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Detecting Rumours in Disasters: An
Imbalanced Learning Approach

Amir Ebrahimi Fard(B), Majid Mohammadi(B), and Bartel van de Walle(B)

Delft University of Technology, Delft, The Netherlands
{A.EbrahimiFard,M.Mohammadi,B.A.vandeWalle}@tudelft.nl

Abstract. The online spread of rumours in disasters can create panic
and anxiety and disrupt crisis operations. Hence, it is crucial to take
measure against such a distressing phenomenon since it can turn into a
crisis by itself. In this work, the automatic rumour detection in natural
disasters is addressed from an imbalanced learning perspective due to
the rumour dearth versus non-rumour abundance in social networks.

We first provide two datasets by collecting and annotating tweets
regarding the Hurricane Florence and Kerala flood. We then capture
the properties of rumours and non-rumours in those disasters using 83
theory-based and early-available features, 47 of which are proposed for
the first time. The proposed features show a high discrimination power
that help us distinguish rumours from non-rumours more reliably. Next,
We build the rumour identification models using imbalanced learning to
address the scarcity of rumours compared to non-rumour. Additionally,
to replicate the rumour detection in the real-world situation, we practice
cross-incident learning by training the classifier with the samples of one
incident and test it with the other one. In the end we measure the impact
of imbalanced learning using Bayesian Wilcoxon Signed-rank test and
observe a significant improvement in the classifiers performance.

Keywords: Rumour detection · Imbalanced learning · Building
dataset · Feature engineering · Twitter

1 Introduction

Rumours are unverified information circulating about the topics that people
perceive important and are used as sense-making or risk management mechanism
[4]. Rumours tend to thrive in situations that are ambiguous and/or pose a threat
in which meanings are uncertain; questions are unsettled, information is missing,
and/or lines of communications are absent. One of the contexts that satisfies all
those conditions is the crisis. Due to the lack of information and mistrust towards
the available sources of formal channels at the time of disaster being happening,
people feel frustrated and seek information from informal channels. Eventually,
if no information is available, people engage in affirmative rumouring, which
means speculation based on whatever evidence and framework of understanding
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they posses [4]. Traditionally, rumours were propagated by means of word of
mouth. However, in recent years, the rapid growth of social networks escalated
this problem and turned it into a serious issue by accelerating, widening, and
deepening the circulation of misinformation among people [21,25]. Thus, it is
of the essence to develop a solution for this problem, because it can otherwise
turn into a potential threat to the main societal institutions such as peace and
democracy.

One of the promising approaches to quell online rumours is artificial intelli-
gence (AI) which can tackle misinformation at scale and across languages and
time zones. Among the AI approaches, binary classification dominates the lit-
erature of rumour detection [33]. In this approach the classifiers are trained by
historical samples form two classes of rumour and non-rumour. Recent studies
have shown theoretically and empirically that compared to all different kinds of
information circulating in social networks, rumours are in minority [5,6,15]. In
other word, the fraction of non-rumours has the majority in the flow of infor-
mation in social networks. From a data collection point of view, this leads to
an imbalanced dataset containing uneven volume of rumour and non-rumour
samples. This imbalance gives rise to the “class imbalance” problem or “curse of
imbalanced dataset”, which is the problem of learning a concept from a class with
a small number of samples [16]. In machine learning, the problem of imbalanced
data has been addressed by a learning paradigm called imbalanced learning.

In this study, we address the rumour dearth versus non-rumour abundance
by imbalanced learning. As Fig. 1 illustrates, we first collected more than 200,000
tweets regarding Kerala flood and Hurricane Florence. For the annotation, we
used a large-scale labeling technique based on signal words of each incident.

We then extract 83 theory-based and early available features from every data
point. Out of those features, 47 of which are proposed for the first time. Our
feature selection method represents a high level of effectiveness for the newly
proposed features. In the next step, we conduct a series of experiments using
imbalanced learning. For the experiments, we use cross-topic learning in which
a classifier is trained on one incident and is tested on the other one, instead
of training and test on the same dataset. In the end, using Bayesian Wilcoxon
Signed-rank test, we measure the effectiveness of imbalanced learning.

Given this, the main contributions of this article are summarised as follows:

1. Improving the models performance using imbalanced learning due to the
imbalanced nature of rumour against non-rumour in social media.

2. Building two annotated datasets comprising more than 200,000 tweets regard-
ing Kerala flood and the Hurricane Florence.

3. Proposing 47 features for computational rumour detection and evaluating
them using five different learning methods.

4. Designing a set of cross-topic novel experiments which replicate the real-world
situation in rumour detection through training with one dataset and testing
with the other one.

This paper is organised as follows. Section 2, provides an overview on the
related studies in computational rumour detection. Section 3 explains data
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Fig. 1. Research flow of rumour detection with imbalanced learning.

collection, annotation, and feature extraction. In Sect. 4 we report and discuss
the experiments results and features importance. Finally in Sect. 5 we conclude
this study and give some future research directions.

2 Related Work

Computational rumour detection is a classification problem that aims to dis-
tinguish rumours from non-rumours. Similar to other classification problem,
data collection, feature extraction, and model training constitute the pillars of a
rumour detection model. In fact a dataset comprising rumours and non-rumours,
a set of relevant features, and algorithm for the context of rumour spreading are
prerequisite conditions for building a rumour detection model.

Since almost a decade ago that first articles in rumour detection with the
computational approach were published, most of the studies meet this set of
conditions and contribute in at least one of those areas. Several studies pro-
vided annotated datasets. They are mostly collected from Twitter [12,19,24,32]
and Sina Weibo [17,29] as they provide a fairly easy API access. Some other
studies, proposed new features according to specification of rumour propagation
in predefined categories of content, user, network, and temporal features [2,12].
For instance due to the importance of rumour identification as early as possible,
some of scholars proposed features to capture early appearance of rumours. For
instance, Zhao et al. [31] propose a novel technique for the early rumour detec-
tion using signature text phrases. In another research, Wang et al. [26] show
a feature pattern consisting of both user’s attitude and information diffusion
for the early detection of rumours in social networks. In the same vein, Kwon
et al. [13] showed that some features are more informative in the early stages of
rumour diffusion. Furthermore, some other studies proposed new algorithms for
identification of rumours. For instance, Ma et al. [18] used the recurrent neural
network (RNN) for the rumour detection, Lozano et al. [8] used the combination
of convolutional neural networks (CNN) with both automatic rule mining and
manually written rules, Chen et al. [3] utilized a CNN for short text categoriza-
tion using multiple filter sizes, or Zubiaga et al. [34] model the rumour tweets
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as sequences by extracting their features in the course of time and applying the
conditional random field (CRF) for classification. New techniques do not neces-
sarily mean designing a completely new algorithm, but it mostly means applying
an algorithm which is developed before to the context of rumour detection. For
example, LSTM (as an RNN technique) and CRF techniques were introduced
in 1997 [10] and 2001 [14], respectively, but they were used later for rumour
detection [18,34], and were truly counted as significant contributions.

The other area of importance is rumour detection in different subject
domains. As we discussed earlier, any domain that falls into 3C’s categories can
be a hotbed for rumour emergence. There are several studies [2,12] that high-
light the importance of domain in rumour detection, but they do not analyse the
impact of domain in rumour detection [20]. To the best of our knowledge, there
is one single research on computational rumour detection in a specific domain
which is recently published by Sicilia et al. [20]. They study the rumour detec-
tion in the health domain, in particular, the case of Zika virus. In this work,
they take the context into account by collecting data and proposing novel fea-
tures. However for the third element namely algorithm, they leave it without
contribution by using classifiers from different learning paradigms.

3 Data and Features

For this study, we prepared two datasets regarding the Kerala flood and Hur-
ricane Florence. The 2018 Kerala flood was the worst monsoon flooding in a
century in Southern India with 400 fatalities and $2.7bn worth of damages. The
Hurricane Florence was a category four hurricane hit Carolinas in the south-east
of the United States. The hurricane caused more than 50 fatalities and up to
$22bn damages. We set up a streaming API of Twitter to collect all tweets,
retweets, replies, and mentions that included hashtags, text strings, and/or han-
dles related to Kerala flood and Hurricane Florence. We could collect 100,880
tweets regarding Kerala flood and 101,844 tweets for Hurricane florence.

To select the rumour cases we searched several credible news outlets and fact-
checking websites (e.g. Snopes, The Washington Post, The Hindu, and Indian
Express). We identified in total three rumours in Kerala flood and four rumours
in Hurricane Florence with a high level of consistency among different news
outlets and fact-checking sources. Then we extracted the rumour-related tweets
corresponding to these events if the tweet contains the keyword relevant to the
rumour [13]. The tweets without explicit keywords were assigned a non-rumour
label. After the data annotation the Kerala dataset consists of 2,000 rumour-
related and 98,880 non-rumour-related tweets. Florence dataset also comprises
2,382 rumours and 99,462 non-rumours1. The imbalance between the number of
rumours and non-rumours in an incident aligns with the previous findings [6,15].

For feature extraction, we use 83 features to represent rumour and non-
rumour tweets. The features are either taken from the literature of computational

1 The datasets are publicly available: https://bit.ly/2WxVhY0.

https://bit.ly/2WxVhY0
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rumour detection or introduced in this work2. Tweet features are classified into
three groups: linguistic & content, user, and meta-message. The linguistic &
content category contains all the features about syntactic and semantic aspects of
tweets. The features related to the account holders and their social networks fall
into the user category, and all the features about tweets metadata belong to the
meta-message class. In this study, we want to detect rumours in the disasters as
early as possible, we can thus rely solely on the features that are available during
the initial phases of rumour diffusion. In this regard, we deliberately ignore
propagation and temporal features, as they are not available in the early diffusion
phases [13]. We also skip features related to likes, retweets, and comments since
they have a high volatility and varying values in the initial stages of rumour
diffusion. Table 1 demonstrates all the features in three categories of linguistic
& content, user, and meta-message. In this table, dagger (†) and diamond (�)
symbols specify features inspired by social bot detection literature and proposed
ones, respectively.

4 Experimental Results

In this section we first report the models performance and measure the impact
of imbalanced learning in the identification of rumours, then we evaluate the
discrimination power of proposed features.

4.1 Models Performance

In this section, we evaluate the features weights, and report the results of our
models and compare their performance in cross-incidents experiments subse-
quently. Then we measure the impact of imbalanced learning on rumour identi-
fication. We also conduct a baseline analysis by comparing the performance of
our models with state of the art.

For feature evaluation, our goal is to assign a weight to each feature. This
allows us to rank features ordinaly as well as knowing to what degree each feature
is informative for classification algorithms. The conventional methods such as χ2

test and recursive feature elimination are either time-consuming or not suitable
for our datasets due to their size3. Therefore, we define a score using random
forest, XGBoost, adaptive boosting, regression tree, and extremely randomised
trees as classification algorithms with an embedded feature selection mechanism.
By summing up the features weights we obtain the degree of significance for
each feature. To find the significant features we determine a threshold for the
features score. If the score of a feature in each dataset is less than the given
threshold, it is assumed to be insignificant. To determine the threshold, we choose
2 The newly introduced features are explained and their relevance are discussed in the

first section of the supplementary materials (available at: https://bit.ly/2PJ3FmR).
3 The further explanations regarding the issues of the conventional feature selection

methods can be found in the second section of the supplementary materials (available
at: https://bit.ly/2PJ3FmR).

https://bit.ly/2PJ3FmR
https://bit.ly/2PJ3FmR


644 A. E. Fard et al.

Table 1. List of all the features in three categories: linguistic & content, user and
meta-message. New features are marked with �. The features inspired by social bot
detection literature that, to the best of our knowledge, have not been used in rumour
detection literature yet are marked with †.

Feature class Features

Linguistic &

content

Number of exclamation marks in a tweet [2,32]

Number of question marks in a tweet [2,32]

Number of characters in a tweet [2]

Number of words in a tweet [2]

Number of uppercase letters in a tweet [2,32]

Number of lowercase letters in a tweet [2]

Number of first person pronoun in a tweet [2]

Number of second person pronoun in a tweet [2]

Number of third person pronoun in a tweet [2]

Number of capital words in a tweet [2]

Average word complexity in a tweet [24]

Number of vulgar words in a tweet [24]

Number of abbreviations in a tweet [24]

Number of emojis in a tweet [24]

Polarity of a tweet [30]

Subjectivity of a tweet [27]

Tone of a tweet [30]

Positive words score of a tweet [29]

Negative words score of a tweet [29]

† Frequency of Part of Speech (POS) tags in a tweet (19 features) [23]

� Frequency of Name Entity Recognition (NER) tags in a tweet (17 features)

Opinion and insight score [24]

Anxiety score [22]

Tentativeness score [24]

� Certainty score

Sentence complexity [24]

User Profile description (binary) [2,28–30]

Verified account (binary) [2,28,29,32]

Number of Statuses [2,13,28,29]

Influence [2,13,28–30]

Number of following [13,28–30]

User role [24]

� Attention

Account age (day) [2]

� Openness (binary)

Profile location (binary) [29]

† Profile picture (binary) [23]

Profile URL (binary) [30]

� Average follow speed

� Average being followed speed

� Average like speed

� Average tweet speed

† Screen name length [23]

† Number of digits in screen name [23]

Meta-message Number of hashtags in a tweet [2,19]

Number of mentions in a tweet [2]

Tweet URL (Binary) [2]

Number of multimedia in a tweet [28–30]

� Location sharing (binary)
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a very small number of 0.001 in order to select features with minimum level of
informativeness. The selection of this number as the significance threshold is
inspired by the significance level in null hypothesis testing. Additionally, we call
a feature consistently significant if its score is higher than the threshold in both
datasets.

Fig. 2. Evaluation of the feature significance in the Florence and Kerala datasets.
Blue and orange bars indicate the significance of the features in Florence and Ker-
ala datasets, respectively. The longer a bar is, the more important the corresponding
feature will be. (Color figure online)
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(a) Comparison of features based on their
types.

(b) Comparison of features based on their
source.

Fig. 3. Comparison of the feature significance. The blue, orange, and green bars denote
the total, significant, and consistently significant number of features, respectively.
(Color figure online)

Figure 2 illustrates the feature significance in the Florence and Kerala
datasets with blue and orange bars, respectively. In this figure, the length of each
bar is proportionate to the importance of the corresponding feature. Figure 3 dis-
plays significant and consistently significant features based on their types and
sources. In this figure, the abscissa represents the source or type, and the ordi-
nate is the number of features in each category. Figure 3a illustrates the number
of significant and consistently significant features as well as the total number
of features for each feature category. According to this figure, 60% of linguis-
tic & content features, 41% of user features, and 60% of meta-message features
are significant. Among the significant features, 70% of linguistic & content fea-
tures, 43% of user features, and 33% of meta-message features are considered as
consistently significant. This means that linguistic & content, user, and meta-
message features have the highest fraction of consistently significant features,
respectively. Figure 3b shows the same measures for the proposed features and
the ones which were extracted from the literature. Based on this figure, 70%
of the literature features and 45% of the proposed features are significant. Out
of the significant ones, 64% of literature and 62% of the proposed features are
consistently significant.

In this study seven classifiers belonging to different learning paradigms were
considered for the experiments [20]: multi-Layer perceptron (MLP) as a neural
network, support vector machine (SVM) as a kernel machine, classification and
regression trees (CART) as a decision tree, random forest (RF) as an ensemble
of trees, XGBoost as a boosting approach, and maximum entropy (MaxEnt) as
an exponential model. We tried to use entirely distinct algorithms in order to
verify their effectiveness in the early rumour detection problem. We conduct four
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experiments to address two crucial challenges in computational rumour detec-
tion. The first challenge is the imbalanced nature of rumours to non-rumours
[6,15]. This is what we are also observing in this study as the ratio of rumour
to non-rumour in datasets is approximately 1:50. To tackle this issue, in addi-
tion to training the classifier with imbalanced dataset we use an oversampling
technique to train the classifiers with the balanced form of the training sets. For
oversampling, we use synthetic minority oversampling technique (SMOTE) as a
powerful imbalanced learning technique that has shown a great deal of success
in various applications. The SMOTE algorithm creates artificial data based on
the feature space similarities between existing minority examples [9]. It is worth
emphasising that we use this algorithm only for training data, in other words,
the test dataset is still intact and preserves its imbalanced shape.

The second challenge is the common practice of the field namely training and
testing on the same dataset. In a real rumour propagation case, there is almost
no time for data collection, feature extraction, and model training; thus, such an
approach for rumour detection cannot be operationalised. The other approach is
using historical rumours for identification of upcoming rumours. In this regard,
we use one of our datasets for training and the other one for testing; then we
switch the training and test set to assess the robustness of the proposed approach.
In other words, once we use Kerala as training set and Florence as the test set
(which is indicated by Kerala ⇒ Florence notation), then we switch the datasets
and use Florence as training set and Kerala as test set (Florence ⇒ Kerala).
To evaluate the classifiers performacne in different experimental settings we use
precision-recall (PR) curve as it can provide an informative representation of
performance assessment [9].

In the upper panel of Table 2, the performance of each classifier is demon-
strated in four figures using PR Curve. Each figure corresponds to an experiment,
and each curve shows the classifier’s performance regarding various threshold. By
comparing the upper-left figure (a) to the upper-right one (b) and the bottom-left
figure (c) to the bottom-right one (d), it is readily seen that oversampling had a
positive impact and has improved classifiers performance in most cases. However,
the degree of improvement is not the same for all classifiers. The improvement
for classifiers with acceptable performance is insignificant, while classifiers with
less impressive performance experience more salient enhancement. There are also
classifiers which are insensitive to oversampling or the ones which receive slight
negative influence from oversampling.

To be able to compare the classifiers’ performance in a more concrete way,
we have measured the area under the PR curve (AUPRC) for each classifier.
The bottom panel of Table 2 shows the AUPRC regarding each classifier. As
the table shows, for classifiers with the high score in Kerala ⇒ Florence such
as SVM, MaxEnt, and XGBoost oversampling leads to slight improvement, but
for classifiers with lower performance such as RF or MLP, oversampling results
in a much higher improvement. Despite the poor performance of CART, over-
sampling does not improve it that much. Similarly, in the Florence ⇒ Kerala
experiment, CART has the lowest performance and oversampling cannot improve
it significantly. MLP with very high performance receives marginal improvement.
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For the other two classifiers with high performance score oversampling shows a
slight negative effect which is quite insignificant. For XGBoost and RF as classi-
fiers with satisfactory AUPRC, oversampling fairly improves their performance.
We use Bayesian Wilcoxon Singed-rank test [1] to verify the effectiveness of
oversampling on the used classifiers. Based on this test, the probability of over-
sampling being effective is 0.99, which shows that oversampling significantly
enhances the performance of classifiers.

For the baseline analysis, we use PHEME dataset [34] which is publicly avail-
able for computational rumour detection. We extract 83 features from each tweet
and train the classifiers that we introduced before. We repeat the baseline exper-
imental setup by using 5-fold cross-validation in the experiment. Table 3 demon-
strates the precision, recall, and F-measure of classifiers along with the results
of CRF in [34]. Based on this table, the proposed features and the canonical
machine learning classifiers outperform significantly CRF in spite of the fact
that the proposed experiment settings are much simpler than that in [34].

4.2 Features Performance

In order to assess the impact of the proposed features on the rumour detection,
we also eliminated the proposed features and conducted the same experiments.
Then, we subtracted the scores corresponding to each classifier to obtain the
discriminant power of the proposed significant features. Let f be the intersections
of the proposed and significant features, then

DP (f) = PFSignificant features − PFleave f out set (1)

where DP is the discriminant power of the feature set f , PFSignificant features

is the performance of the classifier with all significant features, and
PFleave f out set is the performance of the classifier after removing the feature
set f . The higher positive values for the discriminant power means that the fea-
ture set f is more significant, and zero or negative values is an indicator that
shows the feature set f is not effective in increasing the classifier performance.

Table 4 tabulates the discriminant power of each classifier on two experi-
ments. Interestingly, the average performance of all classifiers will increase if
the proposed features are used. In particular, AUPRC of the first experiment
has increased the most when the classification model is XGBoost. In the second
experiment CART and XGBoost receive the highest improvement.

When we look at the classifiers in each experiment one by one, the perfor-
mance often declines when we remove the proposed significant features. However,
for MLP the performance improves after the removal of those features. This prob-
lem, namely performance improvement after feature reduction, is a non-trivial
machine learning problem which has been revisited in the literature before [7,11].
One of the few insights about this problem that has been discussed in the lit-
erature is that classification performance achieved with different set of features
is highly sensitive to the type of data and type of the classifier [11]; therefore
getting the average of the classifiers performance may give a more reliable and
broader picture of the discrimination power of chosen features.
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Table 2. Assessing the performance of the classifiers using PR curve (upper panel)
and AUPRC (bottom panel).
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Table 3. Baseline analysis on PHEME dataset [34]

Classifiers PR RE F1-Score

CART 90.5% 91.7% 91.1%

SVM 92.6% 55.5% 69.4%

RF 93.9% 92.4% 93.1%

MLP 92.6% 90.6% 91.6%

MaxEnt 91.2% 79% 84.7%

XGBoost 95% 94.4% 94.7%

CRF [34] 66.7% 55.6% 60.7%

Table 4. The discriminant power of features for the classifiers with respect to AUPRC
metric on two experiments

Classifiers Florence ⇒ Kerala Kerala ⇒ Florence

CART 10.4% 29.6%

SVM 0.3% 6%

RF 8.3% 3.1%

MLP 0.2% −3.4%

MaxEnt 7.6% 4.1%

XGBoost 16.3% 25%

Average 7.2% 8.4%

5 Conclusion and Future Directions

In this work, we tackled the rumour propagation problem in disasters through
imbalanced learning. We provided two datasets regarding Kerala flood and Hur-
ricane Florence by collecting and annotating 100,880 and 101,844 tweets, respec-
tively. We then used 83 features for creating a learning model by compiling exist-
ing features in the literature and introducing several new ones. In order to identify
rumours in a timely manner, we focused solely on the early available features. We
evaluated all features and observed that the proposed features could enhance the
performance of the subsequent learning model for the rumour detection. For model
building, we conducted a series of experiments using imbalanced learning. For the
experiments, we used cross-topic learning which instead of training and test on the
same dataset, it is trained on one event and is tested on the other one. Then we mea-
sure the impact of imbalanced learning using Bayesian Wilcoxon Signed-rank test.
Our results show improvement in almost all the classifiers when the oversampling
technique is applied on the training sets.

One of the possible future direction in this domain is data collection and
annotation. This field needs more publicly available datasets from different social
media and in different kinds of disasters. Such datasets will enable scholars to
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validate their results in broader contexts and investigate the impacts of con-
textual factors on their results. Another avenue could be more domain specific
studies. In order to have a universal system for rumour detection, we need to
know the behaviour of rumours in different subject domains. Performing domain-
specific rumour analysis on various subject domains would be a practical step
toward discovering the behaviour of rumours.
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