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Chapter 1

Introduction

1.1. Looking inside biological objects
A detailed understanding of biological systems cannot only be obtained by vi-
sual inspection from the outside. In many cases a detailed image also has to be
made from the inside. To look inside of biological objects, such as small animals,
organs, or cells, various tomographic imaging techniques have been developed
that are based on waves, either electromagnetic or acoustic, that interact with the
tissue. The word tomography comes from the Greek words tomos which means
slice or section and graphõ to write or to draw and hence, tomography refers to
the process of imaging slices of the object.

Common tomographic imaging techniques are magnetic resonance imaging
(MRI), ultrasound (US), (micro) computed X-ray tomography (CT) and optical
coherence tomography (OCT). MRI is an imaging technique that uses radio fre-
quency waves to image protons in tissue based on their nuclear spin. Tomo-
graphic images are made by applying a spatially dependent gradient to the main
magnetic field and applying a radio frequency pulse to excite a single slice. MRI
images tissue with various types of contrast depending on the surrounding of the
protons. Pre-clinical MRI, also called magnetic resonance microscopy (MRM),
focuses on imaging of mice and other small animals [1]. However, to achieve
sufficient resolution and signal-to-noise ratio in MRM, specimen fixation is re-
quired. MRM can achieve spatial resolution in the order of 100 µm. Another
imaging modality is US, which uses ultrasonic waves and is based on the mea-
surement of the acoustic echo time to obtain depth information. In US a slice of
the sample is imaged by creating a sequence of pulses in a plane. In pre-clinical
research US can provide anatomical information, such as tumor volume in can-
cer research, with a spatial resolution of 100 µm [2]. As an example, an US image
of a mouse embryo is shown in Fig. 1.1 (a). In X-ray computed tomography the
structure of the object is determined by measuring projections of the transmit-
ted X-ray intensity through the object. X-ray CT is relatively fast and a commonly
used method, because of its large contrast between bone (hard material) and tis-
sue (soft material). In pre-clinical research X-ray CT is called micro CT and spe-
cially aimed at small animal imaging at a resolution of about 5 µm. Micro CT

1



2 1. Introduction

bone anatomy and density or angiography by using contrast agents for studying
vascular structures [6]. As an example, a micro CT image of a mouse embryo is
shown in Fig. 1.1 (b). OPT is the optical equivalent of CT as it uses light transmis-
sion to image the object. Figure 1.1 (c) shows an optical projection tomography
(OPT) image of a zebrafish. The typical resolution of OPT is 5 to 10 µm. More
information about OPT is given in Section 1.3.

(a) (b) (c)

Figure 1.1: Tomographic images of (a) a mouse embryo with ultrasound [3], (b) a mouse embryo
with micro CT [4] and (c) a zebrafish measured with (transmission) optical projection tomography
[5].

Due to the absence of ionizing radiation, high tissue contrast, high resolution
and its cost efficiency, optical tomographic imaging techniques are becoming
more popular. In optical tomography, photons are launched onto and through
tissue where they interact with the tissue components. From the transmitted
or emitted photons an image of the object is constructed. A highly success-
ful optical tomographic technique is OCT, which is an interferometric imaging
technique that measures the optical reflection of tissue with an imaging depth
of 1− 3 mm. Time gating and the use of a focusing lens are used to filter out
non-scattered light. This technique is most commonly used for retinal imag-
ing [7, 8], but has many other biomedical applications, such as in cardiovascular
imaging [9]. Another optical imaging technique is optical projection tomography
(OPT). OPT is a high resolution imaging technique in which the sample is opti-
cally cleared to reduce the scattering strength of the tissue. It has a resolution of 5
to 10 µm and an imaging depth of 2−3 mm. OPT is mainly used in developmen-
tal biology [10]. Diffuse optical tomography (DOT) [11] is an imaging technique
based on scattered light for the image construction with a resulting loss of spa-
tial resolution. A common application is to monitor regional variations of the
hemoglobin, but it can also be applied to deep-tissue applications such as breast
cancer detection [12, 13].
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1.2. Computed tomography
Techniques where the image of a slice is reconstructed from a set of projections
of an object created from transmitted or emitted radiation are known as com-
puted tomography. A schematic illustration of the principle of computed to-
mography for a parallel beam transmission geometry is shown in Fig. 1.2 (a).
Transmission measurements are performed at multiple lateral locations that to-
gether comprise a projection of the transmission through the object at a single
angle. These projections are acquired at multiple angles around the object. The
value measured at every point in the projection is described mathematically by
an integral over the object.

After the projections have been acquired, a reconstruction algorithm is ap-

Projection

Light source

Ballistic light ray

(a)

Object
f(x,z)

z

x

Detector

(b)

(c)

La
te

ra
l c

oo
rd

in
at

e

Angle

Figure 1.2: Schematic Illustration of the basic principle of computed tomography. (a) Parallel
beam geometry for three different angles and the resulting projections at the detector. The un-
known object is f (x, z). (b) Visualization of the projections in a sinogram. (c) Reconstruction of
the object from the projections using filtered back projection.

plied to compute a solution to the inverse problem, i.e., finding the object that
is the best match with the measurements given the measurement geometry. De-
pending on the type of interaction of the radiation with the object different pa-
rameters, for example the intensity or phase of the transmitted or emitted radia-
tion, can be reconstructed. In the most simple case of a straight ray beam going
in parallel geometry through an object the forward projection (from the object
to the measurement) is mathematically defined as the Radon transform of the
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object [14] given by

p(s,θ) =
∞∫

−∞

∫
f (x, z)δ(x cosθ+ z sinθ− s)dx dz , (1.1)

where f denotes the object, s the lateral shift, and θ the rotation angle. The result
of the forward projection p(s,θ) is commonly visualized in a sinogram, which is
an image with the lateral detector coordinate on the vertical axis, the projection
angle on the horizontal axis, and with the intensity of the sinogram as a measure
of the value of the line integral, see Fig. 1.2 (b). In the ideal case of infinitely
many parallel narrow rays acquired over infinitely many angles the object can
be perfectly reconstructed with filtered back projection, an example of which is
shown in Fig. 1.2 (c). The filtered back projection reconstruction is defined as

f (x, z) =
π∫

0

∞∫
−∞

Pθ( fs)exp(i 2π fs s)| fs |d fs dθ , (1.2)

where Pθ( fs) is the 1D Fourier transform p(s,θ).
Computed tomography has only become possible since the advent of digital

imaging and computer processing. Nowadays, projections are acquired using a
pixelated digital camera at a discrete number of angles. Since the continuous
signal is sampled and the system is discrete, the filtered back projection recon-
struction of Eq. 1.2 can be approximated by a discrete sum where each ray in the
projection has an influence on pixels in the image traversed by the ray. The en-
tire inverse problem can be described as smearing back the information of every
individual projection back onto the image of the object. A schematic illustra-
tion of the discrete description of the forward problem for this case is shown in
Fig. 1.3 (left). The blue arrows indicate rays that cross different object pixels,
labeled f1 to f4. The length of the crossing defines the amount in which every

f1 f2

f3 f4

f + f              = 7
          f + f   = 10
f +     f       

1 2

3 4

1 3    = 9
     f +     f    = 8
f +          f    = 3
     f + f

2 4

1 4

2 3        = 14

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

2
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Figure 1.3: Schematic illustration of the forward projection in matrix vector notation.
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pixel has influence on the projection p, Fig. 1.3. The relation between the object
f and the projection p can be written in the form of a set of linear equations as
shown in Fig. 1.3 (center), which can be written as a matrix equation, see Fig. 1.3
(right). The influence of the object f on all detector pixels p is determined by
the geometry of the system and described by the matrix, A. This set of equations
written as a vector-matrix-multiplication describes the discrete forward projec-
tion as Af = p. The backward projection is then given by direct matrix inversion
as f = A−1p, where A−1 is the inverse of the geometry matrix if A has the same
number of rows and columns. If the number or rows is larger than the number
of columns, the Moore-Penrose inverse, (AT A)−1AT is used to approximate the
inverse.

In general, an inverse problem can be formulated as was done by Hadamard
as [15]: Find for the projections p the image f, such that Af = p. The given math-
ematical problem is well-posed if and only if:

1. The system of equations Af = p has a solution for every p. This ensures the
existence of the solution.

2. The solution is unique, i.e, there is only one solution for every set of mea-
surements.

3. The inverse system geometry A−1 is continuous, which means the solution
f is continuously dependent on the data p.

If one of the criteria above is not valid for the inverse problem, it is called ill-
posed.

Besides a discrete form of filtered backprojection, various iterative image re-
construction techniques are available for tomographic image reconstruction. A
method to solve a large system of linear equations is known as the algebraic re-
construction technique (ART) also known as Kacmarz method). In ART the im-
age f is optimized iteratively with the relation

fn = fn−1 − ai fn−1 −pi

ai (ai )T
(ai )T , (1.3)

where fn denotes the nth iteration of the image f, and ai is the i th row of the
matrix A. Figure 1.4 shows an example of ART for two dimensions for the case
a unique solution is present and for the case no unique solution is present. The
initial image, the zero image, is projected perpendicular onto the first line that
represents the first ray with projection p1. When the two lines are perpendicular
to each other, it is in principle possible to reach the intersection point in two it-
erations.
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Initial
guess

Circular 
convergence

Convergence Initial
guess

Figure 1.4: Schematic illustration of algebraic reconstruction convergence in case a unique solu-
tion is present (left) and circular convergence for the case a unique solution is absent (right)[16].

The uniqueness of the solution f is characterized by the rank of the matrix
A, which is equal to the number of linearly independent columns. When the
lines are close to parallel, i.e., the columns are close to linearly dependent; con-
vergence is slow and may lead to finding a non-unique solution. If there is no
unique solution, cyclic convergence may occur in which the found solution cir-
cles around the most optimal solution, see Fig. 1.4 (right).

In general, iterative methods have the advantage that they can include prior
information about the possible solution and include physical mechanisms of the
imaging process, such as the beam shape. In contrast to analytical reconstruc-
tion, iterative methods are computationally more expensive and require a longer
computation time. Other tomographic reconstruction techniques based on alge-
braic reconstruction are simultaneous iterative reconstruction technique (SIRT)
or simultaneous algebraic reconstruction technique (SART).

An alternative iterative reconstruction method is least squares (LSQR) opti-
mization in which the image of the object is determined by finding the optimum
of

fLS = min
f

1

2
||Af−p||22 (1.4)

using, for example, conjugate gradient optimization methods.

1.3. Optical tomographic imaging
Optical tomographic imaging has the advantage of being based on non-ionizing
radiation, having high tissue contrast, high spatial resolution, and being cost ef-
ficient. In this thesis we focus on two imaging techniques: optical projection
tomography (OPT) and transmission optical coherence tomography (OCT).

In OPT, light intensity projections of samples are measured in transmission
or emission (fluorescence) mode. From these projections, images of the ob-
ject are reconstructed using tomographic reconstruction algorithms (see Section
1.2). A schematic illustration of an emission OPT system is given in Fig. 1.5,
where the sample is illuminated by a light source to excite the fluorophores in
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the object and the emitted light is detected orthogonal to the incoming light with
a camera. OPT imaging of cells and small organisms can be performed in-vivo.

Detector
Excitation 
lightLens

Rotating 
object

(a) (b)

θ

Figure 1.5: (a) Schematic overview of the optical projection tomography fluorescence imaging ge-
ometry. (b) Emission OPT reconstruction of a zebrafish using filtered back projection.

However, imaging of larger tissues requires optical clearing to suppress light scat-
tering and is only possible ex-vivo.

Another non-invasive optical imaging technique is OCT [7], which can be de-
scribed as the optical equivalent of ultrasound imaging where a high frequency
sound pulse is send into the sample and the delay of this pulse is measured. In
OCT, however, the delay of the reflected backscattered light is detected using the
interference of low-coherence light in a Michelson interferometer, see Fig. 1.6 (a).
OCT is able to perform high resolution (2−10 µm) and cross-sectional imaging [7]
up to an imaging depth of approximately 1−2 mm.

OCT is not only used in reflection, but also imaging in transmission mode
is possible. This was introduced by Hee et al. [18], where time gating was used
to image objects buried in scattering media. They obtained en-face transmis-
sion OCT images, where only contrast (and not depth) information is given. Due
to the time-gated rejection of multiple scattered light the contrast in the im-
age is significantly enhanced. Parallel to Hee, Inaba et al. [19] imaged chicken
tissue using optical computed tomography to obtain a cross-sectional image.
Other transmission optical tomographic imaging techniques have been devel-
oped. Optical coherence computed tomography (OCCT) by Li and Wang [20]
was used to measure the arrival times of diffuse photons using low-coherence in-
terferometry. Projection index computed tomography by Zysk et al. [21], where
OCT in transmission, but with a retro-reflector, is used to measure a projection of
the refractive index of the object. Subsequently, the refractive index of the object
is reconstructed from projections measured at various angles with filtered back
projection.
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Light

Reference arm

Sample arm

(a)

Light

(b)

Reference arm

Sample arm
Spectrometer

Spectrometer

Figure 1.6: (a) Reflection-based spectral-domain OCT setup. (b) OCT cross-sectional image of the
human skin [17]. (c) Transmission-based spectral-domain OCT setup. (d) Time-gated transmis-
sion image from bars embedded in a solution of silica particles [18].

1.4. Challenges in optical tomography
High resolution deep tissue optical imaging is challenging due to the effects of
light absorption, scattering, and diffraction on the imaging process. Here these
issues are discussed in more detail.

1.4.1. High contrast deep tissue imaging

Since tissue consists mainly of water, water absorption is of critical importance
for imaging inside tissue. To obtain a large penetration depth a low absorption
coefficient, denoted as µa , is favorable. Figure1.7 shows the absorption coeffi-
cient of water as a function of wavelength. The spectrum shows low water ab-
sorption in the X-ray and radio frequency part of the spectrum and a low absorp-
tion window for optical wavelengths. Imaging in this optical window allows an
imaging depth of up to a few centimeters [24]. However, in addition to absorp-
tion optical radiation also scatters in tissue and the combined effect is described
as as µt = µa +µs , with µs the scattering coefficient. The scattering coefficient
of blood in the optical window is shown in Fig. 1.7. The scattering coefficient,
denoted as µs , is much larger than the absorption coefficient. Hence, for optical
wavelengths light scattering is more important for the imaging depth than light
absorption. When scattering occurs, the light deviates from its straight ray path.
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Figure 1.7: Absorption coefficient of water [22]and scattering coefficient of blood [23] as a function
of wavelength.

If many of these scattering events take place, as is the case for tissue, it causes a
strong reduction of signal and contrast in the image. Figure 1.8 demonstrates the
effect of scattering on image formation. On the left an X-ray image is shown. For
X-rays, scattering does not play a large role in the image formation resulting in
a high absorption contrast between bone and tissue. On the right, a visible light
transmission image of a human hand is shown. Even though light absorption at
these wavelengths is quite low, light scattering results in a glow of transmitted
light through all tissue. As a result, the contrast in the image is absent and no
structures inside the fingers can be observed. Various methods have been devel-
oped to enable deep tissue imaging with light.

Optical clearing or multi-photon imaging are techniques that aim to reduce
the amount of scattering. In optical clearing, the penetration of an optical clear-
ing agent with a high refractive index into the tissue leads to refractive index
matching between tissue components and thus to a reduction of light scatter-
ing [28]. In multi-photon imaging the combined absorption of multiple longer
wavelength photons results in imaging with reduced scattering in tissue as the
scattering strength decreases with longer wavelengths. Other techniques have
focused on rejecting (multiple) scattered light from the detected signal. In con-
focal gating, a detection pinhole restricts the light reaching the detector to a con-
fined spot [29]. The combination of confocal and time gating is used in time-
domain OCT, in which the light reaching the detector has to be coherent with
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Figure 1.8: Left: X-ray image of the hand of Albert von Kölliker made by Wilhelm Röntgen [26].
Right: optical transmission image of the human hand. [27]as a function of wavelength.

light from the reference arm and have a travel time corresponding to the confo-
cal gate position.

1.4.2. High resolution tomographic imaging
Diffraction is the change of direction of waves as they pass through an object or
opening. In optical imaging systems, light is focused by a lens. However, due to
diffraction the light does not converge into a single point but into a bigger sized
spot. As a result light that is focused from an object onto a detector cannot be
assumed to travel down a straight ray through the object. Hence, the, straight ray
approximation, such as used in CT, cannot be assumed to be a valid description
in optical projection tomography. Instead of sampling the object along a line,
the volume of the object is sampled by the spatially varying light beam. Con-
sequently, reconstruction with FBP, which is based on straight ray propagation,
leads to blurred tomographic images with low spatial resolution.

1.4.3. Zebrafish imaging
A common model system for developmental research and pre-clinical research
is the zebrafish (Danio rerio), which is a tropical freshwater fish. The zebrafish
belongs to the family of carp fish (Cyprinidae) and the first naming of the species
was in 1822. The zebrafish is an important model system for scientific research
since the early 60s [31]. It has been shown that 70 per cent of human genes and 84
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Figure 1.9: (a) Adult zebrafish (wild type) [30]; OPT image of an adult zebrafish [5]. (b) Transverse
view, (c) coronal view, (d) sagittal view.

per cent of genes associated with human diseases are also found in the zebrafish
[31, 32]. Various zebrafish model systems have been developed for diseases such
as cancer, Duchenne muscular dystrophy, and diabetes [31, 33]. The adult ze-
brafish is available with a striped skin (wild type) and without stripes (nacre). An
adult fish is about 2.5 cm to 4 cm long and about 5 mm thick. In zebrafish re-
search, optical imaging is frequently used due to the transparent nature of the
larvae. High resolution in-vivo imaging of adult zebrafish has been challenging
due to light scattering and light diffraction. Figure 1.9(b-d) shows transmission
OPT images of a cleared adult zebrafish in three orthogonal anatomical planes.
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1.5. Thesis objectives
In the previous section we discussed the challenges in optical tomography, which
lead to the following thesis objectives:

• to develop transmission OCT signal algorithms for quantitative tomographic
imaging in turbid media and to quantify parameters in 3D tomographic
images.

• to develop methods to mitigate the effects of diffraction in optical tomo-
graphic images.

1.6. Outline of this thesis
This thesis focuses on the modeling of the optical signal for transmission OCT
and the development of reconstruction algorithms for optical tomography.

In Chapter 2, we present transmission optical coherence tomography (transmis-
sion OCT) as a versatile tool to measure optical material properties of turbid me-
dia. First, we model the transmission OCT signal and we demonstrate how the
group refractive index (ng ), group velocity dispersion (GVD) and optical attenu-
ation can be determined from this signal. The measured refractive index proper-
ties of glasses, liquids, and glucose water solutions are quantified in terms of ng

and GVD and compared to literature. In addition, measurements of scattering
coefficients are determined using transmission OCT measurements of suspen-
sions of silica particles.

In Chapter 3, we show a tomographic application of the in Chapter 2 presented
transmission OCT technique. Optical coherence projection tomography is a novel
interferometric imaging modality for non-diffuse 3D optical imaging of an adult
zebrafish whereby quantitative images of refractive index and optical attenu-
ation of millimeter-sized samples by time gating of scattered light are recon-
structed. In this chapter we show how the images generated with this technique
are analyzed by segmenting zebrafish organs and determining their median op-
tical properties and volumes.

In Chapter 4, a point spread function (PSF) based optical tomographic image re-
construction technique is presented. As a result of the shallow depth of focus
of the optical imaging system, standard filtered back projection causes space-
variant tangential blurring that increases with the distance to the rotation axis.
Our approach incorporates the optical imaging geometry in an iterative PSF-
based reconstruction. The technique is demonstrated using numerical simula-
tions, tested on experimental optical projection tomography data of single flu-
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orescent beads, and applied to high-resolution emission optical projection to-
mography imaging of an entire zebrafish larva.

In Chapter 5, we present a comparison of image reconstruction techniques for
optical projection tomography. We compare conventional filtered back projec-
tion, sinogram filtering using the frequency-distance relationship (FDR), image
deconvolution, and 2D point spread function (PSF) based iterative reconstruc-
tion. The latter three methods aim to remove the spatial blurring in the recon-
structed image originating from the limited depth of field caused by the PSF of
the optical imaging system. The methods are compared based on simulated
data, experimental optical projection tomography data of single fluorescent
beads, and high-resolution optical projection tomography imaging of an entire
zebrafish larva.

In Chapter 6, we extend the 2D PSF-based reconstruction algorithm, presented
in Chapter 5, to three dimensions. With simulations we compare the filtered back
projection, and the 2D/3D PSF-based reconstructions with each other. As a proof
of principle the proposed algorithm is applied to high-resolution emission opti-
cal projection tomography imaging of a zebrafish larva. We show that the 3D
PSF-based reconstruction, with the 2D PSF-based reconstruction as an input re-
sults in an improved signal-to-background ratio and a better image quality.

Chapter 7 presents the conclusion and outlook of this thesis.
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Chapter 2

Transmission optical coherence
tomography based measurement of

optical material properties

We present transmission optical coherence tomography (transmission OCT) as a
versatile tool to measure optical material properties of turbid media. The trans-
mission OCT signal is described in detail and it is demonstrated how the group
refractive index (ng ), group velocity dispersion (GVD) and optical attenuation
can be determined from this signal. We experimentally validate the refractive
index properties of glasses, liquids and glucose water solutions in terms of ng

and GVD. Measurements of scattering coefficients are determined using trans-
mission OCT for suspensions of silica particles. Quantitative agreement is ob-
tained with a dependent scattering model, both for the average as well as the
wavenumber resolved optical attenuation coefficient. Good agreement is ob-
served between our measurements and literature values.

2.1. Introduction
Optical material properties are important in the field of optics where they are
paramount to the production of high quality optical components. Also in other
fields such as pharmaceuticals, medical imaging, photo-dynamic therapy and
food production are optical material properties important for quality control and
diagnostics. However, in contrast to optical materials such as glasses, the optical
materials in these fields are turbid, i.e., they have both optical absorption and
scattering. Consequently, the characterization of their optical properties such as
refractive index (dispersion) and optical attenuation is a lot more challenging.

Collimated transmission measurements, for example, can be used to mea-
sure the total attenuation coefficient of turbid media [1]. However, the difficulty
with this method is to avoid measuring scattered light on the detector, which is

This chapter has been published as :
A. K. Trull,1 J. van der Horst,1 J. G. Bijster, and J. Kalkman, (1These authors contributed equally
to this work), Transmission optical coherence tomography based measurement of optical material
properties, vol. 23, no. 26, pp. 33550-33563, Optics Express (2015)
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done using pinholes and long path lengths, but nevertheless restricts the mea-
surements to relatively thin samples. Diffuse reflectance spectroscopy has been
used to measure the wavelength dependent absorption coefficient and the re-
duced scattering coefficient to identify the age of bloodstains, where the change
of hemoglobin fractions can be observed over time [2]. Yet, diffuse reflectance
spectroscopy requires the use of transport theory to calculate the optical proper-
ties. Consequently, this technique is limited to samples that are homogeneous or
have a known structure. A combination of transmittance and diffuse reflectance
measurements can also be used to determine the absorption coefficient, the scat-
tering coefficient and the scattering anisotropy of turbid media [3], but also suf-
fers from the above mentioned effects.

Some techniques are capable of measuring the spatial variation in optical
properties, producing an image of the sample. Optical coherence tomography
(OCT) has been used to measure light attenuation of tissue and is able to differ-
entiate between normal and tumorous tissue [4]. Low-coherence spectroscopy
has been used to image the wavelength dependent absorption and scattering co-
efficient in vivo in the human skin [5]. Imaging of the refractive index in tur-
bid media has been shown using bifocal OCT [6]. By measuring the optical path
length between two focal spots in a sample the refractive index can be obtained.
It is also possible to measure the refractive index of turbid media using confocal
microscopy [7]. In this case, a layer of immersion fluid of the same thickness as
the sample is used in combination with a calibrated z-stage movement. Optical
properties of tissue can provide functional information regarding its biological
state. The use of optical techniques for biopsies has been shown for example
by Wang et al. [8], who demonstrated quantitative phase imaging of breast and
prostate biopsies to identify tumor calcifications.

All the techniques described above only provide measurement of either the
refractive index or the attenuation coefficients. Part of these techniques rely only
on diffuse light while others suffer from it, causing restrictions on the sample size
and the type of sample.

Here, we present Fourier-domain transmission optical coherence tomogra-
phy (transmission OCT) that is used to determine both the refractive index and
optical attenuation coefficients. Transmission OCT was first used by Hee et al. [9]
for imaging of objects embedded in turbid media. Recently, transmission OCT
has been used to measure the scattering coefficient µs in turbid media [10]. We
show that transmission OCT can provide an estimation of the group refractive
index, ng , the group velocity dispersion, GVD, as well as the (spectrally resolved)
total attenuation coefficient of the material. The advantage of using transmis-
sion OCT is the combination of confocal gating and path-length selectivity (co-
herence gating). This allows for a strong rejection of scattered light, as well as the
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possibility to further filter out multiple scattered light.
First, a theoretical framework is provided that describes the transmission

OCT in the presence of attenuation and dispersion. Second, the experimen-
tal setup is described together with an algorithm to analyze the experimental
data. Finally, experimental data is presented that demonstrates the proposed
techniques.

2.2. Theory
2.2.1. The transmission Fourier domain OCT signal
Transmission OCT is based on the interaction of light in the sample arm of a
Mach-Zehnder interferometer with light propagating in the reference arm. A
schematic diagram of the Mach-Zehnder interferometer with spectral-domain
detection as used for transmission OCT is given in Fig. 2.1. The experimental
realization of the setup is described in more detail in Section 2.3.1.

S(k)

I(k)

Reference Arm

Sample Arm

n(k,z)
μt(k,z)

L0
z

n=1
μt=0

Light Source

Detector

Beam Splitter

Sample

Figure 2.1: Schematic diagram of the Fourier-domain transmission OCT system. I (k): detected in-
tensity at the spectrometer, L: length of the sample, n(k, z): refractive index of the sample, µt (k, z):
total attenuation, S(k): source intensity

Light from the light source is launched into the interferometer. The source
intensity spectrum is given by S(k) = Es(k)∗Es(k), with ∗ denoting complex con-
jugation, k is wavenumber in vacuum k = 2π/λ and Es(k) are plane electromag-
netic waves. In the following, we assume one-dimensional rectilinear propaga-
tion of scalar plane waves light field through the interferometer. Polarization
and multiple scattering are neglected in our model. Due to averaging over many
optical cycles, the time dependence of the signals is disregarded and all param-
eters are real numbers unless stated otherwise. We neglect any path lengths and
phase factor that are equal for both interferometer arms. The incoming beam is
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first split and later combined by an ideal beam splitter with an (intensity) reflec-
tion coefficient of α and transmission coefficient 1−α.

For the light wave propagating in the reference arm we assume it to be filled
with air, i.e. the refractive index is unity, n(k, z) = 1 and there is no attenuation,
µ(k, z) = 0. Assuming ideal mirrors in the interferometer with unity reflectivity,
the reference arm field Er e f (k) at the detector is given by

Er e f (k) = [α(1−α)]
1
2 Es(k)exp(i kL), (2.1)

where i = (−1)1/2, and where L is the physical length equal to the physical length
in the sample arm in which interaction takes place. After interaction with a sam-
ple of length L in the sample arm the field from the sample arm falling on the
detector is

Esam(k) = [α(1−α)]
1
2 Es(k)exp

−1

2

L∫
0

µt (k, z)d z

exp

i k

L∫
0

n(k, z)d z

 , (2.2)

where µt (k, z) is the total attenuation coefficient and L is the distance along the
optical path in the sample arm where interaction takes place. In the following
we consider only homogeneous media, i.e. µ(k, z) = µ(k) and n(z,k) = n(k), and
the integrals are replaced by multiplications with L. The total intensity at the
detector I (k) = (Er e f (k)+Esam(k))(Er e f (k)+Esam(k))∗ consists of the reference
arm intensity, the sample arm intensity and the cross terms which contain the
interference signal. Combining Eq. 2.1 and Eq. 2.2, and retaining only the inter-
ference term of the intensity on the detector we obtain

Ii nt (k) = 2α(1−α)E 2
s (k)exp

(
−1

2
Lµt (k)

)
cos[kL(n(k)−1)]. (2.3)

The measured interference signal is proportional to an exponential factor de-
scribing the optical attenuation and is proportional to a cosine with a phase that
is modulated by the spectral variation of the refractive index (dispersion).

2.2.2. Material dispersion
The term n(k)− 1 in Eq. 2.3 represents the dispersive properties of the sample.
Commonly, the dependence of the refractive index of a material with wavelength
is expressed by the Sellmeier equation [11]. Here, we make a polynomial expan-
sion of n around kc , the center wavenumber of the source spectrum S(k):

n(k) =
J∑

j=0
n j

(
k −kc

kc

) j

, (2.4)
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with a total number of coefficients J ∈ N. Based on the literature values for the
parameters of the Sellmeier equation or experimental data presenting n(λ), the
coefficients n j of the polynomial expansion can be determined using a fit. An-
other common way to describe the dispersive properties of a material is in terms
of the group refractive index and the GVD. At the center wavenumber, these are
given by ng (kc ) = n(k)+ k (dn/dk)|k=kc and GV D(kc ) = 1/c2(dng /dk)|k=kc , re-
spectively. Here c is the speed of light.

The dependence of n(k) on k, from Eq. 2.4, causes the oscillations of the co-
sine in Eq. 2.3 to be non-linear. For the attenuation analysis (Section 2.2.3) and
for the dispersion estimation, the phase of the signal of Eq. 2.3 has to be ex-
tracted. Therefore the analytical signal of the interference signal is calculated
[12, 13], which is given by

Ĩi nt (k) = Ii nt (k)+ iH {Ii nt (k)}, (2.5)

where H {·} denotes the Hilbert transform operator. The phase of Ĩi nt (k) can
then be determined by

ϕ(k) = tan−1
(
H {Ii nt (k)}

Ii nt (k)

)
, (2.6)

which is equal to the argument of the cosine expression in Eq. 2.3 performing
a Taylor expansion of ϕ(k) around kc and combining this with the polynomial
expansion of n(k) around kc in Eq. 2.4 for J = 2, we obtain

ϕ(k)

kc L
= (n0 −1)+ (n0 −1+n1)

(
k −kc

kc

)
+ (n1 +n2)

(
k −kc

kc

)2

. (2.7)

The coefficients of Eq. 2.7 can be determined by fitting ϕ(k) with a polynomial.
From the fit parameters coefficients, n0 and n1, are determined and the group
refractive index follows as ng (kc ) = n0 + n1 and the group velocity dispersion
GV D(kc ) = 2(n1 +n2)/(kc c2).

In the z-domain, the dispersion leads to a broadening of the transmission
peaks. Using the complex notation of the analytical signal it is easy to see that
the phase can be linearized by multiplying the Hilbert transformed interference
signal with exp[i∆ϕ(k)], where∆ϕ(k) =ϕ(k)−ϕlinear(k) [13]. The dispersion cor-
rected signal in the z-domain is given by the inverse Fourier transform of the
dispersion corrected analytic signal

Ic (z) =F−1{�|Ii nt (k)|exp[i∆ϕ(k)]}, (2.8)

where F−1{·} denotes the inverse Fourier transform of the given signal.
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2.2.3. Attenuation coefficient
After dispersion correction, the attenuation coefficient can be determined both
from the spectral or spatial domain signal. Taking the inverse Fourier transform
of Eq. 2.3 and assuming the attenuation does not vary a lot over the spectral
bandwidth of the system, i.e. µt (k) = µt , we obtain an equation for the spatial
domain transmission OCT signal

a(z) =α(1−α)exp

(
−1

2
Lµt

)
F−1{E 2

s (k)}(z)

⊗ [
δ

(
z −L(ng −1)

)+δ(
z +L(ng −1)

)]
, (2.9)

where ⊗ denotes a convolution. Performing a reference measurement with at-
tenuation µt = 0 and a measurement on the sample, one obtains two z-domain
signals. The signal of the sample differs from that of the reference measurement
by a possible shift of the delta functions and a change in height, caused by the
optical attenuation. From Eq. 2.9 it can be deduced that the attenuation coeffi-
cient can be determined by measuring the height of the peak in the z-domain of
the reference and sample measurements, ar e f and asam , respectively, and using

µt = 2

L
ln

(
max|ar e f |
max|asam |

)
. (2.10)

The attenuation coefficient thus obtained is an average over the spectral band-
width of the system. The spatial domain analysis offers the advantage of path-
length selectivity. In this way the ballistic light can be filtered from the scattered
light, which can then be used to estimate the attenuation µt and the refractive
index of the sample.

Alternatively, from Eq. 2.3 and Eq. 2.8 the absolute value of the analytical
signal can be recognized as the complex magnitude of the interference signal

|Ĩi nt (k)| =α(1−α)E 2
s (k)exp

(
−1

2
Lµt (k)

)
. (2.11)

The wavenumber dependent attenuation coefficient µt (k) can be determined by
performing a reference and a sample measurement of |Ĩi nt (k)|. Similar to Eq.
2.10, the ratio of these two signals then results in µt (k).

2.3. Methods
2.3.1. Experimental setup
The Fourier domain transmission OCT setup is depicted in Fig. 2.2. It is based
on a Mach-Zehnder interferometer with spectral domain detection of the inter-
ference signal. A fiber based super-luminescent diode (D-1300-HP, Superlum)
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with a center wavelength of 1300 nm and a full width half maximum (FWHM)
bandwidth of 110 nm is used as a light source. After collimation by an achro-
matic doublet lens (AC254-045-C-ML, Thorlabs), the light is split into the refer-
ence and sample arm by a 50/50 beamsplitter (BS015, Thorlabs). Optical power
in the two arms is regulated by neutral density filters (NDC-100C-4M, Thorlabs)
in each arm. The reference arm contains an optical delay line, that is tunable
in length by means of a translation stage (PT1/M, Thorlabs). The sample arm
contains two confocal 200 mm achromatic lenses (AC254-200-C-ML, Thorlabs).
Samples are mounted in the focal point between the two lenses. After recombi-
nation by a second 50/50 beamsplitter the resulting beam is expanded by a 4-f
lens system (AC254-060-C-ML and AC508-080-C-ML, Thorlabs) before being in-
troduced to a spectrometer. A pinhole is placed at the focus position between the
two lenses of the 4-f system to remove any stray light. Spectral domain detection
is performed by a home build spectrometer, consisting of a holographic grating
(1145 l/mm, Wasatch Photonics), an SWIR imaging lens (S5LPJ0037/360, Sill Op-
tics), and a 76 kHz InGaAs linescan camera (GL2058L, Sensors Unlimited). Cam-
era data is acquired using a framegrabber (PCIe-1433, National Instruments) and
Labview software (National Instruments).

SLD
PC

CL

BS

TS

PH

CAHG

CLFLBS

FL

S
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FL

NDF

NDF

Figure 2.2: Schematic diagram of the experimental setup. BS: beam splitter, CA: camera, CL: colli-
mation lens, FL: focusing lens, HG: holographic grating, NDF: Neutral density filter, PC: polariza-
tion controller, PH: pinhole, S: Sample, SLD: superluminescent diode, TS: translation stage
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2.3.2. Setup calibration and performance
The spectrometer is calibrated using an Argon gas discharge lamp (AvaLight-
CAL-AR, Avantes). The calibration lamp is placed on the free-side of the first
beamsplitter of the interferometer. The emission spectrum of the lamp is
recorded by the spectrometer and the measured emission lines are compared
to reference values from literature. A third degree polynomial is fitted through
the data to obtain a relation between pixel number and wavelength. The perfor-
mance of the transmission OCT system is checked using the movable delay line
in the reference arm. This yields a maximum path length difference of
11.6±0.1 mm. The axial resolution of the system is determined by measuring the
FWHM of the signal peak in the z-domain with no sample in the interferometer.
The measured axial resolution of the system is 18± 1 µm, (bandwidth limited).
The lateral point spread function, measured in air has an in-focus FWHM waist
of 32.8±0.7 µm Following the definition of Nassif et al. [14], the roll-off parameter
of the system is w = 2.1±0.1. Measurements using neutral density filters show a
signal sensitivity of −106 dB.

2.3.3. Sample preparation and measurement
Measurements of ng and the GVD are performed on both liquid samples and
glass plates. The glass plates provide a good validation as the optical material
properties for glasses are well known. Four different glass plates are used in the
experiments; N-BK7 (WG11050, Thorlabs), sapphire (WG31050, Thorlabs), UV-
fused silica (WG41050, Thorlabs) and calcium fluorite (WG51050, Thorlabs). All
glass plates are 5 mm thick and uncoated. Liquid samples used for the refractive
index measurements are: ethanol (32221, Sigma-Aldrich), de-mineralised water
and glucose solutions. These liquids were measured using a 10 mm path length,
fused quartz cuvette (CV10Q3500F, Thorlabs) placed in the sample arm. Refrac-
tive index data is obtained after averaging of 5000 measurements per sample.

Measurements of attenuation are performed on monodisperse silica particle
suspensions and on de-mineralised water. Two different particle sizes are con-
sidered; 0.5 µm and 1.5 µm diameter. Silica particles (KI-PSI-0.5P and KI-PSI-
1.5P, Kisker Biothech) in powdered form are suspended in de-mineralised water
containing 0.3 mM of sodium dodecyl sulphate to prevent aggregation [10]. Sus-
pensions are vortexed for 60 minutes and sonicated for 30 minutes before mea-
surements. All silica particle suspensions are measured in a 1 mm path length
cuvette (Z802689-1EA, Sigma-Aldrich) mounted in the sample arm. Calculating
the attenuation coefficient for the silica particle suspensions, water is used as
a reference in Eq. 2.10. In this way the difference in attenuation between the
suspension and water is obtained, removing the contribution of the water ab-
sorption to the total attenuation of the sample. Leaving only the scattering con-
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tribution by the silica particlesµt =µs . For all the measurements of silica particle
suspensions, including the water reference, 100000 measurements are averaged.
The wavelength dependent absorption coefficient of water is determined from
1000 spectra.

The particle-sizes are measured using a Malvern Zetasizer, obtaining a mean
diameter of 1138±48 nm for the KI-PSI-1.5P particles and 426.6±61.5 nm for the
KI-PSI-0.5P particles. These measured sizes are smaller than the factory values,
but are consistent with electron microscopy measurements on the same prod-
ucts from the same manufacturer [10].

2.3.4. Data analysis algorithm
After acquisition the spectral data is stored in raw binary format. It is analyzed
using software written in MATLAB (Mathworks, R2014b). An overview of the data
processing flow is presented in Fig. 2.3. The data acquisition includes a mea-
sured spectrum I (k), a spectrum of the reference arm only, Ir e f (k), and a spec-
trum for the sample arm only, Isam(k). Furthermore the calibrated wavenumber
k is obtained from a combination of the spectrometer calibration and an opti-
mization algorithm. The polynomial coefficients of the wavenumber calibration
is optimized with respect to the group index of water using a trust-region algo-
rithm (MATLAB function fminunc). The third order polynomial coefficients of
the spectrometer calibration are used as the initial parameter estimate.

As spectrum containing only the interference contribution is generated by
subtracting all other contributions, Ii nt (k) = I (k)− Ir e f (k)− Isam(k). To obtain
the average interference spectrum this signal is inverse Fourier transformed, av-
eraged and transformed back. For determination of the analytic signal, Eq. 2.5,
the built-in MATLAB function hilbert is used. Furthermore, the function phase
is used to determine and unwrap the phase of the given signal. The phase of the
signal is cropped in k by choosing the relative heights of the envelope signal with
respect to the peak of the envelope to be larger than 0.25. The phase analysis
uses the built-in MATLAB function fit to fit a cubic polynomial, Eq. 2.7 using the
generalized least squares to the difference of the measured phase and a reference
phase versus k.

2.3.5. Dependent scattering calculations
Calculations of the scattering coefficient are performed using a Mie theory [15]
and a dependent scattering model. The effect of dependent scattering is taken
into account using the structure factor for computation of the scattering effi-
ciency ratio following the work of Nguyen et al. [10]. Although dependent scat-
tering does not take the effects of multiple scattering into account, the model is
appropriate for describing the reduction of power of the ballistic light. Only the
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Figure 2.3: Schematic illustration of the analysis algorithm for the determination of the optical
material properties.

ballistic photons that scatter for the first time reduce this power. Interactions
between multiply scattered light will only affect our path-length distribution at
path-lengths beyond that of the ballistic light.

The dependent scattering model uses the Percus-Yevick model to compute
the radial distribution function, which accounts for interactions between parti-
cles. Furthermore, we assume the Rayleigh-Debye condition is valid, i.e. the scat-
tering particles can be treated as point scatterers. Input to the dependent scat-
tering calculation are the refractive indices of the medium and the suspended
particles, the wavelength of the light, the experimentally determined particle ra-
dius and the concentration of the particles.

2.4. Results
A typical set of averaged transmission OCT measurements through a fused sil-
ica glass slide is shown in Fig. 2.4. Figure 2.4(a) shows the raw interferometric
signal versus wavenumber. The instantaneous phase obtained through Hilbert
transform of the interference spectrum is shown in Fig. 2.4(b). A linear relation
between the start and end point is added to show the non-linearity of the phase.
The non-linear behavior of the phase is caused by the cumulative effects of the
material dispersion and by the spectrometer dispersion, both indicated. The
phase difference between the linear phase and the phase signal from Fig. 2.4(b)
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Figure 2.4: Overview of the data processing steps for the fused silica sample (a) Reference and
sample arm subtracted interference spectrum. (b) Phase of the original Hilbert transformed sig-
nal (blue, dashed), the spectrometer corrected signal (black, points), and the linear phase relation
(red). (c) Phase difference between the linear phase and the original signal (blue, dashed) and
to the setup dispersion corrected signal (red, solid). (d) z-Domain transmission OCT signal af-
ter inverse Fourier transform without dispersion correction (blue, dashed), after setup dispersion
correction (black, points) and after material dispersion correction (red, solid).

is depicted in Fig. 2.4(c).
The parabolic shape is clearly visible and caused by the large values of n1+n2

for fused silica glass and by the non-linearity of the spectrometer. The phase af-
ter spectrometer correction (red) has a lower maximum compared to the raw
phase signal and shows a more pure parabolic phase behavior. The measured
and compensated signal after the Fourier transformation is shown in Fig. 2.4(d),
where the peak position represents the path length of the ballistic light. Due to
dispersion, the measured transmission OCT signal (blue, dashed) is decreased
and broadened compared to the dispersion compensated signal (red).
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2.4.1. Refractive index and group velocity dispersion
quantification for glasses and liquids

Figure 2.5 shows the dispersion results of four different glasses: BK7, fused sil-
ica, sapphire and calcium fluoride (CaF2), and two liquids: water and ethanol.
Figure 2.5(a) shows the results for the group refractive index for the different ma-
terials. The red bars denote the measured values using transmission OCT. It can
be seen that the group refractive indices are close to the values from literature.
BK7, fused silica and CaF2 are slightly underestimated compared to the literature
values, whereas for sapphire a relatively large underestimation of 3.2 percent is
observed. Water has a slight overestimation of 0.56 percent and for ethanol the
underestimation is 2.5 percent. The group velocity dispersion is shown in Fig.
2.5(b). It can be seen that the group velocity dispersion of all materials, except
fused silica, are somewhat overestimated compared to the literature values. For
fused silica the group velocity dispersion values are spread between the literature
values.
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Aqueous solutions with different concentrations of glucose are measured to
determine the optical properties of the constituent materials (as shown in Fig.
2.6). Both the group refractive index and the GVD follow a linear relation as
would be expected from a volume-weighted average of the optical properties.
The slope of (1.21±0.02)10−3 group index change per volume percent results in
a group refractive index of pure glucose of 1.465±0.004, which agrees well with
literature values [29, 30]. The slope of (−2.05±−0.04)10−28 s2/m GVD change per
volume percent results in a GVD of pure glucose of (−7.34±0.04)10−26 s2/m.
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Figure 2.6: Group index and group velocity dispersion for solutions with varying glucose concen-
tration as determined with transmission OCT. The measurements (indicated with open symbols,
red and blue) are fitted with a linear regression (dashed black lines).

2.4.2. Attenuation and scattering measurements of silica particle
suspensions

Transmission OCT measurements are performed for suspensions of silica par-
ticles in different concentrations. Two different particles sizes are considered;
0.5 µm and 1.5 µm diameter. Typical spatial domain data, averaged over 100000
measurements, for the 0.5 µm and 1.5 µm particles are shown in Fig. 2.7(a) and
Fig. 2.7(b), respectively. For every concentration, peaks can be observed corre-
sponding to ballistic light transmission. As the concentration of scatterers in-
creases the peak amplitude decreases and the peak moves slightly to longer path
lengths. In addition a decaying tail is observed behind the ballistic transmission
peak of the 1.5 µm particle suspensions. This tail gradually becomes predomi-
nant as the concentration of scatterers increases and is caused by forward scat-
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tered light transmitted through the sample. The 0.5 µm particles have a much
lower scattering coefficient and scattering anisotropy and do not show the scat-
tered light in the transmission OCT signal.
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Figure 2.7: Spatial domain transmission OCT data for several concentrations of 0.5 µm (a) and 1.5
µm (b) silica particles in water. Data separated for plotting by multiplication with powers of 10. (c)
Measured scattering coefficients for the silica suspensions. The data is fitted using a dependent
scattering model (black, solid), which is based on Mie calculations (gray, dashed).

The measured scattering coefficient µs as function of the concentration for
the 0.5 µm and 1.5 µm silica particle suspensions are shown in Fig. 2.7(c). For
higher concentrations of particles in the suspension, more light is scattered re-
sulting in an increase of the scattering coefficient. At very high concentrations
the linear relation between scattering coefficient and particle concentration does
not hold and the data is best described by a dependent scattering model. A fit of
this model (Section 2.3.5) with the refractive index of the particles as the free pa-
rameter, results in n0 = 1.430 ± 0.009 for the 0.5 µm particles, and
n0 = 1.444 ± 0.005 for the 1.5 µm particles. This value is close to the value of
the phase refractive index of 1.447 for fused silica, reported by Malitson [19].The
Hilbert transform method is used to determine the wavelength dependent atten-
uation coefficient for de-mineralised water and the 2 vol.% suspension of 1.5 µm
particles. The measured absorption spectrum of water is shown in Fig. 2.8(a).
The measured absorption coefficient agrees well with the data from Kedenburg
et al. The wavelength dependent scattering coefficient for the silica particle sus-
pension is shown in Fig. 2.8(b). Dependent scattering calculations are performed
over the spectral range for comparison to the measured data. The measured data
agree well with the calculated data. In both the water and the particle suspension
data, deviations are observed at the edges of the measured attenuation spectra.
At these wavelengths the source intensity is low resulting in small signals.
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Figure 2.8: (a) Measured absorption coefficient of water versus wavelength (blue, dots) and its
comparison to literature [11] (black, solid). (b) Measured scattering coefficient versus wavelength
for 2 vol.% 1.5 µm silica particles (blue, dots). Error margin is denoted by the dashed lines. The
data is compared to the scattering coefficient obtained from dependent scattering calculations
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2.5. Discussion
We showed transmission OCT measurements of ng , the GVD and the (wave-
length resolved) attenuation coefficient. The measurements on glass plates, liq-
uids and glass particle suspensions validated the proposed analysis technique.

The measurements of ng showed good agreement with values found in lit-
erature. Some variation was present in the literature data, possibly caused by
differences in the materials used. Our results are slightly less accurate compared
to the refractive index measurement of Dirckx et al. [7] and Zvyagin et al. [6].
The GVD measurements, in general, agree well with literature values. Due to
the large spread in values reported in literature, exact estimation of the accuracy
of our method is difficult. For most measurements the obtained value for the
GVD is within the variation represented in literature. We observed that the mea-
sured values of ng and the GVD are very sensitive to variations in the spectrom-
eter calibration. More accurate measurements can be obtained by improving
the spectrometer calibration procedure. Increasing the bandwidth of the setup
and the thickness of the samples could also provide more accurate results for ng

and GVD. We observed that the exact choice of the cropping factor affects our
estimates of both ng and GVD. The choice of 0.25 resulted in the most accurate
estimation of both group velocity index and GVD. Measurement of ng and the
GVD for glucose solutions showed a clear linear behavior over the measured con-
centration range. By avoiding positioning errors and realignment of the cuvette,
possible alignment errors are circumvented. Hence, the glucose measurements
show that small differences in refractive index can be measured. The lowest glu-
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cose concentration measurable is 0.39 vol. % and was estimated by a linear ex-
trapolation of the slope and comparison to the error in the measurements. This
concentration is still larger than typical blood glucose concentrations.

Determination of the attenuation coefficient is shown for both z-domain and
spectral domain analysis. For both methods the main experimental difficulty
proved to be the prevention of particle aggregation in the suspensions. The z-
domain method works in principle up to 20 mean free paths (MFP) of attenua-
tion. The technique is limited to scattering anisotropies up to approximately 0.9.
Large anisotropy factors, as for example is the case for tissue, make the discrim-
ination between ballistic and single scattered photons difficult. Increasing the
spectral bandwidth results in a more narrow axial point spread function, which
facilitates discrimination of ballistic light from scattered light. Additionally, in-
formation can be retrieved from the scattered light distribution, either by using
a total attenuation coefficient or fitting a scattering model.

Wavelength resolved attenuation coefficients are computed from spectral do-
main data for water and 2 vol.% of the 1.5 µm particle suspension. The results
show good agreement with literature and simulated data respectively. Deviations
between measurements and literature are observed at the edges of the spectra.
We attribute this to the low power of the light source at these wavelengths which
makes it difficult to retrieve the envelope of the measured spectrum using the
Hilbert transform. For a similar reason, measurements on samples with high at-
tenuation coefficients (larger then approximately 10 MFP) fail to give accurate
results. For highly attenuating samples short time Fourier transform techniques
can be applied in combination with an analysis in the z-domain. This provides
the benefit of path length discrimination, however, at the cost of reduced spec-
tral resolution.

The measurements presented in this article demonstrate the potential of
Fourier-domain transmission OCT as a powerful and versatile platform for mea-
surements of optical properties. Transmission OCT does not rely on scattered
light to perform a measurement, and therefore is not based on complicated light
transport models or requires a homogeneous sample. In addition, coherence
gating provides a means to filter or select scattered from the ballistic light from
the measured signal. Application of the presented techniques can provide a way
to optically characterize tissue in biopsies, aiding in the diagnostics of diseases.
The multiple modes of contrast provided by our technique can provide a great
advantage in this respect. In addition, transmission OCT can provide compact
and cost effective measurements in microfluidics and lab-on-a-chip applications.
With the onset of OCT on a chip technology this technique can provide a com-
pact, versatile and relatively cheap way to measure optical properties. In addi-
tion, the proposed methods for determining ng and the GVD also can be applied
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in backscattering OCT, possibly providing additional (functional) tissue contrast.
The measurements presented in this paper concern the characterization of the
optical properties of a homogeneous bulk sample. The use of transmission OCT
can be extended towards imaging spatially varying optical properties using com-
puted tomography techniques.

2.6. Conclusion
In conclusion, we presented Fourier-domain transmission OCT as a method for
measuring the group refractive index, the group velocity dispersion and the wave-
length resolved attenuation coefficient of a wide range of samples. We validated
the proposed methods using experimental data. The measurements are in good
agreement with literature values and analytical theory. We showed that trans-
mission OCT provides a powerful tool for measurements of various optical prop-
erties.
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Chapter 3

Quantification of volume and optical
parameters of zebrafish organs in optical

coherence projection tomography images

Optical coherence projection tomography (OCPT) is a novel interferometric imag-
ing modality for non-diffuse 3D optical imaging of millimeter-sized samples.
OCPT allows quantitative reconstruction of refractive index and optical atten-
uation by coherence gating of scattered light. We demonstrate, on OCPT images,
the segmentation of various organs of the zebrafish with manual, region growing,
and k-means segmentation algorithms. For the segmented organs, the volume
and the median optical properties of the zebrafish organs are determined. The
optical properties are in good agreement with values from literature for similar
tissue types.

3.1. Introduction
Optical coherence computed tomography (OCPT) is a novel imaging modality
for non- diffusive 3D optical imaging of small animals [1]. OCPT imaging is based
on transmission optical coherence tomography, where light from the sample arm
of a Mach-Zehnder interferometer interferes with light propagating in the refer-
ence arm, as is presented in Chapter 2. The advantage of using tomographic
transmission OCT is the combination of confocal gating and path-length selec-
tivity (coherence gating), which allows a strong rejection of (multiple) scattered
light. The imaging in transmission geometry and the fact that image formation
is based on non-scattered light leads to a much greater imaging depth compared
to conventional OCT. Upon interaction with the sample, the light in the sample
arm can be delayed and attenuated due to scattering and absorption in the sam-
ple. From the attenuation and delay, the refractive index and optical attenuation
coefficients can be determined quantitatively [2]. OCPT is applied to imaging of

Parts of this chapter are based on a the manuscript in preparation by J. van der Horst, A.K.Trull
and J. Kalkman, ’Deep tissue label-free quantitative optical tomography’ (2018)
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an adult 3− 4 mm thick zebrafish from which both attenuation coefficient and
refractive index contrast are reconstructed. We present the segmentation of var-
ious zebrafish organs from the refractive index and optical attenuation measure-
ments and quantify their structural and optical parameters.

Various studies have demonstrated that the optical properties of different or-
gans can indicate the health of the organ. Wang et al. [3] showed that cancer
alters the refractive index, which can be used as a maker for cancer diagnostics.
Xu et al. [4] differentiate different plaque components of coronary arteries using
OCT. They distinguish three plaque types as fibrous, lipid and calcified based on
their optical attenuation coefficient. Real time grading of bladder urothelial car-
cinoma using quantification of the OCT attenuation coefficient has been shown
by Cauberg et al. [5] to verify the assessment of morphological changes. Seg-
mentation of tissue structures in OCPT images of zebrafish can aid in visualizing
these changes as well as quantifying them. This can potentially aid in the study of
disease onset, progression, and treatment monitoring in zebrafish disease mod-
els.

Image segmentation is an image processing technique that highlights cer-
tain important parts of the image, such as objects or boundaries [6, 7]. There
are many practical applications for image segmentation, such as locating tu-
mors, surgery planning, and fingerprint recognition. Various methods have been
developed for image segmentation ranging from simple thresholding, k-means
clustering [8], and region-growing techniques [9] to more advanced techniques
as graph cuts [10] and level sets [11]. Here, we apply image segmentation to ana-
lyze the anatomical structures of a zebrafish in OCPT images. We apply manual,
region growing, and k-means segmentation to identify various individual struc-
tures. The segmentation of the organs is used to estimate their volume, median
attenuation coefficient, and median refractive index.

3.2. Methods
3.2.1. Segmentation
The segmentation of the zebrafish organs is based on the assumption that neigh-
boring pixels have similar attenuation coefficients or refractive index values.
Since some structures are better visible in the attenuation coefficient image com-
pared to the refractive image, or vice versa, all organs are segmented using the
image modality with the best contrast. Moreover, a segmentation approach is
used that gives the best result for the specific organ.

Region growing segmentation
For the lens of the zebrafish, imaged in refractive index contrast, we use a region
growing algorithm, where one pixel is compared with its neighboring pixels. If
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the pixel value of the refractive index is similar to that of its neighbors, this neigh-
boring pixel belongs to the region, otherwise not. The region growing algorithm
is initialized by a seed that is used as a starting position and image value. Fig-
ure 3.1 (a) shows a close up region that is segmented with a seed indicated in
blue. In Fig. 3.1 (b) a first iterations and expansion of the seed is shown. The
region grows iteratively by comparing all unallocated neighboring pixels and de-
termining whether they do or do not belong to the region based on whether their
value matches the mean value of the region. The application of the region grow-
ing on the zebrafish data is illustrated in Fig. 3.1 (c) and (d). Figure 3.1 (c) shows
a slice of the refractive index data of the zebrafish and Fig. 3.1 (d) is the segmen-
tation result, with the seed is placed in the center of the image.
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Figure 3.1: Illustration of the region growing algorithm. (a) Image in black and white, with the
seed point indicated in blue. (b) First step of the region growing (green) and starting seed (blue).
(c) Image of the refractive index data for a single slice of the zebrafish with seed point indicated.
(d) Segmented image using region growing. Yellow indicates the grown region.
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k-means segmentation
For the spine segmentation, we implemented the k-means algorithm on the at-
tenuation coefficient and refractive index images. The k-means algorithm orig-
inates from the field of machine learning and cluster analysis. Clustering meth-
ods, like k-means, are unsupervised and based on features in the image, such as
the RGB colors or, for multi-model images, the various image parameters. Clus-
tering methods group sets of objects which are more similar to each other com-
pared to the other objects. Each cluster center is represented by a mean vector
in feature space, which means that if the number of clusters are set to k, the task
is to find the k cluster centers and the points are assigned to the nearest center.
For finding the position of the cluster centers and the cluster boundaries, the dis-
tance between the each point in feature space and its assigned cluster center is
calculated by the l2 norm. An illustration of the k-means segmentation is shown
in Fig. 3.2. Figure 3.2 (a) shows one slice of the refractive index data of the ze-
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Figure 3.2: K-means segmentation on one slice of the zebrafish. (a) Original gray scale image of the
refractive index, (b) unclustered pixels of the zebrafish image in the feature space, where feature
1 denotes the attenuation coefficient, and feature 2 the refractive index. (c) Clustering result with
three clusters is shown in blue, green and yellow and (d) segmentation of the zebrafish based on
the three clusters indicated in (c).
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brafish. All pixels in this slice of the refractive index and attenuation coefficient
images are transformed into feature space, shown in Fig. 3.2 (b), where the value
of every pixel is plotted on two scales: the value of its refractive index and at-
tenuation coefficient. The corresponding clustering result is shown in Fig. 3.2
(c), where the number of k clusters is set to three and the different clusters are
illustrated in different colors. After clustering, the pixels are back transformed to
image space and the segmentation result of the k-means clustering with three
different clusters is presented in Fig. 3.2 (d).

3.2.2. Data acquisition and tomographic reconstruction
Optical coherence computed tomography is used to image an adult zebrafish. A
schematic representation of the OCPT data analysis and image reconstruction
process is shown in Fig. 3.3. The experimental set-up and the pre-processing of
the data are described in more detail in [1]. The wavelength used for the mea-
surement is 1300 nm.

In brief, the signal processing is performed as follows. First, the interference
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Figure 3.3: Schematic illustration of the OCPT data analysis and the image reconstruction process.
Figure adjusted from [1].

spectrum at a single point of a projection is measured. Second, this spectrum is
inverse Fourier transformed to obtain the optical path-length distribution. The
signal from the ballistic light in the optical path-length distribution is extracted
using a fitting procedure. The attenuation and the refractive index along the light
path are estimated from the position and the height of the ballistic peak, respec-
tively. The position of the ballistic peak is a measure for the integrated refractive
index along the optical path through the sample and the height of the peak is a
measure for the integrated attenuation value along the optical path through the
sample. These two parameters are placed for each projection and each angle into
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two separate sinograms. In this case, the zebrafish is measured over 180 angular
projections with a sampling distance of 1◦. The sinograms are corrected for cen-
ter of rotation offsets. Afterwards, these two sinograms are reconstructed using
an algebraic reconstruction technique using the ASTRA toolbox [12].

The refractive index and attenuation slices have a size of 501×501 pixels in
the lateral direction, with 140 slices in the axial direction. The slices are recorded,
uniformly spaced over a 2 mm axial range. Segmentation algorithms are applied
to individual slices. Two slices of the zebrafish are shown in Fig. 3.4 for the atten-
uation coefficient and the refractive index. It can be noted, that different struc-
tures are visible in the two types of images.
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Figure 3.4: Two OCPT transverse slices of the zebrafish head (top) and tail (bottom). (left) Attenu-
ation coefficient image. (right) Group refractive index image.
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3.2.3. Data processing
All tomographic reconstructions are performed on a computer with Intel(R)
Xeon(R) CPU Processor (E5-1620 v3@3.50 GHz), 32 GB installed memory and a
64-bit operating system. The data are processed using software written in the
commercial software package MATLAB (Mathworks, R2016a). A region growing
algorithm is used written by Dirk-Jan Kroon (University of Twente) and is pub-
licly available at MathWorks file exchange [13]. For the k-means clustering the
build-in MATLAB function kmeans is used, which has as input parameter the
number of clusters. For the estimation of the median intensity values of the clus-
ters, the MATLAB build-in function median was used. For the volume estima-
tion, the areas are determined by the function regionprops with the additional
property Area. All the areas, estimated in number of pixel, are summed for all
slices and then multiplied by the voxel volume of 8908.8 µm3 to calculate the
segmented volume. The manual segmentation is performed using the MATLAB
function imfreehand.

3.3. Results
We investigate the segmentation and optical properties of the zebrafish mea-
sured with optical coherence computed tomography. Various organs are seg-
mented using basic thresholding, automated segmentation, and manual seg-
mentation.

The zebrafish spine, although being quite inhomogeneous, is best visualized
in the attenuation coefficient image. The segmentation of the spine is performed
in multiple steps on a slice by slice basis. First, the noise in the image is reduced
using an averaging filter with a size of 11×11 pixels. Second, the k-means cluster-
ing algorithm is applied to the combined refractive index and attenuation coeffi-
cient images. The number of clusters is set to 3 and the distance measure is set to
Euclidean. Third, the number of clusters is reduced to two, whereby a binary im-
age is generated, by combining two clusters. Fourth, a morphological opening,
an erosion operation is followed by a dilation operation using disks of 10 pixels,
is applied to the binary image to erase the segmentation of very small objects,
which are caused by noise or other artifacts. Since the initial application of the
k-means algorithm leads to the segmentation of multiple objects, the circularly
shaped spine is selected by further processing the image using a Hough trans-
form, whereby the MATLAB function circle_hough is used. The Hough transform
estimates the radius and center position of all objects, from which the spine is
subsequently selected. For those slices in which the Hough transform is not able
to detect the spine or no spline is visible, the spine is estimated using linear in-
terpolation between the detected spine in neighboring slices. A visualization of
the spine segmentation is shown in Fig. 3.5.
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1mm 1mm 1mm1mm

Figure 3.5: Segmentation (magenta) of the zebrafish spine in four transverse OCPT slices overlaid
on the scaled attenuation image(green) of an adult zebrafish.

It can be observed that the zebrafish eye lens is well visualized in the refrac-
tive index OCPT image, see Fig. 3.4, on which we perform the segmentation. The
seed-point for the region growing algorithm is positioned in the center of the im-
age, where no lens is located. The maximum intensity distance is chosen by hand
and set to 0.1, which segments everything except the lens of the zebrafish eye. To
obtain the lens segmentation shown in Fig. 3.6, the complement of the image is
calculated, using the in-build MATLAB function imcomplement.

1mm 1mm 1mm1mm

Figure 3.6: Overlay of the scaled refractive index data (green) and the segmentation (magenta) of
the lens of an adult zebrafish eye at four different transverse OCPT slices.

Due to the noise in the attenuation and refractive index OCPT reconstruc-
tions and the low contrast with the surrounding tissue, the brain matter is seg-
mented by hand on the refractive index data. The manual segmentation is aided
by comparison to annotated zebrafish anatomy [14].

The swim bladder is most optimally segmented using thresholding on refrac-
tive index data with a threshold value of n = 1.3, which is between the refractive
index of air (n=1) and that of tissue n > 1.35.

The skin is segmented on attenuation data and for the segmentation a thresh-
old of 5 is used. Afterwards, a morphological opening is applied to remove noise
and holes in the segmentation. The segmentation result for all segmented organs
on both the attenuation and refractive index are illustrated in one 3D figure and
shown in Fig. 3.7.
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Figure 3.7: Segmentation of multiple organs in an OCPT image of an adult zebrafish. Red: lenses,
green: brain, blue: gas bladder, yellow: spine and transparent green: skin.

3.3.1. Optical properties of segmented zebrafish organs
As shown in Chapter 2, the attenuation and refractive index can be obtained
quantitatively from the transmission OCT signal. In the tomographic OCPT re-
construction these properties are imaged quantitatively and spatially resolved.
With the image segmentation described here, it is possible to estimate the vol-
ume and median values for the optical properties of the segemented organs in-
side the zebrafish. We expect that the organs have homogeneous tissue values,
however due to diffraction and refractive index differences between the fish and
the agarose, organs such the lenses are not entirely homogeneously.

In Table 3.1 the volume, median attenuation coefficient, and median refrac-
tive index values of the different segmented organs are shown. The attenuation
and refractive index values are, if available, compared with literature values of
similar tissue types.

The segmented brain is a mixture of gray and white matter and other struc-
tures in the brain, hence, the average attenuation coefficient is expected to be the
weighted average of literature values of gray matter, white matter, and thalamus.
Although, the literature values of the attenuation coefficient for the brain tissue
where given for a wavelength of 1100 nm, however, the variation in attenuation

Table 3.1: Volume (V ), attenuation (µt ) and refractive index (n) values of various adult zebrafish
organs. Gray matter is denoted as gm, white matter as wm and thalamus as thala.

Organ V (µl) µt (mm−1 ) Lit. value µt ng Lit. value ng

Brain 1.95 6.48 gm: 5±3 [15] 1.39 1.41±0.02 [16]
wm: 10±2 [15]
thala: 8±3 [15]

Lenses 0.24 7.84 7 to 9 [17] 1.64 1.55±0.02 [18]
Spine 1.48 8.34 spinal fluid 1.45

5±0.7 [15]
Gas bladder 8.95 3 0 0.99 1 [19]
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coefficient is expected to be small compared to 1300 nm [15]. The attenuation
coefficient of the lens is in good agreement with the literature value taken from
[17]. The spine includes spinal fluid and bone. However, we only found a litera-
ture value of the attenuation value of the spinal fluid at 1300 nm, which is slightly
higher compared to the attenuation value of the entire spine that we estimated
from the segmented part of the zebrafish. In the gas bladder, we expect an at-
tenuation of air, which is 0 mm−1. The difference, of the measured attenuation
coefficient of air and the literature, is attributed to high attenuation values, which
are incorrectly back projected. This leads to inhomogeneous attenuation coeffi-
cient values in the segmented area and hence also lead to higher values. Overall,
we can note that the median attenuation values of the various organs estimated
from the OCPT images are in a good agreement with the literature values.

The refractive index values of the different organs are in agreement as the
segmented organs are close to the literature values. The literature value of the
refractive index for the lens [18] is measured at 800 nm wavelength. Considering
typical dispersive properties of tissue we expect this wavelength dependence to
only give deviations of the order of ∆n ≈ 0.03 for a wavelength of 800 nm com-
pared to the measured value at 1300 nm [20].

3.4. Discussion
We demonstrate the segmentation of various zebrafish organs using
multi-contrast data measured with OCPT. Furthermore, we indicate that the vol-
ume, refractive index, and attenuation measurements can be quantitatively de-
termined for individual organs inside the zebrafish.

For the region growing algorithm, we observed that the choice of the posi-
tion of the seed is important for the obtained segmentation result. We choose
the best position by trial and error to obtain the optimal result. Region growing
algorithms have the disadvantages that they are computationally expensive. De-
pending on the maximum intensity distance, the time to segment a single slice
can vary. For the chosen maximum intensity distance of 0.1 the estimation time
is 22 seconds for one slice. In addition, it is a local and not a global segmenta-
tion method, since the segmentation starts from the seed and hence is biased to
segment structures close to the seed. Furthermore, the region growing method is
sensitive to noise. The advantage of this method is its conceptual simplicity and
the fact that even one seed points is able to represent the segmentation of the
object of interest. The k-means clustering is easy to implement, to understand
and to interpret. It works on the single slice and is not dependent on the bias
of a seed position. However, the method is sensitive to cluster outliers and the
correct choice of the parameter k is important in order to segment the desired
objects. The time to perform the clustering for one slice takes only 2 seconds.
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Segmentation results can potentially be improved by using more advanced
segmentation methods, such as graph cuts [10] and level sets [11]. Methods like
graph cuts are less sensitive to noise and prior information could be included.
Further improvements, could also be achieved by using three dimensional seg-
mentation methods, thereby the three dimensional structure of the organ is in-
cluded.

All segmented organs have different combinations of attenuation coefficients
and refractive index, which makes it possible to use the modality in which the or-
gan has the highest contrast to segment these organs. Moreover, from the quanti-
tative determination of the optical properties using segmentation it may be pos-
sible to detect changes of the organs. For example, a comparison of optical prop-
erties can be useful for disease diagnosis and the study of the mechanisms of dis-
ease onset [21]. With OCPT and the presented segmentation method, changes in
zebrafish organ attenuation coefficient and refractive index can be performed
quantitatively. This enables the study of the optical properties of similar organs
in zebrafish that are healthy and affected by disease to study disease onset, pro-
gression, and treatment monitoring in great detail.

3.5. Conclusion
In this paper, we segment various organs of a zebrafish measured with optical
coherence projection tomography. With image segmentation techniques, it is
possible to determine the volume, attenuation coefficient, and refractive index
of various zebrafish organs quantitatively. The attenuation coefficient and re-
fractive index of the various organs are in good agreement with literature values.
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Chapter 4

Point spread function based image
reconstruction in optical projection

tomography

As a result of the shallow depth of focus of the optical imaging system, the use of
standard filtered back projection in optical projection tomography causes space-
variant tangential blurring that increases with the distance to the rotation axis.
We present a novel optical tomographic image reconstruction technique that
incorporates the point spread function (PSF) of the imaging lens in an itera-
tive reconstruction. The technique is demonstrated using numerical simula-
tions, tested on experimental optical projection tomography data of single flu-
orescent beads, and applied to high-resolution emission optical projection to-
mography imaging of an entire zebrafish larva. Compared to filtered back pro-
jection our results show greatly reduced radial and tangential blurring over the
entire 5.2× 5.2 mm2 field of view, and a significantly improved signal to noise
ratio.

4.1. Introduction
Optical tomographic imaging techniques such as optical diffraction tomography
[1] and optical projection tomography (OPT) [2] are now among the standard
imaging modalities for the study of cells, tissues and small animals. In OPT, light
intensity projections of samples, such as zebrafish or (mouse) embryos, are mea-
sured in transmission or emission (fluorescence). From these projections, im-
ages are computed using tomographic reconstruction algorithms. OPT is used
for in-vivo and ex-vivo imaging, whereby for ex-vivo imaging optical clearing
techniques are used to suppress light scattering.

In the quest for improved image resolution, high numerical aperture (NA)
lenses are used to image the transmission or emission of the sample onto the

This chapter has been published as :
A. K. Trull, J. van der Horst, W. J. Palenstijn, L. J. van Vliet, T. van Leeuwen, and J. Kalkman, Point-
spread function based image reconstruction in optical projection tomography, Physics in Medicine
and Biology, vol. 62, no. 19, pp. 7784-7797 (2017)
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detector. However, high NA lenses have a small depth of focus (DOF), which
causes light that is emitted or absorbed outside of the focal region to be heav-
ily blurred in the detector plane, thereby limiting the imaging depth. Moreover,
standard reconstruction techniques, such as filtered back projection (FBP), are
generally based on a straight ray approximation and ignore the diffraction of the
light by the focusing lens. As a result, reconstructed OPT images can suffer from
severe image degradation, leading to tangential blurring that increases with the
distance to the rotation axis in the reconstructed image.

Hardware-based approaches to solve the depth of focus effect are either based
on off-center focusing [3] or scanning the focal plane through the sample [4].
Although, these techniques can reduce the depth of focus effect in the recon-
structed image, they are complex to apply and increase the acquisition time.

A sinogram filtering using the frequency distance relationship (FDR) was de-
veloped by [5], in which a space-variant inverse filter is applied to process the
sinogram in Fourier space. The physical PSF of an optical imaging system was
used as a filter in the FDR reconstruction of OPT data by [6]. In this method
the image is reconstructed, after filtering the sinogram, using standard FBP. A
weighted FBP for quantitative fluorescence optical projection tomography was
presented by [7]. They used a space-variant weighting in the FBP reconstruction
to correct for defocus related blur and isotropic emission of the fluorophores.
However, this filter was only applied in one direction, which resulted in an in-
creased radial full width at half maximum of the point spread function (PSF).
To reduce the effect of the DOF both the radial and tangential direction, vari-
ous processing methods were developed, which include the physical PSF in their
approach. Deconvolution techniques with a space-variant PSF have been ap-
plied to the reconstructed image [8–10]. However, the quality of this technique
depends on the choice of many parameters of the applied reconstruction algo-
rithm. Furthermore, deconvolution techniques have the disadvantage to amplify
noise. To our knowledge, the PSF has been used for reconstruction in terahertz
tomography and in medical tomographic techniques, such as terahertz tomogra-
phy [11], PET [12], SPECT [13] and CT [14]. [11] presented an iterative approach,
where the object is reconstructed with the straight ray inverse Radon transform
and subsequently deconvolved with a Gaussian PSF. For SPECT imaging, the sys-
tem response was taking into account in an iterative conjugate gradient recon-
struction method by [13]. They showed that the inclusion of the PSF gives im-
proved resolution compared to FBP. An iterative 3D edge-deblurring algorithm
for cone-beam CT was proposed by [14]. The PSF was first approximated by a
least-squared approach and then used for a three dimensions deconvolution.
However, the image size used by both [13, 14] was significantly smaller than the
current image size used for OPT.
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We present a PSF-based optical tomographic image reconstruction approach,
in which the PSF of the focusing by the lens is directly included in the tomo-
graphic reconstruction, instead of filtering the sinogram before or the image af-
ter the reconstruction. First, a theoretical framework is provided that describes
the PSF-based reconstruction. The application of the theory is demonstrated
using numerical simulations of the tomographic imaging process. Second, our
algorithm is tested under well-controlled experimental conditions. Finally, the
technique is demonstrated on zebrafish larva imaging.

4.2. Image formation in optical projection tomography
In optical projection tomography (OPT), the goal is to determine the spatial dis-
tribution of absorption or emission strength of an object f (x, y, z) from its pro-
jections. In emission OPT, the object is assumed to be homogeneously illumi-
nated with light from the excitation source resulting in an excitation rate that is
constant over the object f . A small fraction of the excitation light is absorbed
and emitted isotropically. Hence, it is assumed that variations in local emission
strength are caused by variations in fluorophore concentration only. The emitted
radiation is imaged with an imaging system onto the detector, see Fig. 4.1(a).

Following [15], and assuming a single emitter at location x, y , z, in the ob-
ject coordinate system, the intensity in the image space coordinate system is
I (s, t ,u) = |h(x +M s, y +M t , z −M 2u)|2, with h2 the incoherent PSF and M the
magnification of the imaging system. Given the geometry in Fig. 4.1 (a) with the
detector fixed at u = 0 and since the object can be considered as a sum of inco-
herent point sources, the measured intensity is a convolution of the object emis-
sion distribution with the PSF |h(x, y, z)|2. For an imaging system with M = −1
and u = 0 the measured intensity on the detector is

I (s, t ) =
∞∫

−∞

∫
f (x − s, y − t , z −u)|h(x, y, z)|2 dx dy dz|u=0. (4.1)

In the absence of diffraction, the PSF is |h(x, y, z)|2 = δ(x, y). Under these circum-
stances the convolution in Eq. 4.1 results in a line integral of the object f (x, y, z),
similar to the Radon transform at zero angle along the propagation direction [16].
In OPT, diffraction causes the PSF to be non-ideal. The emitted light, originating
along a straight path through the object, is (unsharply) imaged by a lens onto the
detector. The shape of the 3D PSF can be calculated by Fourier optics, more in
particular by Fresnel propagation of the emitted field through the lens onto the
detector [15, 17].

Following the derivation by van der Horst et al. [8] we assume an integration
on the detector in the t direction over the entire detector plane, which is a good
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Figure 4.1: Schematic overview of the optical project tomography imaging system. (a) Optical
imaging system consisting of a single lens making a projection of the object onto the camera. (b)
OPT signal formation for diffractive optical beams (red dashed and hatched). The rotation angle
is denoted by θ, the shift of the object s, and f (x, z) is a slice of the object.

approximation for objects that have optical properties that vary slowly along the
y-axis. In this case the measured intensity in Eq. 4.1 becomes proportional to
the convolution of the object with a 2-D cross-section of the 3-D PSF. Since the
image of a point emitter by a lens results in a complex PSF, we describe it here
through an analytical formula. In this way we can quantitatively validate our ap-
proach using simulations and compare our results with theory. We model the
PSF |h(x, z)|2 as a Gaussian-shaped beam of the wavelength λ and in focus beam
waist w0 [18] as

|h(x, z)|2 =

∣∣∣∣∣∣∣∣∣
1√

1+
(

z
zR

)2
exp

− x2

w2
0

(
1+

(
z

zR

)2
)

∣∣∣∣∣∣∣∣∣
2

, (4.2)

where zR =πw2
0/λ is the Rayleigh range (half the depth of focus). The numerical

aperture is given by NA = w0/zR in Eq. 4.1. The two-dimensional convolution of
the PSF over the object is indicated in Fig. 4.1(b).

In tomographic imaging, we obtain the projections of the emission as a func-
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tion of the lateral shift s and the rotation angle θ of the object. From Eq. 4.1, it
can be derived that the measured projection at the angle θ and shift s is

p(s,θ) =
∞∫

−∞

∫
f [(x − s)cosθ+ z sinθ, (x − s)sinθ− z cosθ] |h(x, z)|2 dx dz , (4.3)

with the angle θ ∈ [0,2π]. The projections p(s,θ) are commonly visualized in a
sinogram, where the convolution in Eq. 4.3 describes the blurring in the sino-
gram due to the tomographic imaging system.

The projection data p(s,θ) is not measured in a continuous way, as defined
by Eq. 4.3, but is sampled at discrete lateral positions for a finite set of angles.
Hence, the inverse solution cannot be determined analytically, but only through
a search for the function f (x, z) that optimizes an objective function. The pro-
jection of Eq. 4.3, p(s,θ), is limited to a finite integration area D given by D ∈
[−l/2, l/2] for offsets s ∈ [−l/2, l/2] and l is the size of the field of view. The
projection is then represented by a matrix multiplication with the object f dis-
cretized by sampling f (x, z) on a regular cell-centered grid, within the square
object domain D2 at locations xi , z j , with i = 1,2, . . . ,n, j = 1,2, . . . ,n where n is
the number of pixels in each direction of the object and equal to the number of
lateral pixels in the projection. This leads to an image matrix of f (xi , zi ) ∈ Rn×n ,
which is stacked in a vector f ∈Rn2

. The convolution of Eq. 4.3 is discretized into
a geometry matrix A ∈ Rm×n,n2

, with m the number of projection angles. A row
of the matrix A represents a the Gaussian PSF at lateral distance si and angle θk .
The matrix elements of A are

a(k−1)n+i ,: = |h[(xi − si )cosθk + zi sinθk , (xi − si )cosθk − zi sinθk ]|2. (4.4)

In this way, a shifted and rotated PSF is represented in a single row of the A ma-
trix. First, all shifts for one angle are addressed, which is subsequently repeated
for all angles. The acquisition domain of the measured projections are the set of
samples (si ,θk ), with k = 1,2, . . . ,m. The discrete projections p(si ,θk ) ∈ Rn,m are
stacked into a vector p ∈Rn·m,1.

After discretization, the object, f, can be reconstructed by finding a solution
to the optimization problem

argmin
f

1

2
‖A · f−p‖2

2 , (4.5)

where ||·||2 denotes the Euclidean norm. Equation 4.5 can be solved using a least
squares optimization method based on conjugate gradients.
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4.3. Image reconstruction
Tomographic reconstructions are performed on a computer with Intel(R) Xeon(R)
CPU Processor (E5-1620 v3@3.50 GHz), 32 GB installed memory and a 64-bit op-
erating system. The data are processed using software written in the commercial
software package MATLAB (Mathworks, R2016a). Simulated sinograms are con-
structed using the discretized version of Eq. 4.3 for an initial object f . Following
the data processing flow chart in Fig. 4.2, an initial guess of the image is created
by filtered back projection (FBP) (input reconstruction). An improved estimate
for the object is made by least-squares optimization of Eq. 4.5 using the MATLAB
function lsqr [19, 20], which uses a conjugate-gradient type iterative algorithm
on the normal equations. It takes as input the projection data, the initial guess of
the image (created by FBP), the maximum number of iterations to perform is set
to 4000, the absolute tolerance, and the geometry matrix A. The absolute toler-
ance of the method is chosen to be 10−6. If the algorithm stops at the maximum
number of iterations before the absolute tolerance is reached, the reconstruc-
tion results are evaluated by visual inspection. The PSF-based reconstruction is
performed without including any prior information or regularization in the op-
timization of Eq. 4.5.

The geometry matrix A is non-sparse and therefore explicitly computing and
storing it for a realistic image size of 1000 by 1000 would require around 8 ter-
abytes of memory, which is infeasible. Instead of requiring a precomputed ver-
sion of A, the MATLAB function lsqr also allows providing a routine that evaluates
multiplication by A and its transpose for every angle individually. Here, multipli-
cation by A corresponds to (PSF-based) forward projection of an input image,
and multiplication by the transpose of A corresponds to (PSF-based) back pro-
jection of an input sinogram. We list the pseudo-code for calculating the forward
and backward projection in Algorithm 1. It uses the built-in MATLAB function
imrotate with bilinear interpolation to obtain the object at different angles. For
every individual angle, the PSF is translated laterally over the sample, so the for-
ward model of the projection has the structure of a one-dimensional convolution
in the translation direction, followed by a sum in the direction orthogonal to that.
We implement this by a multiplication of the Fourier transform of the object and
the Fourier transform of the PSF for every column, followed by a sum for every
row. To perform these operation correctly we zero-pad the sinogram to twice its
size in the scanning direction. The back projection operator performs the ad-
joint/transpose variants of these steps in reverse order.

We set the maximum number of lsqr iterations to different hand-picked num-
bers depending on the convergence of the algorithm, which depends on the data
that is to be reconstructed. In the current implementation one iteration of the
lsqr algorithm, for one slice of 1000 by 1000 pixels, takes approximately two min-
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Figure 4.2: Schematic illustration of the data analysis algorithm for the PSF-based reconstruction.
The input reconstruction is only used in the first iteration.

To enable a qualitative comparison of the reconstructed images, the FBP re-
construction is scaled in the following way. The reconstructed FBP image is for-
ward projected to obtain its sinogram. The scaling factor αopt is then given by

αopt = argmin
α

‖αAf1 −Af2‖2
2, (4.6)

where f1 is the FBP reconstructed image and f2 the PSF-based reconstructed im-
age. The scaling factor αopt is then given in closed-form by

αopt = (Af1)T(Af2)

||Af1||22
. (4.7)

Subsequently, the FBP reconstruction is scaled with αopt to obtain an image in-
tensity distribution in the reconstruction that corresponds to equal projection
data.
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Algorithm 1 Calculate p = Af or f = ATp

Require: f,mode, beam parameters
1: Notation: Denote by (I)FTC taking an (inverse) 1D Fourier transform of every

column of an image, by (I)FT1 taking the (inverse) 1D Fourier transform, by
SumR taking the sum of every row of an image, and by pi the i -th row of a
sinogram p.

2: Pre-compute the 2D beam shape of a horizontal beam and FTC(Beam)
3: if mode = ’not transposed’, then . Forward operator, p = Af
4: for i = 1 : anglecount do
5: fr = f rotated by the current angle
6: pi = IFT1(SumR(FTC(fr) ·FTC(Beam)))
7: end for
8: else . Backward operator, f = ATp
9: f = the zero image

10: for i = 1 : anglecount do
11: t = Multiply each column of FTC(Beam) by FT1(pi )
12: u = IFTC(t) rotated by the reverse angle
13: f = f+u
14: end for
15: end if
16: return p or f
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4.4. Results
4.4.1. OPT Simulations
The original object for the simulation is given in Fig. 4.3 (a). The object, with
a size of 15×15 mm2 (100×100 pixels), consists of isolated point sources, with
a peak emission strength of 100 in the center pixel of the source and an emis-
sion strength set to 50 for the eight pixels around the center of the source. The
object is blurred by convolving it with a Gaussian PSF for an emission wave-
length of 514 nm with a waist w0 = 10 µm, DOF= 1.2 mm, NA= 0.016, see Fig.
4.3 (b). Figure 4.3 (c) shows the same simulation for w0 = 100 µm, DOF=122 mm,
NA= 0.0016. The object data is processed following the flowchart in Fig. 4.2. The
maximum number of iterations is set to 200.

The reconstruction results using filtered back projection (MATLAB function
iradon) and the proposed method are depicted in Fig. 4.3. Figure 4.3 (d) and (e)
show the FBP reconstructed images, which is based on straight parallel rays, for
the two Gaussian PSFs. In Fig. 4.3 (d) it is clearly visible that, compared to the
original object, the emission contrast is much lower due to the small DOF. More-
over, the reconstructed image shows that the emitters are strongly blurred in the
tangential direction due to the strong divergence of the Gaussian PSF, as shown
in Fig. 4.3(b). The tangential resolution deteriorates with increasing distance to
the center of rotation whereas the radial resolution is slightly deteriorated, but
does not depend on the distance from the center of rotation. The insets show
this in more detail for two emitters. For a PSF with a larger beam waist, modeling
a low NA, large DOF, imaging system, Fig. 4.3 (e) shows that there is some blur-
ring in the reconstructed image. However, for this larger beam waist this effect
depend very weakly on the distance to the center of rotation since the Gaussian
PSF has much lower divergence, as shown in Fig. 4.3(c). Figure 4.3 (f) and (g)
show our PSF-based reconstruction. In Fig. 4.3 (f) the contrast is completely
restored, the strong tangential blurring is absent, and the reconstructed image is
identical to the input image. Figure 4.3 (g) shows that also for a larger beam waist,
the blurring of the emitter is fully corrected for by our PSF-based reconstruction
method.

4.4.2. Fluorescent bead OPT imaging
The PSF-based reconstruction method is tested with experimental OPT imaging
of a sample with fluorescent bead emitters embedded in an agarose emulsion.
The experimental set-up is described in more detail in [8], the main parameters
of importance are briefly discussed. The experimentally determined Gaussian
PSF has a beam waist in focus of w0 = 6 µm with the measured beam shape used
in the PSF-based reconstruction. Emission from the center of the object is fo-
cused onto the camera plane by the imaging lens. The field of view of the experi-
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Figure 4.3: Simulation of the FBP and PSF-based image reconstruction. (a) Input image, (b) Gaus-
sian PSF for w0 = 10 µm. (c) Gaussian PSF for w0 = 100 µm. (d, e) Reconstruction using FBP for
the two Gaussian PSFs. (f, g) Reconstruction using the PSF-based approach for the two Gaussian
PSFs. The scale bar is 2.5 mm.
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mental data is 5.2×5.2 mm2. In the lateral direction, the detector has 1344 pixels
per projection and 360 projections are acquired over 360 degrees with a one de-
gree spacing. The total dataset consist of 1024 sinograms covering a length of
4 mm along the rotation axis. The NA of the system is 0.05.

The measured data is pre-processed as follows. First, photo bleaching is cor-
rected with a characteristic e−1 timescale of 798 seconds. Second, a constant
background emission is removed from the sinogram. Third, the center of mass
for each projection is estimated from the ratio of the integral of the projection
times its transverse coordinate to the integral of the projection. Fourth, the cen-
ter of rotation is determined from the centers of mass for all acquisition angles.
Fifth, the center of rotation of the object is aligned with the center of the detector
rows by shifting the data along the lateral dimension[21]. Subsequently, the 1024
sinograms are combined into 32 averaged sinograms. The averaged sinograms
are further pre-processed. The noise is reduced by applying a non-local means
de-noising algorithm as described by Buades et al. [22]. The half size for the de-
noising window is chosen to be 9 pixels. The width of the Gaussian filter relative
to its maximum intensity is set to 0.5, the search width is set to 10 pixels and
the limited number of dimensions for the principal component analysis is 20.
Prior to the reconstruction, the sinograms are scaled to achieve a quantitative
comparison of the image quality of the two methods. Subsequently, PSF-based
reconstruction of the data is performed up to the maximum number of iterations
4000 iterations and visually inspection confirmed the convergence.
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Figure 4.4: Comparison of the FBP and PSF-based reconstruction for a single averaged sinogram.
(a) FBP image reconstruction of fluorescent bead data. The circle denotes the center of rotation.
(b) Zoom in on reconstructed points of (a). (c) PSF-based reconstruction of the same points as in
(b). (d) PSF-based reconstruction.
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Figure 4.4(a) shows the reconstruction of an averaged sinogram of the ex-
perimental data using FBP. Similar to the simulations, the single point emitters
appear blurred in the FBP reconstruction. In Fig. 4.4 (b) this is more clearly
demonstrated by the zoom-in on the individual beads and the normalized cross-
sections of the emitters. The cross sections show that the emission profiles in the
reconstruction are broad and have a Gaussian-shape. Figure 4.4 (c) shows the
same emitters, but reconstructed with our PSF-based approach. The emitters
are brighter in comparison to the background and an improvement of the reso-
lution is visible compared to the reconstruction using FBP. The quality of the re-
construction is analyzed by estimating the full width at half maximum (FWHM)
of the Gaussian function fitted to each peak and is summarized Table 4.1. Our
PSF-based reconstruction shows a significant reduction of the FWHM in both
axial and tangential direction. Figure 4.4 (d) shows the same slide as in Figure
4.4 (a) reconstructed with the PSF-based reconstruction. The side lobes of the
single bead 1 are ’Gibbs’ like artefacts [12]. The relative large distant to the cen-
ter of rotation makes it difficult to correctly reconstruct the image of this bead.

Table 4.1: FWHM resolution (µm) in axial and tangential (tang.) direction for the FBP and the PSF-
based reconstruction for four fluorescent beads. Each row corresponds to the beads indicated in
Fig. 4.4. The errors indicate 95 % confidence intervals.

Method FBP PSF-based
Bead # Radial FWHM Tang. FWHM Radial FWHM Tang. FWHM

1 22.3±0.6 50.1±1.3 16.2±0.6 30.0±1.0
2 9.6±0.3 18.0±0.5 7.1±0.3 10.0±0.4
3 10.7±0.13 42.1±0.6 8.3±0.2 24.9±0.5
4 8.3±0.2 34.9±0.9 6.3±0.2 24.0±0.6

4.4.3. Zebrafish larva OPT imaging
The proposed PSF-based reconstruction is applied to an OPT scan of a 10 days
old transgenic zebrafish larva to illustrate the performance on biological sam-
ples. The zebrafish cellular membranes are labeled with green fluorescent pro-
tein. The zebrafish larva is euthanized in ice water at the Erasmus Medical Cen-
ter, Rotterdam according to animal welfare regulations. Animal experiments are
approved by the Animal Experimentation Committee of the Erasmus MC, Rot-
terdam.

The zebrafish is mounted in agarose in our OPT system. The same experi-
mental parameters are used as for the fluorescent bead data, but for the zebrafish
imaging a total of 1791 sinograms are acquired covering a distance of 6.9 mm
along the rotation axis. The NA of the system is 0.02. For all 1791 slices, the to-
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mographic image is reconstructed using FBP and the PSF-based approach (no
slice averaging). Prior to the reconstruction, the sinograms are scaled to achieve
a better quantitative comparison of the two methods. The number of iterations
is evaluated for one slide and is set to two, for which good convergence of the
reconstruction is visually observed. Afterward this number of iterations is ap-
plied to the whole dataset. The reconstruction of the zebrafish larva is depicted
in Fig. 4.5. Figure 4.5(a) shows the reconstruction of a single transverse slice of
the data using FBP. Although the zebrafish structure is visible, the reconstruction
is corrupted by radial streak artifacts, shows significant blurring, and has limited
image contrast. Figure 4.5 (b) shows our PSF-based reconstruction of the same
transverse slice. Figure 4.5 (c) shows the anatomy of an optical cleared zebrafish
larva, of similar age, in transverse view obtained from transmission OPT from the
Zebrafish Anatomy Portal [23] and is used for anatomical reference. The quality
of the reconstructed image is significantly improved in terms of contrast, artifact
removal, and resolution. Figures 4.5 (d,e) show two cross sections through the
data that illustrate the large improvement in image contrast and resolution. In
our PSF-based reconstructed image the major anatomical parts are much better
resolved compared to the reconstruction using FBP (see Fig. 4.5 (a) and (b)). Sim-
ilar effects are visible in Figure 4.6, which shows a coronal cross-section through
the same data. Figure 4.6 (a) and (b) show the reconstruction using FBP and the
PSF-based reconstruction. Figure 4.6 (c) shows a transmission OPT image of the
anatomy of a 7-13 days old, optically cleared, zebrafish larva in coronal view [23].

4.5. Discussion and conclusion
We present a reconstruction algorithm routine, where the physical PSF is in-
cluded in the reconstruction. Our PSF-based image reconstruction approach
shows a significant improvement in OPT image quality compared to standard
FBP reconstruction. In contrast to other approaches, our method incorporates
the imaging geometry in the tomographic image reconstruction. As such we do
not rely on filtering or deconvolution methods applied in the sinogram or image
domain. A quantitative comparison of the quality of our image reconstruction al-
gorithm with other state-of-the-art image reconstruction techniques is currently
in progress [24]. The presented reconstruction method employs a 2-D recon-
struction, processing the data volume slice by slice. Despite this simplification,
excellent image quality is obtained. We attribute this to the fact that the zebrafish
has structures that, in general, vary slowly along the length of the zebrafish. In
principle our PSF-based approach could be extended to three dimensions, how-
ever, this would significantly increase the memory requirements of the routine
that performs the multiplication with the system matrix and its transpose, as well
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Figure 4.5: Transversal slice through the OPT reconstruction of a zebrafish larva. (a) FBP recon-
struction with anatomical structures indicated. (b) PSF-based reconstruction.(c) Anatomy of a 7-
13 days old optical cleared zebrafish larva [23], with anatomical features: (1) myotome, (2) spinal
cord, (3) precaudal vertebra, (4) pectoral fin, (5) anterior chamber swim bladder, (6) pancreas, (7)
intestinal bulb and (8) liver. (d) Cross-section in horizontal direction at line indicated in (a, b).
(e) Cross-section in vertical direction at line indicated in (a, b). In (d, e) the green dashed line
indicates the FBP and the blue solid line indicates the PSF-based approach.
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Figure 4.6: Coronal slice through the OPT reconstruction of a zebrafish larva (excluding the tail).
(a) FBP reconstruction with anatomical structures indicated. (b) PSF-based reconstruction. (c)
Anatomy of a 7-13 days old optical cleared zebrafish larva [23], with anatomical features: (1) in-
termandibularis, (2) ceratohyal, (3) opercular cavity, (4) opercle, (5) pectorial fin, (6) liver and (7)
intestinal bulb.

as the computation time. For the full image size of 1344 by 1024 pixels, this 3D
implementation is currently not feasible.

The reconstruction time for one slice using the PSF-based algorithm is cur-
rently about two minutes for one iteration. This potentially can be reduced by
converting the presented algorithm from MATLAB to another programming lan-
guage, such as C++, or using a GPU. Moreover, for a slice-based reconstruction
of three-dimensional objects, the reconstruction of different slices can be par-
allelized. A speed-up by a factor of 200 has been observed by Leeser et al. for
parallel slice processing [25]. Finally, since the PSF is varying slowly over many
of the grid-points, relatively few grid points sample the beam at its narrow waist
in the focal area. Hence, by representing the reconstruction problem in a differ-
ent set of basis functions, potentially the size of the reconstruction problem can
be reduced while obtaining the same reconstruction result.

In the reconstructions we observed that the convergence of the algorithm is
strongly related to the noise level in the projections. The presented fluorophore
bead data had an SNR, averaged over all the sinograms, of 31± 3 dB, whereas
the zebrafish data had an average SNR of 67 ± 10 dB. Moreover, the zebrafish
data is non-sparse compared to the bead data, which promotes convergence.
As a result, the reconstruction of the fluorophore beads needed 4000 iterations,
whereas the reconstruction of the zebrafish needed only 2 iterations to conver-
gence.

In its current implementation, the PSF-based reconstruction is without in-
cluding any prior information or regularization. Improvement of the conver-
gence of the optimization possibly can be achieved by masking the data or by
applying regularization methods. For example, for the sparse bead sample re-
construction, sparsity promoting `1 norm regularization, can aid in the recon-
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struction accuracy as well as in the convergence rate as was shown by [26].
The proposed reconstruction technique can be extended to even higher NAs,

potentially further improving the image resolution. Besides the significantly im-
proved image quality, our PSF-based reconstruction has the advantage that arbi-
trary beam shapes can be incorporated in the reconstruction. In addition, other
physical processes, such as refraction or scattering, can be included in the PSF-
based reconstruction [27]. The presented PSF-based reconstruction is useful in
other fields of optical tomographic imaging where beam propagation deviates
from the ideal straight ray such as in optical diffraction tomography, transmis-
sion OPT, electron tomography, terahertz tomography, and (phase-contrast) X-
ray tomography.
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Chapter 5

Comparison of image reconstruction
techniques in optical projection

tomography

We present a comparison of image reconstruction techniques for optical projec-
tion tomography. We compare conventional filtered back projection, sinogram
filtering using the frequency-distance relationship (FDR), image deconvolution,
and 2D point spread function (PSF) based iterative reconstruction. The latter
three methods aim to remove the spatial blurring in the reconstructed image
originating from the limited depth of field caused by the PSF of the imaging sys-
tem. The methods are compared based on simulated data, experimental opti-
cal projection tomography data of single fluorescent beads, and high-resolution
optical projection tomography imaging of an entire zebrafish larva. We demon-
strate that the FDR method performs poorly on data acquired with high numeri-
cal aperture optical imaging systems. We show that the deconvolution technique
performs best performance on highly sparse data with low signal-to-noise ra-
tio. The PSF-based reconstruction method is superior for non-sparse objects and
data of high signal-to-noise ratio.

5.1. Introduction
For the study of biological samples and small animals, such as zebrafish or (mouse)
embryos, optical tomographic imaging techniques, such as optical diffraction
tomography [1] and optical projection tomography (OPT) [2], are among the
standard imaging modalities. From these samples, projections of transmitted
or emitted (fluorescence) light are recorded. From these projections, an image
of the object is reconstructed using tomographic reconstruction techniques. In
OPT, a lens-based optical imaging system is used to image the sample onto the
detector. The optical system is characterized by the point spread function (PSF).

This chapter has been published as :
A. K. Trull, J. van der Horst, L. J. van Vliet and J. Kalkman Comparison of image reconstruction
techniques in optical projection tomography, Applied Optics, vol. 57, no. 8, pp. 1874-1882 (2018)
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Due to light diffraction, instead of collecting light along a straight path (line)
through the object, light from a sample volume, determined by the shape of the
PSF, is collected by the detector. For image acquisition with high numerical aper-
ture (NA) small depth of focus lenses, this results in efficient light collection from
the focal plane. However, light from regions far from the focal plane is ineffi-
ciently collected. Standard reconstruction techniques, such as filtered back pro-
jection (FBP), are based on the straight ray approximation, which neglects the
effect of light diffraction by the imaging lens [3]. Consequently, OPT images re-
constructed with FBP can suffer from severe image degradation.

Reconstruction algorithms, that include the PSF in the reconstruction, have
been developed for clinical tomographic imaging techniques such as PET [4],
SPECT [5], and X-ray CT [6]. Also, for optical tomographic imaging, various re-
construction techniques were developed to correct for the effect of the PSF, as in-
dicated in Fig. 5.1, where these techniques are divided in three categories. First,
correction for the effect of the PSF can take place before the reconstruction, ei-
ther by filtering the sinogram in real space using an iterative deconvolution [7] or
by a filtering the sinogram in Fourier space with a filter based on the frequency-
distance relation [8, 9]. In both cases these methods are directly applied to the
measured projection data and the processed sinogram is converted to an image
using FBP. Second, correction for the effect of the PSF can take place after recon-
struction using deconvolution of the image reconstructed with FBP [10]. Third,
we recently demonstrated correction for the effect of the PSF during the tomo-
graphic reconstruction process itself using iterative optimization [11].

In this work, we compare three advanced tomographic reconstruction meth-
ods, namely FDR followed by FBP [9], FBP followed by image deconvolution [10],
and 2D PSF-based reconstruction [11] that all correct for the effect of the optical
PSF, with the classical FBP [3]. First, we test all methods on their ability to reduce
tangential blurring in the reconstructed image using simulated data. In these
simulation experiments, we study the effect of SNR and numerical aperture on
the reconstruction error. Second, we compare the performance of all reconstruc-
tion algorithms on experimental data. Since no reference image is available for
experimental data, a no-reference or blind image quality assessment (NR-IQA) is
performed to provide an image quality measure that enables quantitative com-
parison of the quality of the different reconstruction techniques. Finally, we in-
dicate which algorithm to choose for objects that have different signal-to-noise
ratio and/or are imaged with different numerical apertures.
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Figure 5.1: Schematic overview of different tomographic reconstruction methods that correct for
the PSF [7, 9–11]. The left hand side indicates that the reconstruction is performed in real space,
the right hand side indicates that it is performed in Fourier space. The bottom side indicates that
the reconstruction is performed in sinogram space, the top side indicates that is performed in
image space. The dashed lines indicate conventional FBP reconstruction.

5.2. Theory of tomographic image reconstruction
5.2.1. General problem formulation
For the imaging geometry of OPT, see Fig. 5.2(a), light from the object is imaged
from the sample onto the detector using lenses. As a result the image of a point
source gives a blurred spot on the detector determined by the PSF h(x, y, z). In
general, the shape of the 3D PSF can be complicated as it is dependent on the
exact imaging geometry. It can be obtained using Fourier optics calculations,
optical simulations, or experimental measurement. For the case of incoherent
imaging of an object of which its structure varies slowly in the y direction, it was
shown [10, 11] that the projections are given by the convolution of the 2D object
f (x, z) by the 2D PSF |h(x, z)|2 as

p(s,θ) =
∞∫

−∞

∫
|h(x cosθ+ z sinθ− s, x sinθ+ z cosθ)|2 f (x, z)dx dz , (5.1)

where |h(x, z)|2 is the spatially variant incoherent PSF, s the lateral shift and θ ∈
[0,2π] the rotation angle. Equation 5.1 shows that the measured intensity on the
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detector is given by an integral over the object, which is illustrated in Fig. 5.2(b).
To facilitate a quantitative comparison of the different reconstruction algorithms
we use a 2D Gaussian PSF that is described by

|h(x, z)|2 =

∣∣∣∣∣∣∣∣∣
1√

1+
(

z
zR

)2
exp

− x2

w2
0

(
1+

(
z

zR

)2
)

∣∣∣∣∣∣∣∣∣
2

, (5.2)

where zR = πw2
0/λ is the Rayleigh range, w0 the Gaussian beam waist, and λ the

wavelength. For a Gaussian PSF, both the FDR filter and the image deconvolution
filter [10] can be analytically calculated. This enables a quantitative comparison.
However, the general results of our comparison hold for arbitrary beam shapes if
correctly implemented in the corresponding reconstruction algorithm.

Detector
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Figure 5.2: (a) Schematic overview of the optical projection tomography fluorescence imaging ge-
ometry. (b) 2D slice of the object and the Gaussian beam. The rotation angle is denoted by θ.

5.2.2. FBP reconstruction
Due to its fast reconstruction time and the easy concept FBP reconstruction is
still the most commonly used reconstruction technique in optical tomography.
In FBP a straight ray geometry is used over which the measured projection is back
projected onto the object. FBP is the correct reconstruction for the case of an
ideal imaging system where the PSF is described by |h(x, z)|2 = δ(x). This means
that irrespective of the distance of the object to the collection system the signal
from all pixels on a line through the object is collected onto a single detector
pixel. For |h(x, z)|2 = δ(x), Eq. 5.1 results in the standard Radon transform [3, 12]

p(s,θ) =
∞∫

−∞

∫
f (x, z)δ(x cosθ+ z sinθ− s)dx dz . (5.3)
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In this case the object can be retrieved by FBP as

f (x, z) =
π∫

0

∞∫
−∞

Pθ( fs)exp(i 2π fs s)| fs |d fs dθ , (5.4)

where Pθ(2π fs) is the 1D Fourier transform of the projection data at angle θ.
However, in case the PSF is not ideal, FBP reconstruction causes artifacts and/or
severe blurring in the reconstructed image. Next, we describe three algorithms
that incorporate the PSF before (FDR), after (image deconvolution) or during the
image reconstruction (PSF-based reconstruction).

5.2.3. FDR reconstruction
Originating from the field of X-ray CT, reconstruction methods that take the PSF
into account are algorithms based on the frequency-distance relationship (FDR)
[8, 9, 13]. FDR has been implemented for reconstructions of OPT tomograms
corrected for the out of focus deterioration of resolution due to the imaging sys-
tem [9]. In FDR the blurring of the sinogram in the Fourier domain is described
by

Pb( fx , fy ) = H( fx , fy )Po( fx , fy ) , (5.5)

where Pb( fx , fy ) is the Fourier transform of the blurred sinogram, H( fx , fy ) is the
filter based on the PSF describing the blurring, and Po( fx , fy ) is the Fourier trans-
form of the sinogram of the object with spatial frequencies fx and fy . The sys-
tem PSF is used to create an inverse filter H−1( fx , fy ) that is multiplied with the
Fourier transform of the sinogram to remove the blurring caused by H( fx , fy )
[13, 14]. For the Gaussian PSF in Eq. 5.5 the filter H( fx , fy ) is given by

H( fx , fy ) = 1(
1+ λ2 f 2

y

f 2
x π

2w 2
0

)√
w0

λ2 f 2
y

f 2
x

+π2w 2
0

×exp

(
− fx

8

(
λ2 f 2

y

f 2
x π

2w0
+ fxπw2

0

))
.

Analytical Derivation of the FDR filter for a Gaussian PSF
In the following, we derive the analytical inverse filter H( fx , fy )−1. Let us assume
a point source object located on the x-axis at distance l from the origin defined
as

f (x, z) = δ(x − l )δ(z). (5.6)

The PSF is defined as in Eq. 5.2. The blurred sinogram is then defined as

pb(s,θ) =
∫ ∫

δ(x − l cosθ)δ(z)|h(x cosθ+ z sinθ− s, x sinθ+ z cosθ)|2dx dz.
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Integration over x and z, with |h(x, z)|2 described by Eq. 5.2 leads to

pb(s,θ) = 1

1+ l 2λ2 sin2 θ
π2w 2

0

exp

− 2(s − l cosθ)2

w0

(
1+ l 2λ2 sin2 θ

π2w 2
0

)
 . (5.7)

The Fourier transform of the pb(s,θ) [14] is given by

Pb( fx , fy ) = 1

2π

∫ 2π

0

∫ ∞

−∞
pb(s,θ)exp(− j ( fx s + fyθ))ds dθ. (5.8)

Inserting Eq. 5.7 in Eq. 5.8 and integration over s leads to

Pb( fx , fy ) = 1

2π

∫ 2π

0

1
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y
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×exp
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− fx

8

(
fxπ

2w2
0 −8 j l cosθ+ fx l 2λ2 sin2θ

π2w2
0
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×exp(− j fyθ))dθ. (5.9)

An expression for the filter can be derived by assuming a stationary phase ap-
proximation, i.e., the function exp(− j fyθ+ j fx l cosθ) only takes on a non-zero
value if the derivative of this angle with respect to θ is zero, i.e.,

d

dθ
( fyθ− fx l cosθ) = fy + fx l sinθ = 0, (5.10)

which is equivalent to l sinθ =− fy

fx
. Evaluating this in Eq. 5.9 gives

Pb( fx , fy ) ≈ 1

2π
(
1+ λ2 f 2

y

f 2
x π

2w 2
0

)√
w0

λ2 f 2
y

f 2
x
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0

×exp
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− fx

8
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λ2 f 2

y
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x π

2w0
+ fxπ

2w2
0
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×
[∫ θ1+ε

θ1−ε
exp(g )dθ+

∫ θ2+ε

θ2−ε
exp(g )dθ

]
, (5.11)

where g = − j ( fx l cosθ + fyθ). From a similar derivation for an ideal imaging
system, which only contains the last term of Eq. 5.11 and using Eq. 5.5, it can be
derived that the unblurring FDR filter is
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H−1( fx , fy ) =
(
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5.2.4. Image deconvolution
A general approach for PSF correction is image deconvolution. However, in case
of tomographic reconstruction the PSF of the reconstructed image is a compli-
cated expression of the PSF of the imaging system with which the projections are
measured. For a Gaussian beam the 2D PSF of the FBP reconstructed image is
spatially varying with the coordinate x and coordinate y according to

PSF(x, y) =R−θ

(√
1

π2ay ax
exp

(
−

[
x2

ax
+ y2

ay

]))
. (5.13)

In Eq. 5.13 ax = w2
0/2 and ay =

(
w2

0 +
λ2r 2

0

π2w 2
0

)
/2, r0 is the location of the PSF in the

image domain and R−θ is an operator to perform a standard coordinate transfor-
mation over an angle [10]. From Eq. 5.13 it can be observed that the resolution
in the tangential direction deteriorates with increasing distance to the rotation
axis whereas the resolution in the radial direction is constant. Using a conver-
sion to polar coordinates the image can be successively deconvolved in the ra-
dial and angular direction using deconvolution (e.g., with the Lucy-Richardson
algorithm).

5.2.5. PSF-based reconstruction
An advanced reconstruction method is based on the inclusion of the imaging
system’s PSF into the tomographic reconstruction [11]. Given the measured pro-
jections p and the effect of imaging system PSF given by Eq. 5.2 as described by
the matrix A the object f can be reconstructed by solving

argmin
f

1

2
‖A · f−p‖2

2 , (5.14)

where || · ||22 denotes the Euclidean norm. Equation 5.14 can be solved using a
least squares optimization method.

5.3. Methods
5.3.1. Reconstruction algorithms
All tomographic reconstructions are performed on a computer with an Intel(R)
Xeon(R) CPU Processor (E5-1620 v3@3.50 GHz), 32 GB installed memory and a
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64-bit operating system. The data are processed using software written in the
commercial software package MATLAB (Mathworks, R2016a). The reconstruc-
tions with FBP are done with the MATLAB function iradon. The FDR method
is implemented using the analytical expression for the inverse filter H−1( fx , fy ),
derived in Section 5.2.3. After the FDR reconstruction, intensity thresholding is
applied to remove reconstruction artifacts. The thresholding is done individu-
ally for each dataset. For the simulations a thresholding of 0.04 (15.7% of the
peak value) is used. For the zebrafish dataset the threshold is set to 0.1 (2.5% of
the peak value).

The deconvolution and the PSF-based method implementations are identi-
cal to the original implementation of the methods [10, 11]. To enable a quantita-
tive comparison of the reconstructed images, all reconstructed images are scaled
using the scaling described in [11].

5.3.2. Image quality assessment
For both simulated and experimental data of point objects, the image quality is
determined from the width of the PSF in the reconstructed image. The full width
at half maximum (FWHM) is obtained from a bivariate Gaussian fit in a region
of interest around the image of isolated single objects with the width in the two
perpendicular dimensions as independent fit parameters.

Since no reference image is available for experimental data of spatially ex-
tended objects, a no-reference or blind image quality assessment (NR-IQA) is
used to compare the quality of the different reconstruction results. NR-IQA aims
to determine quantitative measures to objectively predict the quality of an image
based only on the image itself [15]. In our comparison, we use the signal-to-noise
ratio (SNR) and the sharpness provided by NR-IQA to assess the quality of the re-
constructed images.

It is assumed that both the image quality increases with increasing SNR and
image sharpness. In case of suboptimal performance, both these metrics are
lower. The SNR of an image is defined as

SNR = 20log

(
µsignal

σnoise

)
, (5.15)

where µsignal is the average image intensity in a signal mask region and σnoise is
the standard deviation of the image intensity in a noise region. The latter corre-
sponds to the region outside the signal mask [16].

First, a signal and a background mask are created for the image reconstructed
with every method. The signal mask comprises all pixels whose intensity is higher
than the average background signal plus four times its standard deviation. The
background mask is defined as the area of the image that is not in the signal
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mask. Hence, in the background mask the image intensity is smaller than the
average background signal plus four times its standard deviation. Second, the
intersection of the signal masks and background masks for all four reconstruc-
tion methods are estimated. This final signal mask is then used to estimate the
intersection signal in the image. The final background mask is used to estimate
the standard deviation of the background, which we use as a measure of the
noise. We use the intersection masks, since no ground truth of the signal and
noise regions is available. Hence, the intersection masks weighs each method in
the same way in the determination of the SNR.

Following the definition of De et al. [17] the sharpness in the image is defined
in the frequency domain of the image as the ratio F M according to

F M = T

M ·N
, (5.16)

where the T denotes the total number of pixels in the Fourier transform of the
image, that have a magnitude larger than the maximum magnitude divided by
1000. The Fourier transformed image is centered so that the zero-frequency
components are represented in the center of the spectrum. The denominator
contains the product of the image size of M times N in the two dimensions.
The use of the metric of Eq. 5.16 for image quality assessment is based on the
assumption that a sharper image will have a larger number of high frequency
components in the frequency domain compared to a blurred image, which has
mainly low frequency components.

5.3.3. Tomographic reconstruction simulations
Multiple images of size 5×5 mm2 (300 by 300 pixels) are generated with a circu-
lar Gaussian shaped object placed at a specific distance from the origin in every
image. The objects have a full width at half maximum (FWHM) in the x and
y direction of 125 µm. The object in the first image is located in the center of
the image, the object in the last image is located horizontally close to the edge
of the image. The Gaussian PSF is implemented for NA= 0.027 and NA= 0.053
and with a beam waist of w0 = 6 µm. The depth of field (DOF), defined as twice
the Rayleigh length, for NA= 0.027 is DOF= 48 µm and for NA= 0.053, the DOF
= 24 µm. The sinogram is blurred with the Gaussian PSF and then used as input
for the different reconstruction algorithms. After reconstruction, a Gaussian is
fitted to each reconstructed object and the FWHM of the object in the radial and
tangential direction is determined. Deconvolution of the FBP reconstructed im-
age is performed with the MATLAB function deconvlucy, with the number of iter-
ations set to 100. The maximum number of iterations of the PSF-based algorithm
for an NA of 0.027 is set to 4000 and for an NA of 0.053 to 6000. The convergence
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and optimal number of iterations is object, NA, and SNR dependent. For both
the deconvolution and PSF-based reconstruction convergence of the method for
the indicated number of iterations is validated visually. The absolute error of the
projections is estimated as ||Af−p||22, where A denotes the geometry matrix, f the
reconstructed image and p the projections with added noise.

5.4. Results

5.4.1. Image reconstruction comparison of simulations

Figure 5.3 shows the reconstruction as well as the tangential and radial FWHM
of the object located at a varying radial distance to the center of the image. A
sharp image on the detector is made for radial distance 0, which is the center
of rotation. In Fig. 5.3 (a) the original image and the reconstruction results us-
ing FBP, FDR, image deconvolution and PSF-based reconstruction are shown for
an NA of 0.027. It is clear that the FBP reconstructed image is severely blurred,
especially for objects far from the center. The FDR method produces side lobes
in the radial and tangential direction and has a lower peak intensity. Both de-
convolution and PSF-based reconstruction show a clear reduction in tangential
blurring compared to FBP. Figure 5.3(b) shows the fitted FWHM of the objects
for an NA= 0.027. The optimal resolution of the reconstruction is determined by
the sum of the variance of the PSF and of the object, subsequently converted to
FWHM, which is indicated for the tangential and radial directions. For the FBP
reconstruction, the width in the tangential direction increases significantly and
follows the theoretical prediction. The FDR method shows a significantly im-
proved result, albeit slightly above the fundamental limit for larger distances to
the origin. For small distances to the origin it is lower than the theoretical min-
imum. This difference is within the resolution of the simulation and attributed
to the non-Gaussian shape of the FDR reconstructed objects (e.g. the presence
of side lobes). The image deconvolution method and the PSF-based reconstruc-
tion technique, show an almost full reduction of the tangential blurring for all
radial distances. In the radial direction, all algorithms achieve diffraction lim-
ited resolution. A comparison of the PSF in the tangential direction is shown in
Fig. 5.3 (c) for an object at a distance of 2 mm from the center. In Fig. 5.3 (d)
the original image and the reconstruction results using FBP, FDR, image decon-
volution and PSF-based reconstruction are shown for NA= 0.053. For this higher
NA the FBP reconstructed image shows a stronger burring than in Fig. 5.3 (a).
While deconvolution and PSF-based reconstruction give good results, the FDR
method produces side lobes in the radial and tangential direction. Figure 5.3
(e) shows the FWHM of the same objects. The FBP reconstruction shows an in-
crease of the tangential width, which is now even larger for the high NA case. It
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Figure 5.3: Comparison of the ground truth and the reconstructed image. (a) The original image,
and the reconstructions using FBP, FDR, image deconvolution, and PSF-based reconstruction for
a PSF with an NA = 0.027. (b) Tangential and radial FWHM of the cavities for a PSF with an NA
= 0.027. (c) Cross-section of the reconstructions (shown in (a)) in the tangential direction for a
distance of 2 mm from the center. The solid black line indicates the input object. (d) The original
image, and the reconstructions using FBP, FDR, image deconvolution, and PSF-based reconstruc-
tion for a PSF with an NA = 0.053. (e) Tangential and radial FWHM of the cavities for a PSF with an
NA = 0.053. (f) Cross-section of the reconstructions (shown in (d)) in the tangential direction for a
distance of 2 mm from the center. The solid black line indicates the input object.
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can be observed that the deconvolution algorithm is able to reduce the tangen-
tial blurring, whereas PSF-based reconstruction performs less than ideal at large
distances from the center. The FDR gives a significant larger FWHM, especially
at large radial distances from the center. A comparison of the PSF in the tangen-
tial direction is shown for a distance of 2 mm from the center in Fig. 5.3 (f).

The previous simulations are performed for the noise-free case, i.e., the SNR
is infinite. However, the presence of noise influences the reconstruction result.
For iterative methods such as the deconvolution and the PSF-based reconstruc-
tion, the convergence rate and obtained optimal solution depend on the signal-
to-noise ratio in the projections. The influence of noise on the reconstruction
is studied for a single circular cavity object at a radial distance of 2 mm from
the center. Various amounts of noise are added to the projections. Figure 5.4 il-
lustrates the relation between the absolute error of the projections (according to
Eq. 5.14) and the number of iterations for a low (top) and a high (bottom) NA. For
reconstruction methods based on analytical methods, such as the FBP or FDR,
the absolute reconstruction error is similar for low and high SNR (lines overlap
in Fig. 5.4). For both NA’s the deconvolution approach, which takes the FBP as
input, gives a lower absolute error compared to FDR and FBP. Although decon-
volution is iterative, convergence is already reached after the first iteration. The
PSF-based reconstruction has the lowest absolute error compared to the other
methods for both high and low NA. For large number of iterations an amplifica-
tion of the reconstruction error can be seen. If not terminated, the reconstruc-
tion error for the PSF-based reconstruction grows. It may even exceed that of the
other methods. We noted that the number of iterations for which convergence is
observed depends on the object to be reconstructed. Hence, the optimum num-
ber of iterations needs to be determined for each dataset individually, which is
an object-dependent regularization.

5.4.2. Image quality of experimental OPT data

We investigate the reconstruction of single fluorescent bead emitters embed-
ded in an agarose emulsion measured with OPT. The experimental set-up is de-
scribed in more detail in [10], the main parameters of importance are briefly dis-
cussed. The experimentally determined Gaussian PSF has a beam waist in focus
of w0 = 6 µm, NA= 0.053, and the measured Gaussian beam shape is used in the
PSF-based reconstruction. A sharp image on the detector is made for radial dis-
tance 0, which is the center of rotation. The field of view of the experimental
data is 5.2× 5.2 mm2. In the lateral direction, the detector has 1344 pixels per
projection and 360 projections are acquired over 360 degrees with a one degree
spacing. The total dataset consist of 1024 sinograms covering a length of 4 mm
along the rotation axis. Subsequently, the 1024 sinograms are combined into 32
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averaged sinograms. The pre-processing is described in [11].
Figure 5.5 shows the reconstructions for a single averaged slice with the dif-

ferent methods. The tangential and radial blurring are clearly visible in Fig. 5.5 (a)
and Fig. 5.5 (b), where the image is reconstructed with FBP. For some beads, the
FDR reconstruction shows improvement over FBP, as shown in Fig. 5.5 (c). The
PSF-based reconstruction, shown in Fig. 5.5 (e), significantly reduces the blur-
ring in the radial and tangential blurring direction compared to Fig. 5.5 (b). The
greatest improvement is given by the deconvolution method, shown in Fig. 5.5
(d). Both the radial and tangential blurring are significantly reduced. The reso-
lution of the different methods applied to all four beads is quantitatively repre-
sented in Table 5.1.

We determined the sharpness metric and the SNR for the transverse slice

Table 5.1: FWHM resolution (µm) in radial direction for the FBP, the analytical FDR, deconvolution
and the PSF-based reconstruction for four fluorescent beads. The errors indicate 95 % confidence
intervals.

Method Direction
Bead

1 2 3 4

FBP
Radial 27.4±0.3 8.9±0.1 10.8±0.1 8.3±0.1

Tangential 57.1±0.6 17.3±0.3 42.6±0.3 35.4±0.5

FDR
Radial 25.1±0.4 5.1±0.1 8.48±0.5 6.975±0.1

Tangential 60.9±1.2 18.2±0.5 41.5±0.6 36.8±0.9

Deconvolution
Radial 7.5±0.1 3.8±0.1 5.9±0.1 3.8±0.1

Tangential 23.3±0.3 7.7±0.2 10.2±0.1 8.4±0.1

PSF-based
Radial 19.1±0.2 7.2±0.2 8.5±0.1 6.4±0.1

Tangential 33.8±0.4 10.1±0.3 25.4±0.3 24.3±0.4

reconstructed with all four methods. The lowest sharpness is given by the FBP
with a value of 0.05. The PSF-based reconstruction has a value of 0.0794. The de-
convolution shows a sharpness value of 0.18 and the FDR has a sharpness value
of 0.19. For all methods the SNR of the beads are quite similar. The PSF-based
method has an SNR of 29.9. The SNR of the FDR method is 29.2 dB, the FBP of
32.6 dB and the deconvolution has the highest SNR with 35.2 dB.

A second comparison of the reconstruction algorithms is done using OPT
imaging of a 10 days old transgenic zebrafish larva to illustrate the performance
on a biological sample. The zebrafish cellular membranes are labeled with green
fluorescent protein. The zebrafish larva is euthanized in ice water at the Erasmus
Medical Center, Rotterdam according to animal welfare regulations. Animal ex-
periments are approved by the Animal Experimentation Committee of the Eras-
mus MC, Rotterdam.
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Figure 5.5: Reconstructions using FBP, FDR, deconvolution and PSF-based reconstruction for a
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and tangential direction (green) of fluorescent beads. (a) FBP image reconstruction. (b) Zoom
in on individual beads in (a). (c) FDR reconstruction. (d) Image deconvolution. (e) PSF-based
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86 5. Comparison of image reconstruction techniques in OPT

The zebrafish is embedded in agarose and mounted in our OPT system [10].
The same experimental parameters are used as for the fluorescent bead data,
however the NA of the system is 0.027, which is lower than for the fluorescent
beads. For the zebrafish imaging a total of 1691 sinograms are acquired covering
a distance of 6.5 mm along the rotation axis. For all 1691 slices, the tomographic
image is reconstructed using FBP, FDR, deconvolution and the PSF-based ap-
proach (no slice averaging). The measured data is pre-processed as described in
[11]. Furthermore, the result of the FDR reconstruction is masked for visualiza-
tion purposes by the average mask used for the SNR estimation.

A qualitative comparisons of a transversal slices through the zebrafish belly
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Figure 5.6: (a) OPT image reconstructions of a single transverse slice of the zebrafish with the four
reconstruction techniques, as indicated. (b) Cross-section of the reconstructed intensity in the
tangential direction through the zebrafish belly, and (c) cross-section in radial direction through
the zebrafish tail.

and tail is shown in Fig. 5.6 for the four different reconstruction techniques. Com-
pared to FBP, deconvolution shows a small improvement in intensity and sharp-
ness. The FDR has a much higher contrast and shows less artifacts in between the
important biological structures. The PSF-based reconstruction shows the high-
est intensity and the least artifacts. Figure 5.6 (b) and (c), shows cross-sections
through parts of the zebrafish belly and tail from which similar conclusions can
be drawn.

A comparison of a coronal slice of the zebrafish reconstructed with the dif-
ferent algorithms is shown in Fig. 5.7 (center). For this slice, a similar conclusion
can be drawn as for the transversal slice. Only visually, deconvolution seems to
perform better than the FDR.

Quantitative comparison of the SNR along the length of the zebrafish shows,
see Fig. 5.7 (left), that FBP has the lowest SNR. The deconvolution method and



5.5. Discussion 87

the FDR have almost the same SNR, and the PSF-based reconstruction has the
highest SNR, which is almost 10 dB better than the other reconstruction tech-
niques. The sharpness of the image shows a similar behavior, shown in Fig. 5.7
(right). In general, the FDR and the FBP have the lowest sharpness value. The
sharpness of the deconvolution method is higher and the PSF-based reconstruc-
tion approach yields the highest sharpness value. The jump in SNR and sharp-
ness at slice 580 is due to the transition between the tail and the main body of
the fish, where two datasets were fused.
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Figure 5.7: Blind image quality comparison of the different reconstruction algorithms applied to
OPT zebrafish imaging. (left) Signal-to-noise ratio versus slice number. (center) A single coronal
slice through the zebrafish reconstructed with the four different reconstruction algorithms. The
different reconstruction methods are indicated in the legend. (right) Sharpness versus slice num-
ber.

5.5. Discussion
We compare three different state-of-the-art tomographic reconstruction meth-
ods that reduce the space-variant tangential blurring introduced by the optical
imaging system with the classical FBP. We applied the algorithms to simulated
data and experimental data of fluorescent beads and a zebrafish larva.

The deconvolution and PSF-based method give the best reconstruction re-
sults on simulated point source data. Especially for high NA imaging systems
they perform better than FDR. We attribute this to the fact that the FDR inverse
filter is an approximation that is only exact if the OTF of the imaging system
varies slowly over the rotation angle [8]. For this condition the stationary phase
approximation holds and a simple expression for the inverse filter can be de-
rived. Especially, for high NA optical imaging systems this condition is not met.
Consequently, the derived FDR filter is incorrect. Furthermore, in case of noisy
data, the FDR filter in the Fourier domain has regions, where a division is per-
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formed by values close to zero. This leads to an amplification of the noise, which
is a common problem in inverse filtering [18]. If further regularization of the FDR
is applied we expect that the reconstruction result can be improved. Another
improvement can be achieved by additional filtering of the sinogram, for exam-
ple by a Wiener filter, which can reduce noise amplification of the inverse filter
[9]. The PSF-based reconstruction is regularized indirectly by termination of the
reconstruction after the most optimal number of iterations. Hence, it is there-
fore more robust to noise than the conventional FDR. Additional regularization
of PSF-based reconstruction, such as Tikhonov or total variation minimization,
could lead to less noise amplification and faster convergence. In that case, we ex-
pect that the absolute error for the PSF-based approach would remain constant
after reaching the minimum reconstruction error.

The experimental data of the fluorescent beads demonstrates that the decon-
volution algorithm shows the best performance for sparse and low SNR objects.
Since the optimization landscape of the PSF-based approach for sparse and low
SNR objects is very flat and noisy, many iterations are necessary to find a good
and improved solution. Consequently, if the SNR would be higher for the bead
data, the PSF-based method should be able to reduce the blurring to a similar
level as deconvolution in a more useful time-frame, i.e., in less iterations. To en-
hance the convergence speed for sparse objects, more prior information can be
included in the reconstruction, for example an initial guess that is close to the
real solution could lead to better reconstruction results.

For extended and non-sparse objects, such as the zebrafish larva, the PSF-
based algorithm gives the best results, followed by the deconvolution approach.
We attribute the good performance of the PSF-based algorithm to the fact that
the intensities coming from an entire Gaussian shaped region is correctly at-
tributed to the measured projections. Hence, signal inconsistencies with the FBP
reconstruction are removed resulting in higher peak signals and a lower (noisy)
background. Since for non-sparse objects the total object signal is higher we ob-
serve fast convergence to the optimal result.

Obviously, analytical methods such as FBP, FDR, and deconvolution require
little computation time. Considering potential improvements in computer power
and improved coding of the algorithms we have focused on the obtained image
quality and not considered reconstruction run time in our comparison of the
different algorithms. However, for applications that require fast image recon-
structions, a choice may be made for faster methods such as FBP, FDR or de-
convolution at the expense of a lower image quality. Moreover, for the PSF-based
reconstruction, the user needs to make a few choices such as the maximum num-
ber of iterations and the tolerance of the method to obtain optimal results. Al-
though, we choose the number of iterations after visual inspection, the selection
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of the maximum number of iterations can be automated during the reconstruc-
tion process using the NR-IQA image quality metrics presented here.

In this work we focused on the image quality improvement by of tangential
and radial blurring in OPT image reconstruction. The image quality is defined
by the FWHM of point-like objects as well as the SNR and a sharpness metric.
Multiple factors influence which reconstruction technique performed best, such
as sparsity in the image domain, the NA of the imaging lens, and the SNR of the
imaged object. As a recommendation, we advise to reconstruct sparse objects in
almost all cases with deconvolution. In cases where the PSF cannot be described
by a simple analytical expression we recommend the PSF-based reconstruction,
which gives similar results for high SNR data. For low NA tomographic imaging
of non-sparse objects we recommend the PSF-based reconstruction, as it gives
superior image quality.

5.6. Conclusion
In this paper, we compared various tomographic image reconstruction techniques
that take the PSF into account. For high SNR and non-sparse objects the PSF-
based reconstruction yields superior performance. For sparse objects, deconvo-
lution shows the best performance.
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Chapter 6

3D PSF-based image reconstruction in
optical tomography

In this chapter an extension of the two-dimensional point spread function (PSF)
based reconstruction algorithm of Chapter 4 [1] to three dimensions is presented.
We compare in simulations the filtered back projection, and the 2D/3D PSF-
based reconstructions with each other. As a proof of principle, the 3D PSF-based
algorithm is applied to high-resolution emission optical projection tomography
imaging data of a zebrafish larva. We show that the 3D PSF-based reconstruc-
tion, when properly initialized, gives an improved signal-to-background and im-
age quality compared to the 2D PSF-based reconstruction.

6.1. Introduction
Optical imaging is an important modality for pre-clinical screening of cells and
small animals [2, 3]. Various pre-clinical optical imaging techniques are avail-
able. Optical coherence tomography (OCT) is a highly successful optical tomo-
graphic technique based on interferometric imaging of the optical back-scattering
tissue. Optical projection tomography (OPT) [4] is a high-resolution optical imag-
ing technique in which the sample is optically cleared to reduce the scattering of
the tissue.

In X-ray CT, straight ray-like propagation enables the perfect selection of in-
dividual lines and slices. However, in optical tomography, imaging is, due to
diffraction, inherently a 3D process. In this case, the signal processing and image
reconstruction need to be performed in 3D. However, in general the 3D imag-
ing process is difficult to implement in the reconstruction and usually 2D recon-
structions are stacked onto each other to create a 3D image. For OPT, various 2D
image processing methods were developed to correct for the effect of the point
spread function on the reconstructed image [1, 5–8]. The effect of the 2D point
spread function is visible in a radial and tangential blurring whenfiltered back
projection (FBP) is used for reconstruction. The further an object is away from
the center of rotation the higher is the amount of radial and tangential blurring
of the object. However, none of these techniques has been implemented in 3D.

93
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Here an extension of the two-dimensional point spread function (PSF) based al-
gorithm of Chapter 4 [1] to three dimensions is presented.

6.2. Theory
In optical projection tomography (OPT), the goal is to determine the spatial dis-
tribution of absorption or emission strength of an object f (x, y, z) from its pro-
jections. In emission OPT, the object is assumed to be homogeneously illumi-
nated with light from the excitation source resulting in an excitation rate that is
constant over the object f . A small fraction of the excitation light is absorbed
and emitted isotopically. Hence, it is assumed that variations in local emission
strength are caused by variations in fluorophore concentration only.

Projections of the optical emission are made by lenses that image light from
the sample onto the detector. As a result, the image of a point source on the de-
tector is blurred by the optical point spread function (PSF). The three-dimensional
Gaussian PSF is defined as

|h(x, y, z)|2 =
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, (6.1)

where zR = πw2
0/λ is the Rayleigh length (half the depth of focus). The numer-

ical aperture is given by NA = w0/zR . Following the derivation given in [1], the
measured projections for emission OPT are given as

p(sx , sy ,θ) =
∫ ∞∫
−∞

∫
f [(x − sx )cosθ+ z sinθ, y − sy , (x − sx )sinθ− z cosθ]

×|h(x, y, z)|2 dx dy dz , (6.2)

where |h(x, y, z)|2 denotes the PSF, f denotes the object, sx , sy describes the shift
of the object in the x and y direction and θ ∈ [0,2π]is the rotation angle.
In a 2D description, the sample is assumed to vary only slowly in the y direction
and the 3D integral becomes a 2D integration over the object [1, 8]. This is indi-
cated in Fig. 6.1 for a PSF where the center of rotation is imaged onto the detector
showing the 2D object integration area and 3D object integration volume.

The projection data p(s,θ) is not measured in a continuous way, as defined
by Eq. 6.2, but is sampled at discrete positions for a finite set of angles. The
projection of Eq. 6.2, p(sx , sy ,θ), is limited to a finite integration area D given
by D ∈ [−l/2, l/2, l/2)] for offsets sx , sy ∈ [−l/2, l/2] and l is the size of the field
of view. The projection is then represented by a matrix multiplication with the
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Figure 6.1: Illustration of the influence of the 2D PSF (left) and 3D PSF (right) on the reconstructed
image as a beam-intensity weighted integration over an area or a volume of the object. The center
of rotation is indicated by the red +.

object f discretized by sampling f (x, y, z) on a regular cell-centered grid, within
the cubic object domain D3 at locations xi ,yi , z j , with i = 1,2, . . . ,n, j = 1,2, . . . ,n
where n is the number of pixels in each direction of the object and equal to the
number of lateral pixels of the square detector. This leads to an image matrix
of f (xi , yi , zi ) ∈ Rn×n×n , which is stacked in a vector f ∈ Rn3

. The convolution
of Eq. 6.2 is discretized into a geometry matrix A ∈ Rm×n×n,n3

, with m the num-
ber of projection angles. The acquisition domain of the measured projections

are the set of samples (si
x , s j

y ,θk ), with k = 1,2, . . . ,m. The discrete projections

p(si
x , s j

y ,θk ) ∈Rn,n,m are stacked into a vector p ∈Rn×n×m,1.
After discretization, the object f can be reconstructed by finding a solution to

the optimization problem

argmin
f

1

2
‖A · f−p‖2

2 , (6.3)

where || · ||2 denotes the Euclidean norm. Equation 6.3 can be solved using a
least-squares optimization method based on conjugate gradients.

6.3. Methods
The calculations are performed on a high-performance computer with two In-
tel(R) Xeon(R) Processors (E5-2698 v4@2.2GHz, 50MB Cache and 20 cores), 256
GB installed memory and a 64-bit operating system. The most important pa-
rameter of the high-performance computer is the size of the memory as a large
memory is required to store the entire reconstructed volume and all the mea-
surements. The data are processed using software written in the commercial
software package MATLAB (Mathworks, R2015a).
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The algorithm presented in Chapter 4 [1] is extended to three-dimensions.
For the optimization of Eq. 6.3 the MATLAB function lsqr is used. The input
parameters are the projection data p(sx , sy ,θ) and the beam parameters w0 and
zR . An initial guess of every slice is either a zero image input or the image that
resulted by the 2D PSF-based reconstruction method. Instead of requiring a pre-
computed version of A, the MATLAB function lsqr allows providing a routine that
evaluates multiplication by A and its transpose for every angle individually. Here,
multiplication by A corresponds to (PSF-based) forward projection of an image
in object space, and multiplication by the transpose of A corresponds to (PSF-
based) back-projection of a sinogram onto an image in object space. A flow dia-
gram for calculating the forward and backward projection and the 3D PSF-based
reconstruction is shown in Fig. 6.2.The reconstruction algorithm uses the built-
in MATLAB function imrotate with bilinear interpolation to obtain the object at
different angles. In the forward direction, for every individual angle, the PSF is
translated over the sample, so the forward model for a projection has the struc-
ture of a two-dimensional convolution in the lateral x and y directions. The con-
volution is implemented by a multiplication of the 2D Fourier transform of every
object slice (x-y place) with the Fourier transform of the PSF in that plane. This
is followed by an inverse Fourier transformation. Subsequently, a sum is taken in
the propagation direction z. After the forward projection, the backward projec-
tion is calculated using the adjoint/transpose variants of these steps described
above in reverse order. We zero-pad the sinogram to twice its size in both lateral
directions to avoid aliasing.

Since no reference image is available for experimental data of spatially ex-
tended objects, a no-reference or blind image quality assessment (NR-IQA) is
used to compare the quality of the different reconstruction results. In our com-
parison, we use the signal-to-noise ratio (SNR) and the sharpness provided by
NR-IQA to assess the quality of the reconstructed images. More details on NR-
IQA can be found in Chapter 5 [9].

6.4. Results

6.4.1. OPT reconstruction simulations

A synthetic 3D object is generated that consists of spherical objects located at
different radial and axial positions, shown in Fig 6.3. For every angle the object
is convolved with a three-dimensional PSF with λ= 999 nm and a beam waist of
w0 = 6 µm (Rayleigh length zR = 113.21 µm), with the PSF and the center of the
object on the rotation axis (center of the object in focus on the detector). The
resulting blurred sinogram is used for the reconstruction per slice using FBP and
2D PSF-based reconstruction, and as a complete dataset for the 3D PSF-based re-
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Figure 6.2: Flow diagram of the 3D PSF-based tomographic reconstruction algorithm. FT denotes
2D Fourier transformation.
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construction. The original object is shown in the first row of Fig. 6.3. The second
row of Fig. 6.3 shows the intensity projection in the axial and transverse direction
of the FBP reconstruction. The FBP performs a two-dimensional reconstruction
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Figure 6.3: Transverse cross-sections and axial projections of the original input image and the
reconstructions obtained by FBP, 2D PSF-based reconstruction, and 3D PSF-based reconstruction.
The axial image shows a projection of the spherical objects over the slices.

and does not include the three-dimensional shape of the PSF. This leads to a ra-
dial and tangential blurring of the spherical objects and an axial blurring over the
slices. The reconstruction result of the 2D PSF-based reconstruction is shown in
the third row of Fig. 6.3. A reduction of the radial and tangential blurring is visi-
ble. However, in the axial direction the blurring is still strong as the 2D PSF-based
reconstruction method does not correct for blurring in the axial direction. The
best result is achieved by applying the 3D PSF-based reconstruction algorithm.
In this case the blurring in the transverse plane and along the axial direction is
fully removed.

6.4.2. Zebrafish larva OPT image reconstruction
The 3D PSF-based reconstruction is applied to an OPT scan of a 10 days old
transgenic zebrafish larva in which the zebrafish cellular membranes are labeled
with green fluorescent protein. The zebrafish larva is euthanized in ice water at
the Erasmus Medical Center, Rotterdam according to animal welfare regulations.
Animal experiments are approved by the Animal Experimentation Committee of
the Erasmus MC, Rotterdam.

The zebrafish is mounted in agarose in our OPT system. The zebrafish dataset
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has a total number of 1691 slices covering a distance of 6.5 mm along the rota-
tion axis. Due to the large memory and calculation time for the 3D-PSF-based
reconstruction, only a subset of 300 slices is taken from the dataset of the lower
part of the zebrafish. The imaging system has an NA= 0.027 and a beam waist of
w0 = 6 µm, which leads to a Rayleigh length of zR = 222 µm. More information
on the experimental setup is given by [8]. The intensity of the reconstructed data
is pre-processed and scaled as described in [1].

The reconstruction results are shown in Fig. 6.4. Figure 6.4 (a) shows the re-
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Figure 6.4: Reconstruction results of the 2D and 3D PSF-based reconstructions applied to a ze-
brafish larva. (a) 2D PSF-based reconstruction result after 2 iterations. (b) 3D PSF-based recon-
struction result after 80 iterations with zero image as initialization. (c) 3D PSF-based reconstruc-
tion with 2D PSF-based reconstruction as initialization after 5 iterations. (d) Difference image
computed from (c) minus (a). (b) and (c) have the same intensity scale bars as (a).

sult of the 2D PSF-based reconstruction result after 2 iterations. Figure 6.4 (b)
shows the 3D PSF-based reconstruction result with a zero image as input after
80 iterations. No significant improvement was observed in the image quality in
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the last 10 iterations. Clearly, the image quality is less than the result of the 2D
PSF-based reconstruction. Figure 6.4 (c) shows the 3D PSF-based reconstruc-
tion result using the 2D PSF-based reconstruction as input after 5 iterations, af-
ter which a sharp image was observed. The 3D PSF-based reconstructed Image
is sharper and has a significantly improved signal to background compared to
the result of the 2D PSF-based reconstruction. This is quantified with the differ-
ence image between the results of the 2D and the 3D PSF-based reconstruction,
6.3 (c)-(a), which is shown in (d). From the difference image it can be observed
that the 3D PSF-based reconstruction method has a higher signal intensity at the
edge and a lower intensity at the center. For the 3D PSF-based method initialized
with a zero input image no improvement in the image quality is observed after
80 iterations. Small differences between the result of the iterations are observed,
but no convergence to useful result is observed. We attribute this to the presence
of a flat optimization landscape. However, convergence to an improved image
is obtained in a few iterations if an initial solution of the object that is close to
the optimal solution is provided. We attribute the bad result of the 3D PSF-based
reconstruction, when a zero input image is used, to the presence of a very flat
and noisy optimization landscape and/or that the algorithm ends in a local min-
imum. Furthermore, a poor reconstruction result can be assigned to a properly
initialization with was choses far away from the optimum solution. When prop-
erly initialized close to the optimum, convergence to an improved image is ob-
tained in a few iterations.

The reconstruction time of the 3D PSF-based reconstruction is 11.5 hours for
one iteration of the dataset consisting of 950×950×300 voxels. This corresponds
to a reconstruction time of 2.5 min per slice per iteration, which is similar to the
reconstruction time for the 2D PSF-based reconstruction of 2 min per slice per
iteration. Hence, the 3D implementation demonstrated here does not add sig-
nificantly more calculation time to the reconstruction process.

A comparison of a coronal slice of the zebrafish reconstructed with the dif-
ferent reconstruction algorithms is shown in Fig. 6.5 (center). The quantitative
comparison of the 2D and 3D PSF-based reconstructions are determined with
NR-IQA SNR and sharpness estimation on each slice individually, as shown in
Fig. 6.5 (top) and (bottom). The FBP has the lowest SNR and sharpness values
for all slices. The 3D PSF-based reconstruction performs best for both the SNR
and the sharpness for all slices. The SNR of the 3D approach is almost 20 dB
higher than the 2D reconstruction technique. Furthermore, the sharpness of the
3D approach is almost twice as high compared to the 2D PSF-based approach.
Both metrics demonstrate the superior performance of the 3D tomographic re-
construction algorithms presented here.
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Figure 6.5: Blind image quality comparison of the two reconstruction algorithms. From top to
bottom: Signal to noise ratio (dB) versus slice number, a coronal slice through the zebrafish recon-
structed with FBP, the 2D PSF-based reconstruction, 3D PSF-based reconstruction, and sharpness
versus slice number. The different reconstruction methods are indicated in the legend.
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6.5. Discussion and conclusion
We present a 3D extension of the 2D PSF-based reconstruction algorithm pre-
sented in chapter 4 [1]. This reconstruction technique is computationally, in
memory and run time, very demanding. Moreover, it does not converge in a
useful timeframe (< 100 iterations) to a better reconstruction result compared
to the 2D PSF-based approach if a zero image is used as an initialization. The
convergence speed of the 3D PSF-based reconstruction improves if the 2D PSF-
based reconstruction is used as an input and for a zebrafish yields a sharp image
in approximately 5 iterations. Moreover, this image is sharper than the 2D recon-
structed image indicating the importance of fully accounting for the 3D imaging
geometry in the reconstruction. Similar to the 2D PSF-based reconstructions the
3D PSF-based reconstruction is regularized indirectly by setting a limit on the
number of iterations. It is potentially possible to improve the convergence of the
3D PSF-based algorithm by adding regularization to the optimization process.
These regularizations could be based on Tikhonov or total variation regulariza-
tion, which sets a penalty on the gradients in the reconstructed image. Alterna-
tively, a non-negativity constraint can be implemented to prevent values smaller
than zero in the reconstruction.

In summary, we showed, as a proof of concept, a full 3D PSF-based tomo-
graphic reconstruction. Albeit that the 3D algorithm is computationally expen-
sive and memory demanding, it gives an improved signal-to-background and
sharpness compared to FBD and 2D PSF-based reconstruction if the 2D PSF-
based reconstruction result is used to initialize the optimization process.



References 103

References
[1] A. K. Trull, J. van der Horst, W. J. Palenstijn, L. J. van Vliet, T. van Leeuwen,

and J. Kalkman, “Point spread function based image reconstruction in op-
tical projection tomography,” Phys. Med. and Biol., vol. 62, no. 19, pp. 7784-
7797 (2017).

[2] J. Hickson, “Seminar article: In vivo optical imaging: Preclinical applica-
tions and considerations,” Urol. Oncol., vol. 27, no. 2, pp. 295-7 (2009).

[3] Advanced pre-clinical optical imaging, Perkin Elmer product note, (2015).

[4] J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Bal-
dock, and D. Davidson, “Optical projection tomography as a tool for 3D mi-
croscopy and gene expression studies,” Science, vol. 296, no. 5567, pp. 541–
545 (2002).

[5] W. Xia, R. M. Lewitt, and P. R. Edholm, “Fourier correction for spatially vari-
ant collimator blurring in spect,” IEEE Trans. Med. Imaging, vol. 14, no. 1,
pp. 100-115 (1995).

[6] J. R. Walls, J. G. Sled, and J. Sharp, “Resolution improvement in emission
optical projection tomography,” Phys. Med. Biol., vol. 52, no. 10, pp. 2775–
90 (2007).

[7] B. Recur, J. P. Guillet, I. Manek-Hönninger, J. C. Delagnes, W. Benharbone,
P. Desbarats, J. P. Domenger, L. Canioni, and P. Mounaix, “Propagation beam
consideration for 3D THz computed tomography,” Opt. Express,vol. 20,
no. 6, pp. 5817–5829, (2012).

[8] J. van der Horst and J. Kalkman, “Image resolution and deconvolution in
optical tomography,” Opt. Express, vol. 24, no. 21, pp. 24460–24472 (2016).

[9] A. K. Trull, J. van der Horst, L. J. van Vliet, T. van Leeuwen, and J. Kalkman,
“Comparison of image reconstruction techniques for optical projection to-
mography,” Appl. Opt., vol. 57, no. 8, pp. 1874-1882 (2018).





Chapter 7

Conclusion and outlook

This dissertation presents novel reconstruction methods for high-resolution to-
mographic imaging and characterization of highly scattering (thick) and trans-
parent samples. The latter is achieved by quantification of optical material pa-
rameters for planar samples in transmission optical coherence tomography
(OCT) and for three-dimensional objects with optical coherence projection to-
mography (OCPT). In the remainder of this chapter, we present the main con-
clusions and provide recommendations for future research. Thereby we focus
is on improving the image and signal information content, image quality after
tomographic reconstruction, imaging and reconstruction speed, and enabling
subsequent image segmentation.

7.1. Optical signal processing for quantitative tomographic
imaging

Estimation of optical material properties is important for assessing the condi-
tion, both structural and functional, of tissues and to monitor changes thereof.
In Chapter 2, the modeling of the transmission optical coherence tomography
(OCT) signal was presented. We presented how the group refractive index, group
velocity dispersion, and optical attenuation for different types of materials can
be computed from the measured interference signal. Experimentally, we ob-
tained a good agreement for various materials between our estimates of group
refractive index, group velocity dispersion, as well as the mean and wavenumber-
resolved attenuation coefficient with values reported in the literature. In princi-
ple, all these properties could be used for optical tomography. However, since
the recorded signal in transmission OCT can be small, and therefore noisy, to-
mographic reconstruction can be challenging.

A reliable measurement of the optical properties in transmission OCT is dif-
ficult, especially at the low light levels that predominantly occur at both edges
of the source spectrum. In that case, noise becomes an important component
in the detected interference pattern and strongly influences the outcome of the
Hilbert transform and the estimations that are based on it. The effect of noise
on the Hilbert transform is described in multiple publications. Liu and Groves
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[1] presented various methods to perform envelope detection in combination
with band-pass filtering of a noisy signal. They showed that median filtering can
be used for envelope detection. They also showed that using the autocorrela-
tion of the OCT signal, with a bandpass filter and 2-D median filter applied be-
fore and after the demodulation, performs better than Hilbert transform-based
techniques, when a large amount of noise is present. With more accurate phase
measurements, the group refractive index and group velocity dispersion (GVD)
estimation potentially could be improved. Pavlicek [2] showed for uncorrelated
signal noise that the noise in both the envelope and phase of the Hilbert trans-
form are correlated, i.e., a small signal amplitude gives rise to a large phase noise.
Therefore, a square-shaped source spectrum is favorable for estimation of the
phase as well as GVD, which are based on a fit of the phase over the entire spec-
tral bandwidth.

Besides noise, the use of a larger spectral bandwidth enables improved dis-
crimination of ballistic light from scattered light, thereby improving refractive
index and attenuation coefficient measurements in turbid media. This is espe-
cially useful when measuring in strongly scattering or thick samples.

Potentially, information about the sample, such as the scattering anisotropy,
can be retrieved from the scattered light distribution, e.g., by fitting a light trans-
port model to the optical path length distribution. However, this is challenging
considering the complexity of the light transport model and the accurate incor-
poration of the beam geometry.

7.2. Tomographic image quality
Because of the shallow depth of focus of the optical imaging system, the use of
standard filtered back projection in optical projection tomography causes space-
variant tangential blurring that increases with increasing distance to the rotation
axis. In Chapter 4, we present a least-squares optimization approach for the opti-
cal tomographic imaging problem, ||Af−p||22, which reduces the tangential blur-
ring by incorporating the optical point spread function (PSF) in the tomographic
reconstruction. Although this method gives good results, the convergence to the
optimal solution can be rather slow.

For the PSF-based reconstruction, it can be noted that reduction of the tan-
gential blurring is more difficult for high NA optical systems. We tested the PSF-
based method on simulated data for various NAs and observed that it did not
perform well for NAs > 0.1, i.e., significantly larger than the ones used in Chapter
4-6.

As we show in Chapter 5, this specifically can be a problem for sparse objects
of low SNR that are acquired with high NA optics. A possible way to improve the
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image quality is the addition of a regularization term to the optimization prob-
lem. When regularized, an extra term +λR(f) is added to the objective function
||Af−p||22, where R(f) denotes the regularization operator and λ is a tuning pa-
rameter that can be varied in order to increase or decrease the regularization
strength. Possible regularizers to the reconstruction can impose a non-negativity
constraint on the solution or promote sparseness of the solution regularized by
the l1-norm of the object.

In our current implementation of the PSF-based tomographic image recon-
struction, we assumed that the object does not influence the propagation direc-
tion of the light through the object. In general, this is not the case as refraction
can cause rays to deflect from their trajectory. To incorporate these effects in
image reconstruction, the reconstruction problem is reformulated into

||A(f)f−p||22, (7.1)

where A(f) describes a geometry matrix that depends on the optical parameter
that is to be reconstructed. An algorithm taking into account ray refraction can
work in the following way. First, the object f1 is reconstructed with A(f0), where
f0 is a homogeneous sample object. Second, a new geometry matrix A(f1) is es-
timated from the reconstructed object f1 with A(f1) describing the effect of ray
refraction. Third, an improved estimate of the object is determined with the
improved geometry matrix A(f1). This process is iterated until convergence is
reached.

The 2D PSF-based reconstruction was extended to include the
three-dimensional shape of the focusing beam in the object. However, existing
methods such as deconvolution and FDR (frequency-distant relationship) po-
tentially also can be extended to three dimensions and a comparison of their per-
formance in 3D, similar to the one presented in Chapter 6, would be of interest.
Furthermore, for the PSF-based reconstruction it is relatively simple to change
the beam shape, which means that it is possible to include PSFs for imaging sys-
tems with a large depth of focus such as astigmatic beams or Bessel beams. The
PSF-based reconstruction algorithms also can be applied to imaging techniques
where beam propagation deviates from the ideal straight ray. This is present in
any tomographic technique where the wave nature of the used radiation plays
an important role such as in Terahertz imaging and ultrasound imaging.

More recently, machine-learning techniques for 2D and 3D image reconstruc-
tion have been developed. For example, it has been shown that artificial neu-
ral networks (ANN) can be used to reconstruct the 3D refractive index of holo-
graphic optical phase microscopy images [3], where ANNs are used to reduce the
effects of limited angle tomography (±45◦ acquisition angles). Kamilow et al. [3]
showed that the forward propagation and the backpropagation can be used to
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construct a training set from which improved tomographic reconstructions can
be obtained. Cierniak presented neural networks in the context of tomographic
reconstructions from projections for parallel and fan-beam geometries [4]. He
showed that instead of the conventional filtered backprojection a simple back-
projection is performed with the filtering being performed using recurrent neu-
ral networks. Batenburg and Kosters [5] applied ANN to problems in real-time
discrete tomography. They showed that neural networks are extremely fast, but
that the training of the neural network itself can take a substantial amount of
time. Potentially, in deep learning, the neural network could learn the geometry
of the imaging system if sufficient imaging examples are included in the training
data.

7.3. Imaging speed and reconstruction time
In Chapter 4, 5, and 6 we presented and compared various tomographic image
reconstruction techniques. The challenge in image reconstruction is to recon-
struct a high quality image or volume in a useful timeframe. Various parameters,
such as the number of angles, number of pixels, signal to noise ratio, and stop-
ping criteria, have an influence on the computation time of the reconstruction.
Furthermore, depending on the type of image reconstruction algorithm the re-
construction time can vary significantly.

The reconstruction time for one slice using the 2D PSF-based algorithm is
currently two minutes per iteration, which can be a severe drawback if these al-
gorithms are used for high-throughput imaging. A way to reduce the reconstruc-
tion time is to choose fewer projection angles but distributed in a more optimal
way over the entire acquisition range to improve the convergence of the recon-
struction algorithm [6]. Since the measurements are redundant, especially for
sparse objects, optimization-based approaches can be used to reconstruct an
image also when fewer angles are used. When only a limited range of angles is
sampled, so-called limited angle tomography, the data is incomplete and leads
to artifacts in the reconstructed image. Due to the flexibility of the geometrical
definition in the A matrix, the PSF-based reconstruction method can be modified
with little ease to incorporate limited angle or random angle acquisition.

Figure 7.1 shows an example of the implementation of limited angle tomog-
raphy on the Shepp-Logan phantom. Figure 7.1 (a) shows the reconstruction us-
ing all 360 projections measured at 1 degree interval. In Figure 7.1 (b) the object
is reconstructed using only the first 90 projections. In this case strong streak arti-
facts and missing boundaries are visible, similar as described by [7]. An improved
image can be achieved by `1 minimization, which employs prior knowledge re-
garding the sparseness of the underlying object. Thereby, the conventional min-
imization problem is reformulated to a linear programming problem
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(a) (b) (c)

Figure 7.1: Limited angle tomography and reconstruction. (a) FBP reconstruction using 360 pro-
jections at 1 projection per degree, (b) FBP reconstruction using only the first 90 angles. (c) Re-
construction of the data in (b) after 30 iterations of the `1 minimization problem using the same
framework as used for the PSF-based reconstruction,

argmin
f

‖f‖1 s.t. ‖A · f−p‖2 < ε. (7.2)

The reconstruction result of this approach is shown Fig. 7.1 (c) and shows that
a better result is achieved by reformulating the inverse problem to an `1 mini-
mization problem.

In its current implementation, the PSF-based 2D and 3D reconstructions,
presented in Chapter 4-6, are used without including any prior information or di-
rect regularization. Improvement of the convergence for non-sparse data could
be achieved by masking the data or by applying regularization methods. For ex-
ample, for the sparse bead sample, sparsity promoting `1 norm regularization in
the reconstruction can improve the reconstruction accuracy as well as the con-
vergence rate as shown by Kim et al.[8]. Another improvement is to include the
no-reference image quality assessment metrics, used in Chapter 4, as an auto-
matic stopping criterion in the optimization approach. It may terminate the al-
gorithm at the earliest time when the image quality exceeds a pre-defined thresh-
old and may avoid overfitting to the noise in the data.

7.4. Image segmentation
In Chapter 3, segmentation techniques such as thresholding, manual delineation,
k-means and region growing are used. Since the imaged objects are in 3D, ex-
tension of the segmentation algorithms to 3D potentially can improve the seg-
mentation result. For example, a three-dimensional region growing algorithm
would then also include the intensity differences along the rotation axis. The
seed would then be placed in a three-dimensional space and not in each slice.
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In order to avoid the introduction of errors in the reconstruction phase that
will hinder subsequent segmentation, the image reconstruction and segmenta-
tion can be combined in a single step, with the potential for improved overall
performance. An example how to combine segmentation and reconstruction
was demonstrated for limited angle X-ray tomography by Yoon et al. [9]. The
coupling between reconstruction and segmentation was done by alternatively
performing a level set segmentation and image intensity updates of the recon-
struction. Another combination of reconstruction and segmentation is intro-
duced by Romanow [10]. He used the image segmentation as a smoother for
the reconstruction, where the segmentation information is included by a hidden
Markov field. The model assumes prior knowledge about the number of material
classes and the hidden Markov field returns the pixel wise probability that a spe-
cific pixel belongs to a specific class. The segmentation is found by selecting the
most probable class for each pixel. Combining reconstruction and segmentation
could not only help to improve the segmentation, but also the reconstruction
result. However, this approach is only useful in case the object has a discrete dis-
tribution of components [11].

7.5. Applications of the thesis work
For medical applications, the zebrafish is one of the most important models to
study human diseases, such as cancer, Duchenne muscular dystrophy, and dia-
betes, and many other diseases [12, 13]. The methods and results, such as the
zebrafish organ parameter estimation shown in Chapter 3, can lead to further
insight in disease onset and progression, which potentially can lead to better
treatment. For example, Wang et al. [14] showed that cancer alters the refractive
index, which can be used as a marker for cancer diagnostics. Therefore, OCPT
and tissue quantification techniques may enable the detailed study of cancer
development in small animals. To even further improve the clinical relevance
of optical tomography, the different optical modalities could be combined using
registration and image fusion techniques. After registration, image fusion is then
applied to map the different modalities in a single image frame. Possible com-
binations can be fluorescence OPT and OCPT or fluorescence OPT and OCT, to
give combined structural and functional information about the tissue.
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Summary

Disease model systems, such as the zebrafish, play an important role in under-
standing the onset of diseases like cancer and monitor the efficacy of new drugs.
In the past, non-invasive methods for screening, diagnostics and treatment mon-
itoring were intrinsically from the outside. In the past decades, there has been a
strong drive to look inside these model systems, which resulted in the develop-
ment of many small animal tomographic imaging techniques. Due to the ab-
sence of ionizing radiation, high-resolution, and cost efficiency, optical tomog-
raphy is a popular imaging technique to study disease model systems such as
zebrafish. The main obstacles in obtaining high-resolution imaging suitable for
tissue characterization are the scattering of light in tissue and diffraction of opti-
cal waves.

Scattering of light in tissue degrades the resolution of optical tomography
systems, especially for thick samples. In this thesis, transmission optical co-
herence tomography (OCT) is used to select ballistic, non-scattered, from non-
ballistic, scattered, light. We demonstrate that transmission optical coherence
tomography is a versatile tool to measure optical properties of liquids, solids,
and particle suspensions. The developed technique is used to perform quan-
titative optical tomography of the refractive index and attenuation coefficient.
A good agreement is observed between our measurements and literature values
for group refractive index, group velocity dispersion, and attenuation coefficient.
Based on the tomographic reconstruction of transmission OCT measurements,
the median attenuation coefficient, group refractive index and volumes of vari-
ous organs of an adult zebrafish are segmented and quantified in optical coher-
ence projection tomography reconstructions.

In optical tomography light is imaged by a lens onto the camera. Due to the
focusing of light onto the camera, this light is collected non-uniformly along the
propagation direction from the sample. Consequently, the straight-ray assump-
tion as in standard (pre-) clinical X-ray CT reconstruction is violated. Recon-
struction of optical tomography images with standard filtered back projection
(FBP) causes radial blurring and tangential blurring that becomes stronger with
increasing distance to the rotation axis. We present 2D and 3D tomographic
reconstruction algorithms that include the point spread function (PSF) of the
imaging system. For emission optical projection tomography, these methods
show greatly reduced radial and tangential blurring over the entire field of view
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and a significantly improved signal-to-noise ratio compared to FBP. The 3D PSF-
based algorithm is evaluated using different initializations. When initialized with
the 2D PSF-based reconstruction result, the 3D PSF-based reconstruction gives
an improved signal-to-background and image quality in a useful timeframes.

Besides including the physical point spread function (PSF) in the 2D tomo-
graphic reconstruction, the effect of the PSF also can be reduced by deconvolu-
tion of the FBP reconstructed image or filtering the sinogram before FBP recon-
struction. We compared the performance of these techniques with each other
based on simulations and the signal-to-noise ratio and the sharpness in recon-
structed fluorescent beads and zebrafish OPT images. We demonstrate that the
sinogram filtering performs poorly on data acquired with high numerical aper-
ture optical imaging systems. We show that the deconvolution technique per-
forms best for highly sparse, low signal-to-noise ratio objects. The PSF-based re-
construction method is superior for non-sparse objects and data of high signal-
to-noise ratio.

In this thesis, we developed novel algorithms for transmission OCT signal
processing and PSF-based tomographic reconstruction. Our algorithms allow for
high-resolution quantitative imaging in turbid media. These techniques can be
used for quantitative optical imaging of disease model systems. Potentially this
may lead to more insight in tissue development and disease onset, progression,
and treatment.



Samenvatting

Ziektemodelsystemen, zoals de zebravis, spelen een belangrijke rol in het begri-
jpen van het begin van ziekten, zoals kanker, en het volgen van de werkzaamheid
van nieuwe medicijnen. In het verleden waren niet-invasieve methoden voor
screening, diagnostiek en behandelingsmonitoring intrinsiek van de buitenkant.
In de afgelopen decennia is er een sterke beweging geweest om binnen in het
modelsysteem te kijken, wat resulteerde in de ontwikkeling van verscheidene
tomografische beeldvormingstechnieken voor kleine dieren. Als gevolg van de
afwezigheid van ioniserende straling, hoge resolutie en kostenefficiëntie, is op-
tische tomografie een populaire beeldvormingstechniek om ziektemodelsyste-
men zoals zebravissen te bestuderen. De belangrijkste hindernissen bij hoge
resolutie beeldvorming die geschikt is voor weefselkarakterisering zijn de ver-
strooiing van licht in het weefsel en diffractie van de optische golven.

Verstrooiing van licht in weefsel verslechtert de resolutie van optische to-
mografiesystemen, in het bijzonder voor dikke stalen. In dit proefschrift wordt
transmissie optische coherentie tomografie (OCT) gebruikt om ballistisch, niet-
verstrooid, van niet-ballistisch, verstrooid, licht te scheiden. We demonstreren
dat transmissie optische coherentie tomografie een veelzijdig hulpmiddel is om
optische eigenschappen van vloeistoffen, vaste stoffen en deeltjessuspensies te
meten. De ontwikkelde techniek wordt gebruikt om kwantitatieve optische to-
mografie van de brekingsindex en attenuatiecoëfficiënt uit te voeren. Een goede
overeenstemming wordt waargenomen tussen onze metingen en literatuurwaar-
den voor groepsbrekingsindex, groepssnelheidsdispersie en attenuatie-
coëfficiënt. Gebaseerd op tomografische reconstructie van transmissie
OCT-metingen worden de mediane attenuatiecoëfficiënten en groepsbrekings-
indices, en volumes van verschillende organen van een volwassen zebravis geseg-
menteerd en gekwantificeerd.

In optische tomografie wordt licht door een lens op de camera afgebeeld.
Vanwege het focusseren van het licht op de camera, wordt het licht niet-uniform
verzameld langs de voortplantingsrichting van de optische straal staal. Bijgevolg
wordt de rechte-straal-aanname zoals in standaard (pre-) klinische röntgen
CT-reconstructie geschonden. Reconstructie van optische tomografiebeelden
met standaard gefilterde terugprojectie (FBP) veroorzaakt radiale onscherpte en
tangentiële onscherpte die sterker wordt met toenemende afstand tot de rotatieas.
We presenteren 2D en 3D tomografische reconstructiealgoritmen die de
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puntspreidingsfunctie (PSF) van het afbeeldingssysteem omvatten. Voor emissie-
optische projectietomografie geven deze algoritmen sterk verminderde radiale
en tangentiële onscherpte over het gehele blikveldveld en een significant verbe-
terde signaalruisverhouding vergeleken met FBP. Het op een 3D PSF gebaseerde
algoritme wordt geëvalueerd met behulp van verschillende initialisaties. Wan-
neer geïnitialiseerd met het 2D PSF-gebaseerde reconstructieresultaat, geeft de
3D PSF-gebaseerde reconstructie een verbeterde signaal-tot-achtergrond
verhouding en beeldkwaliteit berekend in een bruikbaar tijdspanne.

Naast het opnemen van de fysieke puntspreidingsfunctie (PSF) in de 2D to-
mografische reconstructie, kan het effect van de PSF ook worden verminderd
door deconvolutie van het FBP gereconstrueerde beeld of filteren van het sino-
gram voor FBP-reconstructie. We vergeleken de prestaties van deze technieken
met elkaar op basis van simulaties en de signaal-ruisverhouding en de scherpte
in gereconstrueerde beelden van fluorescerende deeltjes en een zebravis. We to-
nen aan dat het sinogram-filteren slecht presteert op data die zijn verkregen met
optische beeldvormingssystemen met hoge numerieke apertuur. We laten zien
dat de deconvolutie-techniek het beste presteert voor zeer sparse, lage signaal-
ruisverhouding objecten. De op de PSF gebaseerde reconstructiewerkwijze is su-
perieur voor niet-sparse objecten en data met een hoge signaal-ruisverhouding.

In dit proefschrift hebben we nieuwe algoritmes ontwikkeld voor transmissie
OCT-signaalverwerking en PSF-gebaseerde tomografische reconstructie. Onze
algoritmen maken kwantitatieve beeldvorming met hoge resolutie mogelijk in
troebele media. De technieken die in dit proefschrift zijn ontwikkeld, kunnen
worden gebruikt voor kwantitatieve optische beeldvorming van ziektemodelsys-
temen. Dit kan mogelijk leiden tot meer inzicht in de ontwikkeling van weefsels
en het begin, de progressie en de behandeling van ziektes.
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