70 DICE30) alongside a model useful for ablating physics-guided loss terms (RGBS
BCE50 DICE50). These models were then applied to the validation set to see how their performance
would fare in a scenario not seen before. Here, it was found that despite the fact that the original
PHYSHADE dataset contained paired summer and winter imagery, the performance over the winter
tiles in the out-of-fold dataset was a lot worse compared to the summer tiles. This error was mostly
found in Winter Tile 7, where all three models ran into the same issue of falsely missing out on
labelling shadowed regions despite that these shadows are perhaps the most clear to the human eye
of all imagery. The exact reason for this is unclear, but one thing immediately noticeable is that the
increased contrast and yellowish hue is making it stand out from the other imagery. Either way, it is
indicative of the fact that the augmentation strategy employed is not adequate for ensuring performance
in these cases, and that PHYSHADE’s performance is likely capped by the small size of the dataset
leading to lower generalisability and robustness. Despite the winter images lowering the overall scores,
some good performances were seen for the summer tiles, with the three final models of PHYSHADE
obtaining average Dice scores around ≈ 0.89. For the sake of comparison, the original U-Net model
trained on the Luo et al. (2020) dataset was applied to the images as well, and scored low on Dice due
to its high recall but poor Dice scoring.
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Q4: How effective are the inferred building shadows for estimating building height using the
raster-based raycasting algorithm?
Before the application of the height estimation algorithm on the inference produced by the final
PHYSHADE models and the LUO UNET baseline model, it was decided to test the algorithm in
isolation with synthetic data to see if it is conducive to errors related to raster-based operations. Here,
it was found that the overall error statistics inherent to the algorithm are acceptably small, where the
RMSE for ray length percentiles set to 90 and above are within 0.2113 meters. Since the 99th percentile
of rays performed best as a parameter, it was selected to be used for the subsequent height estimation
using real data. When applied to the inference produced by employing the final PHYSHADE models
and LUO UNET on the out-of-fold dataset, it becomes clear that while the mean absolute error and
RMSE for the different models are around 1.46m and 2.07m respectively, they are outperformed by
the LUO UNET baseline model which was able to score a 1.08m mean absolute error and a 1.53m
RMSE. The reason for this is two-fold: shadow segmentation models that score higher on recall are
able to get retrieve more of the shadow back, meaning that the subsequent height estimation based
on this is more likely to be accurate. This same trend where higher recall models scored better on
height estimation was also seen in the PHYSHADE models, where RGBS BCE50 DICE50 as a model
suffered from comparatively lower precision but higher recall. leading it to perform similarly to LUO
UNET on height estimation. Secondly, although LUO UNET suffered on precision which could lead
to overestimation, some of the effects of this were mitigated due to the preprocessing steps used to
filter out invalid blobs from height estimation. However, despite the fact that the LUO UNET Model
scored better on height estimation than the rest, the paired t-tests comparing the models came back as
insignificant, meaning that no real difference in the means was found between them.

6.1.1 Study Limitations

While the test statistics for height estimation in-vitro show that there is some potential for the height esti-
mation to give good ballpark estimates of building heights, a larger-scale evaluation of the PHYSHADE
models and method should be performed to see whether the performance works well in other scenarios.
The out-of-fold dataset for shadow inference and height estimation is small, and represent a best-case
scenario for the models; the buildings and subsequent shadows are mostly clear of obstructions,
and contain little building-over-building obstructions where the shadow of one building completely
envelops the other (although one such case can be seen in Figure 14 where the height of blob 2 was
overestimated due the shadow of the building on the right).

In addition, although it can be seen that the addition of geometric priors in the form of pseudo-
shadows is able to increase the performance of building shadow segmentations such as seen in
the ablation of Subsets A and B, there are limitations to the methodology posed. For example,
PHYSHADE’s interpretation of the interplay between building geometry and solar positioning is
reliant on the pseudo-shadow mapping. Since in its current form a large l max is used to generate
the extent of the pseudo-shadows based upon the 95th percentile of all buildings heights, a lot of
granularity is lost due to the discrepancy in height between the average building and this number.
While this has not been too problematic in the contexts of the current dataset as buildings are spread
out, segmentation quality in more urban context could potentially degrade due to the increased density
of buildings smearing out into pseudo-shadows that predict shadows everywhere. Although this may
be mitigated in part through the tuning of l max where an estimate is made per image on the building
height first, it is unsure what effect different values for l min and l max would have as unfortunately,
these were not ablated for in this study due to time constraints.

Finally, while the results show that the concept of PHYSHADE has value in the segmentation of
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building shadows, an expansion in both the training and validation sets would be required to gain a
better idea of the generalisability of the model and subsequent height estimations stemming from it.
With this, the main goal should be to expand the breadth of domains (i.e. rural-urban, building types,
varied times of day) further than the dataset presented in this thesis.

6.2 Conclusion
This thesis introduced the PHYSHADE models; a set of physics-guided U-Net based CNNs that
combines RGB aerial imagery together with pseudo-shadows encoding shadow probabilities towards
the improvement of building shadow segmentation and height estimation. Inspired by Physics-Informed
Neural Networks, an algorithm was introduced that creates pseudo-shadow mappings based upon
building footprints and the solar position and altitude of the sun, thereby giving PHYSHADE the
ability to better understand the difference between building shadows and other shadows. By using data
augmentation, k-fold cross-validation combined with transfer learning to get past the limitations of a
small dataset, 130 different models were trained for the purposes of ablating PHYSHADE. Here, it
was shown that the addition of pseudo-shadows as an extra channel to the RGB input provided a lot of
value, leading to Dice score increases of up to 0.32 and average Dice scores of up to 0.847. In addition,
the usage of pseudo-shadows to regularize training loss were explored as well, where although one
model was found to be the best performing over all configurations, the physics-guided loss functions
as posed in this thesis rarely provided added benefit whilst actively harming model performance in
some cases.

Finally, height estimation was performed using a raycasting-based algorithm on the inference of
four different models; the top two best scoring, one model for ablation of the first and the pre-transfer
learning model as a control to assess the added benefit of the PHYSHADE models towards height
estimation. Although it was found that the PHYSHADE models did not perform better as input for the
height estimation tasks due to their relatively lower recall, the concept of height estimation through
building shadow segmentation proved to be a viable alternative to more costly approaches such as
LiDAR by scoring RMSE values around two meters and MAE values around 1.46 meters, provided
that the use case is not for purposes where high accuracy is mission-critical.

There are limitations to the study however; the procedures used for the subdivision and assignment
of shadows to buildings suffers from ambiguity in some cases, where building-over-building overlap
may cause certain shadows to be attributed to the wrong building leading to erroneous height calcu-
lations. Such problems would be exacerbated in urban contexts where building density is higher. In
addition, the employed dataset for this study was small, where the combination of the in-fold and out-
of-fold dataset only yields 41 images which limits the claims that can be made about the generalisability
of PHYSHADE and the subsequent statistics produced by inference and height estimation.

6.2.1 Future Work

Future work could focus on filling the gaps left by this research; while a proof-of-concept for physics-
guided shadow segmentation through geometric priors was provided and applied in a small domain, an
expansion in the dataset could reveal the viability of employing this model architecture on a larger
scale. Advancements in the field of building segmentation; that is, the recognition of buildings in
aerial photography would go hand-in-hand with PHYSHADE, potentially leading to a pipeline where
building shadows can be segmented accurately at scale requiring minimal manual intervention. There
are also architectural changes that could potentially be explored that forego usage of a raycasting
algorithm and implement the height estimation as an additional objective directly into a model similar
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to PHYSHADE. For example, X. Li et al. (2020) use multi-task learning to segment and do height
estimations on buildings with good results. The inclusion of a building-shadow segmentation branch
could potentially help inform the height-estimation branch of a CNN, which could potentially lead to
performance gains. Another possible avenue of research would not only be the additional classification
and linkage of building shadows to buildings through a CNN as opposed to just the segmentation, as
this would potentially bypass the issues caused by the ambiguity of shadows within this research.
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A Overview of Pipeline: Preprocessing

Figure A.1: An overview of the first part of the PHYSHADE pipeline, where the initial RGB imagery
is taken and pseudo-shadows are generated using the time/date metadata. Afterwards, the original 35
images are split into 5 folds and applied data augmentation to, whereas the 6 Out-of-Fold images are
kept as-is.
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B Overview of Pipeline: Training

Figure B.1: An overview of the second part of the PHYSHADE pipeline where the baseline Luo U-Net model is trained, followed by the training
of the various subsets of PHYSHADE models. For the initial round of evaluation of the PHYSHADE models, the cross-fold statistics are used,
after which the best performing models are trained on the full dataset and validated on the out-of-fold dataset.
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C Overview of Pipeline: Height Estimation

Figure C.1: An overview of the final part of the PHYSHADE pipeline where the height estimations are being performed. Firstly, using the
inference from the final models and the Luo et al. (2020) general shadow segmentation model trained as a transfer learning base, shadows are
inferred on the out-of-fold dataset. Afterwards, the inferred shadows are assigned to buildings and filtered. During sun-edge extraction, the
pixels of the shadow blobs facing the sun are selected as starting rays for the shadow length raycasting, after which they are compared to the true
building heights to gain the error statistics.
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D Dataset Collection Procedure
In order to create a sample of equal sized 512x512 raster images for input in CNNs, the following
steps were taken:

Figure D.1: During step 1, a bounding polygon is created over one of the areas of study

Figure D.2: During step 2, using the ”Create Grid” option from the QGIS Toolbox, a 512x512 grid is
overlaid. To do so, spacing was set to 512x0.25 (25cm resolution) to get 128x128 meter grid cells.
From here, the underlying raster can be clipped by iterating over each polygon within the grid layer
individually while outputting.
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E Mosaic of PHYSHADE Dataset

Figure E.1: A mosaic of the full dataset used for the training of PHYSHADE, consisting of 15 summer/winter pairs and 5 singular images.
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F Annotation Guidelines

Aim for precise, pixel-level contours around buildings and shadow regions. Zoom in and carefully trace
object outlines––we want to capture as much detail as possible without cutting off parts of the features.
Consistent boundary handling is crucial: always delineate the true edges of buildings (including any
visible façades) and the exact extent of shadows on the ground. Avoid leaving gaps or overlaps between
classes; inconsistency in boundaries can confuse the model during training.

Buildings
Always start with drawing buildings first. A building is considered to be a permanent (immobile)

man-made structure that has a roof.

What to draw
• Entire roof area of each building, up to the clearly visible edge. If the side of the building is

visible (on the side away from the sun), include that side as well––the building’s side in shadow
is still part of the building, not a ground shadow.

• Any part of a building façade that is visible.
• Any type of building; from large structures to small sheds to storage silos. If it is immobile,

man-made and has a roof, label it.
• Canopies/awnings or transparent roofs should be marked as building.

What not to draw
• Shadows on the building itself: if part of a building’s roof is dark due to shadow from another

structure (or another part of the same building), that area is still building (just not sunlit) and
should remain class 2. Do not carve out shadows that fall on a roof or wall; only exclude shadows
on the ground. We are not differentiating sunlit vs. shadowed building pixels.

• Ground areas between buildings: e.g., if a building has a courtyard, it is not a building. Only
draw the actual structure.

• Non-buildings: bridges, roads, other man-made structures that don’t have roofs.
• If a building is occluded (i.e., hiding behind something else), only draw what is visible of the

building.

Shadow
Specifically, we are looking for shadows cast by buildings onto adjacent ground, i.e. terrain or

other ground-level surfaces.

What to draw
• Shadows cast by buildings onto adjacent ground: typically appearing as a dark shape extending

from the base of the building opposite to the sun.
• Shadows cast by one building onto another ground-level structure or surface: e.g., a building

shadow falling across a parking lot, cars, street, low vegetation, etc.
• In case of partial overlap with other shadows: please try to only label the portion of the shadow

that is confidently cast by the building.
• Ensure that there is no gap between building and shadow classifications.

What not to draw
• Shadows cast by non-buildings: trees, poles, vehicles, any object that isn’t a building. Do not

include it if it is not a building-cast shadow.
• Shadows on top of buildings: if one building’s shadow falls on another, do not label that as a

shadow but as building instead. The shadow label is strictly for shadows on ground surfaces.
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• Interior shadows on building roofs: sometimes structures will cast shadows within themselves
on the same roof; these are not ground shadows and should be marked as building.

• Very faint or ambiguous shadows: underestimate rather than overestimate, as this will help the
model later.
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G Visual Results & Qualitative Examples

Figure G.1: Three images showcasing the original RGB on the left, with the manually annotated masks
on the right. Purple for building shadows, teal for building footprints.
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H Model Training Configuration

Table H.1: An overview of the trained models, with varying hyperparameters for the purpose of
ablation and parameter tuning.

Experiment ID Name Hyperparameters
4th Channel Pseudo-
Shadow Enabled

BASE BCE BCE - False
BASE DICE Dice - False

RGB BCE30 DICE70 BCE / Dice BCE: 0.3, Dice: 0.7 False
RGB BCE50 DICE50 BCE / Dice BCE: 0.5, Dice: 0.5 False
RGB BCE70 DICE30 BCE / Dice BCE: 0.7, Dice: 0.3 False
RGBS BCE30 DICE70 BCE / Dice BCE: 0.3, Dice: 0.7 True
RGBS BCE50 DICE50 BCE / Dice BCE: 0.5, Dice: 0.5 True
RGBS BCE70 DICE30 BCE / Dice BCE: 0.7, Dice: 0.3 True

PHYS ATT 1.0 Attentive BCE / Dice Attention: 1, BCE: 0.5, Dice: 0.5 False
PHYS ATT 0.5 Attentive BCE / Dice Attention: 0.5, BCE: 0.5, Dice: 0.5 False
PHYS ATT 0.1 Attentive BCE / Dice Attention: 0.1, BCE: 0.5, Dice: 0.5 False
PHYS BCE 33 Physics BCE Physics: 0.3, BCE: 0.3, Dice: 0.3 False
PHYS BCE 10 Physics BCE Physics: 0.1, BCE: 0.45, Dice: 0.45 False
PHYS BCE 50 Physics BCE Physics: 0.5, BCE: 0.25, Dice: 0.25 False
PHYS DICE 33 Physics Dice Physics: 0.3, BCE:0.3, Dice: 0.3 False
PHYS DICE 10 Physics Dice Physics: 0.1, BCE: 0.45, Dice: 0.45 False
PHYS DICE 50 Physics Dice Physics: 0.5, BCE: 0.25, Dice: 0.25 False

HYB BCE PHYS30 Physics BCE Physics: 0.3, BCE: 0.3, Dice: 0.3 True
HYB BCE PHYS50 Physics BCE Physics: 0.5, BCE: 0.25, Dice: 0.25 True
HYB BCE PHYS10 Physics BCE Physics: 0.1, BCE: 0.45, Dice: 0.45 True
HYB DICE PHYS30 Physics Dice Physics, 0.3, BCE: 0.3, Dice: 0.3 True
HYB DICE PHYS50 Physics Dice Physics: 0.5, BCE: 0.25,Dice: 0.25 True
HYB DICE PHYS10 Physics Dice Physics: 0.1, BCE: 0.3, Dice: 0.3 True
HYB ATT 1.0 Attentive BCE / Dice Physics: 1, BCE: 0.5, Dice: 0.5 True
HYB ATT 0.5 Attentive BCE / Dice Physics: 0.5, BCE: 0.5, Dice: 0.5 True
HYB ATT 0.1 Attentive BCE / Dice Physics: 0.1, BCE: 0.5, Dice: 0.5 True
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I Overview of Training Hyperparameters

Table I.1: An overview of the used hyperparameters to train the baseline model by Luo et al. (2020).
These settings were also used for the the training of the derivative transfer-trained models, albeit with
different loss functions.

Name Value Description

Batch Size 8 (Base), 16 (PHYSHADE) Number of samples per training batch
Stride 128 The stride used to extract patches from images
Patch size 512 The size of the patches cropped from the imagery
Seed 15 Seed for the purposes of reproducibility
Epochs 150 The maximum number of training epochs
Early Stop Patience 25 Epochs to wait without improvement to Dice loss before stopping
Optimizer AdamW Optimizer used for training
Learning Rate 1e-4 Initial learning rate
Weight Decay 1e-4 Modulates training regularization

Scheduler ReduceLROnPlateau Reduces the learning rate when validation loss plateaus

Factor 0.5 Learning rate is reduced by this factor
Patience 5 The number of epochs without improvement before educing the learning rate
Min lr 1e-6 Lower bound on learning rate
Mode ’min’ Reduce learning rate

Loss function BCEWithLogitsLoss Binary Cross Entropy with logits
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J Smearing and Height Estimation Algorithms

Algorithm J.1 Pseudocode describing the smearing algorithm responsible for generating pseudo-
shadows from building footprints

1: function SMEAR(M,θ,(lmin, lmax),T, fade) ▷ M: binary mask, θ: azimuth, T : transform
2: Compute unit vector: (ux,uy)← (sin(θ+π),cos(θ+π))
3: Extract pixel size: (rx,ry)← resolution from T
4: Compute Step Distance: reff←

√
(uxrx)2 +(uyry)2

5: Compute number of steps: N← ⌈lmax/reff⌉
6: Calculate Step Distance: ∆ℓ← lmax/N
7: Initialize empty matrix S, same size as M
8: for iteration = 1,2, ...,N do
9: ℓi← i ·∆ℓ

10: Compute decay weight wi based on ℓi:

wi =



1, if fade = solid
1, if ℓi ≤ lmin

0, if ℓi ≥ lmax

1− ℓi− lmin

lmax− lmin
, otherwise

11: Compute shift:

∆x =
ux · ℓi

rx
, ∆y =−

uy · ℓi

ry

12: Shift mask: Mi← warp(M,∆x,∆y)
13: Accumulate: S←max(S,wi ·Mi)
14: end for
15: if fade is gradient then
16: Normalize S← S/max(S)
17: end if
18: return S
19: end function
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Algorithm J.2 Pseudocode describing the raymarching-based height estimation method using subpixel
interpolation and percentile-based aggregation.

1: function ESTIMATEHEIGHT(M,B,θ,e, p,∆,N) ▷ M: shadow mask, B: building mask, θ: azimuth,
e: elevation, p: percentile, ∆: pixel size

2: Compute direction unit vector: (ux,uy)← (sin(θ+π),−cos(θ+π))
3: Create binary masks: Mb←M > 0.5, Bb← B > 0.5
4: Label shadow blobs: LM,nM← label(Mb)
5: Label combined connectivity: LC← label(Mb∨Bb)
6: Identify connected blob IDs:

C←{ i | ∃(x,y) ∈Mb with LC[x,y] ∈ LC[Bb > 0]}

7: Initialize height map H← 0 and blob ID map I← 0
8: k← 1 ▷ Blob counter
9: for all i ∈C do

10: Extract blob mask: Si← LM == i
11: if area(Si)< 30 then ▷ Helps ignore sliver artifacts from smearing
12: continue
13: end if
14: Collect edge starting coordinates: P←{(x,y) ∈ Si : (x− sign(ux),y− sign(uy)) /∈ Si}
15: Initialize ray length list: R← [ ]
16: for all (x0,y0) ∈ P do
17: Initialize ray value list: v← [ ]
18: for j = 1,2, ...,N do
19: x← x0 +ux · j, y← y0 +uy · j
20: if (x,y) out of bounds then
21: break
22: end if
23: v j← interpolate(M,(x,y))
24: if v j < 0.25 then ▷ Min. ray length, change depending on resolution
25: break
26: end if
27: Append v j to v
28: end for
29: Append |v| to R
30: end for
31: if R ̸= /0 then
32: ℓ← percentile(R, p) ▷ Prevents outliers common outside 8-point compass dir.
33: h← ℓ · tan(e)
34: Set H[Si]← h
35: Set I[Si]← k
36: k← k+1
37: end if
38: end for
39: return H, I
40: end function
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K Mosaic of Out-of-Fold Dataset

Figure K.1: A mosaic of the out-of-fold dataset used to assess the final models of PHYSHADE and to do the height estimation on. From left to
right: Tile 6, Tile 7 and Tile 8.
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L Model Training Results

Table L.1: Raw output of inference showing per fold statistics and averages on the intra-domain dataset.

Experiment fold Epochs Ran Dice Precision Recall Loss Loss Function Loss Hyperparameters Use Prior Channel

BASE BCE 1 39 0.4621 0.4987 0.3332 0.0602 BCE None FALSE
BASE BCE 2 43 0.4012 0.3757 0.3937 0.0235 BCE None FALSE
BASE BCE 3 37 0.5144 0.5633 0.3849 0.0414 BCE None FALSE
BASE BCE 4 42 0.5729 0.6753 0.4198 0.0477 BCE None FALSE
BASE BCE 5 36 0.5384 0.6107 0.3572 0.0362 BCE None FALSE
BASE BCE avg 39.4 0.4978 0.5447 0.3778 0.0418 BCE None FALSE
BASE DICE 1 50 0.5196 0.5837 0.4406 0.5551 Dice None FALSE
BASE DICE 2 73 0.5151 0.4595 0.5148 0.4882 Dice None FALSE
BASE DICE 3 45 0.5608 0.6265 0.4485 0.4368 Dice None FALSE
BASE DICE 4 29 0.5687 0.7169 0.3931 0.4351 Dice None FALSE
BASE DICE 5 37 0.49 0.5557 0.3533 0.5423 Dice None FALSE
BASE DICE avg 46.8 0.5309 0.5885 0.4301 0.4915 Dice None FALSE

RGB BCE30 DICE70 1 35 0.5077 0.5518 0.4217 0.4218 BCE / Dice Weight Bce=0.3
Weight Dice=0.7

FALSE

RGB BCE30 DICE70 2 46 0.4741 0.4009 0.5479 0.3877 BCE / Dice Weight Bce=0.3
Weight Dice=0.7

FALSE

RGB BCE30 DICE70 3 45 0.5473 0.5886 0.4476 0.3416 BCE / Dice Weight Bce=0.3
Weight Dice=0.7

FALSE

RGB BCE30 DICE70 4 31 0.5414 0.6788 0.371 0.3621 BCE / Dice Weight Bce=0.3
Weight Dice=0.7

FALSE

RGB BCE30 DICE70 5 36 0.542 0.6111 0.3593 0.4055 BCE / Dice Weight Bce=0.3
Weight Dice=0.7

FALSE

RGB BCE30 DICE70 avg 38.6 0.5225 0.5662 0.4295 0.3837 BCE / Dice Weight Bce=0.3
Weight Dice=0.7

FALSE

RGB BCE50 DICE50 1 37 0.4877 0.5299 0.3906 0.3523 BCE / Dice Weight Bce=0.5
Weight Dice=0.5

FALSE
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Table L.1 continued from previous page

Experiment fold Epochs Ran Dice Precision Recall Loss Loss Function Loss Hyperparameters Use Prior Channel

RGB BCE50 DICE50 2 44 0.4977 0.435 0.5244 0.2802 BCE / Dice Weight Bce=0.5
Weight Dice=0.5

FALSE

RGB BCE50 DICE50 3 45 0.5445 0.5423 0.4662 0.2802 BCE / Dice Weight Bce=0.5
Weight Dice=0.5

FALSE

RGB BCE50 DICE50 4 30 0.5266 0.6595 0.3527 0.2896 BCE / Dice Weight Bce=0.5
Weight Dice=0.5

FALSE

RGB BCE50 DICE50 5 32 0.5475 0.6222 0.3589 0.3011 BCE / Dice Weight Bce=0.5
Weight Dice=0.5

FALSE

RGB BCE50 DICE50 avg 37.6 0.5208 0.5578 0.4186 0.3007 BCE / Dice Weight Bce=0.5
Weight Dice=0.5

FALSE

RGB BCE70 DICE30 1 35 0.4931 0.5463 0.392 0.2386 BCE / Dice Weight Bce=0.7
Weight Dice=0.3

FALSE

RGB BCE70 DICE30 2 42 0.5074 0.4085 0.4644 0.1838 BCE / Dice Weight Bce=0.7
Weight Dice=0.3

FALSE

RGB BCE70 DICE30 3 33 0.5433 0.5535 0.4148 0.1882 BCE / Dice Weight Bce=0.7
Weight Dice=0.3

FALSE

RGB BCE70 DICE30 4 35 0.5402 0.6699 0.3859 0.1952 BCE / Dice Weight Bce=0.7
Weight Dice=0.3

FALSE

RGB BCE70 DICE30 5 31 0.5403 0.5966 0.3781 0.1999 BCE / Dice Weight Bce=0.7
Weight Dice=0.3

FALSE

RGB BCE70 DICE30 avg 35.2 0.5249 0.555 0.407 0.2011 BCE / Dice Weight Bce=0.7
Weight Dice=0.3

FALSE

RGBS BCE30 DICE70 1 61 0.8234 0.8541 0.7838 0.1276 BCE / Dice Weight Bce=0.3
Weight Dice=0.7

TRUE

RGBS BCE30 DICE70 2 46 0.8359 0.7577 0.8386 0.1344 BCE / Dice Weight Bce=0.3
Weight Dice=0.7

TRUE

RGBS BCE30 DICE70 3 77 0.8362 0.8288 0.8272 0.1371 BCE / Dice Weight Bce=0.3
Weight Dice=0.7

TRUE

RGBS BCE30 DICE70 4 46 0.8521 0.8729 0.8114 0.1163 BCE / Dice Weight Bce=0.3
Weight Dice=0.7

TRUE

RGBS BCE30 DICE70 5 63 0.8901 0.9039 0.8586 0.1073 BCE / Dice Weight Bce=0.3
Weight Dice=0.7

TRUE
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Table L.1 continued from previous page

Experiment fold Epochs Ran Dice Precision Recall Loss Loss Function Loss Hyperparameters Use Prior Channel

RGBS BCE30 DICE70 avg 58.6 0.8475 0.8435 0.8239 0.1245 BCE / Dice Weight Bce=0.3
Weight Dice=0.7

TRUE

RGBS BCE50 DICE50 1 60 0.8297 0.8648 0.7683 0.0988 BCE / Dice Weight Bce=0.5
Weight Dice=0.5

TRUE

RGBS BCE50 DICE50 2 51 0.8401 0.81 0.8404 0.0974 BCE / Dice Weight Bce=0.5
Weight Dice=0.5

TRUE

RGBS BCE50 DICE50 3 49 0.8225 0.8078 0.8065 0.1114 BCE / Dice Weight Bce=0.5
Weight Dice=0.5

TRUE

RGBS BCE50 DICE50 4 56 0.8507 0.8685 0.821 0.0922 BCE / Dice Weight Bce=0.5
Weight Dice=0.5

TRUE

RGBS BCE50 DICE50 5 55 0.8844 0.8929 0.8498 0.0857 BCE / Dice Weight Bce=0.5
Weight Dice=0.5

TRUE

RGBS BCE50 DICE50 avg 54.2 0.8455 0.8488 0.8172 0.0971 BCE / Dice Weight Bce=0.5
Weight Dice=0.5

TRUE

RGBS BCE70 DICE30 1 48 0.8304 0.8602 0.7702 0.0764 BCE / Dice Weight Bce=0.7
Weight Dice=0.3

TRUE

RGBS BCE70 DICE30 2 46 0.8534 0.8054 0.8321 0.0602 BCE / Dice Weight Bce=0.7
Weight Dice=0.3

TRUE

RGBS BCE70 DICE30 3 58 0.8231 0.804 0.8199 0.0769 BCE / Dice Weight Bce=0.7
Weight Dice=0.3

TRUE

RGBS BCE70 DICE30 4 53 0.843 0.8732 0.7747 0.0675 BCE / Dice Weight Bce=0.7
Weight Dice=0.3

TRUE

RGBS BCE70 DICE30 5 61 0.8938 0.8923 0.8621 0.0552 BCE / Dice Weight Bce=0.7
Weight Dice=0.3

TRUE

RGBS BCE70 DICE30 avg 53.2 0.8487 0.847 0.8118 0.0672 BCE / Dice Weight Bce=0.7
Weight Dice=0.3

TRUE

PHYS ATT 0.1 1 38 0.5003 0.5296 0.4032 0.3317 Attentive BCE / Dice
Attention Weight=0.1
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 0.1 2 39 0.5171 0.4334 0.501 0.263 Attentive BCE / Dice
Attention Weight=0.1
Weight Bce=0.5
Weight Dice=0.5

FALSE
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Table L.1 continued from previous page

Experiment fold Epochs Ran Dice Precision Recall Loss Loss Function Loss Hyperparameters Use Prior Channel

PHYS ATT 0.1 3 45 0.5424 0.5385 0.4417 0.2703 Attentive BCE / Dice
Attention Weight=0.1
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 0.1 4 33 0.5314 0.6518 0.3855 0.2882 Attentive BCE / Dice
Attention Weight=0.1
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 0.1 5 36 0.5406 0.5646 0.3454 0.3034 Attentive BCE / Dice
Attention Weight=0.1
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 0.1 avg 38.2 0.5264 0.5436 0.4153 0.2913 Attentive BCE / Dice
Attention Weight=0.1
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 0.5 1 34 0.5148 0.5364 0.3992 0.332 Attentive BCE / Dice
Attention Weight=0.5
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 0.5 2 45 0.5087 0.3914 0.4981 0.2514 Attentive BCE / Dice
Attention Weight=0.5
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 0.5 3 39 0.5486 0.5594 0.447 0.2668 Attentive BCE / Dice
Attention Weight=0.5
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 0.5 4 35 0.5717 0.6794 0.381 0.2701 Attentive BCE / Dice
Attention Weight=0.5
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 0.5 5 36 0.5532 0.5659 0.3343 0.3003 Attentive BCE / Dice
Attention Weight=0.5
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 0.5 avg 37.8 0.5394 0.5465 0.4119 0.2841 Attentive BCE / Dice
Attention Weight=0.5
Weight Bce=0.5
Weight Dice=0.5

FALSE
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Table L.1 continued from previous page

Experiment fold Epochs Ran Dice Precision Recall Loss Loss Function Loss Hyperparameters Use Prior Channel

PHYS ATT 1.0 1 33 0.5115 0.5342 0.3998 0.3274 Attentive BCE / Dice
Attention Weight=1
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 1.0 2 46 0.5089 0.4392 0.5173 0.2464 Attentive BCE / Dice
Attention Weight=1
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 1.0 3 33 0.5367 0.5561 0.4583 0.2705 Attentive BCE / Dice
Attention Weight=1
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 1.0 4 37 0.5555 0.6565 0.3936 0.2764 Attentive BCE / Dice
Attention Weight=1
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 1.0 5 32 0.5497 0.6028 0.3844 0.2841 Attentive BCE / Dice
Attention Weight=1
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS ATT 1.0 avg 36.2 0.5325 0.5578 0.4307 0.281 Attentive BCE / Dice
Attention Weight=1
Weight Bce=0.5
Weight Dice=0.5

FALSE

PHYS BCE 10 1 41 0.5344 0.5815 0.4396 0.3642 Physics BCE
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

FALSE

PHYS BCE 10 2 45 0.4729 0.4254 0.4302 0.3005 Physics BCE
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

FALSE

PHYS BCE 10 3 45 0.5537 0.5807 0.4822 0.3204 Physics BCE
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

FALSE

PHYS BCE 10 4 39 0.5583 0.6952 0.3799 0.3101 Physics BCE
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

FALSE
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Table L.1 continued from previous page

Experiment fold Epochs Ran Dice Precision Recall Loss Loss Function Loss Hyperparameters Use Prior Channel

PHYS BCE 10 5 37 0.5335 0.5943 0.441 0.3266 Physics BCE
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

FALSE

PHYS BCE 10 avg 41.4 0.5306 0.5754 0.4346 0.3244 Physics BCE
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

FALSE

PHYS BCE 33 1 46 0.5126 0.5571 0.425 0.3763 Physics BCE
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

FALSE

PHYS BCE 33 2 47 0.427 0.3619 0.4211 0.2892 Physics BCE
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

FALSE

PHYS BCE 33 3 47 0.5533 0.5579 0.4604 0.3503 Physics BCE
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

FALSE

PHYS BCE 33 4 36 0.5631 0.7341 0.3513 0.3038 Physics BCE
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

FALSE

PHYS BCE 33 5 43 0.5611 0.5603 0.4226 0.3016 Physics BCE
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

FALSE

PHYS BCE 33 avg 43.8 0.5234 0.5543 0.4161 0.3242 Physics BCE
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

FALSE

PHYS BCE 50 1 33 0.4671 0.4422 0.4169 0.4124 Physics BCE
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

FALSE

PHYS BCE 50 2 44 0.4006 0.3221 0.392 0.3095 Physics BCE
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

FALSE
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Table L.1 continued from previous page

Experiment fold Epochs Ran Dice Precision Recall Loss Loss Function Loss Hyperparameters Use Prior Channel

PHYS BCE 50 3 41 0.5258 0.5055 0.4385 0.4002 Physics BCE
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

FALSE

PHYS BCE 50 4 48 0.5835 0.6855 0.4607 0.3352 Physics BCE
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

FALSE

PHYS BCE 50 5 53 0.5772 0.5829 0.4837 0.3274 Physics BCE
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

FALSE

PHYS BCE 50 avg 43.8 0.5108 0.5076 0.4384 0.357 Physics BCE
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

FALSE

PHYS DICE 10 1 41 0.5035 0.529 0.3938 0.3856 Physics Dice
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

FALSE

PHYS DICE 10 2 55 0.5106 0.4387 0.4984 0.3295 Physics Dice
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

FALSE

PHYS DICE 10 3 45 0.5393 0.5225 0.4285 0.3313 Physics Dice
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

FALSE

PHYS DICE 10 4 33 0.5603 0.681 0.3875 0.3216 Physics Dice
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

FALSE

PHYS DICE 10 5 36 0.55 0.6026 0.3664 0.3574 Physics Dice
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

FALSE

PHYS DICE 10 avg 42 0.5327 0.5548 0.4149 0.3451 Physics Dice
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

FALSE
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Table L.1 continued from previous page

Experiment fold Epochs Ran Dice Precision Recall Loss Loss Function Loss Hyperparameters Use Prior Channel

PHYS DICE 33 1 47 0.4982 0.5293 0.4186 0.4386 Physics Dice
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

FALSE

PHYS DICE 33 2 47 0.4923 0.4288 0.5084 0.4175 Physics Dice
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

FALSE

PHYS DICE 33 3 44 0.5431 0.5307 0.4491 0.4159 Physics Dice
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

FALSE

PHYS DICE 33 4 37 0.5451 0.6691 0.3886 0.4004 Physics Dice
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

FALSE

PHYS DICE 33 5 35 0.555 0.5813 0.4002 0.4189 Physics Dice
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

FALSE

PHYS DICE 33 avg 42 0.5267 0.5479 0.433 0.4183 Physics Dice
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

FALSE

PHYS DICE 50 1 40 0.5147 0.4685 0.4312 0.5597 Physics Dice
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

FALSE

PHYS DICE 50 2 45 0.4882 0.4209 0.4831 0.5633 Physics Dice
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

FALSE

PHYS DICE 50 3 44 0.5321 0.4743 0.4685 0.556 Physics Dice
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

FALSE

PHYS DICE 50 4 37 0.5848 0.6288 0.4254 0.5128 Physics Dice
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

FALSE
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Table L.1 continued from previous page

Experiment fold Epochs Ran Dice Precision Recall Loss Loss Function Loss Hyperparameters Use Prior Channel

PHYS DICE 50 5 30 0.5781 0.5614 0.3983 0.5241 Physics Dice
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

FALSE

PHYS DICE 50 avg 39.2 0.5396 0.5108 0.4413 0.5432 Physics Dice
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

FALSE

HYB BCE PHYS10 1 70 0.8384 0.855 0.8065 0.1553 Physics BCE
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

TRUE

HYB BCE PHYS10 2 49 0.8495 0.83 0.824 0.1263 Physics BCE
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

TRUE

HYB BCE PHYS10 3 63 0.826 0.8055 0.8268 0.17 Physics BCE
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

TRUE

HYB BCE PHYS10 4 46 0.8534 0.8615 0.8357 0.1287 Physics BCE
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

TRUE

HYB BCE PHYS10 5 63 0.8943 0.8968 0.8668 0.1206 Physics BCE
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

TRUE

HYB BCE PHYS10 avg 58.2 0.8523 0.8498 0.832 0.1402 Physics BCE
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

TRUE

HYB BCE PHYS30 1 43 0.8187 0.7882 0.8294 0.2213 Physics BCE
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

TRUE

HYB BCE PHYS30 2 56 0.8154 0.7636 0.8216 0.1759 Physics BCE
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

TRUE
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Table L.1 continued from previous page

Experiment fold Epochs Ran Dice Precision Recall Loss Loss Function Loss Hyperparameters Use Prior Channel

HYB BCE PHYS30 3 62 0.8188 0.7754 0.8436 0.2331 Physics BCE
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

TRUE

HYB BCE PHYS30 4 66 0.8426 0.8324 0.845 0.1741 Physics BCE
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

TRUE

HYB BCE PHYS30 5 50 0.8792 0.8583 0.8871 0.1691 Physics BCE
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

TRUE

HYB BCE PHYS30 avg 55.4 0.8349 0.8036 0.8453 0.1947 Physics BCE
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

TRUE

HYB BCE PHYS50 1 56 0.7876 0.7121 0.835 0.2819 Physics BCE
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

TRUE

HYB BCE PHYS50 2 57 0.7878 0.7091 0.8615 0.2164 Physics BCE
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

TRUE

HYB BCE PHYS50 3 60 0.7822 0.6365 0.8648 0.2898 Physics BCE
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

TRUE

HYB BCE PHYS50 4 52 0.8222 0.7823 0.8594 0.2178 Physics BCE
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

TRUE

HYB BCE PHYS50 5 64 0.8589 0.7783 0.9139 0.2106 Physics BCE
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

TRUE

HYB BCE PHYS50 avg 57.8 0.8077 0.7237 0.8669 0.2433 Physics BCE
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

TRUE
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Table L.1 continued from previous page

Experiment fold Epochs Ran Dice Precision Recall Loss Loss Function Loss Hyperparameters Use Prior Channel

HYB DICE PHYS10 1 61 0.8297 0.8512 0.7945 0.155 Physics Dice
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

TRUE

HYB DICE PHYS10 2 50 0.8367 0.7724 0.8574 0.1653 Physics Dice
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

TRUE

HYB DICE PHYS10 3 54 0.8169 0.7903 0.8145 0.1778 Physics Dice
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

TRUE

HYB DICE PHYS10 4 56 0.8523 0.8624 0.8333 0.1475 Physics Dice
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

TRUE

HYB DICE PHYS10 5 55 0.886 0.8884 0.8588 0.1408 Physics Dice
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

TRUE

HYB DICE PHYS10 avg 55.2 0.8443 0.8329 0.8317 0.1573 Physics Dice
Weight Phys=0.1
Weight Bce=0.45
Weight Dice=0.45

TRUE

HYB DICE PHYS30 1 63 0.826 0.8242 0.8127 0.2492 Physics Dice
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

TRUE

HYB DICE PHYS30 2 46 0.8375 0.7406 0.885 0.2852 Physics Dice
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

TRUE

HYB DICE PHYS30 3 57 0.8167 0.7808 0.8395 0.2894 Physics Dice
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

TRUE

HYB DICE PHYS30 4 56 0.8537 0.8441 0.8482 0.2462 Physics Dice
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

TRUE
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Table L.1 continued from previous page

Experiment fold Epochs Ran Dice Precision Recall Loss Loss Function Loss Hyperparameters Use Prior Channel

HYB DICE PHYS30 5 72 0.8894 0.8799 0.8846 0.237 Physics Dice
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

TRUE

HYB DICE PHYS30 avg 58.8 0.8447 0.8139 0.854 0.2614 Physics Dice
Weight Phys=0.3
Weight Bce=0.3
Weight Dice=0.3

TRUE

HYB DICE PHYS50 1 48 0.7905 0.6927 0.8724 0.3606 Physics Dice
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

TRUE

HYB DICE PHYS50 2 50 0.8235 0.4857 0.9104 0.4186 Physics Dice
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

TRUE

HYB DICE PHYS50 3 42 0.7921 0.6112 0.8941 0.4126 Physics Dice
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

TRUE

HYB DICE PHYS50 4 52 0.8328 0.7149 0.8802 0.3546 Physics Dice
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

TRUE

HYB DICE PHYS50 5 42 0.8522 0.7801 0.9151 0.3443 Physics Dice
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

TRUE

HYB DICE PHYS50 avg 46.8 0.8182 0.6569 0.8944 0.3782 Physics Dice
Weight Phys=0.5
Weight Bce=0.25
Weight Dice=0.25

TRUE

HYB ATT 0.1 1 48 0.8321 0.8583 0.7856 0.1017 Attentive BCE / Dice
Attention Weight=0.1
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 0.1 2 50 0.8447 0.796 0.8343 0.0944 Attentive BCE / Dice
Attention Weight=0.1
Weight Bce=0.5
Weight Dice=0.5

TRUE
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Table L.1 continued from previous page

Experiment fold Epochs Ran Dice Precision Recall Loss Loss Function Loss Hyperparameters Use Prior Channel

HYB ATT 0.1 3 59 0.8242 0.8099 0.8186 0.1119 Attentive BCE / Dice
Attention Weight=0.1
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 0.1 4 46 0.8498 0.8604 0.8129 0.0935 Attentive BCE / Dice
Attention Weight=0.1
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 0.1 5 48 0.8851 0.8918 0.851 0.0861 Attentive BCE / Dice
Attention Weight=0.1
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 0.1 avg 50.2 0.8472 0.8433 0.8205 0.0975 Attentive BCE / Dice
Attention Weight=0.1
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 0.5 1 58 0.8278 0.8651 0.7821 0.1015 Attentive BCE / Dice
Attention Weight=0.5
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 0.5 2 52 0.8406 0.8036 0.8328 0.0919 Attentive BCE / Dice
Attention Weight=0.5
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 0.5 3 55 0.8224 0.8166 0.813 0.1143 Attentive BCE / Dice
Attention Weight=0.5
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 0.5 4 46 0.8504 0.8639 0.8161 0.0942 Attentive BCE / Dice
Attention Weight=0.5
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 0.5 5 65 0.8922 0.8952 0.8732 0.0797 Attentive BCE / Dice
Attention Weight=0.5
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 0.5 avg 55.2 0.8467 0.8489 0.8235 0.0963 Attentive BCE / Dice
Attention Weight=0.5
Weight Bce=0.5
Weight Dice=0.5

TRUE



90
C

hapterR
E

FE
R

E
N

C
E

S
Table L.1 continued from previous page

Experiment fold Epochs Ran Dice Precision Recall Loss Loss Function Loss Hyperparameters Use Prior Channel

HYB ATT 1.0 1 59 0.8211 0.8365 0.7796 0.1115 Attentive BCE / Dice
Attention Weight=1
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 1.0 2 49 0.8372 0.7994 0.8374 0.0925 Attentive BCE / Dice
Attention Weight=1
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 1.0 3 55 0.8238 0.8118 0.8082 0.1175 Attentive BCE / Dice
Attention Weight=1
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 1.0 4 52 0.8446 0.8571 0.8194 0.0993 Attentive BCE / Dice
Attention Weight=1
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 1.0 5 48 0.8815 0.8969 0.8502 0.088 Attentive BCE / Dice
Attention Weight=1
Weight Bce=0.5
Weight Dice=0.5

TRUE

HYB ATT 1.0 avg 52.6 0.8417 0.8403 0.8189 0.1018 Attentive BCE / Dice
Attention Weight=1
Weight Bce=0.5
Weight Dice=0.5

TRUE
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M Height Estimation Results

Table M.1: An overview of the raw height estimation statistics per model, image and blob.

Image
Blob
ID Azimuth

Solar
Elevation

Closest
Real Ray

Interp. Ray
Length

Shadow
Length

Est.
Height

True
Height Error

Is Largest
Blob?

Summer Tile6 1 112.5393 43.5808 58 58 14.5 13.7989 12.9739 0.825 TRUE
Summer Tile6 2 112.5393 43.5808 36 34.5 8.625 8.208 3.1765 5.0314 TRUE
Summer Tile6 3 112.5393 43.5808 57 57 14.25 13.561 12.9956 0.5654 TRUE
Summer Tile6 4 112.5393 43.5808 62 61.94 15.485 14.7363 13.0244 1.7118 TRUE
Summer Tile6 5 112.5393 43.5808 25 24.7 6.175 5.8764 2.9397 2.9367 TRUE
Summer Tile6 6 112.5393 43.5808 8 7.78 1.945 1.851 2.9339 -1.0829 TRUE
Summer Tile7 2 108.3214 39.6869 48 48 12 9.958 8.8757 1.0823 TRUE
Summer Tile8 2 108.2517 39.6533 23 23 5.75 4.7658 5.1738 -0.4079 TRUE
Summer Tile8 3 108.2517 39.6533 21 21 5.25 4.3514 5.0823 -0.7309 TRUE
Summer Tile8 4 108.2517 39.6533 31 31 7.75 6.4235 6.7105 -0.2869 TRUE
Summer Tile8 5 108.2517 39.6533 12 12 3 2.4865 2.5192 -0.0327 TRUE
Summer Tile8 6 108.2517 39.6533 29 28.54 7.135 5.9138 5.4782 0.4356 TRUE
Summer Tile8 8 108.2517 39.6533 25 25 6.25 5.1803 7.0477 -1.8674 TRUE
Winter Tile6 1 242.5711 38.6148 40 40 10 7.9871 12.9739 -4.9867 TRUE
Winter Tile6 2 242.5711 38.6148 24 24 6 4.7923 12.9956 -8.2033 TRUE
Winter Tile6 3 242.5711 38.6148 12 12 3 2.3961 3.1765 -0.7804 TRUE
Winter Tile6 4 242.5711 38.6148 47 42 10.5 8.3865 13.0244 -4.638 TRUE
Winter Tile6 5 242.5711 38.6148 12 12 3 2.3961 2.9339 -0.5377 TRUE
Winter Tile7 1 131.7112 39.018 14 14 3.5 2.8361 7.3864 -4.5504 TRUE
Winter Tile7 4 131.7112 39.018 25 25 6.25 5.0644 8.8757 -3.8113 TRUE
Winter Tile8 2 130.7157 38.6246 21 21 5.25 4.1947 5.1738 -0.9791 TRUE
Winter Tile8 3 130.7157 38.6246 17 17.08 4.27 3.4117 5.0823 -1.6706 TRUE
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Table M.1 continued from previous page

Image
Blob
ID Azimuth

Solar
Elevation

Closest
Real Ray

Interp. Ray
Length

Shadow
Length

Est.
Height

True
Height Error

Is Largest
Blob?

Winter Tile8 4 130.7157 38.6246 26 26 6.5 5.1934 6.7105 -1.517 TRUE
Winter Tile8 5 130.7157 38.6246 12 12 3 2.397 2.5192 -0.1222 TRUE
Winter Tile8 6 130.7157 38.6246 28 28.44 7.11 5.6808 5.4782 0.2027 TRUE
Winter Tile8 7 130.7157 38.6246 27 27 6.75 5.3932 7.0477 -1.6545 TRUE
Winter Tile8 8 130.7157 38.6246 18 18 4.5 3.5955 2.762 0.8335 TRUE
Summer Tile8 1 108.2517 39.6533 12 12 3 2.4865 5.1738 -2.6872 FALSE
Summer Tile8 7 108.2517 39.6533 12 12 3 2.4865 7.0477 -4.5612 FALSE
Winter Tile7 2 131.7112 39.018 12 12 3 2.4309 8.8757 -6.4448 FALSE
Winter Tile7 3 131.7112 39.018 23 23 5.75 4.6593 8.8757 -4.2165 FALSE
Winter Tile7 5 131.7112 39.018 13 12.6 3.15 2.5525 8.8757 -6.3232 FALSE
Winter Tile8 1 130.7157 38.6246 17 17.18 4.295 3.4317 5.1738 -1.7421 FALSE
Summer Tile6 1 112.5393 43.5808 62 62 15.5 14.7505 12.9739 1.7767 TRUE
Summer Tile6 2 112.5393 43.5808 37 35.65 8.9125 8.4816 3.1765 5.305 TRUE
Summer Tile6 3 112.5393 43.5808 57 57 14.25 13.561 12.9956 0.5654 TRUE
Summer Tile6 4 112.5393 43.5808 64 64 16 15.2264 13.0244 2.2019 TRUE
Summer Tile6 5 112.5393 43.5808 7 6.96 1.74 1.6559 2.9339 -1.278 TRUE
Summer Tile6 6 112.5393 43.5808 25 24.7 6.175 5.8764 2.9397 2.9367 TRUE
Summer Tile7 2 108.3214 39.6869 38 38 9.5 7.8834 8.8757 -0.9923 TRUE
Summer Tile8 2 108.2517 39.6533 23 23 5.75 4.7658 5.1738 -0.4079 TRUE
Summer Tile8 3 108.2517 39.6533 22 22 5.5 4.5586 5.0823 -0.5237 TRUE
Summer Tile8 4 108.2517 39.6533 32 32 8 6.6307 6.7105 -0.0797 TRUE
Summer Tile8 5 108.2517 39.6533 12 11.85 2.9625 2.4554 2.5192 -0.0638 TRUE
Summer Tile8 6 108.2517 39.6533 29 29 7.25 6.0091 5.4782 0.5309 TRUE
Summer Tile8 7 108.2517 39.6533 25 25 6.25 5.1803 7.0477 -1.8674 TRUE
Winter Tile6 1 242.5711 38.6148 69 68.72 17.18 13.7219 12.9739 0.748 TRUE
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Table M.1 continued from previous page

Image
Blob
ID Azimuth

Solar
Elevation

Closest
Real Ray

Interp. Ray
Length

Shadow
Length

Est.
Height

True
Height Error

Is Largest
Blob?

Winter Tile6 2 242.5711 38.6148 66 66 16.5 13.1788 12.9956 0.1831 TRUE
Winter Tile6 3 242.5711 38.6148 12 12 3 2.3961 3.1765 -0.7804 TRUE
Winter Tile6 4 242.5711 38.6148 66 66 16.5 13.1788 13.0244 0.1543 TRUE
Winter Tile6 5 242.5711 38.6148 11 11 2.75 2.1965 2.9339 -0.7374 TRUE
Winter Tile7 1 131.7112 39.018 37 37.74 9.435 7.6452 7.3864 0.2588 TRUE
Winter Tile7 3 131.7112 39.018 53 53 13.25 10.7365 8.8757 1.8608 TRUE
Winter Tile8 2 130.7157 38.6246 22 21.55 5.3875 4.3046 5.1738 -0.8692 TRUE
Winter Tile8 3 130.7157 38.6246 20 20 5 3.995 5.0823 -1.0874 TRUE
Winter Tile8 4 130.7157 38.6246 30 29.92 7.48 5.9765 6.7105 -0.734 TRUE
Winter Tile8 5 130.7157 38.6246 14 14 3.5 2.7965 2.5192 0.2773 TRUE
Winter Tile8 6 130.7157 38.6246 30 30.86 7.715 6.1642 5.4782 0.686 TRUE
Winter Tile8 7 130.7157 38.6246 27 27.1 6.775 5.4132 7.0477 -1.6345 TRUE
Winter Tile8 8 130.7157 38.6246 17 17 4.25 3.3957 2.762 0.6337 TRUE
Summer Tile7 3 108.3214 39.6869 19 19 4.75 3.9417 8.8757 -4.934 FALSE
Summer Tile8 1 108.2517 39.6533 11 10.84 2.71 2.2462 FALSE
Winter Tile6 6 242.5711 38.6148 6 6 1.5 1.1981 2.9339 -1.7358 FALSE
Winter Tile6 7 242.5711 38.6148 10 9.9 2.475 1.9768 12.9956 -11.0188 FALSE
Winter Tile7 2 131.7112 39.018 26 25.85 6.4625 5.2366 7.3864 -2.1498 FALSE
Winter Tile8 1 130.7157 38.6246 17 17 4.25 3.3957 5.1738 -1.778 FALSE
Summer Tile6 1 112.5393 43.5808 58 57.69 14.4225 13.7251 12.9739 0.7513 TRUE
Summer Tile6 2 112.5393 43.5808 37 36.91 9.2275 8.7813 3.1765 5.6048 TRUE
Summer Tile6 3 112.5393 43.5808 55 55 13.75 13.0851 12.9956 0.0895 TRUE
Summer Tile6 5 112.5393 43.5808 27 26.66 6.665 6.3427 2.9339 3.4089 TRUE
Summer Tile6 6 112.5393 43.5808 61 61 15.25 14.5126 13.0244 1.4882 TRUE
Summer Tile6 7 112.5393 43.5808 23 22.76 5.69 5.4149 2.9397 2.4752 TRUE
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Table M.1 continued from previous page

Image
Blob
ID Azimuth

Solar
Elevation

Closest
Real Ray

Interp. Ray
Length

Shadow
Length

Est.
Height

True
Height Error

Is Largest
Blob?

Summer Tile7 1 108.3214 39.6869 32 32 8 6.6386 7.3864 -0.7478 TRUE
Summer Tile7 2 108.3214 39.6869 45 45 11.25 9.3356 8.8757 0.4599 TRUE
Summer Tile8 2 108.2517 39.6533 22 22 5.5 4.5586 5.1738 -0.6151 TRUE
Summer Tile8 3 108.2517 39.6533 22 21.57 5.3925 4.4695 5.0823 -0.6128 TRUE
Summer Tile8 4 108.2517 39.6533 28 28.4 7.1 5.8848 6.7105 -0.8257 TRUE
Summer Tile8 5 108.2517 39.6533 14 14 3.5 2.9009 2.5192 0.3817 TRUE
Summer Tile8 6 108.2517 39.6533 28 28 7 5.8019 5.4782 0.3237 TRUE
Summer Tile8 8 108.2517 39.6533 26 26 6.5 5.3875 7.0477 -1.6602 TRUE
Winter Tile6 1 242.5711 38.6148 69 69 17.25 13.7778 12.9739 0.8039 TRUE
Winter Tile6 2 242.5711 38.6148 65 65 16.25 12.9791 12.9956 -0.0165 TRUE
Winter Tile6 3 242.5711 38.6148 13 13 3.25 2.5958 3.1765 -0.5807 TRUE
Winter Tile6 4 242.5711 38.6148 13 13 3.25 2.5958 2.9339 -0.338 TRUE
Winter Tile6 5 242.5711 38.6148 67 67 16.75 13.3784 13.0244 0.354 TRUE
Winter Tile7 1 131.7112 39.018 37 37 9.25 7.4953 8.8757 -1.3804 TRUE
Winter Tile7 2 131.7112 39.018 22 21.8 5.45 4.4162 7.3864 -2.9703 TRUE
Winter Tile8 1 130.7157 38.6246 28 27.66 6.915 5.525 5.1738 0.3513 TRUE
Winter Tile8 2 130.7157 38.6246 22 22 5.5 4.3945 5.0823 -0.6879 TRUE
Winter Tile8 3 130.7157 38.6246 33 33 8.25 6.5917 6.7105 -0.1188 TRUE
Winter Tile8 4 130.7157 38.6246 16 16 4 3.196 2.5192 0.6768 TRUE
Winter Tile8 5 130.7157 38.6246 37 37 9.25 7.3907 5.4782 1.9125 TRUE
Winter Tile8 6 130.7157 38.6246 29 29 7.25 5.7927 7.0477 -1.255 TRUE
Winter Tile8 7 130.7157 38.6246 26 25.04 6.26 5.0017 2.762 2.2397 TRUE
Summer Tile6 4 112.5393 43.5808 14 14 3.5 3.3308 3.1765 0.1542 FALSE
Summer Tile8 1 108.2517 39.6533 13 13 3.25 2.6937 5.1738 -2.48 FALSE
Summer Tile8 7 108.2517 39.6533 12 12 3 2.4865 7.0477 -4.5612 FALSE
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Table M.1 continued from previous page

Image
Blob
ID Azimuth

Solar
Elevation

Closest
Real Ray

Interp. Ray
Length

Shadow
Length

Est.
Height

True
Height Error

Is Largest
Blob?

Summer Tile6 1 112.5393 43.5808 58 57.65 14.4125 13.7156 12.9739 0.7418 TRUE
Summer Tile6 2 112.5393 43.5808 34 32.6 8.15 7.7559 3.1765 4.5794 TRUE
Summer Tile6 3 112.5393 43.5808 56 56 14 13.3231 12.9956 0.3275 TRUE
Summer Tile6 4 112.5393 43.5808 61 61 15.25 14.5126 13.0244 1.4882 TRUE
Summer Tile6 6 112.5393 43.5808 23 22.84 5.71 5.4339 2.9397 2.4942 TRUE
Summer Tile6 7 112.5393 43.5808 9 8.78 2.195 2.0889 2.9339 -0.845 TRUE
Summer Tile7 2 108.3214 39.6869 46 46 11.5 9.543 8.8757 0.6673 TRUE
Summer Tile8 3 108.2517 39.6533 22 22 5.5 4.5586 5.1738 -0.6151 TRUE
Summer Tile8 4 108.2517 39.6533 21 21 5.25 4.3514 5.0823 -0.7309 TRUE
Summer Tile8 5 108.2517 39.6533 29 29 7.25 6.0091 6.7105 -0.7014 TRUE
Summer Tile8 6 108.2517 39.6533 14 14 3.5 2.9009 2.5192 0.3817 TRUE
Summer Tile8 7 108.2517 39.6533 31 30.06 7.515 6.2287 5.4782 0.7506 TRUE
Summer Tile8 9 108.2517 39.6533 26 26 6.5 5.3875 7.0477 -1.6602 TRUE
Winter Tile6 1 242.5711 38.6148 60 59.34 14.835 11.8489 12.9739 -1.125 TRUE
Winter Tile6 2 242.5711 38.6148 66 66 16.5 13.1788 12.9956 0.1831 TRUE
Winter Tile6 3 242.5711 38.6148 15 14.48 3.62 2.8913 3.1765 -0.2852 TRUE
Winter Tile6 4 242.5711 38.6148 12 12 3 2.3961 2.9339 -0.5377 TRUE
Winter Tile6 5 242.5711 38.6148 65 65 16.25 12.9791 13.0244 -0.0454 TRUE
Winter Tile7 1 131.7112 39.018 20 19.75 4.9375 4.0009 8.8757 -4.8748 TRUE
Winter Tile8 1 130.7157 38.6246 23 23.32 5.83 4.6581 5.1738 -0.5156 TRUE
Winter Tile8 3 130.7157 38.6246 15 15 3.75 2.9962 5.0823 -2.0861 TRUE
Winter Tile8 4 130.7157 38.6246 25 25 6.25 4.9937 6.7105 -1.7168 TRUE
Winter Tile8 5 130.7157 38.6246 14 14 3.5 2.7965 2.5192 0.2773 TRUE
Winter Tile8 6 130.7157 38.6246 33 33 8.25 6.5917 5.4782 1.1135 TRUE
Winter Tile8 7 130.7157 38.6246 21 21 5.25 4.1947 7.0477 -2.853 TRUE
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Table M.1 continued from previous page

Image
Blob
ID Azimuth

Solar
Elevation

Closest
Real Ray

Interp. Ray
Length

Shadow
Length

Est.
Height

True
Height Error

Is Largest
Blob?

Winter Tile8 8 130.7157 38.6246 24 22.89 5.7225 4.5722 2.762 1.8102 TRUE
Summer Tile6 5 112.5393 43.5808 7 7 1.75 1.6654 2.9339 -1.2685 FALSE
Summer Tile8 1 108.2517 39.6533 12 12 3 2.4865 5.1738 -2.6872 FALSE
Summer Tile8 2 108.2517 39.6533 5 5 1.25 1.0361 5.1738 -4.1377 FALSE
Summer Tile8 8 108.2517 39.6533 14 13.7 3.425 2.8388 7.0477 -4.2089 FALSE
Winter Tile8 2 130.7157 38.6246 22 21.12 5.28 4.2187 5.1738 -0.9551 FALSE
Winter Tile8 9 130.7157 38.6246 20 20 5 3.995 7.0477 -3.0527 FALSE
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