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1. Introduction

The study of bounded Boolean algebras (brie*y, B.a.) of projections in Banach
spaces (intimately connected to the theory of spectral operators, [11]) was
initiated in the penetrating work of W. G. Bade in the 1950s, [3, 4]. In the Hilbert
space setting, a fundamental result of J. Wermer states that the smallest B.a. of
projections which contains a given pair of bounded, commuting Boolean algebras
of projections is itself bounded, [31]. The search for analogues of this result in
Banach spaces has had some far reaching consequences. Counterexamples,
separately due to S. Kakutani and C. A. McCarthy, came quickly; see [11,
pp. 2098--2099], for example. Accordingly, much subsequent research concentrated
on identifying various classes of Banach spaces in which the conclusion does hold.
C. A. McCarthy established that all Lp-spaces, for 16 p < 1, have this property
and (together with W. Littman and N. Rivi?eere) also their complemented
subspaces; see [11, pp. 2099--2100], for instance. This is also the case for all
Grothendieck spaces with the Dunford--Pettis property, [25], and the class of all
hereditary indecomposable Banach spaces, [26]. The most signi@cant recent results
which identify large (and new) classes of Banach spaces with the property that the
B.a. generated by every pair of commuting, bounded Boolean algebras of
projections in the space is again bounded, are due to T. A. Gillespie, [13]. He
showed that this is always the case for arbitrary Banach lattices, for closed
subspaces of any p-concave Banach lattice (with p @nite), for complemented
subspaces of any L1-space, and for all Banach spaces with local unconditional
structure (brie*y, l.u.st.).

The aim of this paper is to make a further contribution to the above discussed
problem. Our viewpoint is that the geometry of the underlying Banach space is
not the only relevant ingredient; an important property of the individual Boolean
algebras concerned (when available) can also play a fundamental role. This is the
notion of R-boundedness, introduced by E. Berkson and T. A. Gillespie in [5]
(where it is called the R-property), but already implicit in earlier work of
J. Bourgain, [6]. Since its conception in the mid-1990s, R-boundedness has played
an increasingly important role in various branches of functional analysis, operator
theory, harmonic analysis and partial diAerential equations; see, for example, [2, 8,
9, 18], and the references therein.

Let us describe a sample of our results. The basic fact is simple: the B.a.
generated by any pair of bounded, commuting Boolean algebras of projections, at
least one of which is R-bounded, is again bounded. In practice, the eAectiveness of
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this observation lies in the ability of being able to decide about the R-boundedness
of particular Boolean algebras of projections. In this regard it turns out, for the
class of Banach spaces with property ð�Þ introduced by G. Pisier in [24], that
every bounded B.a. of projections is automatically R-bounded. This class includes
all Banach spaces with l.u.st. and having @nite cotype. For Banach lattices (which
always possess l.u.st.), having @nite cotype is equivalent to p-concavity for some
@nite p which, in turn, is equivalent to property ð�Þ. A larger class of Banach
spaces, for which it is possible to decide precisely when property ð�Þ is present, are
the GL-spaces (due to Y. Gordon and D. R. Lewis, [14]); these spaces also have
property ð�Þ if and only if they have @nite cotype. All Banach spaces with l.u.st.
are GL-spaces, but not conversely. It is shown that in any GL-space the product
of every pair of commuting, bounded Boolean algebras of projections (no
R-boundedness needed!) is again bounded.

For a Dedekind �-complete Banach lattice E something remarkable occurs. The
R-boundedness of the particular B.a. BðEÞ of all band projections is equivalent to
the space having @nite cotype. As noted above, this is also equivalent to having
property ð�Þ. Accordingly, every bounded B.a. of projections in E is R-bounded
precisely when just BðEÞ is R-bounded. Since c0 and ‘1 fail to have @nite cotype,
we can conclude that the Boolean algebras Bðc0Þ and Bð‘1Þ are not R-bounded.
The techniques used to establish these facts have further consequences. Given any
Banach space X and any bounded B.a. of projections M in X, it is always possible
to equip the cyclic space M½x� with a Banach lattice structure, for each x 2 X. It
is shown that Bade-completeness of the B.a. M (in the sense of [3]) is equivalent
to each Banach lattice M½x�, for x 2 X, having order-continuous norm. For a
bounded B.a. of projections M in X, by applying the previous criterion in each
Banach lattice M½x�, for x 2 X, it is established that the strong operator closure
Ms of M is Bade-complete whenever M is R-bounded. A consideration of Bðc0Þ
shows, even in the presence of a cyclic vector, that the converse is false in general.

2. Preliminaries

Let ðX; k 
 kÞ be a (complex) Banach space. The Banach space of all bounded
linear operators in X is denoted by LðXÞ. A Boolean algebra (brie*y, B.a.) of
projections in X is a commuting family M � LðXÞ of projections such that PQ 2 M

and I � P 2 M whenever P;Q 2 M. Here, I denotes the identity operator in X.
Note that M is indeed a B.a. with respect to the lattice operations P ^ Q ¼ PQ,
P _ Q ¼ P þ Q � PQ and complementation Pc ¼ I � P . The B.a. M is called
bounded if

kMk ¼ supfkPk : P 2 Mg < 1.

For any B.a. M of projections the strong operator closure Ms is also a B.a. of
projections, which is bounded whenever M is bounded. Recall that a B.a. M is
Bade-complete if M is complete as an abstract B.a. and P� " P with respect to the
order of M implies that P�x ! Px for all x 2 X. Every Bade-complete B.a. is
bounded and strongly closed, but the converse is in general not true (consider the
B.a. M in L1ð½0; 1�Þ of all operators of multiplication by �F with F � ½0; 1�
measurable; then M is strongly closed and bounded but not Bade-complete). For a
detailed account of Boolean algebras of projections we refer the reader to [11, 27].
Given two commuting Boolean algebras M and N of projections in X, there exists
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a smallest B.a. in LðXÞ containing both Boolean algebras; it is called the B.a.
generated by M and N or the product of M and N. This product B.a. is denoted
by M _ N. Moreover, elements of M _ N all have the form

Pm;n
i;j¼1 �ijPiQj wherePm

i¼1 Pi ¼
Pn

j¼1 Qj ¼ I with Pi 2 M, Qj 2 N and �ij 2 f0; 1g for 16 i6m,
16 j6n and m;n 2 N n f0g.

A sequence I ¼ fIng1
n¼1 of bounded linear projections in a Banach space X is

called a Schauder decomposition of X if:
(a) InIm ¼ 0 whenever n 6¼ m;
(b) x ¼

P1
n¼1 Inx for all x 2 X.

A Schauder decomposition fIng1
n¼1 is unconditional if the series in (b) is

unconditionally convergent for all x 2 X. Given a Schauder basis feng1
n¼1 of X we

denote the corresponding coordinate functionals by fe�
ng1

n¼1 � X�, where X� is the
dual space of X. Then the one-dimensional coordinate projections fPng1

n¼1, de@ned
by Pnx ¼ hx; e�

nien for all x 2 X, form a Schauder decomposition of X, which is
unconditional if and only if feng1

n¼1 is an unconditional basis of X. The following
characterizations of unconditional decompositions is important. Detailed proofs of
the next three results can be found in x 2.1 of [33].

PROPOSITION 2.1. A Schauder decomposition fIng1
n¼1 of the Banach space

X is unconditional if and only if there exists a constant C > 0 such that����Xn
k¼1

"kIkx

����6C

����Xn
k¼1

Ikx

���� ð1Þ

for all choices of "k 2 f�1; 1g, x 2 X and n 2 N.

In the setting of Proposition 2.1, the smallest C > 0 satisfying (1) is the
unconditional constant of the decomposition fIng1

n¼1 and is denoted by CI.
We denote by frjg1

j¼1 the sequence of Rademacher functions on the interval
½0; 1� (so, frjg1

j¼1 is a sequence of independent identically distributed symmetric
f�1; 1g-valued random variables).

LEMMA 2.2. A Schauder decomposition fIng1
n¼1 of a Banach space X is

unconditional if and only if for every (some) 16 p < 1 there exists a constant
C > 0 such that

C�1

����Xn
k¼1

Ikx

����6
�ð1

0

����Xn
k¼1

rkðtÞIkx

����pdt
�1=p

6C

����Xn
k¼1

Ikx

���� ð2Þ

for all x 2 X and all n 2 N. In this case (2) is satis�ed with C ¼ CI.

PROPOSITION 2.3. Let fIng1
n¼1 be an unconditional decomposition of a

Banach space X. For every bounded sequence " ¼ f"ng1
n¼1 in C and every x 2 X,

the series

T"x ¼
X1

n¼1

"nInx

is (unconditionally) convergent in X and kT"xk6 2CIk"k1kxk for all x 2 X. If "
is a real sequence, then the factor 2 can be omitted in the last estimate.
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There is a close connection between (unconditional) Schauder decompositions
and Boolean algebras of projections. Indeed, suppose that fIng1

n¼1 is a Schauder
decomposition in X. Let K0 be the algebra of all @nite and co@nite subsets of N.
For F 2 K0 de@ne IF ¼

P
n2F In whenever F is @nite and IF ¼ I � INnF

otherwise. Then

M
f
I ¼ fIF : F 2 K0g ð3Þ

is a B.a. of projections in X. The next lemma follows from Propositions 2.1 and 2.3.

LEMMA 2.4. The B.a. M
f
I is uniformly bounded for the operator norm

(brie'y, bounded) if and only if fIng1
n¼1 is an unconditional decomposition. In

this case, for every subset A � N the series

IAx ¼
X
n2A

Inx

is unconditionally convergent for all x 2 X and IA : X ! X is a projection
satisfying kIAk6CI. Moreover,

MI ¼ fIA : A � Ng ð4Þ
is a Bade-complete B.a. of projections in X.

On the other hand, suppose that M is a bounded B.a. of projections in X. If
P1; . . . ; Pn 2 M is any @nite collection of projections satisfying

Pn
k¼1 Pk ¼ I, then

fPkgnk¼1 is an unconditional decomposition of X with unconditional constant at
most 2kMk. So, by Lemma 2.2 we have

ð2kMkÞ�1kxk6
�ð1

0

����Xn
k¼1

rkðtÞPkx

����pdt
�1=p

6 2kMk kxk ð5Þ

for all x 2 X and all 16 p < 1. The following version of (5) will also be useful: for
all choices of x1; . . . ; xn 2 X we have

ð2kMkÞ�1

����Xn
k¼1

Pkxk

����6
�ð1

0

����Xn
k¼1

rkðtÞPkxk

����pdt
�1=p

6 2kMk
����Xn

k¼1

Pkxk

����: ð6Þ

Indeed, since the fPkgnk¼1 are necessarily pairwise disjoint, this inequality follows
immediately from (5) applied to x ¼

Pn
k¼1 Pkxk, using the fact that Pkx ¼ Pkxk

for all k.
Suppose now that I ¼ fIng1

n¼1 and I0 ¼ fI0
ng1

n¼1 are two commuting
Schauder decompositions of a Banach space X, that is, InI

0
m ¼ I0

mIn for all
n and m. It is clear (for all m and n) that the operator InI

0
m is a bounded

projection in X and that
S

m;n RanðInI
0
mÞ is dense in X. Let fDkg1

k¼1 be the
collection fInI

0
m : n;m ¼ 1; 2; . . .g ‘enumerated via squares’, that is,

fDkg1
k¼1 ¼ fI1I

0
1;I2I

0
1;I2I

0
2;I1I

0
2;I3I

0
1; . . .g. ð7Þ

Then the partial sum projections f
PN

k¼1Dk : N ¼ 1; 2; . . .g are uniformly bounded,
from which it follows that D ¼ fDkg1

k¼1 is a Schauder decomposition of X.
Unconditionality of both the decompositions I and I0 need not imply the
unconditionality of D. In this connection the following observation is of
some interest.
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PROPOSITION 2.5. Let I ¼ fIng1
n¼1 and I0 ¼ fI0

ng1
n¼1 be two commuting

unconditional decompositions of a Banach space X. Let the Schauder decompo-
sition D ¼ fDkg1

k¼1 be given by (7). Then the following statements are equivalent:
(i) the product B.a. MI _ MI0 is bounded;

(ii) the product B.a. Mf
I _ M

f
I0 is bounded;

(iii) the decomposition D ¼ fDkg1
k¼1 is unconditional.

Proof. Since M
f
I _ M

f
I0 � MI _ MI0 , it is clear that (i) implies (ii). To show

that (ii) implies (iii), @rst note that every projection in M
f
D can be written asP

ðn;mÞ2F InI
0
m, with F a @nite subset of N � N, or is the complement of such a

projection. Consequently, if Mf
I _ M

f
I0 is bounded, then M

f
D is bounded as well. By

Lemma 2.4 we conclude that D is unconditional. Finally, if we assume that D is an
unconditional decomposition, thenMD is a bounded (even Bade-complete) B.a. Since
MI _ MI0 � MD, it follows that MI _ MI0 is bounded. So, (iii) implies (i). �

To illustrate the above situation, letX and Y be Banach spaces and � be a uniform
cross norm on the tensor product X � Y (that is, �ðx � yÞ ¼ kxk kyk for all x 2 X
and y 2 Y , and if u : X ! X and v : Y ! Y are bounded linear operators, then
ku � vk6 kuk kvk). Denote by X b��� Y the norm completion of ðX � Y; �Þ. If
u 2 LðXÞ and v 2 LðY Þ, then u � v is a bounded linear operator on ðX � Y; �Þ and
hence, extends uniquely to a bounded linear operator onX b���Y ; this unique extension
is also denoted by u � v. Suppose that fPng1

n¼1 is a Schauder decomposition of X.
De@ne the projections fIng1

n¼1 in X b��� Y by In ¼ Pn � I. Since
S1

n¼1 RanðInÞ is
dense in X � Y (hence, also dense in X b��� Y ) and

����XN
n¼1

In

���� ¼
����
�XN

n¼1

Pn

�
� I

����6
����XN

n¼1

Pn

����
for all N 2 N, it follows that fIng1

n¼1 is a Schauder decomposition of X b��� Y .
Similarly, if fQng1

n¼1 is a Schauder decomposition of Y and we de@ne I0
n ¼ I � Qn

for all n 2 N, then fI0
ng1

n¼1 is a Schauder decomposition of X b��� Y as well.
Clearly InI

0
m ¼ I0

mIn for all n and m. As observed above, the sequence fDkg1
k¼1

de@ned by (7) is a Schauder decomposition of X b��� Y . In case the decompositions
fPng1

n¼1 and fQng1
n¼1 are both unconditional, Proposition 2.5 gives necessary and

suNcient conditions for fDkg1
k¼1 to be an unconditional decomposition of X b��� Y .

In particular, if feng1
n¼1 and ffmg1

m¼1 are Schauder bases of X and Y respectively,
then fen � fmg1

n;m¼1, ‘enumerated via squares’ as in (7), is a Schauder basis of
X b��� Y . In this setting Proposition 2.5 can be used to obtain criteria guaranteeing
that fen � fmg1

n;m¼1 is an unconditional basis of X b��� Y .
We end this section by recalling the notion of R-boundedness.

DEFINITION 2.6. Let X be a Banach space. A non-empty collection T �
LðXÞ is called R-bounded if there exists a constant M > 0 such that

�ð1
0

����Xn
j¼1

rjðtÞTjxj

����2dt
�1=2

6M

�ð1
0

����Xn
j¼1

rjðtÞxj
����2dt

�1=2

ð8Þ

for all T1; . . . ; Tn 2 T , all x1; . . . ; xn 2 X and all n 2 N n f0g.
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If T � LðXÞ is R-bounded, then the smallest constant M > 0 for which (8)
holds will be denoted by MT and is called the R-bound of T . Clearly, every
R-bounded collection is uniformly bounded in LðXÞ. For more information
concerning R-boundedness we refer to [8, 33]. In particular, the strongly closed
absolute convex hull of any R-bounded collection T is also R-bounded (with the
same R-bound in real spaces and with R-bound at most 2MT in complex spaces).

3. Boolean algebras and R-boundedness

In this section we consider two results, related to R-boundedness, which concern
the boundedness of products of commuting Boolean algebras of projections.

THEOREM 3.1. Let M be an R-bounded B.a. of projections in a Banach space
X. Then M _ N is bounded whenever N is a bounded B.a. of projections in X
commuting with M. Moreover,

kM _ Nk6 4kNk2MM:

Proof. Every element of M _ N can be written as
Pn

k¼1 PkQk, for some n 2 N,
projections Q1; . . . ; Qn 2 N satisfying

Pn
k¼1Qk ¼ I, and P1; . . . ; Pn 2 M. For x 2 X

it follows from (6), applied in the B.a. N, that����Xn
k¼1

PkQkx

����6 2kNk
�ð1

0

����Xn
k¼1

rkðtÞPkQkx

����2
�1=2

6 2kNkMM

�ð1
0

����Xn
k¼1

rkðtÞQkx

����2
�1=2

6 ð2kNkÞ2MMkxk.

This shows that M _ N is bounded and kM _ Nk6 4kNk2MM. �

We now consider a class of Banach spaces, introduced by G. Pisier (see [24,
De@nition 2.1]), in which every bounded B.a. of projections is automatically
R-bounded.

DEFINITION 3.2. A Banach space X has property ð�Þ if there exists a
constant �> 0 such thatð1

0

ð1
0

����Xm
j¼1

Xn
k¼1

"jkrjðsÞrkðtÞxjk
����2ds dt6�2

ð1
0

ð1
0

����Xm
j¼1

Xn
k¼1

rjðsÞrkðtÞxjk
����2ds dt

for every choice of xjk 2 X, "jk 2 f�1; 1g and for all m;n 2 N. In this case, the
smallest possible constant � in the previous inequality is denoted by �X.

It is shown in [24, Proposition 2.1], that every Banach space with l.u.st. and
having @nite cotype necessarily has property ð�Þ. In particular, every Banach
lattice, which automatically has l.u.st. (see for example [10, Theorem 17.1]), with
@nite cotype has property ð�Þ. As observed in [24, Remark 2.2], a Banach space X
with property ð�Þ cannot contain the ‘n1 uniformly. For a Banach space, the
property of not containing the ‘n1 uniformly is equivalent to having @nite cotype,

PLMS 1530---3/8/2005---SRUMBAL---142100

BEN DE PAGTER AND WERNER J. RICKER488



a deep result due to B. Maurey and G. Pisier, [22] (see also [10, x 14]).
Consequently, in Banach spaces with l.u.st., having property ð�Þ is equivalent to
having @nite cotype.

THEOREM 3.3. Let X be a Banach space with property (�). Then every
bounded B.a. M of projections in X is R-bounded with R-bound MM 6 4kMk2�X.

Proof. Let P1; . . . ; Pn 2 M and x1; . . . ; xn 2 X be given. There exist mutually

disjoint projections Q1; . . . ; QN 2 M with
PN

k¼1 Qk ¼ I and �jk 2 f0; 1g such that

Pj ¼
PN

k¼1 �jkQk for all j ¼ 1; . . . ; n. Hence,

ð1
0

����Xn
j¼1

rjðsÞPjxj

����2ds ¼
ð1
0

����Xn
j¼1

XN
k¼1

�jkrjðsÞQkxj

����2ds. ð9Þ

For each s 2 ½0; 1� it follows from (6) that

����Xn
j¼1

XN
k¼1

�jkrjðsÞQkxj

����2 ¼
����XN

k¼1

Qk

�Xn
j¼1

�jkrjðsÞxj
�����2

6 ð2kMkÞ2
ð1
0

����XN
k¼1

rkðtÞQk

�Xn
j¼1

�jkrjðsÞxj
�����2dt

¼ ð2kMkÞ2
ð1
0

����Xn
j¼1

XN
k¼1

�jkrkðtÞrjðsÞQkxj

����2dt.
Combining this with (9) we have

ð1
0

����Xn
j¼1

rjðsÞPjxj

����2ds6 ð2kMkÞ2
ð1
0

ð1
0

����Xn
j¼1

XN
k¼1

�jkrkðtÞrjðsÞQkxj

����2ds dt.
Since X has property (�), we conclude that

ð1
0

����Xn
j¼1

rjðsÞPjxj

����2ds6 ð2kMkÞ2�2
X

ð1
0

ð1
0

����Xn
j¼1

XN
k¼1

rkðtÞrjðsÞQkxj

����2ds dt.
Given s 2 ½0; 1�; it follows from (6) that

ð1
0

����Xn
j¼1

XN
k¼1

rkðtÞrjðsÞQkxj

����2dt ¼
ð1
0

����XN
k¼1

rkðtÞQk

�Xn
j¼1

rjðsÞxj
�����2dt

6 ð2kMkÞ2
����XN

k¼1

Qk

�Xn
j¼1

rjðsÞxj
�����2

¼ ð2kMkÞ2
����Xn

j¼1

XN
k¼1

rjðsÞQkxj

����2

¼ ð2kMkÞ2
����Xn

j¼1

rjðsÞxj
����2
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and hence, that

ð1
0

����Xn
j¼1

rjðsÞPjxj

����2ds6 ð2kMkÞ4�2
X

ð1
0

����Xn
j¼1

rjðsÞxj
����2ds.

This shows that M is R-bounded with R-bound MM 6 ð2kMkÞ2�X. �

Combined with Theorem 3.1 the previous theorem immediately yields the
following result.

COROLLARY 3.4. Let X be a Banach space with property (�) and M and N

be two bounded commuting Boolean algebras of projections in X. Then M _ N is
bounded and kM _ Nk6 16kMk2kNk2�X.

Let Y be a Banach space with l.u.st. and having @nite cotype. Since Y then has
property ð�Þ, so does any closed subspace X of Y . So, Corollary 3.4 applies in X.
Consequently, Theorem 2.6 in [13] is a special case of Corollary 3.4 (after noting
that for a Banach lattice Y , being p-concave for some 16 p < 1 is equivalent to
having @nite cotype, [10, Theorem 16.17]).

Concerning some relevant examples, note that c0 and ‘1 (for instance) have
l.u.st. but fail to have @nite cotype (and hence, also fail to have property ð�Þ).
The von Neumann--Schatten ideals Sp, for 1 < p < 1, are Banach spaces with
@nite cotype but, for p 6¼ 2, fail to have property ð�Þ (hence, also fail l.u.st.); see
Corollary 3.4 above and [13, Remark 2.10]. For every p > 2, it is known that there
exist closed subspaces of Lp (hence they have property ð�Þ) which fail to have
l.u.st.; see page 19 of [24].

The following particular example is also relevant. Let X be a Banach space and
ðO;K; .Þ be a @nite measure space. For each 16 p < 1 consider the Banach space
Lpð.;XÞ of all X-valued Bochner p-integrable functions on O. For x 2 X and
g 2 Lpð.Þ, de@ne the function g � x 2 Lpð.;XÞ by ðg � xÞð!Þ ¼ gð!Þx for
! 2 O. Given A 2 K, de@ne a projection PA in Lpð.;XÞ by f 7!�Af . Then
M ¼ fPA : A 2 Kg is a Bade-complete B.a. of projections in Lpð.;XÞ with
kMk ¼ 1. An application of Kahane’s Inequality (see for example [10, 11.1]),
Fubini’s Theorem and the Contraction Principle (see for example [10, 12.2]) shows
that M is R-bounded. However, since x 7! 1 � x is an isometric embedding of X
into Lpð.;XÞ , we see that Lpð.;XÞ cannot have property ð�Þ whenever X fails to
have this property.

4. Boolean algebras in GL-spaces

Given Banach spaces X and Y and 16 p < 1, we denote by PpðX; Y Þ the ideal
of all p-absolutely summing operators from X into Y , which is a Banach space
with respect to the p-summing norm 1p (see [10, x 2], for the relevant de@nitions).
Recall that a bounded linear operator T : X ! Y is p-factorable (16 p61) if
there exist a measure space ðO;K; .Þ and bounded linear operators B : X ! Lpð.Þ
and A : Lpð.Þ ! Y �� such that Tx ¼ ABx for all x 2 X. For such an operator T
de@ne 3pðT Þ ¼ inffkAk kBkg, where the in@mum is taken over all possible
operators A and B satisfying this condition. The ideal of all p-factorable operators
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from X into Y is denoted by QpðX; Y Þ; it is a Banach space with respect to the
norm 3p (see [10, xx 7 and 9] for details).

DEFINITION 4.1. A Banach space X is a Gordon --Lewis space (brie*y,
GL-space) if P1ðX; ‘2Þ � Q1ðX; ‘2Þ. If X is a GL-space, then there exists a
constant c> 0 such that 31ðT Þ6 c11ðT Þ for all T 2 P1ðX; ‘2Þ; the smallest
constant c> 0 with this property is denoted by glðXÞ.

A discussion of GL-spaces can be found in [10, x 17]. In particular, it is shown
that every Banach space with l.u.st. is a GL-space (a result due to Y. Gordon and
D. R. Lewis, [14]). The converse is false. The Banach spaces Zp (for 1 < p < 1),
constructed by N. Kalton and N. T. Peck, [17], admit an unconditional Schauder
decomposition (into two-dimensional subspaces), have @nite cotype and are
GL-spaces but fail to have l.u.st., [16]. For further (non-isomorphic) examples, see
also [19].

The proof of the following result uses ideas from the proof of the Theorem on
page 365 of [10]. This result (that is Theorem 4.2 below) includes [13, Theorem
2.5] as a special case since Banach lattices have l.u.st. and hence, are GL-spaces.

THEOREM 4.2. Let M and N be two bounded commuting Boolean algebras of
projections in a GL-space X. Then M _ N is also bounded and there exists a
(universal) constant K> 0 such that

kM _ Nk6K glðXÞkMk2kNk2:

Proof. Every element in M _ N is of the form
Pm

j¼1

Pn
k¼1 �jkPjQk, for @nitely

many projections P1; . . . ; Pm 2 M andQ1; . . . ; Qn 2 N with
Pm

j¼1 Pj ¼
Pn

k¼1 Qk ¼ I,
scalars �jk 2 f0; 1g and n;m 2 N. We have to show that����Xm

j¼1

Xn
k¼1

�jkPjQk

����6K glðXÞkMk2kNk2 ð10Þ

for all such choices of Pj, Qk and �jk, for some universal constant K> 0. So, @x
such a choice. Let x0 2 X and x�

0 2 X�. De@ning R ¼ f1; . . . ;mg � f1; . . . ; ng, we
denote elements of ‘2ðRÞ by a ¼ ðajkÞj;k ¼ ðajkÞm;n

j¼1;k¼1 with ajk 2 C. De@ne the
linear operator A : X ! ‘2ðRÞ by

Ax ¼ ðhPjQkx; x
�
0iÞj;k; for x 2 X:

Furthermore, de@ne the linear operator B : X� ! ‘2ðRÞ by

Bx� ¼ ðhPjQkx0; x
�iÞj;k; for x� 2 X�:

We claim that

11ðAÞ6CkMk kNk kx�
0k ð11Þ

for some (universal) constant C> 0. Indeed, de@ne the linear space S of functions
on ½0; 1�2 by

S ¼ spanfrjðsÞrkðtÞ : 16 j6m; 16 k6ng.

Furthermore, de@ne S1 ¼ ðS; k 
 k1Þ and S1 ¼ ðS; k 
 k1Þ. So, we may consider

S1 � L1ð½0; 1�2Þ and S1 � L1ð½0; 1�2Þ. Let J : S1 ! S1 be de@ned by Jf ¼ f for
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all f 2 S1. It follows from [10, Examples 2.9] that 11ðJÞ ¼ 1. De@ne the operator
W : X ! S1 by

ðWxÞðs; tÞ ¼
Xm
j¼1

Xn
k¼1

hPjQkx; x
�
0irjðsÞrkðtÞ

for all x 2 X and ðs; tÞ 2 ½0; 1�2. Then, for all ðs; tÞ 2 ½0; 1�2, we have

jðWxÞðs; tÞj ¼
				Xm
j¼1

Xn
k¼1

hPjQkx; x
�
0irjðsÞrkðtÞ

				
¼

				

�Xm

j¼1

rjðsÞPj

��Xn
k¼1

rkðtÞQk

�
x; x�

0

�				
6

����Xm
j¼1

rjðsÞPj

����
����Xn

k¼1

rkðtÞQk

���� kxk kx�
0k

6 ð2kMkÞð2kNkÞkxk kx�
0k,

where the last inequality follows by writing
Pm

j¼1 rjðsÞPj ¼
Pþ

j Pj �
P�

j Pj. HerePþ
j Pj and

P�
j Pj are the sums taken over all j for which rjðsÞ equals 1 or �1

respectively, and similarly for
Pn

k¼1 rkðtÞQk. Accordingly,

kWxk1 6 4kMk kNk kxk kx�
0k:

This shows that

kWk6 4kMk kNk kx�
0k:

Next, de@ne the operator V : S1 ! ‘2ðRÞ by

V

�Xm
j¼1

Xn
k¼1

ajkrjðsÞrkðtÞ
�

¼ ðajkÞj;k.

It is a consequence of the Khinchin inequality (see for example [10, 1.10]) that�Xm
j¼1

Xn
k¼1

jajkj2
�1=2

6A�2
1

ð1
0

ð1
0

				Xm
j¼1

Xn
k¼1

ajkrjðsÞrkðtÞ
				ds dt

for all scalars ðajkÞm;n
j¼1;k¼1 (where A1 is a universal constant). Consequently,

kV k6A�2
1 . Since A ¼ VJW , this implies that 11ðAÞ6 4A�2

1 kMk kNk kx�
0k, which

proves (11) with C ¼ 4A�2
1 . Via a similar argument we @nd that

11ðBÞ6CkMk kNk kx0k. ð12Þ

De@ne the linear operator M� : ‘2ðRÞ ! ‘2ðRÞ by M�

�
ðajkÞj;k



¼ ð�jkajkÞj;k. Clearly,

kM�k6 1. Consider the composition

‘2ðRÞ �!A
�
X� �!B ‘2ðRÞ �!

M�
‘2ðRÞ,

where A� is the Banach space dual operator of A. A simple computation shows
that

A�a ¼
Xm
j¼1

Xn
k¼1

ajkP
�
j Q

�
kx

�
0
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for all a ¼ ðajkÞj;k 2 ‘2ðRÞ. From the de@nition of B it follows that

BA�a ¼
�


PjQkx0;
Xm
r¼1

Xn
s¼1

arsP
�
r Q

�
sx

�
0

��
j;k

¼ ðajkhPjQkx0; x
�
0iÞj;k

and hence, that

M�BA
�a ¼ ð�jkajkhPjQkx0; x

�
0iÞj;k

for all a ¼ ðajkÞj;k 2 ‘2ðRÞ. This shows that M�BA
� is a multiplication operator on

‘2ðRÞ with trace given by

trðM�BA
�Þ ¼

Xm
j¼1

Xn
k¼1

�jkhPjQkx0; x
�
0i. ð13Þ

It follows from [10, Lemma 6.14] that

jtrðM�BA
�Þj6 ;1ðM�BA

�Þ6 kM�k;1ðBA�Þ6 ;1ðBA�Þ,
where ;1 denotes the 1-integral norm. From [10, Theorem 5.16(a)], it follows that

;1ðBA�Þ6 11ðBÞ;1ðA�Þ ¼ 11ðBÞ31ðAÞ, ð14Þ
where in the last equality we have used the fact that ;1 ¼ 31 (trivial) and
31ðA�Þ ¼ 31ðAÞ (by [10, Proposition 7.2]). Since, by hypothesis, X is a GL-space
we also have 31ðAÞ6 glðXÞ11ðAÞ and so

;1ðBA�Þ6 glðXÞ11ðAÞ11ðBÞ.
Using (11) and (12) we conclude that

;1ðBA�Þ6C2glðXÞkMk2kNk2kx0k kx�
0k.

In combination with (13) and (14) this shows that				

Xm

j¼1

Xn
k¼1

�jkPjQkx0; x
�
0

�				6C2glðXÞkMk2kNk2kx0k kx�
0k:

This inequality holds for all x0 2 X and x�
0 2 X� and so����Xm

j¼1

Xn
k¼1

�jkPjQk

����6C2glðXÞkMk2kNk2,

for all choices of �jk 2 f0; 1g. Accordingly, (10) holds with K ¼ C2. �

Combining Theorem 4.2 with the observations made in Proposition 2.5 we
obtain the following result.

COROLLARY 4.3. Let fImg1
m¼1 and fI0

ng1
n¼1 be two commuting uncondi-

tional decompositions of a GL-space X. Then the product decomposition
fImI

0
ng1

m;n¼1 as given by (7) is also an unconditional decomposition of X.

From the remarks made at the end of x 2 it is now clear that the Theorem on
page 365 of [10] is a special case of Corollary 4.3.

As observed in the remarks following De@nition 3.2, a Banach space X with
l.u.st. has property ð�Þ if and only if X has @nite cotype. A close inspection of the
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proof of [24, Proposition 2.1] shows that actually the following result holds. In
view of this result and Corollary 3.4, the result of Theorem 4.2 is only of interest
in GL-spaces with trivial cotype.

THEOREM 4.4. A GL-space X has property ð�Þ if and only if X has
�nite cotype.

By the discussion after De@nition 4.1 and Theorem 4.2, it follows that the
GL-spaces Zp (1 < p < 1), due to Kalton and Peck, all have property ð�Þ. There
also exist Banach spaces with property ð�Þ which fail to be GL-spaces. Indeed, for
the circle group T it is known that for every p > 2 there exists a Rð2Þ-set F � Z

which fails to be a RðpÞ-set, [7, Theorem 2]. Accordingly, if

Lp;F ðTÞ ¼ ff 2 LpðTÞ : bffðnÞ ¼ 0 for all n =2Fg,

then the trigonometric system feintgn2F is not an unconditional basis for Lp;F ðTÞ,
[24, p. 14]. Hence, Lp;F ðTÞ fails to be a GL-space, [24, Theorem 3.1]. However,
since LpðTÞ has property ð�Þ, so does its closed subspace Lp;F ðTÞ.

5. The Boolean algebra of band projections

In this section we investigate conditions under which the B.a. BðEÞ of all band
projections in a Dedekind �-complete Banach lattice is R-bounded. Actually, we
consider a slightly more general situation. For the general theory of Banach
lattices we refer to [23, 28, 34]. We consider only real Banach lattices, but all
results extend easily to complex Banach lattices.

Given a Banach lattice E, denote by ZðEÞ the centre of E, that is,

ZðEÞ ¼ f1 2 LðEÞ : 9 " 2 ½0;1Þ such that j1xj6"jxj 8 x 2 Eg,

which is a commutative subalgebra of LðEÞ. The space ZðEÞ is itself a vector
lattice with respect to the lattice operations given by

ð11 _ 12Þu ¼ ð11uÞ _ ð12uÞ and ð11 ^ 12Þu ¼ ð11uÞ ^ ð12uÞ

for all u 2 Eþ (the positive cone of E) and all 11; 12 2 ZðEÞ. Moreover,
j1xj ¼ j1jðjxjÞ for all 1 2 ZðEÞ and x 2 E. In particular, for 1 2 ZðEÞ and
" 2 ½0;1Þ the inequality j1j6"I is equivalent to the requirement that j1xj6"jxj
for all x 2 E. For any 1 2 ZðEÞ, its operator norm is given by

k1k ¼ inff" 2 ½0;1Þ : j1j6"Ig.

Consequently, the unit ball of ZðEÞ is equal to the order interval
½�I; I� ¼ f1 2 ZðEÞ : j1j6 Ig. The B.a. of band projections in E consists precisely
of all idempotent elements in ZðEÞ. If E is an Lp-space (16 p61), then
ZðLpÞ ffi L1, acting on Lp via multiplication; the band projections correspond to
multiplication by characteristic functions. If E is Dedekind �-complete, then it is
a consequence of the Freudenthal spectral theorem that, if jxj6 jyj in E, then
there exists 1 2 ZðEÞ satisfying 1y ¼ x and j1j6 I. Consequently, ZðEÞ is non-
trivial. However, there exist (in@nite-dimensional) Banach lattices such that
ZðEÞ ¼ f"I : " 2 Rg (see [15] and [32]). To avoid this latter pathology it is
convenient to introduce the following class of Banach lattices.
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DEFINITION 5.1. The centre ZðEÞ of a Banach lattice E is called rich
if, whenever jxj6 jyj in E there exists a sequence f1ng1

n¼1 in ZðEÞ such that
k1ny � xk ! 0 as n ! 1.

Replacing 1n (in the above de@nition) by ð1n ^ IÞ _ ð�IÞ we may assume,
without loss of generality, that j1nj6 I for all n. The general form of the following
result will be needed in the next section.

LEMMA 5.2. Let E be a Banach lattice. Suppose there exists a subset
T � ½�I; I� such that:

(i) T is R-bounded with R-bound MT ;
(ii) whenever x; y 2 E satisfy jxj6 jyj, there exists a sequence f1jg1

j¼1 in T with
1jy ! x as j ! 1.

Then, for any pairwise disjoint system fv1; v2; . . . ; v2ng in E, we have

����X2
n

k¼1

vk

����>M�1
T

ffiffiffi
n

p
min

k¼1;...;2n
kvkk:

Proof. De@ne w ¼
P2n

k¼1 vk. Let fð"1j; . . . ; "njÞ : j ¼ 1; . . . ; 2ng be an enumer-
ation of all possible n-tuples ð"1; . . . ; "nÞ with each "k ¼ %1. For k ¼ 1; . . . ; n we
de@ne xk ¼

P2n

j¼1 "kjvj. By disjointness,

jxkj ¼
X2n
j¼1

j"kjvjj ¼
X2n
j¼1

jvjj ¼ jwj for all k:

Moreover, if �1; . . . ; �n 2 R, then

				Xn
k¼1

�kxk

				 ¼
				Xn
k¼1

X2n
j¼1

�k"kjvj

				 ¼
				X2

n

j¼1

�Xn
k¼1

�k"kj

�
vj

				
¼

X2n
j¼1

				Xn
k¼1

�k"kj

				 jvjj:

There exists j0 2 f1; . . . ; 2ng such that j
Pn

k¼1 �k"kj0 j ¼
Pn

k¼1 j�kj and hence,

����Xn
k¼1

�kxk

����>
�Xn

k¼1

j�kj
�

kvj0k>
�Xn

k¼1

j�kj
�

min
j¼1;...;2n

kvjk.

This implies, in particular, that k
Pn

k¼1 rkðtÞxkk>nminj¼1;...;2n kvjk for all t 2 ½0; 1�
and hence, that �ð1

0

����Xn
k¼1

rkðtÞxk
����2dt

�1=2

>n min
j¼1;...;2n

kvjk. ð15Þ

By (ii) above, for each k ¼ 1; . . . ; n there is a sequence f1k;mg1
m¼1 in T such that
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1k;mw ! xk as m ! 1. The R-boundedness of T implies that

ð1
0

����Xn
k¼1

rkðtÞ1k;mw
����2dt6M2

T

ð1
0

����Xn
k¼1

rkðtÞw
����2dt

¼ M2
T

�ð1
0

				Xn
k¼1

rkðtÞ
				2dt

�
kwk2

¼ M2
T nkwk2

for all m ¼ 1; 2; . . .. Since

����Xn
k¼1

rkðtÞ1k;mw
����2 !

����Xn
k¼1

rkðtÞxk
����2

as m ! 1 (for all t 2 ½0; 1�), it follows from Fatou’s Lemma that

ð1
0

����Xn
k¼1

rkðtÞxk
����2dt6M2

T nkwk2.

Combined with (15) this shows that

MT
ffiffiffi
n

p
kwk>n min

j¼1;...;2n
kvjk

and so kwk>M�1
T

ffiffiffi
n

p
minj¼1;...;2n kvjk. �

Remark 5.3. For each n 2 N, denote by Tn the order interval ½�I; I� in
Zð‘n1Þ. In Lemma 5.2, choosing fv1; . . . ; v2ng to be the standard basis vectors of ‘2

n

1
we @nd that MT 2n

>
ffiffiffi
n

p
. Consequently, MTn

! 1 as n ! 1. Since ½�I; I�
(� Zð‘n1Þ) is the absolute convex hull of the B.a. Bð‘n1Þ of all band projections in
‘n1, it follows that MBð‘ n1Þ ¼ MTn

. This implies, in particular, that the Boolean
algebras Bð‘1Þ and Bðc0Þ are not R-bounded. In the case of c0, we note that this
B.a. is even Bade-complete and has a cyclic vector.

COROLLARY 5.4. Let E be a Banach lattice, n 2 N and u : ‘2
n

1 ! E be a
lattice isomorphism (into) with inverse u�1 : uð‘2n1Þ ! ‘2

n

1. Under the same
assumptions as in Lemma 5.2 we have kuk ku�1k>M�1

T
ffiffiffi
n

p
.

Proof. Denote by fe1; . . . ; e2ng the standard basis in ‘2
n

1 and put vj ¼ uðejÞ for
j ¼ 1; . . . ; 2n. Since

1 ¼ kejk1 ¼ ku�1ðvjÞk1 6 ku�1k kvjk

for all j, it follows that 16 ku�1kminj¼1;...;2n kvjk. Hence,

ku�1k>
�

min
j¼1;...;2n

kvjk
��1

. ð16Þ
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On the other hand, it follows from Lemma 5.2 that

M�1
T

ffiffiffi
n

p
min

k¼1;...;2n
kvkk6

����X2
n

j¼1

vj

���� ¼
����X2

n

j¼1

uðejÞ
���� ¼

����u
�X2n

j¼1

ej

�����
6 kuk

����X2
n

j¼1

ej

����
1

¼ kuk. ð17Þ

A combination of (16) and (17) yields kuk ku�1k>M�1
T

ffiffiffi
n

p
. �

Before formulating the next result recall that a Banach lattice E is a KB -space
if every monotone, norm bounded sequence in E is convergent (see for example
[23, De@nition 2.4.11]). Every KB-space has order-continuous norm (as follows
from [23, Theorem 2.4.2]) and so, in particular, is Dedekind complete. A Banach
lattice E is a KB -space if and only if it does not contain a lattice copy of c0 (see
[23, Theorem 2.4.12] or [34, Theorem 117.4]).

COROLLARY 5.5. Let E be a Banach lattice. Under the same assumptions as
Lemma 5.2 it follows that E cannot contain the ‘n1 uniformly (equivalently, E has
�nite cotype). Moreover, E is a KB-space.

Proof. Recall that a Banach lattice E is said to contain the ‘n1 uniformly as a
sublattice if there exists a constant C> 1 such that for every n 2 N n f0g there
exists a linear lattice isomorphism un : ‘n1 ! E with inverse u�1

n : unð‘n1Þ ! ‘n1
and kunk ku�1

n k6C. From Corollary 5.4 it is clear, under the present assumptions,
that E cannot contain the ‘n1 uniformly as a sublattice. However, this also implies
that E cannot contain the ‘n1 uniformly (this result is implicit in [10, Proposition
16.16 and Scholium 16.17]; it is explicitly stated in [28, Theorem 8.13]). Hence, E
has @nite cotype (see [10, Theorem 14.1]). Consequently, E does not contain a
(lattice) copy of c0 and hence, is a KB-space. �

Next we consider the converse of the above corollary.

LEMMA 5.6. Let E be a Banach lattice having �nite cotype. Then the order
interval ½�I; I� in ZðEÞ is R-bounded.

Proof. Since E has @nite cotype, there is a constant K> 1 such that

K�1

����
�Xn

k¼1

jxkj2
�1=2����6

ð1
0

����Xn
k¼1

rkðtÞxk
����dt6K

����
�Xn

k¼1

jxkj2
�1=2���� ð18Þ

for all x1; . . . ; xn 2 E and all n 2 N n f0g (see for example [10, Theorem 16.18]).
Here the element ð

Pn
k¼1 jxkj2Þ1=2 is de@ned via the Krivine functional calculus for

Banach lattices (see for example [10, Chapter 16] or [20, x 1.d]).
Let x1; . . . ; xn 2 E and 11; . . . ; 1n 2 ZðEÞ be given with j1kj6 I for all k. Since

j1kxkj6 jxkj for all k, it follows from properties of the Krivine calculus that�Xn
k¼1

j1kxkj2
�1=2

6

�Xn
k¼1

jxkj2
�1=2

:
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Using (18) we see that

ð1
0

����Xn
k¼1

rkðtÞ1kxk
����dt6K

����
�Xn

k¼1

j1kxkj2
�1=2����6K

����
�Xn

k¼1

jxkj2
�1=2����

6K2

ð1
0

����Xn
k¼1

rkðtÞxk
����dt:

By Kahane’s inequality, this shows that ½�I; I� is R-bounded. �

Remark 5.7. An alternative proof of Lemma 5.6 is as follows. If E is a
Banach lattice having @nite cotype, then E has property ð�Þ (see the discussion
following De@nition 3.2). Hence, by Theorem 3.3, the B.a. BðEÞ of all band
projections in E is R-bounded. As noted in the last line of the proof of Corollary
5.5, having @nite cotype implies that E is a KB-space (and hence, E is Dedekind
complete). By the same argument as given in the @rst part of the proof of
Theorem 5.8 below it follows that ½�I; I� is R-bounded.

The above facts yield the following result.

THEOREM 5.8. For a Banach lattice E the following statements are
equivalent:

(i) E is Dedekind �-complete and the B.a. BðEÞ of all band projections is
R-bounded;

(ii) E has rich centre and the order interval ½�I; I� in ZðEÞ is R-bounded;

(iii) E has �nite cotype;

(iv) E has property ð�Þ.

Proof. If E is Dedekind �-complete, then ZðEÞ is also Dedekind �-complete
and BðEÞ is the B.a. of all components of I in ZðEÞ. By the Freudenthal spectral
theorem, the order interval ½�I; I� is the norm closure of the absolute convex hull
of BðEÞ, and so the R-boundedness of BðEÞ implies that ½�I; I� is R-bounded.
Hence, (i) implies (ii). Corollary 5.5 shows that (ii) implies (iii). Finally, if E has
@nite cotype then, by Lemma 5.6, ½�I; I� is R-bounded. In particular, BðEÞ is then
R-bounded. Moreover, as observed in Lemma 5.6, E is a KB-space which implies
that E is Dedekind complete. �

Remark 5.9. (a) As shown in [33, Theorem 2.2.14], if X is a Banach space
with non-trivial type and T � LðXÞ is R-bounded, then T � ¼ fT � : T 2 T g is
R-bounded in LðX�Þ. At that time, it was unclear if the condition of X having
non-trivial type was necessary for this conclusion. However, for X ¼ ‘1 it follows
from Theorem 5.8 that T ¼ Bð‘1Þ is R-bounded but T � ¼ Bð‘1Þ is not R-bounded
(see Remark 5.3). Accordingly, the condition of X having non-trivial type cannot
be omitted (in general) in the theorem cited from [33].

(b) For a Dedekind �-complete Banach lattice E, combining Theorem 3.3 and
Theorem 5.8, we conclude that every B.a. of projections in E is R-bounded
precisely when the particular B.a. BðEÞ is R-bounded!
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Next we discuss some further characterizations (related to R-boundedness) of
Banach lattices having @nite cotype. For this purpose we recall some de@nitions
and introduce some notation. Let X be a Banach space and fxng1

n¼1 be a sequence
in X. The series

P1
n¼1 xn is called almost unconditionally convergent (or the

sequence fxng1
n¼1 almost unconditionally summable) if the series

P1
n¼1 rnðtÞxn is

norm convergent in X for almost all t 2 ½0; 1�. For a sequence fxng1
n¼1 in X the

following two statements are equivalent (see for example [10, Theorem 12.3]):
(i) the sequence fxng1

n¼1 is almost unconditionally summable;
(ii) the series

P1
n¼1 rnð 
 Þxn is norm convergent in the Bochner space

Lpð½0; 1�; XÞ for some (all) 16 p < 1.
Given a Banach space X, denote by radðXÞ the collection of all almost
unconditionally summable sequences fxng1

n¼1 (with xn 2 X for all n), which is a
vector space with respect to the coordinatewise operations. Furthermore, de@ne

RadðXÞ ¼
�X1

n¼1

rnð 
 Þxn : fxng1
n¼1 2 radðXÞ

�
;

which is a linear space of (equivalence classes of) strongly measurable X-valued
functions on ½0; 1�. Actually, RadðXÞ is a closed linear subspace of Lpð½0; 1�; XÞ, for
each 16 p < 1. By Kahane’s inequality (see for example [10, 11.1]), the norms
k 
 kp and k 
 kq are equivalent on RadðXÞ for all 16 p; q < 1. We will consider
RadðXÞ equipped with the norm k 
 k2. The mapping fxng1

n¼1 7!
P1

n¼1 rnð 
 Þxn is a
bijection from radðXÞ onto RadðXÞ. For fxng1

n¼1 2 radðXÞ, de@ne

kfxngkradðXÞ ¼
����X1

n¼1

rnð 
 Þxn
����
2

:

Equipped with the norm k 
 kradðXÞ, the space radðXÞ is a Banach space.
Denote by ‘1ðXÞ the Banach space of all bounded sequences fxng1

n¼1 in X
equipped with the norm kfxngk1 ¼ supn kxnk. Let c00ðXÞ be the subspace of
‘1ðXÞ consisting of all sequences which are eventually zero. Then c00ðXÞ �
radðXÞ � ‘1ðXÞ and c00ðXÞ is a dense subspace of radðXÞ relative to k 
 kradðXÞ.

Let E be a Banach lattice. With respect to the order de@ned coordinatewise,
‘1ðEÞ is a Banach lattice in which c00ðEÞ is an order ideal. We consider
conditions on E which imply that radðEÞ is an order ideal in ‘1ðEÞ.

LEMMA 5.10. Let E be a Dedekind �-complete Banach lattice in which the
B.a. BðEÞ of all band projections is R-bounded. Then radðEÞ is an order ideal in
‘1ðEÞ and there exists a lattice norm on radðEÞ which is equivalent to k 
 kradðEÞ.

Proof. By Freudenthal’s spectral theorem, the order interval ½�I; I� is the
closure of the absolute convex hull of BðEÞ in ZðEÞ. Hence, ½�I; I� is R-bounded.
Take x ¼ fxng1

n¼1 in radðEÞ and y ¼ fyng1
n¼1 in ‘1ðEÞ such that jyj6 jxj. For

each n there exists 1n 2 ½�I; I� such that yn ¼ 1nxn. Consequently,����Xn
j¼m

rjð 
 Þyj
����
L2ð½0;1�;EÞ

¼
����Xn

j¼m

rjð 
 Þ1jxj
����
L2ð½0;1�;EÞ

6M½�I;I�

����Xn
j¼m

rjð 
 Þxj
����
L2ð½0;1�;EÞ

PLMS 1530---3/8/2005---SRUMBAL---142100

COMMUTING BOOLEAN ALGEBRAS OF PROJECTIONS 499



for all m < n. This implies that the series
P1

j¼1 rjð 
 Þyj is norm convergent in
L2ð½0; 1�; EÞ and����X1

j¼1

rjð 
 Þyj
����
L2ð½0;1�;EÞ

6M½�I;I�

����X1

j¼1

rjð 
 Þxj
����
L2ð½0;1�;EÞ

:

Hence, y 2 radðEÞ and

kykradðEÞ 6M½�I;I�kxkradðE Þ. ð19Þ

This shows, in particular, that radðEÞ is an order ideal in ‘1ðEÞ.
For x 2 radðEÞ de@ne

kxk ¼ sup
�

kykradðE Þ : y 2 radðEÞ; jyj6 jxj
�
;

in which case kxk> kxkradðE Þ. It follows from (19) that kxk6M½�I;I�kxkradðE Þ. It is
easily veri@ed that k 
 k is a lattice norm on radðEÞ. �

LEMMA 5.11. Let E be a Banach lattice and suppose there exists a lattice
norm k 
 k on c00ðEÞ equivalent to k 
 kradðEÞ. Then E is a KB-space (in particular,
E is Dedekind complete) and the B.a. BðEÞ is R-bounded.

Proof. Let P1; . . . ; Pn 2 BðEÞ and x1; . . . ; xn 2 E. Put yj ¼ Pjxj for
j ¼ 1; . . . ; n. De@ne the elements x; y 2 c00ðEÞ by x ¼ ðx1; . . . ; xn; 0; 0; . . .Þ and
y ¼ ðy1; . . . ; yn; 0; 0; . . .Þ. Since jyjj6 jxjj for all j , we have jyj6 jxj and so,
kyk6 kxk. By hypothesis, there exists a constant C> 1 such that

C�1kzkradðE Þ 6 kzk6CkzkradðE Þ

for all z 2 c00ðEÞ. Hence,

kykradðE Þ 6Ckyk6Ckxk6C2kxkradðE Þ.

By the de@nition of k 
 kradðEÞ, this implies that����Xn
j¼1

rjð 
 ÞPjxj

����
L2ð½0;1�;EÞ

6C2

����Xn
j¼1

rjð 
 Þxj
����
L2ð½0;1�;EÞ

.

So, we conclude that BðEÞ is R-bounded.
To show that E is a KB-space suppose, on the contrary, that E contains a

vector sublattice F which is norm and lattice isomorphic with c0. Then c00ðF Þ is a
vector sublattice of c00ðEÞ and the restriction of k 
 k to c00ðF Þ is equivalent to
k 
 kradðF Þ. Consequently, from the @rst part of the proof applied in the Banach
lattice F , it follows that the B.a. BðF Þ is R-bounded. Since F is norm and lattice
isomorphic with c0, the B.a. Bðc0Þ is also R-bounded. By Remark 5.3 this is a
contradiction. Therefore, E does not contain a lattice copy of c0 and hence E is a
KB-space. �

LEMMA 5.12. Let E be a Banach lattice such that radðEÞ is an order ideal in
‘1ðEÞ. Then there exists a lattice norm on c00ðEÞ equivalent to k 
 kradðE Þ.
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Proof. We require some notation. For each k 2 N de@ne the linear operator
Tk : ‘1ðEÞ ! ‘1ðEÞ of right translation by k-steps via

ðTkxÞl ¼
�
0 for 16 l6 k;
xl�k for l > k;

for all x ¼ ðx1; x2; . . .Þ in ‘1ðEÞ. Moreover, for F � N n f0g and x 2 ‘1ðEÞ de@ne
�Fx 2 ‘1ðEÞ by ð�FxÞl ¼ xl if l 2 F and ð�FxÞl ¼ 0 otherwise. From the
de@nition of k 
 kradðE Þ and the Contraction Principle (see for example [10, 12.2])
it follows that Tkx 2 radðEÞ and �Fx 2 radðEÞ whenever x 2 radðEÞ and that
kTkxkradðE Þ ¼ kxkradðE Þ and k�FxkradðE Þ 6 kxkradðE Þ.

We claim that there exists a constant C > 0 satisfying

sup
�

kykradðEÞ : y 2 c00ðEÞ; jyj6 jxj
�
6CkxkradðE Þ ð20Þ

for all x 2 c00ðEÞ. Indeed, suppose that (20) fails to hold for every C > 0. Then, for
every n 2 N n f0g there exist xðnÞ 2 c00ðEÞ and yðnÞ 2 c00ðEÞ with jyðnÞj6 jxðnÞj
such that kyðnÞkradðE Þ > n3kxðnÞkradðE Þ. Without loss of generality we may

assume that kxðnÞkradðEÞ ¼ 1 for all n. Write xðnÞ ¼ ðxðnÞ
1 ; . . . ; x

ðnÞ
kn
; 0; 0; . . .Þ and let

Kn ¼ k1 þ . . . þ kn for n> 1 with K0 ¼ 0. Since kTKn
xðnÞkradðE Þ ¼ kxðnÞkradðE Þ ¼ 1

for all n> 1, the series w ¼
P1

n¼1 n
�2TKn

xðnÞ is absolutely convergent in radðEÞ.
The sequence TKn

xðnÞ is supported in ðKn�1; Kn� and so, �ðKn�1;Kn�w ¼ n�2TKn
xðnÞ

for all n> 1. De@ne z 2 ‘1ðEÞ by z ¼
P1

n¼1 n
�2TKn

yðnÞ, which is a pointwise

convergent series on N n f0g with disjointly supported terms. Since jyðnÞj6 jxðnÞj
for all n> 1, it follows that jzj6 jwj. By hypothesis, this implies that z 2 radðEÞ
and hence,

n6
1

n2
kyðnÞkradðEÞ ¼

���� 1

n2
TKn

yðnÞ
����
radðE Þ

¼ k�ðKn�1;Kn�zkradðE Þ 6 kzkradðEÞ

for all n> 1. This is a contradiction and, accordingly, there exists a constant
C > 0 such that (20) holds for all x 2 c00ðEÞ.

De@ning

kxk ¼ sup
�

kykradðEÞ : y 2 c00ðEÞ; jyj6 jxj
�

for all x 2 c00ðEÞ, we see from (20) that k 
 k is a lattice norm on radðEÞ
equivalent to k 
 kradðE Þ. �

Collecting together the above facts we obtain the following result, which
complements Theorem 5.8.

THEOREM 5.13. For a Banach lattice E the following statements are
equivalent:

(i) E is Dedekind �-complete and the B.a. BðEÞ of all band projections is
R-bounded;

(ii) radðEÞ is an order ideal in ‘1ðEÞ and there exists a lattice norm on radðEÞ
equivalent to k 
 kradðE Þ;

(iii) radðEÞ is an order ideal in ‘1ðEÞ (equivalently, whenever a sequence
fxng1

n¼1 is almost unconditionally summable in E and yn 2 E satisfy
jynj6 jxnj for all n> 1, then fyng1

n¼1 is almost unconditionally summable);
(iv) there exists a lattice norm on c00ðEÞ equivalent to k 
 kradðE Þ.
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Note that all of the above statements are equivalent to E having @nite cotype
(see Theorem 5.8) and imply that E is a KB-space (see Lemma 5.11).

Remark 5.14. The condition of the Banach lattice E being a KB-space is
by itself not suNcient to imply that the B.a. BðEÞ is R-bounded. Indeed, take
1 < p < 1 and let E be the ‘p-direct sum of the Banach lattices En ¼ ‘n1
(n ¼ 1; 2; . . .). By [1, Theorem 12.6], the dual space E� is canonically isometric
with the ‘q-direct sum (where p�1 þ q�1 ¼ 1) of the Banach lattices ‘n1
(n ¼ 1; 2; . . .). Applying this theorem again we @nd that E is re*exive. Hence,
E is a KB-space, [23, Theorem 2.4.15]. It is clear that E contains the ‘n1
uniformly, so E does not have @nite cotype and hence, BðEÞ is not R-bounded
(see Theorem 5.8). However, since E has order-continuous norm, it is evident that
BðEÞ is Bade-complete.

6. R-boundedness and bade-completeness

The main result of the present section is: in any Banach space the strong
operator closure of any R-bounded B.a. of projections is always Bade-complete.
For simplicity we consider real Banach spaces, but the main results carry over
immediately to complex spaces. For the convenience of the reader, we start this
section by recalling a fundamental construction which equips the cyclic subspaces
of a bounded B.a. of projections with a canonical Banach lattice structure. This
will enable us to apply the results of the previous section.

Let M be a bounded B.a. of projections in a Banach space X. Denote by
O ¼ OM the (compact, HausdorA and totally disconnected) Stone space of M and
let the spectral measure P : FO ! LðXÞ be given by the Boolean isomorphism of
the algebra FO of all closed-open subsets of O onto M. Denoting by simðFOÞ the
space of all simple functions based on the algebra FO, it turns out that the
corresponding integration map J : simðFOÞ ! LðXÞ, given by JðsÞ ¼

Ð
O s dP for

all s 2 simðFOÞ, is an algebra homomorphism which satis@es

ksk1 6 kJðsÞk6 2kMk ksk1: ð21Þ
Since simðFOÞ is dense in CðOÞ, the map J extends to an algebra homomorphism
J : CðOÞ ! LðXÞ, still satisfying (21). Consequently, J is a Banach algebra
isomorphism from CðOÞ onto hMiu, the uniformly closed subalgebra of LðXÞ
generated by M. Given x 2 X the evaluation map Jx : CðOÞ ! X is de@ned by
JxðfÞ ¼ JðfÞx for all f 2 CðOÞ. Note that

JxðfgÞ ¼ JðfÞJxðgÞ; for f; g 2 CðOÞ. ð22Þ
Denoting by M½x� the cyclic subspace corresponding to x, that is, the norm
closure in X of the subspace fJðsÞx : s 2 simðFOÞg, it is clear that Jx takes its
values in M½x�. The following (well-known) observation plays a key role. For
convenience we indicate the proof.

LEMMA 6.1. Let jgj6 jf j in CðOÞ. Then kJxgk6 2kMk kJxfk for all x 2 X.

Proof. Fix x 2 X. Choose sequences ftng1
n¼1 and fsng1

n¼1 in simðFOÞ such that
tn ! g and sn ! f in CðOÞ as n ! 1. Replacing tn with ðtn ^ jsnjÞ _ ð�jsnjÞ, we
may assume that jtnj6 jsnj for all n. There then exists rn 2 simðFOÞ such that
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tn ¼ rnsn and jrnj6 1 for each n. Hence, JxðtnÞ ¼ JðrnÞJxðsnÞ and so, by (21),
kJxðtnÞk6 2kMk kJxðsnÞk. By letting n ! 1, the result follows. �

Let x 2 X. For f 2 CðOÞ de@ne

pxðfÞ ¼ supfkJxgk : g 2 CðOÞ; jgj6 jf jg.
Then px : CðOÞ ! ½0;1Þ is a lattice semi-norm and, by Lemma 6.1, we have

kJxfk6 pxðfÞ6 2kMk kJxfk; for f 2 CðOÞ: ð23Þ
Clearly, (21) implies that pxðfÞ6 2kMk kxk kfk1 for all f 2 CðOÞ. De@ning the
subspace Nx ¼ ff 2 CðOÞ : Jxf ¼ 0g, it follows from (23) that

Nx ¼ ff 2 CðOÞ : pxðfÞ ¼ 0g:
This fact and (22) imply that Nx is a closed order ideal in CðOÞ. Consider now
the quotient space CðOÞ=Nx, equipped with the quotient vector lattice structure.
The equivalence class in CðOÞ=Nx corresponding to a function f 2 CðOÞ is
denoted by f . For f 2 CðOÞ=Nx we de@ne kfk1 ¼ pxðfÞ. Then k 
 k1 is a lattice
norm on CðOÞ=Nx. From (23) it follows that there exists a linear mapping
Jx : CðOÞ=Nx ! X satisfying Jxf ¼ Jxf and

kJxfk6 kfk1 6 2kMk kJxfk; for f 2 CðOÞ=Nx: ð24Þ
Let L1ðPxÞ denote the completion of the vector lattice CðOÞ=Nx with respect to
k 
 k1, which is then a Banach lattice. Then (24) implies that Jx extends uniquely
to a norm isomorphism (into) Jx : L1ðPxÞ ! X satisfying also (24). Conse-
quently, Jx is a norm isomorphism from L1ðPxÞ onto the cyclic subspace
M½x�. We now use Jx to transfer the Banach lattice structure from L1ðPxÞ to
M½x�. The corresponding norm on M½x� will be denoted by k 
 kM½x�, so that

kJxfkM½x� ¼ kfk1 for all f 2 L1ðPxÞ. Note that (24) is now equivalent to the
estimate

kyk6 kykM½x� 6 2kMk kyk; for y 2 M½x�:

Hence, the Banach lattice norm k 
 kM½x� is equivalent on M½x� with the original
given norm on X. Moreover, the element x> 0 is a weak order unit in the
Banach lattice M½x� and the map Jx : CðOÞ ! M½x� is a Riesz homomorphism.
Denote by Mhxi the subspace JxðsimðFOÞÞ of M½x�, that is,

Mhxi ¼
�Xn

j¼1

�jPjx : �j 2 R; Pj 2 M; j ¼ 1; . . . ; n; n 2 N

�
:

From the construction it is clear that Mhxi is a dense vector sublattice of M½x�.
Let Ms be the strong operator closure of M in LðXÞ, which is also a bounded

B.a. of projections. Then Ms½x� ¼ M½x� for all x 2 X. A moment’s re*ection shows
that the lattice structures and the norms k 
 k

Ms½x� and k 
 kM½x� are identical (one

only needs to verify this on Mhxi). In general, Ms need not be Bade-complete
(take for M the B.a. of band projections in X ¼ ‘1 which is strongly closed but is
not Bade-complete).

LEMMA 6.2. Let M be a bounded B.a. of projections in a Banach space X
and x 2 X. Suppose that fyng1

n¼1 is a disjoint sequence in Mhxi satisfying
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06 yn 6 x for all n. Then there exists a disjoint sequence fPng1
n¼1 in M such that

06 yn 6Pnx for all n.

Proof. We start with the following observation. Given y 2 Mhxi satisfying
0 < y6 x, there existQ 2 M and @ 2 ½0;1Þ such that 0 < y6Qx6 @y. Indeed, there
exists s 2 simðFOÞ such that JxðsÞ ¼ y. Since Jx is a lattice homomorphism, we may
assume that s ¼

Pn
j¼1 �j�Fj

, where 0 < �j 6 1 for all j ¼ 1; . . . ; n and F1; . . . ; Fn are
mutually disjoint in FO. De@ning F ¼

Sn
j¼1 Fj, Q ¼ P ðF Þ and @ ¼ ðminj �jÞ�1, it is

clear that 06 s6�F 6 @s in simðFOÞ. Hence, 06 JxðsÞ6 Jxð�F Þ6 @JxðsÞ, that is,
0 < y6Qx6 @y.

Let fyng1
n¼1 be as in the statement of the lemma. For each n there exist

Gn 2 FO and @n 2 ½0;1Þ such that Qn ¼ P ðGnÞ satis@es 0 < yn 6Qnx6 @nyn.
This implies that fQnxg1

n¼1 is a disjoint sequence in Mhxi. Since Jx is a lattice
homomorphism, it follows that

QmQnx ¼ Jxð�Gm
^ �Gn

Þ ¼ Jxð�Gm
Þ ^ Jxð�Gn

Þ ¼ ðQmxÞ ^ ðQnxÞ ¼ 0

for all m 6¼ n. The sequence fPng1
n¼1, de@ned inductively by P1 ¼ Q1 and

Pn ¼ QnðI �
Pn�1

k¼1 PkÞ for n> 2, has the desired properties. �

PROPOSITION 6.3. Let M be a bounded B.a. of projections in a Banach space
X. The following statements are equivalent:

(i) every disjoint sequence fPng1
n¼1 � M converges strongly to zero in LðXÞ;

(ii) for every x 2 X, the Banach lattice M½x� has order-continuous norm;
(iii) Ms is Bade-complete.

Proof. First assume that Pn ! 0 strongly in LðXÞ as n ! 1 for every disjoint
sequence fPng1

n¼1 in M. Since x is a strong order unit in Mhxi, it follows from
Lemma 6.2 that every order-bounded, disjoint sequence in Mhxi converges to zero.
Hence, by a theorem of P. Meyer-Nieberg, every order-bounded increasing
sequence in Mhxi is Cauchy (see [23, Corollary 2.3.6; 34, Theorem 104.2]; in [34],
this latter property is referred to as the B-Cauchy condition of the norm, [34,
Lemma 103.1]; in [21] the B-Cauchy condition is called property (A, iii)). In [21,
Theorem 64.1], it is shown that property (A, iii) carries over from a normed vector
lattice to its completion. Hence, in the present situation, we conclude that M½x�
satis@es the B-Cauchy condition. However, in a Banach lattice the B-Cauchy
condition is equivalent to order continuity of the norm, [34, Corollary 103.8].
Consequently, (i) implies (ii).

Now assume that M½x� has order-continuous norm for every x 2 X. By [11,
Lemma XVII.3.4], to prove that Ms is Bade-complete it suNces to show that
every monotone increasing net of elements fromMs converges strongly to an element
of Ms. So, let fP�g be an upwards directed system in Ms and @x x 2 X. Then
06P�x " 6 x in Ms½x� ¼ M½x� and, since the norm in M½x� is order continuous, it
follows that there exists y 2 M½x� such that P�x " y and kP�x � yk ! 0 [23,
Theorem 2.4.2]. This implies that P� ! Q strongly for some Q 2 LðXÞ. Clearly,
Q 2 Ms. So, Ms is Bade-complete. Accordingly, (ii) implies (iii).

Finally, if Ms is Bade-complete, then it follows from [11, Lemma XVII.3.4],
applied to the increasing sequence f

Pn
k¼1 Pkg1

n¼1, that M satis@es (i). �
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There are several suNcient conditions which guarantee that the norm in M½x� is
order continuous for all x 2 X. We mention in particular the following.

(1) None of the cyclic subspaces M½x� contains a copy of c0 (which is, in
particular, the case if X itself does not contain a copy of c0). Indeed, in this case
each of the cyclic subspaces is a KB-space and hence, all have order-continuous
norm ([23, Theorem 2.4.12]; note that a Banach lattice does not contain a Banach
space copy of c0 if and only if it does not contain a lattice copy of c0, [1, Theorem
14.12]). This observation yields, in particular, the result of [12, Theorem 1].

(2) For each x 2 X the set

�Xn
j¼1

�jPjx : j�jj6 1;
Xn
j¼1

Pj ¼ I; Pj 2 M; j ¼ 1; . . . ; n; n 2 N

�

is relatively weakly compact. Indeed, this implies that order intervals in M½x� are
relatively weakly compact which in turn is equivalent to order continuity of the
norm in M½x�, [23, Theorem 2.4.2].

We now discuss another suNcient condition on M for Ms to be Bade-complete. In
fact, we show that Ms is Bade-complete for any R-bounded B.a. M of projections
in X. We start with the following preliminary observations. Given any bounded
B.a. M, it is clear that every operator T 2 hMiu leaves each cyclic subspace M½x�,
for x 2 X, invariant. For x 2 X we denote the restriction of T 2 hMiu to M½x� by
Tx; so Tx 2 LðM½x�Þ.

LEMMA 6.4. Let M be any bounded B.a. of projections in a Banach space X.
Then

fTx : T 2 hMiug � ZðM½x�Þ; for x 2 X:

Proof. Given x 2 X and T 2 hMiu, we have to show that there exists " 2 ½0;1Þ
such that jTyj6"jyj for all y 2 M½x�. By density considerations, it is suNcient to
obtain this estimate for all elements y of the form y ¼ Jxs for some s 2 simðFOÞ.
Let f 2 CðOÞ satisfy T ¼ Jf . Since Jx is a lattice homomorphism from CðOÞ into
M½x�, we have

jTyj ¼ jðJfÞðJxsÞj ¼ jJxðfsÞj ¼ Jxjfsj6 kfk1Jxjsj
¼ kfk1jJxsj ¼ kfk1jyj.

So, " ¼ kfk1 has the required property. �

LEMMA 6.5. With M as in Lemma 6.4, suppose that x 2 X and y; z 2 M½x�
satisfy jyj6 jzj. Then there exists a sequence ffng1

n¼1 in CðOÞ with kfnk1 6 1 for
all n, such that ðJfnÞxz ! y in M½x� as n ! 1.

Proof. Choose sequences fsng1
n¼1 and ftng1

n¼1 in simðFOÞ with jsnj6 jtnj for all
n, such that Jxsn ! y and Jxtn ! z in M½x� as n ! 1 (cf. the proof of Lemma
6.1). We can then write sn ¼ fntn for appropriate fn 2 simðFOÞ satisfying jfnj6 1
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for all n. Using ðJfnÞðJxtnÞ ¼ Jxsn we have

kðJfnÞxz � yk6 kðJfnÞz � ðJfnÞðJxtnÞk þ kðJfnÞðJxtnÞ � yk

6 kJfnk kz � Jxtnk þ kJxsn � yk

6 2kMk kz � Jxtnk þ kJxsn � yk ! 0 as n ! 1: �

�We now come to the main result of this section.

THEOREM 6.6. Let M be an R-bounded B.a. of projections in a Banach space
X. Then its strong closure Ms is Bade-complete.

Proof. De@ne T � hMiu by T ¼ fJf : f 2 CðOÞ; kfk1 6 1g. Since T is the
closed absolutely convex hull of M and M is R-bounded, it follows that T is also
R-bounded. For any x 2 X let Tx � ZðM½x�Þ be de@ned by Tx ¼ fTx : T 2 T g. It
is clear that Tx is R-bounded. From a combination of Corollary 5.5 and Lemma
6.5 it follows that the Banach lattice M½x� has @nite cotype. In particular, M½x� is
a KB-space and so, has order-continuous norm. By Proposition 6.3 we conclude
that Ms is Bade-complete. �

Remark 6.7. (a) As shown in the proof of the above theorem, if M is an
R-bounded B.a. of projections in a Banach space X, then all cyclic subspaces have
@nite cotype. This does not necessarily imply that X itself has @nite cotype.
Indeed, let X ¼ L2ð½0; 1�; c0Þ and M be the B.a. of all multiplication operators by
characteristic functions �F with F � ½0; 1� measurable. Then M is strongly closed
and R-bounded (see the remarks at the end of x 3). Hence, all cyclic subspaces of
X have @nite cotype. However, X itself does not have @nite cotype since it
contains a copy of c0. Note that this does not contradict the results of Theorem
5.8 or Corollary 5.5, since M is not equal to the Boolean algebra of all band
projections in the Banach lattice X.

The following example is also relevant. Consider the B.a. of all row projections
in the Schatten p-class X ¼ Sp, for any 1 < p < 1. Then M is Bade-complete
(hence, bounded) but fails to be R-bounded (if p 6¼ 2); see for example [33, x 5.3].
Nevertheless, as shown in [30], the space X has @nite cotype and so each cyclic
subspace M½x�, for x 2 X, has @nite cotype (and is even independent of x).

(b) According to Theorem 6.6 above and [12, Theorem 2], in every Banach
space containing a copy of c0, there exists a strongly closed, bounded B.a. of
projections which fails to be R-bounded. If X is any separable Banach space
containing a copy of c0, then there even exists a Bade-complete B.a. of projections
in X which fails to be R-bounded. Indeed, c0 is then complemented in X, say
X ¼ Y & c0 , [29]. Then

M ¼ fP & Q : Q 2 Bðc0Þ; P 2 f0Y ; IY gg

is a Bade-complete B.a. of projections in X. Since Bðc0Þ is not R-bounded in Lðc0Þ
(cf. Remark 5.3), M also fails to be R-bounded in LðXÞ.
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