
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Exploring Domain
Adaptation for Floor
Plan Vectorization
September 2024
J.L. Hofland

Exploring Domain
Adaptation for Floor
Plan Vectorization

by

J.L. Hofland

Student Name Student Number

Jeroen Hofland 4678141

To obtain the degree of MSc Computer Science at the faculty of Electrical Engineering, Mathematics
& Computer Science (EEMCS), part of Delft University of Technology (TU Delft), to be defended

publicly on Thursday September 12, 2024 at 14:00 AM.

Project Duration: Dec, 2023 - Sept, 2024
Faculty: EEMCS TU Delft
Thesis Committee: Dr. S. Khademi TU Delft, Daily supervisor

Dr. ir. J. van Gemert TU Delft, Thesis Advisor
Ir. C.C.J. van Engelenburg TU Delft, Daily co-supervisor
Dr. ir. L. Cavalcante Siebert TU Delft, External member
Ir. R. Jongerius Accenture, Company supervisor

Cover: 3D floor plan (coloured) of an apartment by Tallbox under CC BY-
SA 4.0 (Modified)

Preface

This thesis, Exploring Domain Adaptation for Floor plan Vectorization was conducted between Decem-
ber 2023 and September 2024 at the Faculty of Electrical Engineering, Mathematics and Computer
Science (EEMCS) at TU Delft. This work was conducted as part of the Computer Vision Lab of the
EEMCS faculty, and the AiDAPT AI lab at the architecture faculty.

I want to express my gratitude to my daily co-supervisor, Ir. Casper van Engelenburg’s consistent
support and feedback were key in shaping this work. I also appreciate the guidance provided by Dr.
Seyran Khademi, whose domain insights and kindmentorship were invaluable throughout our meetings.
My thanks also go to Dr. ir. Jan van Gemert for his sharp feedback during our evaluation meetings,
which helped refine the direction of this research. I am also grateful to Ir. Ricardo Jongerius from
Accenture for his strategic advice and for being a sparring partner in resolving challenges. I also want
to thank Accenture the Netherlands for making it possible to do this as a thesis internship.

At last, I would like to acknowledge my thesis graduation committee, consisting of Dr. S. Khademi, Dr.
ir. J. van Gemert, Ir. C.C.J. van Engelenburg, Dr. ir. L. Cavalcante Siebert, and Ir. R. Jongerius.

J.L. Hofland
Delft, September 2024

i

Contents

Preface i

1 Introduction 1

2 Scientific Article 2

3 Background 23
3.1 Machine Learning . 24

3.1.1 Introduction . 24
3.1.2 Deep Learning . 24
3.1.3 Convolutional Neural Networks . 27

3.2 Domain Adaptation . 30
3.2.1 Introduction . 30
3.2.2 Domain adaptation settings . 30
3.2.3 Types of Domain Adaptation . 30
3.2.4 Techniques Used in Domain Adaptation . 31
3.2.5 Maximum Mean Discrepancy . 31

3.3 Floor plan vectorization . 34
3.3.1 Introduction . 34
3.3.2 Data augmentations . 34
3.3.3 Cubicasa Model Architecture . 34
3.3.4 Floor plan representation . 35
3.3.5 Multi-task segmentation . 36
3.3.6 Post-processing to vector-based representation 38

References 40

ii

1
Introduction

The research is presented as a scientific article in Chapter 2. This is followed by a background sec-
tion in Chapter 3 that explains the technical concepts and terms used. We begin that background
with an overview of machine learning, then discuss domain adaptation, and conclude with floor plan
vectorization.

1

2
Scientific Article

2

Exploring Domain Adaptation for Floor Plan Vectorization

Jeroen Hofland
Delft University of Technology

AiDAPT Lab

Abstract

This paper explores the challenges of converting archi-
tectural floor plans from raster to vector images. Unlike
previous studies, our research focuses on domain adapta-
tion to address stylistic and technical variations across dif-
ferent floor plan datasets. We develop and test our vector-
ization method on the CubiCasa5K benchmark, which in-
cludes 3 different floor plan styles. Our analysis reveals
differences in input features across the CubiCasa5K styles,
indicating the potential for domain adaptation research,
mostly in room segmentation. However, we also find multi-
ple indications that labelling in the CubiCasa5K dataset is
ambiguous and inconsistent. Furthermore, styles with more
training data do not always perform better, highlighting the
complexity differences between floor plan styles. Our base-
line shows a 0.7% gap for rooms yet a 0.6% improvement
for objects, likely caused by the smaller feature gaps and in-
consistent labelling. To address the adaptation gap, we add
a Multi-Kernel Maximum Mean Discrepancy (MK-MMD)
loss to the CubiCasa5K model to minimize feature distri-
bution differences between domains. While our MK-MMD
implementation shows potential for reducing the adapta-
tion gap, persistence issues and mixed results across classes
make it difficult to draw clear conclusions. Our findings
also show the role of balancing spatial context in the MK-
MMD calculation. These insights lay a foundation for fu-
ture domain adaptation research in floor plan vectorization.

1. Introduction
Architectural floor plans are crucial for defining the lay-
out, distribution, and function of indoor spaces, which is es-
sential for designing, analyzing, and remodelling buildings
[24]. These plans are typically created using software that
generates vector-based graphics, allowing for precise and
geometry-based drawings of shapes, connections, and room
functions [12, 42]. However, for easier viewing or storage,
these vector graphics are often converted into raster images,
causing a loss of metadata like layers and object informa-

Adaptively
MaxPool to

uniform size

𝑙!" 𝑙!#

256 256 256 256 512 512

(ℎ, 𝑤)

512

(ℎ, 𝑤)	can take
multiple sizes

(ℎ, 𝑤)

256

0.3 0.4 0.9 0.5 0.3 0.4 0.9 0.5 0.3 0.4 0.9 0.5 0.3 ⋯

0.3 0.4 0.9 0.5 0.3 0.4 0.9 0.5 0.3 0.4 0.9 0.5 0.3 ⋯

0.5 0.3 0.4 0.9 0.5 0.3 0.4 0.9 0.5 0.3 0.4 0.9 0.5 0.3 ⋯

∋

0.4 0.9 0.5 0.3 0.4 0.9 0.5 0.3 0.4 0.9 0.5 0.3

0.5 0.3 0.4 0.9 0.5 0.3 0.4 0.9 0.5 0.3 0.4 0.9 0.5 0.3 ⋯0.4 0.9 0.5 0.3 0.4 0.9 0.5 0.3 0.4 0.9 0.5 0.3

𝐿𝑆" =
𝐿𝑆#
2

𝑣"!
𝑣""

𝑣#!
𝑣#"

3𝑠 16𝑠 16𝑠 4𝑠 𝑠
𝑠
4

𝑠
8

𝑠
2 2𝑠 8𝑠 32𝑠 32𝑠 16𝑠 16𝑠 44𝑠

64
3

256 256 256 256 512 512 512 512 512 512 256 256
44 44

512

!

!
2

!
4

!
8

!
16 !

32 !
64

!
32

!
16

!
8

!
4

! !

!
4

!
4

!
4

!
32

!
16

!
8

ConvBNReluMaxPool ResBlock ConvTransposeIn/output AdaptMaxPool

!
4

𝑙$ 𝑙% 𝑙& 𝑙' 𝑙(𝑙) 𝑙! 𝑙* 𝑙+ 𝑙$, 𝑙$$ 𝑙$% 𝑙$& 𝑙$' 𝑙$(

Figure 1. The model architecture and adaptation pipeline. We
extract the latent vector for domain adaptation after contraction
between layers 6 and 7. Each layer has a corresponding size (in
blue) relating to the original input size. We can split layer 7 in a
with 256 and b with 512 channels. These are forwarded through
an adaptive max pool to obtain the latent vector.

tion [29, 42, 45]. The loss of metadata is important because
it makes it harder to create accurate indoor databases, which
are needed for services like buildings management [39], in-
door mapping [32, 38], and data modelling [19, 37], mak-
ing tasks such as room segmentation, object detection, and
2D/3D reconstruction more difficult [21]. In older projects
completed before the widespread use of Computer-Aided
Design (CAD) tools, floor plans only exist as hand-drawn

images that were later scanned into digital formats [29].
Furthermore, floor plans typically include complex, inter-
connected elements like walls, windows, furniture, and text,
making it difficult to automatically analyze and retrieve in-
formation from them [24].

One approach to mitigating the challenges of working
with rasterized floor plans is vectorization. Vector graphics
represent images using mathematical equations that define
basic geometric shapes, such as points, lines, curves, and
polygons. Unlike raster graphics, which are composed of
pixels, vector graphics are resolution-independent, mean-
ing they can be scaled without losing quality. Vectorization
is the process of converting pixel-based images into these
scalable vector formats by identifying and defining the ge-
ometric shapes and lines within the image [17, 35]. The
vectorization process is key to restoring the precision, de-
tails, and scalability of floor plans, making them valuable in
digital applications.

Automatically interpreting these rasterized floor plans
presents several challenges. First, there is no universal stan-
dard among architectural companies, leading to differences
in symbols, colors, and line styles [21, 28]. Second, the
drawings themselves can be complex and unclear, which
makes interpretation difficult [21]. Additionally, floor plans
must follow certain geometric and topological rules, such as
ensuring doors are placed within walls and walls define the
boundaries of rooms. These rules add further complexity to
the analysis, especially since the layout of rooms can vary
widely between different buildings [24].

To address the challenge of interpreting diverse raster-
ized floor plans, our research introduces unsupervised do-
main adaptation for floor plan vectorization. A data domain
refers to a specific type or style of data, like different styles
of floor plans, each with its unique features, symbols, or
layout patterns [9]. Unlike traditional approaches that rely
on annotated datasets [27, 43], unsupervised domain adap-
tation involves developing models that can adapt to new,
unannotated data domains. This approach is vital as a large
number of variations makes it challenging for models to per-
form effectively in new contexts [44]. Our contributions are
summarized as:

1. Dataset analysis: We analyze the CubiCasa5K dataset,
focusing on the visual diversity and complexity across
its three styles. While the label distribution is consistent,
we find ambiguous labelling practices.

2. Adaptation gap: We identify an adaptation gap in input
feature distribution and Intersection over Union (IoU),
indicating that CubiCasa5K is suitable for domain
adaptation research. However, the dataset and model
show unusual behaviour in certain classes, likely due to
labelling biases.

3. Domain adaptation implementation: We integrate
Multi-Kernel Maximum Mean Discrepancy (MK-
MMD) with the CubiCasa5K model, making this the first
study to apply MMD to floor plan vectorization. Our
results show potential for MK-MMD, especially with
a balanced spatial context, but inconsistent IoU limits
definitive conclusions.

2. Related Works
2.1. Floor plan vectorization

Before deep learning, researchers were already working on
automating the segmentation of floor plans using traditional
image processing techniques. A semi-automated method
for segmenting rooms in building floor plans was devel-
oped using a proximity metric to identify bounded regions
in scanned images [34]. Other methods focused on detect-
ing shapes like lines, arcs, and small loops in layouts to
identify rooms, walls, and doors [1, 8].

As deep learning gained traction, the focus shifted to us-
ing neural networks for automatic floor plan recognition. A
neural network based on a Human Pose estimation archi-
tecture [2] was introduced to detect junction points and per-
pixel classification maps in floor plan images, with modifi-
cations made to ResNet-152 [16, 24]. The model employs
an encoder-decoder architecture similar to U-Net [31], ideal
for tasks requiring precise localization and contextual un-
derstanding such as floor plan vectorization. These pre-
dicted junctions were then connected using a mathematical
technique called integer programming to identify walls and
vectorize the pixel classifications. However, this method
was limited to floor plans with rectangular rooms and uni-
form wall thickness.

Building on this, a Fully Convolutional Network (FCN)
was employed to segment wall pixels, while the Faster R-
CNN framework was used to detect objects such as doors,
kitchens, and bathtubs [7]. They also leveraged the Google
Vision API for detecting and recognizing text in floor plans.
Another approach used FCNs for segmenting floor plan im-
ages without accounting for the spatial relationships be-
tween different classes, treating each pixel independently
[40]. CubiCasa5K [18] advanced the field by using a model
similar to that of Raster-to-Vector [24], with the addition of
a multi-task uncertainty loss [20]. The approach of Cubi-
Casa5K still achieves state-of-the-art performance in floor
plan image vectorization, making it the choice for our re-
search.

2.2. Domain adaptation

Traditional machine learning assumes that training and test
data share the same distribution, but this is often violated
in real-world scenarios, leading to domain shift. A data
domain is a specific distribution of data with unique fea-

tures and patterns. Collecting similar data is challenging,
and publicly available datasets may not match the test data,
causing performance issues [9]. Domain adaptation ad-
dresses the train-test gap by training a model on a source
domain and adapting it to perform well on a different but
related target domain, minimizing the differences between
their distributions. Visual domain adaptation has evolved
significantly over the years, with early efforts focusing on
statistical alignment methods and more recent advance-
ments integrating deep learning techniques. In our research,
we focus on unsupervised domain adaptation, where the
input feature distribution P (Xs) and labelling distribution
P (Ys) are known from the source domain, while only the
samples P (Xt) from the target domain are available [10].

Central to the research efforts in the unsupervised do-
main adaptation setting has been the use of Maximum Mean
Discrepancy (MMD) for aligning distributions between the
source and target domains, a nonparametric measure to
compare distributions [14]. It compares the means of two
distributions in a reproducing kernel Hilbert space (RKHS)
where the mean embeddings of different domain distribu-
tions can be explicitly matched [15]. Their work demon-
strated how MMD in combination with an appropriate ker-
nel could be used to measure the distance between two dis-
tributions in RKHS, providing a powerful tool for statistical
analysis.

Building on the MMD definition, Joint Distribution
Adaptation (JDA) was introduced to align both marginal
and conditional distributions [25]. JDA uses class-wise
MMD to align both overall feature distributions and indi-
vidual class distributions, addressing a key challenge in do-
main adaptation for semantic segmentation.

The integration of MMD into neural network frame-
works marked a significant leap in domain adaptation tech-
niques. MMD was embedded within deep learning models,
demonstrating that these frameworks could enhance fea-
ture transferability by learning more robust and discrimi-
native features across domains [11, 36]. Subsequent works
expanded on these approaches, applying MMD to various
tasks in deep learning [3, 4, 41]. The MMD was extended
by introducing a multi-kernel variant (MK-MMD) to ad-
dress kernel sensitivity issues, capturing complex data dis-
tributions more effectively and improving domain adapta-
tion performance in deep networks [26]. Later research
showed that aligning feature distributions in the latent space
improves domain adaptation by making the learned repre-
sentations more robust [3].

Motivated by the success of these methods, our approach
leverages MK-MMD within the latent space of CubiCasa5K
for unsupervised domain adaptation in floor plan vector-
ization tasks. By researching the CubiCasa5K dataset, its
domain-specific properties, and integrating MK-MMD loss,
we aim to explore if and how we can research and ultimately

improve adaptation to unseen data distributions.

3. Preliminaries
In our preliminaries section, we explain the key concepts
and methods that we use in our research. These ideas come
from well-known studies in the field, as referenced, but are
adjusted to make the concepts clearer and more relevant to
our specific setting. We start by describing the problem set-
ting and the CubiCasa5K model [18], followed by an expla-
nation of the loss functions used. Finally, we introduce the
concept of Maximum Mean Discrepancy (MMD) [14] and
its extension, Multi-Kernel MMD [26].

3.1. Problem Setting

Our research explores unsupervised domain adaptation for
floor plan vectorization, aiming to convert a rasterized im-
age x of size H ×W × C, where H is height, W is width,
and C represents color channels, into a structured SVG file
y. The SVG file captures the geometric and semantic details
of the floor plan, such as room layouts, icons, and junctions
[17].

The goal is to train a model using labelled data from a
source domain (XS , YS) and ensure it generalizes to a target
domain XT , where labels are not available. The objective is
to minimize the prediction error on the source domain while
also making the model’s features transferable to the target
domain [10]. For our task, we minimize a vectorization loss
LV on the source domain:

min
W

LV (fW(XS), YS) (1)

where W represents the model parameters, fW is the model
function parameterized by W, XS is the source domain in-
put data, and YS is the corresponding labels. Simultane-
ously, the discrepancy D between the source and target do-
mains is reduced:

min
W

D(fW(XS), fW(XT)) (2)

where XT is the target domain input data. The overall ob-
jective is then expressed as:

W∗ = argmin
W

[LV + λD] (3)

where W∗ is the optimized set of model parameters, and λ
is a weighting factor that balances the importance of source
accuracy LV and domain alignment D, ensuring that the
model performs well on both the source and target domains.

3.2. The CubiCasa5K model

The model introduced by Kalervo et al. [18] and visual-
ized in Figure 1, takes an input image x with dimensions
H ×W × 3 (RGB) and outputs a tensor y with dimensions

⋯ ←←PP NN44

Figure 2. The process of CubiCasa5K takes as input an image and uses a neural network (NN), displayed in Figure 1, to get 44 probability
maps of 12 room, 11 icon, and 21 junctions types displayed in Figure 3b. After prediction, post-processing (PP) is applied to get the
class with the maximal probability after which the pixel-wise predictions are vectorized using the junctions and integer programming. The
probability maps are scaled between 0 (purple) and 1 (yellow).

H × W × (Pr + Pi + Pj). Here, Pr represents the num-
ber of channels for room probability maps, Pi represents the
number of channels for icon probability maps, and Pj repre-
sents the number of channels for junction probability maps.
These different probability maps are visualized in Figure 2.
The transformation from the input x to the output y is car-
ried out by a function fW(x), which is parameterized by
approximately 17 million weights W.

Once the probability maps are predicted, post-processing
using integer programming vectorises the pixel-wise predic-
tions. The integer programming uses junction heatmaps and
segmentation masks to generate vector representations, en-
suring the final output adheres to the geometric constraints
of architectural drawings. The overall process can be seen
in Figure 2.

The problem involves multiple tasks, such as predicting
room layouts, icons, and junctions, each requiring different
loss functions. For room segmentation and icon detection,
the cross-entropy loss is used which is defined as:

LCE = −y · log(softmax(fW (x))) (4)

where y is the ground truth label, and fW (x) is the predicted
probability distribution after applying the softmax function.
For junction detection, mean squared error (MSE) loss is
used, which measures the squared difference between the
predicted and actual values:

LMSE = ∥y − fW (x)∥2 (5)

where y is the ground truth value, and fW (x) is the predic-
tion. To handle these tasks together, they use a multi-task
loss approach. For segmentation tasks, the loss function is:

LS = −
∑

k∈{rooms, icons}

1

σk
yk · log(softmax(fWk

(x))) (6)

where yk is the ground truth segmentation map, fWk
(x) is

the predicted map for the k-th task, and σk is a learned task-
specific weighting factor. No regularizer is needed here, as
the weighting remains positive throughout the training. For

tasks that involve heatmap predictions, the junctions, the
loss function is:

LH =
∑
i

[
1

2σ2
i

∥yi − fWi
(x)∥2 + log(1 + σi)

]
(7)

where yi is the ground truth, fWi
(x) is the prediction, and

σi is a learned weighting factor. The term log(1 + σi), in
contrast to the segmentation losses, is added as a regularizer.
The total loss for the model combines both the segmentation
and heatmap losses:

L = LS + LH (8)

3.3. Maximum Mean Discrepancy

The Maximum Mean Discrepancy (MMD) is a nonpara-
metric metric used to compare two distributions by mea-
suring the distance between their means in a Reproducing
Kernel Hilbert Space (RKHS) [14]. Given two datasets,
A = {x1, x2, . . . , xnA} from one data distribution and
B = {x1, x2, . . . , xnB} from another data distribution, the
MMD is defined as:

MMD2(XA, XB) =

∥∥∥∥∥∥ 1

nA

nA∑
i=1

ϕ(xi
A)−

1

nB

nB∑
j=1

ϕ(xj
B)

∥∥∥∥∥∥
2

H
(9)

where ϕ(·) is a feature mapping function to the RKHS H.
RKHS is a space where a kernel function defines an inner
product, enabling the computation of similarities in a high-
dimensional feature space and capturing complex relation-
ships between distributions. Expanding on equation 9, we
can define the MMD for domain A and domain B distribu-
tions as:

MMD2(XA, XB) = Saa + Sbb − 2Sab (10)

Here, Saa represents the similarity within domain A data,
Sbb represents the similarity within domain B data, and
Sab represents the similarity between the two distributions.
By considering the variance within these distributions, the

method ensures that the model adjusts only for the differ-
ences between them. The similarity metric Sab is further
defined as:

Sab =
1

nanb

na∑
i=1

nb∑
j=1

k(xi
a, x

j
b) (11)

where na and nb are the number of samples in sets a and b
and xi

a and xj
b represent individual samples from these sets.

The function k(xi
a, x

j
b) is a kernel function that computes

the similarity between sample xi
a from set a and sample xj

b

from set b. The most frequent kernel used for comparison is
the Radial Basis Function (RBF) but other kernels are also
used [5]. To handle the sensitivity of using a single kernel,
equation 9 is extended to Multi-Kernel MMD (MK-MMD)
[26] which is defined as:

MK-MMD2(XA, XB) =
1

nk

nk∑
j=1

MMD2
k(XA, XB) (12)

where nk is the number of kernels used, and
MMD2

k(XA, XB) is the MMD computed with the k-
th kernel. The averaging across multiple kernels allows us
to capture discrepancies between distributions at various
scales, providing a robust measure of domain discrepancy.

4. Data analysis
Floor plan datasets are essential for advancing the field of
automated floor plan vectorization. Several datasets have
been introduced, each contributing to the field. For exam-
ple, the R3D dataset [23] comprises 215 floor plans, featur-
ing 1,312 rooms, 6,628 walls, 1,923 doors, and 1,268 win-
dows. Another significant contribution is the R2V dataset
[24], which offers 870 annotated floor plan images with 11
room types and 8 icons. Among these, the CubiCasa5K
dataset [18] stands out due to its scale and comprehensive-
ness, containing 5,000 samples that cover over 80 object
categories.

Despite its widespread use, CubiCasa5K has not been
extensively analyzed in terms of its quality and domain
properties, particularly in the context of domain adaptation.
Such an analysis is vital as the dataset’s quality and domain-
specific characteristics directly impact the effectiveness of
models trained on it.

As the first key contribution of our research, we pro-
vide a detailed analysis of the CubiCasa5K dataset to as-
sess its suitability for domain adaptation research. Cubi-
Casa5K samples are distributed across three distinct do-
mains: high-quality architectural (3,732 samples), high-
quality (992 samples), and colorful (276 samples), with ex-
amples shown in Figure 3a. These domains vary not only
in their visual appearance but also in the complexity and

High Quality Architectural High Quality Colourful
[3732] [992] [276]

(a) The domains: high quality architectural, high quality, and colorful with
their amount of samples. More samples can be seen in appendix A. Both
the quantity and style are different per domain.

1 2 3 4 6 7 85 9 10 11 12

Undefin
ed

Garage

Storage

Railin
g

Entry Bath Bed
Living

Kitc
hen

Wall

Outdoor

Background

71 2 3 5 6 84 109 11

Chim
ney

Bathtub

Fire
place

Sauna
Sink

Toile
t

Electric
al

Closet
Door

Window

No Ic
on

(b) The class types: rooms (left) and icons (right) with their classes and
junctions. The dashed junctions represent openings used for doors and
windows.

Input image 𝑥Label 𝑦 Prediction 𝐹!(𝑥)

(c) Example of a problematic dataset instance: The image depicts a single
room that combines elements from a kitchen, living room, bathroom, and
bedroom, yet it is ambiguously labelled as undefined. Additionally, the
areas outside the room are incorrectly labelled as background, illustrating
ambiguous cutoffs. Additional examples of such labeling issues are pro-
vided in Appendix A.

Figure 3. The CubiCasa5K dataset.

consistency of annotations. The dataset was annotated by
trained human annotators using a specialized CAD tool, and
each annotated image underwent a two-stage quality assur-
ance process to ensure accuracy and consistency.

Our analysis focuses on identifying variations in input
features, e.g., pixel intensity, and output features, e.g., class
distributions listed in Figure 3b. We also assess the labelling
quality across different domains and data splits. By com-
bining our examination of these factors with observations
from our real-world problem, we define the source and tar-
get domains relevant to real-world applications. We further
calculate metrics such as class- and split-specific pixel di-
vergence and class density gaps to quantify the differences

between domains. Each analysis starts with qualitative vi-
sual inspections, followed by quantitative experiments to
validate our observations. Finally, we interpret our find-
ings in the context of setting up effective domain adaptation
strategies for floor plan vectorization.

4.1. Pixel Distribution

Looking at the three domains present in the dataset, we ob-
serve distinct visual differences between the images, illus-
trated in Figure 3a. To quantify these differences, we com-
pare the Red, Green, and Blue (RGB) input channels across
each domain and the by Kalervo et al. [18] predetermined
data split. We estimate histograms for pixel intensities in
each channel, determining the probability distribution of
pixel values within each domain [13]. Using these pixel
density distributions, we calculate intra-domain, within the
same domain, and inter-domain, between different domains,
similarities using the Kullback-Leibler (KL) divergence.

The KL divergence between two probability distribu-
tions Pi,A and Pi,B for a given channel i (Red, Green, or
Blue) in domains A and B, is defined for discrete values as:

KL(Pi,A∥Pi,B) =
∑
x

Pi,A(x) log
Pi,A(x)

Pi,B(x)
(13)

Here, Pi(x) represents the probability of observing a spe-
cific pixel intensity x in channel i for domains A : Pi,A(x)
and B : Pi,B(x). Given the non-symmetric nature of KL
divergence, where KL(Pi,A∥Pi,B) ̸= KL(Pi,B∥Pi,A), we
calculate the symmetric KL divergence by averaging the
two directions:

KLsym(Pi,A, Pi,B) =
1

2
[KL(Pi,A∥Pi,B) + KL(Pi,B∥Pi,A)]

(14)
For the intra-domain divergence, we calculate the KL diver-
gence between each pair of color channels (Red, Green, and
Blue) within the same domain D. The intra-domain diver-
gence is then averaged across these pairs using the formula:

KLintra(D) =
1

3

∑
i,j∈{R,G,B}

i ̸=j

KL(Pi,D∥Pj,D) (15)

Here, Pi,D(x) represents the probability distribution of the
pixel intensities for channel i (Red, Green, or Blue) in do-
main D. For the inter-domain divergence, we compare the
same color channels across different domains. Suppose we
are comparing domains A and B. The inter-domain KL
divergence is computed by averaging the symmetric KL di-
vergences for the Red, Green, and Blue channels as:

KLinter(A,B) =
1

3

∑
i∈{R,G,B}

KLsym(Pi,A, Pi,B) (16)

A H C

A - 0.05 0.24
H 0.05 - 0.27
C 0.39 0.40 -

Table 1. Average Kullback Leibner (KL) divergence for the input
feature distribution from row to column (A → C = 0.24), i.e.
we compute the divergence per channel and take the average over
the channels. The headers represent the (A) High Quality Archi-
tectural, (H) High Quality, and (C) Colorful datasets. The table
shows that the largest gap is from and to the Colorful (C) domain.

which calculates the KL divergence in both directions for
each color channel - Red, Green, and Blue - between the
two domains and then takes the average. Our combinatory
approach accounts for both the visual similarities within
each domain and the differences between them. The re-
sults of these calculations are visualized in Figure 4. We
also present the KL divergence between specific source and
target domain combinations in Table 1.

The analysis shows that the divergence within the color-
ful domain is significantly larger, both within (intra) a split
and between splits (inter). The divergence follows from the
broad range of colors used in the domain, as observed dur-
ing the qualitative analysis. Another key observation is the
varying uniformity across the different splits. Such varia-
tion could potentially cause problems for domain adapta-
tion, as the distribution learned during training may differ
from that of the testing set.

While not explored in detail, we suspect that the single-
color peaks in the high-quality architectural and high-
quality domains are due to colored marker annotations, in-
dicating interest in the circled areas, also visible in Fig-
ure 3c. An interesting, and possibly related, but not fur-
ther investigated phenomenon can be seen at an all-channel
rounded peak in the high-quality training data which is not
only unique in its shape but is also missing from the valida-
tion and testing splits.

4.2. Label Distribution

Next, the label distribution was examined to understand the
dominance of certain classes. Qualitative inspection indi-
cated that some classes were more frequent than others,
prompting a detailed quantitative analysis. To compare the
classes we plot the density of the pixels in Figure 5 as a
boxplot, with variance across data splits, per domain.

The analysis shows that for most classes both the vari-
ance across splits and across domains is small which is
perfect if we want to isolate the effect of distributional in-
put feature shift. However, there are noticeable differences
between the distributions of some prominent classes. The
shift indicates that the domains possibly have either differ-

0.1

1.0

10.0

KL: 0.01
N: 3217

Train
KL: 0.31

KL: 0.01
N: 245

Validation
KL: 0.28

Hi
gh

 Q
ua

lit
y

Ar
ch

ite
ct

ur
al

KL
: 0

.0
2

KL: 0.00
N: 270

Test
KL: 0.25

0.1

1.0

10.0

100.0

De
ns

ity
 (%

)

KL: 0.07
N: 825

KL: 0.03
N: 104

Hi
gh

 Q
ua

lit
y

KL
: 0

.0
8

KL: 0.05
N: 63

0 50 100 150 200 250

0.1

1.0

10.0
KL: 0.50
N: 158

0 50 100 150 200 250
Pixel Intensity

KL: 0.17
N: 51

0 50 100 150 200 250

Co
lo

re
d

KL
: 0

.2
7

KL: 0.17
N: 67

Figure 4. Input features (pixels intensity 0-255) distribution per channel (colors RGB), domain (rows) and data split (columns). The
intra (within) Kullback-Leiber (KL) divergence as well as the number of samples (N) are shown for each plot. Each row and column also
displays the inter-KL divergence. The plot shows large differences in pixel distribution, intra (within), and inter-row (between) divergences.

ent types of homes or include a specific labelling bias which
should be considered when reasoning about domain adapta-
tion settings.

4.3. Label Quality

Prompted by the observation that the domain with the
largest quantity of labels performed the worst as well as
the possible labelling bias, we assess the quality of the la-
belling to determine its correctness and clarity. The qual-
itative inspection showed instances of ambiguous labelling
and unclear structural cutoffs. To quantify these issues, we
analyzed two scenarios. First, how often the model predicts
extra room masks where the label indicates the background
class for structural cutoffs. Second, how frequently the la-
bel was undefined while the model predicted a specific room
mask for ambiguous class labelling. Both issues are illus-
trated in the sample shown in Figure 3c.

To evaluate the structural integrity of the predicted room
layouts, we introduce a binary mask Ms that identifies
structural errors. Ms assigns a value of 1 to pixels where
the model predicts a non-background class, but the ground
truth indicates a background class. The mask is mathemati-
cally expressed as:

Ms(i, j) =

{
1 if L(i, j) = 0 and Pr(i, j) ̸= 0

0 otherwise
(17)

where L(i, j) represents the ground truth label at pixel

(i, j), and Pr(i, j) represents the predicted room label at
pixel (i, j). Once Ms is defined, we calculate the relative
structural error percentage Srel as the ratio of structural er-
ror pixels to the total number of background pixels in the
ground truth:

Srel =

∑
i,j Ms(i, j)∑

i,j δ(L(i, j), 0)
(18)

Here, δ(L(i, j), 0) is an indicator function that equals 1 if
L(i, j) = 0 and 0 otherwise. Additionally, we compute the
absolute structural error percentage Sabs, which is the ratio
of structural error pixels to the total number of pixels in the
image:

Sabs =

∑
i,j Ms(i, j)

W ×H
(19)

where W × H is the total number of pixels in the image.
The structural error is considered significant if both Srel and
Sabs exceed their respective thresholds Ts and T ′

s. For unde-
fined regions, we define another binary mask Mu to identify
undefined errors. The mask assigns a value of 1 to pixels
where the model predicts a class different from the unde-
fined class while the ground truth is labelled as undefined:

Mu(i, j) =

{
1 if Pr(i, j) ̸= ℓu ∧ 0 and L(i, j) = ℓu

0 otherwise
(20)

A H C T
0
5

10
15
20
25

De
ns

ity
 (%

)

11.3 8.2 10.1 9.9
Outdoor

A H C T

15.5 15.3 15.0 15.3
Wall

A H C T

8.3 9.4 8.3 8.7
Kitchen

A H C T

14.1 18.5 17.1 16.6
Living Room

A H C T

14.1 15.9 12.6 14.2
Bed Room

A H C T

4.2 3.9 4.5 4.2
Bath

A H C T

6.3 6.8 6.5 6.5
Entry

A H C T

0.7 0.5 0.7 0.6
Railing

A H C T

3.1 2.0 2.0 2.3
Storage

A H C T

2.1 0.5 1.0 1.2
Garage

A H C T

20.3 19.1 22.2 20.5
Undefined

A H C T
0
5

10
15
20
25
30
35

De
ns

ity
 (%

)

24.4 22.9 20.8 22.7
Window

A H C T

11.1 10.1 11.3 10.9
Door

A H C T

28.9 33.0 31.5 31.1
Closet

A H C T

12.9 13.8 16.0 14.2
Elec. Appl.

A H C T

3.1 3.6 3.6 3.4
Toilet

A H C T

4.9 6.6 6.0 5.8
Sink

A H C T

11.2 7.6 9.0 9.3
Sauna Bench

A H C T

2.4 1.6 1.3 1.8
Fire Place

A H C T

0.7 0.7 0.3 0.6
Bathtub

A H C T

0.3 0.0 0.2 0.2
Chimney

Figure 5. Class density distribution per domain with top: rooms and bottom: icons. The box is plotted based on the densities of the
training, validation, and testing split. Here the measurements represent the variance for (A) High Quality Architectural, (H) High Quality,
(C) Colored, and (T) Total data. The number above each class’s boxplot is the mean density of the class in the respective data. The plots
show that, although some small differences exist, the class densities are within the same order.

Here, ℓu represents the label for undefined regions in the
ground truth. The relative undefined error percentage Urel is
then calculated as the ratio of undefined error pixels to the
total number of non-background pixels in the prediction:

Urel =

∑
i,j Mu(i, j)∑

i,j δ(Pr(i, j), 0)
(21)

where δ(Pr(i, j), 0) is an indicator function that equals 1 if
Pr(i, j) ̸= 0 and 0 otherwise. Furthermore, the absolute un-
defined error percentage Uabs is calculated as the ratio of un-
defined error pixels to the total number of non-background
pixels in the ground truth:

Uabs =

∑
i,j δ(L(i, j), ℓu)∑
i,j δ(L(i, j), 0)

(22)

where δ(L(i, j), ℓu) is an indicator function that equals 1 if
L(i, j) = ℓu. The undefined error is considered significant
if both Urel and Uabs exceed their respective thresholds Tu

and T ′
u, chosen to balance sensitivity and filter out possible

unclear cases.
We set thresholds in our evaluation to identify significant

structural and undefined errors. For structural errors, the
relative threshold Ts = 0.3 requires these errors to account
for more than 30% of the background pixels. The absolute
threshold T ′

s = 0.05 ensures they cover more than 5% of
the total image area, accommodating floor plans with min-
imal background. For undefined errors, the relative thresh-
old Tu = 0.3 requires these errors to exceed 30% of non-
background pixels in the prediction. The absolute threshold
T ′
u = 0.5 demands that undefined areas make up more than

50% of non-background pixels in the ground truth.
After an initial run, we manually inspect and exclude any

images incorrectly labelled as ambiguous before rerunning

the analysis to obtain the final results. During our inspec-
tion, we identified three major cases of potential ambiguous
structural cutoffs. The first case involves situations where
only part of the floor plan is labelled. The second case is
where only the walls are annotated. The third case involves
areas that are selectively labelled with a marker. While the
third scenario is less problematic, as recognizing these areas
could be part of the learning task, it is still worth discussing
as it could inform future research directions. Although not
explored in depth, we found that a large portion of the struc-
tural cutoffs are possibly being caused by the loading and
pre-processing mechanism employed by Kalervo et al. [18].

While we recognize that our approach, the results re-
veal significant issues with ambiguous class labelling, as
shown in Table 2. Examples include areas labelled as unde-
fined that closely resemble kitchens and unclear structural
boundaries where parts of the floor plan were left unlabeled
as seen in Figure 3c. These ambiguities can cause errors
in model predictions, leading to suboptimal training and
conflicting patterns. Moreover, the extent of problematic
labelling varies across domains and data splits, potentially
impacting fair model evaluation.

4.4. Adaptation gap

Based on the data analysis, we define the source and tar-
get domains to reflect the problem setting where the input
feature distributions differ, while the output class distribu-
tions remain, approximately, consistent. Specifically, the
source domain includes high quality architectural and high-
quality images, while the target domain comprises colorful
images. The specific setting was chosen based on the larger
divergence to the colorful domain and the small amount of
annotated samples. Such a setting also fits in nicely with
our objective to represent the realistic setting of adapting to
older non-CAD floor plans.

Train

Val

Test

Mean

In
pu

t (
pi

xe
ls)

0.0 0.7 0.2 0.4 0.8 0.8 0.5 0.6 0.1 0.5 0.6 0.5 0.5 0.1 0.2 0.3 0.2 0.1 0.1 0.0 0.4 0.2 0.2 0.1 0.2

0.1 0.5 0.1 0.3 0.7 0.6 0.5 0.4 0.0 0.3 0.2 0.3 0.3 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.3 0.3 0.6 0.3 0.2

0.0 0.2 0.2 0.2 0.9 0.6 0.2 0.4 0.0 0.2 0.7 0.3 0.3 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.4 0.2 0.0 0.7 0.2

0.0 0.5 0.2 0.3 0.8 0.7 0.4 0.5 0.1 0.3 0.5 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.3 0.3 0.4 0.2

Adaptation feature gap from source to target domain

Back
gro

un
d

Outd
oo

r
Wall

Kit
che

n

Liv
ing

 Roo
m

Bed
 Roo

m
Bath En

try
Raili

ng

Sto
rag

e

Gara
ge

Und
efi

ne
d

Roo
m M

ea
n

No I
con

Wind
ow Doo

r
Clos

et

Ele
c. A

pp
l.

To
ilet Sin

k

Sa
un

a B
en

ch

Fir
e P

lac
e

Bath
tub

Chim
ne

y

Ico
n M

ea
n

Train

Val

Test

MeanOu
tp

ut
 (c

la
ss

es
) 6 16 17 13 13 19 3 7 8 38 21 9 14 1 22 10 4 1 2 8 20 37 67 16 17

4 17 2 6 17 1 18 8 15 11 35 0 11 1 20 8 12 30 25 21 3 15 48 21 19

2 17 5 4 25 23 2 0 27 44 76 18 20 0 5 7 0 16 3 15 26 69 72 93 28

4 17 8 8 18 14 8 5 17 31 44 9 15 0 16 8 5 16 10 14 16 41 62 43 21

0.2

0.4

0.6

0.8

KL
 D

iv
er

ge
nc

e

20

40

60

80

Re
la

tiv
e

Di
ffe

re
nc

e
(%

)

Figure 6. Top: Kullback-Leiber (KL) divergence and bottom: relative class density difference from source, containing both high quality
and high quality architectural data, to target, the colorful data, domain. The table shows that the room classes have a larger divergence
compared to the icons. Some classes that have a low frequency that show a larger divergence (i.e., Garage, Fire Place, Bathtub, Chimney)
should be ignored as these are non-reliable.

Structural Undefined
Train Val Test Train Val Test

A 8.0 6.5 8.5 3.6 4.9 3.3
H 1.6 0.0 3.2 2.1 1.0 1.6
C 1.3 0.0 4.5 3.8 2.0 7.5

Table 2. Percentage of errors per domain and data split for both
structural cutoffs and ambiguous undefined labelling. The rows
represent the (A) High Quality Architectural, (H) High Quality,
and (C) colored data domains. The table shows a varying but
significant amount of errors across domains and data splits which
could result in contractionary learning and distributional shift.

In our analysis, we compare the data distributions be-
tween the source and target domains by focusing on pixel
intensities and class distributions. For each class c, we es-
timate the probability density of pixel intensities Pc,s(Xch)
and Pc,t(Xch) in each color channel ch (Red, Green, Blue)
using histograms with 128 bins, covering 256 possible pixel
values. Our approach thus allows for capturing small differ-
ences in pixel distributions while still being strict on larger
gaps. We then calculated the Kullback-Leibler (KL) diver-
gence between these distributions for each class and color
channel, using the formula:

KL(Pc,s∥Pc,t) =

128∑
i=1

Pc,s(i) log

(
Pc,s(i)

Pc,t(i)

)
(23)

Here, Pc(i) represents the probability densities for class c
and the i-th bin in the source Pc,s(i) and target Pc,t(i) do-

mains. The KL divergence for each class c, averaged across
all channels, is given by:

KLc =
1

3

∑
ch∈{R,G,B}

KL(Pc,s(Xch)∥Pc,t(Xch)) (24)

The final KLc value provides a single divergence measure
for each class, reflecting the overall difference in pixel in-
tensity distributions from the source to the target domain.
Additionally, we computed the relative frequency of each
class in both the source rcs and target rct domain:

rcs =
Ls,c

Ls,total
, rct =

Lt,c

Lt,total
(25)

where Ls,c and Lt,c are the counts of pixels labelled as class
c in the source and target domains, and Ls,total and Lt,total are
the total number of labelled pixels in each domain. The rel-
ative percentage difference between these frequencies was
calculated using:

Fc =
|rcs − rct |

max(rcs, r
c
t) + ϵ

× 100 (26)

where |rcs − rct | represents the absolute difference between
the relative frequencies of class c in the source and target
domains, and ϵ is a small positive value added to the de-
nominator to prevent division by zero. Finally, we compiled
the KLc and Fc values into heatmaps, which visually rep-
resent the magnitude of these discrepancies which can be
found in Figure 6. These heatmaps highlight areas where
domain adaptation may be challenging due to differences in

data distribution, providing insights into potential sources
of model IoU degradation. Note that these values should
always be interpreted in conjunction with the number of
samples available in the test set for each class, displayed
in Figure 7. For infrequent classes like Garage, Fireplace,
Bathtub, and Chimney, the probability density estimates are
based on a limited number of instances, which may lead to
estimates that do not fully represent the true distribution.

5. Method
Our method section outlines our approach to studying do-
main adaptation in scenarios where the feature distributions
differ between the source and target domains (P (Xs) ̸=
P (Xt)), while the label distributions remain consistent
(P (Ys) ≈ P (Yt)). Consistent P (Y) across domains and
data splits, displayed in Figure 6, allows us to isolate the
impact of distributional feature shift. We begin by replicat-
ing the CubiCasa5K model [18] to ensure our findings align
with existing research. We then compare this model with
different training, domain and data configurations.

Next, we explain how we implement the Maximum
Mean Discrepancy (MMD) to align the feature distributions
of the source and target domains. We then focus on ex-
tracting latent features for MMD, evaluating different net-
work positions and pooling strategies. Following the ex-
traction, we discuss the weighting of MMD loss relative to
task-specific losses, investigating both constant and variable
strategies. The section details our training procedures, in-
cluding data pre-processing and optimization, and our eval-
uation methods.

5.1. Baselines

We first reproduce the CubiCasa5K model [18] using the
same datasets as the original paper to ensure our results
align with the reported findings. To improve training ef-
ficiency, we test low-precision matrix multiplication with
two settings: ”highest,” which uses full float32 precision,
and ”medium,” which uses bfloat16 precision to speed up
computations. We compare these settings to evaluate the
trade-offs between speed and accuracy. We also modify the
optimization strategy to accelerate convergence. The origi-
nal model reduces the learning rate after 20 epochs without
improvement, lowering it by a factor of 0.1. We reduce the
learning rate after 10 epochs by a factor of 0.5, allowing for
faster experimentation. Additionally, we assess the model’s
IoU across different domains, which the original paper by
Kalervo et al. [18] does not explore.

For baseline experiments, we use three configurations:
Full Adaptation (Original), where we replicate the original
data split with both source and target data; Full Adaptation
(Corrected), where we remove some source data to keep the
total sample size consistent while retaining all target data;
and No Adaptation, where we train only on source data to

evaluate how well the model generalizes to the target do-
main.

5.2. MMD Implementation

Formally, the source domain is defined by samples Xs =
{x1

s, x
2
s, . . . , x

ns
s } with feature distribution P (Xs) and la-

bels Ys = {y1s , y2s , . . . , yns
s }. The target domain is char-

acterized by samples Xt = {x1
t , x

2
t , . . . , x

nt
t } with feature

distribution P (Xt) and labels Yt = {y1t , y2t , . . . , y
nt
t }. To

quantify the discrepancy between P (Xs) and P (Xt), we
employ the Maximum Mean Discrepancy (MMD) as de-
fined in equation 10 with a Radial Basis Function (RBF)
[22] which is defined as:

k(xi
a, x

j
b) = exp

(
−
∥xi

a − xj
b∥2

2σ2

)
(27)

in which ∥xi
a − xj

b∥2 represents the squared Euclidean dis-
tance between the two data points xi

a and xj
b. The RBF

kernel measures the similarity between these points by ap-
plying an exponential function to the negative squared Eu-
clidean distance, scaled by 2σ2. The kernel gives higher
similarity scores to closer points, with similarity decreas-
ing exponentially as distance increases, while enabling the
handling of non-linear relationships.

The parameter σ, known as the bandwidth, controls the
width of the kernel function. A smaller σ results in a
more localized kernel, focusing on close neighbours, while
a larger σ broadens the kernel, allowing a wider range. In
our implementation, we calculate the bandwidth by aver-
aging the squared pairwise distances between all sample
points in the dataset, which provides a measure of the typi-
cal distance scale in the data.

We extend MMD to its Multi-Kernel variant MK-MMD,
as described in equation 12, and use a set of RBF kernels
with varying bandwidths. We start with a base bandwidth
and then create multiple kernels by scaling the base band-
width. Specifically, we generate 5 kernels, each with a
bandwidth scaled by a multiplicative factor of 2.0 from the
base bandwidth. The scaling allows us to capture discrep-
ancies between distributions at different scales. For each
RBF kernel k, we compute the MMD squared between the
source samples Xs and target samples Xt. To obtain the fi-
nal Multi-Kernel MMD loss, we average the MMD squared
values across all kernels.

5.3. Latent extraction

Using the definition for MK-MMD, we now need to de-
termine where we extract the latent vector. The vector is
typically taken from the latent space of a network, situated
between the encoder and decoder of our network. Cubi-
Casa5K’s [18] U-shaped network can be seen in Figure 1
with its layers l1−15. Below the layers, the total size of

the image of size s is shown. In the case of l1, the size
is s with 3 channels thus resulting latent size of 3s. The
down-sampling is done through convolutional and maxpool
blocks and is displayed as s/n, where both the height h and
width w are scaled by a factor of 1/n.

The figure shows that the latent space of the network
should be located between layers l6 and l7. Zooming in
on l7 we see that there are two options to extract the latent
feature vector. We define these positions as l7a with 256
and l7b with 512 channels. In our research, we investigate
the role of the latent extraction position on class IoU.
For each channel configuration, we also evaluate various
pooling strategies:

• 4 × 4 Pooling (Base): retains the original latent feature
map size of 4 × 4 without applying any further pooling,
as the vector is already reduced to this size by layer l7.

• 2 × 2 Pooling: reduces the size of the latent feature map
from 4 × 4 to 2 × 2, effectively shrinking the spatial
dimensions by a factor of four.

• 1 × 1 Pooling: reduces the latent feature map to a single
point by applying pooling that downsizes the 4 × 4 map
to 1×1, reducing the spatial dimensions by a factor of 16.

Our pooling analysis is required as we require a uniform
feature size and the input size to the network is dynamic
(i.e., we allow for varying image sizes). The pooling
method avoids the need for learnable weights, which would
require proper back-propagation and a uniform feature siz-
ing somewhere in the network. Although theoretically, such
a layer could provide more precise adaptation, it would
drastically change the architecture and behaviour of our
model which is both out of scope and not the goal of our
research. After the pooling is applied we flatten the feature
maps to gain a latent vector that can be used in the MMD
calculation. The loss is then incorporated into the total loss
as:

L = LS + LH + λLMMD (28)

where LS encompasses the loss for the room and icon seg-
mentation tasks, LH covers the loss for heatmap-based pre-
dictions for the junctions, and λLMMD is the MMD loss
component. The weight λ is used to balance the contribu-
tion of MMD loss relative to the task-specific losses.

5.4. Adaptation weighting

The weights of task-specific losses are dynamically ad-
justed using the uncertainty parameters which makes it less
trivial to find an optimal lambda. One solution would be to
also add an uncertainty parameter for the domain adaptation
weighting but this does allow us to understand the mechan-
ics of the MMD alignment over training as the weighting

is adjusted each epoch. As no research has been done on
combining these losses we first investigate how the choice
of lambda affects the adaptation. To isolate the weighting
problem we focus on a latent vector extraction at l7b in com-
bination with 1 × 1 adaptive pooling block to get a 512-
channel long latent vector that can be directly used in the
MMD calculation.

In the first set of experiments, we apply constant weight-
ing to the MMD loss. The weighting parameter λ is defined
as λ = λc where λc represents the constant weight assigned
to the MMD loss. We determine λc based on initial obser-
vations where we estimate that about 10% and decrease λc

to observe its effect.
Following the identification of the best performing λc

value, a fine-grained search is performed within the range
around the best lambda value. In the fine-grained search,
λ is still defined as λ = λc, with λc chosen by linearly
searching in the space around the best-performing lambda.

In the final set of experiments, variable weighting is ap-
plied to the MMD loss. The weighting parameter λ is de-
fined as λ = λc · λv where λv is a variable component that
scales with epoch progression. The variable component λv

is defined as:

λv =
2

1 + e−d· Ec
Emax

− 1 (29)

where d = 5 determines the steepness of the sigmoid func-
tion, Ec represents the current epoch, and Emax represents
the maximum number of epochs. The constant λc is chosen
from a range based on the initial constant weighting exper-
iments. The specific values for λc are determined through
empirical loss analysis and iterative adjustments, reflecting
different approaches to balance the MMD loss with task-
specific losses.

5.5. Training

The dataset is preprocessed by loading the SVG files into a
house object that includes room, icon, and heatmap masks
for each class which can be seen in Figure 3b. No additional
preprocessing steps are applied beyond the initial loading.
Similar to CubiCasa5K [18] and R2V Liu et al. [24], the net-
work is first pre-trained on ImageNet [6, 33] and the MPII
Human Pose Dataset [2]. For data augmentation, we follow
the same approach as CubiCasa5K. The data loader uses a
batch size of 20 over which the MMD is calculated during
training. The data loader randomly matches images from
the target dataset to the source dataset with the restriction
that they should be of similar shape (i.e., max 10% differ-
ence) as they are used in a combined loader. During vali-
dation, we calculate the MMD loss, which requires a set of
points, over the entire validation set as we use a batch size
of 1.

For the first 100 epochs, training augmentations include
90-degree rotations, color jitter, and cropping or resizing

Rooms Icons

A + B
ac

kg
ro

un
d

O
ut

do
or

W
al

l

K
itc

he
n

L
iv

in
g

B
ed

B
at

h

E
nt

ry

R
ai

lin
g

St
or

ag
e

U
nd

efi
ne

d

M
ea

n

N
o

Ic
on

W
in

do
w

D
oo

r

C
lo

se
t

E
le

c.
A

pp
l.

To
ile

t

Si
nk

Sa
un

a
B

en
ch

M
ea

n

Fcc − 83.3 54.0 51.3 50.2 59.3 72.5 59.9 55.0 6.4 46.2 41.3 52.7 96.8 39.1 44.2 65.4 64.4 61.0 45.4 59.4 59.5
Fo − 82.1 49.2 60.9 54.4 56.8 75.8 57.5 54.7 11.0 37.3 47.9 53.4 97.1 54.8 50.8 65.0 63.5 64.2 52.3 74.2 65.2

Fo

− 82.1 49.2 60.9 54.4 56.8 75.8 57.5 54.7 11.0 37.3 47.9 53.4 97.1 54.8 50.8 65.0 63.5 64.2 52.3 74.2 65.2
P 84.1 53.4 62.6 57.5 56.6 74.5 61.4 60.5 14.1 49.1 49.4 56.6 97.2 55.2 51.9 65.7 65.4 62.2 53.1 72.0 65.3
P, S 81.1 46.3 60.5 56.7 53.8 75.0 58.9 56.0 10.3 46.9 45.3 53.7 97.1 53.9 48.2 66.2 62.9 62.3 51.6 73.8 64.5

Fc

− 83.1 57.0 61.4 54.5 54.3 74.5 58.8 58.6 11.8 45.6 51.0 55.5 97.1 53.9 50.4 65.2 63.5 62.1 52.0 72.7 64.6
P 81.7 51.2 60.6 54.6 54.8 75.9 60.8 55.7 13.6 45.8 48.2 54.8 97.0 50.5 51.0 65.1 60.8 62.1 52.7 75.7 64.4
P, S 81.0 49.9 59.6 55.1 54.8 74.8 61.2 55.2 10.2 39.1 50.3 53.7 97.0 50.4 49.4 66.0 61.3 60.7 53.7 70.5 63.6

N

− 81.8 50.2 60.4 56.6 54.7 75.4 57.2 56.7 8.9 49.8 55.8 55.2 97.1 54.4 47.5 65.2 63.5 61.9 52.7 74.5 64.6
P 82.4 53.3 61.2 56.3 54.2 76.5 57.3 53.1 11.9 39.6 52.1 54.4 97.1 55.7 49.2 64.8 62.8 60.7 50.3 72.5 64.1
P, S 82.1 49.6 59.8 55.9 55.3 75.2 56.6 56.6 10.2 32.9 49.3 53.0 97.0 55.2 49.1 65.4 62.9 62.3 52.7 69.2 64.2

Table 3. Ablation study in Intersection over Union (IoU) for CubiCasa5K’s [18] best model Fcc and our implementations: Fo Full
Adaptation (original), Fc Full Adaptation (corrected), and N No Adaptation. The − represents the setting of CubiCasa, we adjust these
with a lower matrix precision P for speed and scheduler S that converges faster.

with zero padding to 256x256. After 100 epochs, we con-
tinue training with the best weights obtained, resetting the
optimizer parameters and removing the resizing augmenta-
tion. We then train the network for an additional 400 epochs
until convergence. We employed the Adam optimizer, set-
ting the initial learning rate to 1×10−3, with ϵ = 1×10−8,
and the beta parameters set to β1 = 0.9 and β2 = 0.999.
In contrast to CubiCasa5K [18], we implemented a learning
rate scheduler that reduces the learning rate by a factor of
0.5 if no improvements are observed in the validation loss
for 10 epochs.

5.6. Evaluation

For the evaluation, we also follow CubiCasa5K [18] but fo-
cus on using class Intersection over Union (IoU) as our pri-
mary metric because it gives a clear and balanced measure
of how well the segments match [30]. While we do record
other metrics, we exclude them from our discussion as they
do not offer additional insights into class-specific domain
adaptation performance. Given a predicted segmentation
map P and a corresponding ground truth segmentation map
G, IoU for a specific class c is defined as:

IoU(c) =
|P ∩G|c
|P ∪G|c

=
TPc

TPc + FPc + FNc
(30)

where |P ∩ G|c is the cardinality of the intersection set for
class c, representing the number of pixels that are correctly
predicted as belonging to class c (True Positives, TPc).
|P ∪G|c is the cardinality of the union set for class c, repre-
senting the total number of pixels that are either predicted as
class c or are part of class c in the ground truth. The union

includes True Positives TPc, False Positives FPc, and False
Negatives FNc. TPc is the number of pixels correctly clas-
sified as class c. FPc is the number of pixels incorrectly
classified as class c when they actually belong to a differ-
ent class. FNc is the number of pixels that belong to class
c but are not predicted as such. Given the class IoUs, we
can now average them to obtain the mean Intersection over
Union (mIoU):

mIoU =
1

C

C∑
i=1

IoU(i) (31)

where C is the total number of classes in the dataset. The
metric provides a robust measure of the accuracy of the
semantic segmentation by quantifying the overlap between
predicted and ground truth segments. We leave out the other
metrics, although we do measure them, in our research as
they do not provide any additional insights into the adap-
tation capabilities. To ensure fair evaluation, we exclude
classes with few instances, such as Fireplace, Bathtub, and
Chimney as can be seen in Figure 7, to prevent sample-
specific results skewing. Additionally, we apply test time
augmentation by rotating input images at four angles (0°,
90°, 180°, and 270°) feeding all these images through the
model and then taking the mean.

6. Results

6.1. Baselines

Ablation In this experiment we aim to research the influ-
ence of our training adjustments. The IoU of CubiCasa5K’s

Rooms Icons

T A B
ac

kg
ro

un
d

O
ut

do
or

W
al

l

K
itc

he
n

L
iv

in
g

B
ed

B
at

h

E
nt

ry

R
ai

lin
g

St
or

ag
e

U
nd

efi
ne

d

M
ea

n

N
o

Ic
on

W
in

do
w

D
oo

r

C
lo

se
t

E
le

c.
A

pp
l.

To
ile

t

Si
nk

Sa
un

a
B

en
ch

M
ea

n

S
Fc 85.7 66.5 78.5 62.2 58.1 75.3 61.3 53.5 29.4 39.7 49.5 60.0 98.0 72.4 62.6 70.0 73.0 70.4 60.4 85.5 74.0
N 87.4 64.4 79.0 62.3 59.0 76.2 59.1 55.1 26.9 38.0 49.9 59.8 98.0 71.8 61.9 69.4 72.8 70.8 59.6 82.7 73.4
∆ 1.7 -2.1 0.5 0.1 0.9 0.9 -2.2 1.6 -2.5 -1.7 0.4 -0.2 0.0 -0.6 -0.7 -0.6 -0.2 0.4 -0.8 -2.8 -0.6

V
Fc 81.0 49.9 59.6 55.1 54.8 74.8 61.2 55.2 10.2 39.1 50.3 53.7 97.0 50.4 49.4 66.0 61.3 60.7 53.7 70.5 63.6
N 82.1 49.6 59.8 55.9 55.3 75.2 56.6 56.6 10.2 32.9 49.3 53.0 97.0 55.2 49.1 65.4 62.9 62.3 52.7 69.2 64.2
∆ 1.1 -0.3 0.2 0.8 0.5 0.4 -4.6 1.4 0.0 -6.2 -1.0 -0.7 0.0 4.8 -0.3 -0.6 1.6 1.6 -1.0 -1.3 0.6

Table 4. Adaptation gap ∆ in Intersection over Union (IoU) between the corrected full (Fc) and (N) no adaptation models. Here the column
T represents the score type which is either (S) segmentation or (V) vectorization. The table shows there is an adaptation gap, yet there are
multiple class instances that exhibit contractionary behaviour.

A H C0
20
40
60
80

100

Io
U

(%
)

85.6

76.3

92.0
89.7

90.3
83.3

270 63 67
Background

A H C

62.9

44.9

69.3
60.9

66.5

54.0

241 50 58
Outdoor

A H C

69.2

42.6

77.0

60.1

79.0

51.3

270 63 67
Wall

A H C

63.7
57.0

77.9
73.6 59.5

50.2

241 53 52
Kitchen

A H C

64.1
58.8

83.4
81.9 62.2

59.3

216 48 53
Living Room

A H C

70.9
63.8

90.2
87.2 73.6

72.5

203 45 41
Bed Room

A H C

59.9
54.7

62.6
58.0

61.1
59.9

232 43 55
Bath

A H C

53.5
50.0

65.0
64.4

55.0
55.1

207 51 52
Entry

A H C

20.8

5.4

36.1

14.6

26.0

6.4

218 35 47
Railing

A H C

41.9
36.7

69.0
64.0 46.3

46.2

170 34 27
Storage

A H C

32.6
28.4

38.7
36.7

50.9

67.2

42 3 4
Garage

A H C

36.5
34.3

66.4
68.4

43.1
41.3

246 52 55
Undefined

A H C

55.1

46.1

69.0
63.3 59.5

53.9

2556 540 578
Rooms

A H C0
20
40
60
80

100

Io
U

(%
)

97.3
96.1

97.9
97.1

97.9
96.8

270 63 67
No Icon

A H C

63.2

36.2

71.4

60.2

69.3

39.1

269 63 66
Window

A H C

48.4

34.6

63.1

54.5
57.7

44.2

269 63 67
Door

A H C

65.4
56.9

79.7
73.9 69.7

65.4

260 60 66
Closet

A H C

61.9
53.6

69.6
63.8

72.4
64.4

264 63 66
Elect. Appl.

A H C

59.2

50.3

61.4
58.1

69.0
61.0

259 61 65
Toilet

A H C

51.5

40.8

62.2
53.9

58.4

45.4

263 62 65
Sink

A H C

61.7

43.4

80.4

61.7

84.8

59.4

193 32 38
Sauna Bench

A H C

37.7

4.0

26.0 32.7

107 14 6
Fire Place

A H C

22.1

53.9 53.0

22 3 2
Bathtub

A H C
10.3
2.9

48.6

36 2 2
Chimney

A H C

52.6

38.1

60.5

47.6

64.9

43.2

2212 486 510
Icons

Figure 7. Domain Intersection over Union (IoU) with top: rooms and bottom: icons. Here the measurements represent the segmentation
(line) and vectorization (dashed) intersection over union (IoU) for the (A) High Quality Architectural, (H) High Quality, and (C) Colored
data. The number above each class’s boxplot is the number of images in test data that contain the class. The difference in IoU shows that
even with a larger dataset, High Quality Architectural (A) is harder to predict. It also shows that less frequent classes have no vectorization
success. The last observation is that the vectorization of icons from the colorful (C) domain is much harder compared to the other domains.

model Fcc [18], listed in Table 3, shows a degraded IoU rel-
ative to our evaluation with the same settings and data. For
all three of our own implementations, Fo Full Adaptation
(original), Fc Full Adaptation (corrected), and N No Adap-
tation, we observe a general pattern. Specifically, there is
a slightly lower Intersection over Union (IoU) when we in-
troduce lower precision matrix multiplication and a faster-
converging scheduler. However, there are exceptions to this
pattern, such as in row Fo,−. The P, S rows of the cor-
rected full adaptation as well as the no adaptation run are
used to address the adaptation gap and function as a base-
line during the experiments.

Domain performance In this experiment, we explore
how the model performs for the different domains defined
by CubiCasa5K [18]. Figure 7 shows that there is a vary-
ing IoU difference for both domains, classes, segmentation
and vectorization. One noticeable observation is the fact
that rooms from the colorful domain seem harder to seg-
ment compared to icons, in contrast with the other domains.

Additionally, it shows that the vectorization process gener-
ally reduces scores and that this gap is significantly larger
for icons and the colorful domain. It is apparently so hard to
segment the least frequent icons - Fire Place, Bathtub, and
Chimney - that almost no vectorization score is achieved
over all three domains.

Adaptation gap Before researching the adaptation gap,
we first need to determine if it exists and how significant it
is. The results in Table 4 reveal that domain shift affects
the IoU, with noticeable gaps in the ”Bath,” ”Storage,” and
”Outdoor” room classes, as well as the ”Sink” and ”Sauna
Bench” icon classes. Interestingly, some classes, particu-
larly ”Window,” perform better without the colorful domain
in the training data, likely due to labelling biases discussed
in section 4.3. The IoU difference between rooms and icons
may be related to the divergence shown in Figure 6. Ad-
ditionally, there’s a shift in IoU between segmentation and
vectorization. The adaptation gap is negative for both in
segmentation but widens for rooms and improves for icons

0.0 0.1 0.2 0.3 0.4 0.5
Lambda ()

30

40

50

60

70

Io
U

(%
)

Constant

0.000 0.005 0.010 0.015 0.020 0.025
Lambda ()

Finegrained

0.0 0.1 0.2 0.3 0.4 0.5
Lambda ()

Variable

Rooms Segmentation
Rooms Vectorization
Icons Segmentation
Icons Vectorization
Max

Figure 8. The results of the MMD weighting experiments with left: constant lambda middle: fine-grained lambda right: variable lambda
and where λ = 0 means that no adaptation is done. The results show that a constant lambda ultimately collapses the intersection over
Union (IoU), that the experiments suffer inconsistency problems due to batch sampling, and that a variable lambda shows more potential.

when vectorized, indicating junction heatmaps behave dif-
ferently for rooms and icons.

6.2. MMD Weighting

Constant Weighting Given the adaptation gap, we aim
to investigate the role of weighting, beginning with the sim-
plest approach: constant weighting. In the constant weight-
ing experiments displayed in Figure 8, the best performing
λ value was 0.01, which showed a slight improvement over
not using MMD. The general trend indicated that larger λ
values resulted in a collapsing IoU, although class-specific
exceptions exist as can be seen in Table 5a, resulting in a
20% drop in mIoU for λ = 0.5. The conclusion from the
experiments is that increasing the constant λ to achieve do-
main alignment does not benefit adaptation in general. In-
terestingly, the two classes with the largest adaptation gaps
per type, Bathroom and Sauna Bench, had the best IoU with
a larger λ, suggesting they do benefit from alignment.

Constant Weighting (Fine-Grained) Using the optimal
constant weighting we identified, we explore whether a bet-
ter solution can be found in its immediate surroundings. In
the fine-grained search, no clear pattern emerged for the
best λ value as can be seen in Figure 8, indicating that re-
sults might be influenced by random batch sampling during
training. The same phenomenon is also clearly observable
in the class-specific IoU seen in Table 5a. The conclusion
is that fixed weighting for the MMD implementation is not
effective, and experiments, especially for smaller λ deltas,
are sensitive to random batch sampling, making it difficult
to draw definitive conclusions.

Variable Weighting Given the unsatisfactory results of
our previous experiments, we now aim to determine if the
model can benefit from variable weighting. In the variable
weighting experiments, the IoU collapse is less prominent,

and less affected by random batch sampling as seen in Fig-
ure 8. Classes with an adaptation gap performed better with
larger λ values, while others did better with no alignment,
as shown in Table 5a. The experiment shows that increasing
domain alignment can improve the IoU, but random batch
sampling combined with the uncertainty loss affected by λ
leads to inconsistent results, making it hard to draw strong
conclusions.

6.3. Latent extraction

Latent size Given the adaptation gap, we also want to in-
vestigate the role of latent size. The results in Figure 1 and
Table 5b show that MMD extraction at 512 (l7b) channels is
preferred over 256 (l7a) for all segmentation IoUs. Since re-
sults with smaller lambdas can vary, we focus on the larger
lambda experiments for the rest of this analysis. In these,
vectorization behaves differently from segmentation, gen-
erally benefiting from alignment at l7a with 256 channels.
We believe segmentation benefits from alignment at the end
of the contraction phase, where fine details are ready for
upsampling, while l7a may be better for capturing global
relationships, like those between junctions.

Pooling size After the latent size, we now want to assess
how different pooling methods influence the model’s be-
haviour. For pooling, 2x2 pooling was beneficial for icons
for both segmentation and vectorization, highlighting the
importance of structural preservation, even when the space
is flattened to a vector. We also found that the speed gain
from using smaller latent sizes was found to be negligible.
An interesting future direction, found in a later stage of our
research, could involve balancing the pooling strategies by
using a weighted sum approach, possibly allowing for both
global and local alignment.

50

52

54

56

58

60
 = 0.01

Ro
om

s

 = 0.1

1x1 2x2 4x4

62

64

66

68

70

72

74

1x1 2x2 4x4

Ico
ns

Io
U

(%
)

Adaptive Pooling Size (HxW)

No adaptation
256 Segmentation
512 Segmentation
256 Vectorization
512 Vectorization
Max

Figure 9. The results of the latent space experiments plotted in a
grid for λ ∈ 0.01, 0.1 and the class types rooms and icons. In
the experiments, the latent space is max pooled to the adaptive
pooling size. It shows a balanced 2 by 2 pooling is beneficial for
all λ = 0.1 cases.

7. Conclusion
Our paper identifies and analyzes key issues within the
CubiCasa5K dataset, particularly concerning its labelling
strategy, which requires further investigation for effective
domain adaptation. Our study is the first to measure domain
differences in the CubiCasa5K dataset both in terms of fea-
ture representation and model IoU, providing new insights
into its domain-specific challenges and readiness for adap-
tation research. The findings from our domain alignment
experiments indicate some benefits but are limited by the
inconsistent data quality and variability observed during
training. Although domain adaptation techniques for floor
plan vectorization deserve further exploration, this must be
preceded by rigorous dataset analysis. The inconsistencies
in the CubiCasa5K dataset highlight the critical need for
high-quality, standardized datasets to fully realize the
potential of not just domain adaptation but also floor plan
vectorization as a whole. Our findings underscore the
critical importance for practitioners and researchers to en-
sure data quality before creating or benchmarking datasets.

References
[1] Christian Ah-Soon and Karl Tombre. Variations on the anal-

ysis of architectural drawings. In Proceedings of the fourth
international conference on document analysis and recogni-
tion, pages 347–351. IEEE, 1997. 2

[2] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and
Bernt Schiele. 2d human pose estimation: New benchmark
and state of the art analysis. In Proceedings of the IEEE Con-
ference on computer Vision and Pattern Recognition, pages

3686–3693, 2014. 2, 11
[3] Róger Bermúdez-Chacón, Pablo Márquez-Neila, Mathieu

Salzmann, and Pascal Fua. A domain-adaptive two-stream
u-net for electron microscopy image segmentation. In 2018
IEEE 15th International Symposium on Biomedical Imaging
(ISBI 2018), pages 400–404. IEEE, 2018. 3

[4] Ji Chang, Jing Li, Yu Kang, Wenjun Lv, Ting Xu, Zerui Li,
Wei Xing Zheng, Hongwei Han, and Haining Liu. Unsuper-
vised domain adaptation using maximum mean discrepancy
optimization for lithology identification. Geophysics, 86(2):
ID19–ID30, 2021. 3

[5] Chao Chen, Zhihang Fu, Zhihong Chen, Sheng Jin, Zhaowei
Cheng, Xinyu Jin, and Xian-Sheng Hua. Homm: Higher-
order moment matching for unsupervised domain adaptation.
In Proceedings of the AAAI conference on artificial intelli-
gence, pages 3422–3429, 2020. 5

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 11

[7] Samuel Dodge, Jiu Xu, and Björn Stenger. Parsing floor plan
images. In 2017 Fifteenth IAPR international conference on
machine vision applications (MVA), pages 358–361. IEEE,
2017. 2

[8] Philippe Dosch, Karl Tombre, Christian Ah-Soon, and
Gérald Masini. A complete system for the analysis of archi-
tectural drawings. International Journal on Document Anal-
ysis and Recognition, 3(2):102–116, 2000. 2

[9] Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and
Hamid R Arabnia. A brief review of domain adaptation.
Advances in data science and information engineering: pro-
ceedings from ICDATA 2020 and IKE 2020, pages 877–894,
2021. 2, 3

[10] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In International conference
on machine learning, pages 1180–1189. PMLR, 2015. 3

[11] Muhammad Ghifary, W Bastiaan Kleijn, and Mengjie
Zhang. Domain adaptive neural networks for object recog-
nition. In PRICAI 2014: Trends in Artificial Intelligence:
13th Pacific Rim International Conference on Artificial Intel-
ligence, Gold Coast, QLD, Australia, December 1-5, 2014.
Proceedings 13, pages 898–904. Springer, 2014. 3

[12] Lucile Gimenez, Sylvain Robert, Frédéric Suard, and Khal-
doun Zreik. Automatic reconstruction of 3d building models
from scanned 2d floor plans. Automation in Construction,
63:48–56, 2016. 1

[13] Boqing Gong, Kristen Grauman, and Fei Sha. Learning ker-
nels for unsupervised domain adaptation with applications to
visual object recognition. International Journal of Computer
Vision, 109(1):3–27, 2014. 6

[14] Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard
Schölkopf, and Alex Smola. A kernel method for the two-
sample-problem. Advances in neural information processing
systems, 19, 2006. 3, 4

[15] Arthur Gretton, Dino Sejdinovic, Heiko Strathmann, Sivara-
man Balakrishnan, Massimiliano Pontil, Kenji Fukumizu,
and Bharath K Sriperumbudur. Optimal kernel choice for

large-scale two-sample tests. Advances in neural informa-
tion processing systems, 25, 2012. 3

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2

[17] Xinyang Jiang, Lu Liu, Caihua Shan, Yifei Shen, Xuanyi
Dong, and Dongsheng Li. Recognizing vector graphics with-
out rasterization. Advances in Neural Information Process-
ing Systems, 34:24569–24580, 2021. 2, 3

[18] Ahti Kalervo, Juha Ylioinas, Markus Häikiö, Antti Karhu,
and Juho Kannala. Cubicasa5k: A dataset and an im-
proved multi-task model for floorplan image analysis. In
Image Analysis: 21st Scandinavian Conference, SCIA 2019,
Norrköping, Sweden, June 11–13, 2019, Proceedings 21,
pages 28–40. Springer, 2019. 2, 3, 5, 6, 8, 10, 11, 12, 13

[19] Hae-Kyong Kang and Ki-Joune Li. A standard indoor spa-
tial data model—ogc indoorgml and implementation ap-
proaches. ISPRS International Journal of Geo-Information,
6(4):116, 2017. 1

[20] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geome-
try and semantics. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7482–7491,
2018. 2

[21] Seongyong Kim, Seula Park, Hyunjung Kim, and Kiyun Yu.
Deep floor plan analysis for complicated drawings based on
style transfer. Journal of Computing in Civil Engineering, 35
(2):04020066, 2021. 1, 2

[22] Yujia Li, Kevin Swersky, and Rich Zemel. Generative mo-
ment matching networks. In International conference on ma-
chine learning, pages 1718–1727. PMLR, 2015. 10

[23] Chenxi Liu, Alexander G Schwing, Kaustav Kundu, Raquel
Urtasun, and Sanja Fidler. Rent3d: Floor-plan priors for
monocular layout estimation. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 3413–3421, 2015. 5

[24] Chen Liu, Jiajun Wu, Pushmeet Kohli, and Yasutaka Fu-
rukawa. Raster-to-vector: Revisiting floorplan transforma-
tion. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2195–2203, 2017. 1, 2, 5, 11

[25] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang
Sun, and Philip S Yu. Transfer feature learning with joint
distribution adaptation. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2200–2207,
2013. 3

[26] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-
dan. Learning transferable features with deep adaptation net-
works. In International conference on machine learning,
pages 97–105. PMLR, 2015. 3, 5

[27] Xiaolei Lv, Shengchu Zhao, Xinyang Yu, and Binqiang
Zhao. Residential floor plan recognition and reconstruction.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 16717–16726, 2021. 2

[28] Sébastien Macé, Hervé Locteau, Ernest Valveny, and Salva-
tore Tabbone. A system to detect rooms in architectural floor
plan images. In Proceedings of the 9th IAPR International

Workshop on Document Analysis Systems, pages 167–174,
2010. 2

[29] Jaehwa Park and Young-Bin Kwon. Main wall recognition
of architectural drawings using dimension extension line. In
Graphics Recognition. Recent Advances and Perspectives:
5th International Workshop, GREC 2003, Barcelona, Spain,
July 30-31, 2003, Revised Selected Papers 5, pages 116–127.
Springer, 2004. 1, 2

[30] Md Atiqur Rahman and Yang Wang. Optimizing
intersection-over-union in deep neural networks for image
segmentation. In International symposium on visual com-
puting, pages 234–244. Springer, 2016. 12

[31] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III
18, pages 234–241. Springer, 2015. 2

[32] Mohd Ezanee Rusli, Mohammad Ali, Norziana Jamil, and
Marina Md Din. An improved indoor positioning algorithm
based on rssi-trilateration technique for internet of things
(iot). In 2016 international conference on computer and
communication engineering (ICCCE), pages 72–77. IEEE,
2016. 1

[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115:211–252, 2015. 11

[34] Kathy Ryall, Stuart Shieber, Joe Marks, and Murray Mazer.
Semi-automatic delineation of regions in floor plans. In
Proceedings of 3rd International Conference on Document
Analysis and Recognition, pages 964–969. IEEE, 1995. 2

[35] Ruoxi Shi, Xinyang Jiang, Caihua Shan, Yansen Wang, and
Dongsheng Li. Rendnet: Unified 2d/3d recognizer with la-
tent space rendering. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5408–5417, 2022. 2

[36] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and
Trevor Darrell. Deep domain confusion: Maximizing for
domain invariance. arXiv preprint arXiv:1412.3474, 2014. 3

[37] Rebekka Volk, Julian Stengel, and Frank Schultmann.
Building information modeling (bim) for existing build-
ings—literature review and future needs. Automation in con-
struction, 38:109–127, 2014. 1

[38] Weilin Xu, Liu Liu, Sisi Zlatanova, Wouter Penard, and Qing
Xiong. A pedestrian tracking algorithm using grid-based in-
door model. Automation in Construction, 92:173–187, 2018.
1

[39] Mehmet Yalcinkaya and Vishal Singh. Building informa-
tion modeling (bim) for facilities management–literature re-
view and future needs. In Product Lifecycle Management for
a Global Market: 11th IFIP WG 5.1 International Confer-
ence, PLM 2014, Yokohama, Japan, July 7-9, 2014, Revised
Selected Papers 11, pages 1–10. Springer, 2014. 1

[40] Toshihiko Yamasaki, Jin Zhang, and Yuki Takada. Apart-
ment structure estimation using fully convolutional networks

and graph model. In Proceedings of the 2018 ACM Workshop
on Multimedia for Real Estate Tech, pages 1–6, 2018. 2

[41] Hongliang Yan, Zhetao Li, Qilong Wang, Peihua Li, Yong
Xu, and Wangmeng Zuo. Weighted and class-specific maxi-
mum mean discrepancy for unsupervised domain adaptation.
IEEE Transactions on Multimedia, 22(9):2420–2433, 2019.
3

[42] JongHyeon Yang, Hanme Jang, JiYeup Kim, and JungOk
Kim. Semantic segmentation in architectural floor plans
for detecting walls and doors. In 2018 11th International
Congress on Image and Signal Processing, BioMedical En-
gineering and Informatics (CISP-BMEI), pages 1–9. IEEE,
2018. 1

[43] Zhiliang Zeng, Xianzhi Li, Ying Kin Yu, and Chi-Wing
Fu. Deep floor plan recognition using a multi-task network
with room-boundary-guided attention. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 9096–9104, 2019. 2

[44] Zhaohua Zheng, Jianfang Li, Lingjie Zhu, Honghua Li,
Frank Petzold, and Ping Tan. Gat-cadnet: Graph attention
network for panoptic symbol spotting in cad drawings. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 11747–11756, 2022. 2

[45] Ruiyun Zhu, Jingcheng Shen, Xiangtian Deng, Marcus
Walldén, and Fumihiko Ino. Training strategies for cnn-
based models to parse complex floor plans. In Proceedings
of the 2020 9th International Conference on Software and
Computer Applications, pages 11–16, 2020. 1

A. Appendix
This appendix contains a table with the class-specific results
and more examples of ambiguous class labelling.

Rooms Icons

λ B
ac

kg
ro

un
d

(+
)

O
ut

do
or

(-
)

W
al

l(
+)

K
itc

he
n

(+
)

L
iv

in
g

(+
)

B
ed

(+
)

B
at

h
(-

)

E
nt

ry
(+

)

R
ai

lin
g

(-
)

St
or

ag
e

(-
)

U
nd

efi
ne

d
(-

)

M
ea

n
(-

)

N
o

Ic
on

(+
)

W
in

do
w

(+
)

D
oo

r(
-)

C
lo

se
t(

-)

E
le

c.
A

pp
l.

(+
)

To
ile

t(
+)

Si
nk

(-
)

Sa
un

a
B

en
ch

(-
)

M
ea

n
(+

)

C
on

st
an

t

0.00 82.1 49.6 59.8 55.9 55.3 75.2 56.6 56.6 10.2 32.9 49.3 53.0 97.1 55.2 49.1 65.4 62.9 62.3 52.7 69.2 64.2
0.01 82.4 48.1 61.7 54.3 54.2 77.0 58.9 54.0 10.5 37.4 48.8 53.4 97.0 55.5 51.8 64.2 60.2 63.4 52.1 70.7 64.4
0.05 79.7 49.0 59.1 51.9 53.2 72.7 56.6 53.7 10.2 32.9 39.0 50.7 97.0 48.6 49.5 64.4 59.9 62.1 51.5 70.4 62.9
0.10 80.2 46.8 61.4 50.0 51.8 71.9 58.9 56.0 9.1 34.9 45.4 51.5 97.0 55.5 48.0 63.4 60.5 61.8 50.4 69.0 63.2
0.20 79.4 40.8 61.3 49.8 51.7 67.2 47.6 48.9 9.1 37.0 41.5 48.6 97.0 54.2 50.9 62.5 61.7 57.8 49.2 72.9 63.3
0.30 75.5 38.9 56.9 45.5 47.9 64.5 50.7 45.0 8.1 29.7 35.6 45.3 96.7 45.6 48.4 61.8 56.5 56.1 49.9 67.9 60.4
0.40 71.4 36.8 49.0 43.1 45.7 59.9 49.5 42.0 3.5 26.2 28.2 41.4 96.6 40.0 47.3 62.8 53.8 51.9 45.1 66.7 58.0
0.50 53.5 18.7 28.1 29.5 25.5 45.4 37.2 20.0 0.9 19.6 18.7 27.0 95.3 23.3 28.7 38.3 40.2 32.8 27.4 16.3 37.8

Fi
ne

tu
ne

d

0.000 82.1 49.6 59.8 55.9 55.3 75.2 56.6 56.6 10.2 32.9 49.3 53.0 97.1 55.2 49.1 65.4 62.9 62.3 52.7 69.2 64.2
0.001 81.8 49.5 62.0 53.4 56.1 76.6 58.2 54.2 9.7 36.5 50.5 53.5 97.1 54.8 51.8 64.9 64.2 62.3 52.4 71.1 64.8
0.005 80.9 47.9 60.1 55.0 53.7 73.8 62.8 56.1 12.0 44.2 50.1 54.2 97.0 50.8 49.7 62.9 64.5 62.0 49.0 69.4 63.2
0.010 82.4 48.1 61.7 54.3 54.2 77.0 58.9 54.0 10.5 37.4 48.8 53.4 97.0 55.5 51.8 64.2 60.2 63.4 52.1 70.7 64.4
0.015 82.0 47.0 59.7 55.8 56.7 77.6 57.5 54.1 10.7 33.8 53.3 53.5 97.0 50.6 47.4 64.0 59.4 60.2 50.6 73.3 62.8
0.020 82.4 53.4 59.6 54.5 54.9 76.6 60.6 54.5 11.4 40.1 47.9 54.2 97.0 51.9 49.7 63.6 60.2 62.9 50.9 69.3 63.2
0.025 82.0 51.4 60.3 53.9 54.5 76.0 59.2 59.6 13.3 37.6 47.8 54.1 97.0 51.4 48.5 63.7 63.3 63.1 51.0 71.0 63.6

V
ar

ia
bl

e

0.0 82.1 49.6 59.8 55.9 55.3 75.2 56.6 56.6 10.2 32.9 49.3 53.0 97.1 55.2 49.1 65.4 62.9 62.3 52.7 69.2 64.2
0.1 78.2 49.7 57.0 51.8 53.6 71.8 53.3 53.9 9.9 34.0 42.7 50.5 96.9 49.8 47.2 64.6 61.7 61.1 50.4 67.6 62.4
0.2 80.2 49.0 60.2 49.6 46.1 71.5 54.8 53.1 11.3 34.2 37.7 49.8 97.0 52.2 49.1 64.3 61.2 60.3 52.9 68.5 63.2
0.3 78.7 47.5 57.6 49.3 50.7 74.3 49.4 52.3 7.8 37.0 41.6 49.7 97.0 49.4 48.4 64.4 61.4 61.8 49.5 71.1 62.9
0.4 82.4 51.2 60.6 50.7 53.9 72.9 58.3 52.8 11.6 38.6 39.9 52.1 97.1 54.1 47.4 64.9 62.9 62.5 52.4 69.6 63.9
0.5 77.2 42.0 58.2 50.8 49.4 68.3 52.8 53.4 8.1 36.0 37.8 48.5 96.9 48.4 47.9 63.7 59.5 58.8 51.0 71.9 62.3

(a) Lambda experiment results in which the first column represents the lambda λ used in the experiments, for the variable λ this value is scaled by epochs of
which the formula can be found in formula 5.4. Constant experiment shows collapse for larger λ, but promising smaller λ. The fine-tune experiment shows
that the model is inconsistent for small λ changes. The variable experiment shows promising results as mostly classes with an adaptation gap improve with
larger lambda.

Rooms Icons

λ C S B
ac

kg
ro

un
d

(+
)

O
ut

do
or

(-
)

W
al

l(
+)

K
itc

he
n

(+
)

L
iv

in
g

(+
)

B
ed

(+
)

B
at

h
(-

)

E
nt

ry
(+

)

R
ai

lin
g

(-
)

St
or

ag
e

(-
)

U
nd

efi
ne

d
(-

)

M
ea

n
(-

)

N
o

Ic
on

(+
)

W
in

do
w

(+
)

D
oo

r(
-)

C
lo

se
t(

-)

E
le

c.
A

pp
l.

(+
)

To
ile

t(
+)

Si
nk

(-
)

Sa
un

a
B

en
ch

(-
)

M
ea

n
(+

)

0.
01

25
6 1 82.2 52.1 60.0 52.8 52.9 76.1 57.6 52.0 11.7 39.7 41.6 52.6 97.0 52.7 49.6 65.7 62.3 62.4 51.1 70.6 63.9

2 82.1 48.7 59.3 54.3 51.8 72.1 60.9 54.0 10.9 33.5 45.2 52.1 97.0 49.8 48.2 64.9 60.8 63.4 51.4 70.4 63.2
4 80.2 48.4 60.2 51.2 52.6 73.1 58.8 53.5 7.1 32.4 42.2 50.9 97.0 55.0 49.1 63.2 59.2 61.3 52.0 70.3 63.4

51
2 1 82.4 48.1 61.7 54.3 54.2 77.0 58.9 54.0 10.5 37.4 48.8 53.4 97.0 55.5 51.8 64.2 60.2 63.4 52.1 70.7 64.4

2 83.4 49.4 60.1 52.1 53.9 72.9 51.4 50.1 9.1 40.2 50.5 52.1 97.0 51.9 48.1 65.8 61.8 61.5 53.7 69.0 63.6
4 81.1 50.0 58.8 56.9 53.6 75.5 58.5 55.1 9.4 35.2 49.4 53.0 96.9 50.9 49.7 62.0 61.1 61.7 52.3 67.9 62.8

0.
1

25
6 1 79.0 46.2 60.9 50.3 51.8 73.7 53.6 54.3 11.8 37.6 38.9 50.7 97.0 54.5 48.4 64.3 62.5 60.5 52.6 68.8 63.6

2 80.9 50.8 60.1 54.6 51.7 72.6 60.4 58.3 10.2 35.4 42.8 52.5 97.0 52.8 49.8 61.0 64.0 63.0 52.0 70.1 63.7
4 77.9 46.7 57.9 49.9 53.6 70.3 53.0 51.3 7.7 32.2 41.4 49.3 96.9 47.7 48.1 63.1 57.5 58.2 49.5 69.2 61.3

51
2 1 80.2 46.8 61.4 50.0 51.8 71.9 58.9 56.0 9.1 34.9 45.4 51.5 97.0 55.5 48.0 63.4 60.5 61.8 50.4 69.0 63.2

2 78.8 50.1 58.5 49.1 52.4 76.0 59.1 51.2 11.3 35.5 42.7 51.3 97.0 51.6 47.6 62.4 63.9 60.2 52.1 71.4 63.3
4 81.5 46.7 60.7 52.7 55.5 73.7 51.9 52.5 5.3 34.4 38.3 50.3 97.0 52.9 48.6 65.4 58.3 61.8 51.7 69.1 63.1

(b) Latent space experiment results in which the first columns represent the lambda λ, extraction channels C, and the sizing S of the adaptive max pooling
size S×S. We take as base the λ = −.1, reducing the chance of influence by random sampling, in these we observe that a balance pooling of 2 is beneficial
for our classes.

Table 5. Results of experiments ordered by class type, either rooms or icons, with its respective classes. The numbers displayed are the
vectorization intersection over union (IoU) scores with the mean of the class type (mIoU) in the last column. The minus or plus above each
class indicates the adaptation gap, with + showing improvement and - indicating a gap.

Image Prediction Label Error: 0.35

Image Prediction Label Error: 0.48

(a) High quality architectural domain samples
Image Prediction Label Error: 0.37

Image Prediction Label Error: 0.41

(b) High quality domain samples
Image Prediction Label Error: 0.31

Image Prediction Label Error: 0.34

(c) Colorful domain samples

Figure 10. Instances of the domains showing the problems occurring in the dataset. The samples also contain the three types of structural
cutoffs occurring in the dataset where either only part of the floor plan, only the walls, or only a selected area is labeled. Some also clearly
exhibit the ambiguous undefined labeling.

3
Background

23

3.1. Machine Learning 24

3.1. Machine Learning
3.1.1. Introduction
Machine learning (ML) is a branch of artificial intelligence (AI) that focuses on developing algorithms
that allow computers to learn from data and make predictions. The field has grown significantly since
its beginnings in the mid-20th century, thanks to advances in computational power, access to large
datasets, and new algorithm development. Early ML models relied on rule-based systems, but the
introduction of statistical methods in the 1980s and 1990s led to more advanced models. Recently, the
rise of deep learning has transformed the field, leading to significant improvements in tasks like image
and speech recognition, natural language processing, and autonomous driving.

A key element of machine learning is the use of features (x), which are specific, measurable character-
istics of the data being analyzed. For example, in a dataset about house prices, features might include
the size of the house, the number of bedrooms, and the location. Selecting and engineering relevant
features are crucial steps in machine learning because they directly affect how well the model performs.

Labels (y) are the target values or outputs that the ML model aims to predict. In supervised learning,
each data point has an associated label. For instance, in a house price prediction dataset, the label
would be the actual price of the house. Labels provide the correct answers that the model uses during
training.

To train a model, its performance must be measured using loss functions and evaluation metrics. The
loss function measures how closely the model’s predictions (ŷ) match the actual labels (y) during train-
ing. Common loss functions include mean squared error (MSE) for regression tasks and cross-entropy
loss for classification tasks. Evaluation metrics like accuracy, precision, recall, and F1-score are used
to assess the model’s performance on new data and help choose the best model.

One of the simplest machine learning algorithms is linear classification, where the goal is to separate
data into different classes using a straight-line decision boundary. This can be represented mathemat-
ically as y = ax + b, where a and b are parameters learned from the data. Examples include logistic
regression and support vector machines (SVMs) with a linear kernel. While linear classifiers are sim-
ple and efficient, they assume a linear relationship between the features (x) and the target (y), which
might not be true in complex real-world scenarios. For instance, in complex data like floor plan images,
the data is often not linearly separable, leading to underfitting, where the model does not capture the
underlying patterns, resulting in poor performance [5].

Figure 3.1: Example of A linear separable and B non-separable data

Building on the discussion of underfitting, it’s important to address the common issues of overfitting and
underfitting in machine learning. Overfitting occurs when a model learns the noise and specific details
of the training data too well, which harms its ability to perform well on new data. This usually happens
when the model is too complex for the amount of training data available. Underfitting, on the other hand,
occurs when a model is too simple to capture the true patterns in the data, leading to poor performance
on both the training data and new data. Balancing the model’s complexity and ensuring enough training
data are key to avoiding these problems. Techniques like cross-validation, regularization, and pruning
can help reduce the risks of overfitting and underfitting.

3.1.2. Deep Learning
Deep learning is a specialized area within machine learning that uses neural networks with multiple
layers to learn data representations at increasing levels of abstraction. A fundamental architecture in

3.1. Machine Learning 25

Figure 3.2: Example of left: underfitting, middle: appropriate fitting, and right: overfitting

deep learning is the Multi-Layer Perceptron (MLP) [16], which consists of several layers of intercon-
nected neurons. Each neuron acts as a computational unit that processes input data. When a neuron
receives an input vector x, it computes a weighted sum, mathematically expressed as z = w · x + b,
where w is the weight vector and b is the bias term. The neuron’s output is then transformed using a
non-linear activation function f(z), such as sigmoid, tanh, or leaky ReLU. Non-linear activation func-
tions are essential because they enable MLPs to approximate complex functions and model intricate
relationships in the data.

Figure 3.3: Example of a multi-layer perceptron

An MLP architecture consists of an input layer, one or more hidden layers, and an output layer. Each
hidden layer contains multiple neurons, allowing the model to learn more complex features at each
layer. The choice of activation function plays a crucial role in the MLP’s performance. The sigmoid
function produces values between 0 and 1, making it ideal for binary classification tasks. The tanh
function outputs values from -1 to 1, which centres the data around zero and can help the model
converge faster. The leaky ReLU activation function allows for a small, non-zero gradient when the
input is negative, which helps prevent the vanishing gradient problem often encountered with traditional
activation functions.

Figure 3.4: Example of a neuron with its inputs, weights, bias, summation, activation function, and output.

MLPs can be seen as an extension of linear regression, which models the relationship between input
features x and a continuous output y using the equation y = w · x + b. While linear regression works
well for simple linear relationships, it often underfits when dealing with complex data that cannot be
separated linearly. MLPs, with their multiple layers and non-linear activation functions, can model
complex relationships. This allows MLPs to learn advanced features from input data, which is essential
for tasks like image recognition.

3.1. Machine Learning 26

Deep learning includes three main learning paradigms: supervised learning, unsupervised learning,
and reinforcement learning.

• Supervised learning trains a model on labelled data, where each example has input features x
and corresponding output labels y. The goal is to learn a function f(x) that can accurately predict
the output based on the input. This approach is commonly used in tasks like image classification,
where the model learns to assign images to predefined categories.

• Unsupervised learning deals with unlabeled data. The model identifies patterns or structures
within the data without being told the correct output. Techniques like clustering and dimensionality
reduction are used in this paradigm. For instance, in image data, unsupervised learning can be
applied to image segmentation, where the model identifies distinct regions in an image without
predefined labels.

• Reinforcement learning trains an agent to make decisions by interacting with an environment.
The agent learns to take actions that maximize a reward over time. This approach is commonly
used in robotics, game-playing, and autonomous systems, where the agent learns optimal strate-
gies through trial and error.

The training process of anMLP involves optimizing a loss function that measures the difference between
the predicted output ŷ and the actual output y. Gradient descent is a common optimization technique
used to minimize this loss. The key idea of gradient descent is to calculate the gradient of the loss
function with respect to each weight and then update the weights in a way that reduces the loss. The
update rule is mathematically expressed as:

θ := θ − η∇L (3.1)

where θ represents the model parameters (weights), η is the learning rate, and ∇L is the gradient of
the loss function.

Figure 3.5: Gradient descent example in a 2D space, the height and color represent the loss.

Several variations of gradient descent exist, each with its advantages. One of the most popular opti-
mization algorithms is Adam (Adaptive Moment Estimation). Adam combines the benefits of two other
methods, AdaGrad and RMSProp, by calculating adaptive learning rates for each parameter based on
the first and second moments of the gradients. Specifically, Adam maintains two moving averages:
the first moment (the mean of the gradients) and the second moment (the uncentered variance of the
gradients). The updates for the weights in Adam are given by:

mt = β1mt−1 + (1− β1)gt (3.2)

vt = β2vt−1 + (1− β2)g
2
t (3.3)

θ := θ − η
√
vt + ϵ

mt (3.4)

3.1. Machine Learning 27

Here, gt is the gradient at time step t,mt is the first-moment estimate, vt is the second-moment estimate,
β1 and β2 control how quickly the moving averages adjust, and ϵ is a small constant to prevent division
by zero. This adaptive learning rate helps Adam converge more quickly and effectively, especially in
situations with sparse gradients or noisy data.

In the training process, regularization techniques are used in deep learning to prevent overfitting, which
happens when a model performs well on training data but fails to generalize to new, unseen data.
Common regularization methods include L1 and L2 regularization, dropout, and early stopping. These
techniques help improve the model’s ability to generalize by limiting its complexity [15].

Alongside regularization, hyperparameter tuning is essential for optimizing model performance and
ensuring generalization. Hyperparameter tuning involves selecting the best fixed values, like learning
rate (η), batch size, and network architecture, that influence the training process. The goal is to find
the combination that minimizes the loss function on a validation set, thereby improving the model’s
performance on new data. Techniques for hyperparameter tuning include grid search, random search,
and Bayesian optimization, each aiming to efficiently explore the hyperparameter space to find the best
configuration. Effective tuning is crucial for maximizing the performance of deep learning models.

Beyond MLPs, various deep learning architectures exist, including Convolutional Neural Networks
(CNNs), which are particularly effective for image processing tasks, Recurrent Neural Networks (RNNs),
which excel at handling sequence data like time series or natural language, and Generative Adversarial
Networks (GANs), which are used for generating new data samples. Each architecture is designed to
address specific types of problems, highlighting the versatility and power of deep learning [11].

Figure 3.6: Example of convolutional neural network

Despite its success, deep learning faces several challenges and limitations. It requires large labelled
datasets, which can be difficult and expensive to obtain. The models are computationally expensive,
needing significant hardware resources for both training and inference. They can also overfit when
trained on small datasets or using complex architectures. Additionally, deep learning models often lack
interpretability, making it hard to understand their decisions. Training can encounter issues such as
getting stuck in local minima or dealing with vanishing or exploding gradients, which complicate the
optimization process.

3.1.3. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a type of deep learning model designed for processing
data with a grid-like structure, such as images. They excel at automatically learning and extracting
important features, making them particularly useful for visual tasks. The core component of a CNN is
the convolutional layer, which applies a set of filters or kernels to the input data. Each filter is a small
matrix that slides over the input image, producing a feature map that highlights local patterns like edges
and textures. This convolution operation can be described mathematically as follows:

Z[i, j] = (X ∗W)[i, j] =
∑
m

∑
n

X[i+m, j + n]W [m,n] (3.5)

In this equation, Z[i, j] represents the value of the feature map at position (i, j), X is the input image,
and W is the filter. The indices m and n denote the rows and columns of the filter. As the filter moves
across the image, it focuses on small regions, allowing the network to learn features that are crucial for
understanding the image.

To illustrate with a 1D example, consider an input vector X = [x1, x2, x3, x4] and a filter W = [w1, w2].

3.1. Machine Learning 28

The convolution operation would involve sliding the filter across the input vector to produce an output
vector Z. Mathematically, this is represented as:

Z[1] = x1 · w1 + x2 · w2 (3.6)

Z[2] = x2 · w1 + x3 · w2 (3.7)

Z[3] = x3 · w1 + x4 · w2 (3.8)

In this example, Z is the resulting feature map, highlighting patterns in the input vector. The 1D con-
volution operation works similarly to the 2D case but processes data in one dimension, which is often
used for tasks like text or time series analysis.

Figure 3.7: Example of a filter sliding over an input image, resulting in a new feature map.

The output size of the feature map generated by a convolutional layer depends on several factors,
including the input size, filter size, stride, and padding. The stride determines how far the filter moves
across the input at each step. A stride of 1 means the filter shifts by one pixel at a time, while a stride of
2 means it jumps two pixels. Larger strides generally produce smaller feature maps, which can reduce
computational load while still capturing essential features.

Padding involves adding extra pixels around the input image to ensure that the filters can process edge
pixels. There are two common types of padding:

1. Same Padding: This method adds zeros around the input image to keep the output size the same
as the input size after the convolution. It ensures that the convolutional layer does not reduce the
spatial dimensions of the feature map.

2. Valid/No padding: This method does not add any extra pixels to the input image. As a result,
the output feature map is smaller than the input. This approach is useful when the goal is to focus
the convolution operation solely on the actual data without any additional padding.

3. Full Padding: This method adds enough padding to the input image so that the output feature
map becomes larger than the input. This type of padding allows the filter to slide over all possi-
ble positions, including those where the filter extends beyond the original image boundary. Full
padding is less commonly used but can be useful in certain contexts where preserving more
spatial information is important.

In PyTorch, these concepts are implemented through the ‘Conv2d‘ class, which lets you create a 2D con-
volutional layer with customizable parameters like the number of input channels, the number of output
channels, kernel size, stride, and padding. This flexibility allows the model to adapt the convolutional
layer to fit the specific needs of the input data.

After the convolutional layers, pooling layers are used to down-sample the feature maps, reducing their
size while keeping the most important information. The two main types of pooling are max pooling and

3.1. Machine Learning 29

average pooling. Max pooling selects the maximum value from a defined window of the feature map,
helping the network focus on the strongest features. This operation can be expressed as:

P [i, j] = max
m,n

Z[i+m, j + n] (3.9)

Here, P [i, j] represents the value of the pooled feature map at position (i, j). For instance, consider
a 1D feature map Z = [3, 5, 2, 8, 6] and a max pooling window of size 2. The operation would yield a
pooled output of P = [5, 8, 8], selecting the highest value from each pair. Average pooling, on the other
hand, calculates the average of the values within the pooling window, helping to smooth the feature
maps and retain more general information. This operation can be expressed as:

P [i, j] =
1

k

∑
m,n

Z[i+m, j + n] (3.10)

where k is the total number of elements in the pooling window. Using the same 1D example, with an
average pooling window of size 2, the operation would yield P = [4, 3.5, 7], where each value is the
average of the two corresponding values in the feature map.

Adaptive pooling is a type of pooling that adjusts the pooling window size to produce a fixed output
size, regardless of the input dimensions. This is especially useful for handling inputs of varying sizes.
In PyTorch, adaptive pooling can be implemented through layers that allow you to specify the desired
output size, making it easy to integrate into different architectures.

After the pooling layers, CNNs usually include one or more fully connected layers. In these layers,
every neuron is connected to all neurons in the previous layer, enabling the model to learn complex
combinations of features extracted from earlier layers. The output of a fully connected layer can be
represented as:

ŷ = σ(W · h+ b) (3.11)

Here, ŷ is the predicted output, W is the weight matrix, h is the input vector from the previous layer,
b is the bias vector, and σ is the activation function that adds non-linearity to the model. In practice,
these fully connected layers are also implemented in PyTorch, providing an easy way to build complex
models that leverage the features learned in previous layers.

Themain advantage of CNNs is their ability to learn relevant features directly from raw input data, reduc-
ing the need for manual feature extraction. This capability is particularly valuable in image classification
tasks, where CNNs have demonstrated excellent performance across various datasets, accurately cat-
egorizing images based on learned features. Their structure allows them to identify complex patterns
from pixel data, making them suitable for a wide range of applications.

Beyond image classification, CNNs are widely used in object detection, with models like YOLO (You
Only Look Once) and Faster R-CNN excelling at detecting and localizing multiple objects within an
image. This is crucial in areas like autonomous driving and security, where fast and accurate processing
is essential. CNNs are also applied in image segmentation, which involves classifying each pixel in an
image.

3.2. Domain Adaptation 30

3.2. Domain Adaptation
3.2.1. Introduction
Domain adaptation is a part of machine learning that deals with transferring knowledge from one domain
(source) to another (target). This is important when the data distribution in the target domain differs
from the source domain. Domain adaptation helps models trained on one dataset to perform well on a
different but related dataset, which is crucial for many applications, including the analysis of floor plans.

In the context of floor plans, domain adaptation can improve the performance of models designed to
interpret architectural layouts. For example, a model trained on modern, digitally-created floor plans
(source domain) might not perform well on hand-drawn historical floor plans (target domain) due to
differences in style, detail, and representation. By applying domain adaptation, the model can handle
these variations without extensive retraining.

An example of domain shift in floor plans could be the difference in line thickness and clarity between
CAD-generated floor plans and hand-drawn ones. CAD-generated floor plans usually have consistent,
clean lines, while hand-drawn floor plans may have irregular, variable-thickness lines and annotations.
This difference can cause a significant performance drop in models that are not adapted to handle such
variations.

3.2.2. Domain adaptation settings
Unsupervised domain adaptation is used when there are no labelled examples in the target domain.
The model relies solely on the labelled data from the source domain and the unlabeled data from the
target domain to adapt. Formally, we have a source domain with known probabilities P (Xs, Ys) and a
target domain with known probabilities P (Xt). In the context of floor plans, this relates to adapting a
model trained on labelled digital floor plans to work with a set of unlabeled hand-drawn floor plans. This
method is useful in scenarios where acquiring labelled data for the target domain is costly or impractical.

Weakly supervised domain adaptation uses weak labels in the target domain. Weak labels provide
limited information, such as the presence of categories in a sample but not precise details like class
segmentation masks. In this case, we can represent the source domain as P (Xs, Ys) and the target
domain as P (Xt, Yweak), where Yweak contains only category information without specific segmentation.
For example, a model trained on digital floor plans with detailed annotations might adapt using hand-
drawn floor plans where only the types of rooms (e.g., kitchen, bedroom) are known without their exact
locations. This approach can help in scenarios where obtaining complete annotations is challenging,
bridging the gap between fully labelled and unlabeled data.

Semi-supervised domain adaptation uses strong labels in the target domain, but only a small por-
tion of the data is labelled. Formally, the source domain remains P (Xs, Ys), while the target domain
consists of very limited samples with labels P (Xt, Ysmall) and possibly others with only the samples
P (Xt). In floor plans, this could mean using many labelled digital floor plans, a few hand-drawn floor
plans with detailed annotations, and possibly combining that with some hand-drawn floor plans with
no annotations. This technique allows models to leverage a small amount of reliable data while still
benefiting from a larger volume of unlabeled data, enhancing generalization to the target domain.

Supervised domain adaptation occurs when there is a substantial amount of labelled data available
in both the source and target domains. This approach allows for the most accurate adaptation since
the model can learn directly from the labelled data in the target domain. Formally, both the source
and target domains can be expressed as P (Xs, Ys) and P (Xt, Yt), where both domains have known
probabilities for their respective input-output pairs. For floor plans, this would involve training a model
on a large set of labelled digital floor plans and a large set of labelled hand-drawn floor plans, ensuring
high performance on both types. This method is optimal when sufficient labelled data exists in both
domains.

3.2.3. Types of Domain Adaptation
Domain adaptation involves transferring knowledge from a source domain to a target domain with
different data distributions. There are several types of domain adaptation [4]:

Closed Set Domain Adaptation: The source and target domains have the same classes but different

3.2. Domain Adaptation 31

data distributions. The main challenge is aligning these distributions.

Open Set Domain Adaptation: The source and target domains share some classes, but the source
domain has additional classes not present in the target domain. The goal is to adapt to the shared
classes and ignore the source-only classes.

Partial Domain Adaptation: The target domain is a subset of the source domain, containing fewer
classes. The focus is on adapting to the relevant classes in the target domain.

Universal Domain Adaptation: This type covers scenarios where the overlap between the source
and target label sets is unknown. It aims to adapt across domains without prior knowledge of their
relationship.

3.2.4. Techniques Used in Domain Adaptation
Different techniques are used to address the challenges of domain adaptation, categorized into shallow
and deep methods [4]:

Instance-Based Adaptation: This technique re-weights instances from the source domain to align
with the target domain. Methods like Kernel Mean Matching (KMM) and Kullback-Leibler Importance
Estimation Procedure (KLIEP) are used to estimate and adjust the differences between the domains.

Feature-Based Adaptation: These methods find a common feature space where the distributions of
the source and target domains are aligned. Techniques like Principal Component Analysis (PCA) and
Transfer Component Analysis (TCA) are used to transform the original feature space.

Deep Domain Adaptation: Deep neural networks are used to learn domain-invariant features. Tech-
niques include discrepancy-basedmethods, such asMaximumMeanDiscrepancy (MMD), and adversarial-
basedmethods like Domain-Adversarial Neural Networks (DANN), which aim to make the features from
both domains indistinguishable.

3.2.5. Maximum Mean Discrepancy
We now focus on closet set unsupervised deep domain adaptation, which is the task we aim to research.
Formally, let DS = {(xS

i , y
S
i)}

nS
i=1 represent the labelled data from the source domain, where xS

i ∈ XS

and ySi ∈ YS . Similarly, let DT = {xT
j }

nT
j=1 represent the data from the target domain, where xT

j ∈ XT ,
but the labels yTj are unknown. The challenge of domain adaptation arises from the distributional shift
between the source and target domains, typically expressed as PS(x, y) ̸= PT (x, y).

In unsupervised domain adaptation, we do not have access to labelled data in the target domain (YT

is unknown). Our objective is to train a model that performs well on the target domain by leveraging
the labelled source data and aligning the distributions between the source and target domains.

One approach to unsupervised domain adaptation is to align the feature distributions of the source and
target domains within a shared feature space. Formally, let ϕ : X → H represent a feature mapping
from the input space X to a shared feature space H. The goal is to minimize the discrepancy between
the distributions PS(ϕ(x

S)) and PT (ϕ(x
T)) in this feature space, ensuring that the model learns features

that are invariant across domains.

One effective way to align features in machine learning is by using a Reproducing Kernel Hilbert Space
(RKHS). In simple terms, RKHS is a special mathematical space where we can work with functions and
compare them efficiently using something called a kernel function.

Imagine you have a function that predicts house prices based on features like size, location, and number
of bedrooms. In RKHS, we can represent and compare such functions without directly dealing with the
complexity of all these features.

The key idea in RKHS is the kernel function. A kernel function, k(x,x′), is a tool that lets us measure
how similar two inputs x and x′ are without explicitly mapping these inputs into a high-dimensional
feature space. Formally, if we have a function f in RKHS, we can express it as an inner product
f(x) = ⟨f, ϕ(x)⟩H, where ϕ(x) is a feature mapping from the input space X to the RKHSH. The kernel
function corresponds to the inner product in this space, so k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩H [6].

3.2. Domain Adaptation 32

Think of the kernel function as a quick way to compare two things (like two houses with different features)
without listing out every detail. For example, if x and x′ are two different houses, the kernel function
k(x,x′) tells us how similar they are by calculating this inner product.

This property of RKHS, called the reproducing property, allows us to evaluate functions and compare
inputs efficiently, making it a powerful tool in machine learning. It helps in aligning and comparing data
from different sources, which is particularly important in tasks like domain adaptation, where we need
to align features from different domains.

To measure the discrepancy between the source and target distributions in the RKHS, we use the
Maximum Mean Discrepancy (MMD) [6]. The MMD is a distance metric between distributions PS and
PT based on the difference between their mean embeddings in H. Formally, the MMD between two
distributions PS and PT is defined as:

MMD(DS ,DT) =

∥∥∥∥∥∥ 1

nS

nS∑
i=1

ϕ(xS
i)−

1

nT

nT∑
j=1

ϕ(xT
j)

∥∥∥∥∥∥
H

(3.12)

Expanding this formula, the squared MMD can be expressed as:

MMD2(DS ,DT) =
1

n2
S

nS∑
i=1

nS∑
i′=1

k(xS
i ,x

S
i′) +

1

n2
T

nT∑
j=1

nT∑
j′=1

k(xT
j ,x

T
j′)−

2

nSnT

nS∑
i=1

nT∑
j=1

k(xS
i ,x

T
j) (3.13)

Here, the first term captures the intra-domain discrepancy within the source domain, the second term
captures the intra-domain discrepancy within the target domain, and the third term captures the inter-
domain discrepancy between the source and target domains. The goal is to minimize the MMD, thereby
reducing the discrepancy between the source and target distributions.

In the context of machine learning, this alignment is achieved by minimizing the MMD as a loss function,
alongside the primary task loss. For instance, in deep learning models, the MMD loss is computed at
a specific layer in the network, typically in the latent space. The model’s parameters, including the
network weights, are adjusted through backpropagation to minimize the combined loss

Formally, let Ltask represent the task-specific loss (e.g., segmentation loss), and let LMMD represent the
MMD loss. The total loss is given by:

Ltotal = Ltask + λLMMD (3.14)

where λ is a hyperparameter that controls the trade-off between task performance and domain align-
ment. By optimizing Ltotal, the model learns features that are invariant across the source and target
domains, ensuring that it performs well on the target domain.

Different kernel functions can be used for the MMD calculation. A commonly used kernel, also em-
ployed by our research, is the Radial Basis Function (RBF) kernel, defined as:

k(x,x′) = exp

(
−∥x− x′∥2

2σ2

)
(3.15)

where σ is a bandwidth parameter that determines how quickly the kernel function decreases as the
distance between x and x′ increases. A small bandwidth σ causes the kernel to decay rapidly, meaning
only data points that are very close will be considered similar, while distant points will have a kernel value
close to zero. This makes the Maximum Mean Discrepancy (MMD) highly sensitive to local variations,
which could overemphasize minor differences between the source and target distributions. On the
other hand, a large σ leads to a slower decay, making the kernel less sensitive to small differences and
more focused on the overall structure of the distributions.

3.2. Domain Adaptation 33

The choice of bandwidth σ significantly impacts the MMD. A small σ might highlight fine-grained dis-
crepancies but could also introduce noise by reacting to minor variations. Conversely, a large σ may
smooth out these details, potentially overlooking important differences between the distributions. This
sensitivity to σ underscores the importance of selecting an appropriate bandwidth. Alternatively, a
Multi-Kernel Maximum Mean Discrepancy (MK-MMD) can be used [14], which combines multiple ker-
nels with different bandwidths. This approach balances sensitivity and robustness, providing a more
reliable measure of distributional alignment in domain adaptation tasks. Formally, MK-MMD is defined
as:

MK-MMD(DS ,DT) =

L∑
l=1

βlMMD(DS ,DT ; kl) (3.16)

where βl are weights assigned to each kernel kl, and L is the number of kernels used. The combination
of multiple kernels helps to capture discrepancies at different scales, improving the robustness of the
domain adaptation process.

3.3. Floor plan vectorization 34

3.3. Floor plan vectorization
3.3.1. Introduction
Floor plan vectorization is the process of converting raster images of floor plans into vector-based rep-
resentations. While raster images consist of a grid of pixels, vector representations use mathematical
descriptions to define elements like walls, doors, and rooms. This allows for easier scaling, modifica-
tion, and detailed analysis without losing quality or precision. This process is different from methods
like those used in [12], where floor plans are reconstructed from 3D point cloud scans—a related but
separate topic.

In this section, we will explore the key parts of floor plan vectorization. Wewill look at the data augmenta-
tion methods used to improve the robustness and generalization of models involved in the vectorization
process. The structure of the CubiCasa model, a deep learning framework created specifically for this
task, will be explained.

We will also discuss the floor plan representation, which organizes different elements of a floor plan into
separate channels. The method of multi-task learning with uncertainty modelling, which is used to learn
both segmentation and heatmap regression tasks, will be covered. Finally, we will explain the post-
processing technique that combines the segmentation masks and junctions to produce a vectorized
floor plan.

3.3.2. Data augmentations
In the data augmentation pipeline for our architectural floor plan analysis, several transformations were
implemented to increase the variability of the training dataset. The primary purpose of data augmenta-
tion is to expand the training set artificially by applying transformations that simulate variations likely to
occur in real-world data, thereby improving the model’s ability to generalize.

A key transformation applied is rotation. Rotation augmentation ensures that the model can accurately
interpret floor plans regardless of orientation. Specifically, images were rotated by angles of 0◦, 90◦,
180◦, and 270◦. This process preserves the spatial relationships within the image, ensuring that the
model learns to recognize architectural features from multiple orientations. The corresponding labels,
including segmentation masks and key points, were also rotated to maintain alignment with the image
data. The use of rotation for data augmentation is well-established in computer vision as it allows the
model to learn rotational invariance [20].

Another transformation used is cropping and padding. Random cropping was applied to simulate sce-
narios where only parts of the floor plan are visible, forcing themodel to interpret partial views of the data.
After cropping, images were padded to restore them to a consistent size, ensuring uniformity across
the dataset. The corresponding labels were adjusted to reflect their new positions within the cropped
and padded images, maintaining the correct spatial relationships. Cropping and padding are standard
techniques in image preprocessing that enhance the model’s robustness to different viewpoints and
scales [19].

Intensity transformations, including adjustments to brightness, contrast, and sharpness, were applied
to account for variations in image quality and lighting conditions. These transformations simulate dif-
ferent conditions under which floor plans might be captured, ensuring the model is not overly sensitive
to specific image quality or lighting scenarios. Instead, the model focuses on the structural and layout
features of the floor plans. The importance of intensity transformations in enhancing model general-
ization has been widely recognized in recent literature, as they contribute to the robustness of models
against varying conditions in input data [10].

3.3.3. Cubicasa Model Architecture
The network architecture employed for this study is derived from ResNet-152, which was initially in-
troduced by He et al. [7] and pre-trained on the ImageNet dataset [3]. The ResNet-152 framework
is well-established for its residual learning approach that facilitates the training of deep networks. For
this study, the architecture was further refined by first training on ImageNet [18] and then on the MPII
Human Pose Dataset [1] to adapt it to specific segmentation tasks.

A similar segmentation approach, leveraging an encoder-decoder architecture, was initially presented

3.3. Floor plan vectorization 35

by Ronneberger et al. [17], which laid the foundation for subsequent adaptations in segmentation
models. In adapting the ResNet-152 architecture, modifications were made to suit the problem require-
ments. Specifically, the initial convolutional layer was adjusted to accommodate a change in input
channels from 19 to 3. Additionally, the final two layers of the network were replaced to fit the required
number of output channels necessary for generating two segmentation maps and 21 heatmaps. Due
to these modifications, these layers were initialized randomly to ensure that the network parameters
were suitable for the specific segmentation tasks addressed in this study.

The encoder path consists of convolutional layers and residual blocks that progressively downsam-
ple the input image, capturing hierarchical features. The decoder path upsamples these features to
produce the final output for tasks such as segmentation or reconstruction.

The encoder begins with a convolutional layer that processes the input image, followed by batch nor-
malization and a ReLU activation function. This initial layer outputs feature maps with reduced spatial
dimensions. Subsequent layers include residual blocks, which apply convolutions, batch normalization,
and ReLU activations. Residual blocks help the network learn residual functions, facilitating deeper net-
work training and addressing the vanishing gradient problem.

The encoder uses max pooling operations to progressively downsample feature maps. Each resid-
ual block’s output is fed into a max pooling layer, reducing spatial dimensions by a factor of 2. This
downsampling captures high-level features and spatial hierarchies.

Residual blocks are crucial to the CubiCasa model. Introduced by He et al. (2016) in “Deep Residual
Learning for Image Recognition” [7], residual blocks use skip connections to simplify the training of
deep networks.

Let x represent the input to the residual block, and F(x) denote the function learned by the block’s
internal layers. The output of the residual block, y, is given by:

y = F(x) + x

This equation shows that the block learns the residual function F(x) and adds it to the original input x.
The goal is to learn the residual mapping rather than the complete transformation.

The residual block includes convolutional layers applied to the input x. These layers consist of 1x1
convolutions for adjusting channel dimensions and 3x3 convolutions for spatial features. Each convo-
lution is followed by batch normalization and ReLU activation functions. After these operations, the
transformed feature maps are combined with the input through a skip connection.

The skip connection directly adds x to the output of the convolutional layers. If the dimensions of x
differ from those of F(x), a 1x1 convolution adjusts the dimensions for compatibility. This adjustment
ensures that the input and output dimensions match for the addition operation.

During the forward pass, x is processed through batch normalization and ReLU activation, followed by
convolutional layers. The resulting feature maps are added to the original input x, implementing the
residual learning framework by He et al. [7].

The decoder path upscales the feature maps to the original image size using transposed convolutional
layers. Each upsampled feature map is combined with a corresponding feature map from the encoder
path through a skip connection. The ‘upsample add‘ function aligns the upsampled feature maps with
the lateral feature maps for precise reconstruction.

The final layers of the decoder include several convolutional layers that refine the output features. The
network concludes with an upsampling layer that scales the output to the desired resolution. The final
output is processed through a sigmoid activation function to generate segmentation maps.

3.3.4. Floor plan representation
The data in the floor plan is represented using different segmentation and junction regression masks.
The segmentation maps consist of a wall and room map, which provides the probability that a pixel
belongs to a wall or a specific room type, with the exact classes depending on the dataset used. The

3.3. Floor plan vectorization 36

second map is the icon map, which indicates the probability that a pixel represents a specific icon type
or is empty, with the specifics depending on the dataset.

The junctions are categorized by their geometry and function. Wall junctions are where wall segments
intersect and are classified by the number of wall segments meeting at a junction. These include
I-shaped, L-shaped, T-shaped, and X-shaped, with a total of 13 different types considering multiple
orientations. Opening junctions mark the endpoints of openings such as doors or windows. Icon junc-
tions are located at the corners of axis-aligned bounding boxes representing icons, such as furniture
or fixtures, with junctions at the top-left, top-right, bottom-left, and bottom-right corners.

3.3.5. Multi-task segmentation
Multi-task learning (MTL) is a machine learning paradigm where a single model is trained to perform
multiple tasks simultaneously. This approach, introduced and explored by Caruana et al. in 1997 [2],
relies on the principle that tasks often share commonalities that can be leveraged to improve learning
efficiency and model generalization. Instead of training separate models for each task, MTL allows
tasks to share representations, which can lead to better performance, especially in cases where data
is limited for some tasks.

Mathematically, given a set of tasks T = {T1, T2, . . . , Tk}, each with its own loss function LTi
, the overall

objective in MTL is often formulated as a weighted sum of the individual task losses:

LMTL =

k∑
i=1

αiLTi
(3.17)

Here, αi represents the weight assigned to the loss of task Ti. A key challenge in MTL is determining
the appropriate weights αi so that the model can learn all tasks effectively without overfitting to any
single one or neglecting others. If the weights are imbalanced, the model might prioritize certain tasks
over others, leading to sub-optimal performance across the task set.

While MTL offers advantages such as improved generalization and more efficient data usage, it also
faces challenges, particularly the risk of negative transfer. Negative transfer occurs when learning
one task negatively affects the performance of another, typically because the tasks are not sufficiently
related.

To address the problem of selecting appropriate task weights, [9] introduced a novel approach using
task-specific uncertainty to dynamically weigh the losses in MTL. This approach is based on the idea
that tasks with higher uncertainty should contribute less to the overall loss function, allowing the model
to focus more on tasks that it can learn with greater confidence. The uncertainty-weighted loss function
proposed by Kendall et al. is given by:

LMTL =

k∑
i=1

1

2σ2
i

LTi
+ log(σi) (3.18)

In this equation, σi represents the uncertainty associated with task Ti. The first term, 1
2σ2

i
LTi

, scales the
loss of each task by the inverse of its uncertainty σ2

i , ensuring that tasks with higher uncertainty, which
likely have noisier or less reliable data, have a smaller influence on the overall loss. The second term,
log(σi), serves as a regularizer to prevent the model from assigning excessively large uncertainties to
any task, which would effectively reduce the task’s importance to near zero.

Kendall et al. derived this weighting approach by treating the task-specific uncertainties as learned pa-
rameters that model the homoscedastic uncertainty. This is a type of uncertainty that remains constant
across different inputs but varies between tasks. They started with the assumption that the task-specific
losses follow a Gaussian distribution with variance σ2

i . This leads to the formulation:

LTi ∼ N (0, σ2
i) (3.19)

3.3. Floor plan vectorization 37

Given this assumption, the log-likelihood of the observed data can be maximized, which results in the
loss function described earlier. The regularization term log(σi) follows from the maximum likelihood
estimation process, ensuring that the learned uncertainties σi do not become unbounded.

This approach balances the contributions of different tasks during training, allowing the model to learn
multiple tasks simultaneously even when the tasks differ in complexity or data quality. By dynamically
adjusting the weights based on the uncertainty of each task, this method mitigates the risk of negative
transfer and provides more robust learning.

For CubiCasa [8], the loss functions for different tasks are defined as follows. For segmentation tasks,
cross-entropy loss is employed, while for heatmap predictions, mean squared error (MSE) loss is used.
These loss functions can be refined by incorporating uncertainty to enhance learning efficiency and
robustness.

The cross-entropy loss function quantifies the discrepancy between the predicted probability distribution
and the ground truth labels. For a segmentation task, let yk denote the ground truth label for category
k, and let pk represent the predicted probability for the same category. The cross-entropy loss is
expressed as:

LCE = −
∑
k

yk · log(pk) (3.20)

where pk = softmax(fWk
(x)) represents the predicted probability obtained through a softmax function

applied to the output fWk
(x) of the model for category k.

The mean squared error loss is used for tasks involving continuous predictions, such as heatmap
generation. Given the ground truth yi and the predicted output fWi

(x) for the i-th task, the MSE loss is
defined as:

LMSE =
1

2
∥yi − fWi(x)∥2 (3.21)

This loss measures the squared difference between the ground truth and the prediction, averaged
over all instances. When incorporating uncertainty into these loss functions, the cross-entropy loss for
segmentation tasks is modified as follows:

LS = −
∑

k∈{rooms, icons}

1

σk
yk · log(softmax(fWk

(x))) (3.22)

In this equation, σk represents the learned uncertainty parameter for each category k. The term 1
σk

scales the cross-entropy loss, emphasizing categories with lower uncertainty. The regularization term is
not included because the uncertainty parameter σk remains positive throughout training, which ensures
that the scaling factor remains positive and does not require further adjustment. For heatmap prediction
tasks, the mean squared error loss is refined to:

LH =
∑
i

[
1

2σ2
i

∥yi − fWi(x)∥2 + log(1 + σi)

]
(3.23)

Here, σi is the uncertainty parameter for the i-th task. The term 1
2σ2

i
∥yi−fWi(x)∥2 scales the MSE loss

by the inverse of the squared uncertainty, focusing more on tasks with lower uncertainty. The additional
regularization term log(1 + σi) prevents the uncertainty parameters from becoming excessively large,
which ensures that their influence remains controlled and prevents them from reducing task contribution
to (near) zero.

The total loss function for the CubiCasa model [8] integrates the losses from different tasks into a single
objective function. It combines the segmentation loss for room and icon classification with the loss for

3.3. Floor plan vectorization 38

heatmap predictions to guide the model towards accurate multi-task learning. The total loss Ltotal is
defined as:

Ltotal = Lrooms + Licons + Lheatmaps (3.24)

where Lrooms and Licons represent the segmentation losses for rooms and icons, respectively, and
Lheatmaps denotes the loss for heatmap predictions. Substituting the loss functions for segmentation
and heatmaps, the total loss can be expressed as:

Ltotal = −
∑

k∈{rooms, icons}

1

σk
yk · log(softmax(fWk

(x))) +
∑
i

[
1

2σ2
i

∥yi − fWi(x)∥2 + log(1 + σi)

]
(3.25)

Here, σk is the uncertainty parameter for each segmentation category k, and σi is the uncertainty
parameter for each heatmap i. This total loss function combines the contributions of the segmentation
and heatmap tasks, leveraging the uncertainty parameters to balance the model’s performance across
these different tasks.

3.3.6. Post-processing to vector-based representation
The vectorization process transforms the segmentation masks and junctions into a structured vector-
based representation described by Kalervo et al. [8]. The method is based on Liu et al. [13] and begins
by extracting key structural elements from the raster data, such as walls, rooms, icons, and openings,
and then representing these elements in a geometrically consistent manner.

The initial step in the vectorization process involves detecting wall junctions from the heatmaps gener-
ated by a multi-task Convolutional Neural Network (CNN). Junctions are points where walls meet, and
they define the structural layout of the floor plan. These junctions are identified by finding local maxima
in the wall heatmaps. The junctions are then connected based on their geometric orientation. If two
junctions are vertically or horizontally aligned within a small pixel tolerance and have joints facing each
other, they are connected to form a potential wall segment. This step results in a skeletal representation
of the floor plan, consisting of connected wall lines.

Once the wall lines are established, the process continues with refining these lines to formwall polygons,
which represent the actual walls in the floor plan. The wall polygons are created by first pruning the wall
skeleton based on the wall segmentation map. The width of each wall is inferred by sampling along the
wall lines and examining the intensity profile of the wall segmentation map, allowing for the accurate
tracing of wall boundaries. Each wall is then represented as a polygon, with its vertices defining the
wall’s boundary.

The next stage involves determining the locations and dimensions of rooms, which are inferred based
on the previously identified wall junctions. Specifically, the process searches for triplets of junctions
that span rectangular areas free of any internal junctions. These areas are then divided into a grid,
with each cell representing a portion of the floor plan’s interior. The cells are labelled based on a voting
mechanism that considers the room segmentation map, and neighbouring cells are merged into larger
room polygons if they share the same room label and are not separated by a wall. This results in a
precise representation of the rooms within the floor plan.

Similarly, icons (representing objects like furniture or appliances) are restored using a method analo-
gous to room extraction. Instead of using wall junction heatmaps, the process relies on icon corner
heatmaps to detect and connect the icon corners, forming icon polygons. This approach ensures that
icons are accurately placed within the vectorized floor plan.

The final step in the vectorization process involves the detection of openings, such as doors and win-
dows. Openings are identified by connecting pairs of vertically or horizontally aligned endpoints, based
on predictions from the opening heatmaps. The label of each opening is determined from the segmen-
tation maps, and the width of the opening is set to match that of the corresponding wall polygon. Any
opening endpoints that do not fall within the wall segmentation are discarded, ensuring that only valid
openings are retained.

3.3. Floor plan vectorization 39

The result of this multi-step process is a set of vector-based polygons that represent all the structural
elements of the floor plan, including walls, rooms, icons, and openings. Each element is encoded with
information about its location, dimensions, and category, enabling the creation of a digital model from
the original raster floor plan image.

References

[1] Mykhaylo Andriluka et al. “2d human pose estimation: New benchmark and state of the art analy-
sis”. In: Proceedings of the IEEE Conference on computer Vision and Pattern Recognition. 2014,
pp. 3686–3693.

[2] Rich Caruana. “Multitask learning”. In: Machine learning 28 (1997), pp. 41–75.
[3] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE conference

on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.
[4] Abolfazl Farahani et al. A Brief Review of Domain Adaptation. 2020. arXiv: 2010.03978 [cs.LG].

URL: https://arxiv.org/abs/2010.03978.
[5] Ian Goodfellow. Deep Learning. MIT Press, 2016.
[6] Arthur Gretton et al. “A kernel method for the two-sample-problem”. In: Proceedings of the 19th

International Conference on Neural Information Processing Systems. 2006, pp. 513–520.
[7] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016, pp. 770–778.
URL: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_
Learning_CVPR_2016_paper.html.

[8] Ahti Kalervo et al. “Cubicasa5k: A dataset and an improved multi-task model for floorplan image
analysis”. In: Image Analysis: 21st Scandinavian Conference, SCIA 2019, Norrköping, Sweden,
June 11–13, 2019, Proceedings 21. Springer. 2019, pp. 28–40.

[9] Alex Kendall, Yarin Gal, and Roberto Cipolla. “Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018, pp. 7482–7491.

[10] Nour Eldeen M Khalifa, Mohamed Loey, and Seyedali Mirjalili. “A comprehensive survey of recent
trends in deep learning for digital images augmentation”. In: Artificial Intelligence Review 55.3
(2022), pp. 2351–2377. DOI: 10.1007/s10462-021-10066-4.

[11] Aditya Khamparia and Karan Mehtab Singh. “A systematic review on deep learning architectures
and applications”. In: Expert Systems 36.3 (2019), e12400.

[12] Chen Liu, Jiaye Wu, and Yasutaka Furukawa. FloorNet: A Unified Framework for Floorplan Re-
construction from 3D Scans. 2018. arXiv: 1804.00090 [cs.CV]. URL: https://arxiv.org/abs/
1804.00090.

[13] Chen Liu et al. “Raster-to-vector: Revisiting floorplan transformation”. In: Proceedings of the IEEE
International Conference on Computer Vision. 2017, pp. 2195–2203.

[14] Mingsheng Long et al. “Learning transferable features with deep adaptation networks”. In: Proc.
ICML. 2015, pp. 97–105.

[15] Reza Moradi, Reza Berangi, and Behrouz Minaei. “A survey of regularization strategies for deep
models”. In: Artificial Intelligence Review 53.6 (2020), pp. 3947–3986.

[16] Marius-Constantin Popescu et al. “Multilayer perceptron and neural networks”. In:WSEAS Trans-
actions on Circuits and Systems 8.7 (2009), pp. 579–588.

[17] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.U-Net: Convolutional Networks for Biomed-
ical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV]. URL: https://arxiv.org/abs/
1505.04597.

[18] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”. In: International
journal of computer vision 115 (2015), pp. 211–252.

[19] Connor Shorten and Taghi M Khoshgoftaar. “A survey on image data augmentation for deep
learning”. In: Journal of big data 6.1 (2019), pp. 1–48.

40

https://arxiv.org/abs/2010.03978
https://arxiv.org/abs/2010.03978
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://doi.org/10.1007/s10462-021-10066-4
https://arxiv.org/abs/1804.00090
https://arxiv.org/abs/1804.00090
https://arxiv.org/abs/1804.00090
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597

References 41

[20] Patrice Y. Simard et al. “Transformation Invariance in Pattern Recognition — Tangent Distance
and Tangent Propagation”. In: Neural Networks: Tricks of the Trade. Ed. by Genevieve B. Orr and
Klaus-Robert Müller. Vol. 1524. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
1998, pp. 239–274. DOI: 10.1007/3-540-49430-8_13. URL: https://doi-org.tudelft.idm.
oclc.org/10.1007/3-540-49430-8_13.

https://doi.org/10.1007/3-540-49430-8_13
https://doi-org.tudelft.idm.oclc.org/10.1007/3-540-49430-8_13
https://doi-org.tudelft.idm.oclc.org/10.1007/3-540-49430-8_13

	Preface
	Introduction
	Scientific Article
	Background
	Machine Learning
	Introduction
	Deep Learning
	Convolutional Neural Networks

	Domain Adaptation
	Introduction
	Domain adaptation settings
	Types of Domain Adaptation
	Techniques Used in Domain Adaptation
	Maximum Mean Discrepancy

	Floor plan vectorization
	Introduction
	Data augmentations
	Cubicasa Model Architecture
	Floor plan representation
	Multi-task segmentation
	Post-processing to vector-based representation

	References

