Process mining approach for recovery of realized train
paths and route conflict identification

TRAIL Research School, Delft, October 2012

Authors

Ir. Pavle Kecman, Dr. Rob M.P. Goverde

Faculty of Civil Engineering and Geosciences, Department of Transport and Planning,
Delft University of Technology, The Netherlands

(© 2012 by P. Kecman, R. Goverde and TRAIL Research School

Contents

Abstract

1 INtroduction ...covvvvriiiiiiiiiiiieeeieeeeeeeeeeeeeseseeeeceseesessecccnnnns 1
2 Blocking time theory.......ccoviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiennennnns 2
3 Train describer SyStemsceeeeiiiiiiiennneeieeeerressncssscesssasseens 4
3.1 The Dutch train describer TROTS ..o 4
32 Shortcomings in TROTS log filescooviiiiiiiiiii, 4
4 Process mining algorithmccccciiiiiiiiiiiiiiiiiiiiiiiiniiennnees 5
5 Case StUAY....cooii i aaes 10
5.1 Graphical userinterface ... 10
6 L @01) 1 T4 11)) 1T 14
AcCKNOWledgementS......cvveiiiiiiiiieneeeressseerssescesssescsssessssssescssssssassnes 14

RO O IS . e eeeeneeeeeeereeseeeeseseesesessssessssssssssssssessessssessssasssssssssanes 14

Abstract

Data records from train describer systems are a valuable source of information for an-
alyzing railway operations performance and assessing railway timetable quality. This
paper presents a tool based on process mining event data records from the Dutch train
describer system TROTS. The underlying algorithms automatically identify route con-
flicts with conflicting trains, determine accurate arrival and departure times/delays at
stations, and reconstruct the train paths on track section and blocking time level. Graph-
ical user interface and visualizations of the time-distance diagrams and blocking time
diagrams support and simplify the analysis of running times, dwell times, incidents,
track obstructions, disruptions, and structural errors in the timetable design. The case
study of a one day of traffic on a busy railway corridor in the Netherlands is presented,
as well as the examples to describe the graphical user interface.

Keywords

Train describers, realisation data, process mining, route conflicts

Process mining approach for recovery of realized train paths and route conflict identification 1

1 Introduction

Improving the performance of railway infrastructure and train services is the core busi-
ness of railway infrastructure managers and railway undertakings in Western Europe.
Train delays decrease capacity, punctuality, reliability and safety, and should be pre-
vented as much as possible.

Daamen et al. (2008) preseted a case study on a busy corridor in the Netherlands, which
showed that 55% of arrival delays exceeding 3 minutes are caused by route conflicts. A
route conflict occurs when a train (hindered train) movement is restricted by a stop sig-
nal because the block section protected by the signal is occupied by another train (hin-
dering train). Registered delays at stations can not be with certainty attributed to route
conflicts, therefore, it is difficult to identify and analyze them. Typically, train delays at
stations are monitored and registered on-line using train detection, train describers, and
timetable databases, but the accuracy is insufficient for process improvements. Railway
operations thus require feedback of operations data to improve planning and control.
Accurate data on the level of track sections and signal blocks are required to gain a
better understanding of the realized train paths and conflicts between them.

Train describer records are a main source of infrastructure event data such as occupa-
tions and releases of track sections and aspect changes of signals. These infrastructure
events can be matched to train number events that are also stored in these files to re-
cover the realized train paths on track section level. Moreover, the realized blocking
time diagrams can be derived by adding a process model of the signaling logic.

In an earlier work, Daamen et al. (2008) developed algorithms for automatic route con-
flict identification based on data records of the Dutch train describer system TNV, which
were implemented in the tool TNV-conflict. Goverde & Meng (2012) developed the
tool TN'V-Statistics for a detailed statistical analysis of train realization data based on
the output files of TN'V-Conflict.

The TNV system was recently replaced by the new train describer system TROTS which
contains an essential new approach to train number steps, and this came with a new
format for the log files. In particular, train number steps are no longer given with
respect to a route block to a next signal, but at section level. This means that a train
number step no longer predicts to which signal the train is heading, as was customary
with TNV, and therefore we cannot just look ahead at the signal aspect of the signal at
the end of a block to identify a conflict. Therefore, the algorithms described in Daamen
et al. (2008) had to be modified in a way described in the present paper.

Other approaches to train delay data mining include Conte (2007) and Flier et al. (2009)
for determining systematic dependencies between delays in Germany and Switzerland,
respectively, and Cule et al. (2011) for identifying frequent delay patterns in Belgium.

There are several reasons for increasing interest in traffic realization data analysis. First,
infrastructure capacity is utilized extensively in Western European countries. In such
conditions, when capacity consumption is close to the level of congestion and saturation
(UIC, 2004), delays propagate easily through the network and it is therefore necessary
to determine the optimal values and allocation of time reserves in order to increase
robustness and resilience of the system. In that context, in the process of timetable
construction, feedback in form of performance analysis is essential.

2 TRAIL Research School, Delft, October 2012

Second, adoption and implementation of EC Directive 2001/14/EC (EC, 2001), implies
strictly regulated, transparent relations between all participants in the railway market.
Punctuality norms and schedule violation penalties are imposed on infrastructure man-
agers and train operating companies. Therefore, deriving accurate values of delays and
partitioning them in primary and secondary delays is in interest of all parties.

The third reason has a more scientific importance. Namely, mathematical and simula-
tion models of railway traffic use stochastic distribution of process times which reflect
the variations caused by e.g. driving behavior, passenger volumes, weather conditions,
etc. It is however an important feature of the models themselves to capture the interac-
tions of trains and the resulting conflicts and knock-on delays. Consequently, partition-
ing realized process times data to hindered and unhindered trains is of great importance
(Daamen et al., 2008).

In this paper, a process mining approach is implemented on the log files of the Dutch
train describer system TROTS. The resulting railway operations performance analysis
tool recovers and visualizes the realized train paths, blocking times, and route conflicts,
and thus provides essential information for analyzing railway operations, that can be
used for fine-tuning the railway timetable and operational processes. The tool supports
both tabular output for statistical analysis, as discussed in Goverde & Meng (2012),
and visualizations of the realized time-distance and blocking time diagrams with high-
lighted route conflicts. Moreover, several improvements have been implemented such as
interpolating blocking times over non-logged signals so that route conflict identification
is applicable over entire corridors, including ’dark territories’ with aggregated track
sections. The output of the new tool has the same format as that of TNV-Conflict by
which TNV-Statistics is still applicable.

The remainder of the paper is structured as follows. Section 2 defines terminology and
route conflicts in the context of blocking time theory, Section 3 explains the Dutch train
describer system, whereas Section 4 formalizes the blocking time theory as a process
model applied in the tool, and explains the process mining algorithm and subroutines.
A case study with a description of the GUI, is given in Section 5. Section 6 gives a brief
summary and presents further application of train describer data in the framework of an
on-going research about model-predictive railway traffic management (Kecman et al.,
2011).

2 Blocking time theory

Blocking time theory (Hansen & Pachl, 2008) is a concept of diagramming traffic, that
captures all principles of train separation in fixed block sections (including interlocked
station routes). Each block section may be occupied exclusively by one train at the time.
The blocking time represents a time interval during which a block section is reserved
for a specific train movement and therefore blocked for all other trains. In order to avoid
breaking before the signal that protects the block, movement authority should be issued
before the train reaches the breaking distance (previous block signal) in approach to the
signal. Figure 1 shows the structure of blocking time of a train without a scheduled stop
on a previous block (otherwise the blocking time does not include approach time).

The blocking time of a section consists of: the sight and reaction time before the ap-
proach signal (taken fixed as 12 s), the approach time (running time from approach

Process mining approach for recovery of realized train paths and route conflict identification 3

[}
£
=
[=
19
i}) 9]
© e oig
g b= Ei5
T L= oy
c o o C
© © cic
o <] Ti0
= 5 ©i=
o o 0t =
wn < O
_L.. e .-
V)
S T/ 8
o
I - 43
- 1 T
2]
a]

Figure 1: Blocking time of a running train

signal to the block signal), running time in the block, clearing time (time between mo-
ments when the first and the last axle of the train leave the block), switching time needed
for signaling system to react (taken fixed as 2 s).

Conflict-free train run is ensured if the preceding train has cleared the block and switch-
ing time has passed by the time when the next train reaches the sight distance of the
approach signal. In the context of blocking time theory, route conflicts can be defined
as an overlap between blocking times (Figure 2).

[kiay

Running time
Clearing time
Switching time

Distance

Figure 2: Route conflict

Figure 2 shows the blocking times and signal aspects that describe a route conflict that

4 TRAIL Research School, Delft, October 2012

occurs when the hindered train arrives at the sight distance of the approach signal at the
moment when the hindering train is still running over the block. Conflict is depicted
with an overlap in blocking times (indicated by red color). As a result of the route
conflict, hindered train must reduce the speed after passing the approach signal, thus
increasing the approach time.

3 Train describer systems

Train describer systems keep track of train positions in discrete steps over its route,
based on train numbers and messages received from elements of the signaling and inter-
locking systems (sections, switches and signals) (Exer, 1995). One of the tasks of train
describers is logging the generated train number messages and the incoming infrastruc-
ture element messages, resulting in chronologically ordered lists of infrastructure and
train number messages.

3.1 The Dutch train describer TROTS

In the Dutch train describer system TROTS, the train steps are recorded on the level
of track sections (a block section consists of one or more track sections), with both a
message when a new track section is occupied by a train and when a track section is
released by a train. Hence, train number step messages are coupled to track section
messages.

The Dutch railway network is divided into multiple TROTS areas. Each area comprises
one or more major station areas with complex topologies and 30 — 40 km of surrounding
railway infrastructure. In order to reconstruct the train traffic over multiple TROTS
areas it is necessary to merge the corresponding log files. TROTS log files are archived
per day and area in large files of ASCII format of approximately 75 MB.

Infrastructure messages contain the following information: time stamp, event code, el-
ement type (section, signal, point), element name, and new state ("occupied’/’released’,
‘stop’/°go’, ’left’/’right’). The train number step messages contain amongst others a
time stamp, event code, train number, and a sequence of all occupied track sections.
Each successive train number step message contains either a new occupied track sec-
tion at the front or a released track section at the rear. The event code of a train number
step corresponds to a section message with the same event code. This coding is used to
match a message about a section occupation or release with a message of a train number
step.

3.2 Shortcomings in TROTS log files

There are several issues in the TROTS log files that represent a potential source of inac-
curacy and complicate performance analysis. The system architecture (ProRail, 2008)
reveals that infrastructure messages and train number step messages are generated by
different components of the system which sometimes results in a significant difference
between the time stamps of the corresponding messages. Experiments show delays of
up to 7 seconds of the train number step messages. In order to avoid possible incon-
sistencies, the developed tool does not use the time stamps of the train number step
messages but only the ones of the corresponding infrastructure element messages.

Process mining approach for recovery of realized train paths and route conflict identification 5

Furthermore, infrastructure messages of a signal aspect change to stop cannot be cou-
pled directly to any train number step or section occupation message. In order to over-
come this, an additional input file is created in the form of a list of all signals together
with the first section they protect by data mining the files in a preprocessing step. We
use this input in the main algorithm to identify the train number that caused the signal
aspect change via the corresponding section that got occupied.

Other sources of inaccuracy are the automatic block signals on the open track which are
not logged. Without intermediate logged signals, an open track between two stations
looks as one block from the exit signal at the station of departure to the home signal
at the station of arrival, and headway conflicts can not be identified. Moreover, open
tracks may contain aggregated track sections which are occupied and released as one.
We therefore defined an additional input file containing a list of automatic block sig-
nals on the open tracks together with the corresponding (aggregated) sections listed by
individual sections and their lengths. If a non-logged signal is at the boundary of two
(aggregated) sections then the occupation of the following (aggregated) section is used
as stop aspect event time. Otherwise, three-aspect two-block signaling logic is simu-
lated to estimate aspect changes of non-logged signals on aggregated sections. In this
case, the event time of the stop aspect change is estimated by the occupation time of
the corresponding protected section, which is derived as a fraction of the running time
of the train over the aggregated section proportional to the ratio of the distance to the
signal and the length of the aggregated section.

4 Process mining algorithm

Process mining is a method of analyzing and extracting information about processes
from event data logs using the process model (Van der Aalst, 2011). Blocking time
theory provides the logic for building the process model from the log file. Signal pas-
sages are events that initiate processes such as blocking a part of the infrastructure and
running over a block. Each complete train run can thus be represented as a graph built
on-line by sweeping through the file. Moreover, route conflicts can be identified simul-
taneously by determining time difference between relevant events and verifying if the
train separation principles are respected.

Due to large size of TROTS log files, it is necessary to build an algorithm that sweeps
through the file and visits every line only once, thus avoiding long computation times
and making the tool applicable in a real-time environment. An object-oriented approach
is used to store the relevant data from the log files in infrastructure and train number
objects which enables the algorithm to revisit the objects, and use and update the infor-
mation therein (Daamen et al., 2008).

We denote by O the set of all objects, and by S € O, C € O and T" € O the sets
of section, signal and train objects, respectively. An infrastructure message log line
[from a TROTS file can be represented by (type;, code;, t;,name;,e;) where type; €
{’section’,’signal’} indicating the type of infrastructure element, code; is the unique
message code, t; is a time stamp of the message, name; is the the name of an infras-
tructure element (section or signal) name and e; is an event (Coccupied’/’released’ for
section objects, ’stop’/’go’ for signal objects). Every infrastructure element name has
the structure o _id, where o is the name of the station area it is comprized by.

6 TRAIL Research School, Delft, October 2012

A train step message line is summarized by (type;, code;, name;) where type; = ’train’,
code is the unique message code and name; is the train number. We define a map-
ping : name; — o, 0, € O that maps the signal, section and train name to their
corresponding objects.

The unique message code of a train step message is identical to the code of an ear-
lier message, which reports state change of the relevant section. As explained in Sec-
tion 3.2, signal messages cannot be directly coupled to train messages. Input file
Infrastructure contains the list of pairs (signal, protected(signal)) for each sig-
nal, associated with the first section of the protected block. By signal(section) we
denote the signal that protects the section in the direction of the running train. When a
running train passes a signal, aspect is changed to ’stop’. Message reporting that event
is followed by the message that reports occupation of the protected section by the run-
ning train. We use the section occupation message to identify the train that passed the
signal causing aspect change to ’stop’.

Furthermore, we define an integrated message (t, 7k, €x, n;) that carries the complete
information about the state change of infrastructure object (resource) r, € {S U C'}
caused by the running train n; € 7'. The algorithm sweeps through the original TROTS
messages and creates integrated messages before further processing.

Section objects 7, € S, and signal objects r, € C, are attributed by a chronologically
sorted list of activities. Each activity on a section is described by the train number,
occupation time and release time. Signal object activities are defined by ’stop’ aspect
time and 'go’ aspect time. Train objects n, € T are attributed by the chronologically
sorted lists of signals, sections and blocks on the train route. Keeping these lists as
attributes for each object is useful for creating tabular and visual output for recovery
of train paths. However, for route conflict identification we are interested in the state
changes of infrastructure objects caused by a running train, and possibly its immediate
predecessor. By time(ry,) we denote a moment when event i occurred on infrastructure
object 1. Table 1 defines the target events.

Table 1: Target events for infrastructure objects

Object 1=1 =2 1=3
Section | Release — preceding Occupy — running train Release — running train
Signal | Go’ — preceding train ~ ’Stop’ — running train ’Go’ — running train

By keeping track of the sequence of signal and section messages for each train, we are
able to fabricate the block objects b, € B, B C O and thus fully describe every train run
using blocking time theory, as a sequence of blocking times. For every two successive
signal passages a new block object is created or the existing object is updated. Apart
from the chronological list of activities (blocking times), every block object by, is defined
by a tuple (¢1(by,), ca(by), Sections(by,)), that represents the signals on block boundaries
and sections comprised by the block.

The process mining algorithm is able to give accurate estimates of actual arrival and
departure times of all trains. Set Platforms contains all platform track sections
in each station 0 € X where Y is the set of all stations. Each entry has the form
(o, Plat formSections(o)).

Process mining approach for recovery of realized train paths and route conflict identification 7

Scheduled arrival and departure times, as well as the minimum dwell times for all trains
are planned in the operational timetable given in the file Timetable. For every train
ny with a scheduled event time in station o the file contains the array (o, nx) with entries
(a(o,ny), d(o,ng), dwell(o,ny)), denoting the scheduled arrival, departure and the
minimum dwell time, respectively.

Finally, by ¢(7x, n;), we denote the object of the same type that precedes rj on the route
of the running train n; and by 7(ng, r;), the immediate predecessor of train n; on object
Tr.

By applying the train separation principles of blocking time theory, the algorithm au-
tomatically identifies route conflicts. A conflict object is defined by a tuple (signal,
hindered, hindering) representing the signal of conflict, hindered train and hindering
train. A conflict object « is stored in set OpenConflicts until the hindered train
passes the next signal after the signal of conflict. When the hindering train is identified
ais stored in set ClosedConflicts.

The process mining algorithm is given in form of a pseudo code in Algorithm 1.

Input is the TROTS log file and previously defined sets. In lines 3—4 the necessary sets
and variables are initialized. In the main loop (lines 6-29) the algorithm reads each
line. Lines reporting a signal aspect change to ’stop’ are stored in list SignalLines
(lines 8—11). If [is a section message it is stored in the set SectionLines (line 14).
For every message reporting occupation of the section protected by a signal, we find
the corresponding signal message and assign to it the section message code in order to
identify the running train (lines 15-19).

After every train step message the algorithm searches the sets SignallLines and
SectionLines (in that order) and looks for the corresponding infrastructure mes-
sage in the lists, based on the unique message code (lines 22-24). When the message
is found, list of processes on objects is updated (line 25) and the integrated message is
created (line 26). Finally, the Conflict identification algorithm is activated (line 28).

The main procedure for automatic route conflict identification is given in form of a
pseudo code in Algorithm 2.

Lines 3-23 of Algorithm 1 refer to signal messages. The procedure is initiated only if
the signal aspect is changed to ’stop’. We first delete conflict object at previous signal of
the running train from the file OpenConflicts (lines 4-6). In lines 7-8, the previous
and the current blocks of the running train are identified.

Conflict identification procedure for a train with a scheduled stop on the previous block
is given in lines 10-19. The algorithm first derives the actual arrival and departure
times from TROTS log files (lines 10-16). In lines 10-12 a list of times of all section
occupations and releases in the platform block (including the passing time of exit signal)
is created. Note that not all release times of platform sections are recorded by the time
the train passes the exit signal, however that does not affect the method we propose.
The period of standstill is determined as the longest time gap between two successive
events (line 14). The time of the last section message before the standstill is set as
the arrival time arr(o,n;) (line 15) and the time of the first section message after the
standstill is the departure time dep(o,n;) (line 16). Note that the error of this arrival
(departure) time estimate depends on the number of platform track sections and the

8 TRAIL Research School, Delft, October 2012

Algorithm 1 Process mining TROTS log file

1: Input:TROTS log file, Infrastructure,Platforms,Timetable

2: Output: O, ClosedConflicts

OpenConflicts = (), ClosedConflicts = (), SignalLines = 0,
SectionLines=0,l=0

W

4: Infralines < {Signallines,SectionLines}
5: while [< number of lines in TROTS log file do
6: l=1+1
7 Read line
8: if type;="signal’ then
9: 1 < Q(name;)
10: if e; =’stop’ then
11: SignalLines « (codey, t;, 1, €)
12: else if type;=’section’ then
13: T < Q(name;)
14: SectionLines < (codey, t;, 1, €)
15: if e, ="occupy’ and signal(r;) # () then
16: for £ = 1tosize (SignalLines) do
17: if protected(ry,) = r; then
18: codey, < code;
19: break
20: else if type =’train’ then
21: ny < Q(name;)
22: for j =1to2do
23: for k = 1tosize InfralLines{j} do
24: if code; = codey, then
25: update processes on objects 7, 1y
26: integrated message (tx, ¢, €x, 1)
27: Infralines{j} < InfraLines{j} \(codeg,ty, %, €x)
28: Run conflict identification algorithm (Algorithm 2)

29: break

Process mining approach for recovery of realized train paths and route conflict identification 9

Algorithm 2 Conflict identification algorithm

1: Imput:(¢;,7;, e;,n;), O, OpenConflicts, ClosedConflicts,
Timetable,Platforms

2: Output: O, OpenConflicts,ClosedConflicts
3: if r, € C' and ¢; = "stop’ then

4 a < (p(r,ng),ny,-)

5: ifa € OpenConflicts then

6: OpenConflict <« OpenConflict \ «a

70 bprev(ny) <= ((r,m), r1, Sections(bprey(n1)))

8: bcurr(nl) — (Tl, °)

9: if (Sections(bpyey(ny)) € PlatformSections(o) and (0,m;) € Timetable

then

10: Y=time(oy, 2)

11: for all & : 7, € Sections(byev(n;)) do

12: ¥ < 1 U {time(ry, 2),time(ry, 3)}

13: sort vector ¢ chronologically

14: k* = arg maxy (g1 — Ur)

15: arr(o,n;) = Py

16: dep(o, 1) = Yt

17: if time(r;, 1) > max (d(o, ny), arr(o,n;) + dwell(o,n;)) then
18: a < (r,ng,-)

19: OpenConflicts ¢~ OpenConflictsUa
20: else
21: if time(o(r;, ny),2) — 12 < time(ry, 1) then
22: a < (ry,ng,-)
23: OpenConflicts ¢ OpenConflicts U«

24: elseif r; € S and e; =’occupied’ then

25 Sections(beur (1)) < Sections(beyr(ny)) Uy
26: < (c1(bg),ny,)

27: ifa € OpenConflict then

28: if time(ry, 1) > time(¢(c1 (beurr(121)), 1), 2) then
29: a < (c1(beurr(ny)), ny, 7(1g,77))
30: if o ¢ ClosedConflicts then

31: ClosedConflict < ClosedConflict U«

10 TRAIL Research School, Delft, October 2012

distance between the stop location of the rear (front) of the train and the used section
border.

After deriving the arrival and departure times, the algorithm checks whether the depart-
ing train was a victim in a route conflict (line 17). We assume here that the departing
train was hindered if the exit signal was showing stop at the scheduled departure time
(if the train had no arrival delay) or after the minimum dwell time has passed since the
arrival time (if the train arrived with a delay). This subroutine lists all candidates for
outbound route conflicts. Extended dwell times in stations can not directly be explained
by route conflicts. In order to exclude the trains that waited for a feeder train to realize a
connection, or the ones that had extended dwell time for some other reason, additional
information from signalers and dispatchers is necessary.

If the train did not have a scheduled stop on the previous block (line 20), the algorithm
checks if a route conflict exists, i.e. if the current signal showed ’stop’ at the moment
when the train passed the previous signal (line 21). If the train separation principle was
violated, the set OpenConflicts is updated (line 12). Note that the time stamp of
the approach signal message is modified with constant value 12 s, representing sight
and reaction time, as described in Section 2.

Finally, lines 25-30 are visited when the message from a track section is received. In
line 25 the current section is added to the set of sections on the current block. As
the hindered train progresses along the block protected by the signal of conflict, the
algorithm compares the previous release time of each section belonging to the block
with the time when the hindered train passed the approach signal before the signal of
conflict. The train that released the section for which condition in line 28 holds is the
hindering train.

5 Case study

This section illustrates the application of the presented algorithm on one day of traffic
(April 2nd 2010) in the TROTS areas The Hague and Rotterdam. The algorithm sweeps
through the merged log files of the two areas and reconstructs the realized train paths
of 2048 trains on the level of track sections. Moreover, all occupation times of 1396
track sections and all blocking times of 733 blocks are determined, as well as the aspect
changes of 624 signals and the arrival and departure time estimates of all trains at 21
stations. Finally, 1011 route conflicts are identified.

5.1 Graphical user interface

In order to simplify the analysis of the output, a graphical user interface (GUI) has been
created (Figure 3). The left part of the GUI contains tabbed panels for loading data
(top left panel), visualization control (top right) and displaying results in tables (lower
panel). The right part of the GUI is reserved for the visualization of traffic in either
time-distance or blocking time diagrams.

The tabbed panel for loading data enables the user to either load the raw data and start
the algorithm or load already processed data and display the results. In the lower tabbed
panel the user can choose which results to display. In the tab Trains (Figure 4), a train

Process mining approach for recovery of realized train paths and route conflict identification 11

TROTS Realization Data Analysis

Section | BlockID | Occupied | Rele: Station |Sched. Arr.| Real. Arr. |Sche

D Signal 1 | Signal 2 | Occupied | Released |Occupation time Blocking time, Prev

Figure 3: Graphical user interface

line can be selected from the pop-up menu which enables selecting a train from the
chosen line. We can then select the whole train path or a part of it by selecting a start and
end station. The results are then displayed in the tables on the left and the visualization
panel on the right. The selected part of the train route is visualized together with all
other trains that operated on the selected corridor 15 min before and after the selected
train. The tables are the list of conflicts in which the selected train participated, the
running times on all sections, the blocking times, and actual arrival and departure times
at all stations.

The panel Infrastructure (Figure 5) enables the user to choose the corridor and the time
interval and get the corresponding list of conflicts, list of sections, signals, blocks, and
stations that were utilized by trains on the corridor within the selected time interval.
Selection of the infrastructure element from the corresponding pop-up menu displays
all the state changes of that element with the associated train number and time instants
(in seconds from midnight).

The visualization control panel (upper right panel Figure 3) enables the user to switch
between the blocking time diagram and time-distance diagram of traffic on the selected
corridor and time interval. Also it is possible to turn on/off the zoom and pan tools and
rotate the axis of the diagrams. Finally the selection of the check-box Scheduled also
visualizes the scheduled train paths.

Figure 6 shows the time-distance diagram on the busy corridor between The Hague
HS and Rotterdam in the Netherlands between 9:00 and 9:40 A.M. The number of
tracks between the stations is indicated (the number of lines between station names
abbreviations on the left side of the figure indicates the number of tracks) as well as the
conflicts (red squares on the hindered train path at the location of the signal of conflict).
Intercity trains are presented in blue color and local trains in magenta.

Figure 7 displays the corresponding blocking time diagram for one direction that ap-

12 TRAIL Research School, Delft, October 2012

Trains |[ETIEE

— Select trai = Show traffi =
s2100 | [ic2123 (av ~| RO -
— List of conflict
| Date ‘ Time ‘ Hindering train ‘ Hindered train | Signal
1 |2010-04-02 07:04:46 T9310 1C2123 RTD$336
<[I] »
— Secti Timetable reali
Section | BlockID | Occupied | £ Station |Sched. Arr.| Real. Arr. |Sche
1 |LEDNS12.. N/A 22896 =l 1 |LEDN 23520 23367 2364 ~
2 |LEDNS93... N/A 23197 2 2 |6V 24240 24265 2436
3 |LEDNS99... N/A 23234 2 3 RRTD 25320 25263 2538
a4 | FNNS10__ 84 23279 27 A INNR 2R1AN N/A lact
< i » e »
— Blocking ti
D] Signal 1] Signal 2 Occupiedl R |0ccupation time]BIocking time
1 [84 LEDN$1010 LEDN$1050 23279 23367 88 first o
2 [85 LEDNS$1050 LEDN$1094 23347 23699 352 352 P
3 [86 LEDN$1094 LEDNS$S805 23686 23749 63 63
4 |87 LEDNS$805 LEDNS$815 23741 23802 61 124
< lar | FNNSA1A | FNNGA2A 93704 23RA7 /2 123 X
<[T] »

Figure 4: Train selection panel

Infrastructure |

— Show traffi Time interval
v v R ~| ’ (me 090000 | To| 094000 ”
— List of conflict
Date [Time l Hindering train l Hindered train I Signal ‘
1 |2010-04-02 09:06:07 T6120 IC1922 GV$316 -
2 [2010-04-02 09:15:28 T9205 IC1924 RTD$384
3 |2010-04-02 09:14:03 T1922 1C2133 GV$226
4 [2010-04-02 09:20:17 T9205 $§2222 SDM$102 -
— Select infra element
DTST2AT v rs72 v 20 ~ ot - ‘
~Secti Signal
Train]0ccupied...l° ! ! Train] Stop (s)] Go (s) [
1 [IC1931 32652 32671 o 1 [IC1931 32638 32997 o
2 |s2233 33231 33248 | 2 [s2233 33218 33288 E
3 9220 33344 33366 3 [Ic9220 33330 33646
A SRR 33472 33499 e 4 lic2133 33730 33857 %
— Block: -
Train Occupied (s) | Rels d(s) | Occupation time Blocking time I
1 (IC1931 32432 32485 53 119 -
2 [S2233 33012 33066 54 m @
3 |ST5133 33128 33198 70 153
_Lalicaon 33239 33288 49 113 =
Stati
Train | Scheduled arr | Realized arr. Scheduled dep. Realized dep.
1 [IC1924 34080 35743 34110 35865 -
2 [IC1931 32580 32503 32610 32612 =
3 [IC1933 34380 34298 34410 34421
L a ls2220 33840 34115 33870 34220 =

Figure 5: Infrastructure selection panel

13

Process mining approach for recovery of realized train paths and route conflict identification

RTD > L P o
4 3
/ 3 /

/
/ /
. &

/ Py

/ /

//’
{

o
ST5033

/ %
/
/ b
/
DTz ; fé‘)
\ £ /
Y S /
DT = {
N
/\ /'/
/\ /
/ \ / &
DTA % / 5
1| IR !
\ / /
B \ b \
Vg \
[o
GVMW \ £ /
\ \
/ \
5/\
GV 1 1
091000 091820 092540 093500

09:01:40

Figure 6: Time distance diagram

pears after selecting the appropriate radio button on the visualization control panel.
Overlaps in blocking times indicating conflicts are denoted in red color. Note that trains
on parallel tracks of four-track lines may overtake each other. Blocking times that ap-

pear to be overlapping but are not shown in red are non-conflicting parallel processes.

09:35:00

09:18:20

09:10:00

09:01:40

Figure 7: Blocking time diagram

14 TRAIL Research School, Delft, October 2012

6 Conclusions

In this paper we presented a tool for reconstruction of train paths and automatic conflict
identification based on process mining train describer data. Usefulness for identifying
systematic delay dependencies and analyzing delays during incidents and severe disrup-
tions . The tool is compatible with the Dutch train describer system TROTS. Straight-
forward applicability of the tool for other train describer systems strongly depends on
their data structure. However, using the principles of blocking time theory as a process
model in mining the event log files, is a generic method for analysis of running times
and dwell times, and identification of route conflicts for fixed block signaling systems.

The tool provides flexibility in analyzing particular train paths and traffic on the corri-
dor. Visual and tabular output simplify analysis and highlight severe disruptions as well
as minor disturbances as a result of variability of process times.

Further developments are mainly directed towards automatic analysis by providing use-
ful statistical indicators for structural flaws in the timetable, as well as detecting severe
disruptions and identifying primary delays, see also Goverde & Meng (2012).

Another stream of research within mining and analysis of train realization data, focuses
on deriving accurate predictions of process times within the monitoring and short-term
prediction component of a model-predictive controller for railway traffic management
(Kecman et al., 2011). We aim at exploiting advanced statistical and machine learning
methods to capture complex dependencies between process times in heavily utilized
railway networks. The developed tool presented in this paper is the basis for this ongo-
ing work.

Acknowledgements

This paper is a result of the research project funded by the Dutch Technology Founda-
tion STW: Model-Predictive Railway Traffic Management (project no. 11025).

References

Conte, C. (2007) Identifying Dependencies Among Delays, Phd thesis, University of
Gottingen.

Cule, B., B. Goethals, S. Tassenoy, S. Verboven (2011) Mining train delays, in: Pro-
ceedings of the 4th International Seminar on Railway Operations Modelling and Anal-
ysis (RailRome 2011).

Daamen, W., R. M. P. Goverde, I. A. Hansen (2008) Non-Discriminatory Automatic
Registration of Knock-On Train Delays, Networks and Spatial Economics, 9(1), pp.
47-61.

EC (2001) European commission directive 2001/14/ec of the european parliament and
of the council of 26 february 2001 on the allocation of railway infrastructure capacity
and the levying of charges for the use of railway infrastructure and safety certification,
Off. J. Eur. Communities L75, pp. 29-46.

Process mining approach for recovery of realized train paths and route conflict identification 15

Exer, A. (1995) Rail traffic management, in: Bailey, C., ed., European Railway Sig-
nalling, IRSE, A&C Black, London.

Flier, H., R. Gelashvili, T. Graffagnino, M. Nunkesser (2009) Mining Railway Delay
Dependencies in Large-Scale Real-World Delay Data, in: Ahuja, R. K., R. H. M6hring,
C. D. Zaroliagis, eds., Robust and Online Large-Scale Optimization Models and Tech-
niques for Transportation Systems, vol. 5868 of Lecture Notes in Computer Science,
Springer, Berlin, pp. 354-368.

Goverde, R. M. P, L. Meng (2012) Advanced monitoring and management information
of railway operations, Journal of Rail Transport Planning & Management, 1(2), pp.
69-79.

Hansen, 1. A., J. Pachl, eds. (2008) Railway timetable & traffic - analysis, modelling,
simulation, EUrail press, Hamburg.

Kecman, P., R. M. P. Goverde, T. J. J. Van den Boom (2011) A model-predictive control
framework for railway traffic management, in: Proceedings of the 4th International
Seminar on Railway Operations Modelling and Analysis (RailRome 2011).

ProRail (2008) Trots protocol interface design description (in dutch).
UIC (2004) Capacity, leaflet code 406 r, Union International des Chemins de Fer (UIC).

Van der Aalst, W. M. P. (2011) Process mining, Springer, Heidelberg.

