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Abstract: The pin-on-disc test is a standard sliding wear test used to analyse sliding properties,
including wear contour and wear volume. In this study, long-term laboratory test performance is
compared with a short-term numerical model. A discrete element method (DEM) approach combined
with an Archard wear model and a deformable geometry technique is used. The effect of mesh
size on wear results is evaluated, and a scaling factor is defined to relate the number of revolutions
between the experiment and the numerical model. The simulation results indicate that the mesh size
of the disc has a significant effect on the wear contour. The wear depth and wear width follow a
normal distribution after experiencing a run-in phase, while the wear volume has a quadratic relation
with the number of revolutions. For the studied material combination, the calibration of the wear
coefficient shows that the wear volume of the pin-on-disc test accurately matches the simulation
results for a minimum of eight revolutions with a wear coefficient lower than 2 × 10−11 Pa−1.

Keywords: sliding wear; mesh deformation; calibration of wear coefficient; scaling factor

1. Introduction

Bulk solids handling plays a significant role in a range of industries, such as the
mining, agricultural, chemical and pharmacology industries [1]. For the mining industry,
the process of transferring bulk solids, e.g., iron ore, leads to surface wear of handling
equipment. Studies show that approximately 82% of the energy loss is attributed to the
bulk material sliding along the chute bottom and 9% of the losses due to sliding against the
side walls [2]. The sliding wear can be characterised as a relative motion between two solid
surfaces in contact under load [3], and long-term wear leads to surface deformation and
accelerates the damage of the equipment, resulting in a reduction in lifespan. To reduce the
sliding wear of the surfaces of bulk solids handling equipment, a convex pattern surface is
proposed [4] and optimised [5] by using the discrete element method (DEM) [6]. However,
the deformation of the surface caused by the sliding wear is still unstudied. It is essential
to investigate the deformation behaviour of the surface caused by the sliding wear because
surface deformation might affect the flow, in turn influencing the wear behaviour of the
geometry. Before the analysis of the deformation of the surface caused by bulk material, it
is necessary to achieve the modelling of the surface deformation caused by a single particle,
so a pin-on-disc test, which is a standard sliding wear test, is applied to the analysis of the
surface deformation [3].

In the context of wear evaluation, DEM is a useful approach to predict the wear of
equipment caused by bulk material. DEM was developed by Cundall and Strack to model
particle systems by tracking the movement of each particle and its interaction with its
surroundings over time [6], and it is widely used to design, analyse and optimise bulk
material handling systems and equipment for granular materials [7].
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On one hand, DEM simulates the wear process without the consideration of geomet-
rical deformation. Cleary et al. [8] first proposed an approach based on DEM to predict
the liner wear and distribution of a ball mill using a 2D model for different conditions
of rotational velocity. Similarly, Cleary et al. [9,10] evaluated wear in a 3D slice of a mill
and performed an evaluation and comparison between wear in tower and pin mills. Re-
cently, Xu et al. [11–13] studied the liner wear of a tumbling mill based on a multiple-level
approach, and the numerical model was validated by experimental data. Rojas et al. [14]
studied the wear in mining hoppers and obtained comparable results with the measure-
ments. In addition, Kalácska et al. [15], Katinas et al. [16] and Powell et al. [17] studied
the wear behaviour of steel used in agricultural tines, wear of soil rapper tin, high speed
steel and liner revolution in ball mills based on the discrete element method, respectively.
On the other hand, some researchers are interested in surface deformation caused by wear.
Kalala et al. [18] applied DEM to estimate adhesion, abrasion and impact wear in dry
ball mills with further validation with industrial wear measurement. Esteves et al. [19]
compared the industrial vertical stirred mills screw liner wear profile to the measurements
after more than 3000 h by using scaling-up procedures for rotational velocities. The pre-
dicted wear volumes obtained from the DEM model have a good agreement with the
measured results when using a specific velocity. Boemer et al. [20] proposed a generic wear
prediction procedure based on the discrete element method for ball mill liners in the cement
industry. By obtaining a global wear constant and analysing the mesh size sensitivity, the
predicted wear profile can match the measurement through a mesh smoothing technique.
Additionally, Schramm et al. [21] modelled a scratch test to study the abrasive material loss
at soil tillage and compared it with a cross-section profile.

Although these studies pay attention to the deformation of geometry, the detailed
analyses, such as mesh size sensitivity, wear contour matching and wear depth distribution,
are still lacking, and these aspects determine the accuracy of the numerical model. There-
fore, a pin-on-disc test as a benchmark is applied to this study to compare the long-term
laboratory test with a short-term numerical model. Four steps are built to complete the
research. First, the geometrical deformation technique is introduced, combined with a
sliding wear model named the Archard wear model. Second, the procedures and the results
of the pin-on-disc test are clarified. Third, the wear coefficient is calibrated, including the
mesh size sensitivity, wear depth and wear width distribution analysis and wear contour
reconstruction. Fourth, the simulation results including wear contour and wear volume
analysis are verified by the test results.

2. Materials and Methods
2.1. Discrete Element Method

The motion of discrete spheres in DEM is governed by Newton’s second law of
motion [7] as shown in Figure 1. Hertz–Mindlin no-slip contact model is a nonlinear
elastic contact model which is appropriate for non-cohesive granular materials. This model
consists of two springs, two dampers and a slider. The springs are used to represent particle
stiffness in normal and tangential directions. Two dampers are used to model the damping
forces, and the slider is applied to generate a friction force. The normal force Fn(N) is
calculated according to Equation (1), where Sn(N/m3/2), δn(m), Dn(N·s/m), and vn(m/s)
are the stiffness, overlap, damping coefficient and velocity in the normal direction of the
contact, respectively.

Fn = −2
3

Snδ
3
2
n + Dnvn (1)

The tangential force Ft(N) is restrained by Coulomb law [22], which is expressed by
Equation (2), where µst is the coefficient of static friction; St(N/m), δt(m), Dt(N·s/m),
and vt(m/s) are the stiffness, overlap and coefficient of damping force and velocity in the
tangential direction of the contact, respectively.

Ft = min{−Stδt + Dtvt, µstFn} (2)
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Figure 1. Illustration of contact between two particles.

2.2. Geometrical Plastic Deformation Technique

In EDEM [23], the geometrical plastic deformation technique is related to the Archard
wear model [24] based on a mesh deformation approach [25]. The Archard wear model
is widely used both for the particles and geometries [14,16,17,19,20,25–27], such as the
evaluation of the wear of ballast and abrasive grain [26,27], the prediction of the wear of
mill lifters [28] and local failure prediction of abrasive wear on tipper bodies [29]. The
Archard wear model can be denoted as Equation (3).

V = k
Fn

Hs
ls (3)

where V(mm3) is the wear volume, Hs (N/mm2) is the hardness of the surface, k is a
dimensionless wear coefficient, Fn(N) is the normal force applied to an equipment surface
and ls(mm) is the sliding distance.

Equation (3) can be expressed by a derivative formula denoted as Equation (4).

dV =
kFn‖vt‖dt

Hs
= αsFn‖vt‖dt (4)

where αs = k/Hs represents the wear coefficient. dV,‖vt‖ and dt denote the increment
of wear volume of the material removed, relative tangential velocity and time increment,
respectively.

The disc is meshed by triangular meshes with specific size using the software ANSYS
Workbench [30] and the sequence of how the mesh is deformed is illustrated in Figure 2.
First, the contact between the particle and the mesh elements is detected and the forces
are calculated based on the contact model. Second, the element is displaced in normal
direction of the element and the loss of the material is evaluated based on the Archard wear
model. Third, the new positions of the elements and speed of the particle are recalculated.
Therefore, the representation of the wear loss is performed by deforming the triangular
meshes subjected to abrasive wear.

The wear volume of the ith element at each time step ∆t is expressed as Equation (5).

∆Vi =
∫ t+h

t
αsFn‖vt‖dt ≈ αsFn‖vt‖∆t (5)

The differential displacement (wear depth) ∆di for the ith element is related to the
element area Ai and the relations are denoted as Equations (6) and (7).

∆di =
∆Vi
Ai

(6)
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Ai =
|(p1 − p2)× (p1 − p3)|

2
(7)

where p1, p2, p3 are the nodes of the triangular element.
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Figure 2. Mesh deformation procedure [25]. (a) Particle in contact with the surface Ai of the mesh
element; (b) displacement of the mesh element; (c) side view of the interconnection between nodes
and (d) top view of the wear representation.

The wear depth dt+∆t
i and the new position of nodes of the mesh element pt+∆t

k at time
t + ∆t are obtained as Equations (8) and (9).

dt+∆t
i = dt

i + ∆dt
i · n̂i (8)

pt+∆t
k = pt

k + ∆dt
i · n̂i(k = 1, 2, 3) (9)

where n̂i is the normal vector of the mesh element. By interconnecting the common
nodes of the element faces, it is possible to obtain continuity in the deformation of the
surface, generating a smoothed wear pattern [25]; this phenomenon can be called a self-
smoothing effect.

As the mesh element is in motion, the central point pc, which represents the position of
the ith element, is calculated before obtaining the accumulated wear Vi of the mesh element
as expressed by Equation (10).

pci =
p1,i + p2,i + p3,i

3
(10)

Then, the wear volume of each element is integrated as Equation (11).

Vi = Vi +
∣∣∣pt+h

cj − pt
cj

∣∣∣Ai (11)

The total volume loss of the whole surface is obtained by adding the volume of each
element together, denoted as Equation (12).

V = ∑n
i Vi (12)
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2.3. Pin-on-Disc Test Setup

Figure 3 illustrates a pin-on-disc tribometer [4] that is used to obtain sliding wear loss
of a sample by single particle. The device consists of three main parts: the load which
generates normal force over the pin, the pin mounted in a holder and a disc sample which
suffers the sliding wear. The pin is located at a position with a distance of 22 mm from the
centre of the disc, and the radius of which is 40 mm.
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Figure 3. Pin-on-disc apparatus [31].

The materials of the disc and the pin are mild steel and iron ore, respectively, and
the parameters of the test are listed in Table 1. The mild steel contains up to 0.3% carbon.
During particle indentation, the disc surface deforms when the hardness ratio (Hp/Hs) of
particle to the surface is higher than 1.2 and approximately maintains a constant when the
ratio is higher than 1.9 [32]. Based on a statistical analysis of the hardness [4], the Vickers
hardness of the particle and mild steel are 476± 9Hv and 143± 4Hv, respectively, so the
ratio is higher than 1.9 and therefore the disc is considered to be deformed with a relatively
constant rate. As listed in Table 1, the rotational speed is 390.8 deg/s under the load of 5N,
so the corresponding sliding distance after 1302.5 revolutions is 180 m.

Table 1. Parameters of samples and tests.

Categories Parameters Values

Iron ore

radius (mm) 3
hardness (Hv) 476 ± 9
hardness (Hm) 4–4.5

density (kg/m3) 4850

Mild steel
density (kg/m3) 7932

hardness (Hv) 134 ± 4

Test

indentation force (N) 5
rotational speed (deg/s) 390.8

sliding distance (m) 180
revolutions (-) 1302.5

rotational radius (mm) 22

3. Pin-on-Disc Test

Figure 4 illustrates the prepared particle, worn disc and obtained wear contours. The
polished particle fixed in a metal holder as shown in Figure 4a is mounted to the tribometer.
Figure 4b displays an example of the cross-sectional wear morphology on the mild steel
disc after test. During the sliding process, grooves are formed as a result of the removal
and displacement of the mild steel. To analyse the wear profile specifically, Figure 4c
demonstrates three inhomogeneous wear morphologies obtained from three random po-
sitions of the wear path. It can be seen that the wear depth and width are 0.01–0.014 mm
and 0.65–0.8 mm, respectively. The wear volume obtained is 0.565 ± 0.089 mm and the
corresponding wear coefficient is (6.3 ± 1) × 10−13 Pa−1.
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cross-section [31] and (c) three wear contours based on the measurement after test.

It should be noted that the main mechanisms of the sliding wear on the disc include
micro-ploughing and micro-cutting, as mild steel is a ductile material [32]. The micro-
ploughing generates ridges of deformed material which are pushed along ahead of the
particle, as shown in Figure 4c. The micro-cutting deflects the material which flows up
the front face of the particle to form a chip, so all the material displaced by the particle is
removed in the form of chips and forms grooves [33]. Therefore, it should be clarified that
the abrasive particle can deform the material in ways that lead to the removal of only part
of the material displaced from the groove.

4. Calibration of Wear Coefficient

The pin-on-disc calibration consists of the establishment of the simulation setup, mesh
size sensitivity and the wear result analysis, including normal force analysis, wear depth,
wear width and wear volume evaluation.

4.1. Simulation Setup

The pin-on-disc modelling setup is simplified, as shown in Figure 5. The disc with the
radius of 24 mm is meshed by unstructured triangular meshes with specific size. A particle
is located at the disc with a distance of 22 mm from the centre of the disc. A cylindrical
holder is used to restrict the movement of the particle in horizontal directions. The normal
force of 5 N on the particle is generated by applying a particle body force (PBC) through a
EDEM API model [23].

Table 2 lists the simulation parameters. The simulation conditions are consistent
with the test conditions, except the wear coefficient and rotational speed, which are set as
and 5 · 10−11 Pa−1 and 180 deg/s in the reference simulations, as the different rotational
velocity together with a 20% Rayleigh time step lead to stable simulation outcomes.
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Table 2. Parameters for DEM simulations [34].

Categories Parameters Values

Iron ore

radius (mm) 3
density (kg/m3) 4850
Poisson’s ratio 0.24

shear modulus (GPa) 0.1

Mild steel

density (kg/m3) 7932
Poisson’s ratio 0.3

shear modulus (GPa) 78
mesh size (mm) 0.1

Contact
coefficient of restitution e 0.4

coefficient of static friction µs 1.0
coefficient of rolling friction µr 0

Conditions

indentation force (N) 5
rotational speed (deg/s) 180

rotating radius (mm) 22
coefficient of sliding wear αs(×10−11 Pa−1) 5

time step ∆t(×10−5 s) 1.4

4.2. Mesh Size Sensitivity

Before conducting the mesh size sensitivity analysis, it is essential to clarify the
establishment of the wear contours and calculation of the wear volume. To analyse the
wear depth and wear width distribution over the wear path, as shown in Figure 6 the disc
is divided into 360 subparts, which correspond to 360 wear contours. The establishment
of each contour includes 3 steps. First, the disc is reconstructed based on the coordinates
of mesh elements. Second, the disc is sliced into 360 subparts with ∆θ = 0.5 deg in radian
direction of the disc. Third, the coordinates of mesh elements at each subpart are sorted
from inner side to outer side of the disc and the sorted coordinates finally form a contour at
each position. The contour depth is defined as the maximum displacement of meshes in
vertical direction in each wear contour, and the wear width is defined as the width of the
opening of each wear contour.
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rotating radius (mm ) 22 

coefficient of sliding wear sα ( 11 110 Pa− −× ) 5 

time step tΔ ( 510 s−× ) 1.4 

4.2. Mesh Size Sensitivity 
Before conducting the mesh size sensitivity analysis, it is essential to clarify the es-
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A range of mesh size from 0.1 mm to 1 mm with an increment of 0.1 mm is selected to
investigate the effect of the element size on the wear contour, and the wear coefficient is set
as 5 × 10−11 m2/N as a reference. Figure 7 shows the statistical analysis of the wear depth
and width of the 360 contours for different mesh size from 0.1 mm to 1 mm, and the error
bar denotes the standard deviation. It can be seen that the contour depth decreases with
the increase in mesh size, while the wear width shows the opposite trend and increases
with the increase in mesh size.
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Figure 8 shows an example of wear contours after one revolution. To make it more
visible, the figure lists six wear contours from 0.1 mm to 1 mm. Figure 8 indicates that the
smaller the mesh size, the narrower and deeper the contour. The reason is that the small
meshes indicate a fine meshed surface, and the contact between particle and disc involves
more meshes as the contact area is constant, so the deformation of the disc influences more
meshes and generates a more precise contour. As the test results shown in Figure 4 indicate,
the width of wear contour is around 0.8 mm, to obtain a more precise wear contour, the
mesh size is set as 0.1 mm for the following analysis.
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4.3. Calibration Analysis

Ten revolutions are used to analyse the wear results of the calibration process, includ-
ing normal force, wear depth, wear width and wear volume. Figure 9 shows the summary
of the distribution of normal force between the particle and disc. The box shows the middle
portion of the normal force (first quartile to third quartile). Although the normal forces
of the 10 revolutions show different distributions from minimum to maximum values,
the mean values are all close to 5 N, as represented by the green marker, which means
the cumulative force of each revolution is nearly constant. In addition, the normal force
contains outliers with high values represented by the circlers. The outliers are caused by
the deformation of meshes as the deformed meshes influence the contact with particles at
the following time steps.
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Figures 10 and 11 illustrate the wear depth and wear width distribution of the 360 wear
contours of revolution 10, respectively. It can be seen that wear depth and wear width
are randomly distributed at a relatively narrow range. The wear depth is at a range from
0.042 mm to 0.07 mm, and the majority of the contours have depths from around 0.05 mm
to 0.065 mm. For the wear width distribution, it has a range from 0.8 mm to 1.6 mm and is
mainly distributed at a range of 1–1.5 mm.
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To better understand the distribution of wear depth and wear width, the total 10 revolu-
tions are summarised together based on a normality analysis as shown in Figures 12 and 13.
The Chi-squared test is used to test the normality of the wear depth and wear width dis-
tribution based on a 95% confidence interval. The corresponding p-value is summarised
in Table 3. For both the wear depth and wear width, one outlier appears at the first four
and two revolutions with the maximum value as shown in Figures 12 and 13 and the
corresponding p-values are close to 0. The reason is that the initial indentation of the
particle causes severe deformation which therefore leads to extreme wear depth and wear
width. Starting from revolution 8, the p-value is higher than 0.05 for both the distributions
of wear depth and width, which means the wear depth and wear width follow a normal
distribution from revolution 8, so it is considered the simulation is at a run-in phase at the
first 7 revolutions. This is because with the continuity of the deformation of the surface,
the interconnected common nodes have the tendency to generate a smoothed wear pattern
after multiple contacts between particle and meshes [25]. It should be noted that the wear
depth increases linearly from R1 to R10 as shown in Figure 12 while the increase rate of
wear width becomes slow gradually. This phenomenon can be illustrated by the analysis of
the wear contour as shown in Figure 14.
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Table 3. Summary of p-value based on Chi-squared test.

R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10

Wear depth 0 0 0 0 1.3 × 10−12 0.03 0.01 0.11 0.33 0.54
Wear width 0 0 0.001 0.02 0.04 0.001 0.02 0.21 0.29 0.15
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Figure 14. Examples of wear contour.

Figure 14 shows 24 contours of the last three revolutions at 8 random positions. For
the 8 positions, it can be seen that the wear contours extend both in vertical and horizontal
directions with the continuation of the revolution. The wear depth and wear width of
R10 are at ranges 0.046–0.057 mm and 1.0–1.5 mm, respectively. For each position, the
three wear depths behave similarly from revolution 8 to revolution 10. This is because the
relative positions of mesh elements are relatively fixed as a result of the interconnection
among nodes, so the deformation of each contour follows a consistent pattern. However,
the change in the wear width is not obvious, as the structure of the wear contour as a
whole extends in a horizontal direction, and this means the relation between the number
of revolutions and the cross-sectional area or wear volume should be described by a
nonlinear relation.

Figure 15 shows the relationship between cumulative wear volume and amount of
revolutions corresponding to Equations (14)–(17), and the wear volume is calculated on
the basis of mesh element, as denoted in Equation (6). Equations (14)–(17) indicate that the
wear volume has a quadratic relation with the wear revolution (wear length). This can be
explained by analysing the normal force over the disc before and after deformation. For
the original surface, as shown in Figure 16a, the normal force on the original surface exists
only in the vertical direction. After deformation, as shown in Figure 16b, the normal force
has a portion in horizontal direction and the horizontal portion generates no influence on
the total normal force between particle and disc. As indicated in Figure 9 the normal force
of each revolution is close to a constant, so the increased wear volume is caused by the
horizontal portion. With the wear contour getting wider, the increasing trend of the normal
force is enhanced and therefore generates more wear.

y = 0.012x + 0.0008x2 + 0.001, R2 = 0.996, (αs = 1 × 10−11 Pa−1) (13)

y = 0.023x + 0.001x2 + 0.006, R2 = 0.995, (αs = 1.5 × 10−11 Pa−1) (14)

y = 0.03x + 0.001x2 + 0.006, R2 = 0.995, (αs = 1.7 × 10−11 Pa−1) (15)

y = 0.042x + 0.0012x2 + 0.03, R2 = 0.997, (αs = 2 × 10−11 Pa−1) (16)

y = 0.098x + 0.011x2 + 0.08, R2 = 0.997, (αs = 5 × 10−11 Pa−1) (17)
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As presented above, the pin-on-disc numerical model needs 8 revolutions (run-in
period) to reach a steady state, so the total 1302.5 revolutions of the test are determined to
be modelled with 12 revolutions. As shown in Figure 15, the wear coefficient is changed
systematically, and finally, the value of 1.7× 10−11 Pa−1 can reach the range of the test
volume. It should be noted that with the increase in the wear coefficient, the relation
between wear volume and the number of revolutions presents a more obvious accelerating
tendency. This is because a higher wear coefficient means a larger surface deformation, and
the deformed surface in turn increases the normal force in horizontal direction as shown in
Figure 16, so that the wear volume of each revolution increases faster.

Furthermore, the other wear coefficient lower than 2× 10−11 Pa−1 can also be selected
when the different revolutions are chosen to represent the total test revolutions. For
example, 1× 10−11 Pa−1 can be applied when the number of revolutions determined is
higher than 12. In total, 9–11 revolutions can also represent the total test revolutions when
2× 10−11 Pa−1 is selected. Therefore, the scaling factor, which is defined as the ratio of the
number of test revolutions to that of the modelling revolutions, depends on the match of
the amount of revolution and the wear coefficient.



Materials 2022, 15, 1813 14 of 17

5. Verification of Numerical Results

After calibration of the wear coefficient, the simulation results can be verified by
comparing the test results, including wear depth and width of the wear contour, wear
volume and wear profile. The corresponding simulation and test results are summarised in
Table 4. The discrepancy is calculated as the ratio of the absolute difference between the
numerical and test results to the test result. The wear depth and wear width of the test
results are obtained based on the previous study [4], and the simulation results are based
on the statistical analysis of 360 contours as explained in Figure 6. It can be seen that the
numerical wear volume is close to the test result, with a discrepancy of 6%.

Table 4. Summary of numerical and test results.

Wear Depth
(mm)

Wear Width
(mm)

Wear Volume
(mm3)

Test result 0.014 0.8 0.565
Numerical result 0.019 1.07 0.532

Discrepancy 36% 34% 6%

For the average wear depth and wear width, the numerical results show 36% and 34%
discrepancy, respectively. The difference can be explained by four factors [31]: wear volume
calculation in model and experiment, wear mechanism and number of samples from
experiments and wear of particle tip in the experiment. First, the calculation of the wear
volume is different. For the test, the wear mass is obtained by calculating the wear mass
loss. This means the wear volume only counts the dispersed portion. However, the wear
process also leads to plastic deformation, and the plastic deformed portion directly affects
the wear profile. For the numerical model, the wear volume is directly calculated from
the wear profile. Second, the wear mechanisms are different. For the test, the geometry
is mainly deformed by micro-cutting and micro-ploughing (plastic deformation), so a
portion of the deformed geometry generates wear loss. This is why the ridges are formed
as shown in Figure 4c. For the numerical model, the deformation of the meshes only occurs
in the normal direction of mesh element and all the deformation is considered as wear loss.
Third, the number of samples for the calculation of wear depth and width has enormous
difference. The test results of the wear depth and wear width are only based on three
contours and the randomness of the sample selection causes deviation when compared
with the whole wear profile. However, 360 wear contours are extracted from the numerical
model. Fourth, the tip of the iron ore in the test is worn off and therefore the contact area
changes, so the corresponding wear width and depth changes. This situation is avoided in
the simulations.

Figure 17 presents the reconstructed deformed disc. It can be seen that the sliding of
the particle forms a relatively smooth profile around the disc, except for several highly
deformed spots ranging from 90–120◦. The reason is that the normal force at each revolution
appears to be high value, as shown in Figure 9 and these normal forces lead to extreme
deformation. For the cross-section of the wear profile at each degree, the wear depth has
the highest value at the middle and decreases toward the two sides gradually. Figure 17
shows that an extremely deformed contour presents at the original position of the disc,
which is because the initial indentation of the particle causes the severe deformation.
This is reasonable, as this extreme deformation verifies the appearance of a outlier in the
distribution of wear depth and wear area, as shown in Figures 12 and 13.

To compare the wear contour with the test, three wear contours are extracted randomly
from the wear profile, as shown in Figure 18. Figure 18 indicates that the width and depth
of the contours are higher and deeper than those of the test contours, while the contours
are similar in shape. The results show that by properly scaling up the wear coefficient and
selecting the mesh size, the long-term or long-distance laboratory test can be modelled by a
short-term or short-distance numerical model with an acceptable deviation.
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6. Conclusions

A standard sliding wear process, using a pin-on-disc test, is investigated in order to
indicate that a long-term or long-distance laboratory test can be modelled by a short-term or
short-distance numerical model. This numerical model is built by combining the Archard
wear model with a deformable geometry technique. The wear results, including wear
contour and wear volume, are evaluated statistically with different mesh sizes. Three
wear properties, i.e., wear depth, wear width and wear volume, are compared with the
test results.

For the sliding of a particle with the radius of 3 mm, the mesh size of the disc is set
as 0.1 mm. The wear contour indicates that the mesh size from 0.1 mm to 1 mm has a
significant effect on the wear contour. The coarser mesh generates wider and shallower
contours, while a fine mesh can obtain comparable wear contour with test results. This is
because the contact between particle and disc involves more meshes with the fine meshed
surface, so the deformation of the disc influences more meshes and generates a more
precise contour.

For the geometrical deformation technique, the wear path reaches a relatively steady
deformation state after eight revolutions. It is verified that the wear depths and wear
widths of the wear contours follow normal distributions after a run-in phase because of the
self-smoothing effect of the interconnected common nodes of the mesh elements.

The wear coefficient is calibrated by comparing the wear volume between simulation
and test results, and the wear volume has a quadratic relation with the number of revo-
lutions. The wear volume of the test accurately predicts the simulation results with the
minimum number of revolutions when the wear coefficient is lower than 2× 10−11. For
different wear coefficients, the wear volumes correspond to different quadratic relations.
The lower the wear coefficient, the weaker the tendency of the quadratic relation.
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To obtain comparable wear results, the minimum number of revolutions is determined
as eight, and the corresponding maximum scaling factor, which is defined as the ratio of the
number of test revolutions to that of the modelling revolution, is 162.8. By scaling up the
wear coefficient and properly selecting the mesh size, the long-term laboratory pin-on-disc
test can be modelled by a short-term numerical model. This scaling effect can significantly
save computational time and improve efficiency with promising calculation precision.

In this paper, the presented methodology was successfully demonstrated on a single
material combination. This methodology can be used for different material combinations.
To establish a numerical model for the deformation of other material combinations, the
corresponding tests and simulations should be performed.
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