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PRODUCTS OF COMMUTING BOOLEAN ALGEBRAS OF
PROJECTIONS AND BANACH SPACE GEOMETRY

BEN DE PAGTER anp WERNER J. RICKER

1. Introduction

The study of bounded Boolean algebras (briefly, B.a.) of projections in Banach
spaces (intimately connected to the theory of spectral operators, [11]) was
initiated in the penetrating work of W. G. Bade in the 1950s, [3, 4]. In the Hilbert
space setting, a fundamental result of J. Wermer states that the smallest B.a. of
projections which contains a given pair of bounded, commuting Boolean algebras
of projections is itself bounded, [31]. The search for analogues of this result in
Banach spaces has had some far reaching consequences. Counterexamples,
separately due to S. Kakutani and C. A. McCarthy, came quickly; see [11,
pp. 2098-2099], for example. Accordingly, much subsequent research concentrated
on identifying various classes of Banach spaces in which the conclusion does hold.
C. A. McCarthy established that all L,-spaces, for 1<p < oo, have this property
and (together with W. Littman and N. Riviére) also their complemented
subspaces; see [11, pp.2099-2100], for instance. This is also the case for all
Grothendieck spaces with the Dunford—Pettis property, [25], and the class of all
hereditary indecomposable Banach spaces, [26]. The most significant recent results
which identify large (and new) classes of Banach spaces with the property that the
B.a. generated by every pair of commuting, bounded Boolean algebras of
projections in the space is again bounded, are due to T. A. Gillespie, [13]. He
showed that this is always the case for arbitrary Banach lattices, for closed
subspaces of any p-concave Banach lattice (with p finite), for complemented
subspaces of any L.-space, and for all Banach spaces with local unconditional
structure (briefly, Lu.st.).

The aim of this paper is to make a further contribution to the above discussed
problem. Our viewpoint is that the geometry of the underlying Banach space is
not the only relevant ingredient; an important property of the individual Boolean
algebras concerned (when available) can also play a fundamental role. This is the
notion of R-boundedness, introduced by E. Berkson and T. A. Gillespie in [5]
(where it is called the R-property), but already implicit in earlier work of
J. Bourgain, [6]. Since its conception in the mid-1990s, R-boundedness has played
an increasingly important role in various branches of functional analysis, operator
theory, harmonic analysis and partial differential equations; see, for example, [2, 8,
9, 18], and the references therein.

Let us describe a sample of our results. The basic fact is simple: the B.a.
generated by any pair of bounded, commuting Boolean algebras of projections, at
least one of which is R-bounded, is again bounded. In practice, the effectiveness of

Received 26 April 2004; revised 16 December 2004.
2000 Mathematics Subject Classification 46B20, 47L10 (primary), 46B42, 47B40, 47B60 (secondary).



484 BEN DE PAGTER AND WERNER J. RICKER

this observation lies in the ability of being able to decide about the R-boundedness
of particular Boolean algebras of projections. In this regard it turns out, for the
class of Banach spaces with property («) introduced by G. Pisier in [24], that
every bounded B.a. of projections is automatically R-bounded. This class includes
all Banach spaces with Lu.st. and having finite cotype. For Banach lattices (which
always possess l.u.st.), having finite cotype is equivalent to p-concavity for some
finite p which, in turn, is equivalent to property («). A larger class of Banach
spaces, for which it is possible to decide precisely when property («) is present, are
the GL-spaces (due to Y. Gordon and D. R. Lewis, [14]); these spaces also have
property («) if and only if they have finite cotype. All Banach spaces with l.u.st.
are GL-spaces, but not conversely. It is shown that in any GL-space the product
of every pair of commuting, bounded Boolean algebras of projections (no
R-boundedness needed!) is again bounded.

For a Dedekind o-complete Banach lattice E something remarkable occurs. The
R-boundedness of the particular B.a. B(E) of all band projections is equivalent to
the space having finite cotype. As noted above, this is also equivalent to having
property (). Accordingly, every bounded B.a. of projections in E is R-bounded
precisely when just B(E) is R-bounded. Since ¢, and /. fail to have finite cotype,
we can conclude that the Boolean algebras B(cy) and B({,,) are not R-bounded.
The techniques used to establish these facts have further consequences. Given any
Banach space X and any bounded B.a. of projections 9 in X, it is always possible
to equip the cyclic space M[z] with a Banach lattice structure, for each z € X. Tt
is shown that Bade-completeness of the B.a. 9 (in the sense of [3]) is equivalent
to each Banach lattice M[x], for = € X, having order-continuous norm. For a
bounded B.a. of projections 91 in X, by applying the previous criterion in each
Banach lattice M[z], for = € X, it is established that the strong operator closure
M, of M is Bade-complete whenever M is R-bounded. A consideration of B(c)
shows, even in the presence of a cyclic vector, that the converse is false in general.

2. Preliminaries

Let (X,||-||) be a (complex) Banach space. The Banach space of all bounded
linear operators in X is denoted by L£(X). A Boolean algebra (briefly, B.a.) of
projections in X is a commuting family 9 C £(X) of projections such that PQ € IM
and I — P € 9 whenever P,Q € M. Here, I denotes the identity operator in X.
Note that 9t is indeed a B.a. with respect to the lattice operations P A Q) = PQ,
PVvQ=P+Q—PQ and complementation P°=1— P. The B.a. 9 is called
bounded if

o] = sup{||P|| : P € M} < .

For any B.a. 9 of projections the strong operator closure M, is also a B.a. of
projections, which is bounded whenever 91 is bounded. Recall that a B.a. 91 is
Bade-complete if 9t is complete as an abstract B.a. and P. T P with respect to the
order of 9 implies that P.x — Pz for all x € X. Every Bade-complete B.a. is
bounded and strongly closed, but the converse is in general not true (consider the
B.a. M in L, ([0,1]) of all operators of multiplication by xp with F C[0,1]
measurable; then 91 is strongly closed and bounded but not Bade-complete). For a
detailed account of Boolean algebras of projections we refer the reader to [11, 27].
Given two commuting Boolean algebras 9t and 91 of projections in X, there exists
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a smallest B.a. in £(X) containing both Boolean algebras; it is called the B.a.
generated by 2 and N or the product of M and MN. This product B.a. is denoted
by MV N. Moreover, elements of M VN all have the form >71%", n;;P,Q; where

i P=371,Q;=1 with P,eM, Q;€MN and n; € {0,1} for 1<i<m,
1<j<n and m,n € N\ {0}.

A sequence A = {A,};2; of bounded linear projections in a Banach space X is
called a Schauder decomposition of X if:

(a) A,A,, =0 whenever n # m;

(b) =521 A for all z € X.
A Schauder decomposition {A,};2; is unconditional if the series in (b) is
unconditionally convergent for all x € X. Given a Schauder basis {e, };=; of X we
denote the corresponding coordinate functionals by {e; }n=; € X*, where X* is the
dual space of X. Then the one-dimensional coordinate projections {P, },~;, defined
by B,x = (x,€))e, for all x € X, form a Schauder decomposition of X, which is
unconditional if and only if {e,};2; is an unconditional basis of X. The following
characterizations of unconditional decompositions is important. Detailed proofs of
the next three results can be found in §2.1 of [33].

PrROPOSITION 2.1. A Schauder decomposition {A,};2; of the Banach space
X is unconditional if and only if there exists a constant C' > 0 such that

n n
E €kAkLE E Akl'
k=1 k=1

for all choices of ¢, € {—1,1}, z € X and n € N.

<C

(1)

In the setting of Proposition 2.1, the smallest C > 0 satisfying (1) is the
unconditional constant of the decomposition {A,};2; and is denoted by Ch.

We denote by {r;};2; the sequence of Rademacher functions on the interval
[0,1] (so, {r;};21 is a sequence of independent identically distributed symmetric
{—1,1}-valued random variables).

LEMMA 2.2. A Schauder decomposition {A,};2; of a Banach space X is
unconditional if and only if for every (some) 1<p < oo there exists a constant

C > 0 such that
n 1 n P 1/p n
k=1 0 k=1 k=1

for all x € X and all n € N. In this case (2) is satistied with C = Cy.

o (2)

ProposSITION 2.3. Let {A,},2; be an unconditional decomposition of a
Banach space X. For every bounded sequence A = {\,},=, in C and every z € X,
the series

8]
T\x = Z A, x
n=1

is (unconditionally) convergent in X and |T\x| <2Ca||A||sollz]| for all x € X. If A
is a real sequence, then the factor 2 can be omitted in the last estimate.
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There is a close connection between (unconditional) Schauder decompositions
and Boolean algebras of projections. Indeed, suppose that {A,}72; is a Schauder
decomposition in X. Let 3, be the algebra of all finite and cofinite subsets of N.
For €%, define Ap =73 ,cpA, whenever F is finite and Ap=1— Anp
otherwise. Then

ML = {Ap: F e} (3)

is a B.a. of projections in X. The next lemma follows from Propositions 2.1 and 2.3.

LEMMA 2.4. The B.a. img is uniformly bounded for the operator norm
(briefly, bounded) if and only if {A,},2; is an unconditional decomposition. In
this case, for every subset A C N the series

Az = ZA”x

neA

is unconditionally convergent for all x € X and A,:X — X is a projection
satistying ||A4|| < Ca. Moreover,

QJ?A:{AAiAQN} (4)

is a Bade-complete B.a. of projections in X.

On the other hand, suppose that 91 is a bounded B.a. of projections in X. If
Py,...,P, €M is any finite collection of projections satisfying > j_; P, = I, then
{P,}}-; is an unconditional decomposition of X with unconditional constant at
most 2||9t]|. So, by Lemma 2.2 we have

n

P 1/p
dt) <2 [z (5)
k=1

el el < (],

for all z € X and all 1 <p < oo. The following version of (5) will also be useful: for
all choices of zq,...,z, € X we have

n 1 n
Z Py |l < (L Z Py,
k=1 k=1

Indeed, since the {P,}}_; are necessarily pairwise disjoint, this inequality follows
immediately from (5) applied to = = > }_; P.x;, using the fact that P,z = P,
for all k.

Suppose now that A ={A,};2; and A’ ={A/}>X, are two commuting
Schauder decompositions of a Banach space X, that is, A,Al, = Al A, for all
n and m. It is clear (for all m and n) that the operator A,A], is a bounded
projection in X and that |J,,, Ran(A,A},) is dense in X. Let {D;};2; be the
collection {A,A!, :n,m=1,2,...} ‘enumerated via squares’, that is,

{Dk}koozl = {AIA,M AzAlh AQA,% AIAIQ7 A3A,15 .- } (7)

n

(2am)~"

P 1/p
dt) < 2| . (6)

(1) Py,
1

h=

Then the partial sum projections {3 n; D), : N = 1,2,...} are uniformly bounded,
from which it follows that D = {D,}}2; is a Schauder decomposition of X.
Unconditionality of both the decompositions A and A’ need not imply the
unconditionality of D. In this connection the following observation is of
some interest.
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PROPOSITION 2.5. Let A ={A,};2; and A" ={A}};2, be two commuting
unconditional decompositions of a Banach space X. Let the Schauder decompo-
sition D = {D;.};; be given by (7). Then the following statements are equivalent:

(i) the product B.a. M V My is bounded;
(ii) the product B.a. zmg Y S)JTQ, is bounded;
(iii) the decomposition D = {D;};Z, is unconditional.

Proof.  Since 93?£ Y Emﬁ, C M VM, it is clear that (i) implies (ii). To show
that (ii) implies (iii), first note that every projection in 91}, can be written as
> (nm)er An Al with F a ﬁmte Subset of N x N, or is the complement of such a
projection. Consequently, if o, Y% m, sy 18 bounded, then sm is bounded as well. By
Lemma 2.4 we conclude that D is unconditional. Finally, 1f we assume that D is an
unconditional decomposition, then 9 is a bounded (even Bade-complete) B.a. Since
MA VDA C My, it follows that M V M is bounded. So, (iii) implies (i). O

To illustrate the above situation, let X and Y be Banach spaces and « be a uniform
cross norm on the tensor product X ® Y (that is, a(z @ y) = ||| ||yl for all x € X
and y €Y, and if u: X — X and v:Y — Y are bounded linear operators, then
|u @ || <]|jull ||v]]). Denote by X ®&,Y the norm completion of (X ®Y,a). If
uwe L(X) and v € L(Y), then v ® v is a bounded linear operator on (X ® Y, a) and
hence, extends uniquely to a bounded linear operator on X ®,,Y; this unique extension
is also denoted by u ® v. Suppose that {P,},2; is a Schauder decomposition of X.
Define the projections {A,}22; in X ®,Y by A, = P, ® I. Since [ ;2 Ran(4,,) is
dense in X ® Y (hence, also dense in X ®,Y) and

N N
> = (7)< <
n=1 n=1

for all N € N, it follows that {A,}>°, is a Schauder decomposition of X &, Y.
Similarly, if {Q,};2; is a Schauder decomposition of Y and we define A}, = I ® Q,,
for all n € N, then {A}}2%, is a Schauder decomposition of X ®,Y as well.
Clearly A,A!, = Al A, for all n and m. As observed above, the sequence {D;}72;
defined by (7) is a Schauder decomposition of X ®, Y. In case the decompositions
{P,};21 and {Q,}=; are both unconditional, Proposition 2.5 gives necessary and
sufficient conditions for {D;}7°; to be an unconditional decomposition of X ®,Y.
In particular, if {e, }n2; and {f,,}m=1 are Schauder bases of X and Y respectively,
then {€n ® fin}mm=1, ‘enumerated via squares’ as in (7), is a Schauder basis of
X ®, Y. In this setting Proposition 2.5 can be used to obtain criteria guaranteeing
that {e, ® f,,}nm=1 is an unconditional basis of X R.Y.
We end this section by recalling the notion of R-boundedness.

N

dp

n=1

DEFINITION 2.6. Let X be a Banach space. A non-empty collection 7 C
L(X) is called R-bounded if there exists a constant M >0 such that

(J Zdt) " gM(J: th) " (5)

for all Ty,...,T, € 7, all z,...,z, € X and all n € N\ {0}.

n

Z ri () Tjx;

J=1

n

Z ri(t)z;

J=1
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If 7 CL(X) is R-bounded, then the smallest constant M >0 for which (8)
holds will be denoted by My and is called the R-bound of 7. Clearly, every
R-bounded collection is uniformly bounded in L£(X). For more information
concerning R-boundedness we refer to [8, 33]. In particular, the strongly closed
absolute convex hull of any R-bounded collection 7 is also R-bounded (with the
same R-bound in real spaces and with R-bound at most 2M7 in complex spaces).

3. Boolean algebras and R-boundedness

In this section we consider two results, related to R-boundedness, which concern
the boundedness of products of commuting Boolean algebras of projections.

THEOREM 3.1. Let 9 be an R-bounded B.a. of projections in a Banach space
X. Then MV N is bounded whenever N is a bounded B.a. of projections in X
commuting with 9. Moreover,

1998V 9| < 4| N Moy
Proof. Every element of 9V 9 can be written as » ;_; P.Q;, for some n € N,

projections @, ...,Q, € Nsatisfying > 1, Q, =1, and P,..., P, € M. Forz € X
it follows from (6), applied in the B.a. 91, that

n 1 n 2\ 1/2
> rua| <210 (] | S ropiaus]| )
=1 01l %=1
1 n 2\ 1/2
<ot [ | Y- rinie] )
k=1

< (29))* Mg ]|
This shows that 9V N is bounded and [|90% Vv N|| < 4||9N|> Moy. O
We now consider a class of Banach spaces, introduced by G. Pisier (see [24,

Definition 2.1]), in which every bounded B.a. of projections is automatically
R-bounded.

DEFINITION 3.2. A Banach space X has property («) if there exists a
constant o >0 such that
2 101
ds dt < OéQJ J

11
JOJO 0Jo
for every choice of z;, € X, ¢;, € {—1,1} and for all m,n € N. In this case, the
smallest possible constant « in the previous inequality is denoted by ay.

m n

ewri(8)r(t)zjp
=1 k=1

m n

2
ri(s)rp(t)z || dsdt

G=1 k=1

Tt is shown in [24, Proposition 2.1], that every Banach space with lLu.st. and
having finite cotype necessarily has property (a). In particular, every Banach
lattice, which automatically has l.u.st. (see for example [10, Theorem 17.1]), with
finite cotype has property («). As observed in [24, Remark 2.2], a Banach space X
with property («) cannot contain the ¢ uniformly. For a Banach space, the
property of not containing the ¢2 uniformly is equivalent to having finite cotype,



COMMUTING BOOLEAN ALGEBRAS OF PROJECTIONS 489

a deep result due to B. Maurey and G. Pisier, [22] (see also [10, §14]).
Consequently, in Banach spaces with Lu.st., having property («) is equivalent to
having finite cotype.

THEOREM 3.3. Let X be a Banach space with property («). Then every
hounded B.a. M of projections in X is R-bounded with R-bound Myy < 4|90 *ay.

Proof. Let P,...,P, €M and z,,...,x, € X be given. There exist mutually

disjoint projections @y, ...,Qy € M with Z{Ll Q=1 and «;, € {0,1} such that
P; = SV a;,Qy for all j=1,...,n. Hence,

1 2 1 n N
Jo ds = J Z Z 5)Qp;
1=
For each s € [0,1] it follows from (6) that

ZZW 0w, ,i (iq,.krj@)xj)

j=1 k= j=1

ﬁrat)czk(gwj(s)xj)

2

ds. (9)

n

> ri(8)Pi;

J=1

2 2

2

1
<(ellm)2| z

Za]krk( )ri(s)Q;

Combining this with (9) we have

| s o2 ]

Since X has property (a), we conclude that

1 2 11
| ds < 2o |
0 0J0

Given s € [0,1], it follows from (6) that

| (!

< (2[m))*

n

> rils) P

J=1

N
Zo‘ﬂwrk() i(8)Qpx; dsdt.

n

> rils) P

J=1

n

n

N
ZZ Qkﬂﬁ
J=1 k=

i Tk@)Qk( ]” rj(s)xj)

k=1

= (2|}m]))*

= (2/|9]))?
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and hence, that

1 n 2 1 n 2
ri(s)Pjx;|| ds < (2||9T(||)4a§(J ri(s)x;|| ds.
This shows that 90 is R-bounded with R-bound My < (2||9%]])cx. O

Combined with Theorem 3.1 the previous theorem immediately yields the
following result.

COROLLARY 3.4. Let X be a Banach space with property («) and 9 and I
be two bounded commuting Boolean algebras of projections in X. Then 9V N is
bounded and ||V N|| < 16N .

Let Y be a Banach space with l.u.st. and having finite cotype. Since Y then has
property («), so does any closed subspace X of Y. So, Corollary 3.4 applies in X.
Consequently, Theorem 2.6 in [13] is a special case of Corollary 3.4 (after noting
that for a Banach lattice Y, being p-concave for some 1 <p < oo is equivalent to
having finite cotype, [10, Theorem 16.17]).

Concerning some relevant examples, note that ¢, and ¢, (for instance) have
Lu.st. but fail to have finite cotype (and hence, also fail to have property («)).
The von Neumann—Schatten ideals &,, for 1 < p < oo, are Banach spaces with
finite cotype but, for p # 2, fail to have property («) (hence, also fail Lu.st.); see
Corollary 3.4 above and [13, Remark 2.10]. For every p > 2, it is known that there
exist closed subspaces of L, (hence they have property (a)) which fail to have
Lu.st.; see page 19 of [24].

The following particular example is also relevant. Let X be a Banach space and
(Q,3, 1) be a finite measure space. For each 1 <p < oo consider the Banach space
L,(p; X) of all X-valued Bochner p-integrable functions on Q. For x € X and
g€ L,(p), define the function g®ze L,(1;X) by (9®z)(w)=g(w)z for
we Q. Given AcX, define a projection P, in L,(u; X) by fr xaf. Then
M={P,: AcX} is a Bade-complete B.a. of projections in L,(u;X) with
|99t = 1. An application of Kahane’s Inequality (see for example [10, 11.1]),
Fubini’s Theorem and the Contraction Principle (see for example [10, 12.2]) shows
that 9 is R-bounded. However, since z+—1® x is an isometric embedding of X
into L,(u; X) , we see that L,(u; X) cannot have property (o) whenever X fails to
have this property.

4. Boolean algebras in GL-spaces

Given Banach spaces X and Y and 1 <p < oo, we denote by IL,(X,Y’) the ideal
of all p-absolutely summing operators from X into Y, which is a Banach space
with respect to the p-summing norm 7, (see [10, §2], for the relevant definitions).
Recall that a bounded linear operator T : X — Y is p-factorable (1 <p<oo) if
there exist a measure space (€, %, 1) and bounded linear operators B : X — L, (j)
and A: L,(u) — Y™ such that Tr = ABx for all x € X. For such an operator T
define v, (T') = inf{[|A]| ||B||}, where the infimum is taken over all possible
operators A and B satisfying this condition. The ideal of all p-factorable operators
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from X into Y is denoted by I',(X,Y); it is a Banach space with respect to the
norm 7, (see [10, §§7 and 9] for details).

DEFINITION 4.1. A Banach space X is a Gordon-Lewis space (briefly,
GL-space) if II;(X,4,) CT(X,4). If X is a GL-space, then there exists a
constant ¢>0 such that v (T)<cm(T) for all T €Il;(X,4,); the smallest
constant ¢ >0 with this property is denoted by gl(X).

A discussion of GL-spaces can be found in [10, §17]. In particular, it is shown
that every Banach space with lL.u.st. is a GL-space (a result due to Y. Gordon and
D. R. Lewis, [14]). The converse is false. The Banach spaces Z, (for 1 < p < c0),
constructed by N. Kalton and N. T. Peck, [17], admit an unconditional Schauder
decomposition (into two-dimensional subspaces), have finite cotype and are
GL-spaces but fail to have Lu.st., [16]. For further (non-isomorphic) examples, see
also [19].

The proof of the following result uses ideas from the proof of the Theorem on
page 365 of [10]. This result (that is Theorem 4.2 below) includes [13, Theorem
2.5] as a special case since Banach lattices have l.u.st. and hence, are GL-spaces.

THEOREM 4.2. Let 9 and N be two bounded commuting Boolean algebras of
projections in a GL-space X. Then 9V N is also bounded and there exists a
(universal) constant K >0 such that

1998 v 9| < £ gl(X) |90

Proof. Every element in 9tV 0N is of the form » 7" > i o P;Qy, for finitely
many projections Py, ..., P, € Mand Qy,...,Q, € Nwith Y 7" P, =31, Q, =1,
scalars a;;, € {0,1} and n,m € N. We have to show that

Z Z ;. P;Qy
=1

k=1

<K gl(X)| |9 9] (10)

for all such choices of P;, Q) and «j;, for some universal constant K > 0. So, fix
such a choice. Let 2y € X and aj € X*. Defining A = {1,...,m} x {1,...,n}, we
denote elements of ¢,(A) by a = (aj);r = (a;)}) —; with aj € C. Define the
linear operator A : X — ¢,(A) by

Az = ((PjQyz, 7)) jp,  for z € X.
Furthermore, define the linear operator B: X* — ¢y(A) by
Bx" = ((PijiUo’m*))j,k, for z* € X*.

We claim that
m1(A) S CIMI Y Yol (11)
for some (universal) constant C' > 0. Indeed, define the linear space S of functions
on [0,1]* by
S = span{r;(s)r,(t) : 1<j<m, 1 <k<n}.

Furthermore, define S, = (S,] - |ls) and S; = (S,||-]l1).- So, we may consider
S C Lo([0,1)?) and S; C L;([0,1]*). Let J: S, — S; be defined by Jf = f for
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all f e S,. It follows from [10, Examples 2.9] that m;(J) = 1. Define the operator
W:X — S, by

m n

(Wa)(s,t) =Y > (PQua, a)r(s)ra(t)

=1 k=1
for all z € X and (s,t) € [0,1]*. Then, for all (s,t) € [0,1]?, we have

7)) = | 30 3B @i o))

=1 k=1

(Sron) (o))

<‘ Z"j(s)Pj ZTk(t)Qk
=1 E=1

<D IniDllzll flol,

][ [lo]]

where the last inequality follows by writing Y 7. r;(s)P; = > P; — >_; P;. Here

>, P; and Y 7 P; are the sums taken over all j for which r;(s) equals 1or—1
respectively, and similarly for Y} r.(¢t)Qy. Accordingly,

[Wa]| oo < 49 19| (|| [|o]l-
This shows that
W < 419 19| [|zol|-

Next, define the operator V : S; — £y(A) by
V( Z Z ajkrj(s)rk(t)> = (i) k-
=1 k=1
It is a consequence of the Khinchin inequality (see for example [10, 1.10]) that

S hat) e[
ik I PO I

=1 k=1

m n

Z Z ajir;(s)r(t)

j=1 k=1

dsdt

for all scalars (aj;)j"],_; (where A; is a universal constant). Consequently,
V]| < A2 Since A = VJW, this implies that m (A) <4A72|9M| [N |25, which
proves (11) with C' = 4472 Via a similar argument we find that

™1 (B) < Cl|9 19]] [[o]- (12)
Define the linear operator M, : £y(A) — €(A) by M, ((aj) ;1) = (ojpa;;) - Clearly,

|| M, || < 1. Consider the composition

A* . B M,
ZQ(A)—)X —’£2(A)—’€2(A)7

where A* is the Banach space dual operator of A. A simple computation shows
that

m n

Ata = Z Z ;. P; Qg

J=1 k=1
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for all a = (a;;,);x € £2(A). From the definition of B it follows that
BA"a = (<Pij950»ZZa7sP*sto>> " = (ajk<Pijxo7$(*)>)j,k
r=1 s=1 Js
and hence, that
MQBA*CL = (ajka]»k<Pijx0, $8>)7k

for all @ = (a;;);x € f2(A). This shows that M,BA" is a multiplication operator on
ly(A) with trace given by

m n

r(M,BA") ZZ% PjQuo, () (13)

=1 k=
It follows from [10, Lemma 6.14] that
[tr(Mo BAT)| < 11 (Mo BA”) < [[ M |11 (BA™) < 1 (BA),
where ¢; denotes the 1-integral norm. From [10, Theorem 5.16(a)], it follows that
1 (BAY) <m(B)uoo(A”) = m(B)m(A), (14)

where in the last equality we have used the fact that iy, =, (trivial) and
Yoo (A¥) = v (A) (by [10, Proposition 7.2]). Since, by hypothesis, X is a GL-space
we also have v (4) <gl(X)m(A4) and so

n(BA") <g(X)m, (A)m, (B).
Using (11) and (12) we conclude that

1 (BA") < C*gl(X) |9 |9 1o | [l5]-
In combination with (13) and (14) this shows that

'< Z Z ok PiQro, $3>

J=1 k=1

< Pl (X)) |9 o | 125

This inequality holds for all x; € X and x; € X* and so

m 3

Z Z ;. PiQy

=1 k=1

for all choices of a;;, € {0,1}. Accordingly, (10) holds with K = C2. O

< CPgl(X) |l | %,

Combining Theorem 4.2 with the observations made in Proposition 2.5 we
obtain the following result.

COROLLARY 4.3. Let {A,}o_; and {A}}32, be two commuting uncondi-
tional decompositions of a GL-space X. Then the product decomposition
{A, AL -1 as given by (7) is also an unconditional decomposition of X.

From the remarks made at the end of §2 it is now clear that the Theorem on
page 365 of [10] is a special case of Corollary 4.3.

As observed in the remarks following Definition 3.2, a Banach space X with
Lu.st. has property («) if and only if X has finite cotype. A close inspection of the
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proof of [24, Proposition 2.1] shows that actually the following result holds. In
view of this result and Corollary 3.4, the result of Theorem 4.2 is only of interest
in GL-spaces with trivial cotype.

THEOREM 4.4. A GL-space X has property («) if and only if X has
finite cotype.

By the discussion after Definition 4.1 and Theorem 4.2, it follows that the
GL-spaces Z, (1 < p < 00), due to Kalton and Peck, all have property (). There
also exist Banach spaces with property («) which fail to be GL-spaces. Indeed, for
the circle group T it is known that for every p > 2 there exists a A(2)-set F' C Z
which fails to be a A(p)-set, [7, Theorem 2]|. Accordingly, if

L, p(T) = {f € L,(T) : f(n) =0 for all n ¢ F},
then the trigonometric system {€"'},cp is not an unconditional basis for L, »(T),
(24, p.14]. Hence, L, p(T) fails to be a GL-space, [24, Theorem 3.1]. However,
since L,(T) has property («), so does its closed subspace L, »(T).

5. The Boolean algebra of band projections

In this section we investigate conditions under which the B.a. B(E) of all band
projections in a Dedekind o-complete Banach lattice is R-bounded. Actually, we
consider a slightly more general situation. For the general theory of Banach
lattices we refer to [23, 28, 34]. We consider only real Banach lattices, but all
results extend easily to complex Banach lattices.

Given a Banach lattice E, denote by Z(FE) the centre of E, that is,

Z(E)={re L(F):3 X e€0,00) such that |rz|< Az| V2 € E},

which is a commutative subalgebra of L£(F). The space Z(FE) is itself a vector
lattice with respect to the lattice operations given by

(m Vmo)u = (mu) V (mu) and (m; A my)u = (mu) A (mou)

for all we E" (the positive cone of E) and all m,m € Z(E). Moreover,
|rz| = |7|(Jz|) for all m€ Z(F) and = € E. In particular, for 7€ Z(FE) and
A € [0,00) the inequality || < AT is equivalent to the requirement that |mz|< A|z|
for all x € E. For any 7 € Z(FE), its operator norm is given by

|7|| = inf{\ € [0,00) : |7| < AI}.

Consequently, the wunit ball of Z(F) is equal to the order interval
[-1,I] ={m € Z(E) : |r| <I}. The B.a. of band projections in E consists precisely
of all idempotent elements in Z(E). If E is an L,-space (1<p<oo), then
Z(L,) = L, acting on L, via multiplication; the band projections correspond to
multiplication by characteristic functions. If E is Dedekind o-complete, then it is
a consequence of the Freudenthal spectral theorem that, if || <|y| in E, then
there exists m € Z(FE) satisfying my = « and || <I. Consequently, Z(F) is non-
trivial. However, there exist (infinite-dimensional) Banach lattices such that
Z(E) ={M : A€ R} (see [15] and [32]). To avoid this latter pathology it is
convenient to introduce the following class of Banach lattices.
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DEFINITION 5.1. The centre Z(E) of a Banach lattice E is called rich
if, whenever |z|<|y| in E there exists a sequence {m,},—; in Z(E) such that
|7y — x| — 0 as n — oo.

Replacing 7, (in the above definition) by (m, AI)V (—I) we may assume,
without loss of generality, that |m,| < I for all n. The general form of the following
result will be needed in the next section.

LEMMA 5.2. Let E be a Banach lattice. Suppose there exists a subset
T C [-I,1] such that:
(i) 7 is R-bounded with R-bound My;
(ii) whenever x,y € E satisfy |x| <|y|, there exists a sequence {m;};2; in T with
Ty — T as j — oo.

Then, for any pairwise disjoint system {v;,vs,..., v} in E, we have
2"
> wl| = M7 \/_ min [jo.
k=1 o
Proof. Define w= 7., v;. Let {(e1jy---,€nj) 17 =1,...,2"} be an enumer-
ation of all possible n-tuples (e, ...,¢,) with each ¢, = :tl. For k=1,...,n we

define z; = Z?:I €x;vj- By disjointness,

on on

2l = > lewgvil =D gl = |w|  for all k.
=1 =1

Moreover, if aq,...,q, € R, then
n 2" 2" n
E E OékEkj'Uj = g ( Oékgkj) ’U]
k=1 j=1 =1 \ =1

n

E akskj

\Uj|~

2"
There exists jj € {1,...,2"} such that |} ;_; agey; | = 5= || and hence,

pSC ES O [EYEY Do) I

.....

This implies, in particular, that || >y 74(t)zy|| =nmin;_; o
and hence, that
1
(l

By (ii) above, for each k=1,...,n there is a sequence {7y, },-; in 7 such that

|v;|| for all t € [0,1]

n

Zrk()

2\ 1/2
> 1.
2 dt> o r{nnzn v,| (15)
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TpmW — T, as m — oo. The R-boundedness of 7 implies that

J; kzn;fk(t)w
= Mz (J; kzn;m(t)

2
dt

2
dt)nwn?

2 1
dt < M%J
0

n
Z Ty (t)ﬂ-kﬂnw
k=1

= Mzn|wl|’
for all m =1,2,.... Since
n 2 n 2
Zrk(t)ﬂ—k,mw — ZTk(t)xk
k=1 k=1

as m — oo (for all ¢ € [0,1]), it follows from Fatou’s Lemma that
1
|

Combined with (15) this shows that

n

2
dt < M3n||wl|.

()T},
=1

My+/nl|w| > ”]:1{11112 [|v]

and so [lw]| > Mz'/nming_; o

REMARK 5.3. For each n €N, denote by 7, the order interval [—I,1] in
Z(0%). In Lemma 5.2, choosing {vy, ..., vy} to be the standard basis vectors of 128
we find that Mgz, >+/n. Consequently, My — oo as n — oo. Since [—I,I]
(C Z(¢%)) is the absolute convex hull of the B.a. B(£Z) of all band projections in
0%, it follows that Mpu) = Myz,. This implies, in particular, that the Boolean
algebras B({,,) and B(c;) are not R-bounded. In the case of ¢j, we note that this
B.a. is even Bade-complete and has a cyclic vector.

COROLLARY 5.4. Let E be a Banach lattice, n € N and u: (% — E be a
lattice isomorphism (into) with inverse uw™':u(f%) — (2. Under the same
assumptions as in Lemma 5.2 we have |lul| |[u™"| = Mz'\/n.

Proof. Denote by {e, ..., ey} the standard basis in £% and put v; = u(e;) for
j=1,...,2". Since

~1 ~1
L= lejlloe = llu™ (v))lloo < llu™"[] [|o]

for all j, it follows that 1< [u™!|| min;_; o

v;||. Hence,

-1
1> (min,, o) (16)
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(50l

On the other hand, it follows from Lemma 5.2 that

S uley)

on

P

~ <
o
<lull| Yoes|| = llull (17)
=1 oo
A combination of (16) and (17) yields ||ul| [[u™}|| = M7 /7. O

Before formulating the next result recall that a Banach lattice F is a KB -space
if every monotone, norm bounded sequence in E is convergent (see for example
[23, Definition 2.4.11]). Every KB-space has order-continuous norm (as follows
from [23, Theorem 2.4.2]) and so, in particular, is Dedekind complete. A Banach
lattice E is a KB -space if and only if it does not contain a lattice copy of ¢, (see
[23, Theorem 2.4.12] or [34, Theorem 117.4]).

COROLLARY 5.5. Let E be a Banach lattice. Under the same assumptions as
Lemma 5.2 it follows that E cannot contain the £% uniformly (equivalently, E has
finite cotype). Moreover, E is a KB-space.

Proof. Recall that a Banach lattice F is said to contain the ¢2 uniformly as a
sublattice if there exists a constant C'>1 such that for every n € N\ {0} there
exists a linear lattice isomorphism wu, : (2 — E with inverse wu,' : u,(f2) — %
and ||u, || ||u, || < C. From Corollary 5.4 it is clear, under the present assumptions,
that E cannot contain the ¢ uniformly as a sublattice. However, this also implies
that E cannot contain the £ uniformly (this result is implicit in [10, Proposition
16.16 and Scholium 16.17]; it is explicitly stated in [28, Theorem 8.13]). Hence, F
has finite cotype (see [10, Theorem 14.1]). Consequently, E does not contain a
(lattice) copy of ¢y and hence, is a KB-space. O

Next we consider the converse of the above corollary.

LEMMA 5.6. Let E be a Banach lattice having finite cotype. Then the order
interval [—I,I] in Z(E) is R-bounded.

Proof. Since F has finite cotype, there is a constant K >1 such that

n 1/2 1) n n 1/2
(Ltat) | <[ | Sreoedar< x| (S
=1 Ol %=1 =1

for all zy,...,z, € E and all n € N\ {0} (see for example [10, Theorem 16.18]).
Here the element (37, |2,*)"/? is defined via the Krivine functional calculus for
Banach lattices (see for example [10, Chapter 16] or [20, §1.d]).

Let z,...,x, € E and 7,...,m, € Z(F) be given with |m,|<I for all k. Since
|| < |zy| for all k, it follows from properties of the Krivine calculus that

n 1/2 n
(Smat) < (Lhat)
k=1 k=1

K™ (18)

1/2
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Using (18) we see that

|

n 1/2
()
k=1

n 1/2
dt < KH (Z |7Tk33k|2)
k=1

n
Zrk(t)ﬂﬂk
k=1

1 n
<K2J’ Z’I"k(t).lfk dt.
ol =
By Kahane’s inequality, this shows that [—1, ] is R-bounded. O

REMARK 5.7. An alternative proof of Lemma 5.6 is as follows. If E is a
Banach lattice having finite cotype, then E has property (a) (see the discussion
following Definition 3.2). Hence, by Theorem 3.3, the B.a. B(E) of all band
projections in E is R-bounded. As noted in the last line of the proof of Corollary
5.5, having finite cotype implies that E is a KB-space (and hence, E is Dedekind
complete). By the same argument as given in the first part of the proof of
Theorem 5.8 below it follows that [—I, I] is R-bounded.

The above facts yield the following result.

THEOREM 5.8. For a Banach lattice E the following statements are
equivalent:
(i) E is Dedekind o-complete and the B.a. B(E) of all band projections is
R-bounded;
(ii) E has rich centre and the order interval [—I,I] in Z(E) is R-bounded;
(iii) E has finite cotype;
(iv) E has property («).

Proof. 1If E is Dedekind o-complete, then Z(E) is also Dedekind o-complete
and B(E) is the B.a. of all components of I in Z(E). By the Freudenthal spectral
theorem, the order interval [—I,I] is the norm closure of the absolute convex hull
of B(E), and so the R-boundedness of B(E) implies that [—I,I] is R-bounded.
Hence, (i) implies (ii). Corollary 5.5 shows that (ii) implies (iii). Finally, if E has
finite cotype then, by Lemma 5.6, [—1, I] is R-bounded. In particular, B(E) is then
R-bounded. Moreover, as observed in Lemma 5.6, F is a KB-space which implies
that F is Dedekind complete. O

REMARK 5.9. (a) As shown in [33, Theorem 2.2.14], if X is a Banach space
with non-trivial type and 7 C £(X) is R-bounded, then 7°={T*:T €7} is
R-bounded in L£(X). At that time, it was unclear if the condition of X having
non-trivial type was necessary for this conclusion. However, for X = ¢, it follows
from Theorem 5.8 that 7 = B(¢;) is R-bounded but 7" = B({,,) is not R-bounded
(see Remark 5.3). Accordingly, the condition of X having non-trivial type cannot
be omitted (in general) in the theorem cited from [33].

(b) For a Dedekind o-complete Banach lattice E, combining Theorem 3.3 and
Theorem 5.8, we conclude that every B.a. of projections in E is R-bounded
precisely when the particular B.a. B(E) is R-bounded!
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Next we discuss some further characterizations (related to R-boundedness) of
Banach lattices having finite cotype. For this purpose we recall some definitions
and introduce some notation. Let X be a Banach space and {x,}5—; be a sequence
in X. The series > ooz, is called almost unconditionally convergent (or the
sequence {x,},—; almost unconditionally summable) if the series > ., r,(t)z, is
norm convergent in X for almost all ¢ € [0,1]. For a sequence {z,},—; in X the
following two statements are equivalent (see for example [10, Theorem 12.3]):

(i) the sequence {z,},=; is almost unconditionally summable;
(ii) the series > ooy r,(-)x, is norm convergent in the Bochner space
L,([0,1], X) for some (all) 1<p < oo.
Given a Banach space X, denote by rad(X) the collection of all almost
unconditionally summable sequences {z, }n—; (with x, € X for all n), which is a
vector space with respect to the coordinatewise operations. Furthermore, define

Rad ) = { i( o i € rd ()}

which is a linear space of (equivalence classes of) strongly measurable X-valued
functions on [0, 1]. Actually, Rad(X) is a closed linear subspace of L, ([0, 1], X), for
each 1<p < co. By Kahane’s inequality (see for example [10, 11.1]), the norms
|||, and |||, are equivalent on Rad(X) for all 1<p,q < oo. We will consider
Rad(X) equipped with the norm || - ||5. The mapping {x, }nei— D> pei 7 (- )z, is &
bijection from rad(X) onto Rad(X). For {z,},2; € rad(X), define

Z 7””( . )xn
n=1

Equipped with the norm || - ||;aq(x), the space rad(X) is a Banach space.

Denote by £, (X) the Banach space of all bounded sequences {z,},—; in X
equipped with the norm ||{z,}||. = sup, ||z,]|. Let cyp(X) be the subspace of
0 (X) consisting of all sequences which are eventually zero. Then c¢g(X) C
rad(X) C £ (X) and cyo(X) is a dense subspace of rad(X) relative to || - [|.aa(x)-

Let E be a Banach lattice. With respect to the order defined coordinatewise,
((F) is a Banach lattice in which c¢g(F) is an order ideal. We consider
conditions on E which imply that rad(FE) is an order ideal in ¢, (E).

H{zrr,}‘lrad(X) =

2

LEMMA 5.10. Let E be a Dedekind o-complete Banach lattice in which the
B.a. B(E) of all band projections is R-bounded. Then rad(E) is an order ideal in
{(E) and there exists a lattice norm on rad(E) which is equivalent to || - |,aa(g)-

Proof. By Freudenthal’s spectral theorem, the order interval [—1I,1] is the
closure of the absolute convex hull of B(E) in Z(E). Hence, [—1,I] is R-bounded.
Take z = {z,}n=; in rad(F) and y = {y,}n=: in ¢ (F) such that |y| <|z|. For
each n there exists w, € [—I, I] such that y, = m,x,. Consequently,

Zn:%‘( )i

j=m

n

L(01B) Ly(0.1L.E)

ZTJ( : )xj

<SM_pp

Ly([0.1],E)
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for all m <n. This implies that the series ) 7%, r;(-)y; is norm convergent in
Ly([0,1], E) and

(- )y <M ri(-)w; .
; ! Lone ; L o,m)
Hence, y € rad(E) and
1Yllcad(2) < Mi—gn )%l aace)- (19)

This shows, in particular, that rad(E) is an order ideal in ¢, (F).
For z € rad(E) define

1]l = sup {1yllvaae) : ¥ € rad(E), [y <|zl},

in which case |[|z]| > ||7||;aq(z)- It follows from (19) that [|z|| < M_j |7 |lsaace)- It is
easily verified that || -|| is a lattice norm on rad(E). O

LEMMA 5.11. Let E be a Banach lattice and suppose there exists a lattice
norm || - || on ¢y (E) equivalent to || - ||,aqr)- Then E is a KB-space (in particular,
E is Dedekind complete) and the B.a. B( ) is R-bounded.

Proof. Let P,...,P,€B(E) and x,...,7,€E Put y;=Puzx; for
j=1,...,n. Define the elements z,y € cyo(E) by x = (zy,...,2,,0,0,...) and
y= WY 0,0,...). Since |y;|<|z;| for all j , we have |y|<|z| and so,
[lyll < ||z]]. By hypothesis, there exists a constant C'>1 such that

||Z||md(E> ll2]] < C||ZHmd(E)

for all z € ¢qy(E). Hence,
2
[9llraae) < Cllyll < Cllzll < O[] raq()
By the definition of [ - ||;aq(z), this implies that

Zr]-( )
=1

n

> ri() P

J=1

2
<C

Ly((0.1].) L(0.1.E)

So, we conclude that B(F) is R-bounded.

To show that F is a KB-space suppose, on the contrary, that E contains a
vector sublattice F' which is norm and lattice isomorphic with ¢j. Then ¢y (F') is a
vector sublattice of cyy(E) and the restriction of || -] to coo(F) is equivalent to
| - [lraa(r)- Consequently, from the first part of the proof applied in the Banach
lattice F, it follows that the B.a. B(F') is R-bounded. Since F' is norm and lattice
isomorphic with ¢y, the B.a. B(cg) is also R-bounded. By Remark 5.3 this is a
contradiction. Therefore, E does not contain a lattice copy of ¢y and hence E is a
KB-space. O

LEMMA 5.12. Let E be a Banach lattice such that rad(E) is an order ideal in
l(E). Then there exists a lattice norm on cy(E) equivalent to || - ||;aa(m)
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Proof. We require some notation. For each k € N define the linear operator
T.: lo(E) — L (E) of right translation by k-steps via

(Tyz), = {

for all z = (21, 29,...) in £y (E). Moreover, for FFC N\ {0} and z € ¢, (F) define
Xrt €L (E) by (xpz),=2; if 1€ F and (xpz); =0 otherwise. From the

0 for 1 <I<k,
x_y, forl >k,

definition of || - [|;aq(z) and the Contraction Principle (see for example [10, 12.2])
it follows that Tz € rad(E) and xpz € rad(E) whenever z € rad(E) and that
HTkx”rad(E) = Hx”rad(E) and ||XF$||rad(E) < ”xHrad(E)

We claim that there exists a constant C' > 0 satisfying

sup { |Yllraa(m) : ¥ € coo(E); [yl < lzl} < Cll@llraace) (20)

for all x € ¢yy(E). Indeed, suppose that (20) fails to hold for every C' > 0. Then, for
every n € N\ {0} there exist 2 € cy(E) and y™ € coo(E) with [y™] <]z
such that ||y(")||md(E) > n3||a:(”)||md<E>. Without loss of generahty we may
assume that ||z ||md =1 for all n. Write 2z = (z g") mk" ,0,0,...) and let
K,=k +...+k, for n> 1 with Ky = 0. Since T}, z( Hmd = ||z ||md =1
for all n}l the series w=> ;2 n" 2TK"ac( " is absolutely convergent in rad(E).
The sequence TK".’E(") is supported in (K,_;, K,] and so, x(x, , x, W = n_QTKnm("’)
for all n>1. Define z€ ((E) by z=> 72, 7“L’2TK”y<")7 which is a pointwise
convergent series on N\ {0} with disjointly supported terms. Since |y™|< |z
for all n>1, it follows that |z| < |w|. By hypothesis, this implies that z € rad(E)
and hence,

() HX K, 1,K, Z”md ||Z||rad(E)

1
n< _”y ”rad(E) = ” ?TK,,,ZJ A(E)

for all n>1. This is a contradiction and, accordingly, there exists a constant
C' > 0 such that (20) holds for all x € ¢y (E).

Defining
2l = sup {yllvaam) = ¥ € coo(E), Iyl < |z]}
for all @ € ¢oy(F), we see from (20) that | .| is a lattice norm on rad(F)
equivalent to || - [laa(m)- O

Collecting together the above facts we obtain the following result, which
complements Theorem 5.8.

THEOREM 5.13. For a Banach lattice E the following statements are
equivalent:
(i) E is Dedekind o-complete and the B.a. B(E) of all band projections is

R-bounded;
(ii) rad(F) is an order ideal in ¢, (E) and there exists a lattice norm on rad(E)
equivalent to || - || aq(p)

(ii) rad(E) is an order ideal in ¢, (E) (equivalently, whenever a sequence
{z,}o1 is almost unconditionally summable in E and vy, € E satisfy
|yn| <|z,| for all n>1, then {y,}—; Is almost unconditionally summable);

(iv) there exists a lattice norm on cy(E) equivalent to | - [ aq(r)
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Note that all of the above statements are equivalent to F having finite cotype
(see Theorem 5.8) and imply that F is a KB-space (see Lemma 5.11).

REMARK 5.14. The condition of the Banach lattice E being a KB-space is
by itself not sufficient to imply that the B.a. B(E) is R-bounded. Indeed, take
1<p<oo and let E be the f,-direct sum of the Banach lattices E, = /%
(n=1,2,...). By [1, Theorem 12.6], the dual space E* is canonically isometric
with the {,-direct sum (where p'+¢'=1) of the Banach lattices ¢
(n=1,2,...). Applying this theorem again we find that E is reflexive. Hence,
E is a KB-space, [23, Theorem 2.4.15]. It is clear that E contains the 2
uniformly, so E does not have finite cotype and hence, B(E) is not R-bounded
(see Theorem 5.8). However, since E has order-continuous norm, it is evident that
B(FE) is Bade-complete.

6. R-boundedness and bade-completeness

The main result of the present section is: in any Banach space the strong
operator closure of any R-bounded B.a. of projections is always Bade-complete.
For simplicity we consider real Banach spaces, but the main results carry over
immediately to complex spaces. For the convenience of the reader, we start this
section by recalling a fundamental construction which equips the cyclic subspaces
of a bounded B.a. of projections with a canonical Banach lattice structure. This
will enable us to apply the results of the previous section.

Let 9t be a bounded B.a. of projections in a Banach space X. Denote by
Q = Qgy the (compact, Hausdorff and totally disconnected) Stone space of 9 and
let the spectral measure P : Fo — L(X) be given by the Boolean isomorphism of
the algebra Fq of all closed-open subsets of 2 onto 9. Denoting by sim(Fq) the
space of all simple functions based on the algebra §g, it turns out that the
corresponding integration map J : sim(§q) — L(X), given by J(s) = [y sdP for
all s € sim(Fq), is an algebra homomorphism which satisfies

[8lloc < II()I < 2[I9 |l oc- (21)

Since sim(Fq) is dense in C(Q2), the map J extends to an algebra homomorphism
J:C(Q) — L(X), still satisfying (21). Consequently, J is a Banach algebra
isomorphism from C(Q2) onto (9M),, the uniformly closed subalgebra of L£(X)
generated by 9. Given z € X the evaluation map J, : C(2) — X is defined by

J.(f) = J(f)x for all f e C(92). Note that
Jo(f9) = J(f)Ju(g), for f,g € C(Q). (22)

Denoting by 9M[x] the cyclic subspace corresponding to z, that is, the norm
closure in X of the subspace {J(s)z :s € sim(Fq)}, it is clear that J, takes its
values in M[z]. The following (well-known) observation plays a key role. For
convenience we indicate the proof.

LemMMA 6.1. Let |g|<|f| in C(Q). Then ||J,g| <2|9M||||J.f|| for all x € X.
Proof. Fix z € X. Choose sequences {t, }n—; and {s,}=; in sim(Fq) such that

t, — g and s, — f in C(Q2) as n — oo. Replacing ¢, with (¢, Als,|) V (=]|s,]), we
may assume that [t,|<|s,| for all n. There then exists r, € sim(F,) such that
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t, =15, and |r,|<1 for each n. Hence, J,.(t,) = J(r,)J.(s,) and so, by (21),
1Tt )1 < 2|97 ||, (s,)]]- By letting n — oo, the result follows. O

Let z € X. For f € C(Q) define
Po(f) = sup{||ogl : g € C(Q), |9l <[f1}-

Then p, : C(2) — [0,00) is a lattice semi-norm and, by Lemma 6.1, we have
[Tl <pa(F) 2D S fNl;, - for fe C(Q). (23)

Clearly, (21) implies that p,(f) <2||9||||z|| || fll< for all f € C(£2). Defining the
subspace N, = {f € C(Q) : J,f =0}, it follows from (23) that

N, ={feC(Q):p,(f) =0}

This fact and (22) imply that N, is a closed order ideal in C(€2). Consider now
the quotient space C(€2)/N,, equipped with the quotient vector lattice structure.
The equivalence class in C(Q2)/N, corresponding to a function fe C(Q) is
denoted by f. For f € C(Q)/N, we define ||f|, = p,(f). Then ||-|, is a lattice
norm on C(Q)/N,. From (23) it follows that there exists a linear mapping
J, : C(Q)/N, — X satisfying J,f = J,f and

1T A< Il <2917, fll,  for f € C(Q)/N,. (24)

Let L(Px) denote the completion of the vector lattice C'(2)/N, with respect to
|| -1l1, which is then a Banach lattice. Then (24) implies that .J, extends uniquely
to a norm isomorphism (into) J, :L;(Pz) — X satisfying also (24). Conse-
quently, J, is a norm isomorphism from L,(Pxz) onto the cyclic subspace
IM[x]. We now use J, to transfer the Banach lattice structure from L,(Pz) to
IM[z]. The corresponding norm on 9M[z] will be denoted by |- |lgnj, so that
1T fllonz) = IIfIl; for all f € Ly(Pxz). Note that (24) is now equivalent to the
estimate

1Yl < lIyllona) < 2[00 [lyll,  for y € Mz].

Hence, the Banach lattice norm || - oy, is equivalent on 9[z] with the original
given norm on X. Moreover, the element >0 is a weak order unit in the
Banach lattice M[z] and the map J, : C(Q) — Mz] is a Riesz homomorphism.
Denote by 9(x) the subspace J,(sim(Fq)) of M[z], that is,

93?(3:)2{Zaijx:aje]R,PjEim,jzl,...,n; nGN}.

=1

From the construction it is clear that 9i(x) is a dense vector sublattice of 9[x].

Let M, be the strong operator closure of 9 in £(X), which is also a bounded
B.a. of projections. Then M, [z] = M[x] for all # € X. A moment’s reflection shows
that the lattice structures and the norms || - ”ﬁs[w] and || - [|lgnj, are identical (one

only needs to verify this on 9M(z)). In general, M, need not be Bade-complete
(take for 91 the B.a. of band projections in X = ¢_, which is strongly closed but is
not Bade-complete).

LEMMA 6.2. Let 9 be a bounded B.a. of projections in a Banach space X
and x € X. Suppose that {y,},—; is a disjoint sequence in IM(x) satisfying
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0 <y, <z for all n. Then there exists a disjoint sequence {F,},~; in 9 such that
0<y, <P,z for all n.

Proof. We start with the following observation. Given y € 9(z) satisfying
0 < y< a, thereexist @ € Mand G € [0, 00) such that 0 < y < Qx < By. Indeed, there
exists s € sim(§q) such that J,(s) = y. Since J, is a lattice homomorphism, we may
assume that s = > i) ajxp, where 0 <o <1lforallj=1,...,nand F,..., F, are
mutually disjoint in §q. Defining F = Jj-; F}, Q@ = P(F) and = (min; ozj)_l, it is
clear that 0 <s< xp<fs in sim(Fq). Hence, 0< J,(s) < J,.(xr) < B8J,(s), that is,
0<y<Qz<pPy.

Let {y,}ne1 be as in the statement of the lemma. For each n there exist
G, €Fq and f, €[0,00) such that @, = P(G,) satisfies 0 <y, <Q,z <8,y
This implies that {Q,z},2; is a disjoint sequence in M(z). Since J, is a lattice
homomorphism, it follows that

Qan - ( G", A XG,,) Jz(XG,,,) A JI(XGﬂ) = (me) A (an) =0
for all m #mn. The sequence {P,},~;, defined inductively by P, =@Q; and
P, = Q,(I —>7=1 P,) for n>2, has the desired properties. O

PROPOSITION 6.3. Let 9 be a bounded B.a. of projections in a Banach space
X. The following statements are equivalent:
(i) every disjoint sequence {P,}>; C 9 converges strongly to zero in L(X);
(ii) for every x € X, the Banach lattice M[z]| has order-continuous norm;

(iii) 9, is Bade-complete.

Proof.  First assume that P, — 0 strongly in £(X) as n — oo for every disjoint
sequence {P,},2; in M. Since z is a strong order unit in M(x), it follows from
Lemma 6.2 that every order-bounded, disjoint sequence in 9t(x) converges to zero.
Hence, by a theorem of P. Meyer-Nieberg, every order-bounded increasing
sequence in M(x) is Cauchy (see [23, Corollary 2.3.6; 34, Theorem 104.2]; in [34],
this latter property is referred to as the p-Cauchy condition of the norm, [34,
Lemma 103.1]; in [21] the p-Cauchy condition is called property (A, iii)). In [21
Theorem 64.1], it is shown that property (A, iii) carries over from a normed vector
lattice to its completion. Hence, in the present situation, we conclude that 9i[z]
satisfies the p-Cauchy condition. However, in a Banach lattice the p-Cauchy
condition is equivalent to order continuity of the norm, [34, Corollary 103.8].
Consequently, (i) implies (ii).

Now assume that 9[z] has order-continuous norm for every x € X. By [11,
Lemma XVIIL.3.4], to prove that 90, is Bade- -complete it suffices to show that
every monotone increasing net of elements from zm converges strongly to an element
of M,. So, let {P.} be an upwards directed system in M, and fix z € X. Then
0< Px T <z in M,[z] = M[x] and, since the norm in M[z] is order continuous, it
follows that there exists y € 9M[z] such that Pz Ty and |[Pax—y|| — 0 [23,
Theorem 2.4.2]. This implies that P, — @ strongly for some Q € £(X). Clearly,
Q € M,. So, M, is Bade-complete. Accordingly, (i) implies (iii).

Finally, if 9, is Bade-complete, then it follows from [11, Lemma XVII.3.4],
applied to the increasing sequence {> j_; P.}o—, that 9 satisfies (i). O
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There are several sufficient conditions which guarantee that the norm in 9[z] is
order continuous for all z € X. We mention in particular the following.

(1) None of the cyclic subspaces IM[z] contains a copy of ¢y (which is, in
particular, the case if X itself does not contain a copy of ¢y). Indeed, in this case
each of the cyclic subspaces is a KB-space and hence, all have order-continuous
norm ([23, Theorem 2.4.12]; note that a Banach lattice does not contain a Banach
space copy of ¢ if and only if it does not contain a lattice copy of ¢, [1, Theorem
14.12]). This observation yields, in particular, the result of [12, Theorem 1].

(2) For each = € X the set

{Samealctp=rpemi=1. mnen]

=1 j=1
is relatively weakly compact. Indeed, this implies that order intervals in 9[x] are
relatively weakly compact which in turn is equivalent to order continuity of the
norm in M[z], [23, Theorem 2.4.2].

We now discuss another sufficient condition on 9t for 91, to be Bade-complete. In
fact, we show that 91, is Bade-complete for any R-bounded B.a. 90t of projections
in X. We start with the following preliminary observations. Given any bounded

B.a. 9, it is clear that every operator T € (), leaves each cyclic subspace I [x],

for z € X, invariant. For € X we denote the restriction of T € (9),, to M[z] by
T,; so T, € L(M[x]).

LEMMA 6.4. Let 9 be any bounded B.a. of projections in a Banach space X.
Then

{T,:Te(M),} CZMx]), forzeclX.

Proof. Givenz € X and T € (9M),, we have to show that there exists A € [0, c0)
such that |Ty| < Aly| for all y € M[z]. By density considerations, it is sufficient to
obtain this estimate for all elements y of the form y = J,s for some s € sim(Fg).
Let f e C(Q) satisfy T = Jf. Since J, is a lattice homomorphism from C(£2) into
Mz], we have

Ty = [(JF)(Jes)| = [To(f)] = Tolfs| <[ flloc Tuls]
= [1fllsc|Tzsl = 1 Fllsclyl-

So, A = ||f|l has the required property. O

LEmMMA 6.5. With 9 as in Lemma 6.4, suppose that x € X and y,z € M|x]
satisty |y| <|z|. Then there exists a sequence {f,}ney in C(Q) with || f,|ls <1 for
all n, such that (Jf,),z — y in M[z] as n — oco.

Proof. Choose sequences {s, }n2; and {t,}5=; in sim(Fq) with |s,| <|t,| for all
n, such that J,s, — y and J,t, — z in M[z] as n — oo (cf. the proof of Lemma
6.1). We can then write s, = f,t, for appropriate f, € sim(Fq) satisfying |f,| <1



506 BEN DE PAGTER AND WERNER J. RICKER

for all n. Using (Jf,)(J,t,) = J,.s, we have

< H‘]an ”Z - J.’ttn” + ||Jarsn - y”
< 2”mH ||Z - Jmtn” + ||JTS71 - y” —0 asn—oo. 0

We now come to the main result of this section.

THEOREM 6.6. Let I bian R-bounded B.a. of projections in a Banach space
X. Then its strong closure 9, is Bade-complete.

Proof. Define T C (M), by 7T ={Jf:fcCQ),|fllc<1}. Since 7 is the
closed absolutely convex hull of 9t and 9t is R-bounded, it follows that 7 is also
R-bounded. For any =z € X let 7, C Z(9M[xz]) be defined by 7, ={T, : T € T}. It
is clear that 7, is R-bounded. From a combination of Corollary 5.5 and Lemma
6.5 it follows that the Banach lattice 9[z] has finite cotype. In particular, D[] is
a KB-space and so, has order-continuous norm. By Proposition 6.3 we conclude
that M, is Bade-complete. O

REMARK 6.7. (a) As shown in the proof of the above theorem, if 9 is an
R-bounded B.a. of projections in a Banach space X, then all cyclic subspaces have
finite cotype. This does not necessarily imply that X itself has finite cotype.
Indeed, let X = Ly([0,1],¢q) and 90t be the B.a. of all multiplication operators by
characteristic functions xp with F C [0, 1] measurable. Then 91 is strongly closed
and R-bounded (see the remarks at the end of §3). Hence, all cyclic subspaces of
X have finite cotype. However, X itself does not have finite cotype since it
contains a copy of ¢y. Note that this does not contradict the results of Theorem
5.8 or Corollary 5.5, since 91 is not equal to the Boolean algebra of all band
projections in the Banach lattice X.

The following example is also relevant. Consider the B.a. of all row projections
in the Schatten p-class X = &, for any 1 <p < oo. Then 9 is Bade-complete
(hence, bounded) but fails to be R-bounded (if p # 2); see for example [33, §5.3].
Nevertheless, as shown in [30], the space X has finite cotype and so each cyclic
subspace M[z], for € X, has finite cotype (and is even independent of x).

(b) According to Theorem 6.6 above and [12, Theorem 2], in every Banach
space containing a copy of ¢;, there exists a strongly closed, bounded B.a. of
projections which fails to be R-bounded. If X is any separable Banach space
containing a copy of ¢, then there even exists a Bade-complete B.a. of projections
in X which fails to be R-bounded. Indeed, ¢, is then complemented in X, say
X=Ye@&c, [29]. Then

M={P&Q:Q € Blcy), P € {0y, Iy}}

is a Bade-complete B.a. of projections in X. Since B(cg) is not R-bounded in £(cg)
(cf. Remark 5.3), 9 also fails to be R-bounded in £(X).
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