Parallel Implementation of Interior-Point
Methods for Semidefinite Optimization

[van D. lvanov

Stellingen
behorende bij het proefschrift

Parallelle Implementatie of Inwendige Punt Methoden

10.

voor Semidefiniete Optimalisering

Ivan D. Ivanov

. Inwendige punt methoden zijn niet in het bijzonder geschikt voor parallel

rekenen.
[Dit proefschrift, Hoofdstuk 2, 4]

. Bij parallel rekenen hoeft een lokaal voordelige actie niet noodzakelijk te

leiden tot een verbetering in globaal opzicht.
[Dit proefschrift, Hoofdstuk 5]

. De ironie bij het gebruik van clusters is dat een significante reductie van de

rekentijd kan worden verkregen, ondanks dat er N maal zoveel sequentiele
berekeningen nodig zijn (waarbij N het aantal processoren is).

[Dit proefschrift]

. Geparalleliseerde inwendige punt methoden voor semidefiniete optimaliser-

ing zullen in de toekomst meer revolutie dan evolutie nodig hebben.

[B. Borchers and J. G. Young. “Implementation of a primal-dual method
for SDP on a shared memory parallel architecture.” Computational Opti-
mization and Applications, 37(3):355-369, 2007]

. Als de grens van een bepaalde processor technologie is bereikt dan kunnen

computers met meerdere processoren uitkomst bieden.

. ‘High performance computing’ is meer een kunst dan een wetenschap.

. Balanceren tussen praktische toepassingen en wetenschappelijk belang is

een van de meest onbevredigende opgaven, maar geeft de meest bruikbare
resultaten.

. Het ontbreken van de juiste middelen is geen excuus voor het niet doen van

de juiste dingen.

. In de eenentwintigste eeuw lijkt het een slechte zaak om privacy in te ruilen

voor publieke veiligheid.

De Engelse taal mag dan wel helpen om te overleven in Nederland, maar
het opent alleen de deur naar de ‘logeerkamer’.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als

zodanig goedgekeurd door de promotor, Prof. dr. ir. C. Roos.

10.

Propositions
accompanying the thesis
Parallel Implementation of Interior-Point Methods
for Semidefinite Optimization

Ivan D. Ivanov

. Interior-point algorithms are not particularly suitable for parallel computa-

tions.
[This thesis, Chapter 2, /]

. In parallel computing, doing what is best on local level does not always

result in overall improvement.
[This thesis, Chapter 5|

. The irony when using cluster computing is that a significant time reduction

can be achieved, despite the N times more sequential computations (where
N is the number of processors).

[This thesis]

. Parallel IPM’s for large-scale SDO will in future require revolution rather

than evolution.

. When the limits of certain processor technology is reached, multiprocessor

computers save the day.
High performance computing is more of an art than a science.

Balancing between the practical applications and the scientific value of your
work is among the most unsatisfying jobs, but gives the most useful results.

Missing the right tools should not be an excuse for not doing the right
things.

In 21st century, it seems like a bad deal to trade privacy for public security.

The English language may help you to survive in the Netherlands, but it
only opens the door to the ‘guest room’.

These propositions are considered opposable and defendable and as such

have been approved by the supervisor, Prof. dr. ir. C. Roos.

Parallel Implementation of Interior-Point
Methods for Semidefinite Optimization

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus Prof. dr. ir. J.T. Fokkema,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen
op donderdag 5 juni 2008 om 10.00 uur

door
Ivan Dimitrov IVANOV

Automatics and Control Engineer
Technical University of Sofia
geboren te Silistra, Bulgarije.

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. C. Roos

Toegevoegd promotor: Dr. E. de Klerk

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof. dr. C. Roos Technische Universiteit Delft, promotor

Dr. E. de Klerk Universiteit van Tilburg, toegevoegd promo-
tor

Prof. dr. H.J. Sips Technische Universiteit Delft

Prof. dr. C.W. QOosterlee Technische Universiteit Delft

Prof. dr. B. Borchers New Mexico Tech, USA

Prof. dr. F. Jarre Heinrich Heine Universitat, Germany

Prof. dr. T. Terlaky McMaster University, Canada

Prof. dr. G.J. Olsder Technische Universiteit Delft, reservelid

Dit proefschrift kwam tot stand onder auspicien van:

THOMAS STIELTJES INSTITUTE
FOR MATHEMATICS

Copyright (© 2008 by 1.D. Ivanov

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage
and retrieval system, without the prior permission of the author.

ISBN: 978-90-9023109-9

Typeset by the author with the IATEX Documentation System.

Author email: id.ivanov@lir. bg

C@o @m

Acknowledgements

Having reached the level called a PhD degree, I realize that many people con-
tributed to my success story and I would like to acknowledge them here.

First and foremost, I would like to thank my scientific advisor and promotor
Prof. Cornelis Roos. He accepted me in 2003 as a member of the Optimization
group in TU Delft and provided me with the necessary guidance and support
during all these years. His advice, drive for perfection, and attention to detail
brought the quality of my work to a higher level.

My deep appreciations and thanks to my co-promotor and advisor Dr. Etienne
de Klerk. Despite the fact that he only joined me in the last two years of my work,
he contributed a lot with his ideas and comments for the final results, presented
in this thesis. Etienne, I enjoyed very much working with you. Thank you for
everything you did for me.

I would also like to thank to all members of the Optimization group in Delft,
especially to my office mates Manuel, Mohamed and Hossein. Guys, I enjoyed all
discussions we had and our work together.

Furthermore, I wish to thank to the department of Software Technology and
Prof. Henk Sips for proving me with the necessary financial grant to finish this
manuscript. Special thanks to Dr. Dick Epema for proofreading Chapter 3 of this
thesis. T also appreciate the help provided by the technical stuff of our department,
especially Paulo Anita.

Moving to more personal acknowledgements, I would like to thank all my
Bulgarian friends in Delft: Blagoy and Nadia, Ivo, Alex, Kuzi, Petar, Ventzi,
Plamen, Yana and all others who shared my lunchtimes, travels and parties. All
those years, you made my life easier in the Netherlands.

I greatly appreciate the true friendship of the Hoogstraat 33 (Veldhoven) peo-
ple: David, Paulo, Antanas, Martin, Cristiano, Fernando, PoYang, Madeline, and
Cecile. They were my first house mates when I arrived to the Netherlands. The
international atmosphere surrounding them was the experience of a lifetime for
me.

ii

My deepest gratitude to my parents for their care, trust, advices, moral and
financial support. I'm thankful to my brother for the joyful moments and helpful
discussions. But most of all, I would like to apologize to my family and friends in
Bulgaria for being far away from them the last 5 years.

Last, but certainly not least, I want to thank my wife Desie, to whom I dedicate
this thesis, for her love and great support, sharing good and worse with me.

Mgt }m 2008

Z]’k}(l/T\, U’U—OJT\M}

Contents

List of Figures vii
List of Tables ix
List of Notation xi
1 Introduction 1
1.1 Interior-point methods for Semidefinite optimization 2
1.2 State-of-the-art in problem sizes 5
1.3 Large-scale SDO problems 6

1.3.1 Bounding the crossing number of complete bipartite graphs 7
1.3.2 SDO relaxation of the quadratic assignment problem 9

1.4 The scope of this thesis 11
2 Computational complexity of IPM’s 13
2.1 Complexity 13
2.1.1 Complexity of primal-dual IPM’s 16
2.1.2 Practice vs Theory 16

2.2 Primal-dual IPM for SDO, 17
2.3 Forming the matrix M oL 24
231 AHO e 24
232 HKM e 26
233 NT . .. e 28

2.4 Search direction complexity L. 31
241 AHO e 31
242 HKM e 34
243 NT 35
244 Summary e 36

2.5 Other ‘overhead’ computations 37
2.6 Conclusion 38

iii

v CONTENTS

3 Parallel Architectures 39
3.1 Parallel processing 39
3.1.1 Shared and distributed memory computers 40
3.1.2 Distributed computing 0oL 42
3.1.3 Gridcomputing oo 43
3.2 Suitability for IPM implementations 45
3.3 Conclusion 46
4 Parallelization of IPM’s 47
4.1 Identification of parallelism 48
4.2 Parallel primal-dual IPM’s for LO 49
4.3 Parallel computation of the matrix M in SDO. 51
4.4 Parallel solution of positive-definite linear systems 54
4.4.1 Linear optimizationcase 55
4.4.2 Semidefinite optimization case 56
4.5 Overhead 59
4.6 Conclusion 61
5 Implementation of a Primal-Dual IPM for SDO using the HKM Search Di-
rection 63
5.1 The Algorithm 64
5.2 Theapproach o 68
5.2.1 Computing the Schur Complement Matrix 69
5.2.2 Parallel Cholesky factorization of the matrix M 72
5.2.3 Exploiting rank-one structure in SDO 72
5.3 Conclusion 73
6 Computational Results 75
6.1 SDO benchmark problems, 75
6.1.1 Comparison with other IPM solvers 82
6.1.2 Discussiono 84
6.2 Problems with rank-one structure 86
6.2.1 Optimization of univariate functions on bounded interval
by interpolation L oo oL 88
6.3 Conclusion 93
7 Conclusions 95
7.1 Directions for further research 96
Bibliography 99

Index 109

CONTENTS v

Summary 111
Samenvatting 113

Curriculum Vitae 115

List of Figures

1.1

2.1

3.1
3.2
3.3
3.4

3.5

4.1
4.2
4.3
4.4
4.5

5.1
5.2

6.1

6.2

6.3

6.4

A drawing of Ky 5 with 8 crossings.

The algorithm. oo

Principle structure of a bus-based shared-memory parallel computer.

Principle structure of a distributed memory parallel computer.
Example of non-uniform memory access memory architecture. . . .
A cluster of computers connected by a computer network used for
distributed computing. Lo oL
Example of a grid computing infrastructure.

One-dimensional cyclic row distribution.
One-dimensional block cyclic row distribution.
Left-looking Cholesky factorization.
Right-looking Cholesky factorization.
Right-looking block-partitioned form of Cholesky factorization.

Two dimensional process grid N X Ne.
Two-dimensional block cyclic data distribution over two dimen-
sional process grid. oL Lo

Computing the matrix M of controlll and thetaG51 using 1D vs
2D process grid. Lo
Solution times (in seconds) for CSDP5.0, PCSDPr and DSDP for
instance testl. Lo L
Results for test2 (Schur and Total) when 200 interpolation points
are used.l
Parallel efficiencies for computing M for 200 interpolation points
for problem test2.o

vii

40
41
42

43
44

52
33
o7
98
58

70

71

85

90

92

94

List of Tables

2.1
2.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8
6.9

6.10

6.11

6.12

6.13

6.14

Choices for the scaling matrix P. 18
Flop count results for the AHO, the HKM and the NT search

directions using two different computational approaches. 37
Selected SDO benchmark problems. 76
Running times for the selected SDO benchmark problems for PCSDP. 78
Parallel efficiencies of PCSDP for the selected SDO problems. . . . 79

Running times (in seconds) for the selected large-scale SDO bench-
mark problems for our solver PCSDP (“*’ - means lack of memory) 81
Running times in seconds for the selected SDO problems solved by

PCSDP, SDPARA and PDSDP. 83
Computing the matrix M of selected SDO problems solved by
PCSDP using 1D vs 2D process grid. 85
Total running time of selected SDO problems solved by PCSDP
using 1D vs 2D process grid. Lo 86
Twenty test functions from P. Hansen et al. [58]. 87
Solution times in seconds for CSDP5.0 for twenty rank-one test
problems. 88
Solution times in seconds for PCSDPr for twenty rank-one test
problems. 89
Running times in seconds for CSDP5.0, PCSDPr and DSDP for
one rank-one test problem. 90
Running times for test2 problem (in seconds) for PCSDP with
rank-one option ‘off’. L. oL oo 91
Running times for test2 problem (in seconds) for PCSDP with
rank-one option ‘on’. Lo 92
Parallel efficiency of PCSDP computing the matrix M for test2
problem. 93

ix

List of Notation

R"™ : the n-dimensional Euclidean vector space;
Rnxn : the space of square n-by-n matrices;

(P) : primal problem in standard form;

(D) : Lagrangian dual problem of (P);

feasible set of problem (P);

feasible set of problem (D);

N : the space of symmetric n-by-n matrices;

St : the space of symmetric positive semidefinite matrices;
Sty : the space of symmetric positive definite matrices;

AT . transpose of A € R™*":

Aij : ijth entry of A € R™*™,

Tr(A) = ZA“ (trace of A e Ran);

lAllF = \/ﬁ(ﬁ"obenius norm);
v

A»=0 : Aissymmetric positive semidefinite;

xi

xii LIST OF NOTATION

A>=0 : A issymmetric positive definite;

A3 = unique symmetric square root factor of A > 0;

vec(A) = [A11, Ao1, ..., Apt, Aggy oy Apy)T for A € R

diag(z) = diagonal matrix with components of € R™ on diagonal;
diag(X) = vector obtained by extracting diagonal of X € R"*";

A® B : Kronecker product on two matrices A and B of arbitrary size;
I ¢ identity matrix of size depending on the context;

e ¢ vector of all-ones of size depending on the context;

0 : zero vector/matrix of size depending on the context;

Chapter

Introduction

Optimization is often used to make decisions about the best way to use the avail-
able resources. The resources may be raw materials, machine time or man hours,
money, or anything else in limited supply. The best or optimal solution may mean
minimizing costs, maximizing profits, or achieving the best quality.

The best known and the most widely used form of optimization is linear opti-
mization, where the objective and all of the constraints are linear functions of the
variables. Many practical problems can be formulated with linear objectives (say
for profits) and linear constraints (for budgets, capacities, etc.). These problems
involve thousands to hundreds of thousands of variables and constraints, and lin-
ear optimization problems of this size can be solved nowadays quickly and reliably
with modern optimization software. What stands behind such software are the
efficient algorithms for linear optimization (LO).

Interior-point methods (IPM) are among the most efficient algorithms for solv-
ing linear optimization problems. They were pioneered by Karmakar [66] in 1984.
Karmakar’s algorithm was the first polynomial-time algorithm for LO performing
well in practice. His paper attracted a lot of attention in the optimization com-
munity and many researchers developed algorithms inspired by that algorithm
and its analysis. As a result interior-point methods became a very active area of
research. Some variants of Karmakar’s polynomial-time projective algorithm are
related to classical methods like the logarithmic barrier method of Frisch [44, 45]
and Fiacco and McCormick [39], see Gill et al. [51]. The primal-dual framework
for following the central path was introduced by Meggido [77]. Path-following
primal-dual IPM’s for linear optimization were proposed by Kojima et al. [70]
and by Monteiro and Adler [82].

In contrast, nonlinear optimization problems — where the objective and the
constraints may not be linear functions of the variables — are in principal more
difficult to solve than the linear case.

2 INTRODUCTION 1.1

“In fact, the great watershed in optimization isn’t between linearity
and nonlinearity, but convexity and nonconvexity.”

— R. Tyrrell Rockafellar, in [93], 1993

This statement should be qualified a bit, because not every convex nonlinear
optimization problem can be solved in polynomial time. Many NP-hard problems
have a natural convex reformulation, for example computing the stability number
of a graph, see e.g. DeKlerk and Pasechnik [31]. Therefore, convexity done is not
enough to solve an optimization problem efficiently. From a complexity point of
view, we also require a polynomial time computable self-concordant barrier func-
tion for the convex set of the problem, see Nesterov and Nemirovsky [87]. Hence,
when we refer to convex optimization problems further on, we mean problems for
which there exist such barrier functions.

Primal-dual interior-point methods for LO, were extended to the field of con-
vex nonlinear optimization, particulary to semidefinite optimization. This was
done by Nesterov and Nemirovsky [87] and by Alizadeh [2], independently. In
semidefinite optimization (SDO) one minimizes a linear objective function sub-
ject to the constraint that an affine combination of symmetric matrices is positive
semidefinite. This type of constraint is convex despite the fact that it is nonlin-
ear and nonsmooth, see e.g. Vandenberghe and Boyd [110]. Hence, semidefinite
optimization problems are indeed a subclass of convex optimization problems.

The interest in SDO during the last two decades was due to the ever grow-
ing list of applications in engineering, combinatorial optimization, and control
theory. For a survey of engineering applications of SDO including control theory,
structural and combinatorial optimization problems we refer to the article of Van-
denberghe and Boyd [110]. Recently, SDO was also used for electronic structure
calculations in quantum chemistry [119]. A number of hard combinatorial opti-
mization problems such as the max-cut [52], the traveling salesman problem [26],
and the quadratic assignment problem [118] have SDO relaxations that provide
an approximation of the original problem. In some problems, like max-cut, the
approximation is provably good. Thus, semidefinite optimization proved itself as
a powerful modeling technique of practical importance.

1.1 Interior-point methods for Semidefinite optimization

Here we introduce in more details the notion of a semidefinite optimization prob-
lem. The goal of SDO is to minimize the linear objective

p:=Tr(CX),

which consists of trace (denoted by ‘Tr’) of the product of two symmetric n x n
matrices, a given data matrix C' and a variable matrix X, subject to a set of linear
and nonlinear constraints. The linear constraints are:

rI‘I'(AiX)Zb“ i:l,...,m,

1.1 INTERIOR-POINT METHODS FOR SEMIDEFINITE OPTIMIZATION 3

where the A;’s are given n X n symmetric matrices, and the b;’s are known scalars.
The nonlinear constraint is that the matrix variable X must be symmetric positive
semidefinite!, denoted by X = 0.

Hence, the semidefinite optimization problem has the following form, also
called primal:

inf Tr(CX)
X

X =0.
Here the infimum is used because the minimum may not be attained. Without
loss of generality we can assume that all constraint matrices A; are linearly in-

dependent. It is well known that the Lagrangian dual of this problem is given
by

sup by
Y, 4
Z =0,
where y; € R™ and Z € §%. With S we denote the space of n X n symmetric

positive semidefinite matrices.
The primal and dual feasible sets, denoted by P and D respectively are

P .= {X’I‘I'(AiX)Zb“’L: 1,...,m,X§O},
and

We will refer to (X, y, Z) as a feasible solution when X € P and (y,Z) € D, i.e.,
they satisfy the primal and the dual constraints, respectively.
The duality gap for semidefinite optimization is defined as

Tr(CX) — b7y = Tr((Z — X%, yidi) X) — Y70, 9 Tr(A:X) = Tr(ZX).
For a feasible solution (X, y, Z) the weak duality property holds in SDO, namely
Tr(ZX) > 0.

This follows from the conditions X > 0 and Z > 0 for the primal and the dual
problems, respectively. In other words the duality gap is nonnegative for feasible
solutions.

A standard assumption on the primal-dual problems is the so-called “strict
feasibility” assumption.

LA symmetric matrix X is positive semidefinite if all of its eigenvalues are nonnegative, or
equivalently, if s7 Xs > 0 for all s € R™.

4 INTRODUCTION 1.2

Definition 1.1.1. (Strict feasibility) A primal problem (resp. dual) is called
strictly feasible if there exists X € P with X = 0 (resp. (y,Z) € D with Z > 0).

Let (X > 0,Z > 0) (i.e. positive definite) satisfies both the linear constraints
for the primal and dual SDO problems. This ensures the existence of an optimal
primal-dual pair (X*, Z*) with zero duality gap (the strong duality property), see
Vandenberghe and Boyd [110, Theorem 3.1], and optimal solutions of SDO are
characterized by

bi —Tr(A;X)=0, i=1,..,m, X =0, (Primal feasibility)
C—7Z-Y" yA =0 Z=0, (Dual feasibility)
XZ=0. (Complementary slackness)

The idea of the interior-point methods is to replace the complementary slack-
ness condition XZ = 0 by the perturbed condition XZ = pl, where I denotes
the identity matrix and p > 0 is given. As a result, we get the system

b — Tr(A;X) =0, i=1,...m,
C—7Z-%" 34 =0,
X7 = ul,
X, 7+ 0.

It is well known this system has an unique solution (X (u),y(u), Z(u)) for each
>0, see e.g. [27, chap. 3]. The set of solutions, denoted by

C={(X(),y(n), Z(n)) €S} x R™ x ST : p> 0},

defines an analytic curve inside the feasible region called the primal-dual central
path. Note that the strict feasibility is necessary in order to exist C and thus to
solve the primal and the dual problem. The idea of the interior-point methods is
to follow the central path to optimality for a decreasing sequence of values of the
parameter . These are the so-called path-following TPM.

There are different types of interior-point methods for SDO, for example
primal-dual path-following methods, primal-dual potential reduction methods,
dual scaling methods, etc. This thesis deals with primal-dual path-following IPM’s
which we discuss in detail in Chapter 2. These methods are well known for their
efficiency, accuracy and robustness on many problem classes. There exist several
software packages for SDO such as CSDP5.0 [18], SeDuMi [99, 100], and SDPA
[113] based on primal-dual IPM methods. For a review of the other interior-point
methods for semidefinite optimization we refer to the book of De Klerk [27].

1.2 STATE-OF-THE-ART IN PROBLEM SIZES)

1.2 State-of-the-art in problem sizes

A natural question to ask is: What is the computational effort required to solve
a semidefinite optimization problem using the interior-point methods described
above? More specifically, how does the effort grow with problem size? In terms of
iterations required, all IPM’s have similar polynomial worst-case complexity. The
worst-case bound on the number of iterations necessary to solve a semidefinite
optimization problem to a given accuracy grows with problem size as O(nl/ 3,
see e.g. [110].

In practice the IPM algorithms behave much better than predicted by the
worst-case complexity analysis. It has been observed by many researchers that
the number of IPM iterations is essentially uncorrelated with traditional measures
of problem size such as the number of equality constraints m or the dimension n
of the variables in the primal SDO in standard form. For a wide variety of SDO
problems and a large range of problem sizes, IPM’s typically require between 5
and 50 iterations, see Nesterov and Nemirovsky [87, §6.4.4] for comments on the
average behavior.

Space complexity is another important aspect when one has to solve ever larger
SDO problems. By this term we mean the amount memory, or space required by
the IPM algorithms. Storage requirements are as important as the computational
complexity. Often in practice, the size of the largest SDO problems that can be
solved depends more on available memory than on available CPU time, see e.g.
[20].

Primal-dual interior-point algorithms typically involve the so-called Schur com-
plement equation (SCE) with a symmetric and positive definite Schur complement
matrix, say M, of size m x m where m is the number of linear constraints of (P),
see e.g. Helmberg et al. [60]. In most practical SDO problems, this matrix is
dense, even if the data matrices are sparse. In addition both primal and dual
variables X and Z, respectively, need n? storage.

Until recently, the desktop PC’s have been using 32bit addressing space only
which limits the physical memory to 232 unique cells, i.e., only 4 gigabytes (GB)
of RAM. On the other hand 4Gb of memory would be enough to accommodate
a fully dense square matrix of dimension 23,170 that contains double-precision?
floating-point numbers. Such storage is already inadequate for SDO problems
arising from practice nowadays. For example, the hamming_11_2 problem that
we solve later in this thesis has number of constraints m = 56,321. The resulting
Schur complement matrix in this case will have 56,321 rows and columns and it
would require 25GB of RAM alone if it is fully dense.

There are two general approaches in case one deals with such large-scale SDO
problems. The first one is to use IPM’s that avoid explicit calculation of M,
see e.g. Kocvara and Stingl [72]. Such interior-point methods make use of an

2The IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754) is the most widely-
used standard for floating-point computation. It specifies that one double-precision floating-
point number is represented by 64-bits, i.e., 8-bytes.

6 INTRODUCTION 1.3

iterative solver such as the conjugate gradient (CG) method instead of direct
factorization. The main difficulties that arise with these approaches is that the
Schur complement equation becomes ill-conditioned when approaching the opti-
mal value. In order for an iterative method to be efficient, a good preconditioner
is required. However, solving a general SDO problem would require a general
case preconditioner. It is well-known that there is no preconditioner that is both
general and efficient. Consequently, the use of iterative methods in IPM’s for
solving large-scale SDO problems is limited to cases where a (very) low accuracy
is necessary.

The second and widely used in practice approach is to use the latest generation
computers capable of 64bit addressing, and larger than 4GB available memory.
The theoretical memory limit there is 10'°GB, while most of the servers in prac-
tice have 128GB or more RAM nowadays. Such computers allow solution of
semidefinite optimization problems with up to hundred thousand constraints and
dimension of the primal and the dual variables in the range of tens of thousands.
An example of an implementation of interior-point algorithm for SDO developed
for such computers is the CSDP solver [20]. Unfortunately, such supercomputers
are purpose-built and their cost puts them beyond the reach of many users.

An alternative solution to overcome the memory limitations is to distribute
the Schur complement matrix over computers organized as a cluster. This is
much more economical solution since it employs PCs and ethernet network, and
a free open source software. As a result, clusters are cheaper, often by orders of
magnitude, than single supercomputer with 128GB of memory. Implementations
of interior-point methods for SDO that use a distributed computation of the
Schur complement matrix are already available: SDPARA [114], SDPARA-C [85]
and PDSDP[10]. Unfortunately, they are designed for clusters with high speed
network interconnects (much more expensive than ethernet). In this thesis we
focus on developing a distributed IPM solver for large-scale SDO problems better
suited for an ethernet network.

1.3 Large-scale SDO problems

During the last 15 years the major driving force behind the development of IPM
software for semidefinite optimization was the size of the problems arising in
practice. Over the years researchers collected a number of instances of semidefinite
problems that were challenging for the solvers and organized them in the late
1990s as test sets such as SDPLIB [19]. Since then, these problems became a
benchmark for interior-point codes. Initially, most of the problems in SDPLIB
were considered truly large scale and appeared challenging in terms of memory
use and processor time for a single CPU computer. The largest instances from
this set are maxG60 and theta51 both with around 7000 constraints, and size of
matrix variables 7000 and 1001, respectively. These instances gave a boost to the
area of parallel and high-performance computations for interior-point methods.

1.3 LARGE-SCALE SDO PROBLEMS 7

The Seventh DIMACS Implementation Challenge? in 2002 lifted the bar even
higher for the semidefinite optimization software. The DIMACS library[80] that
consists of mixed semi-definite-quadratic-linear programs was established to pro-
vide up-to-date benchmarks. It contains SDO problems from different appli-
cations that represent all levels of difficulty. For example instances fap09 and
hamming_11_2 have 15,255 and 56,321 constraints, respectively. The data matri-
ces and the Schur complement matrix of the hamming_11_2 instance require more
than 20GB of memory and PC’s rarely have this amount of RAM.

Recently, a number of new applications of SDO resulted also in larger prob-
lem instances. One of these applications is calculating electronic structures in
quantum chemistry [86]. One problem that we solve later from this application
is CH4.1A1.STO6G. It has 24,503 constraints and order of the matrix variables
n = 630.

These large-scale benchmark problems play an important role in the research
and development of improved IPM’s software for semidefinite optimization. Next,
we will describe in detail a number of applications in combinatorial optimization
that still challenge the modern day SDO solvers.

1.3.1 Bounding the crossing number of complete bipartite graphs

The crossing number of a graph G, denoted by cr(G), is the minimum number of
intersections of edges (at a point other than a vertex) in a drawing of G in the
plane.

A complete bipartite graph G := (V5 U V,, E) is a bipartite graph such that
for any two vertices v1 € Vi and vy € Vs, v1v9 is an edge in G. The complete
bipartite graph with partitions of size |Vi| = m and |Vz| = n, is denoted K, .

In the earliest known instance of a crossing number question, Paul Turan
raised the problem of calculating the crossing number of K, .

Zarankiewicz published a paper [116] in 1954, in which he claimed that
cr(Kyp, n) = Z(m,n) for all positive integers m and n, where

N I S

However, several years later Ringel and Kainen independently found a gap in
Zarankiewicz’s argument. A comprehensive account of the history of the problem,
including a discussion of the gap in Zarankiewicz’s argument, is given by Guy [57].

Figure 1.1 shows a drawing of K4 5 with 8 crossings. As Zarankiewicz observed,
this kind of a drawing strategy can be naturally generalized to construct, for any
positive integers m and n, drawings of K, , with exactly Z(m,n) crossings. This
implies the following well-known upper bound for cr(K,y, ,):

cr(Kpmn) < Z(m,n).

No one has yet succeeded in drawing any K, ,, with fewer than Z(m,n) crossings.

3http://dimacs.rutgers.edu/Challenges/Seventh /Instances/

8 INTRODUCTION 1.3

Figure 1.1: A drawing of K5 with 8 crossings.

In allusion to Zarankiewicz’s failed attempt to prove that this is the crossing
number of K, ,, the following is commonly known as Zarankiewicz’s Crossing—
Number Conjecture:

cr(Km.n) < Z(m,n), for all positive integers m, n.

)

A lower bound on cr(K,, ,,) via SDO
De Klerk et al. [30] showed that one may obtain a lower bound on cr(K,,) via

the optimal value of the following SDO problem
m—1
2

cr(Kpmn) > g (n min{mTQx | z € Ri’”*l)’,e% =1} - {

)

v 3

n

2 <n Xz%l,ig}to{'ﬂ(@X) | Tr(JX)=1}— {

vV

| 3
| I
—

‘3
D

—
—_

where @ is a certain (given) matrix of order (m — 1)! (i.e. m — 1 factorial), J is
the all-ones matrix of the same size, and e is the all ones vector.

De Klerk and al. [30] could solve the SDO problem for m = 7 by exploiting
the algebraic structure of the matrix @, to obtain the bound:

cr(Kr.n) > 2.1796n% — 4.5n.

Using an averaging argument, the bound for cr(K7,) implies the following
asymptotic bound

lim or(Km,n)

w5 Z(m,n)

>0.83—" .
m—1

1.3 LARGE-SCALE SDO PROBLEMS 9

Hence, asymptotically, Z(m,n) and cr(K,,,) do not differ by more than 17%
loosely speaking.

In subsequent, related work, De Klerk, Schrijver and Pasechnik [32] improved
the constant 0.83 to 0.859 by solving the SDO for m = 9. This was possible
by using a more sophisticated way when exploiting the algebraic structure of Q.
Nevertheless, the final SDO formulation had more than 4 x 107 nonzero data
entries.

The (reduced) SDO has not yet been solved for m = 10. Thus these SDO
problems form an interesting and challenging test set of SDO instances.

1.3.2 SDO relaxation of the quadratic assignment problem
The quadratic assignment problem (QAP) may be stated in the following form:

min Tr(AXBXT) (1.2)
Xell,
where A and B are certain n X n symmetric matrices, and II,, is the set of n x n
permutation matrices.
The QAP has many applications in facility location, circuit design, graph
isomorphism and other problems, but is NP-hard in the strong sense, and hard

to solve in practice for n > 30; for a review, see Anstreicher [6].
An SDO relaxation of (QAP) from [118] and [35] takes the form:

min Tr(B ® A)Y
st. Te(I@(J-1)Y +((J-1)®@I1)Y) =0,
Tr(Y) — 2Ty = —n, (1.3)
1 T
(, v) >0,
Y >0,

where I and J denote the identity matrix and the all-ones matrix respectively,
and e is the all ones vector of size n. The Kronecker product, or tensor product,
of two matrices is denoted by B ® A. Let vec(A) denote the vector formed from
the columns of the matrix A and diag(B) is the main diagonal of matrix B.

It is easy to verify that this is indeed a relaxation of QAP, by setting y =
diag (V') and Y = vec(X)vec(X)T. Then formulation (1.3) has a feasible solution
if X elIl,.

These SDO problems form challenging test instances, since the matrix variable
Y is nonnegative and of order n2.

Special case: the traveling salesman problem

It is well-known that the QAP contains the symmetric traveling salesman problem
(TSP) as a special case. To show this, we denote the complete graph on n vertices

10 INTRODUCTION 1.4

with edge lengths (weights) D;; = Dj; > 0 for (i # j), by K, (D), where D is
called the matrix of edge lengths (weights). The TSP is to find a Hamiltonian
circuit of minimum length in K, (D). A Hamiltonian circuit (or Hamiltonian
cycle) is a circuit in an undirected graph which visits each vertex exactly once
and also returns to the starting vertex.

The n vertices are often called cities, and the Hamiltonian circuit of minimum
length the optimal tour.

To see that TSP is a special case of QAP, let S; denote the adjacency matrix
of the standard circuit on n vertices:

[0 1 0 - 0 1]

1 0 1 0 - 0
g |0 1 0 1

0 0 1

10 0 1 0|

Now the TSP problem is obtained from the QAP problem (1.2) by setting A = D
and B = S;. To see this, note that every Hamiltonian circuit in a complete graph
has adjacency matrix X S; X7 for some X € II,,. Thus we may formulate the
TSP as
1

min Tr (—DX51XT> :

Xell, 2
It was shown by De Klerk et al. [33] that the SDO relaxation (1.3) reduces to the
following problem for the special case of TSP.

min ETT (DX(l))
X

s.t. X(k) ZO, k‘Zl,...,d,
d
I—I—Zcos()X(k)FO i=1,...,d,

X(k)ESn, k=1,....d,

where d = [1n].

Note that this problem only involves matrix variables X(y),..., X(q) of order
n as opposed to the matrix variable of order n? in (1.3), i.e. the problem size is
reduced by a factor n in this sense. Nevertheless, these SDO problems are of a

challenging size if n > 30.

1.4 THE SCOPE OF THIS THESIS 11

1.4 The scope of this thesis

This thesis deals with solving large-scale semidefinite optimization problems by
using interior-point methods and parallel computations. Next we give a summary
of the content of each chapter.

In Chapter 2 we revisit the topic of the computational complexity of the
primal-dual interior-point method for SDO. Our main focus is on the time per
iteration complexity for the three most popular search directions in semidefinite
optimization solvers: the Alizadeh—Haeberly—Overton [3], the Helmberg—Kojima—
Monteiro [60, 71, 81] and the Nesterov—Todd [88] directions. We also outline the
most computationally intensive operations involved in the primal-dual interior-
point algorithm.

Chapter 3 contains a review of the different parallel computer architectures
from the programming point of view. We also discuss the suitability of the parallel
systems for practical implementation of IPM’s. Finally, we motivate our choice of
a computer architecture for development of a new parallel primal-dual IPM solver
for semidefinite optimization.

Chapter 4 describes related work and problems in parallelization of interior-
point methods for linear and semidefinite optimization. We focus on the different
strategies to identify and use parallel computation to speed-up interior-point al-
gorithms, in particular primal-dual methods for SDO. We give a discussion on the
computational overhead caused by performing tasks in parallel.

Chapter 5 contains the algorithmic framework behind our newly developed
primal-dual interior-point method solver for SDO using the Helmberg—Kojima—
Monteiro search direction. We introduce there a different parallel computational
approach than the existing IPM solvers. We also describe the new feature in our
software that allows to deal explicitly with rank-one constraint matrices in SDO
problems.

Chapter 6 presents the computational results from the numerical tests of our
software. We compare also the scalability between our IPM solver and other
parallel solvers for SDO. Results from the test of the rank-one feature in our
solver are presented too.

In Chapter 7 we give concluding remarks, open problems and suggestions for
further research.

Chapter

Computational complexity of IPM’s

In this chapter we review the computational complexity of primal-dual interior-
point methods (IPMs) for semidefinite optimization (SDO). The main focus is
on the time per iteration complexity of three popular search directions for SDO,
namely the search directions Alizadeh—Haeberly—Overton (AHO) [3], the Helmberg-
Kojima—Monteiro (HKM) [60, 71, 81], and the Nesterov—Todd (NT) [88]. Special
attention is paid to the most computationally intensive operations involved for
each search direction. At the end some additional overhead computations in
primal-dual IPM’s for SDO are discussed.

2.1 Complexity

The goal of complexity theory is to provide an insight on how efficiently a certain
type or class of problems can be solved. There are two main models of computa-
tion used to determine the complexity of a problem class.

1) The classical approach was introduced in the 1930s and is called Turing
machine model, see for details Garey and Johnson [48]. It uses only integer
numbers. The size of the problem data in Turing machines is measured in
terms of bits. Therefore, complexity results for the Turing model are some-
times referred as a bit complexity. In terms of this model one arithmetic
operation on two numbers, say multiplication of z and y, takes time that
depends on the bit length of both x and y. As a result, complexity results in
the Turing model depend on L, where L is defined as the total length of the
data string, in bits, that represents the problem instance. Turing machine
do not correspond well to the actual computers because they use only in-
teger numbers. Most modern computers carry out numerical computations
using floating-point numbers, that is numbers with a finite number of digits.

13

14 COMPUTATIONAL COMPLEXITY OF IPM’S 2.1

Despite this deficiency, the Turing model has been a convenient framework
for analyzing interior-point algorithms, see e.g. [90].

2) Another computational model was proposed by Blum, Shub and Smale [17]
in the 1980s. Their model for computation is based on a real number data
representation and is often referred as the real-number model or Blum-Shub-
Smale (BSS) model. It is assumed that the algorithm in this model performs
exact real arithmetic. One operation, such as multiplication or addition of
two numbers x and y, takes the same time independently of the values of x
and y. Compared with Turing machines this approach seems closer to the
way modern computers work, see Blum et. al [16]. Unfortunately, the real-
number model has two shortcomings in computational practice. The first
one is that on actual computers all real numbers are truncated or rounded
to floating-point numbers. This process of rounding introduces a round-
off error that could affect the numerical computations significantly. The
second problem is that all arithmetic operations on floating-point numbers
in a computer are not exact. As a result, an additional round-off error is
introduced on almost every operation. Hence, the real-number model has
its own drawbacks. For example, the complexity of the linear optimization
(LO) problem is known in terms of the Turing model, but still not in terms
of the real-number model.

Worst-case complexity of algorithms

Independent of the choice of computational model, complexity theory makes a
fundamental distinction between two kind of algorithms: polynomial and expo-
nential algorithms. Polynomial-time algorithms are those with time complexity
function bounded from above by p(n) for some polynomial function p, where n > 0
is used to denote the problem size, see Garey and Johnson [48]. Here, time com-
plexity function for an algorithm is defined as the largest amount of time needed
by the algorithm to solve a problem instance of certain predefined size. Note
that p above is independent of the problem instance. Any algorithm whose time
complexity function cannot be bounded above by a polynomial function is of the
second type, and is called an exponential algorithm.

A polynomial-time algorithm is said to be strongly polynomial time, if the
number of arithmetic operations of the algorithm is bounded in the dimension of
the matrices and vectors of an instance. Dimension in this case means the size, not
the bit length of the vectors and matrices. For example, checking that a matrix
with dimension n is positive semidefinite requires O(n?) arithmetic operations, so
it is strongly polynomial.

Complexity results based on a time complexity function defined as above are
worst-case results. A well-known example for this is the simplex algorithm, proven
to have exponential complexity by Klee and Minty [69]. It was observed in practice
that often instances of LO require far less solution time than expected. Due to

2.1 COMPLEXITY 15

such results an average-case analysis was developed. Using average-case analysis
on the simplex algorithm resulted in expected polynomial running time for a large
class of problems, see Anstreicher at al. [7].

In what follows we restrict our discussion of complexity to worst-case behavior.
Broader treatment of general complexity definitions, models and results can be
found in the books of Garey and Johnson [48], Blum et. al [16] and Vavasis [111].

One has to distinguish also between complexity of a given algorithm for a prob-
lem class and the complexity of the problem class itself. Some basic information
about the complexity of problem classes is given in the next section.

Complexity of problem classes

The main focus of the complexity theory framework are decision problems, see
e.g. [48]. Such problems have only two possible solutions or answers, ‘yes’ or ‘no’.
Since a decision problem requires a verification of a statement, the term ‘decided’
is used instead of ‘solved’ for such problems. Next we give information about the
three basic complexity classes relevant for IPM’s. A complexity class is a class of
problems that satisfy a certain computational bound.

The class P consists of problems that can be decided in polynomial time, i.e.,
there exist an algorithm that requires only a polynomial number of operations.
The class NP consists of problems that given a certificate, or guess solution, a
‘yes’ answer can be verified in polynomial time. Notice that P C NP. It is not
known if P = NP, but is widely believed that this is not the case, see e.g. [90].
The class co-NP includes the problems that given a certificate, a ‘no’ answer can
be verified in polynomial time. As a result P C co-NP. We also refer to a problem
as intractable if there is no polynomial-time algorithm that can solve it.

Assigning an optimization problem to a specific complexity class requires the
problem to be translated into a decision problem first. Certain types of linear
optimization and quadratic optimization problems can be transformed into deci-
sion problems, see e.g. Papadimitriou et al. [90] and Vavasis [111]. For example,
consider the linear optimization problem in primal form

min{ch cAx =b, x > 0}.
Its corresponding dual problem is defined by
max{bTy:ATy+s=c, s>0}.
Y,s

The linear optimization problem translates into a decision problem by asking: are
there x,y and s such that

Ar=b, ATy+s=c¢, 2Ts=0, >0, s >07?

16 COMPUTATIONAL COMPLEXITY OF IPM’S 2.1

2.1.1 Complexity of primal-dual IPM’s

Complexity had an important role for establishing interior-point methods. The
search for a method with a better complexity than the ellipsoid method for LO of
Khaciyan [68] has lead to a polynomial-time interior-point method, proposed by
Karmakar [66]. There are many papers that prove results about the complexity of
IPMs, see e.g. Renegar [92], Nesterov and Nemirovskii [87], Vavasis [111]. Most
of the complexity results for IPM’s were given in terms of the Turing model,
see [112]. We outline here just the aspects that are relevant to primal-dual IPM
algorithms for SDO since they are the primary objective of this thesis.

Primal-dual IPMs for LO are known [87, p. 246] to be polynomial time in the
bit complexity framework and hence are computationally tractable. Existence of
a polynomial algorithm for LP in the framework of the real-number model is still
an open question. Traub and WoZniakowski [108] conjectured that there is no
polynomial-time algorithm in terms of the real number-model.

Interior-point algorithms for semidefinite optimization are in class NP Nco-NP
in the Turing model as well as in the real-number model. In practice, instead of
the exact solution it is enough to obtain an SDO solution with certain predefined
accuracy € € (0,1). For such so-called e-approximate SDO solutions there exist
polynomial-time ITPM algorithms, see Nesterov and Nemirovskii [87].

In the analysis that follows we focus on the practical numerical aspects of
primal-dual IPMs for SDO. Therefore, when we refer to the complexity of different
search directions for SDO, we mean the computational complexity per iteration
and not the worst-case iteration complexity.

2.1.2 Practice vs Theory

On actual computers that typically use 32-bit or 64-bit data representations and
operations, complexity of algorithms is expressed in terms of flops. According to
Golub [53], a flop denotes one floating-point operation. Results in terms of flops
are different from both the bit and the real-number model. When using flops, any
arithmetic operation between two real numbers may be done at unit cost, but the
computations are inexact. On the other hand flops use data representation as in
the bit model, but with finite and fixed precision.

In spite of this difference we implement algorithms on practical computers, but
still often refer to complexity results that are really only valid for the ‘idealized’
models of computation (e.g. Turing machines or the real-number model). Thus, a
complexity result that states“an algorithm solves the problem in O(n3)” typically
refers to the Turing model, and not to the practical computation of our everyday
experience.

There have been attempts to bring ‘practice’ and ‘theory’ closer by studying
computational models that use flops with a fixed (but large) numbers of bits,
or using arbitrary-precision arithmetic in software like Mathematica!, but these

Lhttp://www.wolfram.com/

2.2 PRIMAL-DUAL IPM FOR SDO 17

paradigms are still somewhat different from daily practice.

With these considerations in mind, we describe later on in this chapter the
complexity (in terms of the real-number model) of a primal-dual interior-point
method for SDO using the Mehrotra predictor-corrector strategy.

2.2 Primal-dual IPM for SDO

Recall from Section 1.1 that the semidefinite optimization problem in the primal
standard form can be written as

(P) minTr(CX)

s.t. 'I‘I‘(AZX) = bi, 1=]., e, m, (21)
X >0,
where X € S is a symmetric positive semidefinite (psd) matrix, C' € S", A; € S”
and b e R fori =1,...,m.
The (Lagrangean) dual of (P) in standard form is given by

(D) max by
y,Z

Z =0,

where y; € R™ and Z € S%. Recall from Chapter 1, that the relaxed optimality
conditions used in interior-point methods for SDO are:

bl—rI‘I'(AiX):O, i:l,...,m,

C—-7Z- er;l yiAi =0, (2.3)
X7 = pl,
X,Z = 0.

Primal-dual path-following IPMs use Newton’s method to find approximates for
the solution of (2.3) for a decreasing sequence of values of the positive parameter
. There are primal-dual interior-point methods that require a feasible starting
point, as well as some that do not require such. They are known as feasible and
infeasible start methods, respectively.

In the analysis that follows next we restrict ourselves to infeasible start primal-
dual interior-point methods for SDO, since they are widely used in practical im-
plementations. These methods need a strictly feasible initial point (X,y, Z) to
obtain primal and dual directions AX and Ay, AZ, respectively, that satisfy

T‘I‘(AZAX) :bi—'I‘I‘(AiX), 1= 1,...,m,
Z:il Ny Ai+ NZ =C -7 — Z?ll i Aj, (24)
(X + AX)(Z + AZ) = ul,

18 COMPUTATIONAL COMPLEXITY OF IPM’S 2.2

aswellas X + AX = 0and Z+ AZ = 0. It is easy to see that the last equation
in (2.4) is nonlinear. A widely used approach to make it linear is to drop out the
nonlinear term AXAZ. Hence, the above system becomes
'I‘I‘(AlAX):bl—'I‘I‘(AZX), 1= 1,...7m7
Y Dyidi + AZ =C = Z =30 yiAi, (25)
AXZ+XNZ =l — XZ.

Here AX and AZ are required to be symmetric. This is always true for AZ by
the second equation of the (2.5), but for AX this may not be the case. As a result

a symmetrization is needed for the last equation.
Zhang [117] suggested to replace the equation AXZ + XAZ = ul — XZ by

Hp(AXZ + XAZ)=ul — Hp(XZ),
where Hp is a linear transformation given by

Hp(M) = % (PMP '+ (PMP YT, (2.6)

for any M € R™*™ and a nonsingular scaling matrix P. The symmetrization
strategies depend on P and some popular choices are listed in Table 2.1.

P Reference
1 Alizadeh et al. [3]
Z3 Monteiro [81], Helmberg et al. [60], Kojima et al. [71]

Nesterov and Todd [88]

Table 2.1: Choices for the scaling matriz P.

There are more than twenty search directions for SDO, see Todd [103]. Our
main focus is on three of them, namely the AHO, the HKM and the NT. The
reason to choose HKM and NT is that they have various desirable properties that
make them very efficient in practice, see [83, 103]. The AHO was chosen since it
pioneered the field of IPM’s for semidefinite optimization and has good theoretical
properties.

If the current point for system (2.5) is (X,y, Z) then we can expand the third
equation of the system as

ul — Hp(XZ) = Hp(AXZ + XAZ) = Hp(AX Z) + Hp(XAZ).
Hence, the search direction (AX, Ay, AZ) at (X,y, Z) satisfies

'I‘I‘(AlAX) =T, 1=]., e, m,
S AyiAp + AZ = R,
Hp(AXZ)+ Hp(XAZ) = pul — Hp(X Z),

2.2 PRIMAL-DUAL IPM FOR SDO 19

where the vector r; is defined as
ri:=b; — Tr(A;X), i=1,..,m, (2.7)
and the matrix R is
R:=C—-Z-Y" 4. (2.8)

A unified framework for the analysis of different search directions in terms of linear
operators is given by Monteiro and Zanjidcomo [83]. Using a similar framework,
we will show how to compute the search direction in terms of the linear operators
E:S™ — S” defined as

E(E):=Hp(EZ), forall EeS", (2.9)
and F : S" — S" is
F(F):=Hp(XF), forall FeS§". (2.10)

Using £ and F, we can write the system of equations (2.5) defining the search
direction as

T‘I'(AiﬂX) = T, i = 1,...,7’77,,
E(LNX)+F(AZ) = H,
where H is defined as
H:=ul —Hp(XZ). (2.12)

The vectors r; and matrix R are defined as in (2.7) and (2.8), respectively. The
following result from [83] provides a scheme for computing the search direction
(AX, Ay, AZ) in terms of the operators £ and F.

Lemma 2.2.1. Let £ :S™ — S™ and F : S™ — S" be linear operators, defined by
(2.9) and (2.10), and such that € has an inverse and let (r, R, H) € R"™ x S" x S"
and A; € S™i=1,....,m be given. Let

Vi = ENF(4)), j=1,..m, (2.13)
V = & YFR) -H), (2.14)
My = Tr(4;V)), i,5=1,...m, (2.15)
hi = 1+ Tr(A;V), (2.16)

where M;; and h; for i,j = 1,...,m are the elements of matriz M € R™*™ and
vector h € R™, respectively.
Then (AX, Ny, NZ) satisfies system (2.11) if and only if Ay satisfies the system

MAy = h, (2.17)

20 COMPUTATIONAL COMPLEXITY OF IPM’S 2.2

and (AX,AZ) is given by
AX = YT AyV, -V (2.15)

In particular, if the matric M is invertible, then system (2.11) has exactly one
solution.

Proof: Suppose that (AX, Ay, AZ) satisfies (2.11). From the second equation
in (2.11) we obtain (2.19). If we apply the operator £~ to both sides of the third
equation in (2.11) we get

AX =1 (H-F(AZ)). (2.20)
Next we substitute the expression for AZ into (2.20) and using the definitions of
V and Vj as in (2.14) and (2.13), respectively, we obtain
AX =EHH - F(R-Y", AyiAy)),

= &7 (H = F(R) + X1% Ay F(Ay),

=il Ay (F(A) — €71 (F(R) — H),

= 2111 Ay Vi =V,
which is exactly (2.18). Taking the inner product of both sides of

AX = Z;nzl Ay Vi =V,

with A; and using the first equation from (2.11) results to

D Tx(AV)) Ay — Te(A;V) = Te(AAX) =7, i=1,..,m. (2.21)

Jj=1

Rearranging the left-hand side and the right-hand of (2.21) we get

> Tx(A V) Ay =1+ Te(AV), i=1,..,m. (2.22)
j=1
It is easy to see that (2.22) can be written as (2.17), namely M Ay = h, for M,;
and h; defined as in (2.15) and (2.16), respectively.

To prove the other implication, suppose (AX, Ay, AZ) satisfies (2.17), (2.18)
and (2.19). As a result the second equation in system (2.11) holds automatically,
due to (2.19). Applying operator £ to both sides of (2.18) and taking into account
(2.15), (2.16) and (2.19) we get the first equality of (2.11). Next using equations
(2.17), (2.15) and (2.16), we obtain

E(AX) =30 AyiF(Aj) — H + F(R),
=H—F(R—-Y" Ayidi),
= H—F(AZ),

2.2 PRIMAL-DUAL IPM FOR SDO 21

which is exactly the third equation of system (2.11). We can use the same ap-
proach as before and take the inner product of both sides of (2.18) with A;. This
operation will result in (2.21) due to (2.15),(2.16) and (2.17). Hence, we obtain
the first equation of (2.11) and the lemma is proved. O

There are different types of interior-point algorithms for SDO, for a survey
on this topic, see Todd [104]. The most popular class of primal-dual algorithms
are the path-following algorithms that use predictor-corrector strategy. They are
the most efficient in practice and are widely used in SDO software. Since our
aim is the best practical performance, we give more details about the primal-dual
algorithm using the predictor-corrector strategy next.

The Mehrotra [78] predictor-corrector algorithm computes two directions per
iteration, the predictor direction, called also affine-scaling direction, and the cor-
rector direction. The affine-scaling direction (AX®, Ay®*, AZ%) is the solution of
the system (2.11) with u = 0, i.e., (2.12) is now H = —Hp(XZ), and r; and R
are defined as in (2.7) and (2.8), respectively. Next, the triple (AX®, Ay®, AZ%)
is used to compute the centering parameter o € [0, 1) from

Tr (X + 0% AXY)(Z + a% A Z9)]?
Tr(XZ) '

g =

The step sizes a} and af, are computed from

op =min(1,ap), o = min(1,ap), (2.23)
where

ap = max{a>0:X +aAX* >0},

ap = max{a>0:Z+4alAZ* = 0}.

Computation of the corrector direction (AX€ Ay¢, AZ¢) is done, see Monteiro
[83], by solving the system

Te(A;AXY) = 0,i=1,..,m,
S AYEA + AZE = 0, (2.24)
E(AXS) + F(AZS) = oul — Hp(AXAZY),
where
Tr(XZ
= g (2.25)

n

Using (2.14), from Lemma 2.2.1, and (2.24), the matrix V¢ for the corrector
direction is defined by

Ve = EYHp(AXNZ™) —opl). (2.26)

22 COMPUTATIONAL COMPLEXITY OF IPM’S 2.2

Generic Primal-Dual Algorithm for SDO with
Predictor-Corrector Strategy

Input:
An accuracy parameter € > 0;
Data matrices C, A;, b; where i =1, ..., m;

begin
Construct initial solution yo = 0 and X, Zy > 0;
while Tr(XZ7) > ¢ do
begin
Construct the affine-scaling direction (u = 0):

- Compute M and h by (2.15) and (2.16);

- Solve M Ay® = h;

- Compute AX?® and AZ® by (2.18) and (2.19);
Compute o and the step sizes a} and af, from (2.23);
Fix target u, (2.25);

Get the corrector direction;

- Compute h¢ by (2.27);

- Solve M Ay°© = h¢;

- Compute AX° and AZ° by (2.29) and (2.19);
Compute a step sizes ap and ap by (2.31) and (2.32);
Add affine-scaling and corrector directions (2.30);
Update the current point:

- X=X+4+apAX;Z=Z+apAZ;y=y+ aply;

end
end

Figure 2.1: The algorithm.

The elements of the vector h, defined by (2.16), are computed for the corrector
direction from

hS =1 + Te(AVE), i=1,..,m. (2.27)

The process of solving (2.24) includes solving M Ay¢ = h¢, where the elements
of h¢ are defined by (2.27). Note that for the corrector direction M is the same
as for the affine-scaling direction. Using (2.24) and (2.26), AX® and AZ® are
computed from

AZC = =3 AYLA;, (2.28)

2.3 PRIMAL-DUAL IPM FOR SDO 23

and
AXC:=E Youl — Hp(AXNZ") — F(AZC)) = =V — ETHF(AZ)). (2.29)

The final search direction (AX, Ay, AZ) is obtained by adding the affine-scaling
and corrector directions

(AX, ANy, AZ) = (AX* DNy, ANZ%) + (AXC, Ay®, AZ°). (2.30)
The next iterate ()A(0,7) is obtained as
X = X+aplX,
g = y+aply,
Z = Z+aplZ,

where ap is the step size for (P) obtained by

ap = min(l,max{a > 0: X + aAX = 0}), (2.31)
and ap is the step size for (D) computed as

ap =min(l,max{a > 0: Z + aAZ = 0}). (2.32)

A generic primal-dual algorithm using the predictor-corrector strategy is shown
in Figure 2.1.

We will require the following result on several occasions in the next section.
In particular, it gives a sufficient condition for the so-called Lyapunov equation
to have an unique solution.

Lemma 2.2.2. For every A€ S}, and H €S", the equation

AU+UA=H (2.33)
has a unique solution U € S™.
Proof: See e.g. Graham [55]. O
As a matter of convenience, the unique solution U of (2.33) will also be denoted
as < H > 4.)

Since Z € S, it follows that there exist a unique Z= € S% such that
72177 = Z. (2.34)
The matrix Z% is called the square root of Z. Due to similarity, the matrices
1 1
X7, ZX,Z2XZ% have the same spectrum, which we denote and arrange as
A1Z> A2 > 2 A >0,

where \;,i = 1,...,n are the eigenvalues of X Z.

Making use of the general framework above, we next analyze the iteration
complexity of the chosen three search directions for SDO, see Table 2.1. We show
the steps involved in the computation of each of the directions.

24 COMPUTATIONAL COMPLEXITY OF IPM’S 2.3

2.3 Forming the matrix)/

This section is dedicated to the complexity of computing the matrix M and the
vector h in (2.17) for the search directions for SDO: AHO, HKM, and NT. The
analysis presented in this section assumes that all matrices are in the dense format.
When the A;’s are sparse, there are alternative methods that compute the matrix
M more efficiently than the approaches shown in this section. More specifically for
SDO problems with sparse A;’s having a random sparsity structures, Fujisawa et
al. [46] have developed an efficient procedure to compute the matrix M in (2.15)
for the HKM and NT search directions. More results on exploiting structure on
a sparse SDO problems via matrix completion were introduced by Fukuda et al.
[47].

For SDO with special structure of the matrices A;, such as the max-cut SDO
relaxation (see e.g. [60]), it is possible to obtain simplified expressions for the
matrix M associated with the HKM and the NT directions, which speeds up
their computations, e.g. see [60] and [11].

We show two approaches for computing the matrix M and the vector h in
(2.17), defined by (2.15) and (2.16), respectively. The first approach is widely
used in the literature and is using the original matrices A;. The second approach
was introduced by Monteiro and Zanjicomo [83] and it makes use of the scaled
matrices A; for i = 1, ..., m, obtained from the original A;’s. This way of comput-
ing M has better complexity, but it requires the A’s to be explicitly available (in
addition to the A;’s). Therefore, the second approach has extra storage require-
ments compared to the first approach.

23.1 AHO

This search direction introduced in [3] by Alizadeh, Haebery, and Overton, uses
the symmetrization scheme that can be obtained from (2.6) by using P = I, where
I denotes the identity matrix. As a result we get the direction specific expressions
in (2.11) in terms of operators £ and F as

E(AX) = HI(AXZ):%(AXZJrZAX), (2.35)

and

1
F(AZ) H(XNAZ) = 5(XAZ+AZX), (2.36)
respectively, as well as for

H = ul—H(XZ). (2.37)

From (2.35) follows that the matrices Vj,i = 1,...,m defined by (2.13) can be
obtained as the unique solutions (by Lemma 2.2.2) of the following Lyapunov

2.3 FORMING THE MATRIX M 25

equation
ViZ+2V; = XA;j+A;X. (2.38)
Let
Z =QAQT, (2.39)

denote the eigenvalue decomposition of Z, where A is a diagonal matrix and @Q is
an orthogonal matrix, i.e. QTQ = I. Also, define

Vi =Q"V;Q, X :=QTXQ, 4; =QTA;Q, j=1,...,m. (2.40)

First, we substitute Z in (2.38). Second, we multiply on the left by Q7 and by Q
on the right. As a result, the Lyapunov equation (2.38) can be written in terms
of the eigenvalues of Z as

ViA+AV; = XA; + A;X, j=1,..,m. (2.41)

A similar approach can be used for computing V', defined by (2.14), for the AHO
direction. It can be obtained also as an unique solution of the following Lyapunov
equation

VZ+2ZV = XR+RX —2H. (2.42)
Let
V:=Q"VQ, R:=Q"RQ. (2.43)

If we substitute Z in (2.42) and multiply on the left by Q7 and by Q on the right
we get

VA+AV = XR+RX+XA+AX —2ul. (2.44)
In the first computational approach, using (2.40), M is computed as
Mi; = Tr(A;V;) = Tr (Ai(QVjQT)) ij=1,..m, (2.45)
and the elements of the vector h are obtained from
hi = ri + Tr(A;V) = r; + Tr (Ai(Qf/QT)) . i=1,..m. (2.46)

Computation of the matrix products X@Q and RQ requires O(n?) flops. By using
them, the product XR = (XQ)TRQ in (2.44) also requires O(n3) flops. We also
can pre-compute the product 4;Q for j = 1,...,m in 2mn® + O(mn?) flops and
use it along with X @ for obtaining XAJ = (XQ)T4,Q in (2.44). In this way
X A; is computed also in 2mn? + O(mn?) flops.

26 COMPUTATIONAL COMPLEXITY OF IPM’S 2.3

Computation of the matrices V and Vj,j = 1,...,m, involves solution of (2.41)
and (2.44), i.e., (m + 1) Lyapunov systems. These solutions are obtained in
O(mn?) flops, because they involve only the diagonal matrix A. The additional
cost of the eigenvalue decomposition of Z to obtain A is negligible in comparison
to the other dense matrix operations involved. Therefore, the computational
complexity of this operation is not taken into account.

Matrices V; = QVJ-QT,Z' =1,...,mand V = QVQT take 2mn® + O(mn? + n?)
flops. The m(m+1) trace products Tr(A4;V) and Tr(A4;V;),4,5 = 1,...,min (2.45)
and (2.46), respectively can be obtained in m?n? + O(mn? + m?n) flops.

Notice that using (2.40), (2.43) and QTQ = I, M and h can be written as

My = Tr(AV;) = Te(Q TAV,Q™Y) = Tr(Q'Q™TAV;) = Tr(4:V)), (247)
and

for i,j =1, ..., m, respectively.

The second approach to compute the matrix M and the vector h for the AHO
direction is based on the results (2.47) and (2.48). In this case, computation of
Aj,j =1,..,min (2.40) takes 3mn® + O(mn?) flops. This result is due to the
way Monteiro and Zanjidcomo [83] compute the matrix product A; = QTAQ
for some i, where A; is a symmetric matrix. Computing the matrix product
XA;,j=1,..,min (2.41) can be done in 2mn® + O(mn?) flops.

Finally, if we sum the flop counts for both methods for computing M, we get
6mn®+m?*n?+O(mn?+m?n+n?) flops and Fmn?+m?n? +O(mn?+m?n+n?)
flops by the first and the second computational approach, respectively. Note that
these results include also computation of h. Since the vector h requires the solution
of one Lyapunov equation and a trace of a matrix product the computational effort
for h is significantly less than for the matrix M. Indeed, even if we exclude the
flop count for h it is easy to see that summarized results we gave above will not
change.

232 HKM

In this subsection we analyze the computational complexity to obtain M for
the search direction corresponding to P = Z2 in (2.6). This search direction is
widely referred to as the HKM direction and is studied in several papers including
Helmberg et. al. [60], Kojima et al. [71] and Monteiro [81]. We assume that all
symmetric matrices are stored in triangular form.

Now using (2.6) with P = Z7 and the definition of £ and F, the HKM direction
is the solution of the system (2.11) with £(AX) and F(AZ) defined as

E(AX) = H_(AXZ)=Z3AXZ3, (2.49)

1
zZ2

2.3 FORMING THE MATRIX M 27

and

F(ANZ) = H

1
L1 (XAZ) = §(Z%XAZZ’% +Z73AZXZ7), (2.50)

[N

respectively, and
H = H (Wl -XZ)=pl—22XZ%. (2.51)
The matrices V; defined by (2.13) can be obtained from the expression,
v, = %(XAjZ_l +Z7'A;X), j=1,...,m, (2.52)
and V, as in (2.14), is obtained from
Vo= %(XRZ*1 +Z7'RX) —puZ '+ X. (2.53)

Hence, it follows from (2.15) and (2.52) that

Mi‘ = rI‘I'(Al‘/j), i,j:l,..,m,
1
= 3 (Tr(A;XA;Z7") + Tr(A, 27T A;X)). (2.54)

Since Z7!, X and A;’s are square symmetric matrices, the trace of the product
A; X A;Z7" is invariant under cyclic permutations of the matrices involved, i.e.,

Tr(A;XA;Z7Y) =Te(Z A, X Aj) = Tr(4; 271 A, X). (2.55)
Therefore, of we can write (2.54) as

1
Mij = 5 ('I‘I‘(AjZilAiX) + ’I‘r(AlZ’lAJX)) = Tr(AiZ’lAjX), (256)
for all 4,j = 1,...,m. Note that interchanging the indexes ¢ and j in (2.56) would
not make a difference since M is a symmetric matrix for the HKM search direction.
Using a similar argument as in (2.55) the elements of the vector h are computed
from (2.15) and (2.53) by

hi = ri+Tr(A(Z'RX —pZ "+ X)), i=1,..,m. (2.57)

In the first approach the m matrix products Z ’1AJ»X can be computed in
4mn3 + O(mn?) flops. Given these m products (2.56) requires additionally
%anQ + O(m?n + mn?) flops taking into account that A;,i = 1,...,m are
symmetric.

The second approach to compute the HKM direction is based on the following
alternative way to compute M. Let Lx and Lz-:1 denote the Cholesky factors of

X and Z71, respectively. As a result we can write

M;; = Tr((LXA;Lz—)L}, 1 AjLx), 4,j=1,..m. (2.58)

28 COMPUTATIONAL COMPLEXITY OF IPM’S 2.3

The elements of the vector h are obtained as in (2.53). Computation of matrix
products LT, A;Lx,i =1,...,m takes 3mn®+O(mn?) flops. Since the matrix M
is symmetric, only % (m + 1) inner products (2.58) of two nonsymmetric matrices
needs to be computed, which takes m2n? + O(m?n +mn?) flops.

The total number of 4mn® + tm?n? + O(mn? + m?n) flops and Fmn® +
m?2n?+ O(mn? +m?n) flops are required, when computing M, using the first and
the second approach, respectively.

233 NT

In this subsection we analyze the computational complexity to obtain the matrix
M for the direction corresponding to map Hp with scaling matrix P, satisfying
PTP =W, where

W= X3(X32ZX3) 2X3. (2.59)

The resulting direction is widely referred to as the NT direction [89]. The NT
direction and the corresponding path-following algorithms have been studied in
several papers including Nesterov and Todd [89], Sturm and Zhang [101], and
Todd, Toh and Titiincii [105]. We derive in this subsection computational for-
mulae for the NT direction based on the use of triangular matrices.

One possible choice for P is shown in the third line of Table 2.1 (on page 18).
We use another choice, suggested in [105], for the scaling matrix P as follows. Let
Lx denote the Cholesky factor of X and let

(L% ZLx)* =QDQT, (2.60)

be the eigenvalue decomposition of the positive semidefinite matrix (L% ZL X)%,
where D is a diagonal matrix and @ is an orthogonal matrix. Define

P:=D3QTLY, (2.61)
and
G:=Ly'X:3. (2.62)
The following lemma from [105] shows that G is an orthogonal matrix.

Lemma 2.3.1. Suppose B = CC7T is positive definite. Then U := C-'Bz is
orthogonal.

Proof: We see that UUT = C-1BC-T =cCc-tcctc-T =1. O

Next we show that the scaling matrix P defined as in (2.61) satisfies PTP = W1
Firstly, using (2.60) and (2.61) it follows that

PTP=LTQDQTLY = Ly (L% ZLx)? Ly (2.63)

2.3 FORMING THE MATRIX M 29

Secondly, by (2.62) we can write the matrix product X2ZX7? as
X22X% =GTLE ZLxG.
Since G is orthogonal, we have
3 1
(x1zx1)" 6" (1kZLx)* G.
Using this result and (2.59), W~! can be written as
1
Wl=X"3(X32X%):X % = LT (L% ZLx)? L% (2.64)
Since the right hand sides of (2.63) and (2.64) are equal, it follows that PTP =
W1 holds for P defined as in (2.61).
It is shown in [105] that the NT direction is the solution of system (2.11) with
E(AX) and F(AZ) equal to

E(AX) = Hp(AXZ)= - (PAXZP T+ P 'ZAXPT), (2.65)

N | =

and

F(AZ) = Hp(XAZ)= - (PXAZP '+ P TAZXPT), (2.66)

N =

respectively, and the direction specific expression for H as follows
H = Hp(pl —XZ)=pl - % (PXzZP '+ P TZXPT). (2:67)
We will require the following technical result for the NT search direction:
WiXw =2 (2.68)

We can show that this is true by simply using the definition of W and X = X X2
and expand W' XW ™!, namely

W=

)X 3(XTZXE)3X™

W=

WIXW = XT5(XEZXE)TX 5 (XX
=X 3(X2ZX%)X "2
=7

It is easy to see that (2.68) implies X = WZW. Due to (2.68), PPT = W~! and
the definition of P, it follows that

pTzp~'=pxpT,
= D2QT LY XLTQD?,
= D2QT(Ly' Lx)(LX LY")QD>
=D2QTQDz>.

30 COMPUTATIONAL COMPLEXITY OF IPM’S 2.3

Since @ is an orthogonal matrix, the last equality can be written as
pTzp~t=D. (2.69)
Using (2.69) and P~'P = I we can reformulate H in (2.67) as
1
H=pl -5 (PXZP™" + pP~TzXpPT) = pul — D

Todd, Toh and Titiinci in [105], using (2.65-2.67), have shown that for the NT
direction, (2.11) is equivalent to

'I‘I‘(AlAX) = b—'I‘I‘(AiX), 1= 1,...,m7
WIAAXW 1+ AZ = uX—t -2

Next, let us multiply the third equation in (2.70) on the left by W and on the
right by WZ. Then taking into account that, by (2.68), WX 'WZ = I, we get

AXZ+WNANIWZ =ul — X Z.
From this result it follows that (2.65) and (2.66) are equivalent to
E(LNX) = AXZ, (2.71)
and
F(AZ) = WAZWZ, (2.72)

respectively. The right hand side in the third equation of (2.70) is equivalent to
the expression for H in (2.67), namely

H = pX'-2 (2.73)

Then using (2.71), (2.72) and (2.73) we can compute V; and V, defined by (2.13)
and (2.14), respectively as

V, = ENF(A))=WAW, j=1,.,m, (2.74)
and
V = EYFR)-H)=WRW —puzZ '+ X. (2.75)

The first approach for computing M, in the framework of the NT direction,
uses expression (2.15), namely

Mi‘ = T‘I'(Al‘/}), 7,,] = 1, ey M

2.4 SEARCH DIRECTION COMPLEXITY 31

The vector h, defined by (2.16), is computed from
hi = ri+Te(4V), i=1,...,m.

Computing the m + 1 matrices V;,j = 1,...,m and V can be done in 2mn3 +
O(mn?+n?) flops. Since M is symmetric, only % (m+1) inner products Tr(A;V;)
for 7,7 = 1,...,m need to be computed; moreover, as both factors in each inner
product are symmetric, computation of these % (m + 1) inner products requires
im?n? + O(m?*n + mn?) flops.

The second approach to compute the matrix M is as follows. Let Ly, denote
the Cholesky factor of the matrix W, we can express the entries of M in (2.15) as

M;; = Tr (Ljy AiLw)L{, AjLw) , i,j = 1,...,m. (2.76)

The computation of the matrices L%;,AiLW, i=1,...,m requires 2mn> + O(mn?)
flops. The matrix M is symmetric and both factors of each inner product (2.76)
are symmetric matrices, we can compute the matrix product and the trace in
(2.76) in 2m?n? + O(m*n + mn?) flops.

Finally, if we summarize the total amount of flops necessary to compute M, we
get 2mn®+1m?n?+O(mn?+m*n+n?) flops and 2mn®+ Im?n?+O(mn? +m?n)
flops by using the first and the second computational approach, respectively.

2.4 Search direction complexity

In what follows we describe the remaining steps involved in the computation
of (AX, Ay, AZ) for the three search directions. In Section (2.3) we presented
two approaches for computing the matrix M and the vector h in (2.17) defined
by (2.15) and (2.16), respectively. Each one of them implies a corresponding
approach to compute the affine-scaling and corrector steps of the primal-dual
direction. To simplify the presentation, we present the construction of these steps
for the AHO, the HKM and the NT directions in terms of the first approach.

The flop counts of the three directions discussed in this section are expressed
in a unified way, as proposed by Monteiro and Zanjiacomo [83, p. 14]. These
complexities do not include the flops spent on computing the matrix eigenvalue
decompositions. As in the previous section we assume that all matrices are in
dense format.

241 AHO

Recall from Section 2.3.1 results (2.35-2.38) and (2.42) for this direction. It follows
that Ay is the solution of the equation (2.17), namely M Ay = h with M;; and
hi, 1,7 = 1,...,m defined by (2.47) and (2.48), respectively. Computing AZ is
done according to (2.19), namely

32 COMPUTATIONAL COMPLEXITY OF IPM’S 2.4

where R is obtained from (2.8).
If we substitute (2.35-2.37) into the third equation from the system (2.11), we
obtain

AXZ+ZAX = 2H— (XAZ+ AZX)
oul —2X7Z — (XAZ + AZX). (2.77)

Recall (2.34) and the property that matrices X Z, ZX, Z:XZ? are similar,
and so they have the same spectrum. As a result we can rewrite (2.77) as

Z3INXZ5 + Z3NXZ7 =2l —273 X727 — (XAZ + NZX). (2.78)

Next, if we rearrange the terms in (2.78) and multiply it on the right and on the
left by Z _%, we obtain

AX =pZ ' — X - %Z*%(XAZ +AZX)Z 5. (2.79)

Let U be defined by

U= %Z*%(XAZ +AZX)Z7 5.

Then, it is easy to see that U is the unique solution of the Lyapunov equation
ZU+UZ = XAZ+NAZX. (2.80)
We can also write (2.80) as
U = < XAZ+AZX >z. (2.81)

If we substitute (2.81) into (2.79), we get the expression for AX for the AHO
direction, namely

AX = pZ '—X—< XAZ+NZX >, .

Calculation of (AX, Ay, AZ) requires 2m?® 4+ O(mn? + n?®) flops.

For the Mehrotra predictor-corrector algorithm it is necessary first to com-
pute the affine-scaling direction (AX?%, Ay®, AZ%). Tt coincides with the above
presented (AX, Ay, AZ) when p = 0. This means that instead of H defined as
in (2.37), it is given by

H = —H/(XZ).

This change is not significant and does not change the complexity described above
for (AX, Ay, AZ). For the corrector direction we need to solve M Ay© = h¢, see

2.4 SEARCH DIRECTION COMPLEXITY 33

e.g. Figure 2.1, where the elements of h¢ are defined by (2.27). Matrix V¢, defined
by (2.26), for the AHO direction is computed from

Ve = E Y HI(AXNAZ) — oul).

Using (2.6) and (2.35) one can obtain V¢ as a solution of the following Lyapunov
equation

ZVe+VeZ =AXANZ + ANZAX —20ul. (2.82)
Using the notation introduced in (2.82) this means that
V=< AXNANZ + NZANX —20ul >z .

It is possible to compute V¢ using previously computed quantities for the affine-
scaling direction, see Section 2.3.1. Recall (2. 39) ie., Z = QAQT is the eigenvalue

decomposition of Z, and let AX := QTAXQ, AZ = QTAZQ. Then (2.82) can
be reformulated as

AVE+ VA = QIAXAZ + AZAX)QT — 20ul, (2.83)
or alternatively written as
=Q < AXAZ + AZAX —2ul >4 Q.

The product AXAZ = (QTAX)(AZQ) can be computed in 4n3 + O(n?) flops,
since we may assume that QT AX is computed in the affine-scaling step. Subse-
quently, V¢ can be found from (2.83) in 2n® + O(n?) flops. From (2.28) matrix
AZ°¢ for the corrector step is computed by

NZC = — E;”:l AysA;.
To derive AX¢ we use (2.29), (2.35) and (2.37). As a result we get
AXC=—-EHXNZ+NZ°X) - VE, (2.84)
Let
=& UXAZ+ NZ°X). (2.85)

Then, if the operator £ is applied to both sides of (2.85) and by (2.35) follows
that U€ is the unique solution of Lyapunov equation

ZU+UZ = XAZ°+ AZ°X =Q [(QTX)AZQ] Q" + AZ°Q(QTX), (2.86)

where () is an orthogonal matrix, see (2.39). Alternatively U¢ can be expressed
from (2.86) as

U =< XNZ°+ NZ°X >z .

34 COMPUTATIONAL COMPLEXITY OF IPM’S 2.4

Finally, from (2.84) and (2.85) matrix AX¢ is obtained by
AXC=-U°-V".

Both AZ¢ and AX¢ above are computed in 6n + O(mn?) flops using the pre-
computed expression Q7 X from the affine-scaling step. Therefore, this corrector
direction requires 12n3 + O(mn?) flops in total.

242 HKM

In what follows, we continue the analysis from Section 2.3.2 and obtain the com-
putational complexity of the HKM search direction using the Mehrotra predictor-
corrector algorithm.

Recall results (2.49 - 2.53). Vector Ay is solution of the equation (2.17),
namely M Ay = h with M;; and h;, i,j = 1,...,m, defined by (2.56) and (2.57),
respectively. Component AZ is computed from (2.19), namely

Matrix R is obtained from (2.8). Using (2.49) we can compute AX from the
expression

AX =pZ ' - X - %(XAZZ*1 +Z7INZX). (2.87)

To compute the affine-scaling direction (A X%, Ay®, AZ?) for the Mehrotra predic-
tor-corrector strategy, we fix u = 0 in (2.51). Therefore, we may assume the
affine-scaling step has the same complexity as (AX, Ay, AZ) described in Sec-
tion 2.3.2.

We need to determine the computational complexity of the corrector step
(AXe Ayc, ANZ°), for the HKM direction. From Lemma 2.2.1 follows that vector
Ayc is a solution of the system M Ay® = h¢, where h¢ and V¢ are computed by
(2.27) and (2.26) for P = Z2, namely

Ve = 5‘1(HZ% (AXAZ) —oul).
Using (2.49) and (2.50) one can obtain V¢ from
1 1 1/ s _1 _1 1
zivezh = S (ZzAXAZZ by 2AZAXZ2) —oul.
Next, multiplying the last equation from the left and the right by Z ~7 we get

Ve = % (AXANZZ7P+ Z7PAZAX) —opZ ™t (2.88)

The elements of the vector h¢, using (2.27) and the argument in (2.56) for the
trace of a symmetric matrix product, are given by

h{ = Tr(A;VE) =Tr (A(AXAZZ " —opZ7Y)), i=1,...,m.

2.4 SEARCH DIRECTION COMPLEXITY 35

The product AZZ ™! has already been computed in (2.88). Matrix AZ€ is com-
puted by (2.28) as

and AX¢, defined in (2.29), is obtained from

1 1
AXC=opZ ' - 5(AXAZZ—l + Z7INZAX) — 5(XAZCZ—1 + Z7INZX).
(2.89)
Both AZ¢ and AX¢ can be computed in 4n3+O(mn?) flops. Hence, the corrector
direction can be obtained in 613 + O(mn?) flops.

243 NT

We derive in this subsection computational formulae for the NT search direction
and its complexity for the Mehrotra predictor-corrector algorithm. Recall the
direction specific expressions (2.71-2.75) from Section 2.3.3. As for the previous
two search directions, (AX, Ay, AZ) is a solution of system (2.11).

Using Lemma 2.2.1, vector Ay is obtained by solving (2.17) in m?3/3 + O(m?)
flops. Due to (2.19) matrix AZ is computed from

where R is obtained from (2.8). It remains to show how AX can be computed.
From (2.18) and (2.71-2.73) we get the relation

AX =pZ7 ' — X —WAZW. (2.90)

Computational complexity of AX and AZ defined as above is O(mn? +n?) flops.

The Mehrotra predictor-corrector algorithm for the central path defined for the
NT direction will be described next. The affine-scaling direction (AX?, Ay®, AZ?)
is equivalent to the direction (AX, Ay, AZ) we just described, but with p = 0
in (2.73). Therefore, the complexity of computing (AX®, Ay®*, AZ®) is the same
as for (AX, Ay, AZ) described above. Hence, we next analyze the corrector step
for the NT direction.

Recall the expression for V¢ in (2.26), namely

Ve :=E Y Hp(AZAX) — oul).
Applying Lemma 2.2.1 to system (2.24) we see that Ayc is a solution of the system
MAy¢ = h¢, where M is defined by (2.15) and h® can be obtained from (2.27).
Let

AX := PAXPT, ANZ =P TAZP

36 COMPUTATIONAL COMPLEXITY OF IPM’S 2.5

If we multiply (2.90) with P, given by (2.61), on the left and PT on the right,
and taking into account that W = P~1P~T and P~TZP~! = D, see (2.69), we
get

AX =uD™ ' —D— AZ. (2.91)
Using (2.65-2.69) and expression (2.91) for AX, we can write
Ve p-1yep-T,
where V¢ is the unique solution of the Lyapunov equation
VD + DV =(uD ' =D —AZ)AZ + ANZ(uD™' — D — AZ) —2oul. (2.92)
Equation (2.92) can be also written as
V=< (uD ' =D -~ AZ)AZ + AZ(uD™ ' — D — AZ) — 20l >p .

First, matrix AZ := P~TAZP~! is computed in 2n3 + O(n?) flops. Then the
right hand side of the above Lyapunov equation (2.92) takes n® 4+ O(n?) flops.
Next, the solution V¢ is obtained in O(n2) flops and the matrix V¢ in 2n3+O(n?)
flops. The matrix AZ¢ is computed from (2.28) as

Finally, the expression for AX¢, defined by (2.29), is obtained using results (2.71-
2.73). Hence, it follows that

AXC=-WAZW —VE.

Both AZ¢ and AX ¢ are computed in 2n3+O(mn?) flops. Therefore, the corrector
direction can be obtained in 7n? + O(mn?) flops.

244 Summary

In Table 2.2 we summarize the total computational complexities of the AHO, the
HKM and the NT directions discussed in Sections 2.3 and 2.4.

The second column denotes which one of the two approaches is used to com-
pute the matrix M. The third column shows the corresponding computational
complexities for each direction. The overall complexity of the second approach is
better, except for the HKM direction. In case m < %n, then even for the HKM
direction the second computational approach will have better flop count.

Despite the good computational time, it has to be pointed out again that the
second approach requires more memory space. This is a significant drawback
when we have a large-scale SDO problems. The ratio between the amount of
storage of the second approach compared with the first approach is at least two,
see Monteiro et al. [83]. Therefore, the first approach is used in IPM’s software
for SDO, such as CSDP [18] and SDPA [113].

2.5 OTHER ‘OVERHEAD’ COMPUTATIONS 37

Search Computational Flop count for

direction |approach for M the predictor—corrector algorithm
AHO First 6mn® +m’n® + Zm® + O(mn® + m’n + n®)
(P=1) Second Lmn® + m*n® + 2m® + O(mn® + m°n + n®)
HKM First amn® + $m*n® + tm® + O(m’n + mn® + n®)
(P= Z%) Second 3mn® +m*n® + Im® + O(m’n + mn® + n®)
NT First 2mn® + m*n® + 2m® + O(m*n + mn® + n®)
(P= Wﬁé) Second 2mn® + 3m’n® + 3m® + O(m®n + mn® + n®)

Table 2.2: Flop count results for the AHO, the HKM and the NT search directions
using two different computational approaches.

2.5 Other ‘overhead’ computations

The overall computational complexity in a primal-dual IPM is dominated by
several operations depending on the particular structure of the SDO problem.
If the constraint matrices A;,4 = 1,...,m are dense and m is far larger than n,
more computational effort is spent in computation of the m x m matrix M from
(2.15), e.g. see [20]. When A;’s are very sparse, factorizing? M becomes the
dominant operation. Hence, an improvement of the time necessary for forming
and factorizing this matrix could give a significant speedup of the total solution
time.

In case of m is not far larger than n and the matrices A; have a small number of big
diagonal blocks, then the matrix operations on the positive semidefinite matrices
X and Z can be the dominant ones, see e.g. [113]. In general the primal variable
X is fully dense even if all the constraint matrices A;,7 = 1, ..., m are sparse. As
a result performing factorization on X can occupy a significant amount of time
when m is not far larger than n. On the other hand, the dual matrix variable Z
computed by

Z = C—zm:yiAia

inherits the sparsity of the constraint matrices A; i = 1, ..., m and the data matrix
C. This has been a critical disadvantage of primal-dual IPM methods compared
to the dual interior-point method, which generates iterates only in the dual space.
The dual-scaling IPM has lower computational cost per iteration compared with

2Depending on the search direction, M can be factorized by Cholesky or LU factorization.

38 COMPUTATIONAL COMPLEXITY OF IPM’S 2.6

primal-dual IPMs. However, it does not possess a super-linear convergence rate
and has less accuracy in practice [114].

2.6 Conclusion

In this chapter we presented the computational complexity of three popular search
directions for SDO, namely the AHO, the HKM, and the NT direction. Two
approaches were presented for computing the matrix M. The second approach,
introduced by Monteiro and Zanjacomo [83] takes less time, but requires more
memory. Hence, it is less suited for large-scale problems.

All computational complexity results shown in this chapter are based on dense
matrix computations. It has been shown in practice, see e.g. [112, chap. 2], that
variations in problem structure seem to be more significant than problem size in
determining the computational complexity of IPMs. Hence, exploiting structure
is an important issue when one deals with software for solving SDO problems.

One popular approach to reduce the computational effort is to use block ma-
trix structure of the data matrices, whenever possible, and store only the upper
triangular part of all symmetric matrices, see e.g. [18, 113]. Another very suc-
cessful approach used in practical computations is to use sparse data matrices
and sparse linear algebra. This could lead to a significant reduction of the mem-
ory usage and of the number of computations necessary to solve certain types of
large-scale SDO problems, with very sparse data matrices. Complexity results
based on sparse computations are difficult to obtain, since the performance of
such algorithms heavily depends on the problem’s structure. Third, a signifi-
cant reduction in practical computational difficulty can be achieved if a low-rank
structure, where present, is exploited, see e.g. [107].

Practical experience suggested that a significant computational time is spent
on computing and factorizing the matrix M. Speeding up these two computa-
tions has a big impact on the total solution time for large-scale problems. This
motivated our objective in this thesis, namely to parallelize these computations.

Chapter

Parallel Architectures

In this chapter we present an overview of the parallel computer architectures
and focus on the differences from the programming point of view. Suitability of
the different parallel systems for the implementation of interior-point methods is
also discussed. Finally, we motivate the choice of a parallel architecture for the
implementation of a primal-dual IPM algorithm for SDO.

3.1 Parallel processing

The term parallel processing refers to the case when at least two processors co-
operate by means of exchanging data while working on different parts of one and
the same problem. Computers, which employ parallel processing, are referred to
as parallel computers. There exist different classifications of parallel computer
systems depending on: the number of processor units, CPU-to-memory access,
interconnection networks, etc. More details on parallel computer architectures
can be found in the survey by Duncan [38].

According to the criteria ‘number of processing units’, parallel systems with
several thousands of processors are known as massively parallel, e.g. BlueGene/L
system by IBM? and Jaguar - Cray XT/4/XT3 by Cray Inc®. A computing system
is said to be large-scale parallel system if it has several hundreds to thousands of
processors. Most of the systems in these two categories are custom built, and are
one-of-a-kind machines. Parallel computers with tens or hundreds of processing
units, based on PCs, are considered small scale systems, e.g. the DAS3 com-
puter4.

Thttp://www.top500.org
2http://www.ibm.com
Shttp://www.cray.com/
4http://www.cs.vu.nl/das3/

39

40 PARALLEL ARCHITECTURES 3.1

In the past each processor used to have its own packaging, i.e., one CPU per
microchip. Recently, multi-core processors were introduced, see Geer [49]. They
contain multiple processing units in a single package. Examples of such CPUs are
Intel® and AMDS dual-core and quad-core processors. As a result, the new gen-
eration of desktop and mobile PCs have a certain amount of parallel processing
capability built-in. Therefore, parallel computing once again attracts significant
interest from the scientific community. An up-to-date overview of the supercom-
puters can be found in [109].

3.1.1 Shared and distributed memory computers

An important classification of parallel computers is according to the CPU-to-
memory access. Systems, where all of the processors have a direct access to the
total amount of memory available, are called symmetric multiprocessors (SMP).
Multi-core processors are considered to be a part of this class. When such com-
puter systems are used for parallel processing, they are also called shared memory
parallel computers, see Culler at al. [25]. From a hardware point of view such a
system is a computer architecture where all processors have direct access to the
common physical memory, see Figure 3.1.

——Shared memory computer ~
CPU; CPU, ¢ * * | CPUy
’ Bus
~ J

Figure 3.1: Principle structure of a bus-based shared-memory parallel computer.

In a programming sense, it describes a model where parallel tasks, at any moment,
have the same ”picture” of the memory, and can directly address and access the
same logical memory locations, regardless of where the physical memory is actu-
ally located. Since the processors share the same address space, the knowledge of
where data items are stored is no concern of the programmer. For a discussion of
the challenges of programming shared-memory systems, see Pfister [91].

Shared memory parallel architectures can be further divided into two subclasses

5www.intel.com
6www.amd.com

3.1 PARALLEL PROCESSING 41

based on memory access times: Uniform Memory Access (UMA) and Non-Uniform
Memory Access (NUMA). The first one enjoys equal access times to all parts of
the memory, whilst in the second one this is not the case.

Distributed memory computers are the second class of parallel computer systems,
according to the criteria CPU-to-memory interconnection. The work of Seitz [96]
pioneered this type of architecture. Each processor in such a system has its own
local memory to which only this processor has a direct access, see Figure 3.2.

—Distributed memory computer

Processing nodes

Node 1 Node 2 Node N
L] L] L]
CPU, CPU, CPUn

4‘ Communication network };

Figure 3.2: Principle structure of a distributed memory parallel computer.

From a programming point of view, no global memory address space exists across
the processors. This means the user has to work with multiple address spaces,
one for each local memory, and to explicitly organize the transfer of data from
one address space to another when necessary. Such a computer is evidently more
difficult to program than a shared memory parallel system or a single-CPU com-
puter.

Most of the large scale and many small scale parallel systems are hybrid solutions
in which several shared memory parallel computers are connected by means of an
interconnection network. Such hybrid systems are non-uniform memory access
(NUMA) architectures, see Figure 3.3.

A widely used classification of high-performance computer systems is the clas-
sification proposed by M.J Flynn [40]. According to Flynn’s taxonomy, parallel
computers have either SIMD (single instruction/multiple data) or MIMD (multi-
ple instruction/multiple data) architecture, in practice.

In a SIMD parallel computer all processing units execute the same instruction on
different data items, see Hillis and Tucker [61]. There is one control unit which
is common for all processing units. This mode of operation fits quite well the
computational requirements of many scientific applications. A common property
of these applications is that they make use of the same operations on each ele-
ment in large arrays of data. Such data-parallel operations are perfectly suited

42 PARALLEL ARCHITECTURES 3.1

—Hybrid distributed-shared memory ~

Shared memory- Shared memory.

’ Interconnection network ‘

Shared memory:

Figure 3.3: FExample of non-uniform memory access memory architecture.

for execution in a SIMD mode. Despite the fact that parallel computers today are
not SIMD, single instruction/multiple data is implemented in the SSE (Streaming
SIMD Extensions) instruction set for the x86 processor architecture.

In contrast to the SIMD computer architecture, MIMD parallel computers could
execute different instructions at the same time. Hence, the MIMD computers
offer more flexibility than the SIMD computers. In programming sense they are
generally more difficult to program and require more complex system software.
The reason is the need for good coordination of the different processors. It is
achieved either by the programmer or by the system software in the data parallel
programming model.

In fact, most of the parallel computers make use of a combination of SIMD and
MIMD modes of operation. While different processing nodes execute different
instructions in a MIMD mode of operation, the SIMD processing mode is used
within each processing node where all CPU units execute the same operation
on different pieces of data. For more discussion on parallel computers from the
programming point of view, see Dongarra et al. [36, Part IJ.

3.1.2 Distributed computing

Communication networks are an essential part of the computer technologies to-
day. Computers interconnected by a network and running appropriate software
can be operated as a distributed memory parallel computer, often called a cluster.
Parallel processing on such systems is usually referred to as distributed comput-

3.1 PARALLEL PROCESSING 43

ing, see Figure 3.4. Systems of this kind rely on a local area network (LAN) or a

——Computer cluster

Node i+1 Node i+2 Node i+3

- J

Figure 3.4: A cluster of computers connected by a computer network used for distributed
computing.

high-speed, low-latency” network interconnect such as Myri-10G®, Infiniband [1],
etc. When a LAN is employed to connect a commodity hardware and software,
one speaks of a Beowulf cluster [97, 98].

The system software needed for distributed computing is typically implementa-
tion of a message passing library, such as PVM? (Parallel Virtual Machine) or
MPT!? (Message Passing Interface). Parallel software, written in a standard pro-
gramming language (C, FORTRAN, etc.), that makes subroutine calls to PVM
or MPI libraries, is portable both to distributed computing systems and to shared
memory parallel computers. The only difference is the time spent on communi-
cating data between processors, see Gropp et al. [56].

There are two major applications of clusters: High Availability (HA) and High
Performance Computing (HPC). The first one is used to ensure greater reliability
of time-critical applications, while the second one is designed to provide greater
computational power than a single computer. Since HA applications are not the
subject of this thesis, we focus on HPC aspects of clusters, and particularly to
their applications for interior-point method solvers for SDO.

3.1.3 Grid computing

The term computer grid was introduced in the mid 1990s as a concept describing
a distributed computer infrastructure used in a coordinated way, see Foster et

"In a network, latency, a synonym for delay, is an expression of how much time it takes for
a packet of data to make a round-trip from one designated point to another.

8Myricom, Inc. http://www.myri.com/.

9http://www.csm.ornl.gov/pvm/

Ohttp: //www.netlib.org/mpi/

44 PARALLEL ARCHITECTURES 3.1

al.[42]. The grid concept offers a model for solving massive computational prob-
lems by making use of a large numbers of unused computing resources and storage
facilities, owned by different institutions, companies or individuals at different lo-
cations. The goal of this kind of computing is to solve large-scale computational
problems such as earthquake simulation, weather modeling, financial modeling,
and combinatorial optimization problems that are too big for any single supercom-
puter. A survey on using grids for large-scale science and engineering application
was done by Johnston [63]. Results on using computational grids to solve large
quadratic assignment problems (QAP) were presented by Anstreicher et al. [5].
Distributed facilities, taking part into the grid, retain the flexibility to work
on multiple local smaller problems. There are no restrictions on the type of plat-
forms, hardware/software architectures, and computer languages involved in the
grid computing. A classification of grid resource management systems was intro-
duced by Krauter et al. [73]. Example of a grid system is displayed on Figure 3.5.

,—Crid ~

Workstations
Servers

Figure 3.5: Example of a grid computing infrastructure.

The main challenge of the grid computing is to virtualize the view of the dis-
tributed computer resources in a way that a grid user essentially sees a single,
large virtual computer. This is done by means of a grid middleware that takes care
of integration of the participating facilities. At its core, the middleware is based
on an open set of standards and protocols, e.g., the Open Grid Services Architec-
ture (OGSA), that enables communication across heterogeneous, geographically
dispersed environments. An example of such middleware is the Globus Toolkit
[41]. Tt provides standard system components that support a wide variety of ap-
plications, without requiring a completely unique infrastructure to be developed
for each application alone.

At first glance, grid computing and cluster computing look alike. The key dis-
tinction between them is mainly in the way resources are managed. In the case
of clusters, a centralized resource manager takes care of allocating resources and

3.2 SUITABILITY FOR IPM IMPLEMENTATIONS 45

making the nodes working together as a single unified system. In the case of
grids, each participating machine has its own resource manager that provides
only a virtual single system view for the grid user, see e.g. [12, 43].

3.2 Suitability for IPM implementations

In the previous section we introduced a classification of the parallel computer
architectures according to the number of processors, CPU-to-memory access and
interconnection networks. However, there are only two main classes of multipro-
cessor ‘supercomputers’ today with respect to the programming model, namely
shared memory and distributed memory architectures. The two architectures are
suited to solving different kinds of problems.

Shared memory machines are best suited to so-called ‘fine-grained’ parallel
computing, where all of the pieces of the problem are dependent on the results
of the other processes. Distributed memory machines on the other hand are best
suited to ‘coarse-grained’ problems, where each node can compute its piece of the
problem with less frequent communication.

Another issue with distributed memory clusters is message passing. Since each
node can only access its own memory space, there has to be a way for nodes to
communicate with each other. Beowulf clusters use MPI to define how nodes
communicate. An issue with MPI, however, is that there are two copies of data:
one is on the node, and the other has been sent to a central server. The cluster
must ensure that the data that each node is using is the latest.

Partitioning problems to solve them by distributed computations is the main
difficulty with the Beowulf cluster. To run efficiently, problems have to be parti-
tioned so that the pieces will run efficiently on the RAM, disk, networking, and
other resources on each node. If nodes have a gigabyte of RAM but the problem’s
data set does not easily partition into pieces that run in a gigabyte, then the
problem could run inefficiently. This issue with the dynamic load balancing is not
a problem for shared memory computers.

The attraction of using Beowulf clusters lies in the low cost of both hardware
and software and the control that builders/users have over their system. These
clusters are cheaper, often by orders of magnitude, than single-node supercom-
puters. Advances in networking technologies and software in recent years have
helped to level the field between massively parallel clusters and purpose-built
supercomputers.

Ultimately the choice ‘shared or distributed’ depends on the problem one is
trying to solve and on the available computing resources. In our case the parts
of the SDO algorithm suitable for parallel computation are computing the Schur
complement matrix and its Cholesky factorization.

Firstly, composing the matrix M as in (2.15) allows each node independently
from the others to compute its piece of data and no communication is needed until
the pieces of the matrix are assembled. This allows us to regard this computation

46 PARALLEL ARCHITECTURES 3.3

as a course-grained process. Secondly, the ScaLAPACK [14] routines employed for
factorization of M are based on block-partitioned algorithms in order to minimize
the frequency of data movement between different levels of the memory hierarchy.

3.3 Conclusion

In this chapter we have presented an overview of different parallel computer ar-
chitectures. We discussed their differences from the programming point of view.
Shared memory computers are easier to program but much more expensive than
the distributed memory computer clusters. PCs with multi-core CPUs in most
cases have RAM comparable to that of a desktop PC, so they should not be
viewed as cheap shared-memory supercomputers yet. Distributed memory clus-
ters are more difficult to program, but offer a significant amount of memory and
computing power at lower price. They are easier to scale up too by simply adding
a few additional nodes. These advantages make clusters the architecture of choice
for most users today. Taking into account the strong and the weak points of both
architectures, and the computations in IPMs that are most suitable for paralleliza-
tion, a distributed memory cluster architecture was chosen for further software
development of prima-dual interior-point methods for semidefinite optimization.

Chapter

Parallelization of IPM’s

This chapter focuses on the different strategies to use parallel computations to
speed-up interior-point methods and in particular primal-dual methods for SDO.
Parallelization of IPM’s is not a new concept and the first implementations of
algorithms for linear optimization (LO) appeared in the early 1990’s [67, 76].
Several parallel software packages for LO exist today. For example, pPCx by
Coleman et al. [24] and OOPS by Gondzio and Sarkissian [54]. Both of them
use primal-dual TPM algorithm with the Mehrotra predictor-corrector strategy
designed to run on computer clusters via MPI routines.

Parallel versions of several SDO software packages have been developed too.
For example PDSDP [10], SDPARA [114], SDPARA-C [85] and a parallel version
of CSDP [20]. The first three are designed for PC clusters using MPI and ScaL. A-
PACK!, and the last one is designed for a shared memory computer architecture
[20]. PDSDP is a parallel version of the DSDP5 solver developed by Benson,
Ye, and Zhang [11] and it uses a dual scaling algorithm. SDPARA is a parallel
version of SDPA for a computer cluster and employs a primal-dual interior-point
method using Mehrotra[78] predictor-corrector strategy and HKM search direc-
tion, as does CSDP. SDPARA-C uses a path-following primal-dual IPM algorithm
and HKM search direction. It is a parallel version of SDPA-C solver developed
by Nakata et al. [84].

In this chapter we revisit the topic of the parallel computations in primal-dual
IPM’s for LO and SDO. We discuss the possibilities and respective trade-offs in
the process of parallelizing interior-point algorithms for semidefinite optimization
based on the AHO, HKM and NT search directions, described in Chapter 2.

thttp://ww. netlib. org/scal apack/

47

48 PARALLELIZATION OF IPM’S 4.1

4.1 Identification of parallelism

A widely adopted approach for decomposing programs for parallelism contains
three major components, see Dongarra et al. [36]. Firstly, we have to identify
components that can run in parallel. Secondly, a strategy for decomposing the
algorithm has to be chosen. Finally, a program is created according to the pro-
gramming model and the computer architecture of choice.

The first task is to identify the places in the algorithm where there is par-
allelism to exploit. This means operations that can be handled independently
without data sharing, with each of the computations running until the end, when
they synchronize on the final result. Certainly, data sharing is not a problem if two
computations both read the same data from a shared memory location. There-
fore, for a data sharing to cause a problem, one of the computations must write
into memory that the other accesses by either reading or writing, see Bernstein
[13].

Another important task in parallel processing is to choose a strategy for de-
composing the program into pieces that can be run in parallel. There are two
possible approaches to do this. The first one is known as task parallelism. Differ-
ent processors carry out different independent functions in the same time. Task
parallelism is typically limited to small degrees of parallelism.

The second approach, called data parallelism, divides the data of a problem
into regions and assigns different processors to compute the results for each region.
This type of parallelism is more commonly used in interior-point methods codes
for SDO since it exhibits a natural form of scalability. The computation per
processor remains the same, a larger problem should require only modestly longer
running time than a smaller problem on a smaller machine configuration. Such
data parallelism is the one used in PDSDP, SDPARA [114], SDPARA-C and a
parallel version of CSDP.

Data parallel loops represent the most important source of parallelism in scien-
tific programs in general. The typical way to parallelize loops is to assign different
iterations, or different blocks of iterations, to different processors. Here each it-
eration of the loop accesses a different element of the matrix M, so that there is
no data sharing. In many cases, it is possible to achieve significant parallelism in
the presence of so-called data races. A data race essentially means two or more
processes that can run in parallel without synchronization until the end. The
notion and conditions for existing of a data race were formalized in the 1960’s by
Bernstein [13].

Distributed computations often require the use of explicit message passing,
e.g., using MPI library. In this case the SPMD style [62] is a convenient choice.
In an SPMD program, all of the processors execute the same code, but apply the
code to different portions of the data. All scalar variables are replicated on all of
the processors and redundantly computed on each processor. In addition, explicit
communication primitives are necessary in order to pass the shared data between
processors. This is the case for LP solver OOPS[54] and SDO solvers PDSDP,

4.2 PARALLEL PRIMAL-DUAL IPM’S FOR LO 49
SDPARA and SDPARA-C.

4.2 Parallel primal-dual IPM’s for LO

Semidefinite optimization contains as a special case the LO problem class, see
e.g. De Klerk [27]. Therefore, the topic of parallel computations in IPM’s for
LO is related to the topic of parallel SDO. Next, we proceed by describing the
differences in the computational aspect of primal-dual interior-point methods for
LO and SDO. More details and discussion about the different IPM algorithms for
LO can be found in the book of Roos, Terlaky and Vial [94].

We consider the primal linear optimization problem in standard form

(LP) min {ch : Az =b,x >0},

where A € R™*" is real m x n matrix of rank m, vectors x,c € R™ and b € R™.
The dual problem of (LP) is given by

(LD) max{b"y:ATy+s=c,s>0},

with y € R™ and s € R™.

Problems (LP) and (LD) correspond to the SDO problems (P) and (D) de-
fined in Chapter 2, respectively when matrices C, X, Z and A;,i = 1,...,m are
diagonal. It is well-known [94], that finding an optimal solution of (LP) and (LD)
is equivalent solving the non-linear system of equations

Axr = b, x>0,
ATy+s = ¢, s>0, (4.1)
Xs = 0,

where X € R" is a diagonal matrix with entries x;,¢ = 1,...,n. Similar to the
SDO case, in LO the non-linear third equation in (4.1) (so-called complementarity
condition) is replaced by the equation Xs = pe, with parameter p > 0 and with
e denoting the all-one vector (1;1;...;1) of length n. As a result the system (4.1)
can be written as

Axr = b, x>0,
ATy+s = ¢, s>0, (4.2)
Xs = pe.

Note that the third equation in (4.2) corresponds to the third one in (2.3) for
SDO. System (4.2) has a unique solution (x(u),y(p), s(u)) for each g > 0 and
x(p) is called the p-center for (LP) and y(u), s(u) is the p-center for (LD). Assume
strict feasibility, the set of y-centers (with g > 0) defines the central path of (LP)
and (LD). If ;o — 0 then the limit of the central path exists and yields optimal
solutions of (LP) and (LD)[94].

50 PARALLELIZATION OF IPM’S 4.3

Primal-dual IPM methods for LO follow the central path approximatively.
Given a strictly feasible solution (z,y, s) the goal is to obtain the primal and dual
directions Az and (Ay, As), respectively, by solving the following Newton system

A 0 O Ax b— Az
0 AT T Ny | =] c—ATy—s |, (4.3)
S 0 X As ne — Xs

where S € R™*"™ is a diagonal matrix with entries s;,% = 1,...,n. From the third
equation in (4.3) we can express As as

Ns=X""(ue — Xs—SAzx). (4.4)

Substituting As as in (4.4) into (4.3) leads to the so-called augmented system of
the LO problem

—D7t AT Az g
A la -] @
where
D = XS
g = c—ATy—pux—L
u = b— Ax.

Note that D is a diagonal matrix. From (4.5) we an obtain the expression for the
primal direction Az as

Az = DAT Ay — Dy,
and Ay is a solution of the following linear system
ADAT Ay = ADg + u. (4.6)

System (4.6) is symmetric and positive definite and can be written similar to SDO
case as M Ay = h, where

M := ADAT, (4.7)
and
h:=ADg + u.

The major difference with the SDO case is that in LO the computation of M
consists of two matrix multiplications. One of these multiplications can be done
very fast in practice because D is a diagonal matrix. In linear optimization case M
is most often sparse, so the time to compute it is much less than the time needed
for factorizing it. As a result there is no gain in using parallel computations to
compute M for LO. On the other hand, solving the linear system (4.6) by parallel
solver leads to a significant speed-up, see [54].

4.3 PARALLEL COMPUTATION OF THE MATRIX M IN SDO 51

4.3 Parallel computation of the matrix A/ in SDO

Computation of the search direction in a primal-dual algorithm for SDO as in
Figure 2.1 (on page 22) consists of sequential operations only, except for the
computation of the elements M;;,4,j = 1,...,m in (2.15). The matrix M is
typically dense and its computation takes a big portion of the total running time
on a large-scale SDO problems, see e.g. [114] and [20]. Therefore, M is a good
candidate for parallel computation using the data parallelism model.

All three search directions presented in Chapter 2 result in a positive-definite
matrix M, but only for the HKM and the NT direction it is also symmetric, see
e.g. [103]. This means that for the AHO direction it is necessary to compute
in the worst case at most % (m — 1) extra elements of M compared with the
other two directions. Practical experiments with search directions for SDO done
by Todd [103] suggests that the AHO, the HKM and the NT directions have
the best performance in terms of number of iterations. Unfortunately, additional
computational work needed to compute the typically large size M makes the
AHO direction less attractive for practical parallel implementation. Hence, in the
analysis that follows in this chapter, we assume that the HKM or the NT search
direction is used.

Recall from Chapter 2 that computation of the matrix M is done as a matrix
product of the type

Mij = 'I‘I‘(AlslAjSQ)a 7’7] =]-7 ey T, (48)

where S = Z71,S, = X and S; = 95 = W for the HKM and the NT direc-
tions, respectively. A construction similar to (4.8) arises also in the dual-scaling
interior-point algorithm behind the PDSDP solver. To compute the search direc-
tion, PDSDP involves the solution of a positive definite linear system of the type
MAy = h, see for details [10]. The matrix M in this case is defined as

Mij = 'I‘I‘(SgAislAj), i7j =]., ey M, (49)

where S; = Sy = Z~! [10]. Note that since all matrices involved in the product
S2A;S1A; are square, due to (2.55), it follows that (4.9) is equivalent to (4.8).

In what follows, we show several approaches to compute the matrix M in
parallel. Assume we have a multiprocessor computer with N processors, where
N > 1. We denote by P;,j = 0,..,N — 1 a corresponding process for each
processor. Defined in this way processes form a one-dimensional array, i.e., a
vector of processes. Next we outline two different ways used in SDO software to
map the matrix M to the vector of processes.

Data distribution schemes

Since M is symmetric, only the lower (or upper) triangle need to be computed.
Assume from now on that we compute only the lower triangle.

52 PARALLELIZATION OF IPM’S 4.3

The first approach for distributed computation of M, defined as in (4.8),
assigns in a cyclic manner the rows (or columns) to the processes. Without loss
of generality, we may assume that it is done row-wise. At the beginning of the
distributed computation, each of the N processes is scheduled to compute only
one of the first N rows of matrix M. Next, the (N + 1)-th row is assigned to
process Py, (IV + 2)-th row to P; and so on. In this way each processor can work
independently on one row at the time, e.g., row 7 is computed by process P,
where 7 := (i mod N), i = 1,...,m and mod is the modulus operator. Figure 4.1
shows this kind of data distribution. It is also called a one-dimensional cyclic row

1 m

N+1 F%

m P

Figure 4.1: One-dimensional cyclic row distribution.

distribution [14, chap. 4] and it is used in SDPARA, SDPARA-C and PDSDP.

The shared memory version of CSDP uses similar approach, see Borchers
and Young [20]. The difference is that the matrix M is subdivided into blocks
of rows with size np, where n, € [1,m). Each block of n; consecutive rows
is assigned for computation to one process only. When a static scheduling is
used, the i-th row is assigned for computation to process P,, where in this case
r:= (|i/np] mod N). This type of distribution is also called a one-dimensional
block-cyclic row distribution and is shown in Figure 4.2. Note that in the general
case the last block will have m — kny, rows, where k := |m/np]. This type of data
distribution contains the one-dimensional cyclic row distribution as a special case
when np, = 1. The shared memory version of the CSDP does not use a static
scheduling of the blocks of rows, but a “self scheduling” approach. Each time
a processor finishes a block, it begins to work on the next one that needs to be
done. This provides better load balance than the static scheduling approach.

In both variants of the one-dimensional distribution, each row (or block of
rows) of M is stored into the local memory of the processor that owns the corre-
sponding process. Hence, none of the processors has the complete matrix M in

4.3 PARALLEL COMPUTATION OF THE MATRIX M IN SDO 53

kn,

P

m

Figure 4.2: One-dimensional block cyclic row distribution.

its memory. The advantage of this one-dimensional approach is that the load bal-
ance among the processes is very good, see Kojima et al. [114]. The disadvantage
is that the data distribution of M is not well suited for distributed factorization
necessary in the next step of the primal-dual IPM algorithms.

Computational approaches

In both one-dimensional data distributions described above, all elements of one
row of M are computed by one process only. Next we show different implemen-
tations of such row computations in the primal-dual IPM solvers for SDO.

The first approach is based on (4.8) and computes the elements in the i-th
row of M for ¢ =1, ..., m, by the following steps:

(1) Compute the matrix product A;S; once;
(2) Compute for j =1, ...,7 the product A;S5;
(3) Compute Tr[(A;51)(A;S2)],5 =1,..., 1.

It is easy to see that processors work independently and no synchronization or
data exchange is necessary between them until the end. Almost linear speedup
can be expected using this type of parallel computations, see e.g. [114]. This
approach is used in SDPARA solver.

The second approach for computing M uses expression (4.9). In this case
the following steps are necessary to obtain each element of M in i-th row for
1=1,...,m:

(1) Compute once the matrix product SoA;St;

54 PARALLELIZATION OF IPM’S 4.4

(2) Compute Tr[(S24;51)A;],7 =1,...,1.

This way of computing M is used in PDSDP solver. For instances where compu-
tational time of the matrix products A;Ss for j = 1, ..., 7 is dominant over the time
of computing once S3A;S7, then the second approach would have an advantage.
In general, both approaches have computational complexity O(mn® + m?n?).

SDPARA-C uses a similar idea as mentioned above. The major difference is
that matrices X and Z~! are not explicitly stored, but only their Cholesky factors
Lx and Lz-1 are accessible, i.e., X is implicitly available via X := LXL§ and
Z7 V=L, Lg,l. As a result, this approach is more computationally expensive
than the other two we described above [85]. Hence, we omit its exact formulation.
Detailed information about it can be found in Nakata et al. [85]

CSDP solver uses both the first and the second approach, depending on the
density of the of the constraint matrices A4;, and it can dynamically switch between
the two.

Computation of M is followed by its Cholesky factorization, if a direct solver is
used for the linear system M Ay = h. It is well known [22] that parallel factoriza-
tion routines achieve their best performance when the data matrix is partitioned
into big and square blocks. This is not the case after both one-dimensional data
distributions described earlier. Using them to compute M causes the data to be
partitioned by rows, i.e., not in the desired shape for fast distributed factoriza-
tion. Therefore, prior to the factorization step a data redistribution procedure is
necessary. It involves inter-processor communication that causes additional com-
munication overhead and loss of overall parallel performance. Discussion about
how parallel performance is related to the data distributions can be found in [22].

One way to decrease the influence of the communication overhead is to use
very high speed Myrinet or Infiniband network interconnects, if available. Solvers
such as SDPARA, SDPARA-C and PDSDP rely on such interconnects for good
parallel performance, because they perform a data redistribution procedure for
M.

We propose another solution in case such interconnects are not available,
which is the case on many PC clusters. We use a well-known map from the
one-dimensional array of processes into a two-dimensional rectangular process ar-
ray, called often a process grid. Then, the matrix M is directly computed with
two-dimensional block cyclic data distribution, the most suitable for Cholesky fac-
torization. As a result, we eliminate the need of data redistribution and achieve
the best overall performance of computing M and factorization step together. We
describe all details of our approach in Chapter 5.

4.4 Parallel solution of positive-definite linear systems

The first step of computing the search direction for SDO (AX, Ay, AZ) involves
solving the positive-definite linear system M Ay = h to obtain Ay, see Chapter 2.
This is the case not only for SDO but for primal-dual IPM algorithm for LO as

4.4 PARALLEL SOLUTION OF POSITIVE-DEFINITE LINEAR SYSTEMS 55

well. Algorithms for solving positive-definite linear systems can be divided into
iterative methods and direct methods. Iterative methods such as conjugate gradi-
ent (CG), preconditioned conjugate gradient (PCG) and the generalized minimal
residual method (GMRES) repeatedly refine an initial approximation to the solu-
tion of the linear system until they obtain an approximation which is close to the
solution. A direct method as Cholesky factorization on the other hand factorizes
the matrix M into a product of a lower triangular matrix L and its transpose,
i.e., M = LLT. Note if we compute the Cholesky factorization of M, we need to
back solve two triangular linear systems Lw = b and LT Ay = w, where w € R™,
in order to obtain vector Ay.

If one wishes to exploit sparsity in solving the linear system M Ay = h, the
parallelization becomes more complicated. Several issues arise. Firstly, an itera-
tive solver such as PETSc [8] can always be used to obtain Ay. This requires a
preconditioner, which not only depends on the problem but also is more difficult to
parallelize. Work on this issue was done by Balay et al. [9] and Jones and Plass-
mann [64], who developed an efficient in practice parallel incomplete Cholesky
factorization algorithm. Still, iterative methods for parallel IPM computations
show weaker performance compared to the direct solvers [36].

Secondly, parallel direct-sparse solvers on a shared memory multiprocessor
computers are available and can be used efficiently, for example PARDISO [95].
Such solvers are difficult to use on computer clusters, because data and compu-
tation are tricky to distribute to balance the load among processors, for example
PSPASES [65]. A symbolic factorization phase is a potential serial bottleneck in
addition to the sparse triangular system solves. Sun developed a group of parallel
direct-sparse solvers for optimization using a multifrontal approach [102].

The third and widely used option in parallel IPM methods for SDO is the use
of parallel dense direct solver with Cholesky factorization.

4.41 Linear optimization case

Large-scale LO problems often have a very sparse constraint matrix A that also
has some particular block structure. Examples of such block structures are block-
diagonal and block-angular. These block structures can be handled by a decompo-
sition approach that allows a considerable computational efficiency trough parallel
computations, see e.g. [76]. The matrix M, computed by (4.7), is typically sparse
if the constraint matrices are sparse. When it is factored by Cholesky factoriza-
tion, it suffers from fill-in. Since PM PT is also symmetric and positive definite
for any permutation matrix P, one can solve the reordered system

(PMPT)(PAy) = Ph.

The choice of P can have a significant effect on the amount of fill-in that oc-
curs during the factorization. Hence, it is beneficial to reorder the rows and the
columns of the matrix before performing the factorization. The problem of finding

56 PARALLELIZATION OF IPM’S 4.4

the best ordering of a matrix in the sense of minimizing the fill-in is NP-complete,
see e.g. [115]. Therefore, the reordering algorithms rely on heuristics. One of the
most effective is the minimum degree ordering, see e.g. [50]. The use of such
algorithms makes parallel direct-sparse Cholesky solvers for positive-definite lin-
ear systems very efficient in implementations of IPM methods for LO, see e.g.
24, 67).

A different approach was considered recently by Gondzio and Sarkissian [54]
with respect to solving (4.6). They used an implicit inverse representation of
ADAT in order to solve the positive definite system (4.6). This implicit approach
leads to a sparsity of the matrix product ADAT similar to the one of A. Hence,
it leads to better efficiency of computation of M and allows a straightforward
parallelization of many computational steps when solving (4.6). The disadvantage
of the implicit inverse schemes of ADAT is that they are very sensitive to accuracy
issues.

4.42 Semidefinite optimization case

Computation of the elements of M as in (4.8) for SDO often results in a fully dense
matrix M. This is the case even when the constraint matrices A;,7 = 1,...,m and
C are sparse, unlike large-scale LO problems. Hence, in SDO a procedure such as
minimum degree ordering and parallel direct-sparse Cholesky solver would not be
beneficial. Therefore, the parallel direct-dense solver with Cholesky factorization
is a widely used option in parallel primal-dual IPM algorithms for SDO [10, 114].

The most important variations of algorithms for dense Cholesky factorization
are right-looking (or Gazpy) and left-looking (or Outer product Cholesky), see e.g.
Golub and Van Loan [53, p.142-144]. Next, we give a brief description of both
variants of Cholesky factorization.

Let L be the Cholesky factor of the matrix M. Recall that M is symmetric
and we have assumed earlier that it is stored in lower triangular form. During
the Cholesky factorization the elements of L overwrite the elements of M in the
lower triangle.

Left-looking Cholesky factorization [Gaxpy Cholesky in Golub, Van Loan]

In the left-looking version of the algorithm for Cholesky factorization, the matrix
M is traversed by columns from left to right. Each step updates the current
column from previous columns are performed first, and then computations are
performed on the current column. Figure 4.3 shows a snapshot of left-looking
algorithm for Cholesky factorization at column k, where k =1, ..., m.

The following operations are performed at column k of left-looking version of
Cholesky factorization:

(1) Update column k from columns to the left M, = M, — M,;; My, for
j=1,.,k—1andi=j, ...,m;

4.4 PARALLEL SOLUTION OF POSITIVE-DEFINITE LINEAR SYSTEMS 57

k i

Figure 4.3: Left-looking Cholesky factorization.

(2) Reset Mkk = \/Mkk;

(3) Compute elements of column k, i.e. M := M /My for i =k +1,...,m.

Right-looking Cholesky factorization [Outer product Cholesky in Golub, Van Loan]

In the right-looking variant of the Cholesky factorization, similarly to the left-
looking approach, the matrix is traversed by columns from left to right. This
time at each step, computations are performed on the current column first, and
then updates to columns to the right indexed by j are performed immediately,
see Figure 4.4.

Assume the algorithm is computing currently column k, where k = 1,...,m.
The right-looking variant of the Cholesky factorization executes the following
steps:

(1) Reset My := / Mpyy;
(2) Compute elements of column k as My, := M /Mpg;

(3) Update all columns to the right M;; := M;; — MM, for j =k+1,...,m
and ¢ = j,...,m.

In both left- and right-looking variant the matrix is traversed by columns from
left to right. The difference between them is the way the updates are done. In
the left-looking case they are done as late as possible. The right-looking version
is doing them as soon as possible. Neither one of the variants of the Cholesky fac-
torization is viewed as canonical or performs uniquely better on a single processor
computer, see e.g. [79].

58 PARALLELIZATION OF IPM’S 4.4

]

Figure 4.4: Right-looking Cholesky factorization.

Block-partitioned form Cholesky factorization

Better performance and scalability of the Cholesky factorization is achieved in
practice if a column-wise block-partitioned approach is used, see e.g. [37]. A
right-looking factorization in block-partitioned form is implemented in LAPACK
routine DPOTRF, see Figure 4.5.

—>

Figure 4.5: Right-looking block-partitioned form of Cholesky factorization.

Assume that at the k-th step of the factorization, matrix M has a partition
as in Fig.4.5. Here L is the already computed part of the Cholesky factor L,
and M is the remaining myj x my symmetric diagonal block matrix of M to be

4.5 OVERHEAD 59

factorized next. Let M be partitioned as in Figure 4.5:

[M [(Lu 0][LE Ly
M = B B = =
Mz Moo | L21 Lo 0 L3,
[LuLf LuLg
| LotL]) LoiL) + Lo L3,

where matrices My; and Ly; are my, X my, Moy and Loj are (my — mp) X mp, Moo
is (mg —myp) X (mg —myp) and mp > 1 is the size of the column panel (block).
Note that the matrix Lq; is lower triangular.

The order of operations performed at the k-th step of right-looking block-par-
titioned version of the Cholesky factorization is:

(1) Compute the Cholesky factorization of the diagonal block Mj; using right-
looking or left-looking strategy described above. As a result L is obtained;

(2) Compute the column panel Loy = Mo (Lﬁ)fl;
(3) Update all the rest of the matrix M to the right, so Moy = Moy — Lo LY.

Several packages provide routines for block-partitioned variants of parallel
Cholesky routines for distributed computations on clusters, such as ScaLAPACK
and PSPASES [65]. Since, one of the aims of our implementation is to be portable
to many different computer platforms we choose the ScaLAPACK library. It
provides a parallel right-looking block-partitioned Cholesky routine PDPOTRFZ2.
In order to improve the parallel numerical factorization performance this routine
makes use of fast matrix multiplications based on a Level-3 BLAS (basic linear-
algebra subprogram) routines. The solvers SDPARA, SDPARA-C and PDSDP
all make use of this routine from the ScaLAPACK library.

45 Overhead

Apart from computing the matrix M and performing its Cholesky factorization in
parallel, there is another operation that can benefit from the parallel processing.
As we already discussed in Section 2.5 of Chapter 2, the primal variable X is
dense even if all the constraint matrices A;,7 = 1,...,m are sparse. As a result,
the Cholesky factorization of X can occupy a significant amount of time when m
is not far larger than n, i.e., we have a very large size of the matrix variables X
and Z compared with the number of constraints.

Factorization of a large-scale matrix X on a shared-memory parallel computer
is a straightforward operation since each processor has direct access to every

2http://www.netlib.org/scalapack/

60 PARALLELIZATION OF IPM’S 4.5

element of X. Unfortunately, on a computer cluster there are two major difficulties
in factorizing X using distributed computation. The first problem arises from the
fact that all nodes in the cluster contain and use X locally for all redundant
sequential computations in a primal-dual algorithm for SDO. In case X has to
be factorized in parallel, a distributed copy of it has to be created. As a result,
each node will require extra memory to store its local part of the distributed X.
The second disadvantage is that after X factorized, the resulting factor Lx from
X := LxL% remains distributed, i.e., none of the nodes has all elements of it.
Since all of the nodes require a local updated copy of Lx, a significant amount of
inter-processor communication is necessary to assemble a complete Lx on every
node of the cluster. The benefit from the distributed factorization of X is lost in
most cases due to the extra communication overhead. Hence, factorization of X
is usually left as a local computation on every node as in the case of the SDPARA
solver.

For certain classes of SDO problems such as combinatorial optimization prob-
lems, where the constraint matrices A;,7 = 1,...,m and the matrix C are very
sparse, exploiting the structure of the problems to obtain sparse X and its fac-
torization have been successful. Work in this direction was done by Fukuda et
al. [47] and Nakata et al. [84]. They introduced the positive-definite matrix
completion method for primal-dual IPM’s. This method uses matrix completion
theory to exploit the sparsity pattern of C' and A;,i = 1,...,m, and perform a
sparse factorization on the primal matrix variable X. A key element of it is that
X is not stored explicitly, so there is less demand for memory in practice. This
matrix completion technique is employed by the SDPARA-C parallel solver [85].
A down side of positive-definite matrix completion is the increased computational
cost for obtaining the elements of M. Therefore, the benefits of it can be in many
cases marginal and even nonexistent, depending on the structure of the problem,
see e.g. [85].

Since the latest generation of processors have more than one computing core,
in other words in-build shared memory parallel processing features, those can
be used for speeding up the Cholesky factorization of X. Standard packages for
linear algebra as Intel MKL3, AMD ACML* and ATLAS® BLAS already offer
enhanced Cholesky factorization routines optimized for multi-core processors, see
e.g. Kurzak and Dongarra [74]. As a result, cluster based IPM solvers for SDO
could evolve into a ‘hybrid’ type parallel software. On a global level they can take
advantage of the distributed cluster computations, but locally, on a node level,
they will be able to perform small-scale shared memory computations.

It is a well-known fact that high performance does not automatically follow
from parallel implementation. To achieve the highest possible performance one
must take a number of other considerations into account. Firstly, it is very im-
portant to balance the loads on the components of the computing configuration

3http://www.intel.com /software/products/mkl
4http://www.amd.com/acml
Shttp://math-atlas.sourceforge.net/

4.6 CONCLUSION 61

so that no single component dominates the running time. Secondly, solving very
large problems requires that the computation scales well to large numbers of par-
allel processors, i.e., the implementation requires a certain level of craftsmanship.

4.6 Conclusion

Despite the effort and some solid developments, the use of parallelism in interior-
point methods has not been as wide spread as their sequential version. One of
the reasons is that to run a parallel version of IPM solver for SDO, specialized
and thus expensive hardware was necessary. With the recent progress of proces-
sor technologies towards multi-core CPUs and high speed network connectivity,
parallel computations are within the reach of many new users.

Another reason for the slow progress is the inherently sequential nature of
interior-point methods for SDO. Apart from the computing in parallel the matrix
M and solving the linear system in Ay, no other parts allow profitable concurrent
computations. Despite this, there is still room for improvement such as exploiting
the low-rank structure. Finally, computing the matrix M using a row-by-row tech-
nique might be efficient for certain type of problems, but it introduces undesirable
communication overhead.

Chapter

Implementation of a Primal-Dual IPM
for SDO using the HKM Search
Direction

In this chapter we present the algorithmic framework and practical aspects of im-
plementing a distributed parallel version of a primal-dual semidefinite program-
ming solver on a computer cluster. Our implementation is based on the sequential
solver CSDP5.0 [18] and uses a predictor-corrector strategy with the HKM search
direction.

We propose a different computational approach for the matrix M than the
other interior-point solvers for SDO. Instead of one-dimensional data distribution
(see Section 4.3) when computing M we use a two-dimensional distribution. In
this way we decrease the communication overhead on computer clusters with slow
interconnects such as 100Mbps (Megabits per second) and 1Gbps (Gigabits per
second) ethernet. The infrastructure for ethernet is cheaper by factor of six to
twenty compared with the high performance computing (HP) 10Gbps intercon-
nects as Myrinet or Infiniband [1]. Our aim is to achieve better utilization of the
existing non-HP network and computational infrastructure, and in this way lower
the cost of the parallel computing.

A new feature is implemented to deal explicitly with SDO problems that have
rank-one constraint matrices. As a result a significant speedup is achieved when
computing M for such problems. To the best of our knowledge our software is the
first parallel primal-dual interior-point solver to exploit rank-one structure explic-
itly. The only option available so far is to use SDPT3 (no parallel implementation
available yet) or the dual scaling algorithm implemented in PDSDP [10].

Our solver preserves the 64bit computational arithmetic feature of CSDP5.0
and makes it possible to solve very large semidefinite optimization problems that

63

64 IMPLEMENTATION OF A PRIMAL-DUAL IPM FOR SDO 5.1

lie beyond the 32bit addressing space (or 4GB memory). In this way we make it
possible to solve large-scale SDO problems, that require much more RAM (ran-
dom access memory) than 4GB, on a cluster of 64bit PC’s with at most 4GB of
memory each. Such large problems usually require an expensive shared memory
multiprocessor computer with a large amount of RAM. Hence, our solver offers a
cost effective way to solve large-scale SDO problems using clusters.

Next we present the algorithmic framework behind our implementation and
its features.

5.1 The Algorithm

There are different ways to formulate the primal and the dual SDO problem. One
widely used approach is to define (P) and (D) as in Chapter 2, i.e., to consider
the primal problem to be a minimization and the dual problem a maximization
one. Helmberg et al. [60] proposed a definition of the primal SDO problem as a
maximization of the objective function and the dual as a minimization of the dual
objective. Such approach was adopted for practical implementations of primal-
dual IPM’s by Yamashita et al. [113] and Borchers [18]. This alternative approach
introduces only minor changes to what we already presented with respect to the
interior-point methods for SDO in Chapter 2. Since we use the CSDP 5.0 [18]
solver as a base for our development, we will use this second approach to describe
the algorithmic framework of our solver.

We consider the semidefinite optimization (SDO) problem formulation in pri-
mal form

(SDP) max Tr(CX)

s.t. AX) = b, (5.1)
X = 0,
where X € S, and \A(-) is a linear operator defined by
Tr(A: X)
Tr(A2X)
=) (5.2)
Tr(A,,X)
The formulation (5.1) is obtained by replacing C by -C in (2.1). All constraint
matrices 4; € S™ (i.e. are symmetric n x n) for ¢ = 1,--- ,m, as is the matrix

C. Thus n denotes the size of the matrix variables and m the number of equality
constraints. The dual of the (SDP) problem is given by

(SDD) min by

y,Z
st Ay) -2
Z

C,
0,

Y

5.1 THE ALGORITHM 65

where .
A=y,

is the adjoint of A(-) with respect to the usual trace product. The primal X
and the dual (y, Z) variables are interior feasible solutions of (SDP) and (SDD),
respectively, if they satisfy their constraints as well as X > 0 and Z > 0. As we
already described in details in Chapter 2, the idea behind primal-dual IPM’s is
to ‘follow’ the central path

C:={(X(1),y(p), Z(n)) € SL x R™ xS} : >0},

where each (X (u),y(n), Z(n)) is the solution of the system of equations

b—AX) = 0,

Z+C—-A*(y) = 0, (5.3)
ZX —pul = 0,
Z, X » 0,

where I denotes the identity matrix of size n x n, and p > 0.

The algorithm used in CSDP5.0 is an infeasible-start method and it is designed
to work with starting point X > 0,7 > 0 that is not necessarily feasible. An
alternative approach used in some SDO solvers as SeDuMi [99] is to use a self-
dual embedding [34] technique to obtain a feasible starting point on the central
path. In our implementation we use the default CSDP5.0 starting point (a similar
approach is used in [107]):

X = al,
y = 0, (5.4)
Z = pl,
where
a = nmax(M), k=1,..,m,
ko \1+ || Ak 7
1
8 = ﬁ (1 —l—max(m]?X(HAkHF), ||C||F)) , k=1,..,m,

and || -||r denotes the Frobenius norm of a matrix and | - | the absolute value of a
real number. It is easy to see that this initial point may not satisfy A(X) = b or
A*(y) — Z = C, so we write (2.7) and (2.8) for (SDP) and (SDD), respectively as

R, = b—AX),
Ry == Z+C-—A"(y).

66 IMPLEMENTATION OF A PRIMAL-DUAL IPM FOR SDO 5.1

The algorithm implemented in CSDP5.0 uses the Mehrotra predictor-corrector
strategy. The affine-scaling step is computed from:

—AAXY) = —R,,
AZ® — A (Ay") = —Ry, (5.5)
ZAX*+NZ°X = —-ZX.

Using the same approach as in [60], we can reduce the system of equations (5.5)
to

AZTA (LAY X) = —b+ A(Z7'Ry4X),
AZ® = A*(Ly®) — Ry, (5.6)
AX? = —X+Z'RyX - Z'A*(AyM)X.
If we define
M = [A(Z7'A1X),A(Z'AxX),..., A(Z7 A, X)), (5.7)
h = —b+A(Z 'RsX),

then we can write the first equation in (5.6) in a matrix form as follows:
MAy* = h. (5.8)

Note that (5.8) was obtained by reducing the system of equations (5.5). Therefore,
in the literature (5.8) often refereed a Schur complement equation, and the matrix
M, defined by (5.7), is called Schur complement matrix.

As Helmberg, Rendl, Vanderbei and Wolkowicz have shown, the matrix M
is symmetric and positive definite [60]. Thus we can compute the Cholesky fac-
torization of M to solve the system of equations (5.8). By back substitution of
Ay® into the second and the third equation of (5.6) we can subsequently compute
AZ® and AX?, respectively. Note that in this case AX® obtained by the third
equation in (5.6) is not necessarily symmetric. In order to keep X symmetric we
need to symmetrize AX®. In case of the HKM search direction this is done by

AXC+ (AXYT

As a result, AX® obtained by (5.9) results in the same expression as (2.87) in
Section 2.4.2 from Chapter 2 for g = 0, namely

AX® (5.9)

1
AXC = X — 5()@2‘12—1 + Z7NZ°X). (5.10)

To show the equivalence between (5.9) and (5.10), we first express A*(Ay®) from
the second equation in (5.6) and substitute it into the righthand-side of the third
equation of the system (5.6). As a result we get

AX®= X+ Z 'RyX —Z Y AZ° +R))X = -X - Z'AZ°X. (5.11)

5.1 THE ALGORITHM 67

Since the matrices X and Z~! are symmetric, we can rewrite (5.9) using (5.11)
as

a a T
w - % (—2X — Z7'AZ°X — (27 Az X)T)
= -X- % (Z7'rZ2°X + XNZz°Z7Y),

which is the same as (5.10).
For the corrector step one needs to solve the linear system

-A(AX) = 0,
NZC— A" (Ay°) = 0, (5.12)
ZAXC+ AZ°X = ul — AZOAXE,
where = w
The equation system (5.12) is solved similarly to (5.5), and (AX¢, Ay®, AZ€)
is obtained from

AZTTA (DY) X) = pAZ7h) = A(Z7HAZAXT),
NZC = A% (AyO), (5.13)
AXC = pZ7 ' = Z7TAN(AYO)X - ZT AZAXC.

Using the same notation as before,
he = pAZTY - A(ZTPAZOAXY), (5.14)
we can write the first equation in (5.13) in a matrix form as follows:
MAy® = h° (5.15)

Note that the matrix M, defined by (5.7), is the same as for the affine-scaling
direction. Hence, it is not necessary to compute the Cholesky factorization of M
again and we can solve (5.15) immediately. By back substitution of Ay® into the
second and the third equation of (5.13) we can subsequently compute AZ¢ and
AXE€, respectively. In this case, AX® obtained by the third equation in (5.13)
again is not necessarily symmetric. We apply the same approach to symmetrize
it as on the affine-scaling step, namely

_AXC (AX9)T

AX 5

(5.16)
It can be shown similarly to the previous case that the resulting expression from
(5.16) is the same as (2.89) in Chapter 2, for o = 1, i.e.,

AXC=puzZ "t -

1 1
5(AX“AZ“Z—1 + Z7INZONAXY) — 5()@202—1 + Z7IAZ°X).

68 IMPLEMENTATION OF A PRIMAL-DUAL IPM FOR SDO 5.2

Next, we add the affine-scaling and corrector step to compute the search direc-
tions:
AX = AX*4+AXC
Ay Ay + Ny°, (5.17)
NZ = ANZ°+NZ°.

Finally, the maximum step lengths of the steps ap and ap are computed such
that the update (X + ap A X,y +ap Ay, Z + ap A Z) results in a feasible
primal-dual point, see (2.31) and (2.32) in Chapter 2.

In practice, the Schur complement matrix M may become numerically singular
even though X and Z are numerically nonsingular. In this case, the algorithm

returns to the previous solution, and executes a corrector step with p = w
The default stopping criteria are the following
Tr(CX) — b7
TN Wy
L+ [Tyl
[AX) — b2 7
—_— = 1077, 5.18
L+ ol (518)
L+ [[Cllp ’
Z.X = 0,
where || - ||2 denotes the Euclidean vector norm.

The solution of the linear system (5.8) involves the construction and the
Cholesky factorization of the Schur complement matrix M > 0 that has size
m by m. For dense X, Z and A; i = 1,...,m, the worst-case complexity in com-
puting M is O(mn® + m?n?) [83]. In practice the constraint matrices are very
sparse and we exploit sparsity in the construction of the Schur complement matrix
in the same way as in [46]. For sparse A;’s with O(1) entries, the matrix Z=14; X
for i = 1,...,m can be computed in O(n?) operations (i = 1,...,m). Addition-
ally O(m?) time is required for A(-) operations. Finally, the Schur complement
matrix M is typically fully dense and its Cholesky factorization requires O(m?)
operations.

5.2 The approach

In this section we describe our distributed IPM solver for SDO that we will call
from now on PCSDP. The code is based on CSDP5.0 and it enjoys the same 64-bit
capability as the shared memory version of Borchers and Young [20]. It is written
in ANSI C with additional MPI" directives and use of ScaLAPACK[22] library for

Lhttp://www.netlib.org/mpi/

5.2 THE APPROACH 69

parallel algebra computations. The sequential part of the PCSDP solver is kept
the same as in CSDP5.0. It makes use of optimized BLAS [15] and LAPACK
[4] libraries. The latter are used for implementation of non-parallel operations
such as matrix multiplication, Cholesky factorization of the primal and the dual
variable X and Z, respectively, as well as other linear algebra operations.

PCSDP makes use of distributed computational routines for the following
operations:

e Computation of the matrix M;
e Cholesky factorization of M;
e Solution of the linear systems (5.8) and (5.15).

We already mentioned in the previous chapter that often (but not always) the
most time-consuming operations are the first two in this list. Therefore, in our
development we used parallelization to accelerate these two bottlenecks in the
sequential algorithm. Solving systems (5.8) and (5.15) by a distributed algorithm
is essential, because in this way M is stored only in a distributed way. As a result,
the software does not require that any of the computer nodes of the cluster should
be able to accommodate the whole matrix into its local memory space. Next, we
give more details on the implementation.

Assume that we have N processors available, and we attach a corresponding
process Pj,j =0,..,N —1 to each one of them. We call process Py a root process.
When PCSDP starts, the root node sends a copy of the execution and (input) data
files to the N — 1 nodes left. Each node independently proceeds to allocate space
for the variables X, vy, Z locally. Then all nodes start the execution of their copy
of the code, until computation of the Schur complement matrix M is reached.
At that moment, the computational process synchronizes and the distributed
computation of M is started. We give more details on this process in the next
section. After the matrix M is computed, the algorithm proceeds with parallel
Cholesky factorization and solution of the linear system (5.8), both performed by
ScalLAPACK routines. The resulting vector Ay® appears in a distributed format.
We use a redistribution procedure that makes a copy of Ay® on all N nodes.
From that point on all nodes continue with their local redundant computations
of the primal-dual IPM algorithm until the solution of (5.15) is reached. Since
M is factorized already we just solve (5.15) by distributed routine and make a
local copy of Ay® in the same way as for the affine-scaling step. All the nodes
resume their sequential computation of the interior-point algorithm until M has
to be computed again, or PCSDP terminates if the stopping criteria described
the previous section are satisfied.

5.2.1 Computing the Schur Complement Matrix

The efficiency of the Cholesky factorization, from the ScalLAPACK library, is
achieved when matrix M is in two-dimensional block cyclic data distribution.

70 IMPLEMENTATION OF A PRIMAL-DUAL IPM FOR SDO 5.2

R) 0 I:)O 1 I:)0 Nc-1
Pl 0 FI 1 Pl Nc-1
PNr—l 0 I:)Nr—l 1 PNr—l Nc—|

Figure 5.1: Two dimensional process grid Ny X Ne.

The traditional approach used in the SDPARA, SDPARA-C and PDSDP solvers
is to compute M using one-dimensional cyclic row distribution. Subsequently,
its elements are redistributed to the desired two-dimensional distribution, see
Section 4.3 in Chapter 4. This introduces additional communication overhead
for large-scale SDO problems. To be able to avoid this overhead, we propose a
completely different approach than the other SDO solvers.

Instead of using a one-dimensional array of processes, we map the N processes
into a two-dimensional rectangular array, often called a process grid. Let this pro-
cess grid have N, > 1 rows and N, > 1 columns, where N,.N. = N. Figure 5.1
shows such process grid. Each process is indexed by its row and column coordi-
nates as P, with 0 <r < N, —1and 0 <c¢ < N, — 1. It is easy to see that when
N, =1 we have as a special case a one-dimensional array of processes. By using
such process grid we can use the same two-dimensional block cyclic data distribu-
tion for computing the matrix M, factorizing it and solving both linear systems
(5.8) and (5.15). In this way no data redistribution between the processors is
necessary with respect to the Schur complement matrix.

To be able to map matrix M on the process grid, it is first subdivided into
blocks of size n, X ny for a suitable value of n, > 1 and the assignment of block
to processes are as shown on Figure 5.2. The reason to choose square blocks is
that in this way the Cholesky factorization that follows will reach its best parallel
performance. Recall from Chapter 4 that M is symmetric and we need only to
compute its lower triangular part. The element M;; is assigned for computation

5.2 THE APPROACH 71

2N, 10 1 I\/I

P() 0 PO 1 PO Nr-1 0

PCm 0 PCm 1 CmNr-L "CmoO Ci

m

Figure 5.2: Two-dimensional block cyclic data distribution over two dimensional pro-
cess grid.

by process Py, where the specific values for r and ¢ can be obtained by

,— 1
ro= V JmodNr, i=1,...,m,

-1
c = V J mod N., j=1,..,m.

Each processor computes and stores in its local memory only the elements that
were assigned to it. During the complete solution cycle of the algorithm, those
elements stay local and are not needed by the other processors. As a result,
PCSDP does not require that any of the nodes should be able to accommodate
the whole matrix into its memory space.

A good load balance is difficult to achieve when a two-dimensional block cyclic
layout is used. The quality of the load balance depends on the choices of ng, N,
and N,. If we choose n, =1, N, =1 and N, = N we will have a very good load
balance, i.e., we will have a one-dimensional block row distribution. On the other
hand, the distributed Cholesky factorization of M, performed by ScaLAPACK
routine, reaches its best performance when the process grid is as square as possible
(N, =~ N.). Later, we show that the use of the square process grid is very suitable
for Beowulf clusters with GBit ethernet interconnect. Such interconnects have
relatively high latency (50—100us) compared with Myrinet or Infiniband networks

(6 —9us).

72 IMPLEMENTATION OF A PRIMAL-DUAL IPM FOR SDO 5.2

5.2.2 Parallel Cholesky factorization of the matrix 1/

In PCSDP we used a distributed routine for Cholesky factorization provided by
the ScaLAPACK library. The aim was better portability on different computa-
tional platforms (Linux, UNIX, AIX, etc.), hence the choice of the library package.
ScaLAPACK also includes routines suitable for solving in parallel both large-scale
linear systems (5.8) and (5.15).

The block-partitioned form of Cholesky factorization is known to have in prac-
tice very good performance and scalability, see e.g. [37]. The routine we use to
factorize M is PDPOTRF and it is a parallel version of the right-looking factor-
ization in block-partitioned form is implemented in LAPACK routine DPOTRF,
presented in Chapter 4. Details about the actual algorithm and parallel imple-
mentation behind PDPOTRF can be found in Choi et al. [23].

5.2.3 Exploiting rank-one structure in SDO

In this subsection we describe the built-in capability of PCSDP to deal efficiently
with rank-one constraint matrices. So far no primal-dual interior-point solver for
SDO offers this option, only the dual-scaling algorithm implemented in PDSDP.

Assume the constraint matrices have the form A; = a;a;’, a; € R™ and
i = 1,...,m. We will refer to this type of structure as ‘rank-one’. It appears
in many large-scale problems coming from combinatorial optimization problems
and optimization of univariate functions by interpolation [29]. Our aim next is
to use this special structure of A;’s to speed up computation of the matrix M
when using a primal-dual IPM for SDO. The approach we use is basically the one
proposed by Helmberg and Rendl [59]. The elements of the matrix M, defined by
(5.7), can be computed from

Mi' = 'I‘I‘(AlZilAJX) (1,]: 1,"'7m)'
Since A; = a;a;”, this reduces to
M = (a;"Z7'aj)(a;" Xaj) (i, j=1,...,m). (5.19)

Computing ;7 Z~! and a;7 X only once for each row, leads to O(mn? + m?n)
arithmetic operations, see e.g. [59]. In practice this can be improved significantly
for sparse a;’s.

We would like to store only the vectors a; as opposed to the matrices A; =
a;al’, because this obviously will reduce the storage requirements by factor of n.
On the other hand, we still want to use the standard SDPA sparse input data
format [113], which does not have an option to store rank-one matrices efficiently.
To overcome this difficulty we propose a storage of each vector a;,i = 1,...,m
as a diagonal matrix. In addition we introduce in PCSDP a new parameter call
rankl in the parameters setup file of our software. It ensures that the rank-
one constraint matrices are interpreted by PDSDP in the right way (1.e. not as
diagonal matrices, but as a rank-one matrices defined by a vector).

5.3 CONCLUSION 73

Note that rank-one constraints matrices, stored as vectors, are only implicitly
available. Our software never computes them explicitly as 4; = a;a;”,i = 1,...,m.
In this way a significant reduction of the memory requirements of PCSDP could
be achieved when A;’s are dense. In the next chapter we present numerical exper-
iments with SDO problems with rank-one SDO structure and give more details.

5.3 Conclusion

In this chapter we presented the algorithmic framework behind our implementa-
tion of a parallel primal-dual IPM solver for semidefinite optimization problems.
We took different approaches in distributed computation of the Schur comple-
ment matrix M than the other existing parallel software packages. As a result,
the communication overhead is eliminated after M is computed. We also solve the
Schur complement systems, that involve M, in parallel. Therefore, PCSDP does
not require that any of the nodes in the cluster should be able to accommodate
into its memory the whole m x m matrix M. This is an important result for
problems with very large number of constraints.

Our software also offers 64bit computational arithmetic. It makes it possible
to solve large-scale semidefinite optimization problems that lie beyond the 32bit
addressing space (or 4GB of memory). In the next chapter we solve problems that
require more than 4 GB of memory to store only the Schur complement matrix
M.

PCSDP can explicitly deal with the rank-one structures in the constraint ma-
trices. Exploiting such structure, when possible, leads to a significant speed-up
in the computations of the SDO problems.

Chapter

Computational Results

In this chapter we present results from the numerical tests of our parallel IPM
solver for SDO, PCSDP. The software was developed and tested on the DAS3
cluster at the Delft University of Technology, The Netherlands. Each node of
the cluster has two 64bit AMD! Opteron 2.4 GHz CPUs, running ClusterVi-
sionOS Linux, and has 4 GB memory. Communication between the nodes relies
on a 1GBit ethernet network, which is used as an interconnect and network file
transport. All parameter values in PCSDP were set to the values described in
Chapter 5.

As is customary, we measured speedups S and parallel efficiencies F, defined
by

Ty
5= Ty

and g T
E=—=__1_ (6.1)
N~ (NTw)
where T7 and Ty are the times to run a code on one processor and N processors
respectively. Note that 0 < E <1 and F = 1 corresponds to perfect speedup.

6.1 SDO benchmark problems

We selected for our numerical tests twenty medium and large-scale SDO prob-
lems from eight different applications. These applications are: control theory,
the crossing number of complete bipartite graphs, the maximum cut problem,
the Lovdsz ¥-function, the min k-uncut problem, calculating electronic structures

Lhttp://www.amd.com/

75

76 COMPUTATIONAL RESULTS 6.1

in quantum chemistry, and semidefinite relaxation of quadratic assignment and
traveling salesman problems. All of the test instances are from a standard bench-
mark suites, except the last five. They are newly generated instances by De Klerk
at al. [32, 35]. More details about the selected set of instances can be found in
Table 6.1. In this table m is the number of constraints, n denotes the size of
the primal matrix variable X, and n,q. is the size of the largest block in the
common matrix data structure of the constraint matrices A;. For more details
on the block structured matrices and the sparse SDPA format see Yamashita et
al. [113, Section 4.6]. We also give in the fifth column the optimal values of the
objective function, corresponding to the problems.

Name m n | Nmaz Optimal value
controll0 1326 150| 100 3.8533E + 01
controlll 1596 165| 110 3.1959F + 01
theta8 7905| 400| 400 7.3953559F + 01
thetad?2 5986 200| 200 2.3931707F + 01
theta62 13390 300| 300 2.9641248F + 01
theta82 23872| 400| 400 3.4366889F + 1
thetaGb1 6910| 1001 | 1001 3.49000E + 02
maxGbH1 1000 1000 | 1000 4.003809F + 03
hamming 834 16129 | 256 256 2.560000e + 01
hamming_9.5_6 53761| 512| 512 8.5333332F + 01
hamming_10_2 23041| 1024 | 1024 1.024F + 02
hamming_11_2 56321 | 2048 | 2048 1.7066666 £ + 02
fap09 15225 174| 174 —1.0797803F + 01
CH4.1A1.STO6G |24503| 630| 324 1.3021808E +- 01
LiF.1Sigma.STO6G | 7230| 5990 | 1450 —1.1558005E + 02
Esc64a 517| 4618 | 4097 9.7749966 F + 01
crossing_n8 239| 620 380 5.859985F + 00
crossing_n9 1366 | 3805 | 2438 7.735211E + 00
GR17tsp 3673 | 6666 17 2.0063685¢ + 03
BAYS29tsp 6526 | 15981 29 1.9997581e + 03

Table 6.1: Selected SDO benchmark problems.

Problems controll0 and controlll are from control theory and they are the

6.1 SDO BENCHMARK PROBLEMS 77

largest of this type in SDPLIB test set [19]. The instance maxG51 is a medium
size max-cut problem chosen from the same benchmark set. ThetaG51, thetad2,
theta62, theta8, and theta82 are Lovasz ¢ problems. The first one is from
SDPLIB, while the others were generated by Toh and Kojima [106]. The instances
hamming 8_3_4, hamming_9_5_6, hamming_10_2 and hamming_11_2 compute the
¥ function of Hamming graphs. All four of them are from the DIMACS [80]
library of mixed semidefinite-quadratic-linear programs, as is the min k-uncut
test problem fap09. The fourteenth and fifteenth instances are CH4.1A1.STO6G
and LiF.1Sigma.STO6G, respectively, and they come from calculating electronic
structures in quantum chemistry [86]. Instance Esc64a is semidefinite relaxation
of the quadratic assignment problem taken from QAPLIB [21], see for details [35].
Both crossing n8 and crossing n9 problems compute a lower bound of the crossing
number of complete bipartite graphs (see Chapter 1, on page 7). The last two
instances GR17tsp and BAYS21tsp are SDO relaxations of the traveling salesman
problem generated by De Klerk at al. [33].

The initial point used during the numerical experiments is as described in
(5.4) and the stopping criteria is (5.18).

Recall from Chapter 5, that PCSDP uses distributed computation of the ma-
trix M and its Cholesky factorization. Therefore in the numerical experiments
that follow, along with the total running time, we measure also the time spent on
these two components computed in parallel. The time spent for computing the
Schur complement matrix M and its Cholesky factorization are denoted in the
tables as Schur and Cholesky, respectively.

Fourteen of the selected benchmark semidefinite problems could be solved us-
ing from one to sixty four processors on the DAS3 cluster in TU Delft. Table
6.2 gives the time in seconds for these instances. At least 4 nodes were required
to accommodate the problem data matrices for the large-scale SDO problems
CH4, hamming 9.5 6, hamming_10_2, hamming_11_2, theta82 and crossingn9.
The running times in seconds for these six instances are presented in Table 6.4.
Phase denotes the three different components we measure: Schur, Cholesky and
the total running time, denoted as Total. Columns after the fifth one in Ta-
ble 6.2 denote the actual time depending on the number of CPUs used. Instances
CH4.1A1.STO6G and LiF.1Sigma.STO6G are abbreviated in the tables as CH4
and LiF, respectively.

Computing the parallel efficiencies E, using expression (6.1), was not possible
for all of the selected twenty test problems. In the case of crossing n9, despite the
relatively small number of constrains (see Table 6.4), the computational resources
this instance requires are significant. This makes numerical tests with crossing n9
a nearly impossible task on a small number of nodes. Computing the parallel
efficiencies was not possible for some other test problems too, though: when the
number of constraints exceed 20,000, the memory required to accommodate the
problem exceeded the available memory on an individual node. Therefore, Table
6.3 presents only the parallel efficiencies of the problems that can run on one
node, i.e., for the fourteen instances in Table 6.2.

78 COMPUTATIONAL RESULTS 6.1

Problem m | nmax | Phase CPUs

1 2 4 8 16 32 64
1326 100 | Schur 216.4 113.2 76.5 40.2 27.9 17.4 12.8
control10 Cholesky 9.9 6.6 6.1 5.3 3.7 3.0 2.7
Total 240.2 132.6 107.3 56.4 39.0 32.9 24.8
1596 110 | Schur 340.7 169.5 116.4 62.5 50.2 29.2 21.5
controlll Cholesky 17.7 8.4 6.8 6.7 4.6 5.2 3.5
Total 377.2 192.0 136.7 82.0 67.9 49.3 35.8
239 380 | Schur 561.5 309.8 271.0 146.5 127.4 72.7 67.5
crossing-n8 Cholesky 0.2 0.3 0.5 0.9 1.1 0.4 1.4
Total 617.1 369.0 329.1 208.9 190.0 137.8 133.4
5986 200 | Schur 78.5 35.7 20.7 11.6 6.8 3.8 2.8
thetad2 Cholesky 555.3 173.4 112.8 81.9 47.3 43.6 25.1
Total 696.9 248.9 164.4 116.5 74.4 65.5 45.7
7905 400 | Schur 163.1 84.2 44.6 22.4 13.8 8.0 6.2
theta8 Cholesky 1445.1 403.2 251.6 174.2 99.1 88.3 48.0
Total 1730.9 596.3 359.6 245.5 156.8 135.7 91.1
13390 300 | Schur 521.1 259.8 131.9 67.2 39.4 19.9 13.6
theta62 Cholesky | 4977.2 1693.2 1002.0 621.5 346.9 287.3 146.3
Total 5807.8 2152.4 1292.4 796.7 482.1 408.8 238.9
6910 | 1001 | Schur 1003.4 482.6 252.4 128.1 68.3 35.7 21.4
thetaG51 Cholesky 2249.7 616.1 401.3 278.2 159.3 143.6 79.9
Total 3700.5 1454.3 989.1 713.6 525.9 472.4 394.0
1000 | 1000 | Schur 1.2 1.0 0.5 0.3 0.2 0.1 0.1
maxG51 Cholesky 2.6 2.1 2.0 2.0 1.9 1.9 1.8
Total 112.2 110.7 111.2 111.8 111.6 111.7 113.5
16129 256 | Schur 622.9 282.1 172.1 91.9 47.0 25.5 18.1

hamming-)
854 Cholesky 6938.8 2502.3 1452.0 875.0 465.0 334.3 197.1
Total 8258.6 3025.9 1806.0 1101.3 658.1 561.6 313.0
15225 174 | Schur 5682.2 3087.1 2013.3 1044.3 715.6 359.2 299.7
fap09 Cholesky | 37827.1 | 12614.4 7492.7 | 4496.0 2532.1 1836.5 1009.7
Total 46613.5 | 17033.4 | 10518.1 6288.0 3932.4 3163.6 1857.4
7230 | 1450 | Schur 187397.1 [101331.7 | 52501.5 | 26023.2 [15115.56 9469.1 6705.2
LiF Cholesky 2317.0 672.9 479.6 304.9 283.0 208.5 213.4
Total 192080.7 | 104382.5 | 56209.8 | 28578.0 | 17601.1 | 11769.3 9224.4
517 | 4097 | Schur 19944.91 | 15586.06 | 13895.43 | 12500.78 | 12222.75 [11857.14 | 11805.26
Esc64a Cholesky | 459.41 419.00 339.81 335.81 300.28 286.54 262.90
Total 20144.51 | 28414.97 | 26056.74 | 24498.22 | 24378.90 | 23828.02 | 23095.44
3673 | 6394 | Schur 201.6 86.4 43.3 22.3 15.4 9.3 6.3
GRI17tsp Cholesky 617.4 224.5 135.9 108.7 74.9 67.9 46.9
Total 1072.2 517.1 323.9 251.4 193.8 207.7 179.8
6526 | 15169 | Schur 16880.7 8170.1 4187.1 2862.5 1502.2 801.1 421.6
BAYS29tsp Cholesky 3568.9 1075.9 759.8 509.3 470.5 350.4 345.5
Total 21384.1 | 10937.3 5502.9 3928.9 2495.3 1673.7 1311.9

Table 6.2: Running times for the selected SDO benchmark problems for PCSDP.

In Table 6.3 several problems show parallel efficiency beyond one. This is
caused by the difference in the number of iterations when running on one CPU
as well as the cache issues in the computing nodes that additionally speedup the
parallel computations in parallel.

For problems controll0, controlll, and crossing n8 computing the Schur com-
plement matrix is the dominant operation and it scales relatively well with the
number of the processors up to 16. However this is not the case with Cholesky
factorization of M and the total running time. When the number of processors
is 16, 32 and 64 the parallel efficiency results are poor. The reason is that the

6.1 SDO BENCHMARK PROBLEMS 79

m X m Schur complement matrix is fully dense and its Cholesky factorization
does not inherit much from the structure of the problem. Although the block
structure and the sparsity of X, Z and A;, i = 1,...,m are effectively utilized in
the matrix multiplications, they do not affect the scalability of distributed com-
puting of Cholesky. Additionally, the high latency of the 1GBit ethernet network

Problem m | nyax | Phase CPUs
1 2 4 8 16 32 64
1326 100 | Schur 1[0.96]0.71]0.67|0.48 | 0.39 | 0.26
controll0 Cholesky | 1| 0.75 [0.40 [0.23] 0.16 | 0.10 | 0.06
Total 1]10.91]0.56]0.53]|0.38|0.23|0.15
1596 110 | Schur 1]11.01]0.7310.68]0.48|0.36|0.25
controlll Cholesky | 1] 1.05 [0.65 [0.33|0.24|0.11 | 0.08
Total 1]10.98]0.69]0.57]0.35|0.24|0.16
239 380 | Schur 1]10.91]0.52|0.48 |0.28|0.24|0.13
crossing-n8 Cholesky | 1] 0.32 [0.10 [0.03 | 0.01 | 0.01 [0.00
Total 1]10.84]0.47]0.37]0.20| 0.14 | 0.07
5986 200 | Schur 1]11.10]0.95]0.85]0.73|0.65|0.43
thetad2 Cholesky | 1| 1.60 [1.23 [0.85]0.73 | 0.40 | 0.35
Total 111.40|1.06|0.75(0.59[0.33]0.24
7905 400 | Schur 110.97]10.91]0.91(0.74(0.63|0.41
theta8 Cholesky | 1| 1.791.44 | 1.04|0.91(0.51|0.47
Total 1]11.45|1.20|0.88(0.69(0.40|0.30
13390 300 [Schur 1(1.00]0.99|0.97|0.83|0.82(0.60
theta62 Cholesky | 1| 1.47 [1.24 [1.00]0.90 | 0.54 | 0.53
Total 111.35(1.1210.91]0.75|0.44 | 0.38
6910 1001 | Schur 1]11.04]0.99]|0.98]0.92|0.88|0.73
thetaG51 Cholesky | 1] 1.83(1.40(1.01 | 0.88|0.49 | 0.44
Total 1]11.27]10.94|0.65|0.44 | 0.24 | 0.15
1000 1000 | Schur 1]10.65]0.58|0.60]|0.43|0.39|0.24
maxG51 Cholesky | 1] 0.61 [0.33 [0.16 | 0.09 | 0.04 [0.02
Total 1]0.50]0.25]0.12]|0.06|0.03|0.02
16129 256 | Schur 1]11.10]0.90]|0.85]0.83|0.76 | 0.54
hamming_-8_3_-4 Cholesky | 1]1.39(1.19[0.99]0.93 | 0.65 | 0.55
Total 111.36]1.14]0.94(0.78(0.46 | 0.41
15225 174 | Schur 1[0.92]0.71]0.680.50 | 0.49 | 0.30
fap09 Cholesky | 1| 1.50 [1.26 [1.05 | 0.93 | 0.64 | 0.59
Total 1]11.37]1.11]0.93(0.74[0.46 | 0.39
7230 1450 | Schur 1[(0.92]0.89]0.900.77|0.62 | 0.44
LiF Cholesky | 1| 1.72[1.21]0.95|0.51(0.35|0.17
Total 1]10.92]0.85|0.84|0.68|0.51|0.33
517 4097 | Schur 1]10.63]0.36|0.20|0.10| 0.05 | 0.03
Esc64a Cholesky | 1] 0.55 [0.34 0.17 | 0.10 | 0.05 [0.03
Total 1]0.51]0.28]0.15]|0.07|0.04|0.02
3673 6394 | Schur 111.17]1.161.13|0.82|0.68|0.50
GR1T7tsp Cholesky | 1] 1.38 (1.14(0.71]0.52|0.28 [0.21
Total 1[1.04]0.83]|0.53|0.35|0.16 | 0.09
6526 | 15169 | Schur 1]11.03]1.01]|0.74]0.70| 0.66 | 0.63
BAYS29tsp Cholesky | 1] 1.66 [1.17 [0.88 | 0.47 | 0.32 | 0.16
Total 1[0.97]0.97|0.68|0.53|0.40 | 0.25

Table 6.3: Parallel efficiencies of PCSDP for the selected SDO problems.

interconnect between the nodes results in relatively slow message delivery times.
Therefore, when the problem has fewer than 5,000 constraints and matrix size
n < 3,000, like controll0, controlll, and crossing n8, it is not very efficient to
solve it by distributed memory cluster using more than 8 processors.

Poor scalability of Cholesky is also observed for the SDO relaxations of the

80 COMPUTATIONAL RESULTS 6.1

traveling salesman problem GR17tsp and BAYS21tsp. The parallel efficiency of
Schur remains at least 0.5 in all of the test cases, but the overall scalability drops
rapidly when more than 16 processors are used. Both problems have large sizes
of n compared to the number of constraints m.

The Lovdsz v¥-type instances thetad2 and theta8 as well as thetaGbH1 also
exhibit poor parallel efficiency. The difference with the problems discussed in the
previous paragraph is that scalability of both components Schur and Cholesky
remain quite reasonable up to 64 processors, but the total running time scales
poorly above 16 CPUs. This is to be expected due to the smaller portion of
time Schur and Cholesky occupy compared to the matrix operations involving the
primal and dual matrix variables X and Z.

Another example that sufferers from low parallel-to-nonparallel ratio is the
max-cut problem maxG51, where n = m and n = 1000 (i.e. relatively small).
The constraint matrices themselves are very sparse (and rank-one). As a result
computing the elements of M and its Cholesky factorization takes a very small
part in the total solution time. The dominant operations in this case are factor-
ization of the primal matrix variable. Therefore, the overall scalability is poor and
solving such a problem using primal-dual IPM solver is very inefficient. Similar
problems with the scalability of this problem was observed in [114].

Instance Esc64a also gives poor scalability results. The reason is that the
number of constraints m is very low compared with the size n of the primal and
dual matrix variables. As a result the matrix M is small compared to the X and
Z matrices and computing it occupies at most 50% of the total solution time on
more than one processor. In this case (sequential) matrix multiplications also take
a significant amount of time. Hence, the worse scalability of the total running
time. Despite its non-impressive scalability, the solution of instance Esc64a done
by PCSDP achieved a significant improvement of the lower bound of this QAP
problem, see for details De Klerk et al. [35].

Numerical results so far clearly indicate that problems with the number of
constraints under 5,000 and small n or ones from max-cut are not solved very
efficiently on more than 8 processors by PCSDP on a computer cluster. Much
better results are obtained for the large-scale instances such as theta62, fap09, LiF,
and hamming 8 3 4. Here the parallel efficiency of the running time is above 0.44
for almost the whole range of CPU’s used between 2 and 32. Only on 64 CPU’s it
is slightly lower, at least 0.33. Both the Cholesky factorization and construction
of the Schur complement matrix scale well with the number of processors for all
four problems. When these two computations dominate in the overall running
time, one sees a good overall scalability of the problem.

As we already mentioned above, we were not able to solve the largest test
problems CH4, hamming_9_5_6, hamming_10_2, hamming_11_2, theta82 and cross-
ing_n9 on fewer than 4 nodes. In Table 6.4 we therefore present only the running
times in seconds when 4, 16, 32 and 64 processors were used. At least 4 nodes were
required to accommodate the Schur complement matrix for problems with around
24,000 constraints like CH4, hamming_10_2 and theta82. They have a small di-

6.1 SDO BENCHMARK PROBLEMS 81

m | Nmae | Phase CPUs
Problem

4 8 16 32 64
24503 324 | Schur 2433.7 | 1150.7 666.4 339.8 280.8
CH4 Cholesky | 12584.1 | 6601.7 3511.0 3038.7| 1404.8
Total 16144.0| 8497.1 4814.1| 3944.2| 2280.5
53761 512 | Schur * * 736.2 363.9 262.9
hamming_9_5_6 Cholesky * * 14165.1 [11793.7 | 4395.6
Total * * 16277.3 (13343.8| 5793.0
23041 | 1024 | Schur 491.0 254.9 168.6 89.21 62.0
hamming_10_2 Cholesky | 4943.6 | 2826.3 1538.6 | 1334.5 567.3
Total 6023.8 | 3552.3 2143.7| 1813.6| 1010.9
56321 | 2048 | Schur * * 1072.6 638.0 484.2
hamming_11_2 Cholesky * * 20005.6 | 16334.9 | 6037.5
Total * * 23929.6 | 19516.0 | 9198.6
23872 400 | Schur 487.6 242.2 146.1 70.9 49.5
theta82 Cholesky | 5127.3 | 2892.3 1591.1| 1366.3 580.2
Total 6079.8 | 3476.1 2037.4| 1694.9 876.6
1366 | 2438 | Schur not run | not run | 125220.9 | 76095.0 | 67931.8
crossing_n9 Cholesky | not run | not run 7.6 7.5 5.6
Total not run | not run | 143311.3 | 94750.4 | 85837.8

Table 6.4: Running times (in seconds) for the selected large-scale SDO benchmark
problems for our solver PCSDP (‘*’ - means lack of memory)

mension of the primal and dual matrix variables, hence the parallel operations
dominate. As a result, very good scalability is observed not only in computing
M and its Cholesky factorization but on the total running time as well. For the
truly large-scale problems hamming 956 and hamming 11.2, at least 16 nodes
were needed due to the amount of memory required. They both have more than
50,000 constraints and 32bit addressing would not be enough to address the el-
ements of the Schur complement matrix M. In this case m is far larger than n
and the solver efficiently solved them with a good scalability in terms of running
times between 16 and 64 CPUs.

Instance crossing n9 was solved by using the DAS3 cluster located in Vrije
Universiteit (VU) Amsterdam. It has a Myril0G interconnect which is at least
10 times faster than ethernet 1GBit, available at the TU Delft. Each node of
the VU cluster has two 64bit dual-core AMD Opteron 2.4 GHz CPUs, and 4GB
RAM. The software platform and libraries are exactly the same as on all other
experiments. Despite the use of Myril0G, significant resources were required in
order to solve crossing n9 instance. Therefore, we give only the running times for
16, 32 and 64 processors.

Using PCSDP we solved one additional instance named solveC133b which is
not included in Table 6.1. It is an SDO relaxation of a 3-assignment problem
and is generated by De Klerk [28]. The number of constraints of solveC133b is
m = 75, 174 with dimension n = 154, 937 of the primal variable X, and n,,,, = 67.

82 COMPUTATIONAL RESULTS 6.1

Despite the large value of n this problem has a diagonal block in the A;’s of size
152,726. Instance solveC133b was successfully solved by DAS3 using 64 CPUs.
The time measures as follows: Schur = 4,373.57 sec, Cholesky = 33,513.50 sec,
and Total = 52,155.42 sec. This instance is the largest one solved so far by our
PCSDP solver.

6.1.1 Comparison with other IPM solvers

We compare the performance of our parallel software PCSDP? with the two other
distributed memory SDO solvers freely available, namely SDPARA-1.0.1 by Ya-
mashita et al. [114] and PDSDP-5.8 by Benson [10]. The interconnect used was
ethernet 1Gbit. The same optimized BLACS? and ScaLAPACK-1.8.0 parallel
libraries were used.

We selected only benchmark problems from Table 6.2 which could be solved
with the same accuracy as PCSDP by SDPARA and PDSDP. Instance crossing_n8
was considered too small in size for a parallel solver, and was therefore omitted
from the list of test problems. Large-scale instances LiF, Esc64a, BAYS20tsp
and the ones from Table 6.4 require a significant amount of time to obtain their
solution. We did not have the necessary time window to solve them with SDPARA
and PDSDP on the DAS3 cluster.

Table 6.5 presents the running times, in seconds, for PCSDP, SDPARA and
PDSDP using between 1 and 64 processors. In cases where a program could
not solve some instance, due to lack of memory, we indicated this in the table
by “*’. We did not measure the different parallel components, as the times spent
on computing the Schur complement matrix and its Cholesky factorization.

Results from Table 6.5 show that on a relatively small-scale SDO problems
such as control10 and controlll, SDPARA and PDSDP perform better in terms
of total running time. This to be expected, since they both use the same one-
dimensional way of computing the Schur complement matrix M. Their approach
has better load balance and the necessary network communication for redistribut-
ing M is small, due to the small number of constraints these problems have.

Two other instances where PCSDP performs worse than the other software are
thetaG51 and maxG51. Due to the specific problem structure, thetaG51 is solved
on average 30% faster by SDPARA compared by PCSDP. The solution times
of PDSDP are by factor of 3 to 5 greater than for our solver on this problem.
On the other hand, the opposite is true for maxG51. The reason is that this
type of problems are very sparse and the dual-scaling interior-point algorithm, as
in PDSDP, is known to solve them much more efficiently than the primal-dual
algorithm implemented in PCSDP and SDPARA.

PCSDP gives better results compared to the other two solvers for the medium
sized instances thetad2, theta8 and GR17tsp, using from 1 to 64 processors. The

2 Available at: http://lyrawww.uvt.nl/~edeklerk/PCSDP/
3http://www.netlib.org/blacs/

6.1 SDO BENCHMARK PROBLEMS 83

m | Nynaz | Solver CPUs
Problem
1 2 4 8 16 32 64
1326 100 | pcsdp 240.2 132.6 107.3 56.4 39.0 32.9 24.8
controll0 sdpara 109.4 91.6 57.8 37.1 23.6 18.6 20.0

pdsdp 132.0 84.0 67.9 57.4 37.5 29.6 27.0
3028 250 | pcsdp 377.2 192.0 136.7 82.0 67.9 49.3 35.8
controlll sdpara 279.5 154.1 95.2 58.1 37.5 28.3 27.9
pdsdp 184.3 125.0 98.4 79.8 70.7 56.4 39.0
5986 200 | pcsdp 696.9 248.9 164.4 116.5 74.4 65.5 45.7
thetad2 sdpara 846.4 329.9 202.9 154.2 89.1 82.7 57.6
pdsdp | 1052.0 454.2 248.8 165.9 96.7 85.3 65.6
7905 400 [pesdp | 1730.9 596.3 359.6 245.5 156.8 135.7 91.1
theta8 sdpara| 2111.7 768.7 467.7 310.8 191.8 157.7| 112.9
pdsdp 2213.0 912.7 558.4 328.5 211.7 167.8| 118.5
13390 300 | pcsdp | 5807.8| 2152.4| 1292.4 796.7 482.1 408.8 | 238.9

theta62 sdpara * | 1820.2| 1143.6 607.0 547.6 | 287.5
pdsdp * * * | 2276.0 998.4 617.2| 376.0

6910 | 1001 | pcsdp | 3700.5| 1454.3 989.1 713.6 525.9 472.4| 394.0

thetaGb1 sdpara| 2579.0| 1057.2 697.1 524.0 381.1 346.9| 274.8

pdsdp |10530.0| 6811.1| 2975.1| 2306.5| 1426.0| 1133.6 | 943.3
1000 | 1000 | pcsdp 112.2 110.7 111.2 111.8 111.6 111.7| 113.5

maxG51 sdpara 97.3 98.9 102.5 100.8 99.8 102.2| 106.0
pdsdp 31.6 21.6 15.0 12.9 11.6 11.0 11.7

3673 | 6394 | pcsdp 1072.2 517.1 323.9 251.4 193.8 207.7| 179.8

GR17tsp sdpara | 2785.3| 1857.8 938.7 501.3 361.1 248.4| 196.0

pdsdp | 1243.9 684.2 362.1 291.2 257.1 219.1| 191.8
16129 256 | pcsdp 8258.6 | 3025.9| 1806.0| 1101.3 658.1 561.6 | 313.0

gf‘;_‘fmg‘ sdpara * «| 2763.7| 1697.6| 930.8| 805.1| 441.1
pdsdp * * x| 1155.6| 567.9| 390.5| 194.8

15225 | 174 pesdp |46613.5|17033.4 [10518.1| 6288.0| 3932.4| 3163.6|1857.4

fap09 sdpara % % x| 42247.9 | 22298.9 | 12232.1 | 6218.9
pdsdp % X x| 36940.0 | 15830.5 | 9646.1 | 5385.2

Table 6.5: Running times in seconds for the selected SDO problems solved by PCSDP,
SDPARA and PDSDP.

communication overhead caused by redistributing the Schur complement matrix
on these problems is already significant and adds up in the total running time in
the case of SDPARA and PDSDP, so they have worse overall performance than
PCSDP.

Of all three solvers only PCSDP was able to solve the instances theta62,
hamming 8 3 4 and fap09 in the whole range from 1 to 64 CPUs. The advantage
in memory usage comes from the two-dimensional approach in computing the
matrix M in PCSDP, that does not require local storage of the matrix M. The
Schur complement matrix always remains distributed over the process grid, see

84 COMPUTATIONAL RESULTS 6.1

Chapter 5 for details. This is not the case for SDPARA and PDSDP, therefore
they have high memory requirements in order to solve large-scale SDO problems.

For the instances theta62 and fap09, PCSDP outperforms the other two pro-
grams by a factor of at least 3. Only for hamming 8 _3_4 does PDSDP give some-
what better times with between 16 and 64 processors, which is a result of the
problems structure.

The overall verdict after the test is that on a large-scale instances, especially
when the size of the Schur complement matrix is very large, and the network is
not a low latency one, the two-dimensional data approach in our solver results in
better running times compared with SDPARA and PDSDP. This approach also
leads to less memory usage and makes it possible large-scale SDO problems to be
solved on fewer computing nodes.

6.1.2 Discussion

In Chapter 5 we presented our two-dimensional approach for computing the ma-
trix M. It involves the use of a two-dimensional process grid instead of one-
dimensional one as in all other distributed SDO solvers. Note that when we refer
from now on to the process grid or a ‘grid’, we mean the two-dimensional way
processes are mapped on a program level, i.e., as explained in Section 5.2.1. The
notion of process grid and ‘grid’ does not imply by any means the notion presented
in Chapter 3.

Recall that the main argument why we claim that our solution is better suited
for cluster (i.e. distributed) computing was that we would decrease the commu-
nication overhead after computing Schur. To demonstrate our point we imple-
mented a separate experimental function for PCSDP to compute M using one-
dimensional cyclic row distribution. Four benchmark test problems were chosen
from Table 6.1 from different sizes and coming from different applications: theta6,
controlll, thetaG51 and hamming 8_3_4. We run both the standard function com-
puting M in PCSDP and the modified one. Since the routine for Cholesky is the
same, we recorded only the running time for Schur and the total solution time,
denoted by Total. For the one-dimensional computation case we need to execute
also a redistribution procedure to achieve the desired two-dimensional form of M
before its Cholesky factorization. For that purpose we use the standard routine
pdgemr2d from ScaLAPACK library. It is set up to give exactly the same block
structure as the standard PCSDP will have when computing M.

Table 6.6 contains the results for computing Schur (matrix M) for the se-
lected test problems using from 2 to 64 processors. In the column ‘grid type’ 1D
and 2D mean two-dimensional computation and one-dimensional computation,
respectively.

We added to the time for computing elements of M using 1D approach also the
time spent on data redistribution by the pdgemr2d routine. In this way we have a
precise measure of the total cost computing the Schur complement matrix up to
the beginning of the Cholesky factorization. Figure 6.1 depicts the computational

6.1 SDO BENCHMARK PROBLEMS 85

m | Nmaz | Grid CPUs
Problem
type 2 4 8 16 32 64
4375 300| 2D 19.11| 12.01 5.79 4.10 2.80 1.81
theta6
1D 14.62 7.64 4.63 2.61 1.84 1.83
1326 100 | 2D |234.16|125.00| 71.03| 53.09| 30.57| 21.66
controlll
1D |197.01| 99.76 | 54.60| 25.52| 13.43 8.16
6910 | 1001 | 2D |[487.91|247.11|124.44| 66.65| 35.05| 20.96
thetaG51
1D |578.16|372.38|314.96 | 121.45 | 156.85 | 102.87
R 16129 256 | 2D |309.19|186.58 | 96.20 | 57.52| 27.44| 19.32
hamming_8_3_4
1D |371.91(231.65|171.75| 91.79| 50.04| 28.86

Table 6.6: Computing the matriz M of selected SDO problems solved by PCSDP using
1D wvs 2D process grid.

control11

250 T T T
o o 1D
200 o O 2D
o
& 1501 4
c
5 <
£ 100 ©]
=
8
50 o 4
[e] o O
0 | | L © | | | o
0 10 20 30 40 50 60 70
thetaG51
600 T T T
o 1D
5001 ¢ o 2D
5 400~ ° T
£ L [¢] 4
> 300
£ <
= 200(B
[¢]
100} ° 2 1
0 | | Lo | | | <o
0 10 20 30 40 50 60 70

Number of CPUs

Figure 6.1: Computing the matriz M of controll1 and thetaG51 using 1D vs 2D process
grid.

time (in seconds) of M for the controlll and thetaG51 instances using 1D and
2D approach for 1, 2, 4, 8, 32 and 64 processors.

When the problem has a small size such as theta6 and controlll, the one-
dimensional computation has an advantage. When we have a medium or large
sized SDO problem such as thetaG51 and hamming 8_3 4, the results show sig-
nificant decrease in the computation times. Communication overhead for redis-
tribution of M becomes significant in those cases and the 2D approach wins
independently of the number of processors used.

86 COMPUTATIONAL RESULTS 6.2

Table 6.7 depicts the total running time for the four test problems using 2D
and 1D approaches. The results follow the same trend as when computing M.
For the small-sized problems theta6 and controlll it would take longer with the
standard PCSDP to obtain the final result, than with the use of 1D function. In
the case of instances thetaG51 and hamming 8 _3_4, the 2D approach gives better
results on a computer cluster with lower speed interconnect, such as the 1GBit
ethernet in DAS3.

m | Nmae | Grid CPUs
Problem
type 2 4 8 16 32 64
thetat 4375 300| 2D 376.71 202.21| 122.93 83.68 75.75 49.94
etal
1D 360.3 195.62| 114.96 79.45 70.43 45.93
1326 100 | 2D 310.55 191.96 | 129.84| 106.94 83.34 75.30
controlll
1D 127.26 166.18 119.2 76.59 69.71 58.93
thetaG51 6910 1001| 2D 5368.77 | 3633.84 | 2498.57|2041.32 [1943.69 | 1715.75
eta
1D 5392.17 | 3704.06 | 2603.43 |2118.79 [2107.29 | 1768.70
. 16129 256 | 2D |[16526.56 | 10719.20 | 5391.22 | 2462.25 | 1433.83 | 685.14
hamming_8_3_4
1D |16656.02 | 10898.30 | 5443.07 | 2598.05 | 1498.83 | 692.59

Table 6.7: Total running time of selected SDO problems solved by PCSDP using 1D vs
2D process grid.

One option in PCSDP that we didn’t mention so far is the possibility to recon-
figure the shape of the two-dimensional process grid, displayed on Fig 5.1. The
number of rows N, and the number of columns N, could be changed. Unfortu-
nately, changing the shape make the performance of ScaLAPACK routines worse,
i.e., the time to compute Cholesky increases. This implies that such an option is
highly undesirable when Cholesky factorization of M is the most time consuming
operation. For the cases where Schur takes the biggest portion and Cholesky a
very small part of the total running time, such an option might be worth trying.

6.2 Problems with rank-one structure

In Chapter 5 we described how PCSDP can exploit rank-one constraint matrices.
For certain classes of SDO problems such as combinatorial optimization relax-
ations (for example max-cut [59]) and optimization of polynomials using SDO
[75], the resulting semidefinite optimization problems have rank-one structure.
Computation of the matrix M may be simplified (see Section 5.2.3) if the rank-
one structure is exploited.

In this section we test the efficiency of PCSDP when dealing with rank-one
A;’s, and compare the results with the standard sequential solvers CSDP5.0 and
DSDP. For this purpose we modified PCSDP to be able to run as a sequential

6.2 PROBLEMS WITH RANK-ONE STRUCTURE 87

solver and to deal explicitly with rank-one constraints. From now on we will call
this sequential version of our solver as PCSDPr. The numerical experiments with
these three solvers were executed on a PC with Intel x86 P4 (3.0GHz) CPU and
3GB of memory running Linux operating system. Optimized BLAS and LAPACK
libraries were used. All of the software was compiled with gcc 3.4.5 and the default
values of all parameters were used. The input data format used is the standard
SDPA sparse (dat-s) format for CSDP5.0 and our modified* SDPA sparse format

[Problem[Function f | [0,b] [maxgclap f(x)Global maximizer(s)
testl |-Za6+ 225 — 304 [-1.5,11] 29,763.233 10)
—?—(1)134- Z—gz2+x— %
test2 |—sinz — sin l—fcc [2.7,7.5] 1.899599 5.145735|
-6.7745761]
test3 [, Bk sin((k + 1)z + k) [-10,10] 12.03124 -0.491391
5.791785|
testd |(1622 — 24z + 5)e™* [1.9,3.9] 3.85045 2.868034
tests |(—3z + 1.4)sin 18z [0,1.2] 1.48907 0.96609
test6 |(x +sinz)e %2 [-10,10] 0.824239 0.67956)
test7 |-sinz —sin Pa [2.7,7.5] 1.6013 5.19978
—Inz +0.84z — 3
- 7.08350
test8 >, 5k cos((k + 1)z + k) [-10,10] 14.508 -0.800321
5.48286|
test9 |- sina —sin 2z [3.1,20.4] 1.90596 17.039
test10 rsinx [0,10] 7.91673 7.9787
2.09439
testll |2 cosz + cos2z [-1.57,6.28] 1.5 4.18879
T
test12 |- sin 3z — cos 3z [0,6.28] 1 4.71238
test13 [p2/3 + (1 — 22)!/3 [0.001,0.99] 1.5874) 1/V2
test1l4 |e~* sin 27w [0,4] 0.788685 0.224885|
test1d [—22 + 5z — 6)/(x2 + 1) [-5,5] 0.03553 2.41422
test16 |[—2(z — 3)2 — e~ 2/2 [-3,3] -0.0111090 3]
-3
testl7 |—x6 + 15z4 — 2722 — 250 [-4,4] -7 3
—(x —2)2, z < 3; y
fest18 { —éln(w)— 2) —1, otherwise. [0:6] 9 2
test1l9 sin3z —ax — 1 [0,6.5] 7.81567| 5.87287
test20 |(z — sinz)e 22 [-10,10] 0.0634905 1.19513

Table 6.8: Twenty test functions from P. Hansen et al. [58].

for PCSDPr. In the case of DSDP all data was provided by using its MATLAB
interface.

4We gave details about the modifications in Section 5.2.3.

88 COMPUTATIONAL RESULTS 6.2

6.2.1 Optimization of univariate functions on bounded interval by interpo-
lation

The performance of both CSDP5.0 and PCSDPr was evaluated on all SDO in-
stances displayed in Table 6.8, taken from [29].

These SDO problems approximate the minima of a set of twenty univariate
test functions from Hansen et al. [58] on an interval, by first approximating
the functions using Lagrange interpolation, and subsequently minimizing the La-
grange polynomials using SDO. These SDO problems only involve rank-one data
matrices by using a formulation due to Lofberg and Parrilo [75].

The data in Tables 6.9 and 6.10 describes the results from our experiments
with respect to the number of (Chebyshev) interpolation points for CSDP5.0 and
PCSDPr, respectively. The sizes of the SDO problems depend on the number

Problom Objective Interpolation points

20 40 60 80 100 150 200
testl 2.9763233e¢ + 04| 0.05| 0.58| 2.30| 7.01| 16.05| 76.87| 243.78
test2 1.8995993e + 00| 0.06| 0.62| 2.30| 7.16| 16.19| 78.38| 250.86
test3 1.2031249e¢ + 01| 0.06 | 0.58| 2.46 | 7.32| 15.54| 80.11| 235.20
testd 3.8504507e¢ + 00| 0.05| 0.56| 2.21| 6.68| 15.75| 73.06| 251.04
testb 1.4890725e + 00| 0.06| 0.62| 2.37| 7.40| 16.88| 76.90| 244.48
test6 8.2423940e — 01| 0.06| 0.57| 2.31| 7.03| 16.87| 82.48| 254.22
test7 1.6013075e + 00| 0.06| 0.62| 2.38| 7.44| 18.13| 85.20| 258.01
test8 1.4508008e + 01| 0.05| 0.60| 2.34| 7.19| 15.78 | 78.82| 254.26
test9 1.9059611e + 00| 0.05| 0.64| 2.43| 7.41| 16.92| 79.42| 255.00
test10 7.9167274e + 00| 0.06| 0.62| 2.45| 7.62| 17.20| 76.33| 245.32
testll 1.5000000e + 00 | 0.05| 0.62| 2.50| 7.86| 17.06| 82.95| 265.09
test12 1.0000000e + 00 | 0.07| 0.61| 2.37| 7.65| 17.02| 80.48| 254.71
test13 1.5874011e + 00| 0.06 | 0.62| 2.42| 7.33| 16.26| 79.07| 251.49
testld 7.8868539¢ — 01| 0.06 | 0.61| 2.38| 7.45| 16.95| 80.61| 261.72
testlb 3.5533901e — 02| 0.07| 0.73| 2.80| 8.40| 19.15| 86.17| 272.15
test1l6 —1.110901e — 02| 0.07| 0.76 | 3.03| 9.07| 21.50| 98.18 | 321.54
test17 —7.0000000e + 00| 0.06 | 0.76| 2.88 | 8.84| 20.71|101.68 | 300.42
test18 0| 0.07| 0.72| 2.59| 8.45| 18.58 | 89.28| 267.22
test19 7.8156745e + 00| 0.07| 0.61| 2.48| 7.53| 17.03| 82.57| 264.96
test20 6.3490529e — 02| 0.07| 0.58| 2.36| 6.94| 17.24| 79.33| 239.42

Table 6.9: Solution times in seconds for CSDP5.0 for twenty rank-one test problems.

of interpolation points as follows: the number of linear equality constraints m
equals the number of interpolation points, and there are two positive semidefinite
blocks of size roughly m /2. We also give the optimal objective value for each test
function.

6.2 PROBLEMS WITH RANK-ONE STRUCTURE 89

Problem Objective Interpolation points

20 40 60 80| 100 150 200
testl 2.9763233e¢ + 04 | 0.08 | 0.40| 1.36| 3.44| 7.59| 31.58| 92.90
test2 1.8995993e + 00| 0.06 | 0.42| 1.38| 3.46| 7.51| 31.96| 98.28
test3 1.2031249e + 01| 0.07| 0.39| 1.37| 3.57| 7.14| 30.47| 98.08
testd 3.8504507e + 00| 0.06 | 0.39| 1.28| 3.36| 7.25| 31.22| 88.95
testb 1.4890725e + 00| 0.07| 0.43| 1.36| 3.59| 7.60| 31.18| 94.78
test6 8.2423940e — 01| 0.07 | 0.40| 1.38| 3.47| 7.63| 33.74| 93.25
test7 1.6013075e + 00| 0.07| 0.42| 1.37| 3.64| 7.63| 34.62| 96.39
test8 1.4508008e + 01 | 0.06 | 0.39| 1.34| 3.66 | 7.14| 30.48| 92.77
test9 1.9059611e 4+ 00| 0.07| 0.42| 1.35| 3.55| 7.50| 32.36 | 93.95
test10 7.9167274e + 00| 0.07| 0.40| 1.33| 3.47| 7.71| 32.38| 92.15
testll 1.5000000e + 00 | 0.07| 0.40| 1.34| 3.65| 7.49| 34.43| 97.44
test12 1.0000000e + 00 | 0.06 | 0.39| 1.25| 3.64| 7.15| 31.96| 99.44
test13 1.5874011e + 00| 0.06 | 0.38| 1.26| 3.51| 7.35| 30.93| 92.60
testl4 7.8868539¢ — 01| 0.06 | 0.39| 1.31| 3.52| 7.33| 33.03| 95.05
testlb 3.5533901e — 02| 0.07| 0.45| 1.51| 4.08| 8.54| 35.10|102.84
testl6 —1.110901e — 02| 0.08 | 0.54| 1.69| 4.64| 9.65| 41.63|112.57
test17 —7.0000000e + 00| 0.07| 0.48| 1.56 | 4.23| 8.69| 37.34|108.08
testl8 0| 0.08| 0.49| 1.65| 4.04| 8.72| 35.01| 98.89
test19 7.8156745e + 00| 0.06| 0.39| 1.35| 3.61| 7.53| 32.02| 93.05
test20 6.3490529e — 02| 0.06 | 0.38| 1.28| 3.53| 7.66| 30.88| 94.87

Table 6.10: Solution times in seconds for PCSDPr for twenty rank-one test problems.

The solution times in Tables 6.9 and 6.10 show that when we have up to 40
interpolation points, the times are of the same order. This is to be expected due to
the small size of the SDO problem. With increasing the number of interpolation
points, the difference in solution times becomes apparent. When the order is
60, we notice roughly a 50% reduction in solution time when exploiting rank-one
structure. This percentage increases with increase of the number of interpolation
points. For order 100, PCSDPr obtains solution almost twice faster on average
than the standard version of CSDP5.0. The difference in solution time is almost
3 times in favor of PCSDPr for 200 interpolation points. These results clearly
indicate that the simple construction (5.19) for exploiting rank-one structure when
computing Schur in a primal-dual IPM algorithm results in a very significant
speedup in practice.

Next, we included in our tests the fastest known approach to solve rank-one
problems, namely using the DSDP solver. We performed tests with DSDP using
its Matlab 6.5 interface and Linux operating system on the same PC as the test of
CSDP5.0 and PCSDPr. The test was only on the test functions testl and test17
functions, as the computational times vary only slightly for the different instances.

90

COMPUTATIONAL RESULTS

Solver Phase Interpolation points
Problem

20| 40| 60] 80| 100] 150] =200
Reading input 0.01]0.08|0.280.64| 1.28 4.38| 10.69
CSDP5.0 Solver| 0.05|0.58|2.30|7.01|16.05| 76.87 |243.78
Total | 0.06|0.66|2.58|7.65|17.33| 81.45 |254.47
testl Reading input | < 0.01]0.01]0.02]0.02| 0.04] 0.11| 0.22
PCSDPr Solver| 0.08(0.40|1.36|3.44| 7.59| 31.58| 92.90
Total | 0.08[0.41(1.38|3.46| 7.63| 31.69| 93.12
DSDP Total | 0.15|0.34]0.76 |1.27| 2.48| 6.75| 14.80
Reading input| 0.01]0.090.28[0.67] 1.31] 4.43{ 10.50
CSDP5.0 Solver | 0.06]0.76|2.88|8.84 [20.71 | 101.68 | 300.42
Total| 0.07]0.85|3.16 |9.51|22.02|106.11 | 310.92
test1? Reading input | < 0.01]0.01]0.02[0.02] 0.05] 0.11| 0.20
PCSDPr Solver| 0.07]0.48]1.56|4.23| 8.69| 37.34|108.08
Total| 0.07]0.49|1.58|4.25| 8.74| 37.45|108.28
DSDP Total | 0.08|0.20]0.44|0.88| 1.49| 4.78| 11.19

Table 6.11:

Running times in seconds for CSDP5.0,

rank-one test problem.

The results are shown in Table 6.11

interested in the total running time

Time in sec

6.2

PCSDPr and DSDP for one

. All times are in seconds and we were only

T

— — CSDP5.0

—- PCSDPr
DSDP

250

150

100

100

120

140

Number of interpolation points

160

180

200

. We see that for order 20 and 40 we have a

Figure 6.2: Solution times (in seconds) for CSDP5.0, PCSDPr and DSDP for instance

testl.

6.2 PROBLEMS WITH RANK-ONE STRUCTURE 91

running times with difference within a 2-3 tenths of a second for DSDP, CSDP5.0
and PCSDPr. When the order is 100 then DSDP is faster than PCSDPr by a
factor of three. The difference is easy to observe on Figure 6.2 that depicts the
total solution time (Total) in seconds for problem testl.

When the size of the SDO problem further increases, the gap between the two
algorithms grows as one might expect. For 200 interpolation points, PCSDPr is
slower than DSDP by a factor close to 10.

In summary, from all our numerical experiments so far exploiting rank-one
structure in PCSDP still does not compete well with the dual scaling algorithm
implemented in DSDP, but it does make the gap smaller than before.

Experimental results with PCSDP

The tests of the rank-one feature in sequential code PCSDPr above suggest a good
speedup in practice, so we made it available in our parallel code PCSDP too. Next
we present results from the numerical tests of our parallel implementation PCSDP
on the DAS3 cluster. The aim of the experiments is to show what is the scalability
of computing the matrix M in parallel when exploiting rank-one structure. The
number of processors used is between 1 and 32. The reason we exclude the 64
CPU’s case is that the problems in Table 6.8 are relatively small-scale. They are
also of similar sizes and we therefore only consider only one problem: test2. In the
PCSDP parameters file we introduced a variable (called rank1)® that can switch
the rank-one feature of the solver ‘on’ and ‘off’.

Exploiting rank-one structure of the constraints matrices will affect only com-
putation of the Schur complement matrix M. Therefore we measure only the time
of forming Schur and the total running time, marked as Total. We exclude from
our tests cases with fewer than 80 interpolation points.

Interpolation Phase CPUs

points 1 2 4 8 16 32
0 Schur 3.30 2.26| 1.62| 0.82| 0.48| 0.25
Total 5.42 4.54| 4.09| 3.72| 3.45| 3.62

100 Schur 7.99 550 3.91| 2.01| 1.20| 0.67
Total | 11.76 9.44| 8.21| 6.28| 6.41| 6.68

150 Schur | 41.71| 29.83|16.70|10.18| 6.26| 3.35
Total | 51.97| 40.20|30.20|23.17|20.37|24.43

200 Schur | 145.28 | 94.64|67.11 | 36.30 | 22.56 | 11.34
Total | 176.38 | 126.29 | 98.87 | 68.66 | 56.09 | 54.89

Table 6.12: Running times for test2 problem (in seconds) for PCSDP with rank-one
option ‘off’.

5See for more details Section 5.2.3.

92 COMPUTATIONAL RESULTS

6.2

Tables 6.12 and 6.13 contain the running times in seconds for test2 when rank-
one feature is ‘off’ and when is ‘on’; respectively. The number of interpolation
points used for our tests is between 80 and 200. Figure 6.3 depicts the results for

Interpolation Phase CPUs

points 1 2 4 8 16 32
20 Schur| 1.27| 0.61| 0.35| 0.21| 0.16| 0.09
Total | 3.19| 3.08| 2.65| 2.47| 2.07| 2.16

100 Schur| 3.71| 2.29| 1.53| 0.75| 0.40| 0.19
Total | 6.48| 5.81| 5.16| 4.70| 4.57| 4.90

150 Schur |15.7710.93| 5.77| 3.81| 2.00| 0.98
Total | 28.95(21.94 | 17.10 | 15.28 | 13.67 | 13.63

200 Schur | 55.50 | 34.81{21.62|13.00| 6.63| 3.30
Total | 81.44 |61.82 | 48.73 [41.75|35.11 | 32.68

Table 6.13: Running times for test2 problem (in seconds) for PCSDP with rank-one

option ‘on’.

both Schur and Total for 200 interpolation points with rank-one feature ‘on’ and
‘off’. With increasing the number of processors, results for computing Schur using

150

Schur

A rank-one "off"
* rank-one “on"
g 100F 4 B
@
=3
o
g |,
F 5ol 4
* A
*
* A
0 I I I I I I *
0 5 10 15 20 25 30
Total
200
A A rank-one "off"
* rank-one “"on"
150 —
8 A
@
£ L 4
< 100 a
E *
=
*
501 * . A
*
0 I I I I I I
0 5 10 15 20 25 30

Number of CPUs

35

Figure 6.3: Results for test2 (Schur and Total) when 200 interpolation points are used.

the rank-one feature show similar speedup compared to the sequential case. The

6.3 CONCLUSION 93

times differ by a factor of at least 3 for all the range of CPUs used. Unfortunately,
this is not the case for the total running time.

When the rank-one option is ‘on’” PCSDP runs roughly twice as fast when
compared to the standard approach for 2 and 4 processors. Further increasing
the number of processors the reduction is less than a factor 1.5. Compared to
DSDP, even with the parallel implementation and rank-one option ‘on’ PCSDP
does not outperform it. The reasons are that the total running time is affected
by the additional communication time needed and factorization of a dense primal
variable X. Due to the good speedup of Schur, it does not remain the dominant
operation in Total when the number of processors is above 4. The size of the
problem also plays a role in this poor scalability of the total running time. All
the test problems we had were of a small size and m = 200.

We investigate next how well computing of M scales with respect to the num-
ber of processors used, depending on the use of the rank-one option. The parallel
efficiencies F were calculated for Schur from Tables 6.12 and 6.13 by expression
(6.1). The results are presented in Table 6.14. For better illustrations of the

Interpolation rank-one CPUs

points feature 1 2 4 8 16 32
20 off 1{0.73(0.51|0.50|0.42(0.41

on 111.03(0.89]0.74(0.47|0.42

100 off 1]0.73(0.51|0.50|0.41(0.37

on 1]0.81(0.61]|0.62|0.58|0.58

150 off 1]0.70(0.62|0.51|0.42(0.39

on 1]0.72(0.68]0.52|0.49 [0.50

200 off 1]0.77(0.54|0.50|0.40 | 0.40

on 1]0.80(0.64]|0.53|0.52|0.52

Table 6.14: Parallel efficiency of PCSDP computing the matriz M for test2 problem.

results, we depict in Figure 6.4 the parallel efficiency of Schur for test2 when 200
interpolation points are used.

From the results it is easy to see that exploiting the rank-one structure im-
proves not only the running time, but also the parallel efficiency of computing the
elements of the matrix M.

6.3 Conclusion

This chapter presented a numerical test of our primal-dual interior-point SDO
solver on a set of benchmark problems. Results suggests that it achieves a good
overall parallel efficiency for medium and large-sized semidefinite problems. The
best results were obtained for instances, where computation of the Schur comple-
ment matrix M and its Cholesky factorization are dominant operations.

94 COMPUTATIONAL RESULTS 6.3

A rank-one "off"
* rank-one "on"
1A il
0.8 * 4
A
>
2 *
S 0.6 1
£
A
s X * *
= A
<
a
0.4 A A 4
0.2 q
0 I I I I I I
5 10 15 20 25 30 35

Number of CPUs

Figure 6.4: Parallel efficiencies for computing M for 200 interpolation points for prob-
lem test2.

PCSDP was primary designed for cluster computing, where only an ether-
net network interconnect is available. The two-dimensional approach in com-
puting the matrix M, implemented in the solver, proved to be better then the
one-dimensional approach for this type of parallel computer architecture. Our
approach improved the locality of the computations and decreased the communi-
cation overhead.

The use of the rank-one feature in our solver brings a significant computa-
tional benefit for the semidefinite problems that have rank-one structure in their
constraint matrices. Exploiting this structure in PCSDP improves not only the
running time in a primal-dual IPM solver, but also improves the parallel efficiency
computing the elements of the Schur complement matrix M.

PCSDP, with its 64bit computing capability, makes it possible to solve large-
scale SDO problems, that require a total amount of memory beyond the available
RAM on any single PC in the cluster. In this way, our solver offers a cost-effective
way to solve even larger future semidefinite optimization problems.

Chapter

Conclusions

This thesis addressed the natural limitations of primal-dual interior-point methods
for SDO. Practical experience suggests [20, 114] that a significant amount of
computational time in a primal-dual IPM for SDO is spent on computing and
factorizing the typically dense Schur complement matrix. Reduction of the time
spent on these two computations has a big impact on the total solution time
for large scale problems. This motivated our work towards employing a parallel
approach for these computations.

In Chapter 3 we give an overview of the different parallel computer architec-
tures. There are two possibilities from the programming point of view: distributed
or shared memory platform. As our favorite we nominated the distributed mem-
ory cluster architecture due to its low cost, its flexibility, and the fact that it
available to many users, inside as well as outside the academic community.

Despite the effort and some solid developments, the use of parallelism in
interior-point algorithms has not been a popular choice. Therefore, in Chapter 4
we performed a detailed evaluation of the parallel approaches in interior-point
methods and their distributed implementations available so far. We identified the
places where one could still achieve an improvement.

Results from our analysis moved us in the direction of developing a primal-dual
interior point solver for semidefinite optimization, that we name PCSDP, designed
for a computer cluster platform. It is based on the well-known sequential solver
CSDP([18]. PCSDP requires only low cost computational hardware and network
interconnects. Another advantage is that it offers also a 64bit computational
arithmetic and is portable to different software UNIX-like platforms.

Our software incorporates a two-dimensional approach in distributed compu-
tation of the Schur complement matrix, which is different compared to all existing
parallel SDO packages. It is of scientific value since it results in minimization of
the total communication overhead for slow networks. PCSDP is capable of solving
large scale SDO problems with memory requirements beyond the available RAM

95

96 CONCLUSIONS 7.1

of any computing node in the cluster. We offer also a feature not available in
other parallel solvers for SDO, namely, to exploit rank-one structure in constraint
matrices of the problem.

Results from the benchmark experiments proved that PCSDP enjoys a good
overall parallel efficiency for medium and large-sized semidefinite problems. It
is most efficient on problems that have a large number of constraints compared
to the size of the primal and dual matrix variables. The best results were ob-
tained for instances, where computation of the Schur complement matrix M and
its Cholesky factorization are dominant operations. Its two-dimensional approach
in computing the matrix M improved the locality of the computations, which is
important on slow networks, such as ethernet. The use of the rank-one feature
brought a significant computational benefit for problems that have rank-one struc-
ture in their constant matrices. Overall, PCSDP proved itself as a step forward
in the development of parallel interior-point solvers for semidefinite optimization.

7.1 Directions for further research

One of the major performance limitations in parallel implementations of the
primal-dual TPMs for semidefinite optimization is the inherently sequential na-
ture of interior-point methods. Despite that, there is still room for improvement.
One of the problems that still does not have a solution in the distributed imple-
mentations for SDO is the time-consuming Cholesky factorization of the primal
and the dual matrix variables.

A possible answer may be on the way with the recent progress of processor
technologies towards multi-core CPUs. Most parallel machines in the near fu-
ture will be hybrids, combining nodes containing a modest number of commodity
CPU’s sharing memory in a distributed-memory cluster system. Such systems
will open the horizon for a hybrid software too. For example, PCSDP can be
modified into a distributed solver, which locally performs shared memory paral-
lel computations on the multi-core nodes. Such local parallel computations can
speed-up additionally all non-distributed parallel matrix operations including the
primal and dual matrix factorizations.

Looking even further into the future of high-performance parallel computa-
tions, one could not miss the latest innovation in supercomputer systems: incor-
porating FPGA! technology. It provides massive algorithm acceleration through
hardware-based implementation of compute-intensive algorithmic tasks. Modern
FPGAs have the ability to be reprogrammed at ‘run time’, and this leads to the
idea of reconfigurable computing (or systems)— CPUs that reconfigure themselves
to suit the task at hand.

This high-performance computer technology is already implemented in the

LA field-programmable gate array (FPGA) is a semiconductor device that contains a pro-
grammable logic components called ”logic blocks”, and programmable interconnects.

7.1 DIRECTIONS FOR FURTHER RESEARCH 97

Cray XT5h? supercomputer. By using FPGA-based acceleration, it can obtain
40 — 50 times improvement over conventional processors for certain algorithms.
Typical applications of FPGAs nowadays are digital signal processing, medical
imaging, computer vision, speech recognition, cryptography, bioinformatics and a
growing range of other areas. Semidefinite optimization, and particulary interior-
point algorithms, might be a future application of this new high-performance
hybrid computer technology.

2http:/ /www.cray.com /products/xt5

Bibliography

[1]

2]

Infiniband Trade Association, web page htt p: //www. i nfi ni bandt a. or g/
horre.

F. Alizadeh. Combinatorial optimization with interior point methods and
semi-definite matrices. PhD thesis, University of Minnesota, Minneapolis,
MN, USA, 1992.

F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Primal-dual interior-
point methods for semidefinite programming: Convergence rates, stability
and numerical results. STAM Journal on Optimization, 8(3):746-768, 1998.

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra,
J. D. Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen.
LAPACK Users’ guide (third ed.). Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA, 1999.

K. Anstreicher, N. Brixius, J.-P. Goux, and J. Linderoth. Solving large
quadratic assignment problems on computational grids. Mathematical Pro-
gramming, 91(3, Ser. B):563-588, 2002.

K. M. Anstreicher. Recent advances in the solution of quadratic assignment
problems. Mathematical Programming, 97(1-2, Ser. B):27-42, 2003.

K. M. Anstreicher, J. Ji, F. A. Potra, and Y. Ye. Average performance of
a self-dual interior point algorithm for linear programming. In Complexity
in numerical optimization, pages 1-15. World Sci. Publ., River Edge, NJ,
1993.

S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
MeclInnes, B. F. Smith, and H. Zhang. PETSc Web page, 2001.
http://wwmv. ncs. anl . gov/ pet sc.

S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient man-
agement of parallelism in object-oriented numerical software libraries. In
Modern software tools for scientific computing, pages 163-202. Birkhauser
Boston Inc., Cambridge, MA, USA, 1997.

99

100

[10]

[11]

[12]

[13]

[14]

BIBLIOGRAPHY

S. J. Benson. Parallel computing on semidefinite programs. Technical Re-
port ANL/MCS-P939-0302, Mathematics and Computer Science Division,
Argonne National Laboratory, April 2003.

S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite
programs for combinatorial optimization. SIAM Journal on Optimization,
10(2):443-461, 2000.

F. Berman, G. Fox, and A. J. G. Hey. Grid Computing: Making the Global
Infrastructure a Reality. John Wiley & Sons, Inc., New York, NY, USA,
2003.

A. Bernstein. Analysis of programs for parallel processing. IEEE Transac-
tions on Electronic Computers, EC-15(5):757-763, 1966.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, 1. Dhillon,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK wuser’s guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1997.

L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry,
M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington,
and R. C. Whaley. An updated set of Basic Linear Algebra Subprograms
(BLAS). ACM Transactions on Mathematical Software, 28(2):135-151, June
2002.

L. Blum, F. Cucker, M. Shub, and S. Smale. Complezity and real computa-
tion. Springer-Verlag New York, Inc., 1998.

L. Blum, M. Shub, and S. Smale. On a theory of computation and com-
plexity over the real numbers: NP-completeness, recursive functions and
universal machines. Bulletin of the American Mathematical Society (New
Series), 21(1):1-46, 1989.

B. Borchers. CSDP, a C library for semidefinite programming. Optimization
Methods and Software, 11/12(1-4):613-623, 1999.

B. Borchers. SDPLIB 1.2, library of semidefinite programming test prob-
lems. Optimization Methods and Software, 11/12(1-4):683-690, 1999.

B. Borchers and J. G. Young. Implementation of a primal-dual method for
SDP on a shared memory parallel architecture. Computational Optimization
and Applications, 37(3):355-369, 2007.

R. E. Burkard, S. E. Karisch, and F. Rendl. QAPLIB—a quadratic assign-
ment problem library. Journal of Global Optimization, 10(4):391-403, 1997;
see also htt p: //www. seas. upenn. edu/ gapl i b/ .

[22]

[23]

BIBLIOGRAPHY 101

J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK: A portable lin-
ear algebra library for distributed memory computers — design issues and
performance. Technical report, Knoxville, TN 37996, USA, 1995.

J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W. Walker, and
R. C. Whaley. Design and implementation of the ScaLAPACK LU, QR,
and Cholesky factorization routines. Scientific Programming, 5(3):173-184,
1996.

T. Coleman, J. Czyzyk, C. Sun, M. Wagner, and S. Wright. pPCx: Parallel
software for linear programming. In Proceedings of the FEighth 30 SIAM
Conference on Parallel Processing in Scientific Computing. SIAM Publica-
tions, 1997.

D. E. Culler, A. Gupta, and J. P. Singh. Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997.

D. Cvetkovic, M. Cangalovic, and V. Kovacevic-Vujcic. Semidefinite pro-
gramming methods for the symmetric traveling salesman problem. In Pro-
ceedings of the Tth International IPCO Conference on Integer Programming
and Combinatorial Optimization, pages 126—136, Springer-Verlag, London,
UK, 1999.

E. de Klerk. Aspects of Semidefinite Programming: Interior Point Al-
gorithms and Selected Applications, volume 65 of Applied Optimization.
Kluwer Academic Publishers, March 2002.

E. de Klerk. Private communication. 2008.

E. de Klerk, G. Elabwabi, and D. den Hertog. Optimization of univari-
ate functions on bounded intervals by interpolation and semidefinite pro-
gramming. Discussion Paper 2006-26, Tilburg University, Center for Eco-
nomic Research, April 2006; available at http://ideas.repec. org/ p/
dgr/ kubcen/ 200626. ht m .

E. de Klerk, J. Maharry, D. V. Pasechnik, R. B. Richter, and G. Salazar.
Improved bounds for the crossing numbers of K, , and K,,. SIAM Journal
on Discrete Mathematics, 20(1):189-202, 2006.

E. de Klerk and D. V. Pasechnik. Approximation of the stability number
of a graph via copositive programming. SIAM Journal on Optimization,
12(4):875-892, 2002.

E. de Klerk, D. V. Pasechnik, and A. Schrijver. Reduction of symmet-
ric semidefinite programs using the regular x-representation. Mathematical
Programming, 109(2-3, Ser. B):613-624, 2007.

102

[33]

[43]

[44]

BIBLIOGRAPHY

E. de Klerk, D. V. Pasechnik, and R. Sotirov. On semidefinite programming
relaxations of the traveling salesman problem. Discussion Paper 2007-101,
Tilburg University, Center for Economic Research, December 2007; available
at http://ideas.repec.org/p/dgr/kubcen/2007101. ht i .

E. de Klerk, C. Roos, and T. Terlaky. Initialization in semidefinite pro-
gramming via a self-dual skew-symmetric embedding. Operations Research
Letters, 20(5):213-221, 1997.

E. de Klerk and R. Sotirov. Exploiting group symmetry in semidefinite pro-
gramming relaxations of the quadratic assignment problem. Discussion Pa-
per 2007-44, Tilburg University, Center for Economic Research, June 2007;
available at http://ideas. repec. org/ p/ dgr/ kubcen/ 200744. ht m .

J. Dongarra, 1. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and
A. White. Sourcebook of parallel computing. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2003.

J. J. Dongarra, L. S. Duff, D. C. Sorensen, and H. A. V. Vorst. Numerical
Linear Algebra for High Performance Computers. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1998.

R. Duncan. A survey of parallel computer architectures. Computer, 23(2):5—
16, 1990.

A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential
Unconstrained Minimization Techniques. John Wiley & Sons, New York,
1968. Reprint: Volume 4 of SIAM Classics in Applied Mathematics, STAM
Publications, Philadelphia, Pennsylvania, 1990.

M. J. Flynn. Some computer organisations and their effectiviness. IEEE
Transactions on Computers, C-21:948-960, September 1972.

I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure
Toolkit. International Journal of Supercomputer Applications and High
Performance Computing, 11(2):115-128, 1997.

I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, USA,
2003.

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling
scalable virtual organization. International Journal of High Performance
Computing Applications, 15(3):200-222, 2001.

K. R. Frisch. The logarithmic potential method for convex programming.
Memorandum, Institute of Economics, University of Oslo, Norway, May
1955.

[45]

[46]

[47]

[48]

[52]

[56]

[57]

BIBLIOGRAPHY 103

K. R. Frisch. The logarithmic potential method for solving linear program-
ming problems. Memorandum, Institute of Economics, University of Oslo,
Norway, 1955.

K. Fujisawa, M. Kojima, and K. Nakata. Exploiting sparsity in primal—
dual interior-point methods for semidefinite programming. Mathematical
Programming, 79(1-3, Ser. B):235-253, 1997.

M. Fukuda, M. Kojima, K. Mucro, and K. Nakata. Exploiting sparsity
in semidefinite programming via matrix completion. I. General framework.
SIAM Journal on Optimization, 11(3):647-674, 2000.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., 2003.

D. Geer. Industry trends: Chip makers turn to multicore processors. Com-
puter, 38(5):11-13, 2005.

A. George and J. W. Liu. The evolution of the minimum degree ordering
algorithm. STAM Review, 31(1):1-19, 1989.

P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright. On
projected Newton barrier methods for linear programming and an equiv-
alence to Karmarkar’s projective method. Mathematical Programming,
36(2):183-209, 1986.

M. X. Goemans and D. P. Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite program-
ming. Journal of the Association for Computing Machinery, 42(6):1115—
1145, 1995.

G. H. Golub and C. F. Van Loan. Matriz computations (3rd ed.). Johns
Hopkins University Press, 1996.

J. Gondzio and R. Sarkissian. Parallel interior-point solver for structured
linear programs. Mathematical Programming, 96(3, Ser. A):561-584, 2003.

A. Graham. Kronecker products and matriz calculus: with applications.
Ellis Horwood Ltd., Chichester, 1981. Ellis Horwood Series in Mathematics
and its Applications.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI (2nd ed.): portable parallel
programming with the message-passing interface. MIT Press, Cambridge,
MA, USA, 1999.

R. K. Guy. The decline and fall of Zarankiewicz’s theorem. In Proof Tech-
niques in Graph Theory (Procceedings of the Second Annual Arbor Graph
Theory Conference, Ann Arbor, Michigan, 1968), pages 63-69. Academic
Press, New York, 1969.

104

[58]

[59]

[60]

[61]

[62]

[63]

BIBLIOGRAPHY

P. Hansen, B. Jaumard, and S.-H. Lu. Global optimization of univari-
ate Lipschitz functions. II. New algorithms and computational comparison.
Mathematical Programming, 55(3, Ser. A):273-292, 1992.

C. Helmberg and F. Rendl. Solving quadratic (0, 1)-problems by semidef-
inite programs and cutting planes. Mathematical Programming, 82(3, Ser.
A):291-315, 1998.

C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior-
point method for semidefinite programming. SIAM Journal on Optimiza-
tion, 6(2):342-361, 1996.

W. D. Hillis and L. W. Tucker. The CM-5 Connection Machine: a scalable
supercomputer. Communications of the ACM, 36(11):31-40, 1993.

L. H. Jamieson, D. Gannon, and R. J. Douglass, editors. The characteristics
of parallel algorithms. Massachusetts Institute of Technology, Cambridge,
MA, USA, 1987.

W. E. Johnston. Using computing and data grids for large-scale science
and engineering. International Journal of High Performance Computing
Applications, 15(3):223-242, 2001.

M. T. Jones and P. E. Plassmann. An improved incomplete cholesky fac-
torization. ACM Transactions on Mathematical Software, 21(1):5-17, 1995.

M. Joshi, G. Karypis, V. Kumar, A. Gupta, and F. Gustavson. PSPASES:
An efficient and scalable parallel sparse direct solver. In Proceedings of the
Ninth SIAM Conference on Parallel Processing for Scientific Computing.
San Antonio, Texas, USA, 1999.

N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373-395, 1984.

G. Karypis, A. Gupta, and V. Kumar. A parallel formulation of interior
point algorithms. In Supercomputing '94: Proceedings of the 1994 conference
on Supercomputing, pages 204-213. IEEE Computer Society Press, USA,
1994.

L. G. Khaciyan. A polynomial algorithm in linear programming. Doklady
Akademiia Nauk SSSR, 244:1093-1096, 1979. Translated into English in
Soviet Mathematics Doklady 20, 191-194.

V. Klee and G. J. Minty. "How good is the simplex algorithm?”. In In-
equalities I11, pages 159-175. Academic Press, New York, USA, 1972.

M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algo-
rithm for linear programming. In Progress in mathematical programming,
pages 29-47. Springer, New York, 1989.

[71]

[81]

[82]

BIBLIOGRAPHY 105

M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for the mono-
tone semidefinite linear complementarity problem in symmetric matrices.
SIAM Journal on Optimization, 7(1):86-125, 1997.

M. Kocvara and M. Stingl. On the solution of large-scale SDP problems by
the modified barrier method using iterative solvers. Mathematical Program-
ming, 109(2):413-444, 2007.

K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of
grid resource management systems for distributed computing. Software —
Practice and Experience, 32(2):135-164, 2002.

J. Kurzak and J. Dongarra. Implementing linear algebra routines on multi-
core processors with pipelining and a look ahead. In Applied Parallel Com-
puting. State of the Art in Scientific Computing, volume 4699 of Lecture
Notes in Computer Science, pages 147-156. Springer, 2007.

J. Lofberg and P. Parrilo. From coefficients to samples: a new approach to
SOS optimization. In IEEE Conference on Decision and Control, December
2004.

I. J. Lustig and G. Li. An implementation of a parallel primal-dual interior—
point method for block—structured linear programs. Computational Opti-
mization and Applications, 1(2):141-161, 1992.

N. Meggido. Pathways to the optimal set in linear programming. In Progress
in Mathematical Programming Interior-point and related methods, pages
131-158. Springer-Verlag Inc., New York, USA, 1988.

S. Mehrotra. On the implementation of a primal-dual interior point method.
SIAM Journal on Optimization, 2(4):575-601, 1992.

V. Menon and K. Pingali. Look left, look right, look left again: an ap-
plication of fractal symbolic analysis to linear algebra code restructuring.
International Journal of Parallel Programming, 32(6):501-523, 2004.

H. D. Mittelman. Dimacs challenge benchmarks, 2000; available at
http://plato.asu. edu/ di macs/ .

R. D. C. Monteiro. Primal-dual path-following algorithms for semidefinite
programming. SIAM Journal on Optimization, 7(3):663-678, 1997.

R. D. C. Monteiro and I. Adler. Interior path following primal-dual
algorithms. I. Linear programming. Mathematical Programming, 44(1,
Ser. A):27-41, 1989.

106 BIBLIOGRAPHY

[83] R. D. C. Monteiro and P. Zanjdcomo. Implementation of primal-dual meth-
ods for semidefinite programming based on Monteiro and Tsuchiya Newton
directions and their variants. Optimization Methods and Software, 11/12(1-
4):91-140, 1999.

[84] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Mucro. Exploit-
ing sparsity in semidefinite programming via matrix completion. II. Imple-

mentation and numerical results. Mathematical Programming, 95(2, Ser.
B):303-327, 2003.

[85] K. Nakata, M. Yamashita, K. Fujisawa, and M. Kojima. A parallel primal-
dual interior-point method for semidefinite programs using positive definite
matrix completion. Parallel Computing, 32(1):24-43, 2006.

[86] M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata, and K. Fuji-
sawa. Variational calculations of fermion second-order reduced density ma-

trices by semidefinite programming algorithm. Journal of Chemical Physics,
114(19):8282-8292, 2001.

[87] Y. E. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in
convex programming, volume 13 of SIAM Studies in Applied Mathematics.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1994.

[88] Y. E. Nesterov and M. J. Todd. Self-scaled barriers and interior-point meth-
ods for convex programming. Mathematics of Operations Research, 22(1):1-
42, 1997.

[89] Y. E. Nesterov and M. J. Todd. Primal-dual interior-point methods for
self-scaled cones. STAM Journal on Optimization, 8(2):324-364, 1998.

[90] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algo-
rithms and complexity. Prentice-Hall Inc., Upper Saddle River, NJ, USA,
1982.

[91] G. F. Pfister. In search of clusters (2nd ed.). Prentice-Hall Inc., Upper
Saddle River, NJ, USA, 1998.

[92] J. Renegar. A polynomial-time algorithm, based on Newton’s method, for
linear programming. Mathematical Programming, 40(1, Ser. A):59-93, 1988.

[93] R. T. Rockafellar. Lagrange multipliers and optimality. SIAM Review,
35(2):183-238, 1993.

[94] C. Roos, T. Terlaky, and J.-P. Vial. Interior-point methods for linear op-
timization. Springer, New York, 2006. Second edition of Theory and algo-
rithms for linear optimization, Wiley, Chichester, 1997.

[95]

[101]

[102]

[103]

[104]
[105]

[106]

[107]

BIBLIOGRAPHY 107

O. Schenk and K. Gértner. Solving unsymmetric sparse systems of lin-
ear equations with PARDISO. Future Generation Computer Systems,
20(3):475-487, 2004.

C. L. Seitz. The cosmic cube. Communications of the ACM, 28(1):22-33,
1985.

T. L. Sterling, J. Salmon, D. J. Becker, and D. F. Savarese. How to build
a Beowulf: a guide to the implementation and application of PC clusters.
MIT Press, Cambridge, MA, USA, 1999.

T. L. Sterling, D. F. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake,
and C. V. Packer. BEOWULF: A parallel workstation for scientific com-
putation. In Proceedings of the 24th International Conference on Parallel
Processing, pages 1:11-14, Oconomowoc, WI, 1995.

J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11/12(1-4):625-653,
1999.

J. F. Sturm. Implementation of interior—point methods for mixed semidef-
inite and second order cone optimization problems. Optimization Methods
and Software, 17(6):1105-1154, 2002.

J. F. Sturm and S. Zhang. Symmetric primal-dual path-following algorithms
for semidefinite programming. Applied Numerical Mathematics, 29(3):301—
315, 1999.

C. Sun. Parallel sparse orthogonal factorization on distributed-memory
multiprocessors. SIAM Journal on Scientific Computing, 17(3):666—685,
1996.

M. J. Todd. A study of search directions in primal-dual interior-point meth-
ods for semidefinite programming. Optimization Methods and Software,
11/12(1-4):1-46, 1999.

M. J. Todd. Semidefinite optimization. Acta Numerica, 10:515-560, 2001.

M. J. Todd, K. C. Toh, and R. H. Tiitiincii. On the Nesterov—Todd direction
in semidefinite programming. STAM Journal on Optimization, 8(3):769-796,
1998.

K. C. Toh and M. Kojima. Solving some large-scale semidefinite pro-
grams via the conjugate residual method. SIAM Journal on Optimization,
12(3):669-691, 2002.

K. C. Toh, M. J. Todd, and R. H. Titiinci. SDPT3—a MATLAB software
package for semidefinite programming, version 1.3. Optimization Methods
and Software, 11/12(1-4):545-581, 1999.

108

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

BIBLIOGRAPHY

J. F. Traub and H. WozZniakowski. Complexity of linear programming.
Operations Research Letters, 1(2):59-62, 1981/82.

A. van der Steen. Overview of recent supercomputers. Technical report,
2007; available at htt p: // ww. eur oben. nl /reports/.

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,
38(1):49-95, 1996.

S. A. Vavasis. Nonlinear optimization, volume 8 of International Series
of Monographs on Computer Science. Oxford University Press, New York,
1991.

S. J. Wright. Primal-dual interior-point methods. Society for Industrial and
Applied Mathematics (STAM), Philadelphia, PA, USA, 1997.

M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evalua-
tion of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0). Optimization
Methods and Software, 18(4):491-505, 2003.

M. Yamashita, K. Fujisawa, and M. Kojima. SDPARA: SemiDefinite Pro-
gramming Algorithm paRAllel version. Parallel Computing. Theory and
Applications, 29(8):1053-1067, 2003.

M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM
Journal on Algebraic and Discrete Methods, 2(1):77-79, 1981.

K. Zarankiewicz. On a problem of P. Turan concerning graphs. Polska
Akademia Nauk. Fundamenta Mathematicae, 41:137-145, 1954.

Y. Zhang. On extending some primal-dual interior-point algorithms from
linear programming to semidefinite programming. SIAM Journal on Opti-
mization, 8(2):365-386, 1998.

Q. Zhao, S. E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite pro-
gramming relaxations for the quadratic assignment problem. Journal of
Combinatorial Optimization, 2(1):71-109, 1998.

7. Zhao, B. J. Braams, M. Fukuda, M. L. Overton, and J. K. Percus. The
reduced density matrix method for electronic structure calculations and the
role of three-index representability conditions. Journal of Chemical Physics,
120(5):2095-2104, 2004.

Index

algorithm, 14
exponential, 14
polynomial-time, 14

bit model, 16
BLACS, 82
BLAS, 69
BSS model, 14

central path, 4
cluster, 42

Beowulf, 43
communication overhead, 54
computational complexity, 13
computer grid, 43
convexity, 2
crossing number, 7

data distribution, 51
block-cyclic, 52
one-dimensional, 52
two-dimensional, 70
data redistribution procedure, 54
direction
affine-scaling, 21
corrector, 21
distributed computing, 43
duality gap, 3

floating-point number, 5
flop, 16

interior-point methods, 1
primal-dual, 2
path-following, 4

LAPACK, 69
linear optimization problem, 15, 49
Lyapunov equation, 23

matrix
positive semidefinite, 3
Mehrotra predictor-corrector strategy, 17,
21, 66
Message Passing Interface, see MPI, 43
MPI, 68
multi-core processors, 40

network
Ethernet, 6
Infiniband, 43
Myrinet, 54, 71
Myri-10G, 43

optimization, 1
linear, 1
semidefinite, 2

parallel computer architectures, 39
distributed memory, 41
shared memory, 40

parallel efficiency, 75

Parallel Virtual Machine, 43

process grid, 70

quadratic assignment problem, 9

rank-one, 72
real-number model, 14

ScaLAPACK, 46

109

110 INDEX

Schur complement, 5
equation, 5, 66
matrix, 5, 66
search direction, 18
AHO, 13, 18, 24, 31
HKM, 13, 18, 26, 34, 63
NT, 13, 18, 28, 35
semidefinite optimization problem, 3, 17,
64
speedup, 75

traveling salesman problem, 9
Turing model, 13

Summary

This thesis deals with solving large-scale semidefinite optimization (SDO) prob-
lems by using interior-point methods and parallel computations.

Firstly, we revisit the topic of the computational complexity of the primal-dual
interior-point method (IPM) for SDO. Our main focus is on the time per iteration
complexity for the three most popular search directions in semidefinite optimiza-
tion solvers: the Alizadeh—Haeberly—Overton, the Helmberg—Kojima—Monteiro
and the Nesterov-Todd directions. We outline the most computationally inten-
sive operations involved in a path-following primal-dual interior-point algorithm
using the Mehrotra predictor-corrector strategy. Practical experience suggested
that a significant computational time is spend on computing and factorizing the
Schur complement matrix M. Speeding up these two computations has a big
impact on the total solution time for large-scale problems. This motivated our
objective in this thesis, namely to parallelize these computations.

As a next step, we review the different parallel computer architectures from the
programming point of view. We also discuss the suitability of the parallel systems
for practical implementation of interior-point methods. Finally, we motivate our
choice of a computer cluster architecture for development of a new distributed
parallel primal-dual IPM solver for semidefinite optimization.

In order to choose a suitable design for our solver, we review the related work
and problems in parallelization of interior-point methods for linear and semidefi-
nite optimization. We focus on the different strategies to identify and use paral-
lel computation to speed-up interior-point algorithms, in particular primal-dual
methods for SDO. We give a discussion on the computational overhead caused by
performing tasks in parallel.

In Chapter 5, we present the algorithmic framework behind our newly de-
veloped primal-dual interior-point method solver for SDO using the Helmberg—
Kojima—Monteiro search direction. We introduce there a different parallel com-
putational approach for computing the Schur complement matrix than the exist-
ing IPM solvers. The two-dimensional data distribution used in our solver aims
to minimize the communication overhead caused by the parallel computations.

111

112 SUMMARY

This approach improves the locality of the data and requires less overall mem-
ory storage. This is an important result for problems with very large number of
constraints.

We also describe the new feature in our software that allows to deal with
rank-one constraint matrices in SDO problems.

Chapter 6 presents the computational results from the numerical tests of our
software PCSDP. We compare the running times and the scalability between our
IPM solver and other parallel solvers for SDO, namely SDPARA and PDSDP.
Results suggests that PCSDP achieves a good overall parallel efficiency for mid-
dle and large sized semidefinite problems. The best results were obtained for
instances, where computation of the Schur complement matrix and its Cholesky
factorization are dominant operations.

Results from the test of the rank-one feature in our solver are presented too.
Exploiting rank-one structure resulted in a significant computational benefit for
the semidefinite problems that have such structure in their constraint matrices.

PCSDP, with its 64bit computing capability, makes it possible to solve large-
scale SDO problems, that require a total amount of memory beyond the available
RAM on any single PC in the cluster. In this way, our solver offers a cost-effective
way to solve even larger future SDO problems.

Samenvatting

Dit proefschrift gaat over het oplossen van grootschalige semidefiniete optimalis-
erings (SDO) problemen met inwendige punt methoden en het gebruik daarbij
van parallelle berekeningen.

Om te beginnen staan we stil bij de rekenkundige complexiteit van primaal-
duale inwendige punt methoden (IPM) voor SDO. We richten ons daarbij vooral
op de rekentijd die per iteratie nodig is voor de drie meest populaire zoekrichtin-
gen in SDO pakketten, te weten: de Alizadeh—Haeberly—Overton, de Helmberg—
Kojima-Monteiro en de Nesterov-Todd zoekrichting. Wij schetsen ook de meest
tijdvergende operaties voor padvolgende inwendige punt methoden die de predictor-
corrector strategie van Mehrotra gebruiken.

Ervaringen in de praktijk doen vermoeden dat een significant deel van de
rekentijd nodig is voor het berekenenen en factoriseren van de Schur complement
matrix M. Het versnellen van de laatstgenoemde berekeningen heeft een grote
invloed op de totale rekentijd voor het oplossen van grootschalige problemen.
Dit verklaart het doel van dit proefschrift, namelijk om deze berekeningen te
parallelliseren.

Vervolgens geven we een overzicht van de verschillende parallelle computer-
architecturen met het oog op programmeringsaspecten. We bespreken ook de
geschiktheid van deze architecturen voor de practische implementatie van in-
wendige punt methoden. Tenslotte motiveren we de gemaakte keus van een com-
puter cluster architectuur voor het ontwikkelen van een nieuwe gedistribueerde
parallelle primaal-duale IPM voor het oplossen van semidefiniete optimaliser-
ingsproblemen.

Teneinde te komen tot een geschikt en verantwoord ontwerp voor onze code be-
spreken we gerelateerd bestaand werk, en de problemen die zich voordoen bij het
parallelliseren van inwendige punt methoden, zowel voor lineaire en semidefiniete
optimalisering. We focusseren daarbij op de verschillende strategieén om parallelle
berekeningen te gebruiken voor het versnellen van inwendige punt algoritmen, in
het bijzonder primaal-duale methoden voor semidefiniete optimalisering. We be-
spreken ook de onvermijdelijke rekenkundige overhead die optreedt bij het parallel

113

114 SAMENVATTING

uitvoeren van deelberekeningen.

In Hoofdstuk 5 presenteren we het algoritmisch geraamte van de nieuw ontwor-
pen primaal-duale inwendige punt methode voor SDO, gebaseerd op de Helmberg—
Kojima—-Monteiro zoekrichting. We introduceren een nieuwe benadering voor het
parallelliseren van de berekening van de Schur complement matrix, die verschilt
van de aanpak in bestaande SDO pakketten. De 2-dimensionale data distributie
in onze code is bedoeld om de communicatie overhead te minimaliseren. Deze
benadering verbetert het lokaal beschikbaar zijn van benodigde data, en vereist
minder geheugen. Dit is van groot belang, met name voor voor problemen met
een groot aantal beperkingen.

Onze software (PCSDP genoemd) heeft een andere opvallende eigenschap,
namelijk dat als constraint matrix diadisch is (i.e., rang 1 heeft), dit in de berekenin-
gen wordt benut.

Hoofdstuk 6 bevat testresultaten voor PCDSP. We vergelijken de rekentijden
en de schaalbaarheid van PCDSP met die van twee bekende andere pakketten
voor SDO, namelijk SDPARA en PDSDP. De resultaten laten zien dat PCSDP
over het geheel genomen goed presteert voor grootschalige en minder grootschalige
problemen. De beste resultaten worden verkregen voor problemen waarvoor de
de rekentijd voor de berekening van de Schur complement matrix en de Cholesky
factorisatie relatief groot is en die van de andere rekentaken domineert.

Wij testen ook de eigenschap van PCSDP om het optreden van diadische
constraint matrices te exploreren. Dit blijkt te leiden tot een significante besparing
in rekentijd.

PCSDP, met zijn 64-bit rekencapaciteit, maakt het mogelijk om grootscha-
lige SDO problemen op te lossen, problemen die niet kunnen worden opgelost op
een enkele PC omdat het vereiste RAM-geheugen dat van een gewone PC ver
overschrijdt. PCSDP biedt zodoende een doeltreffend middel om in de toekomst
grote SDO problemen op te lossen.

Curriculum Vitae

Ivan Ivanov was born in Silistra, Bulgaria on January 18, 1977. He graduated
in 1996 the Vocational High School of Mechanics “Vladimir Komarov” - Silistra.
The same year, he was enrolled in the Faculty of Automatics in the Technical
University of Sofia, Bulgaria. He received his MSc degree in Automatics and
Control Engineering in 2001.

Between January and August 2003, he did an internship in the “Group of
Mixed-Signal Circuits and Systems” at Philips Research Laboratories (NatLab)
in Eindhoven, The Netherlands. In September 2003 he became a researcher in
the Optimization group at Delft University of Technology, with supervisor Prof.
Cornelis Roos and scientific advisor Dr. Etienne de Klerk. His research in the area

of interior-point algorithms for semidefinite optimization has led to the present
PhD thesis.

During his stay in TU Delft, he completed the course program for PhD’s of the
Dutch Network on the Mathematics of Operations Research (LNMB). In April
2008, he joined Emerson Process Management in Rijswijk.

His research interests include: Interior-point methods, Linear and Semidefinite
optimization, parallel computational algorithms, high-performance optimization.

115

