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In-situ Failure Detection of Electronic Control Units
Using Piezoresistive Stress Sensor

Alexandru Prisacaru, Alicja Palczynska, Andreas Theissler, Przemyslaw Gromala, Member, IEEE, Bongtae Han,
Guo Qi Zhang, Life Fellow, IEEE

Abstract—Recent advancements in automotive technologies,
most notably autonomous driving, demand electronic systems
much more complex than realized in the past. The automotive
industry has been forced to adopt advanced consumer electronics
to satisfy the demand, and thus it becomes more challenging to
assess system reliability while adopting the new technologies. The
system level reliability can be enforced by implementing a process
called condition monitoring. In this paper, a piezoresistive silicon
based stress sensor is implemented to detect physical damages
in outer molded electronic control units (ECU) subjected to
reliability testing conditions. The test vehicle consists of six DPAK
power packages and three stress sensors mounted on a Printed
Circuit Board (PCB). A unique algorithm is proposed and
implemented to handle the data obtained from the piezoresistive
stress sensing cells. The accuracy of measured data is examined
by Finite Element method (FEM), and the physical changes are
validated with Scanning Acoustic Microscope (SAM).

Index Terms—Stress Sensor, Electronic Control Units, Machine
Learning, Fault Detection, Outlier Detection

I. INTRODUCTION

ONDITION Monitoring (CM) is a process to monitor

parameters of system conditions, which is a critical
component in predictive maintenance. Condition monitoring
techniques have been used extensively for large-scale ma-
chineries and structures. More recently, condition monitoring
has been adopted for advanced electronic systems, most no-
tably, automotive electronics including batteries. Conventional
sensors (e.g., sensors for temperature, humidity, vibration, etc.)
are not most adequate for the condition monitoring of complex
electronic system as they only measure the loading conditions.
The piezoresistive stress sensors were developed to cope with
the problem. The sensor measures directly the stresses of a
silicon chip, and it was utilized in several electronic packaging
applications [1] [2] [3] [4] [5] [6] [7] [8] [9]. It was also
implemented successfully to monitor the stresses in advanced
electronic control unit (ECU) subjected to reliability testing
conditions [10] [11]. In order to extend its applicability into the
Prognostics and Health Management (PHM) domain, it is re-
quired to link the measured stress to the damage or fault of the
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ECU, as illustrated in Figure 1. Basically, PHM is an algorithm
or a set of algorithms based on measurements and models,
which collect as an input an already known information about
the system/structure and data from strategically positioned
sensors. Then it subsequently provides as an output different
levels of prognostics such as failure detection, diagnostics
and prediction. Various levels of prognostics require different
strategies/algorithms for successful implementation.

Electron

Control Measured

Stress

Proposed
Algorithm

Fig. 1. Stress Failure relationship. Various type of loads are causing ECU
failures. The proposed algorithm is linking the measured stress with the
failure.

As depicted in Figure 2, a well-implemented prognostic
methodology should include the following items:

o Sensors for prognostics

o Data collection, processing, reduction and feature extrac-
tion

o Data Security and integrity

« Identification and analyze precursors, Risk and uncer-
tainty analysis

o Health assessment, anomaly detection, fault recognition,
fault classification, fault propagation

o Physics-of-Failure (PoF), Damage Models, Reliability
testing

e Model Order Reduction, Metamodels, Surrogate Models
of Finite Element Methods (FEM) or any other Physical
Model

The objective of this paper is to propose special algorithms
to handle the stress sensor data obtained from the ECU in
order to recognize in-situ failure. To do so The proposed al-
gorithms are presented after briefly describing the sensor. The
implementation results are followed using the data obtained
from a test vehicle.

II. IFORCE SENSOR

The piezoresistive silicon based stress sensor is constructed
of MOSFET transistors in current mirror configuration to
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Fig. 2. Prognostics and Health Management main techniques.

locally measure the stress and the temperature. The measuring
principle is based on measuring the resistance which is a
function of electrons mobility inside the silicon crystal. A
more detailed working principle of the piezoresistive silicon
based stress sensor can be found in Refs. [1] and [12]. A
land grid array (LGA) package used in this study is shown
in Figure 3. It is a standard sensor package, which contains
a pair of symmetrically located sensor with 12 sensing cells.
Every cell is capable of measuring the in-plane shear stress,
04y, and the difference of in-plane normal stress components,
D(0) = 030 — Oy

Stress Difference Evaluation

Shear Stress Evaluation

Fig. 3. Sensor cell numbering in a LGA package. P-mos and n-mos MOSFET
channels used to acquire the data.

The relationship between the measured currents and the
stresses are:

o L Tovr = Iix 0
Y iy Iour + Ity

o 1 Iovr — Itn )
Wy —wy lour + I

where 711,712,744 are the piezoresistive coefficients of silicon;
and I;n, Ioyr are the currents measured at the input and
output of the sensor, respectively. The stresses can be used to
produce the maximum shear stress and the angle of principal
stresses as:
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Based on the stress equations a 2D Mohr Circle can be
erected and the parameter relationship is depicted in Figure
4. Mohr circle is a graphical representation of all the stress
components captured in one circle.

Tmax

Fig. 4. 2D Mohr Cicle. Describes the relationship between parameters.
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Fig. 5. Raw data example at room temperature during delamination.

The data collected from one cell during failure propaga-
tion, represents raw data, two measured parameters and two
calculated parameters are shown in Figure 5.

III. PROPOSED ALGORITHM

To successfully measure the stresses from the sensors an
acquisition unit (AU) is required. The designed AU is able to
evaluate the stresses, pre-process the data, extract the features
and asses the health as shown in Figure 6. In any case a
failure or anomaly is detected then the data is sent to what is
called Central PHM ECU unit. The gateway is able to classify
the data as being healthy or damaged in which case resilient
actions are taken. The workflow of such system is presented
bellow.

A typical health dataset, X, contains m rows and p columns,
where m is the total number of observations before observing
any anomalies and p the total number of the performance
parameters. Each sensor output having 12 cells and 4 param-
eters can have up to 48 performance parameters. The first
part of the algorithm starts with extracting and creating an
initial healthy baseline, and subsequently assessing the health
at every measurement step. If no deviations are detected at that
particular data point in time, the healthy baseline is updated
as shown in Figure 7.

In this study, Mahalanobis Distance (MD) [10] [13] is
employed to assess the health or to detect any anomalies. It is
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Fig. 6. Prognostics and Health Monitoring framework.

also called quadratic distance as it can measure the difference
between two sets of data as well as the distance between a
point and a set of data. Although effective, it could detect false
signals (e.g., outliers, changes not associated with damage,
etc.). An additional step that quantifies the damage is added
to avoid false detection. Let us assume that an anomaly is
detected at the nth observation. To assure that this detection
point is not an outlier, another set of measurement should
be conducted at n + h, where h depends on the number
of performance parameters. A new dataset, Y, is created,
containing h rows and p columns. On this newly created
dataset h by p, a correlation matrix is constructed. This
correlation matrix is assumed to be the failure correlation
matrix, and it is compared with the healthy baseline correlation
matrix used in MD method. This is possible with Fisher
r — to — z transformation [14], which assess the significance
of the difference between two correlation coefficients.
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Fig. 7. Algorithm flowchart.

In case that the significance of the difference is close to zero
it means that the probability of two sets to be similar is very
high. If the z value is around one the probability that these
datasets to be similar is less than 0.05. This additional step
is checking if the data points are outliers and it can quantify
the damage by estimating the z — scores of the performance
parameters. As a intermediate step PCA is used for the data
reduction to facilitate cheaper and faster transmission [15].

Another main advantage of PCA is that is used to extract
features by highlighting the patterns from the data. This
step is performed only if MD detects any anomaly and if
the significance of the difference between two correlation
coefficients is at least equal to one. In this way it is certain
that the detection point is not an outlier, but an entire dataset
different from the healthy baseline. The extracted features are
then use to classify the data by using Support Vector Machines.
The data is divided into training and testing datasets in about
70/30% used to validate the classification model.

IV. IMPLEMENTATION
A. Test Vehicle
The test vehicle used in the study is shown in Figure 8 and
it represents an Outer molded ECU.

Molding Compound

Stress Sensor,

PCB

Fig. 8. Geometry representation of the Outer molded electronic control unit.

No Delamination Pre-Delamination

Fig. 9. Process intended pre-delamination.

It consists of six DPAKs and three stress sensors mounted
on the top and bottom sides of a PCB as shown in Figure
9. This assembly was molded by an injection molding pro-
cess. The location of the sensors was chosen to capture the
maximum stress. Every sensor package contains 2 symmetri-
cal sensors. Their locations and their arbitrary numbering is
presented in Figure 10.

The study was performed on 10 samples, but the results are
shown from the most significant 2 samples considering the
large amount of data. Some initial delamination was created on
the samples before the injection molding process as shown in
Figure 9. The delamination areas are visible in the initial SAM
images as shown in Figure 11. The locations of delamination
are randomly distributed. It is observed that the delamination
is present in the vicinity of sensor 3 (S3) in both sides of the
PCB of Sample 2. Thus, it is expected that the most damage
should be recorded by sensor S3 of Sample 2.



Sample 1

Sample 2

Fig. 10. The position of each sensor on the Outer molded electronic control
unit.

Initial

(a) Sample 1. The red and green circles represent the area where
there are changes in the delamination.

Initial After 150 cycles

(b) Sample 2. The magenta circles represent the area where there
are changes in the delamination area.

Fig. 11. SAM images of the initial delamination and the delamination
propagation after 150 cycles.

The delamination is represented by the area in lighter color
and the lack of visibility of the circuit board footprint, as
shown in Figure 11.

B. Initial Data

Data was recorded through an acquisition system during
the experiments. The samples were placed in a temperature
chamber, and they were exposed to a passive cycling loading
condition of -40 C to 125 C with a dwelling time of 15
minutes. The dwelling time was predetermined to provide a
condition where all components reach the uniform distribution
at target temperatures. SAM images of the samples were
recorded before and after each 150 cycles. The sensor signal
was investigated by a predictive FEM model. The geometry
and the loading conditions are identical to the experiment as
shown in Figure 12. The stress difference and the shear stress
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Fig. 12. Stress sensing cells FEM simulation and the loading conditions.

are evaluated at the same location as in the experimental case.
The process to validate the model can be found in Ref. [16].
The simulation material models used are linear elastic and
linear viscoelastic with their properties shown in Table I.

The modelling predictions are compared with the experi-
mental data in Figure 13. The results show very good agree-
ment. The small deviations are attributed to the uncertainties
of the stress sensor [17] and the material properties used in
the simulation. The repeatability of measurements is known
to be 0.3 MPa, and sample-to-sample variations are 2 — 6
MPa. From these graphs it is identified the sensitivity of
each cell in the healthy stress state. It is clear that from
all the parameters, cell 1, 2, 11 and 12 have the highest
deviation between different loading conditions. This means
that the higher stress state is located at the outer areas of the
chip. This observation is important for further development
of the stress sensor and also for data reduction strategies.
The simulation data is used to examine the measurements.
It also provides better understanding about the mechanical
processes and ultimately help develop a prognostics physical
model. It can be further used for model-based fault detection
by considering the residuals, which can be utilized to classify
different failure modes behavior.

C. Data from Thermal Cycling Data

Between the first and the 50th cycle, changes in the stress
difference and shear stress were observed. Some of these
changes are recorded around 50th cycle, and the results are
depicted in Figure 9. There are changes in stress difference in
both sensors 3a and 3b from Sample 1. The sample and the
red circle corresponding to the delamination propagation can
be visualized in Figure 7.

Considering Figure from the FEM with healthy data it can
be stated that cell 1,2,11 and 12 are the most sensitive cells. All
the data and figures are based on the data from one of these
cells due to the high sensitivity. From the same interval of
cycles it can also be observed a change in difference of stress
for sensor 2b from Sample 2 as depicted in Figure 10. The
sample and the magenta circle representing the delamination
propagation can be visualized in Figure 7. The corresponding
shear stress from the interval of cycles described above it can
also be observed a change for sensor 3b and 3a from Sample
1 as depicted in Figure 10. The sample and the red circle
representing the delamination propagation can be visualized
in Figure 7.
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Fig. 13. FEM examination of the test vehicle.
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Fig. 14. Stress evolution of the delamination during temperature cycling of
the Sample 1 cell 11.
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Fig. 15. Stress evolution of the delamination during temperature cycling of
the Sample 1.

Due to the complexity of the structure and the big amount of
data, it is challenging to interpret the data quantitatively. Sev-
eral algorithms such as statistical pattern recognition methods
and machine learning are considered to interpret the data.

The corresponding shear stress of the Sample 2 is depicted
in Figure 12. In the case of Sample 1 there were changes on
both components of stress, but in this case there are changes
only in the stress difference component.

In order to capture both parameters in one graph, Mohrs
circles were plotted during the delamination. The results
are shown in Figure 13, where the radius and the diameter
represent the maximum shear stress and the difference of
the principal stresses, respectively. It is clear from Figure 13
that the diameter increases first and decreases rapidly after
approximately 30 cycles. It is speculated that energy release
associated with crack propagation may be attributed to the
diameter reduction. At low temperatures, the stress state is
higher because of the large AT from the stress free point
temperature. Therefore, any change in stress state can be more
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Fig. 17. Shear Stress evolution of the delamination during temperature cycling
of the Sample 1.

visible. In addition, the brittle behavior at low temperatures
can accelerate the delamination.

D. Failure Analysis by SAM

As shown in Figure 7, changes in the delamination area were
observed after 150 cycles. The pictures shown reveals two
important properties which should be found in the data as well.
The first property is represented by the fact that the samples
contain an a priori delamination and the second property by the
change in the delamination area due to the damage progress.
These properties have correspondence in the data by the stress
value differences from the healthy samples and by the ongoing
stress change after the cycle 35-50.
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Fig. 18. Shear Stress evolution of the delamination during temperature cycling
of the Sample 2.
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during the experiments at cell 2 Sample 1 during delamination.
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temperature.
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1 S1. The healthy base is established on the first measurements and every
point in measurement is calculated. In this graph there is changes due to the
delamination showed in Figure 11.

V. DATA ANALYSIS BY THE PROPOSED ALGORITHM
A. Health Assessment

For computing MD, the sets of compared data do not need to
have the same amount of rows. In this study rows refers to the
number of observations and creates the possibility to compare
the healthy dataset with just one failure measurement point.
This is convenient in health monitoring, considering that many
other methods require a certain amount of observation points.
In this approach a healthy baseline and a threshold are needed
to classify the product states (healthy or unhealthy). Several
steps are required to calculate MD as follows:

o Step 1. Calculate the average of each column

m

_ 1
= Z Tij )
Jj=1
o Step 2. Calculate the standard deviation

S, = \/ 2 (@i - zi)? ©)

m

o Step 3. Normalize the values

Ziy == )
o Step 4. Correlation matrix
1«
C=—) 27 ®)
j=1
o Step 5. Mahalanobis Distance
1
MD; = ]SZJ.TC*lzj 9)

The next step is to add the normalized values of the next
measurement and to compute the MD keeping the same cor-
relation matrix from the healthy baseline. If the measurement
point does not exceed the threshold, it is added to the healthy
correlation matrix.

Mahalanobis Distance Threshold on Different Temperatures
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Fig. 22. Threshold Evaluation performed at all temperatures.

For threshold determination, a probabilistic approach is
used. Since the MD are not normally distributed, a Box-
Cox transformation [18] is used to convert the data into a
normal distribution. A warning limit threshold is defined as
(v + 20) and a fault alarm threshold as (u + 30), based
on the normal distribution parameters. The healthy baseline
should have more rows than columns, considering that the
rows represents the number of measurements and columns
the number of parameters. For assuring good results, it is
recommended that the ratio m /p should be as high as possible,
otherwise the outliers can shift the sample mean and inflate the
correlation matrix [19]. A representative MD for both stress
components is shown in Figure 14. The healthy baseline is
created on the first 35 measurement points. The data points
exceeding the failure limit are clearly seen in the MD results.
The incidents are expected from the raw data (Figure 11), but
the MD results provide a more definitive health state of the
specimen through the multi-variate to uni-variate conversion.

The threshold at different temperatures is computed from
the healthy data (i.e., no initial delamination), and the result
is plotted in Figure 15. It is evident that the threshold does not
change with the temperature, which implies that the healthy
baseline can be created at any temperature. MD method is
preferred for fault/anomaly detection because of its advantages
related to the requirements in health monitoring; they include
fast calculation, no failure data requires, single measurement
point required and temperature independent threshold.

B. Damage Quantification

This step is necessary to overcome the possibility of de-
tecting outliers or changes in stress values which are not
associated with any damage. In this subsection, the correlation
matrix of the healthy baseline without initial delamination is
compared with the correlation matrix of a potential failure
dataset. As previously mentioned, a new correlation matrix is
calculated based on the measurement points after the threshold
is exceeded.

The sampling distribution of the healthy and faulty correla-
tion coefficient matrices does not follow a normal distribution.
Fisher r-to-z transformation is used to convert these data sets
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into a normally distributed variable z. This transformation is
made as follows:

) (10)

This transformation is performed at a confidence value
interval of 0.95. Each correlation coefficient parameter in
the data is compared with the correspondent one and then
a mean is performed on the stress difference and shear stress
performance parameters. Plotting them against each other is
depicted in Figure 16. From this graph it is concluded that
some sensor data is more damaged than the others. The most
damaged one is showed in yellow representing the Sample 3
sensor 3a. From Figure 7 it is observed that the outer molding
compound is delaminated from the package of sensor 3a.

C. Feature Extraction

PCA is used to identify patterns in data of high dimension
and to express the data to highlight their similarities and
differences [15]. Also, this last step is performed to reduce the
data as much as possible, to understand the data much better
and to make the classification much easier to be performed.

Another main advantage of PCA is finding the patterns in
data by reducing the number of dimensions without much loss
of information. This technique is very useful in case of linking
the stress sensor data to the failure.

Fig. 25. Visual representation of the reduced space.
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Fig. 26. Explained variance.

The PCA analysis is performed on the data matrix and the
explained variance is extract as shown in Figure 17. Only the
principal components exceeding 97% of the variance are kept.
Therefore only 6 principal components are left to perform PCA
analysis and the extracted results of each performance parame-
ter influence on the principal components is shown in TABLE
I. It is observed that the weight of each parameter reveals
that the first component takes the most influence from stress
difference performance parameters and the second component
takes the effect from shear stress performance parameters.
Plotting first and second component as in Figure 18 it is
observed the influence of stress difference and shear stress
in the delamination process. Again as previously observed,
the yellow markers representing sensor 3 from Sample 2 is
situated as the most damaged one. The sensor symmetry is
identified from Figure 18 and Figure 19. The behavior of
the sensors in both figures is quite similar, but with opposite
sign. Considering this property, a classification strategy can be
implemented, considering the data from one sensor as training
data and the data from the other sensor as validation. Briefly
a PCA is performed as follows:

o Step 1. Subtract the mean

1
T; = ooy Z Tij (1
Jj=1
o Step 2. Calculate the covariance matrix
" (e, — %) (i — T
COU(ZL’Z',ZL']‘) _ Zz,j( )( J ) (12)

n—1
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Fig. 27. Principal components influence over the delamination areas.
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Fig. 28. Hoteling T2 statistics in the reduced space at room temperature during
delamination. The red line corresponding to the same sensor but mirrored can
identify a similar behavior, but opposite sign.

o Step 3. Calculate the eigenvectors and eigenvalues of the
covariance matrix

¢ Step 4. Choosing the eigenvectors with the highest eigen-
value

o Step 5. Reconstructing the data matrix with the new set

of parameters

With the data reduced to 6 performance parameters, it can
be furthered used for transmitting the data. The transmitted
data can be reconstructed in the initial number of parameters
or it can be used as it is. The classification methods can use
both datasets.

In Figure 18 the most dominant principal components are
depicted, reducing the high dimension of the data to these 2
components makes it easier to understand the global influence
of different delamination areas on the stress difference and
shear stress components. As expected the sensor 3a and 3b
data from Sample 2 shows the biggest distance from the
healthy baseline at least in the first component axis, which
is represented in most part by stress difference component.

Based on the reduced space Hoteling T2 statistics is per-
formed and is depicted in Figure 19. In this graph is observed
as well that the stresses reach a high peak and then there is a
drop, which confirms our previous observations that before the
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delamination there is an increase in the stress state followed
by a drop representing the physical delamination.

D. Fault Classification

1) Support Vector ~ Machines: Support  Vector
Machines(SVM) are a set of supervised machine learning
method that can be applied to structural damage detection
due to their ability to form an accurate boundary from a small
amount of training data [18]. In fact SVM is a technique of
finding the plane separating the two datasets and to maximize
the distance between them for the classification purpose.
During the training the algorithms finds the best hyperplane
between sets of data in the feature space. The best hyperplane
is the one that maximizes the distances between classes. A
hyperplane can be linear or nonlinear boundary.

One example of linear and nonlinear boundary hyperplane
is depicted in Figure 30. When a linear separator cannot be
created, data points are projected into an higher-dimensional
space where the data points become linearly separable (the
projection is performed with kernel techniques).

The classification in linear case is performed by considering
plane H1 written as wx + b = 0, where w is normal to



the hyperplane, = the points which lie on the hyperplane. All
training data must satisfy the following constraints:

r,aw+b>+1 for y;,=+1 (13)
ziw+b< -1 for y;,=-1 (14)

All these being combined into one set of inequalities:
yi(ziw+b)—1>0 (15)

The points for which the equality 13 holds, lay on the
hyperplane H2 and respectively the points for which the
equality 14 hold they are laying on the hyperplane H3. Hence
the distance between H1 and H2 is dy = 1/||w]|| and the
margin is simply 2/||w||. Considering that H2 and H3 are
parallel and no points lies between them, the optimization
problem needs to minimize ||w||?, which is subjected to
constraints.

The solution to this problem for a typical two dimensional
case looks like in Figure 31. The optimization problem it is
solved by Lagrangian multipliers by changing the contraints
into Lagrangian multipliers. The objective function can be
written as:

! !
1
Ly= §||w||2 *Zaiyi(zinrb)Jrzau (16)
i=1 i=1

where «; are positive Lagrangian multipliers. The aim is
to minimize L, with respect to w and b. The non-linear
classification involves mapping the data points from a lower
dimensional feature space into a higher dimensional space.
This can be made by a function which is called a kernel
function. There are several functions used in the literature,
but the ones used in this study are :

x;-xj Linear

Kosay) = (yas s + C’)d Polynomial (17)

exp(—|zi — ;2) RBF

Fortunate in this case of using successfully PCA to reduce
and to extract feature data, classification is not a big challenge
and even a linear kernel can do the work.

VI. CONCLUSION

It has been demonstrated that the piezoresistive silicon
based stress sensor is capable of detecting and quantifying
delamination. Also, the resulting data shows the symmetry of
the sensors. The algorithms applied to the sensor data revealed
valuable information that can be furthered studied. Further
research studies will be performed on the importance of the
new parameters and their connection to the failure, the slope
registered at the temperature cycling during delamination,
classification methods applied to principal components and the
possibility to build a prognostic model based on the damage
quantification parameter. The ultimate goal is to develop and
implement PHM for various application requirements. Usually
these requirements are projected into a PHM Framework.

There are many PHM frameworks proposed in the literature for
different applications [18][20]. The principles are in general
the same for most of them, but for each particular application
PHM frameworks must be modified and optimized for specific
requirements. In the present case of ECU application, it is
desired to have certain calculations and data processing inside
the acquisition system as depicted in Figure 20. In this paper
the first part of this framework was presented, which is the data
acquisition, data manipulation, health assessment and damage
quantification. The second part of the frame work will be
reported in the future publication.
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