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Abstract 
Motivation: Reversible epigenetic modifications that happen on the DNA’s histones, namely histone modifications, 
play an important role in gene regulation by controlling the accessibility of different functional genomic regions. Such 
modifications have been measured and primarily studied on genes or their promoters, but a currently interesting and 
less studied category of functional elements are enhancers. Enhancer regions can be found virtually anywhere along 
our non-coding DNA and through looping towards the promoters of target genes they contribute to their normal ex-
pression patterns. Abnormal epigenetic signatures and somatic mutations in those regions can interfere with the en-
hancer’s looping procedure and result in irregular gene expression patterns, a crucial contributor in cancer develop-
ment. 
 
Results: In this paper we propose a method which utilizes epigenetic information across multiple cell types, to form 
reliable enhancer – gene pairs. The formation of each pair is based on the multiple correlation between epigenetic mark 
enrichment of an enhancer set and a gene’s expression. The pairing procedure deals with the increased computational 
requirements caused by the multi-dimensional nature of the data and constructs pairs which follow the literature notion 
of frequent linearly proximal enhancers. The distribution of distances of each pair’s elements, showed different results 
in regulation proximity between our method’s pairs and a number of randomized sets of pairs. These pairs are assem-
bled into multiple enhancer-gene (EG) networks which include multiple connected subnetworks of different sizes. On 
each EG network we overlaid non-coding somatic mutations and found that enhancers of cancer census genes have a 
higher percentage of mutated enhancers as well as more regulating enhancers, than non-cancer genes. The mutation 
percentages and the within-pair distances showed different behaviour among chromosomes as well as epigenetic 
marks. Finally, we inserted these into network databases so that they can accept queries and be easily extendable. 
 
Conclusion: The core of this paper deals with the subject of enhancer cis-regulation and we have performed analyses 
in order to link regulating enhancers to their target genes, a recent and increasingly important task since the availability 
of high quality data. The subsequent EG networks depict the circuitry of regulation within a cell’s nucleus as well as 
the mutational landscape and are excellent candidates for further exploration of either the role of specific enhancers in 
gene misregulation during cancer or more generic characteristics of cancer related enhancers that affect cancer driver 
genes. 
 
Contact: sokratiskariotis@gmail.com 

 

 

1 Background  
 

In recent years, studies have focused on the epigenetic 
modifications present on our DNA or histone proteins, 
highlighting their important contribution in chromatin 
structure and functionality [1-3]. A subgroup of those 
chemical modifications, called histone post-translational 
modifications, were repeatedly found to enrich several 

functional regulatory elements [4,5], special segments of 
our DNA which play an integral part in the process of 
gene expression. Such modifications, or alternatively 
referred to as “epigenetic marks”, can perform numerous 
functions on different genomic regions. However, their 
primary contribution is to control the accessibility of said 
regions by allowing or blocking the binding of transcrip-
tion factors (TFs). Table 1 presents a list of the most stud-
ied epigenetic marks and the regulatory elements they 
define. Since several studies were able to discriminate 
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different elements quite efficiently using enrichment pat-
terns of these marks [6,32], they are currently being used 
as one of the most effective methods of identifying im-
portant elements on the human genome, like promoters or 
enhancers [5]. It is worth noting that despite the decent 
amount of epigenetic information discovered so far, we 
still do not have a complete picture of each mark’s role. 
This is especially evident (and critical) in disease cases, 
like cancer, where the lack of complete and quality epige-
nomes is pronounced. (a more detailed description of 
epigenetics can be found in the supplementary section 
“Epigenetics, an integral part of chromatin structure”) 

Functional regulatory elements have been studied exten-
sively and catalogued based on the way they affect ex-
pressing genes. Among those, the enhancer elements are 
of special importance. Specific activator proteins bind first 
to such regions and through DNA looping (Fig. 1a), to the 
transcription factors found on the promoter of a gene. This 
interaction increases or reduces the transcription rate of 
the targeted gene. Therefore, enhancers are able to regu-
late transcription of proximal or distal, upstream or down-
stream genes [9, 10]. Additionally, enhancers belong to 
the non-coding part of the genome (which constitutes 
98.8% of the total human genome) and can be found both 
in intergenic and intragenic regions of unrelated genes. 
Since they can be located virtually anywhere on the ge-
nome, enhancer identification is a very tedious procedure 
but their direct role in regular gene expression makes this 
task essential. Towards that direction, genome-wide scale, 
protein binding (ChIP-seq) and DNA hypersensitivity 
(DNase-seq) data have been examined in respect to en-
hancer activity. In several studies, transcription factors 
(like the well-studied p300 protein, a co-activator protein 
which enhances gene transcription through chromatin 
remodelling and acetylation of the histone proteins) and 
epigenetic modifications (initially the presence of 
H3K4me1 or H3K27ac) were found to be correlated with 
gene function [11, 12]. Such discoveries lead to the re-
definition of enhancers as the regions that have a chroma-
tin profile that is correlated with the transcription of a 
gene. (more details about enhancers can be found in the 
supplementary section “Enhancers, the useful non-
coding DNA”) 

 

After the connection between enhancer epigenetics and 
gene expression was established, many cancer studies 
shifted their interest from examining gene and promoter 

regions to enhancers. Cancer is a disease that involves 
abnormal/uncontrollable cell growth caused by over-
expression or under-expression of certain genes and ini-
tially it was thought that only genetic abnormalities (DNA 
mutations) contribute to cancer development. After re-
searching newly available epigenetic data, it was found 
that also epigenetic abnormalities (changes in the chroma-
tin profile) are involved in different kinds of cancer [13]. 
Therefore, combinations of genetic and epigenetic “mis-
takes” are now thought to be associated with cancer. Epi-
genetic modifications can influence cancer in two ways 
[14]. First, specific abnormal epigenetic signatures can 
cause oncogenes to express. These genes are involved in 
cell growth and their activation allows the cell to continue 
replicating rapidly when normally it should not. Secondly, 
epigenetic changes can cause the inactivation of tumour 
suppressors, genes that are responsible for stopping or 
decreasing proliferation of cancerous cells. An example of 
the latter is visualised in Fig. 1b. The task of identifying 
the epigenomic features related to cancer is immense as 
all these features have been found to be cell-type and 
tissue specific [15,16,17]. An informative step towards 
that direction was the discovery that somatic mutations on 
gene regions can alter the local epigenetic landscape and 
create an irregular expression regulatory circuit which 
allows cancer development [19]. Equally informative are 
deletion experiments, where the few known (cell-type 
specific) cancer-related enhancers were removed from a 
subject and a decrease of tumorigenesis or increase of 
growth inhibition was observed [20-25]. Finally, one of 
the most recent findings was that mutations on enhancers 

Figure 1 : (a) The looping procedure through which an enhanc-

er binds to the promoter of a gene and affects its expression, (b) 

A case where an abnormal epigenetic landscape of an enhancer 

region, blocks the up-regulation of a tumour suppressor, thus 

contributing in cancer development. Above every enhancer 

region, we can see a number of epigenetic signal tracks which 

are measuring several marks’ enrichment. These marks are 

partly responsible for the functions of the enhancer. Green sig-

nals represent normal epigenetic signatures, while red represent 

abnormal signatures which can affect the expression pattern of a 

gene by not allowing transcription factors to bind on the en-

hancer’s region, thus disabling the looping procedure.   

 

Table 1: Studied characteristics of several methylation marks 

[6,7,8] 
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can contribute to cancer by causing them to gain new 
functions or lose those they already have, as extensively 
discussed in [26-29]. (more details about the enhancer’s 
epigenetic landscape and its role in cancer can be found 
in the supplementary section “Enhancer’s epigenetic 
landscape involved in Cancer development”) 

 

The most prominent topics that bioinformatics in this 
field have to deal with are enhancer prediction and their 
matching with target genes. In the first case, three general 
strategies are being used to predict enhancers. Clustering 
of similar epigenetic profiles composed by several marks 
was able to identify numerous different classes of ge-
nomic elements [30], while TF binding motifs, coupled 
with individual epigenetic marks’ location have identified 
genomic element markers [31]. In [32], a computational 
prediction algorithm compares the similarity of an ele-
ment’s epigenetic profile to a trained set of profiles, 
achieving a relatively high recognition rate. Moreover, 
learning based algorithms like SVMs [33,34] combine 
different classification models using features that derive 
from histone modification marks or sequence characteris-
tics to discriminate enhancer from non-enhancer elements. 
But one of the most recent models of enhancer prediction 
uses a Hidden Markov Model (HMM) with integrated 
information from multiple histone marks to annotate every 
region of human DNA [35,36,37]. As mentioned, the 
second big challenge for bioinformatics is the discovery of 
promoter – enhancer interactions (PEIs). Several studies 
used the cell-type specific correlation between one epige-
netic mark and gene expression, in fixed regions around 
genes [38] or DHS correlations [39], while a more recent 
method uses a Random Forest classifier based on four 
features like enhancer–promoter activity profile correla-
tion and co-evolution of enhancers and promoters [40]. In 
a different approach, the framework developed in [18] 
predicts gene expression utilizing the combinatorial effect 
of different epigenetic marks through a deep convolution-
al neural network. Looking the problem from a different 
angle, a few studies attempted to explain the link between 
non-coding SNPs and non-cancer diseases using chroma-
tin regulators and transcription factors [41,42] or Hi-C 

data [43]. 
 

Following these recent advances, we propose a method 
to infer regulating enhancer – gene pairs based on the 
correlation between the epigenetic signature of enhancer 
regions and a gene’s expression, which is currently con-
sidered as one of the most effective methods to find such 
relationships [50,51]. Subsequently, we construct reliable 
enhancer – gene (EG) networks for different epigenetic 
marks, which attempt to draw a picture of the regulatory 
circuitry that governs gene regulation. EG-networks are 
then enriched with known cancer information, in the form 
of somatic mutations and cancer related genes from sever-
al cancer types, aiming to discriminate cancer related 
enhancers. These enriched networks serve as an easily 
extendable source of information since we can integrate a 
wide variety of data having as an end goal the discovery 
of currently unexplored characteristics of gene regulation 
through enhancer involvement. 

 

Although a number of studies use epigenetic marks to 
relate enhancers to gene expression [52], their methods do 
not allow the parallel visualization of information stem-
ming from multiple histone marks, whose role we only 
partially know. Also, despite the existence of a few en-
hancer predicting and gene pairing methods, there have 
been no attempts for creating networks that utilize all 
these pairs in a unified context. Combining information of 
multiple pairs at the same time can enable the discovery of 
broader relations between more than two participating 
genomic elements. 

2 Approach 
 

In this project we are concerned with the construction of 
enhancer – gene (EG) networks and their potential as a 
source of information about the regulatory landscape in a 
cancer context. Our approach can be described in three 
main steps, each presenting a different set of challenges 
and corresponding solutions. A complete overview of the 
approach can be found in Fig. 2. 

Figure 2: The three steps of our approach. The first step concerns the acquisition, pre-processing and filtering of our epigenetic mark 

and enhancer position data to be used as input for the following steps. The second step describes the regression pipeline we use to 

pair our candidate enhancers with protein-coding genes. The pipeline contains two types of regressions (Lasso and stepwise) and 

utilizes multiple correlation (many predictors) between each enhancer’s mark enrichment and a gene’s expression, across 56 cell 

types. The final step includes assembling the pairs to EG-networks (per chromosome) and overlapping cancer information (somatic 

mutations and cancer census genes) in order to examine mutated enhancers. 
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The first step (Fig.2, left box) begins with the acquisi-
tion of the genomic regions that will play the role of en-
hancers. Since we approach this problem from an epige-
netic point of view, we require a prediction method that 
utilizes relevant information. As stated in the previous 
chapter, the HMM built in [35] and used by the Roadmap 
Epigenomics Consortium in [15] offers the most recent 
and widely applied epigenetic method to predict enhancer 
regions in 56 different cell types. Since different cell types 
have different patterns of epigenetic marks across their 
DNA sequence, any HMM model will produce different 
sets of candidate enhancers, which reflect the active en-
hancers in each cell type. We are interested in constitu-
tive, global regulatory elements. Therefore we filter the 
cell-type specific enhancers by introducing a threshold 
(CT) of enhancer activity in a minimum number of cell 
types. To validate the candidate enhancers we cross-
reference them with the small set of experimentally veri-
fied enhancers that is publicly available [44]. In addition 
to the enhancers’ positioning we acquire the expression of 
nearly 20,000 genes residing on the human genome. To 
avoid cluttering our networks with uninteresting pairs 
later on, we filter the low variance genes. We perform pre-
processing of the data concerning both sets of elements. 
The enrichment of the five epigenetic marks on enhancers 
requires normalization and averaging, while the gene 

expression also needs to be normalized since it heavily 
suffers from skewness, extreme values and large variance 
differences.  
 

The core of this approach is the formation of enhancer – 
gene pairs, that is the identification of the regulating en-
hancers of every gene (Fig.2, middle box). We are taking 
advantage of the observation noted earlier on, that the 
enrichment of an epigenetic mark on an enhancer should 
correlate with the expression of the regulated genes. 
While this is the main premise, we also must take into 
account the co-operative nature of enhancer regulation. 
For that reason we created a model which computes the 
multiple correlation (across 56 cell types) between a 
gene’s expression and an epigenetic mark’s enrichment on 
a set of candidate enhancers. The enormous number of 
candidate enhancers for each gene leads to dimensionality 
issues, where the small number of data-points (56) are 
unable to explain the combined effect of around 150,000 
enhancers. To counter that problem we use two methods, 
successively. First, we restrict the space around each gene 
within which we allow candidate enhancers, a decision 
that excludes rare distal regulation but facilitates the ex-
tremely more frequent proximal regulation. Secondly, we 
use a multivariate Lasso regression model which uses as 
input the remaining candidates and picks a small number 
of enhancers whose mark enrichment is most correlated 

Data & 

Pre-processing 

Figure 3: The four distributions of pair distances using different SPs. The blue line represents the pairs that resulted from our regres-

sion pipeline. The red line represents the pairs that resulted from the randomization experiment where we randomly picked enhancers 

that are strictly located within the SPs and are equal in numbers with those produced by the pipeline. The green line represents the 

pairs the resulted from the randomization experiment where we permuted the gene expression vector of every gene and then re-run our 

pipeline. All the subplots in this figure were produced by the correlation between gene expression and H3K4me1 enrichment. 
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with the expression of a gene. The resulting enhancer set 
is the input of the last part of this approach step, where we 
apply an additional stepwise regression model. This type 
of regression is very powerful but quite computationally 
costly, however the small number of predictors allows for 
viable runtimes. 
 

For each of our epigenetic marks the above procedure 

provides a set of enhancer – gene pairs. In order to assem-

ble them to EG networks (Fig.2, right box) we first have 

to evaluate their reliability. For that purpose and due to 

the lack of reliable pre-existing pairs from other ap-

proaches, we focus on the linear distance between the pair 

elements. Research about the linear distance between 

enhancers and regulated genes has repeatedly shown that 

this type of cis-regulation majorly consists of short dis-

tance (< 50Kbps) pairs while more distal pairs are quite 

infrequent [48]. Therefore a set of such pairs must follow 

this distance distribution. Since we do not have enough 

data to afford an independent test-set, we measure the 

future performance of our resulting regression models by 

cross-validation. We validate our fitting procedure by 

producing mainly positive leave-one-out R
2 

values. Next, 

we overlap our networks with a layer of cancer infor-

mation in the form of confirmed somatic cancer mutations 

and consensus cancer genes. This overlap enables us to 

label cancer related enhancers based on the literature 

statement that somatic mutations on enhancer regions 

affect the target’s expression [26-29]. This paper is con-

cluded after the exploration of a number of characteristics 

about these augmented EG networks. 

3 Results & Discussion 

3.1 Constitutive candidate enhancers 

 
The HMM provided 56 large sets of candidate enhanc-

ers (CEs) spread across the genome, one for each cell type 
we considered in our research. The first filtering step, 
aims to determine the number of cell types our enhancers 
must be active in. Consequently, we set up a threshold, 
termed CT, which indicates the constitutive function of an 
enhancer. We compare multiple candidate enhancer sets 
based on different CTs and validate the final choice of our 
threshold based on the retrieval rate of the only existing 
set of experimentally verified enhancers found on the 
human genome and assessed in transgenic mice [44]. 
Several performance metrics as well as the strict cell-type 
specificity of enhancers, indicated that low thresholds and 
more specifically a CT = 10% performed best and was 
therefore chosen. (additional information on the CT 
experiments can be found in the supplementary section 
“Candidate enhancer constitutive threshold”) 

Figure 4: Subplots (a, b) depict the distribution of distances for SP = 500Kbps and two differently performing epigenetic marks, the 

best performing mark H3K4me1 (a) and the worst performing mark H3K4me3 (b). Subplots (c, d) depict the distributions of z-scores 

for every distance around the TSS. The z-scores measure how many standard deviations away from the red randomization‘s (random 

enhancer pick from within the search space) mean is each line. The blue line represents the pairs from our pipeline, while the green 

line represents the pairs from the randomization where the pipeline was re-run with permuted gene expression vectors. The red line 

(random enhancer pick) is not shown as in every case it is the horizontal line y = 0. 
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3.2 Enhancer – gene pairs 

3.2.1 Enhancer – gene proximity 

 
 Due to the immense number of candidate enhancers in 

each chromosome we have to apply constraints on the 
regions we will consider in our pairing pipeline. In order 
to set an effective search space (SP) we executed our 
regression pipeline using different sets of enhancers that 
come from different SPs. We also created two sets of 
randomized pairs, with different levels of randomness, to 
compare  with our original pairs. The hypothesis that 
governs this experiment is that proximal pairs are much 
more frequent than distal pairs [48] and this should also be 
reflected in our selected set of pairs. Fig.3 showcases 
three lines that represent: our pipeline’s pairs (red line), 
pairs that were also created by the pipeline but after we 
permuted each gene’s expression vector (green line) and 
pairs for which we randomly chose the enhancer but from 
within the chosen search space (red line). Although the 
high frequency of proximal pairs was shown to hold for 
all three cases to some extent, we can see the gradual 
distinction of the blue line (generated from the pipeline 
pairs) as the SP increases in Fig. 3. According to the dis-
tances found in the literature [48], we consider SPs up to 
ten times larger than the range within which we usually 
observe enhancers, therefore we do not enforce the pick-
ing of proximal enhancers. Despite the freedom we allow, 

the regions on either side of –and proximal to- the TSS 
show a prevalence of the blue line (pipeline pairs) for 
larger SPs. There is a clear signal of proximal pair prefer-
ence manifested specifically with an SP of 500Kbps. To 
follow the changes of each line and their relation, Fig. 3 
demonstrates this signal using the blue  (pipeline pairs), 
red and green (randomized) lines for four increasing SPs 
(10, 30,100 and 500 Kbps). Also visible, is the sudden 
drop immediately around the transcription start site (TSS). 
This drop happens because this area is populated by either 
promoters or the first exons of a gene. 

 

The z-scores of the blue and green distributions were 
calculated against the random enhancer randomization 
(red). Our pipeline’s z-score at the proximal space was 
found to be ~5 standard deviations away from the red 
random case and ~2 standard deviations from the less-
random green distribution. During the data pre-processing 
step we observed that many genes only have small differ-
ences in gene expression across cell types (even after the 
variance filtering). As a result, the gene expression vector 
permutation will not change the vector enough to correlate 
with different (than the pipeline’s) enhancers and we will 
end up with a number of same (possibly proximal) pairs. 
The z-score distributions confirmed that the SP of 
500Kbps holds the strongest signal as it most deviates 
from y = 0, near the TSS  (more about the distance distri-
butions and the z-scores in the supplementary section 
“Search space determination”).  

 

Figure 5: Each of the top plots describes the fitting line between  the elements of a pair. These lines were calculated using all active 

enhancers of the specific gene, but in the plots we present the same fitting line only in respect to one of the regulating enhancers. In the 

left plot we can see an enhancer that positively contributes in the fitting of this gene’s expression, while the opposite holds for the case 

on the right. Notice how much the right fitting line is affected by outliers, in contrast to the left one. At the bottom we can see the main-

ly positive distribution of loo-R2 values for all genes while using the H3K4me1 mark. 
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We also examined the consistency of the proximal pairs 
across epigenetic marks and whether our findings coincide 
with the current knowledge on our epigenetic marks. Ac-
cording to the experiments, the five marks demonstrated a 
very different behaviour. H3K4me1 revealed the clearest 
signal as we expected, since according to Table 1 (see 
Background section) it is found mainly on enhancer re-
gions and is implicated in its functions. The remaining 
marks provide less signal, with H3K4me3 forming con-
siderably less proximal pairs than the complete random 
case (Fig 4b,d). The H3K4me3 mark is the only one that 
shows this kind of negative performance in comparison to 
the random case. This indicates that while using this mark 
we preferentially create non-proximal pairs. One possible 
explanation is that the presence of H3K4me3 on enhanc-
ers is correlated with the deposition of Poll II in the same 
regions, which marks active distal enhancers [53]. There-
fore, the frequency by which we select proximal enhanc-
ers using H3K4me3 correlation, greatly drops.  The rest of 
the marks appear not to be able to correlate with gene 

expression to provide realistic pairs and thus their role as 
regulation intermediates on enhancers, is doubtful. We 
also noted a difference on the number of enhancers picked 
by our pipeline when using different marks, with 
H3K4me1 supplying the most correlated regulators than 
any other signal. 

3.2.2 Model fit 

Since the knowledge of enhancer elements is relatively 
incomplete, the means to validate a regulatory pair are 
limited. But these results provide an indication of the 
biological validity of our pairs based on the current re-
search concerning the within-pair distance and the rele-
vance of the particular epigenetic mark to the function of 
an enhancer. To validate the predictive performance of 
our models we used a cross-validation test in the form of a 
leave-one-out R

2
. Since our regression is trying to explain 

gene expression based on up to 10 enhancers/predictors, 

Figure 6: The boxplots on the left side (a,c) show the percentage of the regulating enhancers that got mutated at least once during the 

somatic mutation overlap. For each sub plot we have four types of experiments with different combinations of genes and enhancers. 

The dark blue experiment concerns the non-cancer genes (do not belong to the group of cancer census genes) whose enhancers were 

determined by our pipeline. The cyan type concerns the same type of genes but we paired them with their nearest enhancers (equal 

number of enhancers as the previous experiment). The red experiment includes only the cancer census genes and the enhancers out-

putted by our pipeline. The magenta experiment includes the same type of genes but with the nearest enhancers assigned to them. 

Boxplot (a) describes the percentage over all chromosomes while (c) only for chromosome 14. Density plots (b,d) use the same colours 

and show the different distributions (converted in probability density estimates) for the four experiments. Plot (b) concerns all the 

chromosomes, while plot (d) only chromosome 14. For the upper figures 1507 non-cancer genes and 473 cancer genes we used along 

with the best performing epigenetic mark H3K4me1. The bottom figure refers to chromosome 14 that includes 15 cancer and 543 non-

cancer genes. According to the COSMIC database [46] a gene has on average 18 cancer genes. 
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the loo-R
2
 statistic is also measured with respect to multi-

ple enhancers. In the top-left section of  Fig.5 we can 
observe a case were a model fits the gene’s expression and 
one enhancer’s H3K4me1 enrichment in a satisfying de-
gree. In contrast, on the right side of the same figure we 
can see a case where the model fails to describe the scat-
tered data-points. The distribution of all our loo-R

2
 scores 

(for the best performing mark H3K4me1) is shown at the 
bottom of Fig.5 and includes a few negative scores (mod-
els where the enhancers could not explain a specific gene). 
Although the distribution is not describing very high R

2
 

values, we should consider that we could not have a much 
higher result, since the expression of a gene depends on 
many more variables than just the correlation with an 
enhancer’s epigenetic signature. These scores are addi-
tionally important because they show that despite the 
large-scale predictor removal we still can explain a con-
siderable part of the gene expression. (more loo-R

2 
scores 

can be found in the supplementary section “Leave one 
our R squared”).  

3.3 Mutation overlap results 

 

By enriching the EG-networks with cancer-information, 
we can compare cancer to non-cancer genes. We also 
introduce a new set of enhancers for each gene type. 
These new sets include the most proximal enhancers, to 

each gene, therefore we now have four categories of 
genes: non-cancer and cancer genes paired with our pipe-
line’s enhancers, and non-cancer and cancer genes paired  
with an equal number of the nearest, to each gene, en-
hancers. These are ideal for comparison purposes, since in 
many studies the most proximal enhancers are assumed to 
be the regulators as it is easier for them to loop to nearby 
genes [11]. As seen in Fig. 6a, our pipeline’s enhancers 
that belong to cancer genes are more frequently mutated 
than in any other combination of genes and enhancers. 
More specifically, for each cancer gene a slightly higher 
percentage of our enhancers are mutated, compared to the 
non-cancer genes using the same type of enhancers. Con-
cerning all pairs from all chromosomes, the t-test between 
the aforementioned distributions has a p-value of 0.1910. 
A more clear distinction between the two distributions 
(red and blue, respectively) is visible if we observe the 
corresponding density plot (Fig. 6b), where cancer genes 
show higher probability density estimates for higher muta-
tion percentages. When the required mutations (to label an 
enhancer as “mutated”) are increased to two, we once 
again see the same picture but the p-value increased to 
0.4372. However, these plots concern every gene in every 
chromosome and the p-values are not supporting the sig-
nificance of this difference overall. Specific chromosomes 
provide lower p-values. As an example Fig. 6c,d presents 
the case of chromosome 14 where the difference is easier 
observable and the p-value is 0.0758. Similar differences 

Figure 7: An example subnetwork that includes two genes related to thyroid cancer (green nodes). Blue nodes represent non-cancer 

genes, yellow nodes represent non-mutated enhancers and red nodes represent the enhancers that got mutated at least once during the  

mutation overlap. 
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(in p-values) were observed between our pipeline’s and 
the nearest enhancers. Both the cancer and non-cancer 
genes’ enhancers got mutated in a higher percentage than 
their nearest counterparts.  

 
Furthermore, we examined the number of candidate en-

hancers (as provided by the HMM) that reside around 
cancer and non-cancer genes, prior to any kind of filter-
ing. We tested a small region (20Kbps) and a larger one 
(500Kbps) to get a broader view of the distribution of 
enhancers around each gene. Cancer genes have signifi-
cantly more neighbours than non-cancer genes (p-values 
of 0.0033 and 2.7151e-07, respectively). Since we are 
using multiple correlation to pick enhancers for each gene, 
more available enhancers means higher chances for a 
larger number of correlated enhancers to be picked. Our 
pipeline is not affected by this considerable difference, as 
it selects an almost identical number (~7) of enhancers for 
cancer and non-cancer genes. (additional information on 
plots and p-values in the supplementary section “Muta-
tion overlap”).  

3.4 Enhancer – gene network visualisation & 
tool 

 
For each epigenetic mark and chromosome, we assem-

bled the pairs (formed by our regression pipeline and 
enriched by the mutational overlap) into one interconnect-
ed EG network for which we implemented a tool (using 
graph databases) for visualisation and query purposes. 
These graphs include multiple types of nodes: “Cancer-
Enhancers” (mutated at least once during the overlap), 
“Enhancers”, “CancerGenes” (cancer census), and 
“Genes”, while each edge represent the relation “regu-
lates”. Fig. 7 demonstrates both the utility and the infor-
mational content of such a graph. In this example we wish 
to examine the regulation landscape around two cancer 
census genes involved in thyroid cancer, TRIM33 and 
NRAS. Thus we queried our H3K4me1 graph for a sub-
network of a small size (30) that includes the two genes. 
From such a subnetwork we can extract information about 
mutation and/or enhancer clusters or other topological 
relations between enhancers and genes. The tool allows 
for the enquiry of more complex searches, like shortest 
paths between genes and/or enhancers. 

4 Conclusions 

4.1 Summary of results 

 
In this paper we used a new approach to create pairs of 

genes and their regulating enhancer elements, based on 
the multiple correlation between epigenetic mark enrich-
ment and gene expression. This approach resulted in pairs 
that significantly follow the linear within-pair distance 
described by literature and have a positive prediction 
performance despite the increased complexity caused by 

the plurality of possible parameters. Fine-tuning these 
parameters poses as a considerable task but it can lead to 
significant increase in the network’s accuracy. The afore-
mentioned pairs were assembled into EG-networks on 
which we overlaid an additional layer of cancer related 
information. In their current state, our networks can be 
queried in order to explore the regulatory landscape of 
each chromosome and provide its visualization. The en-
riched networks show promising capabilities on detecting 
enhancers of known cancer genes as well as exploring the 
differences between epigenetic marks, despite the limita-
tions imposed on our models by the (important) require-
ment of constitutive enhancers. Finally, a very important 
characteristic of our networks is that they can be effort-
lessly combined, extended and integrate information from 
different sources (like eQTLs or 3D conformation). How-
ever, at the moment they are limited to single chromo-
somes and thus they cannot capture inter-chromosomal 
interactions or deliver the regulatory circuitry of genes 
that reside in different chromosomes (also a result of the 
search space definition). 

4.2 Future work 

 
A direct improvement in our pipeline’s performance 

would be the acquisition of additional epigenomic infor-
mation. The NIH (National Institutes of Health) is current-
ly mapping additional epigenomes [49], which translate to 
more data-points, giving further explanatory power to our 
enhancer vectors and room for more predictors to our 
models. Also, a meaningful grouping of our cell-types 
before executing the pairing pipeline may unveil more 
specific, but still constitutive, enhancers with higher pre-
cision and consequently increase the pairing accuracy. 
Furthermore, higher resolution candidate enhancers or a 
more intricate mark representation of an enhancer’s region 
(instead of averaging) can further improve the information 
quality an EG network can provide. However, this would  
increase the complexity of the procedure. Since the role of 
enhancers in cancer development was established, pairing 
enhancers to genes and exploring how their irregular be-
havior can contribute to tumorigenesis became a central 
topic in cancer research. As a step towards this direction, 
we are proposing this new type of network than aims to 
shed light to the relatively understudied landscape of en-
hancer cis-regulation and work towards the identification 
of enhancer markers to be used in cancer related prognosis 
and diagnosis. 

5 Methods 

5.1 Data 

 
The data for this paper were recently (Jan. 2015) made 

available by the Roadmap Epigenomics Consortium [15]. 
The histone modification patterns, DNA accessibility and 
methylation along with RNA expression of 127 curated 
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epigenomes were integrated and analysed. The resulting 
high resolution maps, produced by a variety of assays 
followed by massively parallel sequencing, provide a 
global view of the epigenomic landscape in a wide variety 
of human cell types and tissues. However, we only used 
the 56 epigenomes that had complete, genome-wide data 
in the form of enrichment signal tracks for the five epige-
netic marks H3K4me1, H3K4me3, H3K9me3, 
H3K27me3 and H3K36me3 as well as mRNA-seq gene 
expression data. We acquired our initial set of candidate 
enhancers from [35], an HMM also used by the Roadmap 
Epigenomics Consortium and made available through the 
Human Epigenome Atlas [45]. In this approach each 
epigenome is segmented and each segment is assigned a 
chromatin state which attaches regulatory characteristics 
to each successive 200bp region individually. These as-
signments are decided by a multivariate HMM based on 
DNA methylation and accessibility, regulator binding and 
evolutionary conservation. Additional data used include 
cancer somatic mutations and known cancer genes, down-
loaded from the COSMIC database [46]. The experimen-
tally verified enhancers were download from the VISTA 
enhancer browser [44] and were filtered to only include 
enhancers found on the human genome. To determine the 
directionality of gene transcription, needed at the analysis 
of the enhancer – gene pairs and the location of promot-
ers, we utilized the start and end codon gene information 
included in the evidence-based annotation of the human 
genome (GRCh37), version 10 (Ensembl 65) from 
GENCODE [47]. (additional description of the data and 
the HMM can be found in the supplementary sections 
“Data” and “Hidden Markov Model (HMM)”, respec-
tively) 

5.2 Pre-processing 

 
The expression of protein coding genes is required in 

this project to associate the activity of an enhancer to a 
gene. We are using the expression of all protein-coding 
genes in the human genome, as provided by the Human 
Epigenome Atlas [45]. Due to the inherent problems of 
RPKM values we apply a standardized log2 normalization 
to achieve a more normal distribution of gene expression. 
These standardized RPKMs compose the two-dimensional 
Gene Expression Matrix (GEM) per chromosome, where 
the first dimension contains all the genes of a chromo-
some and the second the 56 cell types. As described in the 
Data section, the epigenetic mark enrichment of enhancer 
regions is measured in fold-enrichment and each base pair 
has one such value per epigenetic mark and cell type. 
Since the enhancer regions are all 200bps long, we aver-
age the 200 enrichment values (concerning only one epi-
genetic mark) of each enhancer region and produced one 
value that represents the mark enrichment of an enhancer 
in one cell type. For each chromosome and mark, we 
concatenate these 56 vectors and generated the Mark En-
richment Matrix (MEM) where the first dimension de-
scribes the enhancers and the second the 56 cell types.  

5.3 Candidate enhancer constitutive thresh-
old 

In this section we examine the performance of different 
CTs concerning the retrieval rates of experimentally veri-
fied enhancers. We then conclude about the optimal CT 
value based on the metrics related to the ROC and PR 
curves as well as additional performance metrics. To de-
fine the TPs, TNs, FPs and FNs we first segment each 
chromosome in 200bps regions (same length as the 
HMM’s enhancers). The candidate enhancers (CEs) will 
be the positive predictions and every other 200bp region 

(non-CEs) will be a negative prediction. As for the ground 
truth, 200bp regions that are overlapped (even partially) 
by a VISTA enhancer will be true enhancers (VRs) while 
the rest will be truly non-enhancer regions (non-VRs). Of 
course, the latter set of regions in reality contains true 
enhancers but for our comparative purposes we can ignore 
that. Also, this method of labelling regions produces a 
very large number of TNs and FNs, but by using PR 
curves in addition to ROC curves we adjust for that prob-
lem. For clarity purposes the above definitions can be 
found in Table 2. A number of performance metrics were 
used to capture different aspects of this experiment. (more 
on the different metrics can be found in the supplemen-
tary section “Candidate enhancer constitutive thresh-
old”) 

5.4 Determining search space 

5.4.1 Search space definition 

To find the most suitable search space around each gene 
we first have to define which regions a search space in-
cludes. For this purpose, three different methods were 
considered: Intronic, Non-Intronic and TSS. The latter 
method (Fig. 8) has more relevant to our task characteris-
tics and was therefore chosen (additional information 
and a comparison between all three methods can be 

Table 2: The description of the each definition used in the 

contingency table 

 

Definition Description 

True Positive (TP) 

 

Number of CEs that overlap 
VRs 

 

True Negative (TN) 
 

Number of non-CEs that do 
not overlap VRs 

 

False Positive (FP) 
 

Number of CEs that do not 
overlap VRs 

 

False Negative (FN) 
 

Number of non-CEs that 
overlap VRs 

SP 
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found in the supplementary section “Search space (SP) 
definition”).  

5.4.2 Simple distribution of distances for different 
SPs 

Next, we apply a simple multivariate Lasso regression 
model, which predicts the regulating enhancer for each 
gene, based on the correlation between the enrichment of 
an epigenetic mark on the enhancer region and the expres-
sion of a gene. To reduce the complexity of the experi-
ment we allow the regression model to pick only the sin-
gle most correlated enhancer (using the LARS algorithm). 
For this experiment we exclude the genes that had less 
than two enhancers for a particular SP. Additionally, we 
generate 100 equally sized randomized sets of enhancer – 
gene pairs, where the enhancers satisfy the SP restriction. 
For the real and random sets we measure the distances (in 
base pairs) between the enhancer and the gene. Then we 
compute the frequency in which every distance occurs for 
every type of pair. The frequencies from the 100 randomi-
zations are averaged to form one distribution of frequen-
cies. 

5.5 Regression pipeline 

5.5.1 Multivariate Lasso regression 

 
The first step of our regression pipeline consists of a 

multivariate regression model, which aims to considerably 
reduce the number of available enhancers/predictors for a 
given gene. To achieve the elimination of predictors, we 
use the Lasso analysis method as presented in [54] using 
as input the MEMs and GEMs described in the Data sec-
tion. This regression disqualifies the predictors that are 
least correlated with the dependable variable based on the 
regularization parameter λ. Higher values of λ increase the 
penalization of the Lasso and more predictors are exclud-
ed. Instead of tuning this parameter, we use the LARS 
(Least Angle Regression) algorithm (MatLab package 
[55]), which allows us to directly choose the number of 
predictors we desire. In addition to the pre-processing 
done so far, LARS required the centering of the gene 
expression vectors and the normalization of the mark 
enrichment vectors. The number of predictors chosen for 
the LARS method is set to 10 for two reasons. Firstly, we 

need an adequate number of candidate enhancers per 
gene, since literature dictates that a gene is rarely regulat-
ed by a single enhancer but rather from a joint effect of 
multiple enhancers. Secondly, our dataset is composed by 
56 data-points (cell types) for every enhancer and every 
gene and in order to extract their information (or explain 
them) we can use up to 10 variables (about 1/5 of our 
data-point count), otherwise we would contribute to the 
curse of dimensionality. The genes that do not surpass a 
variance threshold of 10% across the 56 cell types are 
excluded from the fitting procedure as uninteresting 
(housekeeping genes).The end goal of this step is to pro-
vide a correlation-filtered small subset of candidate en-
hancers to the stepwise regression that follows. (addition-
al information on the Lasso regression can be found in 
the supplementary section “Multivariate Lasso Regres-
sion Model”) 

5.5.2 Stepwise regression 

The second step of the pipeline consists of a stepwise 
linear regression using the small set of candidate enhanc-
ers that resulted from the Lasso fitting. Each step of this 
regression adds the best available term(predictor) when 
the p-value for an F-test of the change in the sum of 
squared error is lower than 0.05. If no terms can be added, 
the regression examines the terms currently in the model, 
and removes the worst one if an F-test for removing it has 
a p-value > 0.10. This procedure can connect from 1 to 10 
enhancers to any given gene and these pairs compose our 
EG-networks.  

5.6 Cross-validation R squared 

 
The Lasso fitting provides the stepwise regression with 

a set of candidate enhancers that were picked based on 
their correlation with the gene expression. Therefore, a 
standard R

2 
measure (even the adjusted version) would be 

very optimistic about the fitting performance. To avoid 
this faulty coefficient of determination, we are using 
cross-validation which indicates the performance of our 
regression models on unseen data. More specifically, to 
produce the figures found in the supplementary material, 
we used the leave-one-out R

2 
(loo-R

2
), where we leave 

one of the 56 data-point out of every gene expression and 
mark enrichment vector and calculate the estimated gene 
expression based on 55 data-points each time. (additional 
description of the loo-R

2
 can be found in the supplemen-

tary section “Leave one out R squared”) 

5.7 Distribution of distances 

 
In every distribution of distances figure, the x-axis pre-

sents the distances (in base pairs) between the TSS of a 
gene and the closest (to the gene) end of the paired en-
hancer. The whole axis is segmented in equal sized dis-

Figure 8: The chosen definition of a search space. Only 

checked enhancers are included in the search space. Important 

note for this example: if the SP region was large enough it 

would include the rightmost enhancer that is not within the gene 
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tance bins and each bin holds the frequency each type of 
pairs (blue, red or green) is observed to be apart. The blue 
line represents the distances that concern the pairs which 
were the product of our regression pipeline. The red line 
concerns our first type of randomization where, for each 
gene, we randomly pick candidate enhancers that are 
located within the specific search space (SP) we have set. 
The number of enhancers chosen this way is equal to the 
number of enhancers our pipeline selected for the same 
gene. This randomization is performed 1000 times and the 
frequencies for each bin are averaged. The green line 
depicts a second type of randomization where we permute 
the 56-long gene expression vector of every gene and then 
we re-run our pipeline with the new vectors. This random-
ization was performed twice and the final green line re-
sults from the averaging of the frequencies per bin. 

5.8 Mutation overlap 

 
The mutations used in our overlap experiment are drawn 

from the COSMIC catalogue [46] and are categorized 
under “Non coding variants”. From the 10,937,718 non-
coding mutation we filtered out those that were not con-
firmed somatic variants. Therefore, all the mutations we 
overlapped were confirmed to be somatic in an experi-
ment by sequencing both the tumour and the matched 
normal from the same patient. After the overlap of somat-
ic mutations the genes were labelled as cancer or non-
cancer based on the current collection of cancer census 
genes. 
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