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A B S T R A C T

Effective maintenance strategies are critical for ensuring operational reliability, minimizing downtime, and 
optimizing resource utilization in fleet-based industrial operations. Among these, mining truck fleets represent a 
particularly high-risk, high-cost context where equipment failures can lead to substantial productivity losses and 
safety hazards. Despite the operational importance, existing literature lacks a structured framework to guide 
maintenance strategy selection that considers the practical constraints of data availability, diagnostic capability, 
and operational variability. To address this gap, this study proposes an evaluation framework that supports the 
selection and implementation of appropriate maintenance strategies. The framework is developed through a 
critical literature analysis, which is synthesized using a Frame of References approach. Unlike generic taxon
omies, this model classifies maintenance strategies based on decision logic, response timing, data dependency, 
required infrastructure, and alignment with organizational capabilities. Building upon this structure, a two-level 
decision-support framework is introduced. The first decision tree assists practitioners in determining the 
appropriate class of maintenance strategy—corrective, planned, proactive, or predictive—based on operational 
constraints and system criticality. The second tree refines this selection by mapping available technological 
resources and data maturity to suitable analytical methods (e.g., rule-based, statistical, or AI-driven). While the 
framework is demonstrated in the context of mining truck operations, its modular design makes it applicable to 
other asset-intensive sectors, including logistics, construction, and heavy manufacturing. By bridging analytical 
insights with real-world constraints, this study offers a practical tool for organizations seeking to develop scal
able, reliable, and context-sensitive maintenance strategies.

1. Introduction

The mining industry plays a vital role in global economic develop
ment by providing essential natural resources, including minerals, 
metals, and coal. These resources serve as the backbone of critical sec
tors such as infrastructure, manufacturing, and energy production. With 
increasing global demand, improving efficiency, sustainability, and cost- 
effectiveness in mining operations has become a key priority [1]. Effi
ciency in mining is not only vital to maximize productivity but also to 
reduce environmental impact, manage costs, and enhance worker 
safety. This need has led to ongoing advancements in technology and 
operational practices aimed at optimizing resource extraction and pro
cessing methods. Among the many aspects that influence operational 

efficiency, the availability and reliability of mining equi
pment—especially hauling trucks—are crucial, as they are tasked with 
transporting vast quantities of materials, often over challenging terrain 
and within strict timelines [2].

To achieve high levels of availability, performance, and safety, 
mining trucks require a well-structured maintenance policy. A robust 
maintenance strategy not only minimizes unexpected failures but also 
reduces operational costs and improves overall efficiency. Traditional 
maintenance approaches, which rely on reactive, failure-driven in
terventions, are increasingly being replaced by proactive and predictive 
strategies that optimize resource utilization and reduce downtime [3,4].

Maintenance strategies in the mining industry can be broadly cate
gorized as [4]: 
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■ Reactive Maintenance (also known as corrective maintenance) – This 
strategy follows a "break-fix" principle, where repairs occur only 
after failure has taken place. It is simple to implement but often leads 
to higher repair costs, longer downtimes, and lower Overall Equip
ment Effectiveness (OEE).

■ Planned Maintenance (also known as preventive maintenance)– In 
this approach, maintenance activities are performed at pre- 
scheduled intervals to reduce failure risks and improve OEE. How
ever, it does not account for the truck’s actual health, leading to 
unnecessary maintenance, increased costs, and reduced availability. 
Additionally, it lacks real-time adaptability to changing operational 
conditions.

■ Proactive Maintenance (also called condition-based maintenance - 
CBM) – This strategy relies on monitoring equipment condition in 
real-time and performing maintenance when specific degradation 
indicators are detected. It helps reduce unnecessary interventions 
while extending component lifespan.

■ Predictive Maintenance – The most advanced strategy, predictive 
maintenance leverages AI, predictive models, and real-time sensor 
data to forecast failures before they occur. This strategy ensures 
higher OEE, cost savings, and reduced unplanned downtime [5,6].

An overview of each maintenance approach and how they corre
spond to different OEE ranges is presented in Fig. 1.

As maintenance strategies continue to evolve, the next step beyond 
predictive maintenance is prescriptive maintenance. Unlike predictive 
maintenance, which answers “What will happen and when?”, prescrip
tive maintenance goes further to address “How should a specific event 
happen?”, providing actionable recommendations for optimizing oper
ational and maintenance practices [7]. By integrating advanced AI, 
Internet of Things (IoT), and decision-support systems, prescriptive 
maintenance enables proactive decision-making, minimizing downtime 
and optimizing resource utilization. This emerging strategy represents 
the future of maintenance in the mining industry, providing a 
data-driven framework for maximizing equipment reliability and 
efficiency.

Several studies have shown that transitioning from corrective to 
predictive maintenance leads to significant improvements in asset reli
ability and cost efficiency [8]. However, mining companies face chal
lenges in adopting advanced maintenance strategies, including 
integration of digital technologies, workforce training, and cost con
straints [9].

In order to better understand the challenges faced by mining 

companies, this study emphasizes the critical role of maintenance in 
mining operations, as selecting the right maintenance strategy for 
hauling trucks directly affects operational efficiency, cost management, 
and safety [10]. Despite the growing body of research on mining 
equipment maintenance, there is limited comparative analysis that 
systematically evaluates the effectiveness of different maintenance 
strategies. This study seeks to address this gap by answering the 
following key research questions: 

■ What maintenance strategies for mining trucks are addressed in the 
existing literature?

■ What are the objectives, quantified indicators, intervention actions, 
and evaluation processes for each strategy?

■ How can the implementation of different maintenance strategies 
enhance the efficiency and reliability of mining trucks?

■ What is the most appropriate maintenance strategy to follow for a 
specific case in the context of mining trucks?

To address these questions, this study introduces a comprehensive 
evaluation framework designed to classify, compare, and assess main
tenance strategies systematically. Unlike conventional literature reviews 
that solely summarize existing research, this study provides structured 
guidance on selecting the most effective maintenance approach and 
corresponding methodology. The framework consists of three key 
components: 

1. Systematic Literature Review (SLR): A structured review process to 
collect and analyze relevant research articles on mining truck 
maintenance strategies.

2. Frame of References (FoR) Approach: A structured classification 
framework that synthesizes quantification methods, intervention 
approaches, and evaluation criteria, enabling a comparative assess
ment of different maintenance strategies.

3. Evaluation Framework: A structured decision-support model that 
assists practitioners in selecting the most suitable maintenance 
strategy by considering operational impact, data availability, 
resource constraints, and performance objectives.

The remainder of this paper is structured as follows: Section 2
(Methodology) details the SLR process and the FoR framework used to 
classify maintenance strategies. Section 3 (Analysis of Results) provides 
an overview of the statistical analysis, literature review, and compara
tive assessment of the reviewed studies. These analyses contribute to the 

Fig. 1. Maintenance strategies [4].

M. Goli et al.                                                                                                                                                                                                                                    Results in Engineering 28 (2025) 107109 

2 



development of a literature synthesis and an evaluation framework, 
including a decision tree model that guides the selection of maintenance 
strategies and methodologies. Section 4 (Discussion) interprets the 
findings, examines the implications of different maintenance strategies, 
and outlines future research directions. Finally, Section 5 (Conclusion) 
summarizes the key insights and provides recommendations for both 
industry practitioners and researchers.

2. Methodology

To develop a comprehensive insight into classifications of mainte
nance strategies for mining trucks and the existing knowledge gaps, this 
study adopts a Frame of Reference (FoR) approach coupled with a Sys
tematic Literature Review (SLR). These two approaches help us under
stand the current state and research directions in this field, categorize 
the problem in relation to maintenance strategies, and explore the 
various aspects of each strategy, including objectives, methodologies, 
and evaluation criteria.

2.1. Frame of reference (FoR)

The Frame of References (FoR) approach provides a structured 
methodology for analyzing, designing, and evaluating dynamic policies, 
supporting both strategic and operational objectives through quantifi
cation, benchmarking, and intervention planning. It serves as a decision- 
making tool that helps stakeholders define measurable goals, identify 
conflicts, and guide resolution throughout implementation phases [11]. 
According to the FoR, every decision-making problem requires speci
fying the following factors. 

• A strategic objective shows the long-term perspective of the system’s 
desired state, considering the uncertainties, and serves as a 
comprehensive goal that policies aim to achieve.

• An operational objective that is specific and measurable and 
designed for achieving goals in daily operations using the actionable 
stages of problem-solving.

• A quantitative state concept is defined for each operational objective 
using quantifiable parameters as building blocks for decision- 
making.

• A benchmarking procedure consisting of a comparison between the 
quantifiable parameters and reference points helps in assessing if the 
system is performing properly regarding its strategic and operational 
objectives.

• Use of an intervention procedure to address the gaps between the 
current and desired states in the system.

• An evaluation procedure consisting of determining whether the ob
jectives are met after implementing the intervention actions. It is also 
used as a feedback-receiving tool that measures the effectiveness of 
strategies and policies.

Fig. 2 represents a basic schema for the implementation of the FoR 
approach.

In mining truck maintenance, the FoR approach offers a structured 
framework that links strategic objectives with operational execution. By 
quantitatively defining problems, benchmarking current versus desired 
performance, and evaluating the impact of interventions, FoR supports 
continuous monitoring and informed decision-making. It integrates 
conceptual models, relevant parameters, and datasets to assess the 
effectiveness of maintenance strategies, ensuring alignment with busi
ness goals and operational reliability. Its application includes the 
following key aspects: 

1. Quantitative State Concept: Defining a quantitative state concept by 
identifying parameters like equipment types, failure rates, and 
operational characteristics, along with relevant datasets to address 
maintenance challenges.

2. Benchmarking Process: Benchmarking current maintenance perfor
mance against desired targets to highlight performance gaps after 
implementing interventions, such as improved maintenance sched
ules or reduced failure rates.

3. Interventions and Evaluation Process: Monitoring and evaluating 
interventions to ensure alignment with goals such as reduced 
downtime and improved resource use.

4. Differentiating Maintenance Strategies: Distinguishing maintenance 
strategies based on equipment, operating conditions, and failure 
patterns to support more precise and effective planning.

2.2. Systematic literature review (SLR)

The SLR approach is used to explicitly search for the most relevant 
literature, select the best criteria for extracting the articles, and analyze 
the results [13,14]. To conduct an SLR, this study uses the following 
iterative steps to identify and filter data before being analyzed. 

1. Generating search queries: Search keywords are adopted to 
generate useful queries, including generic keywords to determine the 
main scope of the research and specific keywords to narrow down the 

Fig. 2. Fundamentals of the FoR approach [12].
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search into different sub-categories. Logical operators (OR, AND, and 
NOT) are used to combine these keywords and generate queries.

2. Selecting databases: Among the most well-known academic data
sets (Scopus, Web of Science, Google Scholar, etc.), a dataset is 
selected for collecting the references based on a trial and error, on 
which of these datasets results in the highest number of relevant 
articles.

3. Collecting articles: An initial pool of articles is generated when 
searching for the search queries. At this stage, inclusion and exclu
sion criteria are defined to find the target articles based on time
frames, subjects, publishers, etc.

4. Analyzing articles: The remaining articles after implementing the 
inclusion and exclusion criteria are analyzed to identify the problem 
classification, recent trends of each subject, and remaining knowl
edge gaps.

5. Interpreting the findings: The findings of the research are evalu
ated in the context of the FoR to define the problem objectives, 
performance indicators, and assessment criteria.

6. Filtering and updating: An iterative process is used to repeat the 
abovementioned stages continuously to refine and re-collect the 
most relevant articles in the scope of this study.

The search query is defined in a way that encompasses the mainte
nance of mining trucks while dividing the problem scopes into mainte
nance, mining industries, and trucks when using the most generic and 
inclusive keywords for each scope. The search query is used when 
searching for articles on the Web of Science (WoS) and Scopus on 10 
October 2024. Articles are filtered and refined using multiple exclusion 
and inclusion criteria based on selecting the most relevant accessible 
articles published since 2000. Table 1 summarizes the exclusion and 
inclusion criteria along with the query used in the search process.

The exclusion criteria mainly focus on removing the articles pub
lished before 2000, non-accessible articles, and articles not written in 
English. Besides, refining the initial pool based on the WoS and Scopus 
categories, research area, and document type results in a more relevant 
pool of articles before going through them one by one and excluding the 
ones that don’t fit within the scope of this study. The additional articles 
that are not Scopus or WoS-indexed but discuss the main topic of this 
study are then included in the final stage after finding them from Google 
Scholar.

3. Analysis of results

The results obtained from the literature study are summarized in this 
section based on the exclusion and inclusion criteria used for data 
filtering. The final pool of publications is analyzed concerning the most 
recent subjects addressed, authors’ affiliations, and publishers’ contri
butions. Two main categories of maintenance for mining trucks are 
identified (corrective and preventive maintenance), and each category is 
thoroughly analyzed to illustrate the latest trends and knowledge gaps, 

and classify the problem based on the FoR framework.

3.1. Statistical analysis

The articles were searched on the Web of Science (WoS) and Scopus, 
as these databases were more successful in resulting in the most relevant 
published works; however, the leftover articles aligned with the scope of 
this research are added to the final pool of articles using a single in
clusion criterion. Fig. 3 shows a total of 51 articles reviewed in this study 
after implementing all the exclusion and inclusion criteria.

Analyzing the final pool of articles shows a significant increase in the 
number of published articles over the last 10 years compared to the 
period before 2015, as displayed in Fig. 4. It means that considerable 
attention has been paid to the topic of maintaining mining trucks during 
the last decade, while the subject had been rarely investigated before 
that period. The most significant increase in the number of articles is 
shown in the last five years.

A geographical analysis of the final pool of articles categorizes the 
countries based on the affiliated authors. Results shown in Fig. 5
demonstrate high attention towards the subject from affiliated authors 
based in Iran (8), Canada (8), Chile (5), and Russia (4), while Brazil, 
China, India, Australia, and USA (3) are also the countries where the 
authors investigated this research scope very often. High contribution in 
the mentioned regions can be related to their large-scale mining oper
ations, where enhancing cost-efficiency and minimizing downtimes play 
an important role in selecting maintenance strategies.

Distribution of the final pool of articles in terms of their publishers is 
shown in Fig. 6, showing that Springer, IEEE, Elsevier, and articles 
published by universities have the most contributions to the subject. 
This analysis, based on the publishers with at least four articles, shows 
that most of the well-known publishers, such as Elsevier (8 articles), 
IEEE (7 articles), and Springer (6 articles), covered this subject.

A network of the most frequently used keywords in the selected ar
ticles is shown in Fig. 7, demonstrating a problem classification where 
articles investigated different themes of fleet selection, truck perfor
mance, reliability analysis, and smart methods (such as AI and decision- 
support systems). Analyzing these keywords helped us in reviewing the 
articles based on which segment of trucks they focused on, what 
methods they adopted, and whether they validated the results using a 
real-world case.

The findings presented above are derived from the statistical analysis 
of the final pool of articles. To gain deeper insights, the next section 
provides a descriptive analysis, offering a structured review of the ar
ticles based on their classification under Corrective, Planned, Proactive, 
and Predictive maintenance strategies, their focus areas within mining 
truck operations, the methodologies employed, and the case studies 
examined. This analysis contextualizes the existing literature within a 
comprehensive FoR framework, helping to identify the key factors 
influencing maintenance strategy selection.

3.2. Descriptive analysis

This section presents a detailed literature review of the selected 
studies, examining how each maintenance strategy—Corrective, Plan
ned, Proactive, and Predictive—has been implemented in mining truck 
operations. Each subsection analyzes the methods used, the effective
ness of the strategies, and their limitations, providing a critical 
perspective on the existing research.

3.2.1. Corrective maintenance
Corrective maintenance (also called Reactive maintenance), often 

referred to as run-to-failure maintenance, involves addressing compo
nent failures only after they occur. This approach is unplanned and 
inherently inefficient, leading to high costs, unexpected downtimes, and 
potential collateral damage to other components. Despite its drawbacks, 
corrective maintenance remains common in mining operations due to its 

Table 1 
Exclusion (EXC) and inclusion (INC) criteria for data collection and refinement.

Criterion Description

EXC1 Excluding the articles published before 2000.
EXC2 Excluding the non-accessible articles.
EXC3 Excluding the articles written in a language other than English.
EXC4 Excluding the articles that are not classified as relevant WoS and Scopus 

categories or research areas.
EXC5 Excluding review articles, early access articles, retracted publications, 

meeting abstracts, and letters.
EXC6 Excluding the articles that don’t fit the scope of maintenance strategies 

for mining trucks.
INC1 Including the in-scope articles not indexed in the WoS and Scopus but in 

other academic databases.

Query: ((maintenance) AND (mine OR mining) AND (truck OR (heavy AND 
(vehicle OR equipment)) OR mobile equipment)).
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low initial investment and simplicity. However, as mining equi
pment—such as trucks—operates under extreme conditions, this 
approach frequently results in cascading failures that extend downtime 
and escalate maintenance costs [3]. However, it is important to recog
nize that corrective maintenance may be economically viable under 
certain conditions. For example, for non-critical components with low 
failure impact or short replacement times, the cost of preventive or 
predictive maintenance may outweigh the benefits. In these cases, a 
run-to-failure strategy can offer a cost-effective solution, especially 

when the failure of such components does not compromise overall sys
tem safety or productivity.

A few studies have examined the consequences of relying on 
corrective maintenance for mining truck components. Knights and 
Boerner [15] investigated tire failures in mining trucks and demon
strated that failure frequency increases significantly in specific haul 
route conditions, particularly in loading and discharging zones. Their 
application of a Poisson distribution model highlighted patterns in 
failure frequency; however, the study lacked a practical dimension, as it 

Fig. 3. Article collection procedure.

Fig. 4. Year-wise analysis of the articles.

Fig. 5. Country-wise analysis of the articles.
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did not explore how predictive techniques might reduce such failures or 
assess the economic trade-offs of different maintenance strategies.

Lhorente et al. [16] analyzed four years of wheel motor armature 
failure data from a Chilean mining fleet to develop an age-based main
tenance strategy. Their study combined real operational data with a 
simulation model to find the optimal preventive replacement interval 
and compare it with a run-to-failure approach. While the results showed 
that corrective maintenance can be nearly as cost-effective as preventive 
replacement for non-critical components, the proposed policy was not 
tested through full implementation on site. This leaves open questions 
about practical challenges, such as scheduling and administration, that 
can affect the actual cost savings of corrective versus planned mainte
nance in real operations.

These studies highlight the inefficiencies of corrective maintenance, 
but a significant limitation in the literature is the lack of a comprehen
sive cost-benefit analysis. While these works document the high fre
quency and cost implications of corrective maintenance, they fail to 
provide alternative solutions or a transition pathway toward more 
proactive approaches. Moreover, many of these studies rely on historical 
failure data without considering how technological advancements in 

diagnostics and monitoring could mitigate these failures.

3.2.2. Planned maintenance
Planned maintenance, a structured time-based approach, aims to 

prevent failures before they occur by scheduling maintenance activities 
at predefined intervals. Unlike corrective maintenance, which responds 
to unexpected breakdowns, planned maintenance attempts to balance 
cost efficiency and asset reliability by reducing the likelihood of cata
strophic failures. However, this approach has notable limitations: it does 
not account for the truck’s actual health condition, leading to mainte
nance interventions that may not be necessary. This can result in higher 
maintenance costs and reduced fleet availability without significantly 
improving reliability [17].

Several studies have attempted to optimize planned maintenance 
scheduling in mining operations. Topal and Ramazan [18] developed a 
stochastic integer programming model to optimize multi-year fleet 
maintenance scheduling, aiming to minimize maintenance costs while 
meeting production targets. Their approach effectively considered un
certainties in operational demands, yet the model was static and did not 
account for real-time failure patterns, reducing its adaptability in 
changing mining conditions.

De Toledo et al. [19] introduced the Arithmetic Reduction of Age 
(ARA) and Arithmetic Reduction of Intensity (ARI) models for planned 
maintenance scheduling, analyzing failure records from five mining 
trucks. These models successfully optimized maintenance intervals, but 
their reliance on historical data limited their applicability in real-time 
decision-making scenarios. The study also assumed that past failure 
behavior would persist under evolving operational loads, which may not 
hold in dynamic mining environments. Kishorilal [20] explored the 
impact of scheduled engine overhauls on mining truck reliability, 
introducing Mean Time to Overhaul (MTTO) as a key metric for planned 
maintenance optimization. While their results confirmed that engine 
overhauls reduce breakdown frequency, the study assumed that all 

Fig. 6. Publisher-wise analysis of the articles.

Fig. 7. Network map of keywords used in the reviewed articles.
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overhauls restore engines to near-original conditions, ignoring the cu
mulative effects of wear and diminishing returns on repeated servicing. 
This idealization may lead to overestimation of planned maintenance 
benefits, particularly in aging fleets.

Silva et al. [21] estimated the required hours for both corrective and 
planned maintenance to assess truck availability and develop compo
nent replacement plans. Their study applied statistical modeling based 
on historical failure data, which provided a structured approach to 
predicting maintenance needs. However, a major shortcoming of this 
work is its reliance on past failure trends rather than real-time moni
toring. Mining environments are highly dynamic, and static models 
based on historical data often fail to account for sudden operational 
changes, environmental conditions, or evolving failure mechanisms. A 
more theoretical approach was taken by Said and Taghipour [22,23], 
who analyzed repairable mining truck systems using a 
non-homogeneous Poisson process to compare corrective and planned 
maintenance scenarios. Their results suggested that planned mainte
nance significantly reduces failure risks, but their study assumes a per
fect maintenance system, ignoring practical constraints such as 
technician availability, spare part logistics, and unexpected delays in 
servicing. This oversimplification limits the applicability of their model 
in real-world mining operations, where logistical and human factors 
play a critical role in maintenance effectiveness. In addition, their 
evaluation does not assess whether planned maintenance remains su
perior under cost constraints or in remote operations with limited sup
port infrastructure.

Chaowasakoo et al. [24] proposed a truck dispatching simulation 
model that evaluated age-based maintenance strategies in open-pit 
mines. The study demonstrated that fixed maintenance schedules 
impact truck availability and production rates, but it failed to address 
operational variability, such as fluctuating workloads and changing haul 
routes, which significantly affect optimal maintenance timing. Without 
integrating these variables, the practical utility of their model in oper
ational planning remains limited.

Doyen et al. [25] introduced a Virtual Age (VA) model to assess 
maintenance strategies for mining truck engines. Their framework 
evaluated how scheduled maintenance affects component reliability, 
highlighting the trade-off between maintenance frequency and fleet 
availability. However, their model lacks empirical case studies to vali
date the efficiency of their proposed approach in reducing unplanned 
downtimes. The absence of real-world validation raises concerns about 
the robustness of their conclusions under actual operational stressors. 
Building on this, Angeles and Kumral [3] refined the VA approach 
through a two-step optimization method for setting inspection intervals 
and separating physical from virtual aging effects. Although their model 
enhances planned maintenance scheduling, it still does not fully address 
the issue of unnecessary interventions leading to potential 
over-maintenance or delayed repairs. Furthermore, it overlooks the 
cost-benefit trade-offs of performing inspections that yield no actionable 
findings.

Rahimdel and Mirzaei [26] utilized a multi-criteria decision-making 
(MCDM) framework under a fuzzy environment to determine optimal 
planned maintenance schedules for mining trucks. Their study focused 
on reducing vibrational health risks for operators, which was a novel 
contribution. However, their approach still relied on fixed maintenance 
schedules and did not account for real-time monitoring, limiting its 
responsiveness to unexpected component degradation. This weakens the 
applicability of the framework in conditions where failure mechanisms 
evolve unpredictably. Nouri Qarahasanlou et al. [27] analyzed pro
duction losses due to planned maintenance scheduling, comparing 
constant vs. cyclic maintenance intervals. Their study effectively 
showed that environmental conditions, such as road quality, influence 
maintenance effectiveness, but it did not propose a dynamic adjustment 
mechanism for maintenance intervals based on real-time performance 
metrics. Such mechanisms are essential for adapting schedules to vari
ations in operational severity.

Atmadyaya et al. [28] studied fleet readiness optimization through 
engine oil change intervals, demonstrating that optimally timed oil 
changes improved truck performance and reduced contaminants. 
However, their study did not incorporate real-time lubricant quality 
analysis, meaning that oil changes might still be performed prematurely 
or too late, leading to inefficiencies in maintenance execution. Wibowo 
and Santosa [29] investigated tire replacement schedules for mining 
trucks, integrating tire lifetime estimations, maintenance costs, and 
truck downtime into a goal programming model. Their results demon
strated optimal maintenance scheduling for different tire types (new, 
re-tread, rental). However, their model failed to consider real-time tire 
wear indicators, such as load conditions, temperature, and terrain 
variability, which significantly affect actual tire degradation rates.

Botyan et al. [30] examined maintenance scheduling for mining 
truck suspension systems, incorporating route conditions and material 
transport logistics. Their approach effectively determined the most 
suitable servicing intervals based on operational usage patterns, but it 
lacked an adaptive mechanism to adjust maintenance timing dynami
cally in response to unexpected wear and tear. This limits its ability to 
respond to early indicators of failure or unanticipated stress events. 
Myrzabekov et al. [31] proposed an optimization strategy for scheduled 
maintenance, analyzing the productivity, cost implications, and safety 
trade-offs of different maintenance intervals. Their findings showed that 
improperly scheduled maintenance can lead to over-servicing, 
increasing costs without significant reliability improvements. Howev
er, the study did not integrate condition-based monitoring, meaning its 
optimization strategy remains vulnerable to premature or delayed in
terventions. This omission reduces its relevance in modern fleets where 
real-time monitoring is increasingly feasible.

Despite broad research efforts in planned maintenance strategies, 
several critical gaps remain unresolved: 

1. Over-Reliance on Historical Data: Most studies depend on failure 
records and statistical distributions, which do not account for real- 
time operating conditions [18,19,21,24,25].

2. Limited Consideration of Practical Constraints: Many models assume 
ideal maintenance execution, overlooking workforce availability, 
supply chain issues, and unpredictable external factors [22,23]. In 
real-world mining operations, delays in spare part deliveries, insuf
ficiently skilled labor, and operational disruptions frequently affect 
maintenance execution, yet many optimization models fail to ac
count for these uncertainties, reducing their practical applicability.

3. Lack of Dynamic Adjustment Mechanisms: Many studies assume 
fixed maintenance schedules, ignoring the impact of variable envi
ronmental conditions and fluctuating operational loads [27,30]. In 
practice, trucks operating under harsher conditions (e.g., heavy 
loads, extreme temperatures) require more frequent servicing, yet 
most models do not dynamically adjust schedules based on actual 
equipment stress levels.

4. Oversimplified Cost vs. Reliability Trade-Offs: While some studies 
optimize maintenance costs, they often assume that increasing 
maintenance frequency always improves reliability, failing to 
consider diminishing returns on excessive servicing [29,32]. 
Over-maintenance not only increases operational costs but may also 
introduce unnecessary downtime and labor inefficiencies.

5. Lack of Empirical Validation: Several studies propose mathematical 
optimization models without testing them in real-world mining op
erations, raising concerns about practical applicability [3,25]. 
Theoretical models often assume perfect maintenance execution and 
predictable failure patterns, yet mining operations are highly un
predictable. Without empirical validation, the reliability of these 
models remains questionable.

6. Missed Opportunity for Integration with Emerging Technologies: 
Most existing research does not incorporate IoT-based condition 
monitoring or machine learning techniques, which could signifi
cantly improve maintenance scheduling accuracy [26,31]. While 

M. Goli et al.                                                                                                                                                                                                                                    Results in Engineering 28 (2025) 107109 

7 



planned maintenance relies on static scheduling, integrating 
real-time diagnostics and predictive analytics could allow for more 
adaptive and cost-efficient servicing.

Overall, planned maintenance remains a structured yet rigid 
approach, requiring integration with real-time monitoring and adaptive 
scheduling to reduce unnecessary interventions and improve cost effi
ciency. The next section will explore proactive maintenance, which 
enhances planned maintenance by incorporating real-time sensor data 
to optimize servicing intervals dynamically.

3.2.3. Proactive maintenance
Proactive maintenance refers to strategies that use real-time moni

toring and diagnostics to assess equipment condition and schedule 
maintenance only when necessary to prevent failures. This category 
includes Condition-Based Maintenance (CBM) and Reliability-Centered 
Maintenance (RCM) as follows: 

■ CBM focuses on continuous monitoring of asset health using sensors 
and diagnostics to determine the optimal time for maintenance in
terventions. Common applications in mining trucks include vibration 
analysis, oil condition monitoring, real-time tire pressure tracking, 
and emissions analysis [33,34].

■ RCM extends CBM by incorporating systematic reliability assess
ments to prioritize maintenance actions based on failure modes, 
criticality, and operational risks. It integrates risk-based decision- 
making and engineering evaluations to ensure maintenance planning 
is aligned with system reliability and operational needs, optimizing 
resource allocation and failure prevention [35,36].

Unlike planned maintenance, which follows predefined schedules, 
proactive maintenance responds to actual asset conditions, reducing 
unnecessary servicing while ensuring timely intervention. However, 
despite its advantages, CBM and RCM face significant challenges related 
to high data-processing demands, sensor reliability, and implementation 
costs. Recent work by Tan et al. [37] shows that applying CBM to large, 
complex systems can increase model intractability and computational 
cost due to inspection uncertainties and system interactions, high
lighting the need for more robust collaborative solutions.

Early work on CBM for mining trucks focused on oil condition 
monitoring, with Jardine et al. [38] developing a decision model for 
wheel motor maintenance. By continuously analyzing oil degradation, 
their approach aimed to determine whether motors should continue 
operating or undergo servicing. While effective in demonstrating the 
benefits of real-time diagnostics, the model did not account for external 
contaminants such as dust and moisture, factors that could significantly 
influence oil condition and lead to inaccurate predictions in harsh 
mining environments. Moreover, the study assumed stable operating 
conditions, which may not hold across diverse mine sites. Samanta et al. 
[39] expanded on this by introducing probabilistic models to evaluate 
truck reliability, demonstrating that condition-based interventions 
could reduce unnecessary maintenance. However, their study relied 
primarily on historical failure trends rather than real-time sensor vali
dation, making it less applicable to mining fleets where operating con
ditions vary significantly over time.

Beyond oil condition analysis, Forbush [40] explored an 
emissions-based CBM strategy, monitoring carbon monoxide levels in 
truck engines to optimize fuel efficiency and engine performance. While 
this work introduced a novel emissions-driven diagnostic approach, it 
lacked integration with mechanical wear indicators, such as injector 
wear or air intake issues, limiting its effectiveness in predicting overall 
engine health. This single-variable focus reduces its predictive reliability 
for complex mechanical systems. Recognizing the need for a broader 
diagnostic approach, Wang et al. [41] connected CBM-driven spare part 
replacements to inventory management, proposing that oil condition 
monitoring could inform part ordering strategies. Although their 

findings showed cost savings in spare part procurement, the study relied 
solely on oil analysis and did not incorporate multi-sensor diagnostics, 
such as thermal monitoring or vibration analysis, which could further 
refine failure detection. Additionally, their model assumes high sensor 
accuracy, which is not always realistic in rugged mining environments.

To improve failure predictions, Moniri-Morad et al. [42,43] applied 
Monte Carlo simulation techniques to estimate component failure 
probabilities, integrating Reliability Block Diagrams (RBDs) to assess 
RCM strategy. While these simulation models provided useful theoret
ical insights, the research lacked real-world validation in mining fleets, 
raising concerns about its practical effectiveness in dynamic conditions. 
Similarly, Secara et al. [44] proposed Weibull and Exponential models 
for truck fatigue life estimation, deriving failure probabilities based on 
statistical distributions. However, their models did not incorporate 
real-time sensor data, meaning that actual degradation rates could 
deviate from predictions, reducing the reliability of maintenance 
scheduling decisions.

Advancements in computer-aided maintenance modeling were 
explored by Nikulin et al. [45], who developed a digital tool to optimize 
truck servicing schedules based on mine layout and operational data. 
While this structured framework improved decision-making for main
tenance planning, it lacked real-time integration with CBM sensor data, 
making it less responsive to unexpected failures. Addressing the envi
ronmental impact of truck reliability, Peralta et al. [46] examined 
CBM-driven emissions reductions, concluding that improving fleet reli
ability through condition-based interventions could significantly lower 
fuel consumption. However, the study primarily focused on emissions as 
an outcome of maintenance effectiveness, rather than exploring a ho
listic CBM framework that integrates multi-sensor diagnostics for 
broader failure prevention. Integrating multi-sensor condition moni
toring, such as vibration, thermal imaging, and oil analysis, would 
provide a more robust CBM strategy for optimizing truck reliability.

A shift toward software-based CBM decision systems emerged with 
Kalra et al. [47], who developed a CBM platform incorporating data 
acquisition, processing, and key performance indicators (KPIs) such as 
propeller time and environmental factors. While this approach intro
duced structured maintenance triggers, its reliance on static IF-THEN 
rules meant that it lacked adaptability to evolving failure patterns, 
reducing its effectiveness in complex operational environments. 
Expanding CBM diagnostics to motor-wheel gearboxes, Kudrevatykh 
et al. [48] introduced a multi-sensor monitoring model, incorporating 
thermal imaging, vibration analysis, and noise detection. While their 
approach demonstrated the effectiveness of multi-sensor diagnostics, 
their results were not extensively validated across different operating 
conditions, making it unclear whether their model could generalize to 
other mining environments.

Further refining CBM decision-making, Alla et al. [49] introduced 
performance indicators to assess maintenance effectiveness, incorpo
rating data seasonality and reliability impact assessments. Their study 
provided valuable insights into long-term CBM outcomes, but it did not 
integrate advanced anomaly detection methods, which could have 
improved the accuracy of maintenance predictions. The reliance on 
predefined thresholds limits its performance in detecting early-stage 
degradation. The connection between CBM and inventory manage
ment was further explored by Motahari et al. [50], who developed a 
spare parts optimization model based on CBM-driven failure forecasts. 
Although their approach demonstrated cost reductions in inventory 
management, the model did not account for uncertainties in sensor ac
curacy, which could lead to inaccurate spare part demand predictions. 
This introduces risks of stockouts or overstocking in volatile operational 
settings.

Recent studies have begun integrating environmental factors into 
CBM frameworks, with Puzyrevskaya et al. [51] analyzing the impact of 
heavy rainfall on truck failure rates. While their work introduced 
weather-based CBM, it lacked real-time terrain assessment technologies, 
limiting its adaptability to other climate conditions. Shakenov et al. [52] 
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extended CBM diagnostics to off-road tire monitoring, applying tem
perature and pressure sensors to assess road conditions and tire dura
bility. However, their study focused solely on tire wear, missing 
opportunities to integrate broader drivetrain and suspension di
agnostics, which are also critical for fleet reliability.

Sarıgül [35] developed reliability-based maintenance policies for 
haul trucks by integrating failure data with statistical models to optimize 
preventive scheduling and truck availability. While effective in reducing 
downtime, the approach depends solely on historical data, lacking 
real-time condition monitoring and predictive analytics, which limits its 
applicability in dynamic mining operations.

Rahmani et al. [33] conducted a comprehensive reliability analysis 
of a mining truck fleet in Iran, applying Weibull distributions and reli
ability block diagrams to evaluate failure trends. Their approach suc
cessfully quantified the lifespan of key truck components, providing 
data-driven recommendations for maintenance scheduling. Despite 
these strengths, their study focused only on time-based failure patterns, 
omitting the influence of external environmental conditions, which are 
crucial in real-world mining operations.

Expanding the scope of RCM, Nouri Qarahasanlou et al. [34] inves
tigated how operating environmental conditions impact the effective
ness of RCM strategies. Their findings highlighted that temperature 
fluctuations, humidity, and dust accumulation significantly alter failure 
probabilities and optimal maintenance intervals. While their research 
advanced RCM frameworks, it lacked sensor-based validation, which 
could have strengthened their reliability models.

Elbazi et al. [53] advanced CBM applications by implementing dig
ital twin technology for real-time diagnostics of mining trucks, inte
grating sensor data with statistical process control to detect operational 
anomalies. Their approach demonstrated the potential for fleet-wide 
monitoring and failure detection, significantly improving maintenance 
decision-making. However, despite its effectiveness, the method poses 
challenges in large-scale deployment, as high computational demands 
and extensive data processing requirements may limit feasibility in 
resource-constrained mining environments.

Jardine [54] traced the evolution of vibration monitoring, showing 
how integrating proportional hazard models improves cost-efficient 
maintenance planning, particularly in electric wheel motors of mining 
trucks. Nonetheless, the study centered on vibration data alone, over
looking complementary CBM methods like oil or thermal analysis that 
could enhance its accuracy. Relying on a single failure signal reduces 
diagnostic confidence in complex systems.

While proactive maintenance strategies such as CBM and RCM 
significantly enhance fleet reliability, research in this area still faces 
several limitations, as: 

1. Over-Reliance on Single-Sensor Diagnostics: Many studies focus on a 
single monitoring parameter (e.g., oil condition, emissions, vibra
tions) rather than integrating multiple sensor types for improved 
diagnostic accuracy [36,38,52,54–56].

2. Limited Real-World Implementation: Several studies rely on simu
lations or statistical models without extensive validation in opera
tional mining fleets, raising concerns about practical applicability 
[33–35,42–45].

3. Static Rule-Based Decision Models: Many CBM frameworks use 
predefined IF-THEN rules for maintenance alerts, which do not adapt 
dynamically to changing failure conditions [47,49,51].

4. Lack of Machine Learning Integration: Most CBM studies do not 
incorporate AI-driven predictive models, missing the opportunity to 
advance toward predictive maintenance strategies [46,50].

5. High Implementation Costs & Data Processing Challenges: Real-time 
CBM systems require expensive sensor networks and significant data 
processing capabilities, which can be prohibitive for smaller mining 
operations [53].

Although CBM and RCM offer significant improvements over 

planned maintenance, they still lack the predictive foresight needed to 
estimate the remaining useful life of the studied system, thereby limiting 
the optimization of maintenance practices. The next section will explore 
predictive maintenance, which enhances proactive strategies by 
leveraging AI, machine learning, predictive models, and historical data 
to forecast equipment failures before they occur.

3.2.4. Predictive maintenance
Predictive maintenance is a highly advanced maintenance strategy 

that leverages historical data, sensor readings, and predictive models to 
anticipate failures before they occur, enabling timely interventions 
while minimizing downtime and maintenance costs. Unlike CBM, which 
detects existing degradation and initiates maintenance when a threshold 
is reached, predictive maintenance forecasts the progression of degra
dation, allowing maintenance teams to intervene at the optimal moment 
to prevent failures while optimizing costs and operational efficiency. In 
contrast, RCM differs from both CBM and predictive approaches by 
focusing on failure classification based on consequences, such as safety, 
operational, and economic impacts, rather than detecting or predicting 
failures. Instead of relying solely on real-time condition monitoring, 
RCM utilizes historical failure data, expert judgment, and risk assess
ments to identify the most effective maintenance actions for different 
failure modes. It serves as a structured decision-making framework to 
determine the most effective and necessary maintenance actions. Pre
dictive maintenance is particularly valuable for mission-critical truck 
components, such as engines, transmissions, suspension systems, and 
brakes, where unexpected failures can lead to severe operational dis
ruptions and financial losses.

The application of data analytics to predictive maintenance was first 
explored by Cheng [57], who demonstrated how historical and sensor 
data could be used to predict failures in engines, suspensions, and 
transmission components. However, this early research lacked adaptive 
learning models, relying on rule-based estimations, making its pre
dictions less precise in dynamic mining environments. Advancing this 
approach, Phillips et al. [58] applied big data analytics to optimize oil 
change intervals for mining trucks. Their model utilized binary logistic 
regression and a cascade-correlation neural network to classify oil 
samples and predict engine health in real-time. While their findings 
improved lubrication management efficiency, their approach relied 
solely on oil analysis, failing to incorporate vibration, temperature, or 
pressure readings, which could provide a more comprehensive under
standing of engine health. The computational complexity of the model 
may also pose scalability issues for fleets lacking advanced data 
infrastructure.

Silva et al. [59] expanded on predictive maintenance by developing a 
forecasting model to estimate mining truck availability based on his
torical preventive and corrective maintenance data. Their statistical 
approach enabled long-term planning by predicting the required main
tenance hours and optimizing equipment replacement schedules. How
ever, their reliance on past operational data rather than real-time 
condition monitoring limited the model’s adaptability to sudden failures 
or dynamic operating conditions. Unlike data-driven predictive 
methods, their approach did not incorporate sensor-based diagnostics, 
reducing its ability to capture real-time equipment health variations. 
Despite these limitations, their study remains relevant for fleet man
agement and availability forecasting, offering a foundation for inte
grating data-driven predictive maintenance strategies with statistical 
reliability assessments. This limits its usefulness for small or newer fleets 
where sensor investment is not feasible.

Beyond engine oil analysis, He et al. [60] addressed predictive 
maintenance for exhaust valves, which experience thermal and me
chanical stress leading to increased maintenance costs. Their 
data-driven failure prediction model categorized exhaust valve degra
dation into risk groups, estimating failure likelihood using value-at-risk 
assessments. While this approach improved lifespan estimation, it 
lacked real-time sensor integration, meaning it could not adjust 
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predictions based on evolving operating conditions. Moreover, the 
model’s dependency on categorized failure data restricts adaptability for 
enterprises with minimal failure logs.

To expand predictive capabilities to suspension systems, Ali and 
Frimpong [61] developed an AI-based model incorporating Artificial 
Neural Networks (ANNs) and Mamdani Fuzzy Logic (MFL) to predict the 
performance of hydro-pneumatic struts in mining trucks. Their results 
demonstrated high accuracy in forecasting suspension performance 
degradation, leading to optimized maintenance scheduling. However, 
their model required extensive labeled training data, making it chal
lenging to deploy in fleets with limited historical records.

Machine learning applications were further explored by Demyanov 
et al. [62], who developed intelligent predictive models for various truck 
components, aiming to reduce maintenance costs and increase reli
ability. Their research introduced logistics system optimization, but 
their model lacked adaptability across different truck types and mining 
conditions, reducing its scalability. The model also assumes uniform 
data availability, which may not reflect real-world constraints.

Focusing on motor-wheel gearbox reliability, Kudrevatykh et al. [63,
64] presented mathematical models integrating vibration, noise, and 
thermal analysis to predict failure-prone conditions. While their 
multi-sensor approach improved diagnostic accuracy, it was highly 
sensitive to data noise, meaning that minor sensor inaccuracies could 
lead to false failure predictions, triggering unnecessary maintenance 
actions. Such sensitivity may be impractical for smaller fleets unable to 
maintain frequent sensor calibrations or redundant systems. A broader 
IoT-driven predictive maintenance framework was introduced by Patil 
et al. [9], who analyzed underground and off-road mining trucks using 
IoT data, statistical approximations, and machine learning algorithms. 
Their approach enabled real-time failure forecasting, yet their model 
produced a high number of false positives, reducing trust in automated 
failure predictions.

A different predictive approach was taken by Kahraman et al. [65], 
who applied sequential pattern mining to real-time alarm and sensor 
data. Their model identified which alarm patterns were most strongly 
correlated with future failures, allowing early intervention strategies. 
While effective, their method depended on having an extensive histor
ical dataset of failures and alarms, limiting its usefulness for newer fleets 
without sufficient operational data. This reliance on large-scale data 
may limit applicability in low-volume or newly established mining 
operations.

Moving beyond mechanical failures, Rau et al. [66] investigated 
electrical fault prediction in mining trucks, applying machine learning 
models to classify fault severity in diesel engine control systems. Their 
study provided an innovative approach to non-mechanical failure fore
casting, yet it did not integrate environmental factors such as temper
ature fluctuations, moisture levels, or electrical load variability, which 
could significantly impact electrical fault risks.

Predicting tire lifespan under different environmental conditions, 
Rahimdel [67] used a proportional hazard model to estimate tire reli
ability and conditional failure rates. Their research contributed to better 
tire change scheduling, yet it did not incorporate sensor-based real-time 
monitoring, meaning that actual road conditions or tire pressure varia
tions were not factored into the predictions. A more comprehensive 
predictive maintenance approach was explored by Stefaniak et al. [68], 
who assessed how dynamic loads in different mining environments 
affected truck structural components. Their model linked mining con
ditions with structural fatigue risks, yet it lacked integration with on
board vehicle diagnostics, meaning that actual truck behavior (such as 
acceleration patterns or braking frequency) was not included in the 
failure predictions.

A real-time predictive maintenance system was proposed by Canelón 
et al. [10], who developed a remote assistance model for diagnosing and 
repairing critical truck failures. Their augmented reality and data ana
lytics platform significantly reduced downtime by enabling real-time 
expert guidance for on-site technicians. However, their approach 

required continuous high-speed internet connectivity, which may not be 
feasible in remote mining locations with limited network infrastructure. 
This infrastructure requirement is particularly challenging for small or 
remote mining operations with limited network capabilities.

While predictive maintenance significantly enhances failure fore
casting and operational efficiency, several challenges remain 
unresolved: 

1. High Sensitivity to Data Quality: Many predictive models rely on AI 
and machine learning, which require large, high-quality training 
datasets. Incomplete or noisy sensor data can lead to false positives, 
triggering unnecessary maintenance actions [9,64].

2. Limited Generalization Across Different Fleets: Many models are 
trained on specific truck types and operating conditions, making 
them less effective when applied to different fleets or mines [62,66].

3. Over-Reliance on Single-Factor Analysis: Some studies focus on one 
failure type, such as oil degradation or vibration analysis, without 
integrating multi-sensor diagnostics, which limits prediction accu
racy [58,60,67].

4. High Computational and Implementation Costs: AI-based predictive 
models require significant computing power, making large-scale 
adoption challenging for smaller mining operations [10,69].

5. Dependence on Historical Data: Some predictive models require 
extensive historical failure data, which may not be available for 
newer truck fleets, limiting the effectiveness of AI-based predictions 
[21,61,65].

6. Infrastructure and Connectivity Constraints: Real-time predictive 
maintenance systems require high-speed data transmission, which is 
often unavailable in remote mining sites, affecting implementation 
feasibility [10].

Although predictive maintenance outperforms corrective, planned, 
and proactive strategies, addressing these technological and imple
mentation challenges is essential for maximizing its potential. Future 
advancements should focus on multi-sensor fusion, improved anomaly 
detection, and reduced model sensitivity to data inconsistencies to 
further refine failure predictions and optimize mining fleet reliability. In 
this context, recent studies have also emphasized the importance of 
fleet-level predictive approaches. For example, Yang et al. [70] propose 
a global group maintenance policy that combines real-time health pre
diction with dynamic scheduling across multiple components, 
improving system-level precision and efficiency. Similarly, Yang et al. 
[71] highlight how integrating condition monitoring with system age 
can support risk-informed actions, such as mission abort or adaptive 
scheduling, to enhance safety and cost efficiency in mission-critical 
operations.

3.3. Comparative analysis

This section provides a comparative analysis of the reviewed main
tenance strategies to highlight research trends, industry focus, and the 
relative attention given to each approach. By examining the distribution 
of studies across Corrective, Planned, Proactive, and Predictive Main
tenance, we identify which strategies have been prioritized in the 
literature and how maintenance research has evolved over time.

As illustrated in Fig. 8, proactive and predictive maintenance stra
tegies have been the primary focus in recent research, reflecting the 
industry’s shift toward data-driven decision-making. Among proactive 
strategies, CBM has been widely studied, while RCM has received 
comparatively less attention. Predictive maintenance—despite being a 
relatively newer approach—has shown significant research growth, 
driven by advancements in AI and IoT-enabled prognostics. In contrast, 
corrective maintenance has been the least studied, aligning with in
dustry trends aimed at reducing unplanned failures and transitioning 
toward more efficient, reliability-centered maintenance strategies.

The reviewed studies have primarily focused on the overall 
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performance of mining trucks, with particular emphasis on engine 
reliability, as engine failures tend to cause the most significant opera
tional disruptions

(see Fig. 9). Additionally, engine performance is influenced by 
multiple factors, including regular maintenance schedules, oil quality, 
and operating conditions, making it a critical area of study for opti
mizing fleet efficiency and reducing downtime.

Fig. 10 illustrates the distribution of maintenance strategies across 
different truck components, highlighting the predominant focus areas in 
existing research. Proactive maintenance strategies are the most studied, 
particularly in overall truck performance. Predictive maintenance shows 
a strong emphasis on engine performance and transmission reliability, 
demonstrating its role in early fault detection. In contrast, corrective 
maintenance is minimally explored, with only one study each focusing 
on tire and transmission failures. These trends suggest a shift towards 
proactive and predictive strategies for optimizing fleet reliability and 
reducing unplanned downtimes.

To facilitate structured decision-making in maintenance strategy 
selection, particularly for the decision tree framework, the methodolo
gies used in the reviewed articles are categorized into five distinct ap
proaches. Each serves a specific function in maintenance analysis, 
differing in underlying principles, data requirements, and applications. 

1. Statistical Methods – These approaches rely on mathematical and 
statistical techniques to analyze historical failure, assess reliability, 
and model maintenance schedules. Common methods include 
regression analysis (for trend identification), reliability modeling (to 
assess system lifespan), and non-homogeneous Poisson processes 
(NHPP) for modeling time-dependent failure rates.

2. Probabilistic Methods – Unlike statistical methods, probabilistic ap
proaches incorporate uncertainty and risk modeling to estimate 
failure distributions and maintenance needs under varying condi
tions. Key techniques include Weibull analysis (for life estimation), 
Cox Proportional Hazard Models (Cox PHM) (for analyzing risk 
factors), Poisson distribution models (for discrete failure events), and 
virtual age modeling (to account for past maintenance effects).

3. AI-Driven and Intelligent Methods – Leveraging machine learning, 
expert systems, and data mining to identify complex failure patterns 
and enhance predictive accuracy. Unlike statistical and probabilistic 
methods, AI-based techniques continuously learn from real-time and 
historical data, adapting to new failure conditions. Common appli
cations include Artificial Neural Networks (ANN) (on-linear failure 
prediction), Support Vector Machines (SVM) (classifying failure 
patterns), fuzzy logic (handling uncertainty in maintenance de
cisions), digital twins (real-time virtual models), and expert systems 
(rule-based decision-making).

4. Optimization and Decision-Support Models – These methods aim to 
optimize maintenance planning by balancing costs, resources, and 
operational goals. Unlike AI models that predict failures, optimiza
tion techniques determine the best maintenance scheduling and 
resource allocation strategies. Approaches include goal program
ming (optimizing multiple conflicting maintenance objectives), 
simulation-based optimization (testing maintenance scenarios under 
different conditions), joint optimization (integrating maintenance 
scheduling with logistics planning), genetic algorithms (GA) 
(evolutionary-based optimization for complex maintenance prob
lems), and simulated annealing (searching for near-optimal mainte
nance solutions).

5. Uncertainty-Based Stochastic Models – These methods incorporate 
randomness and variability in maintenance decision-making by 
simulating different possible outcomes based on uncertain operating 
conditions. Unlike probabilistic methods, which estimate failure 
likelihoods based on known distributions, stochastic models 
generate multiple possible scenarios to account for variability in 
equipment performance. Common techniques include Monte Carlo 
simulations (simulating a range of potential maintenance outcomes), 
Proportional Hazard Models (PHM) (adjusting failure predictions 
based on changing risk factors), and stochastic process modeling 
(modeling unpredictable fluctuations in maintenance needs).

The distribution of methodologies in the reviewed literature is pre
sented in Fig. 11, showing the relative proportion of research dedicated 
to each approach, while Fig. 12 highlights their evolution over time. The 
analysis reveals a clear transition toward data-driven and AI-powered 
techniques, particularly in the last decade, aligning with the industry’s 
increasing focus on predictive maintenance solutions.

Among the methodologies, statistical methods account for the largest 
share (33 %), reflecting their long-standing role in failure analysis, 
reliability assessment, and maintenance scheduling. Their consistent 
presence across different periods indicates their continued relevance, 
especially for planned and predictive maintenance strategies. In 
contrast, AI-driven and intelligent methods (21 %) have experienced 
rapid growth, particularly in the last four years, highlighting the 
industry’s transition toward real-time, data-driven decision-making. 
Probabilistic methods (18 %) and stochastic models (12 %) play a 
crucial role in risk assessment, failure prediction, and handling 

Fig. 8. Strategy-wise analysis of the articles.

Fig. 9. Distribution of articles focuses on mining truck segments.

Fig. 10. Distribution of Maintenance Strategies in Mining Trucks by Compo
nent Focus.
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operational uncertainties, making them valuable for planned and pro
active maintenance strategies. Additionally, optimization and decision- 
support models (16 %) have shown steady growth, emphasizing the 
increasing focus on cost-effective maintenance planning and resource 
allocation.

Overall, Fig. 12 illustrates a progressive shift from traditional sta
tistical approaches toward AI-driven techniques, while optimization- 
based methods are gaining traction as industries seek efficiency and 
reliability improvements. This trend underscores the growing reliance 
on advanced analytics and predictive modeling in modern maintenance 
strategies.

3.3.1. Literature synthesis
To provide a structured understanding of maintenance strategies in 

mining truck operations, the FoR approach is adopted to analyze how 
different strategies can be effectively operationalized. The insights ob
tained from the SLR, together with findings from the comparative 
analysis, contribute to a comprehensive framework that enables prac
titioners to: 

■ Understand explicit definitions of the four maintenance strategies: 
Corrective, Planned, Proactive, and Predictive Maintenance.

■ Differentiate the decision-making processes involved in implement
ing each strategy.

■ Identify KPIs and quantitative measures, such as Mean Time Between 
Failures (MTBF), Mean Time to Repair (MTTR), failure rates, and 
cost-effectiveness, to assess their impact and effectiveness.

The comparative analysis, alongside the literature review, further 
strengthens this framework by highlighting trends, gaps, and 

interconnections between different strategies, providing a clearer 
roadmap for maintenance planning.

Table 2 presents a structured comparison of these strategies using the 
FoR framework, categorizing them based on their strategic intent, KPIs, 
quantification metrics, benchmarking processes, intervention triggers, 
and evaluation methods. This table goes beyond presenting informa
tion—it serves as a practical guide for decision-makers aiming to tran
sition from reactive to intelligent maintenance systems. For instance, a 
practitioner currently relying on Corrective Maintenance can consult the 
benchmarking and evaluation rows to understand how performance is 
measured and validated in Predictive Maintenance. By doing so, they 
can identify which operational metrics—such as Remaining Useful Life 
(RUL) or anomaly detection—must be introduced to support the tran
sition. Similarly, if an organization already uses Planned Maintenance, 
the table highlights how integrating equipment health indicators and 
real-time monitoring (as emphasized in Proactive Maintenance) can 
bridge the gap toward fully predictive strategies. This structured 
approach supports a stepwise, evidence-based progression in mainte
nance planning, helping practitioners align interventions with techno
logical readiness, operational needs, and long-term strategic goals.

Several published case studies show how these strategies have 
improved real fleet KPIs in mining operations. For example, Jardine 
et al. [38] demonstrated that applying a proportional hazards model to 
optimize oil analysis for haul truck wheel motors at Cardinal River Coals 
in Canada led to clearer overhaul decisions and estimated a 20–30 % 
reduction in overhaul costs while extending MTBF. Similarly, Lhorente 
[16] used four years of actual failure data from Komatsu haul trucks in 
Chile to develop an age-based maintenance strategy for wheel motor 
armatures. By analyzing failure distributions and modeling different 
preventive intervals, the study compared corrective and preventive 
scenarios in terms of mean time between failures (MTBF), fleet avail
ability, and maintenance cost per operating hour. The results showed 
that applying an optimal preventive interval of 14,500 operating hours 
could increase MTBF consistency, save about US$163,000 annually, and 
improve fleet availability rate by 2.3 % compared to the existing 
run-to-failure (Corrective Maintenance) approach. These practical ex
amples illustrate how real mining sites have validated condition-based 
and planned maintenance policies by tracking performance indicators 
such as MTBF and overhaul costs, supporting the value of applying this 
framework in practice.

Additionally, to provide a holistic understanding of the current 
research landscape, Table 3 presents a summary of all reviewed studies, 
enabling practitioners and researchers to quickly identify patterns, gaps, 
and opportunities for future investigation. The studies are categorized 
according to: 

Fig. 11. Distribution of Methodologies in Mining Truck Maintenance Studies.

Fig. 12. Evolution of Research Methodologies in Mining Truck Maintenance Studies.
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■ The maintenance strategy they address (Corrective, Planned, Pro
active, or Predictive).

■ Their focus components in mining trucks (general performance, en
gine, suspension, transmission, tire).

■ The methodologies applied (AI-Driven and Intelligent Methods, 
Statistical Methods, Probabilistic Methods, Stochastic Models, and 
Optimization Models).

■ Whether the study includes real-world case validation or remains 
theoretical.

By synthesizing these insights, this section provides a decision- 
support foundation for practitioners and researchers to understand 
existing literature trends, gaps, and opportunities in maintenance 
strategy development. The next section further translates these insights 
into an actionable evaluation framework, guiding decision-makers on 
the optimal maintenance strategy based on operational constraints and 
technological capabilities.

3.3.2. Evaluation framework
Building on the findings from the systematic literature review and 

comparative analysis, this study develops an evaluation framework to 
guide practitioners in selecting the most appropriate maintenance 
strategy for mining trucks, based on operational impact, downtime 
costs, resource availability, and technological readiness. The framework 
consists of two interconnected decision trees: the first proposes the 
optimal maintenance strategy by evaluating operational risks and cost 
considerations, while the second refines the choice by recommending 
the appropriate methodology based on data availability and techno
logical capabilities. The two decision trees are sequential and inter
dependent—first identifying the best-fit maintenance strategy and then 
determining the most suitable methodology to support its implementa
tion. By systematically linking operational realities, resource con
straints, and data readiness to strategic decisions, this evaluation 
framework ensures informed, evidence-based maintenance planning 
that enhances reliability, minimizes downtime, and optimizes resource 
utilization.

The first decision tree (Fig. 13) supports the selection of the most 
appropriate maintenance strategy by systematically evaluating three 
key dimensions: 

1. The critical impact of failures on operations.
2. A comparison of: 

a. Downtime costs: Refer to financial losses resulting from produc
tion interruptions or halted operations.

b. Maintenance costs: Include expenses associated with labor, spare 
parts, tools, and servicing activities.

c. Asset utilization costs: Refer to losses from underusing an asset’s 
full potential due to early replacement or repair, and also include 
indirect costs related to project delays or contractual penalties 
caused by extended downtime.

3. The availability of expertise and resources to implement advanced 
technologies.

The decision process begins by assessing whether a failure has a 
critical impact on operations. Here, criticality refers to the severity of 
potential safety risks (such as accidents or environmental hazards) and 
financial consequences (including repair costs, production losses, and 
downtime-related expenses). While this framework considers criticality 
in terms of safety and financial impact, it does not prescribe fixed 
thresholds for what is “critical.” In practice, a situation may be consid
ered critical if downtime losses exceed an agreed operational benchmark 
(for example, more than $5,000 per hour) or if a failure creates safety 
risks that surpass site-specific risk levels. Because these limits differ 
between organizations and sites, users of the framework should define 
criticality in line with their own cost structures, safety policies, and 
regulatory rules.

The framework also assumes that cost data—such as downtime los
ses, maintenance spending, and asset underuse costs—are available or 
can be estimated. In reality, this information may be incomplete or 
overlook hidden costs like productivity impacts, reputational risks, or 
unexpected safety penalties. To reduce this risk, it is recommended that 
practitioners apply expert judgment or sensitivity analysis when esti
mating costs to better reflect actual conditions and uncertainties.

After assessing criticality, the next step is to compare the potential 
downtime and asset utilization costs with the expected maintenance 
costs to identify the most cost-effective approach. If the failure is non- 
critical—such as a minor defect in auxiliary equipment—corrective 
maintenance may be the most practical and cost-effective approach. 
However, when failures result in major disruptions, such as halted 
transport, safety violations, or significant financial losses, preventive 
strategies become necessary. The choice among them depends on the 
cost dynamics and predictability of future operations.

When downtime and utilization costs are lower than maintenance 
costs, planned maintenance is recommended, particularly for safety- 
critical assets. This means that scheduled servicing is more cost- 

Table 2 
The FoR framework for maintenance strategies of mining trucks.

Procedure Maintenance strategy

Corrective Maintenance Planned Maintenance Proactive Maintenance Predictive Maintenance

Strategic 
objective

Address failures as they occur to 
restore operations quickly.

Perform maintenance based on a pre- 
defined schedule to minimize failures.

Monitor asset conditions and 
intervene when signs of 
degradation appear.

Use data analytics and predictive 
models to anticipate failures before 
they occur.

Operational 
objective

No deviation between failure 
occurrence and repair response.

No deviation between scheduled 
maintenance and actual interventions.

Optimize asset performance and 
unplanned downtime based on 
the current degradation level.

Optimize asset performance and 
reduce unexpected failures using 
predictive insights.

Quantitative state 
concept

Mean Time to Repair (MTTR), 
downtime impact on productivity, 
and cost of unscheduled repairs.

Mean Time Between Failures (MTBF), 
truck availability rate, and maintenance 
cost per operating hour.

Equipment health indicators, 
degradation rate analysis, and 
early failure detection metrics.

Predictive failure models, RUL, 
anomaly detection metrics.

Benchmarking 
process

MTTR should ensure that 
productivity losses and repair costs 
remain within budget.

Scheduled maintenance should be 
benchmarked against actual MTBF to 
ensure alignment with the expected 
failure rate.

Real-time monitoring should 
accurately detect early 
degradation trends.

Predictive models should 
consistently provide accurate failure 
forecasts and improve asset 
reliability.

Intervention 
process

Just-in-time repair based on 
operator reports, failure diagnosis, 
and resource allocation.

Pre-scheduled maintenance activities 
based on historical failure data and 
manufacturer guidelines.

Data-driven inspections and 
repairs triggered by real-time 
condition monitoring.

Operational data-driven 
maintenance decisions based on 
predictive analytics and failure 
pattern recognition.

Evaluation 
process

Assess the responsiveness of 
maintenance teams and restoration 
efficiency.

Evaluate how effectively scheduled 
maintenance prevents failures.

Validate the accuracy of 
diagnostics and, effectiveness of 
early interventions.

Validate predictive models, analyze 
false positives/negatives, and refine 
failure predictions.
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Table 3 
Summary of the literature review.

Author (s) Maintenance strategy Truck focus Methodology Real-world Case

Corrective Planned Proactive Predictive Performance Suspension Engine Transmission Tire M1 M2 M3 M4 M5

Jardine et al. [38] ​ ​ ✓ ​ ​ ✓ ​ ​ ​ ​ ​ ​ ✓ ​ ✓
Knights and Boerner [72] ✓ ​ ​ ​ ​ ​ ​ ​ ✓ ​ ​ ✓ ​ ​ ✓
Samanta et al. [39] ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ​ ​ ​ ​ ✓ ✓
Lhorente et al. [16] ✓ ✓ ​ ​ ​ ​ ✓ ​ ​ ​ ✓ ✓ ​ ​ ✓
Forbush [73] ​ ​ ✓ ​ ​ ​ ✓ ​ ​ ​ ​ ✓ ​ ​ ​
Wang et al. [55] ​ ​ ✓ ​ ​ ​ ✓ ​ ​ ​ ✓ ​ ​ ​ ​
Topal and Ramazan [18] ​ ✓ ​ ​ ✓ ​ ​ ​ ​ ​ ✓ ​ ​ ​ ​
Moniri-Morad et al. [42] ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ​ ​ ​ ​ ✓ ✓
Cheng [57] ​ ​ ✓ ✓ ✓ ​ ​ ​ ​ ​ ✓ ​ ✓ ​ ​
Moniri-Morad et al. [43] ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ​ ​ ​ ​ ✓ ✓
Secara et al. [44] ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ​ ​ ​ ✓ ​ ​
Kishorilal [32] ​ ✓ ​ ​ ​ ​ ✓ ​ ​ ​ ​ ✓ ​ ​ ​
Phillips et al. [58] ​ ​ ​ ✓ ​ ​ ✓ ​ ​ ✓ ​ ​ ​ ​ ​
de Toledo et al. [19] ​ ✓ ​ ​ ✓ ​ ​ ​ ​ ​ ✓ ✓ ​ ​ ✓
Silva et al. [59] ​ ​ ​ ✓ ✓ ​ ​ ​ ​ ✓ ​ ​ ​ ​ ✓
Said and Taghipour [23] ​ ✓ ✓ ​ ✓ ​ ​ ​ ​ ​ ​ ✓ ​ ​ ✓
Nikulin et al. [45] ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ​ ​ ✓ ​ ​ ✓
Peralta et al. [46] ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ​ ​ ✓ ​ ​ ​
Said and Taghipour [22] ​ ✓ ​ ​ ✓ ​ ​ ​ ​ ​ ✓ ​ ​ ​ ✓
He et al. [60] ​ ​ ​ ✓ ​ ​ ✓ ​ ​ ​ ​ ​ ✓ ​ ​
Ali and Frimpong [61] ​ ​ ​ ✓ ​ ✓ ​ ​ ​ ✓ ​ ​ ​ ​ ​
Chaowasakoo et al. [24] ​ ✓ ​ ​ ✓ ​ ​ ​ ​ ​ ✓ ​ ​ ​ ✓
Kalra et al. [47] ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ​ ​ ✓ ​ ​ ✓
Kudrevatykh et al. [56] ​ ​ ✓ ​ ​ ​ ​ ✓ ​ ​ ​ ✓ ​ ​ ​
Doyen et al. [25] ​ ✓ ​ ​ ​ ​ ✓ ​ ​ ​ ​ ​ ✓ ​ ✓
Rahimdel and Mirzaei [26] ​ ✓ ​ ​ ​ ✓ ​ ​ ​ ✓ ​ ​ ​ ​ ​
Angeles and Kumral [3] ​ ✓ ​ ​ ✓ ​ ​ ​ ​ ​ ✓ ​ ​ ​ ✓
Alla et al. [49] ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ​ ​ ✓ ​ ​ ​
Demyanov et al. [62] ​ ​ ​ ✓ ✓ ​ ​ ​ ​ ✓ ​ ​ ​ ​ ​
Motahari et al. [50] ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ​ ✓ ​ ​ ​ ✓
Nouri Qarahasanlou et al. [27] ​ ✓ ​ ​ ✓ ​ ​ ​ ​ ​ ​ ​ ✓ ​ ✓
Kudrevatykh et al. [63] ​ ​ ​ ✓ ​ ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ✓
Kudrevatykh et al. [64] ​ ​ ​ ✓ ​ ​ ​ ✓ ​ ​ ​ ✓ ​ ​ ​
Patil et al. [9] ​ ​ ​ ✓ ✓ ​ ​ ​ ​ ​ ​ ​ ✓ ​ ​
Kahraman et al. [65] ​ ​ ​ ✓ ✓ ​ ​ ​ ​ ✓ ​ ​ ​ ​ ✓
Atmadyaya et al. [28] ​ ✓ ​ ​ ​ ​ ✓ ​ ​ ​ ​ ✓ ​ ​ ​
Wibowo and Santosa [29] ​ ✓ ​ ​ ​ ​ ​ ​ ✓ ​ ✓ ​ ​ ​ ​
Sarıgül [35] ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ​ ​ ✓ ​ ​ ​
Puzyrevskaya et al. [51] ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ​ ✓ ​ ​ ​ ✓
Rau et al. [66] ​ ​ ​ ✓ ​ ​ ✓ ​ ​ ✓ ​ ​ ​ ​ ​
Shakenov et al. [52] ​ ​ ✓ ​ ​ ​ ​ ​ ✓ ​ ✓ ​ ​ ​ ✓
Rahimdel [67] ​ ​ ✓ ​ ​ ​ ​ ​ ✓ ​ ​ ​ ​ ✓ ✓
Nouri Qarahasanlou et al. [34] ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ​ ​ ​ ✓ ​ ✓
Stefaniak et al. [69] ​ ​ ​ ✓ ✓ ​ ​ ​ ​ ✓ ​ ​ ​ ​ ​
Elbazi et al. [53] ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ✓ ​ ​ ✓ ​ ​
Silva et al. [17] ​ ✓ ​ ​ ✓ ​ ​ ​ ​ ​ ​ ✓ ​ ​ ✓
Rahmani et al. [33] ​ ​ ✓ ​ ✓ ​ ​ ​ ​ ​ ​ ✓ ​ ​ ✓
Canelón et al. [10] ​ ​ ​ ✓ ​ ​ ✓ ​ ​ ✓ ​ ​ ​ ​ ✓
Jardine [56] ​ ​ ✓ ​ ​ ✓ ​ ​ ​ ​ ​ ​ ​ ✓ ✓
Myrzabekov et al. [31] ​ ✓ ​ ​ ✓ ​ ​ ​ ​ ​ ​ ✓ ​ ​ ​
Botyan et al. [30] ​ ✓ ​ ​ ​ ✓ ​ ​ ​ ​ ​ ✓ ​ ​ ​

M1: AI-Driven & Intelligent Methods; M2: Optimization Models; M3: Statistical Methods; M4: Probabilistic Methods; M5: Stochastic Models;.
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effective than unexpected repairs, and project delays are unlikely to 
justify extra spending if the asset can run to schedule with planned stops. 
It ensures reliability through scheduled servicing but does not consider 
actual degradation levels, which can lead to unnecessary maintenance 
and reduced equipment availability. If downtime and production losses 
exceed maintenance costs, preventive strategies must be further evalu
ated based on the predictability of future operating conditions. When 
future operational conditions (such as loading patterns or environ
mental stresses) are relatively stable, proactive maintenance—either 
CBM or RCM—is preferable. CBM uses real-time condition monitoring to 
trigger interventions, while RCM incorporates risk assessments and 
system criticality analysis to prioritize interventions.

However, when future operational conditions are dynamic and 
uncertain—due to factors like fluctuating loads, environmental vari
ability, or dynamic utilization—predictive maintenance offers a better 
alternative. It extends beyond real-time diagnostics by forecasting the 
degradation over time, enabling maintenance teams to intervene at the 
optimal moment to minimize risks and operational costs. This approach 
requires more advanced prognostic capabilities, such as continuous 
sensor monitoring, predictive models, and a skilled workforce capable of 
interpreting complex analytics.

Finally, resource and expertise availability heavily influence strategy 
selection. Organizations lacking skilled personnel, real-time monitoring 
systems, or predictive analytics infrastructure are more likely to adopt 
planned or basic proactive strategies. In contrast, companies with 
mature data ecosystems and advanced analytics capabilities are better 
equipped to implement predictive strategies effectively.

For example, in a large-scale mining operation, if a primary haul 
truck critical to material transport suffers downtime, the financial and 
production impacts can be severe. If the mining company possesses real- 
time monitoring systems but lacks advanced prognostic capabilities, 
implementing a proactive CBM strategy would be the most feasible and 
effective option. However, if predictive models capable of accounting 
for future operational variability and sufficient analytical expertise are 
available, adopting a full predictive maintenance approach would offer 
optimal results.

While the first decision tree (Fig. 13) focuses on selecting the 

appropriate maintenance strategy based on operational impact, cost 
considerations, and resource availability, the second decision tree 
(Fig. 14) refines the decision-making process by identifying the most 
suitable methodology based on the available data types. The effective
ness of a maintenance strategy depends significantly on data availabil
ity, as different methodologies require varying levels of historical and 
real-time information. The key data categories considered in this 
framework include: 

• Operational Data: Usage patterns, fuel consumption, load factors, 
and cycle times, which help in assessing wear rates and operational 
efficiency.

• Environmental Data: Road conditions, temperature fluctuations, 
humidity, and external stressors that influence component degra
dation and failure risks.

• Maintenance and Failure Records: Historical logs of repair activities, 
replacement schedules, and past failure events, providing insights 
into failure trends and component lifespans.

• Condition Monitoring Data: Real-time sensor readings, such as vi
bration analysis, oil quality, thermal imaging, and pressure moni
toring, enabling early detection of potential failures.

• Cost Data: Maintenance expenditures, including repair costs, down
time losses, and replacement investments, are essential for opti
mizing maintenance schedules while maintaining cost efficiency.

Once the maintenance strategy is selected, the next step is deter
mining the most suitable methodology based on the available data types. 
Each strategy relies on different types and volumes of data, and aligning 
the methodology accordingly ensures accurate failure prediction, 
effective scheduling, and optimal resource use. 

• Corrective Maintenance: If no data is available, maintenance occurs 
only after a failure happens without predictive modeling or sched
uling tools. Decisions are reactive and based on immediate opera
tional needs.

• Planned Maintenance: If only historical maintenance and failure 
records are available, statistical and probabilistic methods (e.g., 

Fig. 13. Decision Tree for Maintenance Strategy Selection.
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Non-Homogeneous Poisson Processes, Weibull Analysis, Cox Pro
portional Hazard Models) can be used. These methods help deter
mine the optimal timing for scheduled maintenance without real- 
time monitoring.

• Proactive Maintenance: 
○ CBM: With access to real-time condition monitoring data (e.g., 

sensor data on vibration, oil quality, or pressure), AI-driven 
methods can analyze sensor data to detect early failure in
dicators and trigger interventions only when necessary.

○ RCM: If historical failure data and operational data (e.g., compo
nent reliability, failure modes, risk analysis) are available, proba
bilistic and optimization models can assess risk, prioritize critical 
components, and allocate resources effectively based on failure 
modes and system reliability.

• Predictive Maintenance: If both failure data and condition moni
toring data are accessible, predictive models can forecast degrada
tion trends, enabling proactive interventions before failures occur. If 
cost data is also available, optimization models can further enhance 
decision-making by balancing reliability goals with cost efficiency.

For instance, if a mining company selects Planned Maintenance but 
lacks real-time condition monitoring, it would rely on historical failure 
records and use statistical models to determine optimal servicing 
schedules. If the same operation deploys real-time sensors for oil vis
cosity and engine temperature, it can adopt CBM or predictive models to 
detect deviations from normal behavior, reducing unnecessary in
terventions and improving.

4. Conclusions

This study introduced a comprehensive evaluation framework to 
systematically classify, compare, and assess maintenance strategies for 
mining truck operations. Through a Systematic Literature Review, the 
application of a Frame of References approach, key research trends, 
dominant methodologies, and knowledge gaps were identified. The 
framework is supported by a two-level decision-support model that 
helps strategy managers choose the most suitable maintenance approach 
by weighing operational impact, downtime costs, data needs, and 
available resources.

The analysis highlights a clear industry shift toward proactive and 
predictive maintenance strategies. CBM emerged as the most extensively 
studied proactive approach due to its real-time diagnostic capabilities 
that to helps to plan maintenance more effectively. RCM has received 
comparatively less attention despite its structured risk-based 

prioritization framework. Predictive maintenance, driven by advances 
in AI and IoT technologies, has gained significant traction, enabling 
companies to anticipate failures more accurately under varying opera
tional conditions. In contrast, corrective maintenance remains the least 
studied, reflecting the industry’s move away from reactive, failure- 
driven practices. Although planned maintenance is still widely imple
mented, its inherent limitations, such as unnecessary interventions and 
lack of real-time adaptability, have accelerated the transition toward 
more data-driven, reliability-based strategies.

To put these insights into practice, a two-level decision-support 
model was proposed. The first decision tree assists in selecting an 
appropriate maintenance strategy by considering the criticality of fail
ures, cost trade-offs between downtime and maintenance activities, and 
the available diagnostic and prognostic capabilities. In particular, the 
distinction between planned, proactive, and predictive approaches is 
clarified based on the variability of future operating conditions and the 
level of expertise and technology infrastructure available. The second 
decision tree further refines the methodology selection based on the 
types of data accessible, ensuring that analytical methods, whether 
statistical, probabilistic, optimization-based, or AI-driven, are aligned 
with the organization’s technological maturity and operational 
priorities.

Despite these contributions, there are still barriers to using advanced 
maintenance in real operations. Many mining sites face poor data 
quality, rely on single sensors, and lack the infrastructure for real-time 
monitoring. Multi-sensor fusion is a promising fix because it combines 
signals from different sensors to provide a more comprehensive and 
robust understanding of equipment health. But this also introduces 
specific challenges, notably sensor noise and data heterogeneity. To 
mitigate these problems, advanced signal processing techniques such as 
filtering, smoothing, and outlier detection are essential to cleanse raw 
data and enhance signal quality before analysis. Additionally, sensor 
calibration protocols and redundancy in sensor deployment further 
improve data reliability and make multi-sensor fusion more practical. 
Another area that deserves more research is how project-specific dead
lines or contract requirements might affect maintenance choices, since 
these factors can influence the trade-offs between cost, reliability, and 
schedule performance.

While the proposed evaluation framework provides structured 
guidance for selecting maintenance strategies, it has certain limitations. 
Specifically, project deadlines and contractual constraints, such as pro
duction targets, delivery schedules, and penalties for downtime, are not 
directly captured in the current literature-based model. During pre
liminary validation with a mining company, practitioners highlighted 

Fig. 14. Decision Tree for Strategy and Methodology Selection Based on Data Availability.
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that the framework effectively maps operational constraints, data 
availability, and technological readiness to suitable maintenance stra
tegies. However, they emphasized that real-world maintenance de
cisions are also strongly influenced by contractual obligations, project 
schedules, and site-specific resource availability. Incorporating these 
practical constraints in future iterations of the framework would 
enhance its relevance and enable more informed, context-sensitive 
maintenance planning in operational mining environments.

Future work should test this framework in real mining operations 
and develop models that can adapt to diverse operational environments 
and handle large, mixed data sets to improve failure forecasting accu
racy. More research is also needed to connect maintenance planning 
with inventory management, especially for perishable materials, to 
support sustainable maintenance practices and to adapt strategies for 
different site conditions and contract terms. By addressing these tech
nological and operational barriers, the mining industry can move to
ward smarter maintenance solutions that reduce unexpected failures 
and costs, increase equipment availability, and ensure sustainable 
operational performance.
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[24] P. Chaowasakoo, H. Seppälä, H. Koivo, Age-based maintenance for a fleet of haul 
trucks, J. Qual. Maint. Eng. 24 (4) (2018) 511–528.

[25] L. Doyen, R. Drouilhet, L. Brenière, A generic framework for generalized virtual 
age models, IEEe Trans. Reliab. 69 (2) (2019) 816–832.

[26] M.J. Rahimdel, M. Mirzaei, Prioritization of practical solutions for the vibrational 
health risk reduction of mining trucks using fuzzy decision making, Arch. Environ. 
Occup. Health 75 (2) (2020) 112–126.

[27] A. Nouri Qarahasanlou, M. Ataei, R. Shakoor Shahabi, Expected proportional 
hazard model in preventive maintenance, J. Mining Environ. 12 (3) (2021) 
753–767.

[28] S. Atmadyaya, et al., Maintenance strategy for engine oil 100-ton truck using 
Taguchi method at coal mining company, in: Proceedings of the 2nd International 
Conference on Experimental and Computational Mechanics in Engineering: 
ICECME 2020, 2021. Banda Aceh, October 13–14Springer.

[29] D.S. Wibowo, B. Santosa, Maintenance cost optimization on heavy equipment tires 
by goal programming method at nickel mine operation, in: Proceedings of the 
International Conference on Industrial Engineering and Operations Management 
Sao Paulo, 2021. Brazil.

[30] E. Botyan, S. Lavrenko, A. Pushkarev, The evaluation of complicated mining 
exploitation conditions influence on service life of open pit trucks suspensions with 
remote monitoring systems, Int. J. Eng. (2024) (Articles in Press).

[31] Myrzabekov, N.M., et al., Evaluation of the mining dump truck operation system 
on the example of the Don mining and processing plant. Available at SSRN 
4837326, 2024.

[32] D.B. Kishorilal, Cost modelling of overhauled engines used in dumpers, Int. J. Appl. 
Eng. Res. (2015).

[33] Z. Rahmani, M.J. Rahimdel, H. Noferesti, Reliability analysis of a fleet of mining 
trucks (A case study in Iran), J. Geomine 1 (2) (2023) 68–74.

[34] A. Nouri Qarahasanlou, A. Barabadi, M. Saleki, Operating environmental condition 
effect on reliability-centred maintenance, J. Mining Environ. 14 (2) (2023) 
667–688.

[35] M. Sarıgül, Development Of Reliability-Based Maintenance Policies For Haul 
Trucks In A Surface Mine, Middle East Technical University, 2022.

[36] A.K. Jardine, Vibration monitoring in industry: then and now, IEEE Trans. Reliab. 
(2024).

[37] L. Tan, et al., Systemic condition-based maintenance optimization under inspection 
uncertainties: a customized multiagent reinforcement learning approach, IEEE 
Trans. Reliab. (2025).

[38] A. Jardine, et al., Optimizing a mine haul truck wheel motors’ condition 
monitoring program use of proportional hazards modeling, J. Qual. Maint. Eng. 7 
(4) (2001) 286–302.

[39] B. Samanta, B. Sarkar, S. Mukherjee, Reliability centred maintenance (RCM) for 
heavy earth-moving machinery in an open cast coal mine, CIM Bull. (2001) 
104–107.

[40] S. Forbush, Emissions-based maintenance program, in: 11th U.S./North American 
Mine Ventilation Symposium 2006, 2006, pp. 111–113.

[41] L. Wang, J. Chu, W.J. Mao, A condition-based replacement and spare provisioning 
policy for deteriorating systems with uncertain deterioration to failure, Eur. J. 
Oper. Res. 194 (1) (2009) 184–205.

[42] A. Moniri-Morad, M. Pourgol-Mohammad, J. Sattarvand, Reliability-centered 
maintenance for off-highway truck: case study of sungun copper mine operation 
equipment, in: ASME International Mechanical Engineering Congress and 
Exposition, 2013. American Society of Mechanical Engineers.

M. Goli et al.                                                                                                                                                                                                                                    Results in Engineering 28 (2025) 107109 

17 

http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0001
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0001
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0002
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0002
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0003
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0003
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0004
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0004
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0005
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0005
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0006
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0006
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0006
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0007
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0007
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0007
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0008
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0008
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0009
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0009
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0010
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0010
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0011
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0011
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0011
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0012
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0012
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0013
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0013
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0014
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0014
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0014
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0015
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0015
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0016
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0016
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0017
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0017
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0018
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0018
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0019
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0019
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0019
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0020
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0020
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0021
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0021
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0022
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0022
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0022
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0023
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0023
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0023
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0024
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0024
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0025
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0025
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0026
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0026
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0026
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0027
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0027
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0027
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0028
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0028
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0028
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0028
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0029
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0029
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0029
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0029
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0030
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0030
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0030
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0032
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0032
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0033
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0033
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0034
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0034
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0034
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0035
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0035
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0036
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0036
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0037
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0037
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0037
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0038
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0038
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0038
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0039
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0039
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0039
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0040
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0040
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0041
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0041
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0041
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0042
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0042
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0042
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0042


[43] A. Moniri-Morad, M. Pourgol-Mohammad, J. Sattarvand, Application of reliability- 
centered maintenance for productivity improvement of open pit mining 
equipment: case study of Sungun Copper Mine, J. Cent. South. Univ. 21 (2014) 
2372–2382.

[44] M. Secara, D. Camelia, S. Marin, Probability distributions used to study the 
reliability of vehicles used in ornamental rock quarries, J. Automot. Eng. 56 
(2015).

[45] C. Nikulin, et al., A computer-aided application for modeling and monitoring 
operational and maintenance information in mining trucks, Arch. Mining Sci. 61 
(3) (2016) 695–708.

[46] S. Peralta, A.P. Sasmito, M. Kumral, Reliability effect on energy consumption and 
greenhouse gas emissions of mining hauling fleet towards sustainable mining, 
J. Sustain. Min. 15 (3) (2016) 85–94.

[47] V. Kalra, T. Thakur, B. Pabla, Condition based maintenance management system 
for improvement in key performance indicators of mining haul trucks-a case study, 
in: 2018 IEEE International Conference on Innovative Research and Development 
(ICIRD), 2018. IEEE.

[48] A. Kudrevatykh, et al., Actual technical condition assessment of a motor-wheel 
gear of A dump truck Belaz based on the operating oil parameters, in: International 
Innovative Mining Symposium, 2019.

[49] H.R. Alla, R. Hall, D.B. Apel, Performance evaluation of near real-time condition 
monitoring in haul trucks, Int. J. Min. Sci. Technol. 30 (6) (2020) 909–915.

[50] R. Motahari, et al., Joint optimization of maintenance and inventory policies for 
multi-unit systems, Int. J. Syst. Assurance Eng. Manag. 12 (3) (2021) 587–607.

[51] A. Puzyrevskaya, et al., Shortening unscheduled downtime for more efficient use of 
haul trucks, in: IOP Conference Series: Earth and Environmental Science, 2022. IOP 
Publishing.

[52] A. Shakenov, A. Sładkowski, I. Stolpovskikh, Haul Road Condition Impact On Tire 
Life Of Mining Dump Truck, Scientific Bulletin of National Mining University, 
2022.

[53] N. Elbazi, et al., Digital twin-enabled monitoring of mining haul trucks with expert 
system integration: a case study in an experimental open-pit mine, in: 2023 5th 
Global Power, Energy and Communication Conference (GPECOM), 2023. IEEE.

[54] A.K.S. Jardine, Vibration monitoring in industry: then and now, IEEe Trans. Reliab. 
73 (1) (2024) 31–32.

[55] L. Wang, J. Chu, W. Mao, A condition-based replacement and spare provisioning 
policy for deteriorating systems with uncertain deterioration to failure, Eur. J. 
Oper. Res. 194 (1) (2009) 184–205.

[56] A. Kudrevatykh, et al., Actual technical condition assessment of a motor-wheel 
gear of a dump truck belaz based on the operating oil parameters, in: E3S Web of 
Conferences, 2019. EDP Sciences.

[57] Y. Cheng, Predictive analysis on maintenance of mining dump truck, Appl. Mech. 
Mater. 340 (2013) 848–851.

[58] J. Phillips, et al., Classifying machinery condition using oil samples and binary 
logistic regression, Mech. Syst. Signal Process. 60 (2015) 316–325.

[59] F.J.d.S. Silva, H.R.G. Viana, A.N.A. Queiroz, Availability forecast of mining 
equipment, J. Qual. Maint. Eng. 22 (4) (2016) 418–432.

[60] Y. He, et al., Data-driven modeling of truck engine exhaust valve failures: a case 
study, J. Mech. Sci. Technol. 31 (2017) 2747–2757.

[61] D. Ali, S. Frimpong, Artificial intelligence models for predicting the performance of 
hydro-pneumatic suspension struts in large capacity dump trucks, Int. J. Ind. 
Ergon. 67 (2018) 283–295.

[62] D. Demyanov, L. Simonova, A. Kapitonov, The work algorithm of the truck 
intelligent predictive diagnostics system, in: 2020 International Russian 
Automation Conference (RusAutoCon), 2020. IEEE.

[63] A. Kudrevatykh, A. Ashcheulov, A. Vinidiktov, Modern methods of motor-wheel 
gearboxe diagnostics of BelAZ dump trucks, in: E3S Web of Conferences, 2021. EDP 
Sciences.

[64] A. Kudrevatykh, et al., Application of mathematical data processing to determine 
the actual technical state of the motor-wheel belaz gear box, in: Journal of Physics: 
Conference Series, 2021. IOP Publishing.

[65] A. Kahraman, et al., Sequential pattern mining method for predictive maintenance 
of large mining trucks, in: Mediterranean Forum–Data Science Conference: First 
International Conference, MeFDATA 2020, Sarajevo, Bosnia and Herzegovina, 
2020. October 24Revised Selected Papers 1. 2021. Springer.

[66] L.F. Rau, M. Jamett, P. Adasme, Electrical fault classification strategies for 
maintenance models using machine learning algorithms, in: 2022 IEEE 
International Conference on Automation/XXV Congress of the Chilean Association 
of Automatic Control (ICA-ACCA), 2022. IEEE.

[67] M.J. Rahimdel, Residual lifetime estimation for the mining truck tires, Proc. Inst. 
Mech. Eng., Part D 237 (13) (2023) 3232–3244.

[68] P. Stefaniak, et al., Methods of optimization of mining operations in a deep mine- 
tracking the dynamic overloads using IoT sensor, IEEe Access. 11 (2023) 
79384–79396.

[69] P. Stefaniak, et al., Methods of optimization of mining operations in a deep 
mine–tracking the dynamic overloads using IoT sensor, IEEe Access. (2023).

[70] L. Yang, et al., Group machinery intelligent maintenance: adaptive health 
prediction and global dynamic maintenance decision-making, Reliab. Eng. Syst. 
Saf. 252 (2024) 110426.

[71] L. Yang, et al., Risk control of mission-critical systems: abort decision-makings 
integrating health and age conditions, IEEe Trans. Industr. Inform. 18 (10) (2022) 
6887–6894.

[72] Knights, P. and A. Boerner, Statistical correlation of off-highway tire failures with 
openpit haulage routes. 2001.

[73] S. Forbush, Emissions-based maintenance program, in: 11th US/North American 
Mine Ventilation Symposium 2006: Proceedings of the 11th US/North American 
Mine Ventilation Symposium, 2006, 5-7 June 2006, Pennsylvania, USACRC Press.

M. Goli et al.                                                                                                                                                                                                                                    Results in Engineering 28 (2025) 107109 

18 

http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0043
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0043
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0043
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0043
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0044
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0044
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0044
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0045
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0045
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0045
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0046
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0046
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0046
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0047
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0047
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0047
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0047
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0048
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0048
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0048
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0049
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0049
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0050
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0050
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0051
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0051
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0051
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0052
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0052
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0052
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0053
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0053
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0053
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0054
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0054
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0055
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0055
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0055
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0056
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0056
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0056
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0057
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0057
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0058
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0058
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0059
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0059
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0060
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0060
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0061
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0061
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0061
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0062
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0062
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0062
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0063
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0063
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0063
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0064
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0064
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0064
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0065
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0065
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0065
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0065
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0066
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0066
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0066
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0066
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0067
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0067
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0068
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0068
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0068
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0069
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0069
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0070
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0070
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0070
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0071
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0071
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0071
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0073
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0073
http://refhub.elsevier.com/S2590-1230(25)03164-0/sbref0073

	A literature review-based evaluation framework for maintenance strategy selection in heavy vehicles
	1 Introduction
	2 Methodology
	2.1 Frame of reference (FoR)
	2.2 Systematic literature review (SLR)

	3 Analysis of results
	3.1 Statistical analysis
	3.2 Descriptive analysis
	3.2.1 Corrective maintenance
	3.2.2 Planned maintenance
	3.2.3 Proactive maintenance
	3.2.4 Predictive maintenance

	3.3 Comparative analysis
	3.3.1 Literature synthesis
	3.3.2 Evaluation framework


	4 Conclusions
	Declaration of generative AI and AI-assisted technologies in the writing process
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


