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2 INTRODUCTION

A homogenous solution consists of two or more components that are uni-
formly mixed. Homogenous liquid solutions are present in biological, medical,
geological, and industrial applications. To design and develop industrial pro-
cesses, knowledge of the thermodynamic and transport properties of solutions is
essential [1–6]. This task is not simple, especially for systems where strong inter-
molecular forces are present such as aqueous solutions, ionic liquids (ILs), and
deep eutectic solvents (DESs) [7–11]. The advantage of using a molecular theory
of solutions, as opposed to experiments and classical thermodynamic models,
is that bulk properties are provided by directly considering molecular interac-
tions and structure. In this regard, the Kirkwood–Buff (KB) theory [12] provides
an important connection between the microscopic structure of fluid mixtures
and the corresponding macroscopic properties. Rooted in statistical mechan-
ics, the KB theory applies to any type of intermolecular interactions, making it
one of the most general and important theories for homogenous solutions [12–
15]. Kirkwood and Buff [12] expressed thermodynamic quantities such as par-
tial derivatives of chemical potentials with respect to composition, partial mo-
lar volumes, and the isothermal compressibility in terms of integrals of radial
distribution functions (RDFs) over infinite and open volumes. These integrals,
which are considered the key quantity in the KB theory, are referred to as KB In-
tegrals (KBIs). Alternatively, KBIs can be obtained from density fluctuations in
the grand-canonical ensemble [13, 16].

The KB theory was derived in 1951, however, it has not gained much inter-
est until the late 70s of the previous century after Ben–Naim [14] proposed the
inversion of the KB theory. The inversion of the theory allows the calculation of
KBIs from experimental data [17–20]. Thirty years following the inversion of the
KB theory, molecular simulation emerged as a powerful tool for studying pure
liquids and mixtures [21]. There are two main types of molecular simulation
techniques [22, 23]: Molecular Dynamics (MD), where trajectories of molecules
are determined by solving Newton’s equation of motion numerically; and Monte
Carlo (MC) simulations, where relevant states of the system are sampled accord-
ing to their statistical weight [21–25]. In both simulation techniques, RDFs and
local density fluctuations are easily computed, thus in principle enabling the cal-
culation of KBIs. Molecular simulations can be used to study closed systems with
a fixed number of molecules, or open systems in which the number of molecules
fluctuates [22]. It is important to note that molecular simulations can only be
performed for finite systems, while the KB theory requires KBIs for infinite and
open systems [12]. This disparity between the KB theory and molecular simula-
tions has to be considered when computing KBIs from simulations. The focus of
this thesis is to provide a framework to accurately compute KBIs using molecu-
lar simulation. In this chapter, we briefly introduce the KB theory and provide
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the most important relations that link microscopic structure with macroscopic
properties (section 1.1). This is followed by a discussion of the inversion of the
KB theory and its applications (section 1.2). Also, we present the available meth-
ods for computing KBIs from molecular simulations (section 1.3) and review the
applications of KBIs computed from molecular simulations (section 1.4). Finally,
the scope of the thesis is presented (section 1.5).

1.1. THE KIRKWOOD-BUFF THEORY
One of the fundamental quantities for describing the microscopic structure of
fluids, are RDFs [13, 26]. Essentially, RDFs provide the probability of finding a
molecule at a distance r from a central molecule. For homogenous and isotropic
fluids, RDFs gαβ(r ) are defined as [13]:

gαβ(r ) = ραβ(r )

ρβ
(1.1)

where ραβ(r ) is the local density of component β at a distance r from a cen-
tral molecule of type α, and ρβ is the bulk density of component β. RDFs can
be determined from scattering experiments as well as from molecular simula-
tion. Using molecular simulations, RDFs are frequently computed using parti-
cles counting [22]. Alternatively, force–based computations of RDFs can be im-
plemented [27–29]. Commonly, particle counting is adopted in molecular simu-
lation packages with RDFs computed from [26]:

gαβ(r ) = V

NαNβ

〈
Nα∑
i=1

Nβ∑
j=1

δ(r− r j + ri )

〉
(1.2)

where Nα and Nβ are the number of molecules of components α and β, respec-
tively. δ is the Dirac delta function, ri is the position of atom i , and the brackets
〈...〉 indicate an ensemble average. When α equals β, terms where i = j should
be excluded in the double summation of Eq. (1.2). RDFs are central in the KB
theory, where the local structure of fluids is related to macroscopic properties.
In this section, we review the most important relations derived by Kirkwood and
Buff [12]. For the original formulation of the theory, the reader is referred to the
paper by Kirkwood and Buff [12]. A very detailed derivation was presented by
Newman [30], and an alternative derivation was provided by Hall [15].

In the grand-canonical (µT V ) ensemble, thermodynamic quantities are re-
lated to KBIs G∞

αβ
for an open and infinite system as [12]:

G∞
αβ =

∫ ∞

0
dr 4πr 2

[
g∞
αβ(r )−1

]
(1.3)
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dr

R

Figure 1.1: A schematic representation of a radial shell in a binary mixture (composed of molecules
of types α and β) formed by considering a distance R from a central molecule of type α. The
number of molecules of type β inside radial shell elements with the width dr is used to compute
the RDF gαβ(r ).

where r is the particle distance and g∞
αβ

(r ) is the radial distribution function
(RDF) of species α and β for an infinitely large system. In Eq. (1.3), species α and
β can be the same. For a shell with thickness dr centred around a molecule of
typeα in an infinite system (see Figure 1.1), the number of molecules of typeβ is
4πr 2drρβ and 4πr 2drρβg∞

αβ
(r ) for an ideal gas and real fluid, respectively. Here,

ρβ = 〈Nβ〉/V is the average number density of species β. Integrating from zero to
infinity over the excess number of molecules of type β, (4πr 2drρβ[g∞

αβ
(r )−1]),

yields ρβG∞
αβ

. Hence, KBIs G∞
αβ

provide the average excess (or depletion) per unit
density of molecules of type β around a central molecule of typeα, and the affin-
ity between components α and β is reflected. It is important to note that this
interpretation of KBIs only holds for infinite systems, as indicated by the upper
bound of the integral in Eq. (1.3). Truncating the integral of Eq. (1.3) to a distance
R yields the average excess of type βwithin a sphere of radius R. We will demon-
strate later in this thesis (section 2.3) that the resulting truncated integral does
not represent the KBIs in the thermodynamic limit.

Kirkwood and Buff [12] formulated a relation between integrals over RDFs
and fluctuations in the number of molecules in the grand-canonical ensemble,
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G∞
αβ =

∫ ∞

0
dr 4πr 2

[
g∞
αβ(r )−1

]
= lim

V →∞

[
V
〈NαNβ〉−〈Nα〉〈Nβ〉

〈Nα〉〈Nβ〉
− V δαβ

〈Nα〉
]

(1.4)

where Nα, and Nβ are the number of molecules of type α and β, inside the vol-
ume V . 〈Nα〉 is the average number of molecules α and 〈NαNβ〉 is the average
product of the number of molecules of components α and β. It is important to
note that Eq. (1.4) holds for any isotropic fluid. Fluctuations in the number of
molecules relate to several thermodynamic properties [31, 32]. For a binary sys-
tem, the following relations can be derived that relate KBIs to [12]:

1. partial derivatives of chemical potential with respect to the number of
molecules,

(
∂µα

∂Nα

)
T,P,Nβ

= ρβkBT

ραV η(
∂µα

∂Nβ

)
T,P,Nα

=
(
∂µβ

∂Nα

)
T,P,Nβ

=−kBT

V η (1.5)

2. partial molar volumes,

vα =
(
∂V

∂Nα

)
T,P,Nβ

= 1+ρβ(Gββ−Gαβ)

η

vβ =
(
∂V

∂Nβ

)
T,P,Nα

= 1+ρα(Gαα−Gαβ)

η
(1.6)

3. the isothermal compressibility,

κT =− 1

V

(
∂V

∂P

)
T,Nα,Nβ

= ζ

kBTη
(1.7)

where
(
∂µα
∂Nα

)
T,P,Nβ

is the partial derivative of the chemical potential of component

α with respect to Nα at a constant temperature T , pressure P and Nβ. Similarly,(
∂µβ
∂Nβ

)
T,P,Nα

is the partial derivative of the chemical potential of componentβwith

respect to Nβ at a constant T , P and Nα. In Eqs. (1.5) and (1.7), kB is the Boltz-
mann constant. vα is the partial molar volume of component α at a constant T ,



i
i

“dissertation” — 2021/5/21 — 15:37 — page 6 — #16 i
i

i
i

i
i

1

6 INTRODUCTION

P , and Nβ. vβ is the partial molar volume of component β at a constant T , P ,
and Nα. κT is the compressibility at a constant T . η and ζ are auxiliary quantities
that were defined for convenience [13],

η= ρα+ρβ+ραρβG f (1.8)

ζ= 1+ραGαα+ρβGββ+ραρβ(GααGββ−G2
αβ) (1.9)

In Eq. (1.8), the term G f =Gαα+Gββ−2Gαβ can be used to indicate the thermody-
namic ideality of a binary mixture (i.e. it has the value of zero for ideal solutions).
Expressions for ternary and multi-component mixtures of these thermodynamic
quantities in terms of KBIs are available in literature [13, 17, 33].

1.2. INVERSION OF THE KIRKWOOD–BUFF THEORY
Prior to the use of molecular simulation to compute KBIs, the inversion of the KB
theory [13, 14] was used to obtain KBIs from experimental data. In this section
we will briefly discuss the inversion procedure, and some of its applications.

For a binary mixture with components α and β, partial molar volumes, the
isothermal compressibility, and partial derivatives of chemical potential with re-
spect to number of molecules are related to KBIs G∞

αα, G∞
ββ

and G∞
αβ

(Eqs. (1.6),
(1.7), and (1.5)). Moreover, the Gibbs-Duhem relations apply to these thermody-
namic quantities,

ρα

(
∂µα

∂Nα

)
T,P,Nβ

+ρβ
(
∂µβ

∂Nα

)
T,P,Nβ

= 0

ρβ

(
∂µβ

∂Nβ

)
T,P,Nα

+ρα
(
∂µα

∂Nβ

)
T,P,Nα

= 0

ραvα+ρβvβ = 1 (1.10)

where vα and vβ are the partial molar volumes of components α and β, respec-
tively. Using Eqs. (1.5), (1.6), (1.7), and (1.10), Ben-Naim [14] derived the follow-
ing expression for KBIs of binary mixtures,

G∞
αβ = kBTκT − δαβ

ρα
+ρkBT

(1−ραvα)(1−ρβvβ)

ραρβ

(
∂µα
∂Nβ

)
T,P,Nα

(1.11)
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where the isothermal compressibility κT and partial molar volumes vα and vβ

are obtained from experiments. The term
(
∂µα
∂Nβ

)
T,P,Nα

can be obtained using

second derivatives of the Gibbs excess energy, or experimental vapor pressure
data [13]. In Refs. [33] and [34], equations for KBIs in terms of thermodynamic
properties were derived for ternary mixtures.

Ben-Naim [14] introduced the inversion procedure in 1977 and applied it to
a mixture of water and ethanol. For water (W) and solute (S) systems, it was
shown that KBIs obtained from experimental data are useful for studying several
local phenomena: (1) the quantity G∞

W S =G∞
SW indicates the affinity between the

solvent and the solute; (2) KBIs of water, G∞
W W , reflect the water-water affinity,

which can be used to study the changes in the molecular structure of water when
adding solutes; and (3) KBIs of solutes, G∞

SS , are of particular interest for studying
hydrophobic interactions.

Following the work of Ben-Naim [14], the inversion of the KB theory was
applied to study various types of binary and ternary mixtures at the molecular
level [19, 35–43]. For instance, Patil [39] computed KBIs of water-butanol mix-
tures from experimental data of partial molar volumes, isothermal compresibil-
ities, and vapor pressures. KBIs of the considered system were used to study lo-
cal structure at various concentrations. Similarly, Matteoli et al. [38] used par-
tial molar volumes and isothermal compresibilities of mixtures of water and dif-
ferent organic co-solvents to find KBIs. The KBIs obtained from the inversion
procedure were taken as a measure of the net attraction or repulsion, indicat-
ing the level of hydrophobicity of these mixtures. More recently, Kobayashi et
al. [44] used KBIs to study properties of residual water in ionic liquids. The au-
thors found that the values of KBIs computed using molecular simulation agree
with KBIs obtained from experimental data. However, the inversion of the KB

theory requires the partial derivatives,
(
∂µα
∂Nβ

)
T,P,Nα

, which are difficult to accu-

rately obtain from experimental data [45]. Matteoli et al. [38] demonstrated how
the accuracy of KBIs obtained from experimental data is very sensitive to uncer-
tainties in partial derivatives of the chemical potential. Alternatively, KBIs can be
obtained from local fluctuations in number of molecules measured by small an-
gle scattering experiments [46], such as SANS and SAXS [46–51]. Perera et al. [52]
examined a number of water-alcohol mixtures using KBIs and demonstrated that
both methods are reliable and should provide similar values of KBIs. Perera et
al. [52] pointed out possible sources of errors leading to inaccurate KBIs when
using experimental data. For instance, the largest differences between the two

methods were observed at the range where the values of the term
(
∂µα
∂Nβ

)
T,P,Nα

in
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Eq. (1.11) is close to zero. Almásy et al. [53] obtained KBIs from SANS as well as
from vapor pressure data for an ionic liquid. The authors found that scattering
experiments and thermodynamic data provided similar KBIs.

1.3. KIRKWOOD–BUFF INTEGRALS FROM MOLECULAR

SIMULATIONS

1.3.1. THERMODYNAMIC PROPERTIES FROM MOLECULAR SIMULATIONS

Knowledge of chemical potentials and other thermodynamic properties is of
great importance for studying the phase equilibria of solutions [54]. Computing
excess properties of multicomponent systems using molecular simulation is not
trivial. To compute chemical potentials, a number of methods have been devel-
oped and evaluated, such as thermodynamic integration [55], and perturbation
theory [56]. One of the most widely used methods is the Widom’s Test Particle
Insertion (WTPI) method [57], where a test particle is randomly inserted in the
simulation box and the average Boltzmann factor of the resulting energy change
is calculated. In general, molecular insertions are found to be challenging when
simulating dense fluids or when strong interactions are present [58]. Recently,
the Continuous Fractional Component Monte Carlo (CFCMC) method [59–62]
have been developed to improve the efficiency of molecular insertions. By vary-
ing the interactions of the fractional molecule with the surrounding molecules,
molecules are added/removed gradually during MC simulations. Even with ap-
plying these advanced methods, simulating complex fluids such as salt solutions
in open ensembles is still challenging [58]. Alternatively, excess properties of
solutions can be computed using the KB theory [54]. In the previous section,
we showed that KBIs relate directly to partial derivatives of the chemical po-
tential with respect to composition, partial molar volumes, and the isothermal
compressibility. KBIs also relate to other thermodynamic properties such as the
excess Gibbs energy of mixing. Other than predicting thermodynamic proper-
ties, KBIs can be used to investigate local behaviour of solutions, and to con-
nect information obtained from molecular simulations to experimental mea-
surements [13, 14, 63].

Knowledge of solution thermodynamics is also required when studying diffu-
sion. To connect Fick diffusion coefficients, which are measured experimentally,
to so–called Maxwell–Stefan (MS) diffusivities computed from MD simulations,
the so–called thermodynamic factor Γ is used [16, 64, 65]. The non-ideality of
solutions is also quantified by Γ [16, 66, 67]. For an n-component system,

Γαβ = δαβ+xα

(
∂ lnγα
∂xβ

)
T,P,Σ

(1.12)
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where γα is the activity coefficient of component α. In Eq. (1.12), the symbol Σ
indicates that γα is differentiated with respect to the mole fraction of component
β, xβ, while keeping the mole fraction of the other components constant, except
the nth one. For a binary mixture at a constant temperature and pressure we
have,

Γ= 1+x1
dlnγ1

dx1
= 1+x2

dlnγ2

dx2
(1.13)

where the sum of the mole fractions (x1 + x2) equals unity when the differentia-
tion is carried out [65, 68]. For a specific solution, the thermodynamic factor pro-
vides an indication of the phase stability, since Γ relates to the second derivative
of the Gibbs energy with respect to composition [65]. Γ is positive for a thermo-
dynamically stable mixture and negative for an unstable one [65]. As discussed
earlier, computing properties such as activity coefficients and their derivatives is
challenging for fluids with strong interactions. To avoid simulations that require
molecular insertions, thermodynamic factors can be computed from KBIs. For a
binary system, Γ can be computed using [13, 64, 69]:

Γαβ = 1− xαρβ(Gαα+Gββ−2Gαβ)

1+ρβxα(Gαα+Gββ−2Gαβ)
(1.14)

The term Gαα+Gββ−2Gαβ describes the strength ofα−β interactions compared
to α−α and β−β interactions. If this term is negative, then α−β attractive in-
teractions are stronger thanα−α and β−β interactions and as a result Γ> 1. For
an ideal gas, the term Gαα+Gββ−2Gαβ will be zero and hence Γ= 1. We will use
this in chapter 5 to analyse the interactions of DESs. Expressions relating Γi j to
KBIs for ternary [13, 70] and quaternary [71] mixtures are available in literature.
The thermodynamic factor also plays an important role for correcting finite–size
effects of diffusion coefficients [72, 73]. This is discussed further in section 1.4.3.

1.3.2. METHODS FOR COMPUTING KIRKWOOD–BUFF INTEGRALS

KBIs can be computed from fluctuations in the number of particles or RDFs,
which are both accessed by molecular simulation. KBIs are defined for infinitely
large systems while a finite number of molecules are studied by molecular simu-
lation. To estimate KBIs in the thermodynamic limit (G∞

αβ
) using microscopic

information of finite systems, three main approaches can be adopted. The
most common approach is to simply truncate KBIs to the size of the simula-
tion box, which results in integrals that converge poorly to the thermodynamic
limit [13, 74]. In the second approach, RDFs from finite systems were extended to
the thermodynamic limit, using mathematically involved methods [75, 76] that
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N, V, T

R1

R 2

R 3

Figure 1.2: A schematic representation of the Small System Method (SSM) [16], where thermo-
dynamic properties are computed from the scaling of properties of small subvolumes with the
inverse size of the subvolume.

are difficult to extend to complex molecular systems. Recently, Krüger and co–
workers [74] applied the Small System Method (SSM) [16] to develop a practical
approach for computing KBIs from molecular simulation. This approach was
derived for estimating KBIs of fluids, which is the focus of this thesis, and was ex-
tended to solids as shown in the recent work of Miyaji et al. [77]. In the following
subsection, the method of Krüger and co–workers [74] will be presented. After
that, a summary of the other methods available in literature for computing KBIs
from molecular simulation is provided.

THE METHOD OF KRÜGER AND CO–WORKERS

According to the SSM, properties of small subvolumes, that can be of the order
of a few molecular diameters, are treated in terms of thermodynamics of small
systems rather than classical thermodynamics [78]. According to Hill’s thermo-
dynamics of small systems, properties of open embedded subvolumes scale with
the inverse size of the subvolumes [78, 79]. This also applies to KBIs of finite sub-
volumes, GV

αβ
[63, 74]. For a specific system, GV

αβ
computed from a number of

subvolumes with different sizes, scale linearly with the inverse size of the sub-
volume [63, 74, 80, 81]. See Figure 1.2 for an example of multiple subvolumes
embedded in a simulation box.
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In 2013, Krüger et al. [74] derived an expression for KBIs of finite and open
subvolumes embedded in a reservoir. Similar to the original KB theory [12] for
infinitely large and open systems, Krüger et al. [74] derived an expression that
relates local density fluctuations inside the subvolume with the integral of the
RDF of the system. This was achieved by first considering the average densities
and the fluctuations in density of the open subvolume, V, embedded in a large
reservoir. The open subvolume, V is grand-canonical. The system is character-
ized by the following variables: temperature (T), volume of the subvolume (V),
and chemical potentials (µα and µβ for a binary system). In this ensemble, we
consider the average number of molecules, 〈Nα〉, and the average number of α
and β pairs, 〈NαNβ〉, expressed as integrals of the one molecule density (ρ(1)

α (r1))

and the two molecule density (ρ(2)
αβ

(r1,r2)),

∫
V
ρ(1)
α (r1)dr1 = 〈Nα〉 (1.15)∫

V

∫
V
ρ(2)
αβ

(r1,r2)dr1dr2 = 〈NαNβ〉−δαβ〈Nα〉 (1.16)

Integration of the local densities over the subvolume V yields the average num-
ber of molecules in the grand-canonical ensemble [13]. Subsequently, the den-
sity fluctuations in the subvolume V are expressed as:

∫
V

dr1

∫
V

dr2[ρ(2)
αβ

(r1,r2)−ρ(1)
α (r1)ρ(1)

β
(r2)] = 〈NαNβ〉−〈Nα〉〈Nβ〉−δαβ〈Nα〉

(1.17)
For fluid systems, ρ(1)

α (r1) and ρ(2)
αβ

(r1,r2), can be replaced by cα, and cαcβgαβ(r12)
due to translational and rotational invariance, respectively. Here, cα is the
macroscopic number density given by cα = 〈Nα〉/V . The function gαβ(r12) is the
RDF and r12 = |r1 − r2|. For a finite multicomponent fluid, the integral, GV

αβ
, is

defined by simply dividing Eq. (1.17) by cαcβV :

GV
αβ ≡

1

V

∫
V

∫
V

[
gαβ(r12)−1

]
dr1dr2 ≡V

〈NαNβ〉−〈Nα〉〈Nβ〉
〈Nα〉〈Nβ〉

− V δαβ
〈Nβ〉

(1.18)

In the limit V → ∞ and for homogeneous conditions, the double integrals of
Eq. (1.18) can be reduced to a single integral by applying the transformation:
r2 → r = r1 − r2, which yields the original expression for the KB integral for in-
finitely large systems (Eqs. (1.3) and (1.4)). However, for a finite subvolume, V ,
applying this transformation is not possible since the domain of integration over
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V

r

V ’
𝜏(r)

Figure 1.3: Schematic representation of the definition of the function τ(r) (Eq. (1.22)), the overlap
volume between two spheres separated by a distance r .

r depends on r1. In this case, the double volume integrals in Eq. (1.18) are re-
duced to a single radial integral by rewriting the left hand side (L.H.S) of Eq. (1.18)
as

GV
αβ =

∫ ∞

0
dr c(r )w (r ) (gαβ(r )−1) (1.19)

where dr c(r ) is a hyperspherical volume element and w(r ) is a purely geometric
function characteristic of the volume V defined as:

w (r ) ≡ 1

V

∫
V

dr1

∫
V

dr2δ(r −|r1 − r2|) (1.20)

Once the function w(r ) is known, the 2D dimensional integral of Eq. (1.18) re-
duces to the one-dimensional integral of Eq. (1.19), and the expression for KBIs
for finite subvolumes is obtained.

For the calculation of w(r ), we first rewrite the L.H.S of Eq. (1.18) as

GV
αβ =

1

V

∫
V

drτ(r)(gαβ(r)−1) (1.21)

where the integral is over all of space and

τ(r) ≡
∫

V
dr1

∫
V

dr2δ(r− r1 + r2) (1.22)

The function τ(r) has a simple geometrical interpretation: it is the overlap be-
tween the subvolume V and the same subvolume V shifted by r. This may
be seen by making the variable substitution r′2 = r2 + r which yields τ(r) ≡
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Table 1.1 Exact expressions of the geometrical function w(x) for hyperspheres in 1-3 dimensions
(i.e. line, circle, and sphere) [74]. Here, x = r /Lmax (0 < x < 1), Lmax is the maximum distance
between two points, and c(r )dr is the hyperspherical volume element with thickness dr . For
x ≥ 1, w(x) = 0.

Dimension c(r ) w(x)
1D 2 1−x

2D 2πr 2/π(arccos(x)−x
p

1−x2)
3D 4πr 2 1−3x/2+x3/2

∫
V dr1

∫
V ′ dr′2δ(r′2 − r1), where V ′ is the subvolume V shifted by r (see Figure 1.3).

The function w(r ) is obtained from τ(r) by integrating over 4π solid angle (Ω)
and dividing by V . We have

w (r ) = 1

V

∫
dr′τ(r′)δ(r −|r′|) = r D−1

V

∫
dΩτ(r) (1.23)

where D is the dimensionality of space. In the following, we consider for V hy-
perspheres of radius R, where by symmetry, the overlap volume does not depend
on Ω, so τ(r) = τ(r ). The volume of a hypersphere is V = RD

∫
dΩ/D which, to-

gether with Eq. (1.23), yields

w (r ) = τ(r )D r D−1

RD
(1.24)

The overlap volumes τ(r ) of hyperspheres in D=1–3 dimensions (i.e. seg-
ment, circle and sphere) are well known [82]. From these, the corresponding
functions w(r ) are obtained using Eq. (1.24). The functions w(r ) are computed
up to the maximum distance between two points in a subvolume Lmax. It is con-
venient to define the dimensionless distance x = r /Lmax. The corresponding
functions w(x) are listed in Table 1.1. Using w(x) and the L.H.S of Eq. (1.18),
we arrive at the final expression for KBIs for finite subvolumes,

GV
αβ =

∫ Lmax

0

[
gαβ(r )−1

]
c(r )w(x)dr (1.25)

where we have used the fact that w(x) = 0 for x ≥ 1.
KBIs computed from small subvolumes scale with the inverse size of the sub-

volumes. This scaling law can be explained by the concept of thermodynamics
of small systems as mentioned earlier. Alternatively, Krüger et al. [74] showed
that finite-size effects of the subvolume emerge from pairs of molecules α−β,
where particle α is inside subvolume V , and particle β is outside V (the simu-
lation box which contains V is denoted by L3). To account for the contribution
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of these molecular pairs to the KBIs, the function Qαβ is defined by splitting the
the integral domain in Eq. (1.18) over the surrounding

∫
V

∫
L3 and

∫
V

∫
L3−V (this is

possible as RDFs have a finite range),

Qαβ ≡
∫

V
dr1

∫
L3−V

dr2(gαβ(r12)−1)

=
∫

V
dr1

∫
L3

dr2(gαβ(r12)−1)−
∫

V
dr1

∫
V

dr2(gαβ(r12)−1) (1.26)

where non-zero contributions to Qαβ originate from molecule pairs where one
molecule is inside V and the other one outside V . Assuming a finite correlation
length ζ for a layer surrounding the subvolume, we have [gαβ(r12)− 1] ≈ 0 for
r12 > ζ. The volume of this layer, and thus Qαβ, increases linearly with the surface
area A of the spherical subvolume (for a radius of the sphere much larger than ζ).
In the case of an infinitely large system, the homogeneous conditions allow for
the substitution r = r1 − r2 in the integral over L3, resulting in:

Qαβ =
∫

V
dr1

∫
L3

dr(gαβ(r12)−1)−
∫

V
dr1

∫
V

dr2(gαβ(r12)−1)

≈V G∞
αβ−V GV

αβ (1.27)

where G∞
αβ

is the KB integral for an infinite volume. As Qαβ scales linearly with

the surface area A, the difference (G∞
αβ

−GV
αβ

) scales as A/V , i.e. inversely with
the linear dimension of the subvolume (A/V ∼ 1/L),

GV
αβ(L) =G∞

αβ+
F∞
αβ

L
(1.28)

where F∞
αβ

is a scaling constant proportional to the function Qαβ defined ear-

lier. From extrapolating GV
αβ

to 1/L → 0, KBIs in the thermodynamic limit are
obtained.

OTHER METHODS FOR COMPUTING KIRKWOOD–BUFF INTEGRALS

Similar to the method of Krüger and co-workers [74], the approach of Cortes-
Huerto et al. [83] uses small subvolumes to estimate KBIs in the thermodynamic
limit. In their approach, Cortes-Huerto et al. [83] apply a correction for RDFs
that is independent of the interparticle distance. The methods of Krüger and
co-workers [74, 80, 81, 84], and Cortes-Huerto et al. [83] provide practical ap-
proaches to computing KBIs for any isotropic fluid, while addressing system size
effects and RDF–related finite–size effects. Other available methods for comput-
ing KBIs are more complicated, and found to be difficult to extend to systems
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with internal degrees of freedom. Wedberg et al. [75, 85] presented a method for
extending KBIs to the thermodynamic limit using Verlet’s extension of RDFs [86].
The Verlet extension method [86] can be applied to estimate RDFs beyond the
size of the finite simulation box, which are then used to extrapolate to KBIs to
the thermodynamic limit, by truncating Eq. (1.3) to a value much larger than half
the size of the simulation box. The approach of Wedberg et al. [75] was verified
for pure Lennard Jones (LJ) and Stockmayer fluids. A drawback of this approach
is the complexity of the numerical procedure as it required the effective interac-
tion potential for two molecules at distance r . Moreover, it is not trivial to extend
the method to systems of molecules with intramolecular degrees of freedom.

KBIs can be computed from molecular simulations of finite number of
molecules using static structure factors [76, 87]. The structure factor of a liq-
uid, S(q), is related to the Fourier transform of pair distribution functions, and
q is the magnitude of change of a reciprocal lattice vector [23]. Structure factors
can be measured from scattering experiments, where q is a function of the wave
length and the scattering angle. At the zero wavelength limit, q = 0, structure fac-
tors are directly related to KBIs [51, 88]. However, the values of S(q = 0) cannot
be measured directly. Similarly, with molecular simulation, structure factors can
be computed for a set of values of q , and then extrapolated to the limit q = 0 to
find KBIs. In the work of Nichols et al. [76], structure factors are computed from
fluctuations in the number of molecules of finite systems. Each lattice vector q
corresponds to a set of different sampling volumes, or sub-cells inside the simu-
lation box, from which density fluctuations are computed. Rather than consider-
ing subvolumes formed by a central molecule, Nichols et al. [76] considered fluc-
tuations in slab-like regions that resulted from dividing the simulation box. As a
result, the whole volume is considered and all the information is used. From fluc-
tuations, written as a 3D Fourier series, structure factors are computed and this
was used to obtain the thermodynamic properties that relate to KBIs (partial de-
viates of chemical potential with respect to composition, partial molar volumes,
and isothermal compressibilities). For a LJ fluid, Nichols et al. [76] found that it
was difficult to extrapolate structure factors to q = 0. Instead, thermodynamic
properties computed from subcells (i.e specific range of q) were extrapolated to
the limit q = 0. Extrapolation of thermodynamic properties is needed to rem-
edy finite-size effects. While the method of Nichols et al. [76] provides accurate
thermodynamic properties, compared to truncated KBIs, it is computationally
involved even for systems with no intramolecular interactions. Structure factors
were also used in the work of Rogers [87] to compute KBIs from simulations of
closed and finite systems. As in the work of Nichols et al. [76], information from
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the entire volume of the simulation box was used. However, both methods were
applied to compute KBIs of systems of molecules with no intramolecular degrees
of freedom such as LJ fluids.

1.4. APPLICATIONS OF KIRKWOOD–BUFF INTEGRALS

COMPUTED FROM MOLECULAR SIMULATION

1.4.1. PARTIAL MOLAR ENTHALPIES

In Ref. [89], Schnell et al. proposed a method to compute partial molar en-
thalpies from molecular simulation in the canonical ensemble. Following the
SSM [16], enthalpies Ĥ of small subvolumes embedded in a larger reservoir are
used. From nanothermodynamics, an expression for the change of Ĥ with re-
spect to the average number of molecules 〈Nα〉 was derived in terms of fluctua-
tions in density and energy,(

∂Ĥ

∂〈Nα〉
)

T,V ,µβ 6=α
= 〈E Nα〉−〈Nα〉〈E〉+〈Nα〉kB T

〈N 2
α〉−〈Nα〉2

(1.29)

in which E is the partial energy of the subvolume. As shown in the previous sec-
tion, properties of small subvolumes scale with the inverse size of the subvol-
ume (1/L). Extrapolating the derivatives of Eq. (1.29) to the thermodynamic limit

yields partial enthalpies at constant volume
(
∂H
∂Nα

)
T,V ,Nβ 6=α

. To find partial molar

enthalpies,
(
∂H
∂Nα

)
T,P,Nβ 6=α

, a Legendre transform was performed. To convert from

enthalpies in the canonical ensemble to partial molar enthalpies, KBIs of the
studied system are needed. The method of Krüger and co-workers [74, 80, 81, 84]
to obtain KBIs for finite subvolumes was used. This approach was also applied
by Skorpa et al. [90] to compute the heat of reaction of H2 dissociation using a
reactive force field.

1.4.2. PROPERTIES OF SINGLE-IONS IN SALT SOLUTIONS

Simulating closed and finite systems to compute KBIs has the advantage of
accessing single-ion properties [91]. Essentially, to apply the KB theory to a salt
solution, the system has to be treated as a binary mixture where ions are indistin-
guishable [13], as shown in Ref [20]. In this case, relations between KBIs and ther-
modynamic properties of binary mixtures can be applied (e.g. see section 1.1).
For a ternary mixture of a dissociating monovalent substance (AB → A +B) and
a solvent (e.g. water, W ), KBIs are subject to the following electroneutrality con-
ditions,
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ρ GW A =ρ GW B (1.30)

1+ρ G A A =ρ G AB (1.31)

1+ρ GBB =ρ G AB (1.32)

where ρ is the number density of the salt (ρA = ρB = ρ). Eqs. (1.30), (1.31)
and (1.32) imply that the number of molecules of species A and B cannot be
varied independently. Ben-Naim [13] showed that the above constraints intro-
duce a singularity to the equations relating KBIs G∞

αβ
to thermodynamic quanti-

ties. It is important to note that the KB theory is general for any type of interac-
tions and the issue of singularity is not due to the strong electrostatic interactions
present in salt solutions. Rather, it is a result of the closure constraints imposed
by Eqs. (1.30), (1.31) and (1.32), and it does not apply to KBIs defined in open
systems [12]. Eqs. (1.30), (1.31) and (1.32) hold for any dissociating molecule AB
where the number of molecules has to be conserved simultaneously in the sys-
tem, i.e. NA = NB . The approach of using KBIs of finite subvolumes of Krüger
and co-workers [74, 80, 81, 84] allows KBIs of single ions to be computed from
simulations in the canonical ensemble with open subvolumes embedded in the
simulation box. As a result, the charge neutrality of the reservoir is maintained
(NA = NB ), while the electroneutrality condition is not applied inside the sub-
volume, and therefore the grand-canonical ensemble is accessed. In the work of
Schnell et al. [91], KBIs of a sodium chloride (NaCl) solution were computed as
well as partial molar volumes of water, Na+, and Cl−. The partial molar volume of
Na+ was reported to have a negative value [91]. In Ref. [7], a similar observation
was reported when computing the partial molar volumes of Na+ and Cl−. The
authors of Ref. [7] investigated the possibility of computing single-ion properties
using molecular simulations by considering two methods. The first method is
based on the changes in average potential energy and box volume when insert-
ing an ion into a pure liquid. The second method depends on computing the
reversible work associated with inserting an ion into a liquid.

1.4.3. MASS TRANSFER IN MULTICOMPONENT LIQUIDS

KBIs computed from molecular simulation can be applied to connect Fick
diffusion coefficients to MS diffusivities [70, 92]. The generalized Fick’s law re-
lates the molar flux, Ji , to the Fick diffusivity, Di j [66, 68],

Ji =−ct

n−1∑
j=1

Di j∇x j (1.33)
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where ct is the total molar concentration and ∇x j is the gradient of the mole
fraction x j , which is the driving force in Fick’s law. In a molar reference frame,
we have Σn

i=1 Ji = 0. MS diffusivities can be computed from MD simulations and
Fick diffusivities can be measured by experiments [64, 66, 68, 70, 92]. The MS
diffusivity D̄ i j can be considered as an inverse friction term in an equation where
the gradient in chemical potential ∇µi of component i is related to differences in
the average velocities between species:

− 1

RT
∇µi =

n∑
j=1( j 6=i )

x j (ui −u j )

D̄ i j
(1.34)

where (ui −u j ) is the difference between the average velocities of components i
and j . As chemical potentials cannot be measured directly, it is not possible to
directly compare MS diffusivities to experiments. It is more convenient to com-
pute MS diffusivites using molecular simulation. Details on this are provided in
Refs. [70, 73, 92]. Often, Fick diffusivities depend more strongly on concentra-
tion than MS diffusivities [64, 68]. Moreover, it is possible to predict diffusion of
multicomponent mixtures (n > 2) from the knowledge of MS diffusivites of the
corresponding binary mixtures [64, 69, 70]. For a mixture with more than two
components, Fick diffusivities depend on the type of reference frame, unlike MS
diffusivities [64, 68, 93]. In a molar reference frame, Fick diffusivities and the
thermodynamic factor can be used to compare MS diffusivites with experimen-
tal data [66],

[D] = [B ]−1[Γ] (1.35)

where [D] is the Fick diffusion coefficients matrix. The elements of the matrix [B ]
can be computed using

Bi i = xi

D̄ i n
+

n∑
j=1( j 6=i )

x j

D̄ i j
with i = 1,2, ...(n −1) (1.36)

Bi j =−xi

(
1

D̄ i j
− 1

D̄ i n

)
with i = 1,2, ...(n −1) and i 6= j (1.37)

and the elements of matrix [Γ] can be expressed as a function of KBIs. For bi-
nary systems, the relation between Γi j and KBIs is provided by Eq. (1.14). In
Refs. [70] and [64], KBIs from simulations of finite systems were computed us-
ing the approach of Krüger and co-workers [74, 80, 81, 84]. KBIs of binary and
ternary mixtures were used to compute the thermodynamic factors and convert
MS diffusivities computed from simulations to Fick diffusivities measured by ex-
periments. The proposed method was applied to binary and ternary alcohol mix-
tures [64, 70].
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In Refs. [72, 73, 94], it was shown that KBIs can be used to correct finite-size
effects of computed MS diffusion coefficients. MS diffusion coefficients depend
on the size of the simulated system. These finite-size effects originate from hy-
drodynamic interactions [72, 95, 96]. In the studies by Jamali et al. [72, 94], a
correction based on viscosity and the thermodynamic factor was used to com-
pensate for this effect. For binary and ternary systems, KBIs were obtained from
molecular simulation and used to compute thermodynamic factors. The finite-
size correction was validated for various molecular systems such as organic flu-
ids. Jamali et al. [72, 94] found the finite-size effects of MS diffusivites to be sig-
nificant, especially when mixtures are close to demixing, or when molecules are
large compared to the size of the simulation box [97, 98].

1.4.4. OTHER APPLICATIONS

In section 1.1, we presented the relations that link KBIs to partial derivatives
of the chemical potential with respect to the number of molecules (Eq. (1.5)),
partial molar volumes (Eq. (1.6)), and isothermal compressibilities (Eq. (1.7)) for
binary systems. Based on these relations, other properties can be estimated from
KBIs. Galata et al. [54] used the KB theory to compute thermodynamic mixing
properties and excess properties of liquid mixtures. In their work, the authors
focus on computing partial derivatives of the chemical potential with composi-
tion and the Gibbs energy of mixing, ∆mixG , which are important quantities for
the prediction of phase equilibria of liquid mixtures. The prediction of ∆mixG
and other mixing properties from KBIs was validated using binary ideal and real
LJ mixtures [54]. The KBIs were found using simulations of finite volumes, and
finite-size effects were corrected using the approach of Cortes-Huerto et al. [83].

KBIs can be used to interpret findings from simulations of biological
molecules. In Ref. [99], Pierce et al. presented a review of the applications of
the KB theory to biological systems. One of the valuable applications of the KB
theory is to study the effects of co–solvents on biomolecules. Molecular simu-
lation provide local information on the co–solvents surrounding biomolecules
and how such an environment affects the structure of biomolecules [99–103].
In 2004, Smith [102] demonstrated how KBIs can be used to relate simulation
results, which provide preferential interaction, to macroscopic thermodynamic
data [104]. Other than studying solvents surrounding biomolecules, the KB the-
ory can be applied directly to systems with interacting biomolecules. However,
this application can be hindered by difficulties associated with sampling the
phase space of such systems.
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KBIs can be used for the development and parameterization of force
fields [105–107]. Weerasinghe and Smith provide KB derived force fields (KBFFs)
for a number of mixtures, such as sodium chloride in water [106], urea and wa-
ter [108], acetone and water [109], and methanol and water [110]. The force
fields were parameterized so that KBIs obtained from experimental data are re-
produced. More on the use of experimentally obtained KBIs are provided in sec-
tion 1.2. The authors of Refs. [105–107] found that macroscopic properties can be
accurately computed using KBFFs, while addressing solute-solute and solvent-
solute molecular structure of the systems considered. For instance, in Ref. [105]
the derived KBFFs was able to reproduce microstructure of alkaline earth halide
salts in water. Ion-ion and ion-water distances provided by the force field were
found to agree with those measured by neutron scattering experiments. The
same KB force field yielded satisfactory predictions of several macroscopic quan-
tities such as partial molar volumes, and partial derivatives of chemical potential
with respect to density. Mijaković et al. [111] compared several force fields, in-
cluding KBFFs, for ethanol-water mixtures. The authors reported that the KB de-
rived force field performed better than other force fields when computing KBIs
and several thermodynamic properties such as excess volumes, excess enthalpy,
and self-diffusion coefficients.

1.5. SCOPE OF THIS THESIS
The focus of this thesis is to provide methods to accurately compute KBIs from
molecular simulation. In this way, one does not have to rely on experimental
data or insertion and deletion of molecules. To successfully estimate KBIs from
molecular simulation using Eq. (1.25), the following effects have to be studied:

1. Shape effects related to the subvolume embedded in the system.

2. Finite–size effects related to the size of the system used to compute KBIs.
To obtain of KBIs that converge to the correct value in the thermodynamic
limit, a sufficient number of molecules has to be simulated.

3. Finite–size effects related to the sizes of the subvolumes embedded in the
system.

4. Finite–size effects related to the computed RDFs. KBIs should be com-
puted from RDFs of open systems, while nearly always, RDFs are com-
puted from closed systems.

In this thesis, we develop a framework to accurately compute KBIs based on
the method of Krüger and co–workers [74]. In chapters 2 and 3, the shape and
size effects related to computing KBIs using small subvolumes are studied. In
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chapter 2, a numerical method is developed to compute KBIs for subvolumes
with arbitrary shapes. We show that truncating KBIs (i.e. truncating the integral
of Eq. (1.3)) is nonphysical. In chapter 3, an analytic RDF was used to investigate
finite–size effects of the system and the subvolumes. RDF–related effects were
studied by simulating Weeks-Chandler-Andersen (WCA) particles [112]. RDFs
of systems with different sizes were corrected using three RDF correction meth-
ods. When using finite systems, the method of Gaungly and van der Vegt [113]
resulted in the best estimation of KBIs. Additionally, in chapter 3 it is shown that
the accuracy may be affected by how KBIs of small subvolumes are extrapolated
to the thermodynamic limit. If the size of the simulated system is sufficient, KBIs
of small subvolumes should scale linearly with the inverse size of the subvolume.
However, identifying a linear regime is not straightforward. In chapter 4, other
extrapolation techniques are considered such as an expression to directly com-
pute KBIs in the thermodynamic limit from RDFs of finite volumes and the scal-
ing of LGV

αβ
with L. The scaling of KBIs depends on the size of the subvolume

and a term related to surface effects. In chapter 4, different methods are used to
extrapolate to KBIs in the thermodynamic limit and to compute the surface term
for LJ and WCA fluids. From chapters 3 and 4, a practical method to compute
KBIs using molecular simulations is established. In chapter 5, these findings are
used to compute KBIs of the Deep Eutectic Solvent (DES) consisting of choline
chloride and urea at various compositions. The computed KBIs are then used to
obtain thermodynamic factors and partial molar volumes. The thermodynamic
factors were used to examine interactions of choline chloride-urea mixtures and
connect MS diffusivities with Fick diffusion coefficients. This clearly shows that
the KB theory is useful for computing thermodynamic properties while avoiding
insertion/deletion of molecules. However, in some cases, it is more convenient
to perform molecular simulations in open ensemble. For instance, when com-
puting the solubility of small gas molecules in liquid solvents. An example of
this is presented in chapter 6, where the CFCMC method was used to predict the
solubility of a number of gases in monoethylene glycol (MEG).
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This chapter is based on the paper: N. Dawass, P. Krüger, J. M. Simon, and T. J. H. Vlugt, Kirk-
wood–Buff integrals of finite systems: Shape effects, Molecular Physics, 116, 1573-1580 (2018) [84]
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2.1. INTRODUCTION
In chapter 1, the method of Krüger and co–workers [74] was presented, where
KBIs of finite subvolumes are used to estimate KBIs in the thermodynamic limit.
Considering the shape of the subvolume, the sphere is the natural choice in sim-
ple liquids, but other shapes may be more convenient for specific applications.
For example, the KB theory was previously applied to study the interactions be-
tween large biomolecules and the surrounding solvent molecules [99, 114, 115].
Giambasu et al. [116] used KBIs to study the ionic atmosphere surrounding nu-
cleic acids. In their work, selecting the shape of the subvolume depended on the
inhomogeneous region surrounding the nucleic acids [116]. For instance, hexag-
onal prisms were used to study the fluctuations of solvent molecules around
DNA. In principle, it is possible to compute KBIs using the right hand side (R.H.S)
of Eq. (1.18) for any shape of the subvolume V . The size of the subvolume can
be gradually increased as shown in Figure 1.2, and the number of particles in
each subvolume is then used to compute GV

αβ
using the R.H.S of Eq. (1.18). Cu-

bic subvolumes have been used in the works of Schnell et al. [16], Cortes-Huerto
et al. [83] and others [70, 113, 117] in combination with the R.H.S of Eq. (1.18).
The advantage of using cubic subvolumes is that one does not need to compute
distances between molecules and the center of the subvolume. The alternative
formulation of finite-size KBIs (Eq. (1.25)), i.e. direct integration over the RDF,
has only been applied to spherical subvolumes [74]. It is important to note that
Eq. (1.25) is valid for subvolumes of any shape, provided the geometrical function
w(x) is known for that shape.

The objective of this chapter is to present a unified framework for computing
KBIs for subvolumes of arbitrary convex shape. We provide a numerical method
to compute the function w(x) based on umbrella sampling MC. Once the func-
tion w(x) is computed for a specific shape, it can be used for any size of the sub-
volume. We compute the function w(x) for the following shapes: square, cube,
and spheroids and cuboids with different aspect ratios. Numerical tables of these
functions are provided in a data repository (see Ref. [118]). We also investigate
the effect of the shape of the subvolume on the computation of KBIs. We will
show that using a cubic or spherical subvolume leads to the same KB integral in
the thermodynamic limit, and that for large subvolumes KBIs scale as area over
volume, independent of the shape of the subvolume. This scaling will also ex-
plain why truncation of KBIs (i.e. truncating the integral of Eq. (1.3)) leads to
nonphysical results.

The chapter is organized as follows. In section 2.2, the numerical method
used to compute w(x) is introduced. The method is verified by comparing our
numerical results to the analytic expressions for a sphere (3D), circle (2D), and
line (1D). In section 2.3.2, the function w(x) is computed numerically for a cube
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and for spheroids and cuboids with different aspect ratios. From this, finite vol-
ume KBIs for a liquid with a model RDF are computed for various shapes, both
in 2D and 3D . Our findings are summarized in section 2.4.

2.2. NUMERICAL COMPUTATION OF w(x)
In this section, we present a numerical method to compute the function w(x) for
convex subvolumes. Table 2.1 shows a schematic representation of the shapes
studied here. For cuboids and spheroids, w(x) depends on the aspect ratio, a,
and the function w(x) is computed for each a.

To find w(x), we first compute w(r ) and then normalize the distance r us-
ing the maximum distance between two points in the subvolume, Lmax (see Ta-
ble 2.1), so x = r /Lmax. The function w(r ) is proportional to the probability dis-
tribution function p(r ) for finding two points inside the subvolume, V , sepa-
rated by distance r [74]. Therefore, by construction we obtain w(r = 0) = 1 and
w(r = Lmax) = 0, so consequently w(x = 0) = 1 and w(x = 1) = 0. To compute the
probability distribution function p(r ) numerically, distances between two points
inside the subvolume are divided into N bins (i1, i2, ... iN ) of equal sizes, sep-
arated by ∆r . Each bin contains all distances between i∆r and (i − 1)∆r . As a
result of this discretization, we sample the probability distribution p(i ), which is
then used to compute w(i ). The value of∆r has to be chosen such that the func-
tion p(i ) is properly sampled. We find that a small value of ∆r results in poor
statistics, especially in the first few bins. We recommend setting ∆r to L/100 (L
is the characteristic length of the subvolume, see Table 2.1). To further improve
the statistics, umbrella sampling [22, 119] is implemented for computing w(x).
This introduces a weightfunction W (i ) which modifies the sampled distribution
of distances.
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Table 2.1 Subvolume shapes considered in this work. L is the characteristic linear dimension of
the shape and Lmax is the largest possible distance between two points inside the subvolume. A
cube and sphere are included as special cases of cuboid and spheroid with aspect ratio a = 1.

Shape of the
subvolume

Lmax

Line (1D) L L

Circle (2D)
L

L = 2∗R

Square (2D) L
p

2L

Spheroid (3D)

a . L

L
{

L∗a a Ê 1

L a < 1

Cuboid (3D) L

L

a . L

L
p

2+a2
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2.2.1. IMPORTANCE SAMPLING ALGORITHM FOR COMPUTING p(i )
In the algorithm below, we show how the probability distribution function p(i )
and the weight function W (i ) are computed. Note that the algorithm presented
in this work is for a 3D subvolume, however, it is trivial to adjust it to other di-
mensions. The algorithm follows the following steps:

1. Set ∆r and the maximum allowed displacement for random displace-
ments.

2. Set a weight function W (i ) to zero for all bins.

3. Choose two random points (P1 and P2) inside the subvolume V .

4. For each sampling cycle (we typically performed 1011 cycles):

(a) Select a single point, P1 or P2, randomly. Assume that Pi is selected
(the other point is denoted by P j ).

(b) Give a random displacement to point Pi leading to Pnew.

(c) Check if this new position falls inside the subvolume. If it does not,
skip to step (f), otherwise carry on with the next step (d).

(d) Determine the normalized distance, r /Lmax, between Pnew and P j

and determine the bin number corresponding to this distance, inew.
The bin number corresponding to the old distance is denoted by iold.

(e) Accept the displacement if a uniformly distributed random number
between 0 and 1 is less than exp[W (inew)−W (iold)], otherwise the dis-
placement is rejected. If the displacement move is accepted, update
Pi and iold such that Pi = Pnew and iold = inew.

(f) Compute the normalized distance between Pi and P j and the bin
number, i corresponding to that distance. Update the sampling of
the observed probability distribution function pbiased(i ).

5. After a large number of cycles, remove the bias caused by the weightfunc-
tion:

p(i ) = pbiased(i )exp[−W (iold)] (2.1)

6. Update and save W (i ) for the consecutive computations of p(i ) using an
iterative updating scheme:

W (i ) →W (i )− (1/2) ln pbiased(i ) (2.2)

and shift W (i ) so that its minimum equals zero.
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7. Repeat steps 1 to 4 while updating W (i ) until a satisfactory sampling of p(i )
is reached. For 1011 cycles, running the algorithm takes approximately 150
minutes on a modern computer.

2.2.2. COMPUTING w(x)
The function w(i ) is proportional to the distribution function p(i ) divided by the
volume of the bin in a hypersphere with dimension D :

w(i ) = p(i )

i D − (i −1)D
(2.3)

In Eq. (2.3), the prefactors for the bin volumes are not included yet since in the
next step w(i ) is normalized using the known value w(0) = 1. Since we do not
obtain statistics exactly at r = 0, we interpolate to w(0) using the first two bins
w(1) and w(2),

w(i ) → w(i )

w(1)− (w(2)−w(1))
2

(2.4)

Similarly, the distances are normalized to find the relative distance x,

x(i ) = (i −1/2)∆r

Lmax
(2.5)

Interpolation can be used to find w(x) for any value of x.

2.3. SHAPE EFFECTS OF KIRKWOOD–BUFF INTEGRALS

2.3.1. THE FUNCTIONS w(x) FOR A CUBE, CUBOIDS, AND SPHEROIDS

In this section, we present the function w(x), computed numerically for differ-
ent shapes. To validate our numerical method (section 2.2), we compute the
function w(x) for subvolumes where the analytic expressions are known (line,
circle, and sphere, see Table 1.1) and make a comparison. In Figure 2.1 (a), the
comparison between analytic and numerical functions w(x) is shown for a line,
circle, and sphere. For these shapes, the numerical results reproduce the theo-
retical solution very well. The average absolute difference between analytic and
numerical values are 9x10−3, 5x10−3, and 2x10−4 for a sphere, circle, and line,
respectively. Therefore, the algorithm of section 2.2 can be used to numerically
compute the function w(x) for any convex subvolume in 1D , 2D , or 3D .

We compute the function w(x) numerically for subvolumes where analytic
expressions for w(x) are not available. In Figure 2.1 (b), we show the function
w(x) computed numerically for a cube and sphere, which are the most com-
monly used shapes for the subvolume when computing KBIs . Figure 2.2 shows
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the function w(x) for spheroids and cuboids with the following aspect ratios,
a = 0.1, 1, 2, 5, and 10. Clearly, the function w(x) varies a lot with the aspect
ratio a, and this function is very different for a sphere and a cube. We found that
it is difficult to accurately fit w(x, a) with polynomial functions. In a data repos-
itory (see Ref. [118]), we provide tabulated data of the function w(x) for various
shapes of the subvolumes.
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(a)

(b)

Figure 2.1: (a) The function w(x) for a line (1D), circle (2D), and a sphere (3D). The function w(x) is
computed numerically using the MC algorithm provided in section 2.2 and the analytic functions
are listed in Table 1.1. In all cases, the numerical solution matches the theoretical expressions of
w(x). (b) The function w(x) for a sphere and a cube.
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(a)

(b)

Figure 2.2: The function w(x) computed numerically using the MC algorithm provided in sec-
tion 2.2, for (a) spheroids, and (b) cuboids with different aspect ratios a.
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2.3.2. KIRKWOOD–BUFF INTEGRALS FOR VARIOUS SHAPES

We compute KBIs for subvolumes with different geometries. The expression for
KBIs of finite subvolumes, GV

αβ
, is provided by Eq. (1.25). To investigate shape

effects, a liquid with the following analytic RDF model [86, 120] is used,

g (r )−1 =
{

3/2
r /σ exp

[
1−r /σ
χ

]
cos

[
2π

( r
σ − 21

20

)] r
σ ≥ 19

20 ,

−1, r
σ < 19

20

(2.6)

where σ is the diameter of the particles, and χ is the length scale at which the
fluctuations of the RDF decay. This RDF mimics density fluctuations around a
central particle for a typical isotropic liquid. The RDF parameters are fixed at
σ = 1 and χ = 2. Here, we work with a single-component fluid therefore the in-
dices α and β are dropped. The use of an analytic g (r ) eliminates errors due to
uncertainties in numerically obtained RDFs [74, 113]. The functions w(x) are ob-
tained numerically in tabulated form, and the value of w(x) at any x is obtained
by interpolation. The integral of Eq. (1.25) is obtained by numerical integration
using the trapezoidal rule [121].

In Figure 2.3, we show the KBIs for finite subvolumes, GV /σ3, plotted as a
function of the inverse of the length of the subvolumes, σ/L. Figure 2.3 (a) shows
the KBIs computed for spheroids with different aspect ratios (a = 1,2,5,10), and
Figure 2.3 (b) shows the same for cuboids. In Figure 2.3 (b), we use analytic and
numerical functions w(x) for spherical subvolumes (a = 1). Integrating using
the analytic or numerical functions w(x) yields practically identical values of the
KBIs, and differences are of the same order as the error introduced by the nu-
merical integration of Eq. (1.25). Changing the aspect ratio affects the slope of
the lines of GV /σ3 versus σ/L. All lines approach the same value of the KB inte-
gral in the limit σ/L → 0, which is expected as in the thermodynamic limit the
KB integral should be independent of the shape of the subvolume. Figure 2.3
shows that the shape of the subvolume affects the slope of the plots of GV /σ3

versus σ/L. The dependence of the slope on the shape of the finite subvolume
was previously reported in the work of Strøm et al. [122] using arguments based
on small-scale thermodynamics. These authors found that plotting KBIs as a
function of the surface to volume ratio of the subvolume should eliminate shape
effects.

In Figure 2.4 (a), we show the KBIs plotted as a function of the surface area
to volume ratio (Aσ/V ) of the subvolume for the following shapes: sphere, cube,
spheroid with a = 2, and cuboid with a = 2. As expected from the work by Strøm
et al. [122], all KBIs approach the same value of G∞/σ3 with the same slope. In
the thermodynamic limit, GV /σ3 seems to only be a function of A/V . For large
subvolumes, values of w(r ) at small distances are more significant when inte-
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grating G∞/σ3 (Eq. (1.25)). Therefore, w(r ) has a universal behavior at small
distances which leads to the universality of KBIs in Figure 2.4 (a). Using a Taylor
expansion around r = 0, one can show that w(r ) can be written as function of
A/V [81],

w(r ) ≈
(
1− r

4

A

V
+O (r 2)

)
(2.7)

In Figure 2.4 (b), we plot the ratio of w(r ) using Eq. (2.7) to numerical w(r ) for
a sphere, cube, spheroid with a = 2, and cuboid with a = 2. A subvolume with
L = 1 is used. At small distances (r < 0.1), the ratio is practically 1 for all shapes
considered. Eq. (2.7) shows that the function w(r ) depends on the size r and
the ratio A/V . The shape contribution originates from the term O (r 2). There-
fore, properties of large subvolumes are independent of shape. This is referred
to as the so-called shape thermodynamics limit, where properties of the subvol-
ume are dependent on the size but not the shape of the subvolume [123]. In the
conventional thermodynamic limit, properties are independent of both size and
shape of the subvolume.

It is important to note that Eq. (2.7) provides a physical reason for the poor
convergence of truncated KBIs (i.e. truncating the integral of Eq. (1.3)). If we
consider a subvolume V with zero surface area A = 0, this will yield the weight
function c(r )w(r ) = 4πr 2. Substituting this in the expression of KBIs of finite
subvolumes (Eq. (1.25)), one arrives at an expression of KBIs truncated to finite
distances,

Ĝαβ(R) =
∫ R

0
dr 4πr 2

[
g∞
αβ(r )−1

]
(2.8)

Therefore, truncated KBIs correspond to the nonphysical case of finite–size KBIs
with subvolumes V and zero surface area.

We verified numerically that findings from computing KBIs using different
3D shapes apply to KBIs computed using 2D shapes as well. In Figure 2.5, we
show GV /σ2 vs. σ/L for a circle and a square. For a circle, we compute the KBIs
using the analytic function for w(x), and also using the numerically function
w(x). Both functions result in identical values of KBIs for all sizes of the sub-
volume. Using circle or square for the shape of the subvolume results in KBIs
that converge to the same value of G∞/σ2.
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(a)

(b)

Figure 2.3: KBIs of finite subvolumes GV /σ3 vs. the inverse of the size of the subvolume, σ/L
using the numerically computed w(r ). The RDF of Eq. (2.6) has parameters σ = 1 and χ = 2. The
subvolumes used have the following shapes: (a) spheroids and (b) cuboids with different aspect
ratios, a. In (a) we also compare the KB integral for a sphere (a = 1) using both the numerical w(x),
and the analytic w(x) from Table 1.1.
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(a)

(b)

Figure 2.4: (a) KBIs of finite subvolumes, GV /σ3 vs. the inverse of the surface area to volume ratio
of the subvolume, A.σ/V . The KBIs are found by numerically integrating GV

αβ
for 3D subvolumes

(Table 1.1). The RDF of Eq. (2.6) has parameters σ = 1 and χ = 2. (b) The ratio of w(r ) computed
using Eq. (2.7) to numerical w(r ) of subvolumes with L = 1 and different shapes.
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Figure 2.5 KBIs of finite subvolumes, GV /σ2, vs. the inverse of the size of the subvolume, σ/L
using the numerically obtained w(r ). KBIs are obtained by numerically integrating Eq. (1.25) for
2D subvolumes (Table 1.1). The RDF of Eq. (2.6) has parameters σ= 1 and χ= 2. For the circle,
the analytic expression of the function w(x) can be found in Table 1.1.
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2.4. CONCLUSIONS
We have introduced a method for computing KBIs for finite subvolumes of arbi-
trary convex shapes. This requires a numerical method to obtain the geometrical
function w(x), which is needed when computing KBIs from RDFs. We showed
that w(x) is related to the probability of finding two particles inside a subvolume
V at a certain distance, and we presented a numerical scheme based on um-
brella sampling MC for this. The numerical method was verified by comparing
the results with analytic expressions for hyperspherical subvolumes in 1D (line),
2D (circle), and 3D (sphere). The method was used to compute the function
w(x) for the following subvolumes: square, cube, and spheroids and cuboids
with different aspect ratios. These functions are tabulated in a data repository
(see Ref. [118]). We computed KBIs for subvolumes with different shapes, using
an analytic RDF model representing an isotropic liquid. In the thermodynamic
limit, KBIs are independent of the shape of the subvolume, and the approach to
the thermodynamic limit only depends on the area over volume ratio, and not
the shape of the subvolume. This is due to the observation that for small r , w(r )
is only a function of r and the surface to volume ratio of the subvolume, and in-
dependent of the shape of the subvolume. At small r , a universal expression for
w(r ) was derived and used to show how truncated KBIs (Eq. (2.8)) correspond
to the nonphysical case of a finite volume with zero surface area. It would be
interesting to investigate whether or not these findings are applicable to non-
isotropic liquids.
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FINITE-SIZE EFFECTS OF

KIRKWOOD–BUFF INTEGRALS

FROM MOLECULAR SIMULATIONS

Thermodynamic	limit

V1
V2

V3

This chapter is based on the paper: N. Dawass, P. Krüger, S. K. Schnell, D. Bedeaux, S. Kjelstrup, J.
M. Simon, and T. J. H. Vlugt, Finite-size effects of Kirkwood–Buff integrals from molecular simula-
tions, Molecular Simulation, 44, 599-612 (2017) [80]
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3.1. INTRODUCTION
To compute KBIs using molecular simulation, Krüger and co–workers [74] de-
rived an expression for KBIs of finite subvolumes, embedded in larger reser-
voirs. From the scaling of KBIs of finite subvolumes with the inverse size of
these subvolumes, estimates for KBIs in the thermodynamic limit are obtained.
When computing KBIs from molecular simulations of closed, and finite systems
one must be aware of two system-size effects that originate from: (1) comput-
ing finite-volume KBIs from subvolumes embedded in closed and finite simula-
tion boxes [122]; and, (2) using RDFs obtained from finite and closed simulation
boxes, in contrast to open, infinite systems as required by the KB theory. For
the second effect, RDFs from open systems, g∞(r ), can be estimated from g (r )
obtained from molecular simulations of closed and finite systems. Previously,
Krüger et al. [74] used a correlation based on expanding the difference between
g (r ) and g∞(r ) in a Taylor series in the inverse of the number of molecules. Gan-
guly and van der Vegt [113] suggested a correction based on the excess or deple-
tion of molecules within a distance, r , around a central molecule. Cortes-Huerto
et al. introduced a correlation to compute the KBIs that includes a correction to
the RDF finite-size effects [83].

The objective of this chapter is to investigate finite-size effects associated
with the computation of KBIs from molecular simulations (e.g. MD) of finite and
closed systems. For the two types of finite-size effects studied (Figure 3.1), we
present the inaccuracies as a function of the simulation box size. Also, we inves-
tigate subvolume sizes and provide the distances up to which RDFs need to be
calculated. This chapter is organized as follows. The finite-size effects are stud-
ied using two sets of simulations. The first set of simulations consider MC sam-
pling of KBIs from subvolumes embedded in a larger simulation box. The KBIs
in the thermodynamic limit, and the inaccuracies associated with these com-
putations are investigated for various sizes for the simulation box. Second, we
demonstrate the finite-size effects related to the RDF by performing MD simu-
lation of a WCA [112] mixture. Other than varying the simulation box size used
to obtain KBIs, we also test various RDF correction methods to estimate RDFs of
infinite systems, g∞(r ). In section 3.2 details regarding the simulation methods
and specifications of the systems studied are provided. In section 3.4, we present
two main sets of results: (1) the appropriate system sizes from which KBIs could
be extrapolated and the magnitude of the inaccuracies made when simulating
finite subvolumes; and (2) the numerical inaccuracies resulting from comput-
ing RDFs using closed and finite simulation boxes, and the effect of applying the
discussed correction methods of the RDFs. Our findings are summarized in sec-
tion 3.5.
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3.2. FINITE-SIZE EFFECTS OF SUBVOLUMES
Computing KBIs using molecular simulations of finite simulation boxes results
in finite-size effects. These effects impact the accuracy of the computed KBIs
from finite subvolumes, and hence the KBIs at the thermodynamic limit. In this
section, we describe the system and simulation method used to study the finite-
size effects. Also, we relate the surface area of the subvolume embedded in the
simulation box to the finite-size effects of the subvolume.

To deal solely with effects originating from the finite size of the system, and
not RDF related effects, we study a fluid that is described by the analytic RDF of
Eq. (2.6). As we will consider a pure component fluid, for simplicity the indicesα
and β are dropped in this section. Also, the parameter σ is set to unity through-
out this work, so we use Lbox for the size of the box instead of Lbox/σ. We show
how finite KBIs (Eq. (1.25)) scale with the inverse of the size of the spherical sub-
volume, V (the subvolume can have any other shape but in this study, we choose
to consider spherical subvolumes).

To quantify the inaccuracies resulting from finite size effects of these subvol-
ume, the values of GV

αβ
are computed from simulations of different sizes of the

subvolume, R (the radius of the spherical subvolume), for a specific simulation
box size Lbox (side length of the cubic simulation box). KBIs in the thermody-
namic limit G∞

αβ
are obtained from extrapolating KBIs of finite subvolumes to

infinite subvolume size (R →∞). These KBIs are then compared to integrals ob-
tained from the direct numerical integration of Eq. (1.25), with the RDF at each
distance computed analytically from Eq. (2.6). To quantify the inaccuracies in
the KBIs due to finite-size effects, the differences between KBIs from the numer-
ical integration of Eq. (1.25) and G∞ from simulation of finite simulation boxes
are compared. Furthermore, we examine the distances up to which the compu-
tations of the KB integral are performed (i.e the appropriate subvolume sizes).
In molecular simulation, RDFs are typically computed up to half the length of
the simulation box (Lbox/2) and as a result the computed KBIs are limited to this

range. However, in simulations one can in principle extend r up to
p

3
2 of the box

length [124]. In this work, the RDF is extended up to
p

2
2 of the box length (the

range
p

2
2 <Lbox<

p
3

2 involves complex calculations that will not be considered
further). In the results section we show how this extension affects the computa-
tions of KBIs. When the radius of the subvolume, R, is larger than half the box
size, the surface area and volume of the subvolume are computed by disregard-
ing the sphere caps falling outside the simulation box (see Figure 3.1 (b)). Using
R−Lbox/2 for the height of the cap falling outside the simulation box, we obtain
the following equations for the truncated surface area Atrunc., and truncated vol-
ume Vtrunc. [82],
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Atrunc. = 4πR

[
R −3

(
R − Lbox

2

)]
,

1

2
< R

Lbox
<

p
2

2
(3.1)

Vtrunc. = 2π

[
2

3
R3 −

(
R − Lbox

2

)2 (
2R + Lbox

2

)]
,

1

2
< R

Lbox
<

p
2

2
(3.2)

To compute the KBIs of the system using the RDF of Eq. (2.6), MC sampling
is performed to numerically evaluate Eq. (1.18). For simplicity, a brute-force ran-
dom sampling algorithm is used instead of importance sampling MC. The simu-
lations follow the following algorithm:

1. Specify the size of the cubic simulation box Lbox, the size of the spherical
subvolume, with radius R placed in the center of the box, and the RDF
parameters χ and σ. In this study, we fix σ= 1, and test different values of
χ (χ= 1, 2, and 4).

2. Select two random points inside the simulation box, P1 and P2, accept the
points if they both fall inside the sphere otherwise, generate new points.

3. Select a random point, P3, and accept if the point is outside the sphere.
Otherwise, choose a new point P3.

4. Calculate the distance between points P1 and P2 (r12), and points P1 and
P3 (r13). Find g(r12)−1 and g(r13)−1 using Eq. (2.6).

5. Performing steps 2 and 3 results in one cycle. After a sufficient number of
cycles (in this study we perform 1011 cycles), compute the average of the
integrals

∫
V

∫
V and

∫
V

∫
L3

box−V (from Eq. (1.18) and Eq. (1.26)) over the RDF.

6. Finally, calculate GV
αβ

(Eq. (1.18)) and Q (Eq. (1.26)) using the sampled av-

erages of the integrals
∫

V

∫
V and

∫
V

∫
L3

box−V .

3.3. FINITE-SIZE EFFECTS OF RADIAL DISTRIBUTION FUNC-
TIONS

While our formulation enables the calculation of KBIs from finite subvolumes,
the used RDF has to be of that of an open and infinite system, g∞(r ). Using g (r )
from molecular simulation of a closed system results in a systematic error that af-
fects the accuracy of the KBIs, thus, the g (r ) has to be corrected. There are several
approaches available to estimate g∞(r ) from RDFs computed in closed systems.
In this section, we present the RDF correction methods that we consider in this
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work. To study the RDF correction methods, MD simulations of WCA molecules
are performed. The system conditions and the simulation details are provided in
this section.

3.3.1. VAN DER VEGT CORRECTION

When computing KBIs using finite systems, Ganguly and van der Vegt [113] ob-
serve a drifting asymptote due to the asymptotic behavior of RDFs in finite sys-
tems. Specifically, this asymptotic behavior of the RDF does not converge to one.
These authors proposed that the RDF could be corrected using a correlation that
takes into account the excess, or depletion of the bulk density of molecule type
β around a central molecule of type α at a distance r due to the finite-size of
the system (simulation box). The bulk density of molecules β is compensated by
computing the excess or depletion of number of molecules of species β inside
the considered subvolume, V . The subvolume is formed by taking a distance r
from the central molecule of type α. The correlation takes into account the de-
pletion of molecule type β around a central molecule of type α, ∆Nαβ(r ), and
provides the corrected RDF, g vdV

αβ
(r ):

g vdV
αβ (r ) = gαβ(r )

Nβ

(
1− V

L3
box

)
Nβ

(
1− V

L3
box

)
−∆Nαβ(r )−δαβ

(3.3)

where gαβ(r ) is the RDF obtained from a MC/MD simulation of a closed system
(Eq. (1.2)). For infinitely large and open systems, gαβ(r ) and g vdV

αβ
(r ) are equal. Nβ

is the number of molecules of type β, L3 is the volume of the closed simulation
box (which is assumed to be cubic), and δαβ is the Kronecker delta. V is the
subvolume that surrounds a molecule of type α, with radius r . This volume is
calculated according to whether r extends to outside the simulation box or not.
When r

Lbox
< 1

2 , V is simply the volume of the sphere, 4
3πr 3. However, when 1

2 <
r

Lbox
<

p
2

2 , V corresponds to the volume in Eq. (3.2). The excess or depletion of
molecule type β around a molecule of type α, ∆Nαβ(r ), can be calculated from,
depending on whether r extends to outside the simulation box or not [82]:

∆Nαβ(r ) =


∫ r

0 dr ′4πr ′2ρβ
[
gαβ(r ′)−1

]
, r

Lbox
< 1

2∫ Lbox/2
0 dr ′4πr ′2ρβ

[
gαβ(r ′)−1

]+∫ r
L/box2 dr ′2πr ′(3Lbox −4r ′)ρβ

[
gαβ(r ′)−1

]
, 1

2 < r
Lbox

<
p

2
2

(3.4)
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3.3.2. INVERSE-N FINITE-SIZE CORRECTION

A simple method to correct for the finite-size effect observed in radial distribu-
tion functions was presented by Krüger et al. [74], where the difference between
g (r ) and g∞(r ) is expanded in a Taylor series in 1/N [125]:

g N1

αβ
(r ) = g∞

αβ(r )+ c(r )

N1
+O

(
1

N 2
1

,r

)
(3.5)

Here, g N1

αβ
(r ) is the radial distribution function for a closed system with N1

molecules, g∞
αβ

(r ) is the RDF corrected for the finite-size effect, and c(r ) is a func-
tion that describes deviation from an open system. The function c(r ) is usually
not known, but can be estimated using two systems with different sizes at the
same thermodynamic state (same density/pressure, temperature, and composi-
tion). The term O ( 1

N 2
1

,r ) is the error associated with the truncation in Eq. (3.5),

which is a function of the number of molecules used as well as r . From Eq. (3.5),
the corrected g∞

αβ
(r ) can be expressed as:

g∞
αβ(r ) =

N1g N1

αβ
(r )−N2g N2

αβ
(r )

N1 −N2
(3.6)

where the subscripts 1 and 2 refer to two systems with different number of
molecules, but with same density/pressure, temperature, and composition.
This method of correcting for the finite-size effect is straightforward, but it re-
quires two different set of simulations, with different box sizes and number of
molecules. The box sizes should not be too different and the resulting g∞

αβ
(r ) can

only be extended to the size of the smallest system. Another shortcoming of this
method is related to the numerical accuracy arising from subtracting two num-
bers of the same magnitude, both in numerator and denominator. The resulting
numerical instabilities are increased when using two system sizes that are very
close to each other [126].

3.3.3. CORTES-HUERTO ET AL. CORRECTION

Another RDF correction is proposed by Cortes-Huerto et al. [83]. These au-
thors define KBIs from finite systems in terms of fluctuations of the number of
molecules as in the work of Krüger et al [74]. Their study considers the fluctua-
tions inside a cubic subvolume (as oppose to spherical subvolumes, but the use
of a different subvolume geometry should not affect the values of the KBIs at the
thermodynamic limit G∞

αβ
[122]. The KBIs are also defined in terms of integrals

over the RDF of the system (Eq. (1.18)). To compute KBIs using finite volumes,
these authors modify the L.H.S of Eq. (1.18) to include finite effects of RDFs and
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finite subvolumes effects. For the finite effects of RDFs, a correction based on a
relation from the work of Ben-Naim [13] is used, that strictly only applies when
r →∞,

gαβ(r ) = g∞
αβ(r )− 1

L3
box

(
δαβ

ρα
+G∞

αβ

)
(3.7)

The application of Eq. (3.7) implies that the difference between gαβ(r ) and g∞
αβ

(r )
in Eq. (3.7) is independent of r (for all values of r ). In the results section, we
compare the validation of all RDF corrections over the whole range of r . When
including the RDF correction (Eq. (3.7)) in the L.H.S of Eq. (1.18) the following
expression for the finite KBIs is obtained [83],

Gαβ(V ,L3
box) = 1

V

∫
V

∫
V

[
g∞
αβ(r12)−1

]
dr1dr2 − V

L3
box

(
δαβ

ρα
+G∞

αβ

)
(3.8)

The effect of the finite size of the subvolume, V , is accounted for by considering
the boundary effects considered through the function Q (Eq. (1.27)). The dou-
ble integral in Eq. (3.8),

∫
V

∫
V , is expanded to account for the other integration

domains,
∫

V

∫
L3

box
and

∫
V

∫
L3

box−V . As explained earlier in sections 1.3.2 and 3.2,

particles in a layer outside V in the volume L3
box −V contribute to the double in-

tegral
∫

V

∫
V . This contribution scales with the surface area, S, of the subvolume.

Considering the finite subvolume effect and using S/V ∝ 1/V 1/3, we have

Gαβ(V ,L3
box) = 1

V

∫
V

∫
L3

box

[
g∞
αβ(r12)−1

]
dr1dr2 − V

L3
box

(
δαβ

ρα
+G∞

αβ

)
+ Cαβ

V 1/3
(3.9)

where Cαβ is a constant that is unique for each thermodynamic state of the sys-
tem. Cortes-Huerto et al. [83] restrict the volume V between Vζ and L3

box, where
Vζ = 4πζ3/3. As a result of the values of r being always larger than ζ, the value
of g∞

αβ
(r12) is set to one. Additionally, it is assumed that the system is transition-

ally invariant and the transformation r2 → r = r1 − r2 applies which transforms
the integrals in Eq. (3.9) to the ones in the original KBIs expression (Eq. (1.25)).
Applying these assumptions, the following expression for KBIs for finite subvol-
umes was derived [83],

GV
αβ =G∞

αβ

(
1− V

Vbox

)
− V

Vbox

δαβ

ρα
+ Cαβ

V 1/3
(3.10)

Cαβ is a constant originating from the scaling of GV
αβ

with A/V , and it is specific

to each thermodynamic state. By defining λ= (V /Vbox)1/3, we can write:
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λGV
αβ(λ) =λG∞

αβ(1−λ3)−λ4δαβ

ρα
+ αi j

V 1/3
box

(3.11)

by plotting λGV
αβ

(λ) as a function of λ, one can obtain G∞
αβ

from the slope of this
plot for low λ. The computed KBIs are compared to those computed by other
correction methods. Details of the system studied and of the MD simulations are
provided in the following section.

3.3.4. SIMULATION DETAILS

To study effects resulting from computing RDFs from simulation of finite and
closed systems, we examine a binary mixture interacting using the WCA poten-
tial [112] where the LJ potential is shifted and truncated at 21/6σ. The WCA mix-
ture is simulated in the NV T ensemble using the Nose-Hoover thermostat [22].
The MD package LAMMPS [127] is used to perform the simulations, with 1 mil-
lion initialization timesteps and 5 million integration timesteps for each run. A
timestep of 0.001 in LJ reduced units, which are the units used for other vari-
ables, are used. All simulations were performed for the same system properties
with σ11 = σ12 = σ22 = 1.0, ε11 = ε22 = 1.0, and ε12 = 0.1. Additionally, the same
thermodynamic condition was maintained for all system sizes. A mixture com-
position of x1 = 0.75 was used with the following reduced variables T ∗ = 1.8 and
ρ∗ = 0.7. The box length Lbox and number of molecules N were varied to obtain
g11(r ), g12(r ), g22(r ) as a function of system size. For all box sizes, gαβ(r ) were
computed up to distances of (

p
2/2)L. The RDFs are used to calculate finite sub-

volumes KBIs (Eqs. (1.25)) which are then extrapolated to the thermodynamic
limit to obtain G∞

11, G∞
12, and G∞

22, respectively. To evaluate the KBIs in the ther-
modynamic limit for the system studied, simulations of a large system are per-
formed. Specifically, G∞

11, G∞
12, and G∞

22 are evaluated from averaging the results
of five simulations for a box with Lbox = 80. Each simulation was initialized with
a different configuration, thus allowing for computing the standard deviations.

3.4. RESULTS AND DISCUSSION

3.4.1. FINITE-SIZE EFFECTS OF SUBVOLUMES

KBIs (G∞) are computed for the liquid with the analytic RDF model in Eq. (2.6),
using the MC algorithm discussed in section 3.2. The KBIs for finite subvolumes,
GV (in this section we drop the indices αβ since a pure fluid is studied) are com-
puted using simulation boxes with the following lengths, Lbox = 7.5,10,15,20,40
and, 50. For each box size, spherical subvolumes with R up to (

p
2/2)Lbox are
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used. The KBIs for finite subvolumes, GV scales with the inverse of the sphere
size, 1/R. For each box size, the linear part of the scaling of GV is extrapolated up
to 1/R → 0, to find G∞.

Figure 3.2 (a) shows the scaling behavior for the case of simulating the sys-
tem when χ= 2. The regime where the scaling is linear depends on the size of the
simulated box. Larger simulation boxes provide larger linear regimes. The accu-
racy of the computations of the KBIs in the thermodynamic limit G∞ depends
on the size of the simulation box. The computed KBIs from the MC simulations
are compared to KBIs in the thermodynamic limit, G∞,num, obtained by numer-
ically integrating Eq. (1.25) up to very large distances. The absolute differences
between the numerically integrated KBIs G∞,num, and KBIs from simulations are
computed using

Difference% = |G∞,num −G∞|
|G∞,num| ∗100% (3.12)

In Table 3.1, the differences (%) are listed when using the system sizes shown in
Figure 3.2 and for three χ parameters, χ= 1, 2, and 4. For these parameters, the
values of G∞,num/σ3 are −1.785, −2.041, and −2.172 respectively. The values of
G∞/σ3 were obtained by extrapolating the linear part of the lines in Figure 3.2,
which extend until R = Lbox/2 (indicated by a dot for each line). In general, for all
fluctuation length parameters, χ, the difference decreases with the system size.
For simulation boxes with Lbox = 7.5 or 10 the difference is equal to or larger than
1%, but the deviation decreases by approximately 75% and 90% when increasing
Lbox to 15σ and 20σ, respectively. Finally, obtaining the KBIs from simulation
boxes with Lbox = 40σ and Lbox = 50σ results in marginal differences.

The finite-size effect of the subvolumes is shown more clearly when plotting
A/V instead of 1/R as shown in Figure 3.2 (b). This is due to the fact that the
linear scaling of GV with 1/R is correct up to R = Lbox/2 (A/V ∼ 1/R). When
R is larger than Lbox/2, parts of the sphere fall outside the simulation box and
for these distances the ratio Atrunc./Vtrunc. (Eq. (3.1) and (3.2)) is used instead of
A/V . Another important observation made from Figure 3.2 (b) is related to the
size of subvolume used to compute KBIs. For each simulation box size, the dot
in the function GV indicates the point where the radius of the spherical subvol-
ume equals Lbox/2. As shown in Figure 3.2 (b), increasing R beyond this value
will not extend the linear regime. This finding is manifested when looking at the
correlation between GV and the ratio between the area and volume of the sphere
(A/V ) which is presented in Figure 3.2 (b). As shown by Eq. (1.27), GV scales with
A/V , but this scaling does not continue when R is larger than half the simulation
box size. When the size of the subvolume extends beyond the simulation box the
number of molecules surrounding the embedded subvolume decreases greatly,
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Table 3.1: Differences (%), calculated using Eq. (3.12), between KBIs obtained form direct numer-
ical integration of Eq. (1.25), G∞,num/σ3, and integrals computed using MC simulations of vari-
ous simulation box sizes, G∞/σ3. The system used is the fluid described by the analytic RDF of
Eq. (2.6). The values of the KBIs from numerical integration, G∞,num/σ3, are −1.785, −2.041, and
−2.172 forχ= 1, χ= 2, andχ= 4, respectively. The values of GV /σ3 obtained from MC simulations
of finite simulation boxes are extrapolated to the thermodynamic limit to obtain G∞/σ3.

Box length (Lbox) χ= 1 χ= 2 χ= 4

7.5 1.979 2.262 2.408

10 1.052 1.042 1.000

15 0.323 0.228 0.140

20 0.154 0.105 0.069

40 0.005 0.036 0.007

50 0.003 0.017 0.055

and the subvolume cannot be considered as grand-canonical. Thus, extending
the computations of KBIs beyond Lbox/2 is not necessary and does not improve
the accuracy of the computed KBIs. In fact, when extrapolating G∞ this range
should be avoided and only the linear part of the function GV should be used.
In section 3.4.2, the best range used for extrapolating the scaling of 1/R and GV ,
to properly obtain KBIs, is further discussed. Finally, we examine the scaling of
the function Q (Eq. (1.27)) with the surface area of the spherical subvolume. Fig-
ure 3.3 shows how the function Q scales linearly with the surface area. The in-
tegrals over L3

box in Eq. (1.27) become larger as the number of molecules around
surface area of the subvolume increase. For all simulation box sizes, the values of
the function Q decrease when R is larger than Lbox/2 due to the decrease in the
number of molecules at the boundary of the sphere V . In any case, regardless
of the shape of the subvolume, whether a fully embedded sphere or a truncated
sphere, the function Q scales linearly with the surface area.
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(a)

ξ

(b)

Lbox

R > Lbox/2 

Figure 3.1: Schematic representation of finite-size effects in section 3.2. (a) related to the function
Q in Eq. (1.26) which represents contributions to KBIs emerging from molecular interactions at
the surface of the subvolume V . The only contributions to Q are from molecule pairs with one
molecule (1) inside the subvolume V and the other molecule (2) in a surrounding layer of thickness
ζ, where ζ is the correlation length of the fluctuations of the RDF (Eq.(2.6)). Molecules outside this
layer (r12 > ζ) do not contribute to Q. (b) related to the finite–size of the simulation box. Shown
is a schematic representation of the effect of extending R beyond half the simulation box length,
Lbox/2. The volume of the sphere no longer equals 4

3πR3, and the sphere caps falling outside the
box has to be subtracted. Eq. (3.1) and (3.2) provide the area and volume of the truncated spherical
subvolume.
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(a)

(b)

Figure 3.2: KBIs from finite subvolumes of the fluid described with the RDF of Eq. (2.6), with χ= 2.
GV /σ3 scales with: (a) the inverse of the sphere size 1/R, and (b) the ratio of the area of the sphere
to its volume A/V . The integrals are computed using MC simulations for different lengths of the
simulation box, Lbox, and different radii, R, of the spherical subvolume. The dots show the points
where R=Lbox/2 for each box size.
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Figure 3.3: The function Q (Eq. (1.27)) of the fluid described by the RDF of Eq. (2.6), with χ= 2. The
function scales linearly with the surface area, A/σ2, for all the box sizes studied. The dots show
the points where R=Lbox/2.
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3.4.2. FINITE-SIZE EFFECTS OF RADIAL DISTRIBUTION FUNCTIONS

Here, we study the RDF-related effects discussed in section 3.3. RDFs obtained
from simulations of closed, and finite systems have to be corrected. Figure 3.4
shows the enhanced scaling of GV

αβ
with 1/R when applying an RDF correction.

The correction methods for g (r ) are applied to KBIs computed from closed, finite
simulations of the WCA mixture described in section 3.4.2. In the case of obtain-
ing the RDFs from MD simulations, the extrapolation to G∞

αβ
is not straightfor-

ward. In the following section we show how to identify the linear regime.

IDENTIFYING THE LINEAR REGIME

We consider the RDF computed for the binary WCA mixture, while applying the
van der Vegt correction, since we find that it provides the most accurate KBIs out
of the three methods studied in this work (details are provided in section 3.4.2).
The MD simulation details and system conditions are provided in section 3.3.4.
The study is performed to identify the extrapolation range from the scaling of
σ/R with GV

αβ
from simulation boxes with Lbox = 10, Lbox = 20, and Lbox = 40.

To find the best linear range, the start of the fitting range, 1/a, and the end, 1/b,
are varied (see Figure 3.4 (b)). For each extrapolation range, the square of the
correlation coefficient (denoted as c2 in this work) is computed to assess the lin-
earity of the selected range. Also, the difference between the extrapolated KBIs,
G∞
αβ

, and the integrals computed from a large system (Lbox = 80) are computed,
using Eq. (3.12). To relate the tested ranges to the dimensions of the system, a
and b are related to the molecular diameterσ. The variable a is set based on how
many molecular diameters should be discarded at the beginning of the distances
at which the RDF is computed. The starting point for the 1/R extrapolation could
be varied as follows,

1

a
= 1

xσ
(3.13)

Once x, and subsequently a, is set the end point of the extrapolation range could
be again related to σ,

1

b
= 1

a + yσ
(3.14)

In this section, we demonstrate how to find the best extrapolation range for the
case of the values of GV

22. To determine the accuracy of the computed KBIs, dif-
ferences between values of GV

22 of finite simulation boxes and GV
22 of a very large

simulation box (Lbox = 80) are considered (difference%). The results for the ef-
fect of varying x and y on the quality of the linear fit (c2) and the accuracy in
KBIs computations (difference%) are shown in Figure 3.5, 3.6, and 3.7 for the box
sizes Lbox = 40, Lbox = 20 and Lbox = 10, respectively. In these figures, the values
of −ln(1− c2) and −ln(difference) are plotted as functions of x and y . Also, in
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each plot a dashed line is added to indicate values of c2 and difference% that we
consider acceptable. Combinations of x and y that fall below the line are con-
sidered to give poor estimations of the KBIs. Specifically, the following threshold
values are considered, 8 for −ln(1− c2) and 5 for −ln(difference) corresponding
to c2 = 0.9997 and difference= 0.7%, respectively.

Using a system with Lbox = 40 provides sufficient linear regime that results in
very low values of the difference % between KBIs computed and KBIs from very
large systems. Figure 3.5 shows that choosing lower x and y is favorable. The
same observations are made when studying Lbox = 20 (Figure 3.6). Using a large
value of y could result in an extrapolation range that includes the diverging part
of the GV and 1/R scaling. Figure 3.5 and 3.6 show that, for a given x, the values of
−ln(1−c2) and−ln(difference) start decreasing after a specific y value. In general,
y should not be larger than 4σ. Finally, for Lbox = 10, Figure 3.7 indicates that
there is a range that is sufficiently linear. However, very few possibilities of x and
y combinations provide low differences, i.e. the linear regime extends to a value
that deviates from the integral at the thermodynamic limit.

Besides examining the linear range for each system size individually, it is
possible to investigate the effect of the system size by comparing Figure 3.5, 3.6
and 3.7. Mainly, larger box sizes provide a longer linear regime and smaller dif-
ferences between KBIs computed from these boxes and integrals from very large
boxes. When performing the study for the other integrals as well, GV

11 and GV
12,

a few general findings could be observed. First, it is recommended to choose x
larger than 1, to avoid any fluctuations at small distances. This corresponds to
discarding at least 1σ from the GV and 1/V scaling line. As for the end of the ex-
trapolation range, y , taking short distances ensures that the extrapolation range
does not extend to the end of the line, where the values of GV

αβ
are diverging. We

find that not exceeding b = a +4σ ensures that the linear fit is acceptable. This
applies to boxes with Lbox larger than 20. Finally, while it is important to use lin-
ear ranges with high values of the correlation coefficient, c2 that does not always
result in correct estimations of the KBIs at the thermodynamic limit, especially
for small simulation boxes. In the following section, inaccuracies in KBIs result-
ing from finite sizes related to RDFs are discussed.
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(a)

(b)

Figure 3.4: KBIs for subvolumes from MD simulations of a binary WCA mixture. The system condi-
tions for all system sizes are: x1 = 0.75, T∗ = 1.8, and ρ∗ = 0.7. GV

22/σ3 is obtained from integrating
g22(r ) (Eq. (1.25)) at each subvolume size, R. The KBIs are computed for simulation boxes with
Lbox = 10, 20, and 40. In (a), the RDF is not corrected while in (b) the van der Vegt correction is ap-
plied and g vdV

22 is used (Eq. (3.3)). In (b), the range used for extrapolation for the case of Lbox = 40

is shown as well as the extrapolation line from which G∞
22/σ3 is obtained.
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(a)

(b)

Figure 3.5: The natural logarithm of (a) the linearity 1− c2 and (b) the differences between KBIs of
finite simulation boxes and KBIs of a very large system, as a result of varying the linear range used
to extrapolate to G∞

22. The KBIs are computed from MD simulations of the binary WCA mixture
(details in section 3.3.4). The size of the simulation box is set to Lbox = 40. Points with differ-
ent colors correspond to different starting points of the extrapolation range, x, and as a result a
(Eq. (3.13)). The variable y correspond to how far should the range be extended (Eq. (3.14)).
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(a)

(b)

Figure 3.6: The natural logarithm of (a) the linearity 1− c2 and (b) the differences between KBIs of
finite simulation boxes and KBIs of a very large system, as a result of varying the linear range used
to extrapolate to G∞

22. The KBIs are computed from MD simulations of the binary WCA mixture
(details in section 3.3.4). The size of the simulation box is set to Lbox = 20. Points with differ-
ent colors correspond to different starting points of the extrapolation range, x, and as a result a
(Eq. (3.13)). The variable y correspond to how far should the range be extended (Eq. (3.14)).
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(a)

(b)

Figure 3.7: The natural logarithm of (a) the linearity 1− c2 and (b) the differences between KBIs of
finite simulation boxes and KBIs of a very large system, as a result of varying the linear range used
to extrapolate to G∞

22. The KBIs are computed from MD simulations of the binary WCA mixture
(details in section 3.3.4). The size of the simulation box is set to Lbox = 10. Points with differ-
ent colors correspond to different starting points of the extrapolation range, x, and as a result a
(Eq. (3.13)). The variable y correspond to how far should the range be extended (Eq. (3.14)).
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COMPARING CORRECTION METHODS

Using RDFs computed from finite and closed simulation boxes leads to a sys-
tematic error in KBIs computations. These RDF finite-size effects should be cor-
rected. In Figure 3.4 we already showed the scaling of GV

22 with σ/R (a) when
using RDFs that are not corrected and (b) when applying the van der Vegt correc-
tion [113]. For all the system sizes used, implementing the correction enhances
the linear scaling of the finite-volume KBIs. In addition to the van der Vegt cor-
rection, we considered the 1/N correlation method [74], and the method pro-
posed by Cortes-Huerto et al. [83] We compare between the correction methods
by considering the differences between the corrected RDF obtained from small
systems and the RDF computed using a large system (Lbox = 80). Figure 3.8 shows
the quantity ln|g (r )−g Lbox=80(r )| for all distances, where the RDFs are computed
for the WCA binary mixture using Lbox = 10,20, and 40. Generally, the differences
decrease with larger box sizes, and the differences are larger for small r . Also, for
all system sizes, the van der Vegt correction and the correction of Cortes-Huerto
et al. result in lower deviations from the finite RDF than in the case of the 1/N
correlation.

The KBIs G∞
11, G∞

12, and G∞
22 are computed for the binary WCA mixture using

three different simulation boxes, with Lbox = 10, Lbox = 20, and Lbox = 40. In the
case of the 1/N correlation, the values of G∞

αβ
are obtained by using two simula-

tion box sizes that are not very different. For instance, to compute KBIs from a
simulation box with Lbox = 10, RDFs from simulations of boxes with Lbox = 10
and Lbox = 11, at the same density and temperature, are required. The ob-
tained KBIs from each correction method are then compared to integrals com-
puted using a system with Lbox = 80. The differences (%) between KBIs com-
puted using Lbox = 80 and KBIs G∞

11, G∞
12, and G∞

22 from finite simulation boxes
(Lbox = 10,20,40) are presented in Table 3.2. The differences are computed when
the RDF is not corrected and when the correction methods discussed in this work
are applied. Overall, the differences decrease with larger simulation boxes, with
the exception of the 1/N correlation. Additionally, for box sizes up to Lbox = 20,
the van der Vegt method results in the lowest differences. For large boxes, Ta-
ble 3.2 shows that a RDF correction is not needed and in the case of Lbox = 40
the differences resulting from not using a correction and the differences result-
ing from the correction methods are not comparable. Other than the individ-
ual KBIs, we also consider the quantity, G f = G11 +G22 − 2G12, which is useful
when computing the thermodynamic factor Γ from KBIs [64]. For Lbox = 80, we
find that G f /σ3 =−3.38+−0.005. Deviations from this value are presented in Ta-
ble 3.3 for the case of not using a RDF correction as well as when using the three
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RDF correction methods. In the table, the differences (%) are computed using
Eq. (3.12). Using the RDF without a correction results in considerable differences
in the values of G f , especially for the smallest simulation box with Lbox = 10.

Out of the three methods, the van der Vegt correction [113] leads to the low-
est differences in the KBIs results in the thermodynamic limit. In Figure 3.8 we
show that the method of Cortes-Huerto et al. [83] is similar to the van der Vegt
correction [113] when estimating the function g∞

αβ
(r ). Still, when computing the

KBIs the van der Vegt correction provides lower differences than the method of
Cortes-Huerto et al. [83], which assumes that the finite–size correction of the
RDF is independent of r . Also, the van der Vegt correction is fairly simple to im-
plement, and the corrections are applied to one simulation for each size, unlike
the 1/N correlation, where for each size two simulations are required. Another
shortcoming of the latter method is its numerical inaccuracy when correcting
the RDF, resulting in inconsistency with regard to predicting the KBIs. Further-
more, we apply the correction method proposed by Cortes-Huerto et al. [83] to
the same WCA mixture. The method enhances the computation of the integrals
from finite systems, but the differences (%) in the KBI computations are not low-
ered as in the case of the van der Vegt correction.
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(a)

(b)

(c)

Figure 3.8: The natural logarithm of the difference between RDFs from MD simulation of systems
with finite sizes, g (r ), and RDF from simulation of system with very large size, g L=80(r ). The RDFs
are computed for the binary WCA mixture with: x1 = 0.75, T∗ = 1.8, and ρ∗ = 0.7. The differences
are computed for three different simulation box sizes (a) Lbox = 10, (b) Lbox = 20, and (c) Lbox = 40.
For each system size, the difference between g (r ) and g Lbox=80(r ) is computed at each r . The
different colors represent different RDF correction methods (section 3.3).
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3.5. CONCLUSIONS
In this chapter, we studied finite size effects related to the computation of KBIs
from molecular simulations of finite subvolumes. We presented the uncertain-
ties in KBIs due to: (1) effects due to the finite size of the subvolume, and simu-
lation box, used to compute the KBIs; and (2) effects related to computing RDFs
from molecular simulations of closed systems, in contrast to open systems as
defined in the KB theory. We showed that uncertainties in the computations of
the KBIs decrease when increasing the size of the simulation box, and hence the
embedded subvolume. We varied the system size and find that simulation boxes
with lengths larger than 15σ are sufficient to reduce errors in computed KBIs
to below 0.1%. We vary the size of the subvolume, or the maximum distance at
which the RDF are computed. We find that a larger distance does not always
ensure higher accuracy. In fact, for a given simulation box size, the radius of
the spherical subvolume should not be extended beyond half the length of the
simulation box. When using an analytic RDF model for the computations of the
KBIs, it is relatively straightforward to identify the linear regime in the scaling
of finite subvolumes integrals with the inverse size of the subvolume. However,
using RDFs computed from MD simulation of WCA molecules did not necessar-
ily result in easily identifiable linear regimes. We presented some guidelines for
extrapolating the scaling of finite subvolumes KBIs to the thermodynamic limit.
While in some cases small simulation boxes provided a sufficient linear regime,
finite–effects caused the resulting KBIs to deviate from these obtained from very
large systems. Uncertainties arising from using RDFs of closed systems were
evaluated for multiple simulation box sizes, as well as for various RDF correction
methods. We demonstrate that using a RDF correction can significantly enhance
the convergence of the KBIs and eventually the accuracy of the computations of
the integrals. We compare between the RDF correction methods and find that
the van der Vegt correction of Ref. [113] achieves the lowest error and is easy to
apply.
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4
SURFACE EFFECTS OF

KIRKWOOD–BUFF INTEGRALS

FROM MOLECULAR SIMULATIONS

𝐺! = 𝐺" +
1
𝐿 𝐹"

Surface	term

This chapter is based on the paper: N. Dawass, P. Krüger, S. K. Schnell, O. A. Moultos, I. G.
Economou, T. J. H. Vlugt, and J. M. Simon, Kirkwood–Buff Integrals Using Molecular Simulation:
Estimation of Surface Effects. Nanomaterials, 10, 771 (2020) [128]
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4.1. INTRODUCTION
When studying small systems, of the order of few molecular diameters, thermo-
dynamics of small systems is applied [78, 79]. Using Hill’s formulation of small-
system thermodynamics [79], it is shown that properties of small systems can be
written in terms of volume and surface contributions [122]. In Ref. [122], Hill’s
thermodynamics was applied to several properties, such as pressure. From the
volume contribution of pressure, the homogeneous pressure is obtained, while
the Gibbs surface relation was obtained from the surface contribution [122]. This
last contribution is proportional to the surface tension. In the case of KBIs, the
surface term, or contribution, F∞, can also be defined from the Gibbs surface
equation [122]. From a microscopic point of view, it originates from interactions
between molecules inside the subvolume and molecules across the boundary
of the subvolume [74, 80] (see also section 1.3.2). These surface effects vanish
in the thermodynamic limit, but for systems used in MD simulations these ef-
fects cannot be neglected [22]. As a result, the quantitative and qualitative study
of surface contributions is important for estimating G∞

αβ
from integrals of finite

subvolumes GV
αβ

.

The scaling of finite integrals GV (Eq. (1.25)) with the size of the subvolumes L
is used to compute KBIs in the thermodynamic limit G∞ (for convenience, indi-
ciesα and β indicating the different components will be dropped from this point
onwards). Specifically, G∞ is computed from extrapolating the linear part of the
scaling of GV with 1/L to the limit 1/L → 0 [74, 80, 122]. A disadvantage of this
approach is that a linear regime is not always easily identified [80].

To avoid extrapolating GV , Krüger and Vlugt [81] proposed a direct estima-
tion of KBIs in the thermodynamic limit:

G∞ ≈Gk (L) =
∫ L

0

[
g (r )−1

]
uk (r )dr (4.1)

The accuracy of the estimation depends on the function uk (r ) [129], where the
index k indicates the level of estimation. Krüger and Vlugt [81] considered three
different estimations (k =0,1 and 2) and found that integrals computed using the
function u2(r ) provided the best estimation of G∞,

u2(r ) = 4πr 2
(
1− 23

8
x3 + 3

4
x4 + 9

8
x5

)
(4.2)

where x is the dimensionless distance x = r /L. KBIs computed using Eq. (4.1)
and Eq. (4.2) will be denoted by G2. To derive the expression for G2, the start-
ing point was the scaling of KBIs with 1/L. First, an explicit estimation of F∞ in
Eq. (1.28) was derived. In the work of Krüger and Vlugt [81], F∞ has the following
form
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F∞ ≈
∫ ∞

0
[g (r )−1]4πr 2

(
−3

2
r

)
dr (4.3)

It is important to note that the structure of Eq. (4.3) is similar to KBIs in the ther-
modynamic limit (Eq. (1.3)). So, analogous to Eq. (1.28), F V can be defined as,

F V (L) = F∞+ C

L
(4.4)

where C is a constant. For finite systems, F V can be computed using

F V ≈
∫ L

0
[g (r )−1]

(
−3

2
r

)
w(x)dr (4.5)

where the function w(x) is provided in Table 1.1 for a spherical subvolume. The
similarity between the expression for KBIs (Eq. (1.25)) and surface term (Eq. (4.3))
in the thermodynamic limit allows for deriving an estimation for surface effects
as in Eq. (4.1). Using Eq. (4.1), and Eq. (4.3) an explicit expression for surface
effects in the thermodynamic limit, denoted here by F∞

2 , is obtained from

F∞
2 ≈

∫ L

0
[g (r )−1]

(
−3

2
r

)
u2(r )dr (4.6)

with u2(r ) defined in Eq. (4.2).
An alternative method to extrapolate KBIs GV to the thermodynamic limit

is to use the scaling of LGV with L, rather than the scaling of GV with 1/L. The
scaling of GV in Eq. (1.28) can be rewritten as

LGV (L) =G∞L+F∞ (4.7)

By fitting the linear part of the scaling of LGV with L, it is possible to obtain G∞

and F∞. Finding the slope and intercepts of a straight line is easier than extrap-
olating the linear regime of the scaling of GV with 1/L. Another advantage of this
approach is that an estimation of the surface effects is automatically computed.
This estimation can be compared to other available methods for computing F∞.
In summary, it is shown that three methods are available for estimating G∞ from
integrals of finite subvolumes:

1. Using the scaling of GV (Eq. (1.25)) with 1/L. To estimate G∞, the linear
regime of the scaling is extrapolated to the limit 1/L → 0.

2. Using the direct extrapolation formula G2 (Eq. (4.1)) combined with the
function u2(r ) (Eq. (4.2)). This will converge to G∞ for large L.
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3. Computing G∞ from fitting the linear regime of the scaling of LGV with L
(Eq. (4.7)). The values of the integrals GV are computed using Eq. (1.25).

To simplify the estimation of KBIs, it would be useful to evaluate the performance
of these methods in terms of accuracy and practicality. Similarly, different meth-
ods are available to compute the surface term in the thermodynamic limit F∞:

1. Using the expression in Eq. (4.6).

2. From the scaling of LF V with L (Eq. (4.4)). F V is computed using Eq. (4.5).
The value of F∞ is obtained from the slope of the scaling as LF V (L) =
F∞L+C , in which C is a constant.

3. From the scaling of LGV with L (Eq. (4.4)). The value of F∞ is obtained
from the intercept of the scaling.

The objective of this chapter is to test the estimation of KBIs G∞ and the sur-
face effects F∞ using the approaches discussed earlier. For both G∞ and F∞, the
effect of the size of the system is studied. These effects are investigated for both
LJ and WCA fluids [130] at different densities. Finally, this work aims at quanti-
fying the contributions of the surface term when computing KBIs of LJ fluid at
various densities.

This chapter is organized as follows. In section 4.2, the methods used to com-
pute RDFs, KBIs, and the surface term of KBIs of LJ and WCA fluids are presented.
Section 4.2 includes the details of the MD simulations. In section 4.3, the results
are presented, which include KBIs and the surface term for WCA and LJ systems
at different sizes and densities. Section 4.4 summarises the main findings of this
chapter.

4.2. METHODS
RDFs of systems of particles interacting via the LJ potential are computed us-
ing MD simulations in the NV T ensemble. Systems with different densities and
number of particles are studied. Also, systems of particles interacting via the
WCA potential [112], where only the repulsive part of the LJ potential is included,
are considered. For each system, the computed RDF is used to compute KBIs G∞

and the surface term F∞ in the thermodynamic limit. For both quantities, the
methods discussed in section 4.1 are used. In this section, the numerical details
of computing RDFs and the required integrals are briefly discussed.

For all systems studied in this work, RDFs are corrected using the Ganguly
and van der Vegt correction [113], see section 3.3.1. The corrected RDFs are nu-
merically integrated to obtain GV , G2, F V , and F∞

2 . Once these quantities are ob-
tained, various methods are implemented to estimate KBIs G∞ and the surface
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Table 4.1: A brief description of the methods used in this work to estimate KBIs in the thermody-
namic limit G∞ using RDFs computed from finite systems.

Method Equations Description
1. Scaling of GV with 1/L (1.25) G∞ is obtained from extrapolating the

linear regime of the scaling to 1/L →
0.

2. Direct estimation of G2 (4.1), (4.2) A plateau in G2 is identified when
plotted as a function of L. To estimate
G∞, values of G2 in this plateau are
averaged.

3. Scaling of LGV with L (1.25), (4.7) To find G∞, the slope of the linear part
of the scaling is computed.

Table 4.2: A brief description of the methods used in this work to estimate the surface term in the
thermodynamic limit F∞ using RDFs computed from finite systems.

Method Equations Description
1. Direct estimation of F∞

2 (4.6) A plateau in F∞
2 is identified when

plotted as a function of L. To estimate
F∞, values of F∞

2 in this plateau are
averaged.

2. Scaling of LF V with 1/L (4.4), (4.5) To find F∞, the slope of the linear part
of the scaling is computed.

3. Scaling of LGV with 1/L (1.25), (4.7) To find F∞, the intercept of the linear
part of the scaling is computed.

terms F∞ in the thermodynamic limit. Table 4.1 provides the relations and de-
scription of the methods considered to estimate G∞. Similarly, Table 4.2 presents
information regarding the methods used to estimate F∞.

4.2.1. SIMULATION DETAILS

RDFs of LJ and WCA fluids were computed using MD simulations and then used
to estimate KBIs and surface effects. The LJ potential is truncated at 2.5 σ while
the WCA potential is a LJ potential that is shifted and truncated at 21/6σ. The MD
simulations were carried out using an in-house FORTRAN code. Periodic bound-
ary conditions were applied in all directions. All RDFs were computed from sim-
ulations in the NV T ensemble. The systems were simulated at a dimensionless
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temperature T = 2, dimensionless densities ρ ranging from 0.2 to 0.8 and using
number of particles N equals to 100, 500, 1000, 5000, 10000, 30000, and 50000.
For each system size, the length of the simulation box L was set according to
the required density. The desired temperature was imposed using the Andersen
thermostat [22].

All MD simulations started from a randomly-generated configuration for
which an energy minimization was used to eliminate particle overlaps. A suffi-
cient number of time steps was used to initialize the system. After initialization,
RDFs were sampled every 100 time steps. For both, initialization and produc-
tion, a dimensionless time step equal to 0.001 was used. The simulation length
was chosen depending on the size of the system and the available computational
resources. For instance, for systems with N = 100, 1x109 production time steps
were carried out, while for the maximum size N = 50000, 7x105 steps were used.
Multiple independent simulations were performed for each point (ρ,N ). The re-
sulting RDFs were then averaged and used to compute G∞ and F∞. At high den-
sities (ρ > 0.4), RDFs from at least 10 runs are used. At lower densities, at least 20
runs are performed to enhance statistics.

4.3. RESULTS

4.3.1. ESTIMATION OF KIRKWOOD–BUFF INTEGRALS

KBIs in the thermodynamic limit G∞ are obtained using the three different ap-
proaches discussed earlier. To compare the estimation methods, WCA systems
were studied while fixing temperature and density. These parameters define the
thermodynamic state of the system. Values of KBIs, computed using different
methods, for other densities for LJ and WCA fluids are provided in the Support-
ing Information of Ref. [128]. After comparing estimation methods of KBIs, the
relation between density of the system and KBIs for LJ and WCA system is dis-
cussed.

Figure 4.1 shows RDFs for systems of different sizes of a WCA fluid at T = 2
and ρ = 0.6 (dimensionless units). Figure 4.1 (b) shows that using small system
sizes, specifically N = 100 and N = 500, results in RDFs with higher oscillations
than large systems, where N equals to or is larger than 1000. As will be shown
later, this causes implications in the computation of G∞. In Figure 4.2, the scal-
ing of KBIs of finite subvolumes GV with 1/L is presented. For large systems,
where N > 500, a linear range is identified which can be extrapolated to the limit
1/L → 0. Instead of computing GV , G∞ can be directly estimated from RDFs us-
ing Eqs. (4.1) and (4.2). Figure 4.3 shows the estimation of G2 for systems with
varying sizes. When plotted as a function of L, the values of the integrals G2

show a plateau at a constant value which corresponds to G∞. However, Fig-
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Table 4.3: KBIs in the thermodynamic limit G∞ for a WCA system at T = 2 and ρ = 0.6 (dimen-
sionless units). Values of G∞ are computed from systems with various number of particles N and
using the different methods listed in Table 4.1.

N Scaling of GV with 1/L Direct estimation of G2 Scaling of LGV with L
500 −1.5063±0.0003 n/a −1.5057±0.0008
1000 −1.5027±0.0000 n/a −1.5028±0.0002
5000 −1.5012±0.0000 −1.5017±0.0004 −1.5013±0.0002
10000 −1.5012±0.0000 −1.5015±0.0004 −1.5012±0.0001
30000 −1.5004±0.0001 −1.5007±0.0007 −1.5003±0.0006
50000 −1.4999±0.0001 −1.5002±0.0009 −1.500±0.001

ure 4.3 (b) shows that this is not true for all system sizes. In fact, the values of
G∞ can be accurately estimated for systems with a minimum number of par-
ticles of 5000, which is larger than the minimum size required in the previous
extrapolation method (Figure 4.2). The third method to find G∞ is to use the
scaling of LGV with L (Eq. (1.28)). Figure 4.4 shows that plotting the integrals of
finite subvolumes as LGV vs L results in a clear linear regime that is easily iden-
tified. The value of the slope of the fitted line corresponds to the value of G∞.
For this method, systems with number of particles equal to or larger than 500
can already be used to compute G∞. In principle, all methods for estimating G∞

should result in the same answer in the thermodynamic limit. In Table 4.3, val-
ues of KBIs G∞ obtained using the three methods studied in this work are listed.
For KBIs reported in Table 4.3, only uncertainties larger than 0.01 % are shown.
The values are obtained from systems with various sizes. For each system size,
a linear range was used to compute G∞. In chapter 3, guidelines were provided
for selecting a range for the extrapolation of GV vs. 1/L. Essentially, the first few
molecular diameters after r = 0, and distances beyond L/2 should be avoided.
Fitting lines of the scaling of LGV vs. L is more convenient. In general, fitting
regions are chosen such that the coefficient of determination is equal to or very
close to 1. The values of G∞ in Table 4.3 show that the three methods provide
very similar estimations with statistical uncertainties below 0.1 %. Moreover, the
results in Table 4.3 show that computing G∞ using the direct estimation of G2

requires larger systems compared to the other methods. This was found to be
true for other densities as well as for systems with LJ particles (see the Support-
ing Information of Ref. [128]). From studying other systems, it was found that the
scaling of LGV with L is the easiest method to apply.
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(a)

(b)

Figure 4.1: (a) RDFs for systems of different sizes of a WCA fluid at T = 2 and ρ = 0.6 (dimensionless
units). MD simulations in the NV T ensemble were used to compute g (r ), and the Ganguly and
van der Vegt correction [113] was applied (Eq. (3.3)), (b) a close–up of the plots in (a) is shown.
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Figure 4.2 KBIs of finite spherical subvolumes GV (Eq. (1.25)) vs. 1/L (L is the diameter of the
subvolume) for the WCA fluid at T = 2 and ρ = 0.6 (dimensionless units). The values of GV are
computed for systems with varying number of molecules N . The used RDFs are provided in
Figure 4.1.
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(a)

(b)

Figure 4.3: (a) Estimation of KBIs in the thermodynamic limit, G2 (Eqs. (4.1) and (4.2)) vs. L for the
WCA fluid at T = 2 and ρ = 0.6 (dimensionless units), (b) a close–up in of the plots in (a) is shown.
The values of G2 are computed for systems with varying number of molecules N . The used RDFs
are provided in Figure 4.1.
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Figure 4.4 KBIs of finite subvolumes multiplied by L, LGV (Eq. (1.25)) vs. L for a WCA fluid at T = 2
and ρ = 0.6 (dimensionless units). The values of GV are computed for systems with varying
number of molecules N . The used RDFs are provided in Figure 4.1.
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The differences between the estimation methods can be further demon-
strated by using a system of LJ particles at ρ = 0.4, which is more difficult to sam-
ple compared to the previously studied system. In Figure 4.5, RDFs of systems
of varying sizes of a LJ fluid at ρ = 0.4 and T = 2 are shown. In Table 4.4, KBIs
G∞ computed using the RDFs in Figure 4.5 are provided. The scaling of GV with
1/L is shown in Figure 4.6. For this method, a linear range is not obtained for all
system sizes. Systems with at least N = 1000 particles can be used to extrapolate
to the thermodynamic limit. In Figure 4.7, G2 is plotted as a function of the size
of the subvolume L. The figure shows that even larger systems are needed to find
a reasonable estimate of G∞ using G2. Figure 4.7 (b) shows that a plateau is only
achieved for large systems where N equals to or larger than 5000. For this system
(LJ fluid at ρ = 0.4), it is possible to use the scaling of LGV with L to compute
KBIs from small sizes. Figure 4.8 demonstrates that straight lines that are easily
fitted are achieved when using the scaling of LGV with L, even for sizes where an
estimation can not be made with the other two methods.
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Table 4.4: KBIs in the thermodynamic limit G∞ for a LJ system at T = 2 and ρ = 0.4 (dimensionless
units). Values of G∞ are computed from systems with various number of particles N and using
the different methods listed in Table 4.1.

N Scaling of GV with 1/L Direct estimation of G2 Scaling of LGV with L
500 n/a n/a −1.1593±0.0001
1000 −1.1395±0.0001 n/a −1.1390±0.0008
5000 −1.1161±0.0006 −1.13±0.02 −1.114±0.004
10000 −1.1156±0.0005 −1.13±0.02 −1.114±0.004
30000 −1.1064±0.0009 −1.12±0.02 −1.10±0.01
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(a)

(b)

Figure 4.5: (a) RDFs for systems of different sizes of a LJ fluid at T = 2 and ρ = 0.4 (dimensionless
units), (b) a close–up in of the plots in (a). MD simulations in the NV T ensemble were used to
compute g (r ), and the Ganguly and van der Vegt correction [113] was applied (Eq. (3.3)).
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Figure 4.6 KBIs of finite spherical subvolumes GV (Eq. (1.25)) vs. 1/L (L is the diameter of the
subvolume) for the LJ fluid at T = 2 and ρ = 0.4 (dimensionless units). The values of GV are
computed for systems with varying number of molecules N . The used RDFs are provided in
Figure 4.5.
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(a)

(b)

Figure 4.7: (a) Estimation of KBIs in the thermodynamic limit, G2 (Eqs. (4.1) and (4.2)) vs. L for the
LJ fluid at T = 2 and ρ = 0.4 (dimensionless units), (b) a close-up in of the plots in (a). The values
of G2 are computed for systems with varying number of molecules N . The used RDFs are provided
in Figure 4.5.
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Figure 4.8 KBIs of finite subvolumes multiplied by L, LGV (Eq. (1.25)) vs. L for a LJ fluid at T = 2
and ρ = 0.4 (dimensionless units). The values of GV are computed for systems with varying
number of molecules N . The used RDFs are provided in Figure 4.5.
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EFFECT OF SYSTEM SIZE AND DENSITY

Figure 4.9 (a) shows the effect of the size of the system on the values of G∞ com-
puted using the scaling of LGV with L. The obtained values of G∞ are practically
constant. For the LJ fluid, a weak decrease, roughly linear in N−1/3, is observed.
Figure 4.9 (a), Table 4.3, and Table 4.4 demonstrate that statistical uncertainties
are small for systems with intermediate sizes (N = 5000 and N = 10000). Smaller
systems do not provide a sufficient linear regime and very large systems require
longer sampling. In Figure 4.9 (b), KBIs at different densities are shown for the LJ
and WCA fluids. To estimate G∞, the scaling of LGV with L was used. MD sim-
ulations were performed to study systems with dimensionless densities ranging
from 0.1 to 0.8.

The behaviour of KBIs in the limit ρ→ 0 can be checked by using the fact that
in this limit, the RDF is known analytically, g (r ) = exp[−βu(r )], where u(r ) is the
pair potential [26] and β= 1/(kBT ). Figure 4.9 (b) shows that for both interaction
potentials, the values of G∞ computed using molecular simulation approach the
correct value in the low density limit. In the high density limit, the differences
between G∞ of LJ and WCA fluids seem to disappear. At high densities, the repul-
sive part of the interaction potential, which is the same for WCA and LJ, becomes
more important. Hence, the two fluids are expected to behave in the same way
as the density increases. This is shown in Figure 4.9 (b).
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(a)

(b)

Figure 4.9: (a) KBIs in the thermodynamic limit G∞ as a function of the size of the system for the
WCA fluid at ρ = 0.6, and the LJ fluid at ρ = 0.4. Both fluids are simulated at T = 2 (dimensionless
units). (b) G∞ as a function of dimensionless density ρ of LJ and WCA systems at T = 2. For all
densities, the same number of particles is used, N = 10000. At the limit ρ→ 0, the analytic answer
is computed using g (r ) = exp[−βu(r )], where u(r ) is the pair potential [26].
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4.3.2. ESTIMATION OF SURFACE EFFECTS

An important objective of this work is to investigate surface effects of finite sys-
tems used to compute KBIs. As mentioned earlier, there are three possible ap-
proaches to compute the surface term in the thermodynamic limit F∞. Similar
to the estimation of G∞, the surface term of the WCA fluid is computed from
systems with varying number of particles N at the same thermodynamic state.

In Figure 4.10, estimations of the surface term in the thermodynamic limit
F∞

2 (Eq. (4.6)) are presented as a function of L. Unlike the values of G∞
2 , a plateau

where the values can be averaged is not easily identified. Alternatively, it is possi-
ble to consider the scaling of the values of the surface term of finite subvolumes
F V (Eq. (4.5)). Figure 4.11 shows the scaling of LF V with L for the same WCA
fluid. As in the case of the scaling of LGV , a linear regime to be fitted is easily
identified. The slope corresponds to the value of F∞. Additionally, the value of
F∞ can be estimated from the intercept with the vertical axis of the line formed
from the scaling of LGV with L. The latter two approaches require smaller sys-
tem sizes than the direct estimation of F∞

2 . For instance, Figure 4.11 shows that
systems with as few as N = 1000 provide a clear linear range that can be used to
estimate F∞. It is of interest to investigate whether the different available meth-
ods to find F∞ result in matching estimations. The values of F∞ computed using
the three methods considered in this work are listed in Table 4.5. Results are
shown for systems with varying number of particles. While acceptable statistics
are achieved for most methods and system sizes, the values of F∞ from the three
different methods agree less well than the corresponding values of G∞. This can
be attributed to the larger statistical errors obtained when compared to estimat-
ing G∞.

As in the case of computing G∞, using the scaling of LGV provides estima-
tions of the surface term using systems smaller than those required by the other
methods. This effect is more significant when looking at a system of LJ parti-
cles at a relatively low density. Table 4.6 provides the values of F∞ for a LJ fluid
at ρ = 0.4, computed using the methods studied in this work. In Figures 4.12
and 4.13 the scaling of F∞

2 with L as well as the scaling of LF V with L are shown.
These plots illustrate that linear regions are not easily identified to compute F∞,
in contrast to the higher density case with ρ = 0.6 (Figures 4.10 and 4.11). As a re-
sult, when computing surface effects, the scaling of LGV with L is recommended.
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Figure 4.10 Estimation of the surface term in the thermodynamic limit F∞
2 (Eq. (4.6)) as a function

of L for the WCA fluid at T = 2 and ρ = 0.6 (dimensionless units). The values of F∞
2 are computed

for systems with varying number of molecules N . The used RDFs are provided in Figure 4.1.

Figure 4.11 Surface effects of finite subvolumes multiplied by the radius of the subvolume LF V

(Eq. (4.5)) as a function of L for the WCA fluid at T = 2 and ρ = 0.6 (dimensionless units). The
values of GV are computed for systems with varying number of molecules N . The used RDFs are
provided in Figure 4.1.
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Figure 4.12 Estimation of the surface term in the thermodynamic limit F∞
2 (Eq. (4.6)) vs. L for the

LJ fluid at T = 2 and ρ = 0.4 (dimensionless units). The values of F∞
2 are computed for systems

with varying number of molecules N . The used RDFs are provided in Figure 4.5.

Figure 4.13 Surface effects of finite subvolumes multiplied by the radius of the subvolume LF V

(Eq. (4.5)) vs. L for the LJ fluid at T = 2 and ρ = 0.4 (dimensionless units). The values of GV are
computed for systems with varying number of molecules N . The used RDFs are provided in
Figure 4.5.
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Table 4.5: Surface term in the thermodynamic limit F∞ for a WCA system at T = 2 and ρ = 0.6
(dimensionless units). Values of F∞ are computed from systems with various number of particles
N and using the different methods listed in Table 4.2.

N Direct estimation of F∞
2 Scaling of LGV with L Scaling of LF V with L

500 n/a 0.8168±0.0008 n/a
1000 n/a 0.8082±0.0002 0.804±0.004
5000 0.801±0.002 0.8036±0.0002 0.8004±0.0002
10000 0.8013±0.0004 0.8034±0.0001 0.8013±0.0003
30000 0.795±0.005 0.7979±0.0006 0.79±0.01
50000 0.79±0.01 0.793±0.001 0.78±0.02

Table 4.6: Surface term in the thermodynamic limit F∞ for a LJ system at T = 2 and ρ = 0.4 (di-
mensionless units). Values of F∞ are computed from systems with various number of particles N
and using the different methods listed in Table 4.2.

N Direct estimation of F∞
2 Scaling of LGV with L Scaling of LF V with L

500 n/a −0.2483±0.0001 n/a
1000 n/a −0.3320±0.0008 n/a
5000 −0.53±0.04 −0.460±0.004 −0.5718±0.0001
10000 −0.52±0.03 −0.464±0.004 −0.5433±0.0004
30000 −0.60±0.06 −0.543±0.008 −0.6315±0.0009

EFFECT OF SYSTEM SIZE AND DENSITY

Figure 4.13(a) shows the dependence of F∞ on the inverse of the system size.
Specifically, F∞ decreases as (1/N )1/3. This is observed for surface terms com-
puted using the scaling of LF V with L as well as values computed using the scal-
ing of LGV with L. In Figure 4.13(a), the error bars of the values of F∞ vary with N
in a similar manner to the values of G∞. Statistical uncertainties of the systems
studied in this work are provided in Tables 4.5 and 4.6.

As for KBIs, the surface terms F∞ can be determined accurately as a func-
tion of the density. Figure 4.14 (b) shows the values of F∞ with density for LJ and
WCA fluids. The surface term is estimated for the range ρ = 0.1−0.8. At ρ→ 0,
F∞ is computed analytically using Eq. (4.5) and g (r ) = exp[−βu(r )] [26]. In the
low density limit, the surface terms computed in this work approach the theoret-
ical value. In the high density limit, differences between surface term of LJ and
WCA disappear due to dominating repulsive interactions, which are the same for
the LJ and WCA potentials. From Figure 4.9 (b) and Figure 4.14 (b), a compari-
son between the values of G∞ and F∞ can be made. Both values change in the
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same manner to the density of the system. For all densities, surface terms F∞/σ
seem to have the same order of magnitude as KBIs G∞. This indicates the signifi-
cant contribution of surface effects of finite systems used to compute KBIs in the
thermodynamic limit. The last observation applies to both LJ and WCA fluids.
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(a)

(b)

Figure 4.14: (a) Surface term in the thermodynamic limit F∞ as a function of the size of the system
for the WCA fluid at ρ = 0.6, and the LJ fluid at ρ = 0.4. Both fluids are simulated at T = 2 (dimen-
sionless units). (b) F∞ as a function of dimensionless density ρ of LJ and WCA systems at T = 2.
For all densities, the same number of particles is used, N = 10000. At the limit ρ→ 0, the analytic
answer is computed using g (r ) = exp[−βu(r )], where u(r ) is the pair potential [26].
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4.4. CONCLUSIONS
In this work, KBIs and surface effects in the thermodynamic limit were computed
for systems of LJ and WCA fluids. RDFs of the LJ and WCA systems of different
sizes were computed using MD simulations. Different methods were used to esti-
mate KBIs G∞ from RDFs of finite systems: scaling of GV with 1/L, direct estima-
tion integrals G2, and the scaling of LGV with L. The three methods were found to
provide reliable estimates of G∞. Differences between the three methods mainly
arise from the size of the system required to obtain an accurate estimation. The
scaling of LGV with L was found to require smaller systems when compared to
other methods. The scaling of LGV was found the easiest to implement for esti-
mating KBIs and it provides a suitable estimate of surface effects. Estimating the
surface term in the thermodynamic limit F∞ is possible from: the finite integral
F∞

2 , the scaling of LF V with L, as well as the scaling of LGV with L. For all meth-
ods, the surface term F∞ was found to decrease with increasing system size. The
magnitude of the values of F∞/σ were found to be the same as the magnitude of
the KBIs G∞. Both quantities were found to change in the same manner with the
density of the system. KBIs and surface terms were computed for LJ and WCA
fluids at different densities. The differences between KBIs of the two systems,
LJ and WCA, vanish for high densities as the structure is dominated by repulsive
interactions at high density.
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THERMODYNAMIC AND TRANSPORT

PROPERTIES OF UREA-CHOLINE

CHLORINE MIXTURES

Kirkwood-Buff	Integrals	

This chapter is based on the paper: A. T. Celebi, N. Dawass, O. A. Moultos, and T. J. H. Vlugt, How
sensitive are physical properties of choline chloride - urea mixtures to composition changes: Molecu-
lar Dynamics simulations and Kirkwood Buff theory. Journal of Chemical Physics, submitted. [131]
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5.1. INTRODUCTION
DESs are produced by mixing quaternary ammonium salts and a hydrogen bond
donor (HBD) in a ratio that results in a homogenous solvent with a melting tem-
perature much lower than the melting temperatures of the constituting compo-
nents [132]. DESs have many similarities with ILs such as the thermophysical
behaviour, and tunability [133]. One of the most popular type of DESs is based
on the ammonium salt choline chloride (ChCl), which is biodegradable, nontoxic
and readily available [133]. To form a DES, ChCl can be easily mixed with vari-
ous HBDs such as urea, ethylene glycol, or carboxylic acids [133]. ChCl–based
DESs are increasingly considered to be a cheaper alternative to organic solvents
and ILs [132, 133]. To use DESs in industrial applications, knowledge of their
thermodynamic and transport properties is required. While there is an abun-
dant number of publications on ILs [5, 9, 134–138], attention is moving towards
studying DESs [132, 133, 139–141]. In recent years, many experimental and com-
putational studies focused on understanding the chemistry of DESs, providing
thermodynamic and transport data [6, 11, 132, 133, 142–146].

Molecular simulation is a powerful tool for predicting the properties of com-
plex fluids such as ILs and DESs, while also studying the microscopic structure
and interactions [5, 144, 147–149]. As shown in previous chapters, the KB the-
ory provides a theoretically sound framework to predict macroscopic properties
from microscopic structure. When studying realistic and complex liquids, KBIs
from molecular simulations can be used to: (1) predict a number of thermody-
namic properties such as partial molar volumes, and derivatives of the chemical
potential with respect to composition, (2) connect properties computed from
molecular simulation to experimental measurements as in the case of Fick and
MS diffusion coefficients (see section 1.4.3), and (3) compute thermodynamic
factors, which indicate the non-ideality of a mixture and the the affinity between
the different components.

KBIs of mixtures involving ILs and DESs [10, 150, 151] have been mainly com-
puted from experimental data using the inversion of the KB theory. In the lim-
ited number of studies that use molecular simulation [44], KBIs were computed
by truncating KBIs of infinite systems. Truncating KBIs to a cutoff distance re-
sults in poor estimates and is not physical (see chapter 2). In general, com-
puting KBIs of salt solutions, such as ILs and DESs, is not straightforward since
the electroneutrality of the system has to be maintained, while KBIs are defined
in an open ensemble. This theoretical disparity was discussed in section 1.4.2
of this thesis. The approach of Krüger and co–workers [74] offers a method to
compute KBIs from closed systems while using open subvolumes that mimic the
grand–canonical ensemble. In this approach, ions and cations can be treated as
indistinguishable. In this way, KBIs of pseudo-binary mixture can be computed.
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In this chapter, we aim at applying the KB theory to compute thermodynamic
properties of mixtures of urea and ChCl. From MD simulations in the N PT en-
semble, RDFs of mixtures of urea and ChCl are computed at T =343.15 K and P
= 1 atm. Mixtures are simulated at eight different mole fractions of urea ranging
from 0.20 to 0.71. At each molar concentration, KBIs of a pseudo-binary mix-
ture are estimated, from which the thermodynamic factors and the partial molar
volumes are computed. In addition to thermodynamic properties, transport be-
haviour of mixtures of urea and ChCl are investigated at different molar concen-
trations using MD simulations. The thermodynamic factors and MS diffusion
coefficients are used to compute Fick diffusivities.

This chapter is organized as follows. In section 5.2.1, theoretical expressions
to compute RDFs of a pseudo-binary mixture with indistinguishable ions from
RDFs of a ternary mixture of anions–cations–solvent are derived. In section 5.2.2,
we explain how to compute MS diffusion coefficients of pseudo-binary mixtures.
In section 5.2.4, the details of MD simulations and computing KBIs are provided.
In section 5.3, results of the scaling of KBIs with the size of the system of mixtures
of urea and ChCl are presented, along with values of the thermodynamic factor
and partial molar volumes as a function of the mole fraction of urea. Transport
properties of mixtures of urea and ChCl are also provided in section 5.3. In sec-
tion 5.4, the main findings of this chapter are summarised.

5.2. METHODS
To compute KBIs of mixtures of urea and ChCl, it is possible to apply expressions
of ternary mixtures [13]. Alternatively, mixtures of urea and ChCl can be treated
as a pseudo-binary, where the salt components (choline and chloride) are in-
distinguishable. For a pseudo–binary mixture, mole fractions of urea xurea are
defined as:

xurea = Nurea

Nurea +NCh +NCl
and xChCl = 1−xurea (5.1)

where Nurea, NCh, and NCl are the number of molecules of urea, choline and
chloride molecules, respectively. These mole fractions are used for computing
thermodynamic properties of a pseudo-binary mixtures. For instance, when
computing thermodynamic factors from KBIs (Eq. (1.14)), the mole fractions are
computed as in Eq. (5.1).

5.2.1. RADIAL DISTRIBUTION FUNCTIONS OF PSEUDO–BINARY

MIXTURES

In this section, we describe how to combine RDFs for components that should
be treated as indistinguishable. We are specifically looking at the case where we
merge the identity of two RDFs, to create a new "virtual" component. First, we
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show the derivation for a ternary mixture α, β and γ, where the identities of β
and γ are combined to ω. Second, we will provide the expressions for the case
of combining an arbitrary number of components. Finally, we show that the ob-
tained RDFs converge to the correct answer in the case of an ideal gas.

The radial distribution function of molecules of the same type equals [13]

gi i (r ) = ni i (r )/Vshell(r )

Ni /Vbox
= ni i (r )

Ni
c(r ) (5.2)

where ni i (r )/Vshell(r ) is the local density of component i inside a small ra-
dial shell with volume Vshell at distance r from a central molecule of type i ,
Ni /Vbox is the overall number density of component i in the system, and c(r ) =
Vshell(r )/Vbox, where Vbox is the volume of the simulation box. In the case of
molecules of two different types, RDFs are computed from

gi j (r ) = ni j (r )

N j
c(r ) (5.3)

where ni j (r ) is the number of atoms of type j in a radial shell formed around a
central molecule of type i . Based on these general expressions, we can write the
following RDFs for the ternary system composed of α, β and γ:

gαα(r ) = nαα(r )

Nα
c(r ) (5.4)

gββ(r ) = nββ(r )

Nβ
c(r ) (5.5)

gγγ(r ) = nγγ(r )

Nγ
c(r ) (5.6)

gαβ(r ) = nαβ(r )

Nβ
c(r ) (5.7)

gαγ(r ) = nαγ(r )

Nγ
c(r ) (5.8)

gβα(r ) = nβα(r )

Nα
c(r ) (5.9)

gγα(r ) = nγα(r )

Nα
c(r ) (5.10)

gγβ(r ) = nγβ(r )

Nβ
c(r ) (5.11)
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gβγ(r ) = nβγ(r )

Nγ
c(r ) (5.12)

Note that RDFs are symmetric, i.e. gi j (r ) = g j i (r ). The expressions above are
used to find RDFs of the pseudo-binary mixture (α and ω), resulting from com-
bining the identity of β and γ into ω. For this new system, we need to find ex-
pressions for gωω(r ) and gωα(r ).

To derive an expression for gωω(r ), we start with the general RDF expression
for similar molecules (Eq. (5.2))

gωω(r ) = nωω(r )

Nω
c(r ) (5.13)

The local number of molecules nωω(r ) is composed of different contributions:
nββ(r ), nβγ(r ), nγβ(r ), and nγγ(r ). The probability that the central molecule is of
type β or of type γ is Nβ/Nω and Nγ/Nω, respectively. Nω is the total number of
indistinguishable molecules. In this case, Nω = Nβ+Nγ. Substituting these terms
in Eq. (5.13) yields

gωω(r ) =
(

Nβ

Nω
nββ(r )+ Nγ

Nω
nγγ(r )+ Nγ

Nω
nγβ(r )+ Nβ

Nω
nβγ(r )

)
Nω

c(r )

=
(
Nβnββ(r )+Nγnγγ(r )+Nγnγβ(r )+Nβnβγ(r )

)
N 2
ω

c(r ) (5.14)

Multiplying and diving the nominator by
NβNγ

NβNγ
, yields

gωω(r ) =

(
N 2
β

Nγ

NβNγ
nββ(r )+ N 2

γNβ

NβNγ
nγγ(r )+ N 2

γNβ

NβNγ
nγβ(r )+ N 2

β
Nγ

NβNγ
nβγ(r )

)
N 2
ω

c(r ) (5.15)

Using Eqs. (5.5), (5.6), (5.11) and (5.12) results in

gωω(r ) =

(
N 2
β

Nγ

Nγ
gββ(r )+ N 2

γNβ

Nβ
gγγ(r )+ N 2

γNβ

Nγ
gγβ(r )+ N 2

β
Nγ

Nβ
gβγ(r )

)
N 2
ω

(5.16)

The functions gβγ(r ) and gγβ(r ) are equal, and Eq. (5.16) can be further simpli-
fied to

gωω(r ) =
N 2
β

gββ(r )+N 2
γgγγ(r )+2NβNγgβγ(r )

N 2
ω

(5.17)
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Similarly, to find gωα(r ), we apply the general expression for RDFs of two differ-
ent molecules (Eq. (5.3))

gωα(r ) = nωα(r )

Nα
c(r ) (5.18)

where nωα(r ) accounts for two contributions: nβα(r ) and nγα(r ). The probability
that the central molecule is of type β is Nβ/Nω. Similarly, the probability that the
central molecule is of type γ is Nγ/Nω. As a result Eq. (5.18) can be rewritten as

gωα(r ) =
(

Nβ

Nω
nβα(r )+ Nγ

Nω
nγα(r )

)
Nα

c(r )

= Nβ

NωNα
nβα(r )c(r )+ Nγ

NωNα
nγα(r )c(r ) (5.19)

Using Eqs. (5.9) and (5.10) results in

gωα(r ) = Nβgβα(r )+Nγgγα(r )

Nω
(5.20)

In the same way, Eqs. (5.17) and (5.20) can be generalized for the case of a system
of component α and n indistinguishable components 1, 2, 3,... n denoted as ω.
The RDFs of the pseudo-binary mixture composed of α and ω (Nω = N1 +N2 +
....Nn) can be written as:

gωω(r ) =

n∑
i=1

n∑
j=1

Ni N j gi j (r )(
n∑

i=1
Ni

)2 (5.21)

gωα(r ) =

n∑
i=1

Ni giα(r )

n∑
i=1

Ni

(5.22)

In the case of an ideal gas, RDFs of the combined molecules gωω(r ) and gωα(r )
should converge to (Nω − 1)/Nω and 1, respectively. Considering an ideal gas
mixture that consists of α and n indistinguishable components, we start with
Eq. (5.21) and substitute the RDFs in the expressions with the ideal gas answer:
gi i (r ) = (Ni −1)/Ni and gi j (r ) = 1 (where i 6= j ). This results in:
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gωω(r ) =

n∑
i=1

n∑
j=1( j 6=i )

Ni N j gi j (r )+
n∑

i=1
N 2

i gi i (r )(
n∑

i=1
Ni

)2

=

n∑
i=1

n∑
j=1( j 6=i )

Ni N j +
n∑

i=1
N 2

i
Ni−1

Ni(
n∑

i=1
Ni

)2

=

n∑
i=1

n∑
j=1

Ni N j −
n∑

i=1
N 2

i +
n∑

i=1
Ni (Ni −1)(

n∑
i=1

Ni

)2

=

n∑
i=1

Ni

n∑
j=1

N j −
n∑

i=1
N 2

i +
n∑

i=1
N 2

i −
n∑

i=1
Ni(

n∑
i=1

Ni

)2

=

(
n∑

i=1
Ni

)2

−
n∑

i=1
Ni(

n∑
i=1

Ni

)2

=

n∑
i=1

Ni −1

n∑
i=1

Ni

(5.23)

Similarly, for gωα(r )

gωα(r ) =

n∑
i=1

Ni giα(r )

n∑
i=1

Ni

=

n∑
i=1

Ni

n∑
i=1

Ni

= 1 (5.24)

Hence, for an ideal gas, Eqs. (5.21) and (5.22) provide the correct answer.
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5.2.2. MAXWELL–STEFAN DIFFUSION COEFFICIENTS OF PSEUDO–BINARY

MIXTURES

The MS diffusion coefficient in a three-dimensional system can be computed
from the Onsager coefficients (Λi j ). Onsager coefficients are defined as the
cross-correlation of the displacement of the molecules of species i and j in a
multicomponent mixture: [66, 152]

Λi j = lim
t→∞

1

2t

1

3N

〈(
Ni∑

k=1
[rk,i (t )− rk,i (0)]

)
.

(
N j∑
l=1

[rk, j (t )− rk, j (0)]

)〉
(5.25)

where N , Ni and Ni are the total number of molecules, number of molecules of
species i and j , respectively. The matrix of Onsager coefficients has a symmetric
nature. Thus, we can correlate the Onsager coefficients of a binary mixture in
terms of the molar masses of the two components α and β (Mα and Mβ): [153]

Λαβ =−
[

Mα

Mβ

]
Λαα =−

[
Mβ

Mα

]
Λββ (5.26)

For binary mixtures, there is a single MS and Fick difussion coefficient defined.
The MS diffusion coefficient D̄ is related to the Onsager coefficients by:[69]

D̄ =
[

(Mβ+xα(Mα−Mβ))2

xαxβM 2
β

]
Λαα (5.27)

In a conventional ternary system consisting of molecules of α, θ and γ, there
are six Onsager coefficients as Λαα, Λαθ, Λαγ, Λθθ, Λθγ, and Λγγ. In a pseudo-
binary system, there are only three Onsager coefficients that are interdependent
according to Eq. (5.26). A pseudo-binary system consist of an independent and
an indistinguishable species, which could be described as molecules of α and
β=(θ+γ), respectively. For this pseudo-binary system, the three Onsager coeffi-
cients are Λαα, Λαβ, and Λββ.

To compute Onsager coefficients of the pseudo-binary systemΛαα,Λαβ, and
Λββ, we can use the Onsager coefficients of the ternary system following the
steps below:

1. Perform MD simulations of the ternary systems consisting of molecules of
types α, θ and γ.

2. Compute Onsager coefficients for this ternary system. (Λαα,Λαθ,Λαγ,Λθθ,
Λθγ, andΛγγ) using MSDs obtained from the OCTP tool in LAMMPS [154].
Eq. (5.25) requires information on the total number of molecules, which is
N = Nα+Nθ+Nγ.
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3. The value of Λαα is identical in the ternary and pseudo-binary systems.
Use Λαα in Eq. (5.27) to compute MS diffusion coefficient of the pseudo-
binary mixture.

4. In Eq. (5.27), molecular weights (Mα and Mβ) of the pseudo-binary mixture
are essential. Mβ is the average molecular weight of the indistinguishable
molecule, computed from:

Mβ =
NθMθ+NγMγ

Nθ+Nγ
(5.28)

In the case of a 1:1 salt solution we have Nγ = Nθ so therefore

Mβ =
Mθ+Mγ

2
(5.29)

5. For pseudo-binary mixtures, the mole fractions required in Eq. (5.27) can
be computed using:

xα = Nα

Nα+Nθ+Nγ
and xβ = 1−xα (5.30)

5.2.3. FORCE FIELD

ChCl and urea molecules were modelled using the general amber force field
(GAFF [155]. Partial charges were derived using the Restrained Electrostatic
Potential (RESP) method based on the Hartree-Fock HF/6.31G* level of the-
ory [147, 156, 157]. As discussed in the earlier works by Perkins et al. [147, 158],
Liu et al. [159], Shah and Mjalli [160], and Chaban et al. [161], charge scaling
is essential when simulating ILs and DESs due to overestimated electrostatic
interaction potentials. Blazquez and co-workers [162] have shown that even
for simple electrolytes such as NaCl, charge scaling improves electrostatic in-
teractions. We scaled down the partial charges of ChCl molecules by a fac-
tor of 0.8. The GAFF force field combined with reduced charges have been
used in MD studies to accurately predict structural, thermodynamic and trans-
port properties of many ChCl-based DESs such as reline, ethaline and glyce-
line [143, 144, 147, 158, 160, 163, 164]. All force field parameters used in this
chapter are listed in the Supporting Information of Ref. [131].

5.2.4. SIMULATION DETAILS

MD simulations were performed using the Large-Scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS) version released on August, 2018 [127]. Eight
different mole fractions of urea ranging from 0.20 to 0.71 were considered. For
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Table 5.1: The mole fractions, number of molecules, and initial box lengths of all simulated systems

Small System Large System

NChCl/NUrea xUrea NChCl NUrea LS/ [Å] NChCl NUrea LL/ [Å]

2/1 0.20 160 80 34.7 800 400 59.4
3/2 0.25 144 96 34.0 720 480 58.1
1/1 0.33 120 120 32.8 600 600 56.2
5/7 0.41 100 140 31.8 500 700 54.4
1/2 0.50 80 160 30.7 400 800 52.6
1/3 0.60 60 180 29.6 300 900 50.6
1/4 0.67 48 192 28.8 240 960 49.3
1/5 0.71 40 200 28.3 200 1000 48.4

each mole fraction, we considered a small and a large system consisting of 240
and 1200 molecules, respectively. The former was used for computing transport
properties (i.e. viscosity, self-diffusivity, MS diffusion), while the latter was used
for computing RDFs required for KBIs. It is important to note that larger system
sizes were essential to obtain a sufficiently large linear regime of the scaling of
KBIs [63]. Table 5.1 shows the number of molecules and the size of the simula-
tion box at each molar ratio of ChCl to urea for all systems simulated in this work.

Initial configurations were generated by randomly inserting molecules in a
cubic simulation box using the PACKMOL package [165]. The generated sim-
ulation boxes were first relaxed using the conjugate gradient method for 10000
steps. The energy minimization was followed by MD runs in the isothermal-
isobaric (N PT ) ensemble at 343.15 K and 1 atm for 10 ns. In the N PT ensem-
ble, average volumes and densities were computed. Starting from the average
density obtained from N PT runs, each system was then equilibrated at 343.15 K
and 1 atm for 1 ns in the canonical (NV T ) ensemble. Consecutively, transport
properties were computed in the next 120 ns. For small systems (see Table 5.1),
a 120 ns run typically takes 96 hours using 24 CPUs. During production runs,
the OCTP (On-the-fly Computation of Transport Properties) plugin in LAMMPS
was used to compute transport properties [154] .The OCTP plugin uses Einstein
relations combined with the order-n algorithm [22, 166]. For more details about
the OCTP plugin, readers are referred to the original study by Jamali et al. [154].
RDFs were computed from separate MD simulations of 80 ns of the large systems
in the N PT ensemble. For large systems (see Table 5.1), a 80 ns run typically
takes 720 hours using 24 CPUs. Finite-size effects of the reported RDFs are cor-
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rected using the method proposed by Gaungly and van der Vegt [167]. The RDFs
were numerically integrated to obtain KBIs of small subvolumes GV

αβ
(Eq. (1.25)).

To estimate KBIs in the thermodynamic limit, the linear range of the scaling of
LGV

αβ
with L was used. For more details on the computations of the KBIs, the

reader is referred to chapter 5. Using KBIs, thermodynamic factors, and partial
molar volumes were computed.

All simulations were carried out at 343.15 K and 1 atm. For N PT and NV T
ensembles, temperature and pressure were maintained using the Nosé-Hoover
thermostat and barostat with coupling constants of 0.1 ps and 1 ps, respec-
tively [22]. Long range electrostatic interactions between charged species were
calculated based on the particle-particle, particle-mesh (pppm) solver with a rel-
ative precision of 10−6. The cut-off radius was set to 12 Å, for both the Lennard-
Jones (LJ) and the real-space part of Coulombic potentials. LJ parameters be-
tween the dissimilar species were determined based on the Lorentz-Berthelot
mixing rules [23]. Equations of motions were integrated using the Verlet algo-
rithm with a time step of 1 fs. Standard deviations in the transport properties and
KBIs were computed based on 10 and 25 independent simulations, respectively.
Each independent simulation started from a different initial configuration.

5.3. RESULTS AND DISCUSSION

5.3.1. KIRKWOOD–BUFF INTEGRALS OF UREA–CHOLINE CHLORIDE BSBSB

MIXTURES

Figure 5.1 presents the RDFs of urea–urea, urea–ChCl and ChCl–ChCl interac-
tions at various molar rations of ChCl to urea. In Figure 5.1, it is shown that the
position of the first peak of all RDFs remains unchanged with composition. How-
ever, the addition of urea to the system has an effect on the height of the first
peak, especially for urea–ChCl and ChCl–ChCl distances. Figure 5.1 (a) shows
that urea–urea distances remain relatively unchanged with increasing the molar
ratio of urea to ChCl. Figures 5.1 (b) and 5.1 (c) show that the height of the first
peak of the g (r ) of urea–ChCl and ChCl–ChCl decreases with increasing molar
ratios of urea to ChCl. This indicates weakening of interactions between pairs of
urea–ChCl and ChCl–ChCl.

The RDFs shown in Figure 5.1 are used to compute KBIs of urea and ChCl at
various molar compositions. In Figure 5.2, KBIs in the thermodynamic limit for
pairs of urea–urea, ChCl–urea, and ChCl–ChCl at 343.15 K and 1 atm are shown
as a function of the mole fraction of urea. The reader should note that in Fig-
ure 5.2 as well as in the following figures we report properties as a function of the
mole fraction defined in Eq. (5.1). KBIs of urea–urea pairs are affected the most
by the increase of the urea content. Figure 5.2 shows that the values of Gurea−urea
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are increasing with the mole fraction of urea. This indicates that urea-urea in-
teractions become stronger as more urea is added to the system. Figure 5.2 also
shows that the values of the KBIs Gurea−ChCl and GChCl−ChCl slightly decrease with
increasing the content of urea. Consequently, urea-ChCl and ChCl-ChCl interac-
tions become weaker with larger mole fractions of urea. Such trends obtained in
KBIs are consistent with the results of RDFs of ChCl mixtures.

It is interesting to examine how interactions between dissimilar components
(i.e. ChCl-urea) differ from the interactions between similar components (i.e.
urea-urea and ChCl-ChCl) at various mole fractions of urea. To study this, the
term G f = Gαα+Gββ−2Gαβ can be used. The term G f is zero for an ideal mix-
ture in which interactions of α and β are equal to the average interactions of
molecules of the same type. The term G f can be computed by integrating the
combined RDF g f (r ) = gαα(r )+gββ(r )−2gαβ(r ) as shown in Eq. 1.25. The values
of G f shown in Figure 5.2 are computed using this approach. Similar to the KBIs
of urea-urea pairs, the values of G f increase dramatically between xurea = 0.25
and xurea = 0.4. This means that the molecular interactions of the system are
shifting for these mole fractions. While the affinity between urea and ChCl is al-
ways stronger than the average affinity between similar molecules, attractive in-
teractions between urea and ChCl are stronger when xurea < 0.25. Interestingly,
the values of G f do not significantly change beyond xurea = 0.41 as more urea is
added to the system. When studying other microscopic properties of mixtures of
ChCl and urea, Sun et al. [168] has correlated the change of interactions with the
content of urea to the eutectic behaviour. The authors reported that the eutectic
composition is at the molar ratio of ChCl to urea of 1:2 (xurea = 0.5).
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(a)

(b)

(c)

Figure 5.1: The functions g (r ) for (a) urea–urea (b) urea–ChCl, and (c) ChCl–ChCl for urea–ChCl
interactions at T = 343.15 K, P = 1 atm, and various molar ratios of ChCl to urea. Details of the MD
simulations are provided in section 5.2.4 and Table 5.1.
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Figure 5.2: KBIs of urea–ChCl as a function of the mole fraction of urea at T = 343.15 K and P = 1
atm. Details of the MD simulations are provided in section 5.2.4 and Table 5.1. To extrapolate to
the thermodynamics limit, the scaling of LGV

αβ
with L was used.
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5.3.2. THERMODYNAMIC PROPERTIES OF UREA–CHOLINE CHLORIDE BSBSB

MIXTURES

DENSITY

Densities of ChCl and urea mixtures at 343.15 K and 1 atm are shown in Figure
5.3 as a function of the mole fraction of urea (Eq. 5.1). The density of the mixture
increases as the mole fraction of urea increases. This trend was expected due to
the high density of pure urea. We performed MD simulations of pure ChCl (400
molecules) and pure urea (400 molecules) systems at 343.15 K and 1 atm. The
computed density of pure ChCl is 1021.2 kg/m3 and the density of pure urea is
1453.2 kg/m3. Values of the densities of mixtures of ChCl and urea are bounded
between the densities of the pure components. For a mixture with a molar ratio
of 1:2 (xUrea = 0.5), the computed density exhibits an excellent agreement with
the density measured experimentally by Yadav et al. [169], showing deviation of
less than 1.5%. To the best of our knowledge, experimental data for other mole
fractions of urea are not available in literature.

THERMODYNAMIC FACTORS

To compute the thermodynamic factors of ChCl and urea mixtures, we use three
different descriptions of KBIs: (1) the individual KBIs of Gαα, Gαβ and Gββ com-
puted by integrating the corresponding RDFs, (2) the term G f computed by inte-
grating the RDF g f (r ) = gαα(r )+ gββ(r )−2gαβ(r ), and (3) KBIs using the Cortes-
Huerto finite-size correction [83] (see section 3.3.3). In the first two approaches,
RDFs are corrected for finite-size effects using the method reported by Ganguly
and van der Vegt [167]. In the Cortes-Huerto approach, RDFs are corrected us-
ing a correction that is independent of the interparticle distance. Based on the
computed RDFs, KBIs of finite subvolumes are used to estimate KBIs in the ther-
modynamic limit (G∞

αβ
) [83]. This is important to study the effect of the correc-

tion method on the computed KBIs and thermodynamic factors. While RDFs
are sampled using long and multiple simulations, still, uncertainties of the com-
puted KBIs and the term G f are not very small. Naturally, these uncertainties re-
flect on the accuracy of the estimation of thermodynamic factors. In Figure 5.4,
we show the thermodynamic factors of ChCl and urea at T = 343.15 K, P= 1 atm
and various mole fractions of urea. The different methods, used here to com-
pute thermodynamic factors, present relatively similar results. This could be ex-
plained by the fact that systems of large sizes were used to compute KBIs, which
makes the choice of the RDF correction not very important. Figure 5.4 shows
that all Γ values are found larger than 1 for all urea contents. This indicates that
all mixtures of ChCl and urea studied here are not ideal, and that the interactions
between urea and ChCl are more favorable than interactions between molecules
of the same type (i.e. urea-urea and ChCl-ChCl). Computed thermodynamic
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Figure 5.3: Densities of urea–ChCl as a function of the mole fraction of urea computed using MD
simulations at T = 343.15 K and P = 1 atm. Details of the MD simulations are provided in sec-
tion 5.2.4 and Table 5.1. The experimental density [169] is reported at molar ratio of urea to ChCl
of 1:2 (xurea = 0.5).

factors exhibit no distinct trend as a function of the mole fraction of urea. The
variations are small and error bars are large. Although there is no certain trend
shown in Figure 5.4, we can see that thermodynamic factors become minimum
at a mole fraction of urea of 0.5. This can be attributed to the relatively increased
affinity between urea-urea molecules at this mole fraction.

PARTIAL MOLAR VOLUMES

The partial molar volume of a component represents the change of volume as a
result of the addition of the same component in the mixture at a fixed tempera-
ture, pressure and number of molecules. The relation between KBIs and partial
molar volumes is provided in Eq. (1.6). In Figure 5.5, we show the partial mo-
lar volumes of urea and ChCl as a function of the mole fraction of urea. As the
mole fraction of urea increases, the partial molar volume of urea approaches the
molar volume of pure urea. For both components, the change in partial molar
volumes with the increasing mole fraction of urea is not significant. This is inter-
esting because the results of RDFs and KBIs show that the interactions between
urea and ChCl are significantly affected by the change of the urea content. In Fig-
ure 5.5, we also show the molar volumes of pure urea and pure ChCl, calculated
from separate MD simulations of pure systems. Molar volumes for mixtures are
consistent with those of pure components.
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Figure 5.4: Thermodynamic factors Γ (Eq. (1.14)) of mixtures of urea–ChCl as a function of the
mole fraction of urea at T = 343.15 K and P = 1 atm. Details of the MD simulations are provided
in section 5.2.4 and Table 5.1. To compute Γ, KBIs were estimated using: individual KBIs Gαβ,
the term G f (in the last two methods, the Ganguly and van der Vegt [167] was applied), and the
method of Cortes-Huerto [83].

Figure 5.5: Partial molar volumes of mixtures of urea–ChCl as a function of the mole fraction of
urea at T = 343.15 K and P = 1 atm. Details of the MD simulations are provided in section 5.2.4
and Table 5.1.
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5.3.3. TRANSPORT PROPERTIES OF UREA–CHOLINE CHLORIDE MIXTURES

In Figure 5.6, viscosities computed from MD simulations are compared to the ex-
perimental viscosity [169], which is available for a molar ratio of urea to ChCl of
1:2 (xurea = 0.5). For this molar ratio, the viscosity from MD simulations deviates
from the experimental viscosity by ca. 9%. Also, Figure 5.6 shows the viscosities
of mixtures of urea and ChCl at various mole fractions of urea computed using
MD simulations. The viscosity of the mixture decreases almost linearly with the
mole fraction of urea. Low viscosities result in a higher mobility and as a result,
larger diffusivities are observed with the addition of more urea to the mixture.
From MD simulations, self diffusion coefficients Dself of urea, choline and chlo-
rine were computed and corrected for finite–size effects using the Yeh–Hummer
correction [72, 73, 97]. In Figure 5.7 (a), the self diffusion coefficients Dself of
urea, choline and chlorine are shown as a function of the mole fraction of urea.
As expected, self diffusion coefficients of all species increase with the addition
of more urea to the mixture. This is due to the fact that urea diffuses faster than
choline and chloride as shown in Figure 5.7 (a). From the computed viscosities
and thermodynamic factors, it is possible to correct the binary diffusion of urea–
ChCl mixtures for finite–size effects using the correction proposed by Jamali and
co–workers [72, 94]. The corrected MS and Fick diffusivities are presented in Fig-
ure 5.7 (b) for urea and ChCl at different mole fractions. The Fick diffusivities are
computed from the MS diffusion coefficients and the thermodynamic factors.
As in the case of self diffusivities, the binary diffusion of urea and ChCl mixtures
increases as the mole fraction of urea increases.

Another transport property that is of interest for salt solutions is the ionic
conductivity. Ionic conductivities can be estimated from the Nernst–Einstein
(NE) equation [170],

κ= e2

kBT V

∑
i

Ni q2
i Dself,i (5.31)

where qi is the charge of the molecule and e is the elementary charge. Dself,i is
the self diffusion coefficient of component i computed from MD simulations. In
Figure 5.8, ionic conductivities of urea and ChCl mixtures are presented. Larger
diffusion was observed at high mole fractions of urea, but ionic conductivities
remain relatively constant with composition. This is due to the fact that fewer
ions are present in the system when more urea is added.
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Figure 5.6: Viscosities of mixtures of urea–ChCl at T = 343.15 K and P = 1 atm as a function of the
mole fraction of urea. Details of the MD simulations are provided in section 5.2.4 and Table 5.1.
The experimental viscosity [169] is reported at a molar ratio of urea to ChCl of 1:2 (xurea = 0.5).
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(a)

(b)

Figure 5.7: (a) Self diffusion coefficients of urea, choline, and chloride and (b) Collective diffusivi-
ties of pseudo–binary mixtures of urea–ChCl as a function of the mole fraction of urea at T = 343.15
K and P = 1 atm. In both (a) and (b), diffusion coefficients are corrected for finite–size effects [72].
Details of the MD simulations are provided in section 5.2.4 and Table 5.1.
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Figure 5.8: Ionic conductivities of mixtures of urea–ChCl as a function of the mole fraction of urea
at T = 343.15 K and P = 1 atm. Errorbars are smaller than the marker size. Details of the MD
simulations are provided in section 5.2.4 and Table 5.1.
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5.4. CONCLUSIONS
In this chapter, properties of mixtures of ChCl and urea were computed at dif-
ferent molar ratios. MD simulations in the N PT ensemble were carried out to
compute RDFs of systems of urea, choline and chloride. RDFs were corrected
for finite size effects using the van der Vegt and Gaungly correction [167]. To
compute KBIs, the system was treated as pseudo-binary were ions are indistin-
guishable. KBIs in the thermodynamic limit were estimated and used to examine
the affinity between the components of the mixture. As the mole fraction of urea
increases, the affinity between pairs of urea-urea increases. Also, urea-ChCl and
ChChl interactions are weakened as a result of increasing the content of urea.
Other than studying molecular interactions, KBIs were used to compute thermo-
dynamic factors and partial molar volumes. Partial molar volumes were hardly
affected by the change in the mole fraction of urea in sharp contrast to thermo-
dynamic factors and transport properties. From MD simulations, the following
transport properties were also computed as a function of composition: viscosity,
self diffusion coefficients, MS diffusivities and ionic conductivities. With higher
mobility of urea, choline and chloride, the viscosity of the mixtures decreased
with increasing mole fraction of urea. Self and binary diffusivities were found to
increase by increasing the content of urea.
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SOLUBILITY OF GASES IN

MONOETHYLENE GLYCOL

This chapter is based on the paper: N. Dawass, R. R. Wanderley, M. Ramdin, O. A. Moultos, H. K.
Knuutila and T.J.H. Vlugt, Solubility of Carbon Dioxide, Hydrogen Sulfide, Methane, and Nitrogen in
Monoethylene Glycol; Experiments and Molecular Simulation. Journal of Chemical & Engineering
Data, 66, 524–534 (2020) [171].
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6.1. INTRODUCTION
Monoethylene glycol (MEG) is a colorless, low-volatility, and stable liquid. MEG
is fully miscible in water as well as in many organic liquids such as acetone and
methanol [172]. In 2020, the global market size of MEG is valued at USD 20 bil-
lion [173]. MEG is widely used as an anti-freeze agent, coolant, heat transfer
agent, and as a raw material for the manufacturing of polyester fibers. [174]. In
the oil–and–gas industry, MEG is widely used for the prevention of gas hydrate
formation [174, 175]. In the course of mitigating gas hydrate formation, MEG has
been reported to absorb acid gases such as carbon dioxide (CO2) and hydrogen
sulfide (H2S) [176]. Due to the absorption capability, stability, and miscibility of
MEG in many organic liquids, it is also considered for use in separation processes
for acid gases [176–179].

A number of MEG–based solvents, such as deep eutectic solvents, are consid-
ered for CO2 capture [179–183]. More recently, mixtures made from MEG, amines
and water are investigated for simultaneously preventing hydrate formation and
removing H2S in offshore oil–and–gas applications [184]. To achieve these pur-
poses, triethylene glycol (TEG)–amine–water mixtures were previously used. Re-
placing TEG with the less viscous MEG is expected to improve the absorption
capability of glycols–amine–water solvents since absorption rates increase with
lower viscosities [185]. To design and optimise processes in which MEG acts as
a hydrate formation inhibitor or as an absorbent, knowledge of phase equilib-
ria is essential [178, 185]. To this purpose, a number of experimental measure-
ments of binary mixtures of MEG and gases, i.e., CO2 and H2S have been per-
formed [177, 178, 186]. For a review of experimental studies on the solubility of
acid gases in MEG the reader is referred to Refs. [178, 187].

While traditionally phase equilibria data are obtained from experimental
measurements, such an approach is not always feasible, especially if high pres-
sures and/or temperatures are required, and when dangerous gases, such as H2S
are involved. For this reason, theoretical approaches for computing the phase
equilibria of mixtures of gases and liquids have been widely-used [1, 188–190].
Unlike classical thermodynamic models, molecular–based methods account for
the strong molecular interactions present in associating liquids [176]. The past
few decades, molecular simulation has emerged as a powerful tool for using mi-
croscopic information of associating liquids to predict their macroscopic behav-
ior [22, 23]. In addition to providing thermodynamic and transport data, molec-
ular simulation can also be used to investigate the microscopic structure of sol-
vents, and to understand absorption mechanisms [5, 148].

The KB theory can be applied to study the absorption of gases in solvents.
KBIs relate to fluctuations in the grand–canonical ensemble, from which a num-
ber of thermodynamic properties are obtained such as derivatives of the chemi-
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cal potential which can be used to compute isotherms. Alternatively, solubilities
of gases in solvents are directly computed using MC simulations in the grand–
canonical and osmotic ensembles. MC simulations have been used to predict
the solubility of gases in associating liquids [59, 148, 149]. MC simulations have
been also widely-used to study the absorption of gases in solvents such as alco-
hols [149, 191, 192], ionic liquids [193, 194], and deep eutectic solvents [143]. To
the best of our knowledge, studies reporting MC simulations of the phase equi-
libria of small gas molecules and MEG are lacking. A possible reason for the ab-
sence of such studies is the fact that the simulation of dense liquids with strong
intermolecular interactions, as in the case of MEG, is computationally demand-
ing. MC simulations in open ensembles are often used to compute the solubility
of solutes in liquids. In these ensembles, the solutes are added to or removed
from the simulation box. For dense liquids and/or with the presence of strong
interactions, such insertions can be challenging [58, 60]. To enhance the effi-
ciency of molecular transfers in MC simulations, Shi and Maginn [59, 195] de-
veloped the CFCMC (Continuous Fractional Component Monte Carlo) simula-
tion method. In this method, the system is expanded using a so–called fractional
molecule with a coupling parameter λ, which is used to vary the interactions
between the fractional molecule and the surrounding molecules. In solubility
calculations, a fractional molecule is used to gradually add/remove molecules
to/from the solvent [196]. The presence of a fractional molecule does not af-
fect the prediction of thermodynamic properties of the system [60, 197]. For a
detailed discussion of the CFCMC method the reader is referred to the recent
review by Rahbari et al. [62].

A prerequisite for successful MC simulations of pure and multi-component
mixtures is the use of force fields that can adequately represent inter- and in-
tramolecular interactions. Thus, another challenge of simulating gases in asso-
ciating liquids, such as MEG, is the availability of force fields that provide accu-
rate predictions of the desired properties. One of the most commonly-used force
fields for a large number of gases and liquids is the Transferable Potentials for
Phase Equilibria (TraPPE) force field [198, 199]. The TraPPE force field has been
successfully used for the prediction of thermodynamic and transport properties
of gases and liquids [149, 192, 193, 200–202, 202–205]. Cardona et al. [206] used
TraPPE and other classical force fields to compute thermodynamic properties of
pure MEG. The authors found that the united–atom version of TraPPE (TraPPE–
UA) [199] is able to accurately predict thermodynamic properties of pure MEG,
such as the density, isothermal compressibility, and heat of vaporisation.

In this chapter, we aim to predict the solubilities of small gas molecules (CO2,
CH4, N2, and H2S) in MEG using CFCMC simulations in the osmotic ensemble.
To model MEG and the gases studied in this work (Ref. [171]), the TraPPE–UA
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force field is used, without any modifications. In the case of the solubility of H2S,
we test the performance of an additional force field developed by Kristóf and
Liszi [207] which was used in a number of solubility studies [208, 209]. Solubility
calculations are validated by comparing with experimental data. For this pur-
pose, we have collaborated with the research group of Prof. Hanna Knuutila at
The Norwegian University of Science and Technology to experimentally measure
the solubility of CO2 in MEG. In their labs, calorimetric measurements were per-
formed using a CPA 122 calorimeter purchased from ChemiSens AB. In this de-
vice, gas from a compartment with a fixed known volume is absorbed to the sam-
ple. By accurately measuring the changes in pressure and temperature of the gas
in this compartment and using the Peng-Robinson equation of state [210], the
amount of absorbed material in the sample can be calculated. For details related
to the experimental setup and methods, the reader is referred to Ref. [171]. For
the binary system CO2–MEG, absorption isotherms from MC simulations and
experiments are compared for the temperatures 333.15 K, 353.15 K, and 373.15
K. The solubilities of CH4, N2, and H2S in MEG are computed at 373.15 K and
compared to experimental data from literature, when available. In addition to
absorption isotherms, Henry coefficients are computed using CFCMC simula-
tions. From the knowledge of Henry coefficients of different solutes in MEG, se-
lectivities are also computed.

The chapter is organised as follows. In section 6.2, the MC simulation meth-
ods used to compute the solubilities in MEG are explained. Results are presented
and discussed in section 6.3. In section 6.3.1, MC calculations of absorption
isotherms of CO2 in MEG are compared to the experimental data obtained from
Ref. [171]. MC simulations results of the solubility of CH4, N2, and H2S in MEG
are shown in section 6.3.2. In section 6.4, the main findings of this chapter are
summarized.

6.2. METHODS

6.2.1. FORCE FIELDS

Classical force fields were used to describe the interactions of the molecules
studied in this work. For MEG, all interaction potentials and parameters fol-
low from TraPPE-UA force field [199]. The TraPPE force field adequately pre-
dicts densities and vapor-liquid equilibria (VLE) of many species such as normal
alkanes [198], branched alkanes [211], glycols, and ketones [199]. To accurately
represent the molecular structure of MEG, Stubbs et al. [199] added an additional
repulsive term (r−12) for interactions between a hydroxyl hydrogen and an oxy-
gen atom separated by four bonds. In our study, the TraPPE–UA force field was
also used to represent CO2, CH4, H2S, and N2 as rigid objects. We also tested an-
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Table 6.1: Chemical formulas and force fields of the components simulated in this work.

Component Chemical formula Force field
Monoethylene glycol HO(CH2)2OH TraPPE–UA [199]

Carbon dioxide CO2 TraPPE–UA [212]
Methane CH4 TraPPE–UA [198]

Hydrogen sulfide H2S TraPPE–UA [213]
Hydrogen sulfide H2S Kristóf and Liszi [207]

Nitrogen N2 TraPPE–UA [212]

other four–site model presented by Kristóf and Liszi [207] for H2S, here referred
to as H2S-KL. The main differences between the two force fields are the non–
bonded LJ parameters and the atomic charges. Table 6.1 lists the components
simulated in this study and the force field used for each component. All force
field parameters are listed in the Supporting Information of Ref. [171].

In our simulations, two types of intermolecular interactions are computed:
LJ and Coulombic interactions. LJ interactions were truncated at 12 Å and
the uncertainty due to truncation is handled by applying analytic tail correc-
tions [22, 23]. The Lorentz–Berthelot mixing rules were used for LJ interactions
between dissimilar interaction sites [22, 23]. The Ewald summation method was
applied to handle electrostatic interactions with a relative precision of 10−6. The
real–space part of the electrostatic interactions was truncated at 12 Å. All simula-
tions were carried out in the osmotic ensemble (see section 6.2.2). The PC-SAFT
equation of state was used to compute the fugacity of the solutes at the desired
temperatures and pressures [214, 215].

6.2.2. THE CFCMC METHOD IN THE OSMOTIC ENSEMBLE

The osmotic ensemble [22] is used to compute the solubility of small solute
molecules in non-volatile solvents. In this open ensemble, the following param-
eters are fixed: the temperature (T ), the imposed hydrostatic pressure (P ), the
number of molecules of MEG (NMEG), and the fugacity of the solute ( f ). The
number of molecules of the solute (Ns), and the volume of the system (V ) are
varied to achieve equilibrium. The hydrostatic pressure P inside the simulation
box corresponds to the imposed fugacity f of the reservoir. An essential part of
the calculations is the insertion and/or deletion of solute molecules in the sim-
ulation box. When studying dense solvents, as in the case of MEG, molecule
insertions can be challenging [58, 60]. To improve the probability of accepting
insertion/deletion trial moves, the CFCMC method was used [59, 60, 216, 217].
The osmotic ensemble was expanded using a so-called fractional molecule [59].
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As opposed to a whole molecule, the strength of interactions of a fractional
molecule is varied using a coupling parameter λ. When λ = 0, the fractional
molecule acts as an ideal gas molecule and does not interact with the sur-
rounding molecules. When λ = 1, the fractional molecule fully interacts with
the surrounding molecules. By varying the strength of interactions of the frac-
tional molecule with the surrounding molecules, whole molecules can be grad-
ually added or removed. Besides the conventional MC thermalization trial
moves [22, 23], trial moves attempting to change λ are required. Shi and Mag-
inn [59] derived Metropolis–like acceptance rules for changing the values of λ
in the osmotic ensemble. For each solute type, a fractional molecule is used
to insert/delete molecules in the simulation box. When λ drops below zero,
the fractional molecule is removed and a randomly selected whole molecule is
transformed into a fractional molecule. When λ is larger than 1, the fractional
molecule is transformed into a whole molecule and a new fractional molecule
is inserted [59, 195]. For the solvent, a fractional molecule is used to improve
sampling, while keeping the total number of molecules of the solvent fixed. For
a fractional molecule of the solvent type, λ trial moves involve changing the val-
ues of λ, random reinsertions of the fractional molecule, and identity changes
between a fractional molecule and a whole molecule [197]. In CFCMC simula-
tions, the system is biased to ensure a flat distribution of the observed probabil-
ity of λ. From the probability distribution of λ, the excess chemical potential and
hence the Henry coefficient is obtained. For more details the reader is referred
to Refs. [59, 60, 196, 197].

SCALING OF THE INTERMOLECULAR INTERACTIONS

For each fractional molecule, a weightfunction W (λ) is constructed to achieve
a flat probability distribution of λ and ensure smooth transitions between λ= 0
and λ= 1 [60]. Essentially, at a certain λ, the value of W (λ) counteracts the value
of 〈∂U /∂λ〉, which is the average potential energy change with λ. Fluctuations
in the value of ∂U /∂λ can be large, which can hinder the efficient sampling of
the λ space. As a result, a pathway that minimizes the variance of ∂U /∂λ has
to be chosen [218]. Changes in the values of λ depend on how intermolecular
interactions, are scaled when λ is varied [218] (intramolecular interactions are
not scaled). Electrostatic interactions are scaled by using a scaling parameter λel

that is a function of λ [196, 219]. For non-bonded LJ interactions, the following
soft–core scaling potential is used [218, 220, 221]:

u(ri j ,λ) = 4εi jλ
a


 1

α(1−λ)b +
(

ri j

σi j

)c


12/c

−

 1

α(1−λ)b +
(

ri j

σi j

)c


6/c (6.1)
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where i and j are the interaction sites. εi j andσi j are the LJ parameters. ri j is the
distance between i and j . The parameters a, b, c and α are adjusted to achieve
an efficient sampling of the λ space. For systems composed of MEG molecules,
a number of scaling potentials were tested. Figure 6.1 shows the values of λ of an
MEG fractional as a function of the number of MC cycles, for three scaling po-
tentials. The commonly used (a–b–c) = 1–2–6 potential results in poor sampling
of the λ–space. Figure 6.1 (a) shows that at certain periods, the values of λ are
confined to a limited range. Changing the parameter b from 2 to 1 improves the
sampling as demonstrated in Figure 6.1 (b). Figure 6.1 (c) shows that the 1–1–
48 potential with α= 0.0025 that was recommended earlier by Pham et al. [218],
results in the best sampling.

6.2.3. SIMULATION DETAILS

Molecular simulations were performed using the recently developed open-
source software package Brick-CFCMC [196]. The density of pure MEG was com-
puted in the N PT ensemble at 1 bar, and at temperatures 333.15 K and 353.15 K.
The solubility of CO2 in MEG was computed at three temperatures, T = 333.15 K,
353.15 K, and 373.15 K. The solubilities of CH4, N2, and H2S in MEG were com-
puted at T = 373.15 K. For all gases, solubilities were computed at pressures rang-
ing from 1 to 10 bar, but in the case of N2 pressures up to 100 bar were considered
since N2 has very low solubilities in MEG at low pressures. Simulation boxes were
set up with 250 to 350 MEG molecules, depending on the number of absorbed
solute molecules. Two fractional molecules were used: a fractional molecule to
insert/remove solute molecules into the simulation box, and a MEG fractional
molecule. The following MC trial moves were used: translations, rotations, and
volume change trial moves. MC trial moves that attempt to change the values of
λ were used for both fractional molecules. Simulations in the osmotic ensemble
were carried out with the following probabilities for selecting trial moves: 25%
translations, 25% rotations, 32% trial moves to change the internal configuration
of MEG [196], 1% volume changes, 17% trial moves to change λ divided equally
between the solute and MEG fractional molecules. A minimum of 106 cycles was
carried out for equilibration. At each MC cycle, the number of the trial moves
performed equals the number of molecules of the system.

During equilibration, an iterative scheme was used to obtain a weight func-
tion W (λ) that results in a flat probability distribution of λ. For production runs,
106 cycles were carried out. To minimise the statistical error of the computed
averages, a number of independent production simulations was performed at a
specified T and P . The number of simulations performed was selected such that
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the uncertainty is less than 5%. For each system simulated in this work, at least
25 production runs were carried out. Error bars were computed by dividing these
runs into five groups, and calculating the standard deviation.
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(a)

(b)

(c)

Figure 6.1: The values of λ vs. the number of MC cycles of a MEG fractional molecule in N PT MC
simulations. To scale the interaction of the fractional molecules, the following scaling potentials
are used (a–b–c) (see Eq. (6.1)): (a) 1–2–6, (b) 1–1–6, and (c) 1–1–48.
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6.3. RESULTS AND DISCUSSION

6.3.1. SOLUBILITY OF CO2 IN MONOETHYLENE GLYCOL

Densities of pure MEG were computed using MC simulations in the N PT en-
semble at P = 1 bar, and at T = 333.15 K and T = 353.15 K. In Table 6.2, densi-
ties (reported in units of kg/m3) from simulations are compared to experimental
values from the work of Skylogianni et al. [184]. Table 6.2 shows that when us-
ing the TraPPE-UA force field, simulations underpredict densities of MEG. The
differences between experiments and simulations are around 5%. Simulating a
solvent with an underestimated density can result in higher absorption capacity.
Deviations between experiments and simulations will be discussed in detail later
in this section.

As a fractional MEG molecule is present in the simulation, we can calculate
the excess chemical potential of MEG µex from the probability distribution of
its λ parameter [60, 196]. The chemical potential of MEG in the liquid phase
equals [196]:

µL =µo +RT ln
ρL

ρo +µex (6.2)

where ρL is the number density of MEG and µo is the reference chemical poten-
tial, which only depends on the temperature. Eq. (6.2) also applies to MEG in
the gas phase. At equilibrium, the chemical potentials in the liquid phase and
gas phase are equal. If we assume an ideal gas phase, then µex in the gas phase
equals zero and ρL = P sat/kBT . From this, the saturated vapor pressure P sat of
MEG can be estimated by

P sat = kBTρL exp

[
µex

kBT

]
(6.3)

For a detailed derivation of Eq. (6.3), see the Supporting Information of Ref. [171].
In Table 6.2, we report the excess chemical potential, vapor densities and
saturated vapor pressures of pure MEG. The vapor pressures computed from
MC simulations are compared to experimental values obtained from NIST
database [222]. Table 6.2 shows that both methods are in good agreement. The
pressures reported in Table 6.2 can be considered very small, which validates the
assumption made by the experimental method regarding the non–volatility of
MEG.

Figure 6.3 shows absorption isotherms of CO2 in MEG, from experiments and
MC simulations in the osmotic ensemble, at temperatures T = 333.15 K, T =
353.15 K, and T = 373.15 K. In Figure 6.2, a typical MC simulation snapshot of
MEG and CO2 molecules is shown. Figure 6.2 shows that CO2 molecules are dis-
persed in MEG and not clustered. In Figure 6.3, the ratio of the number of moles
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Table 6.2: Properties of pure MEG at different temperatures from experiments and MC simula-
tions. Density of pure MEG in kg/m3 obtained from experiments [184] and MC simulations at P = 1
bar. The vapor densities and saturated vapor pressures of MEG are computed from µex/(kBT ) (see
section 6.3.1). Experimental saturated vapor pressures are obtained from the NIST database [222].

T /[K] ρL
exp/[kg/m3] ρL

sim/[kg/m3] µex/kB/[K] ρV
sim/[kg/m3] P sat

sim/[bar] P sat
NIST/[bar]

333.15 1085 1029.1±20 −4125±41 4.2x10−6 0.022 0.021
353.15 1070.1 1016.3±0.5 −3948±25 1.4x10−5 0.0068 0.0067
373.15 – 1003.3±0.5 −3749±27 4.3x10−5 0.0019 0.0018

(a) (b)

Figure 6.2: (a) Typical snapshot of a simulation of MEG in which CO2 is absorbed in the osmotic
ensemble (T = 333 K, P = 8 bar, NMEG = 220 molecules, and NCO2 = 3 molecules), in a simulation
box with the dimensions 28 x 28 x 28 Å. (b) The same snapshot as in (a) but only showing CO2
molecules. Figures were produced using the software package iRASPA [223].

of CO2 to the number of moles of MEG (i.e. loading) is plotted as a function of
pressure. Solubilities from MC simulations were found to qualitatively agree with
experimental measurements. Both experiments and simulations show that for
all temperatures studied, the loading is almost linear in this pressure range. Ad-
ditionally, both methods report that the absorption of CO2 in MEG decreases at
higher temperatures. Figure 6.3 shows that the quantitative agreement between
MC simulations and experiments varies with temperature and pressure. At very
low pressures (i.e. < 2 bar), loadings of CO2 obtained from MC simulations agree
well with experiments. At higher pressures, MC simulations overpredict the ab-
sorption of CO2 when compared to experiments. The deviation between sim-
ulations and experiments systematically increases with pressure, and decreases
with temperature. The inherent uncertainties of the experimental loadings of
CO2 in MEG are shown with vertical error bars. Uncertainties of experimental
values are calculated using the methodology described in the work of Wanderley
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Figure 6.3: Absorption isotherm of CO2 in MEG at various temperatures. Details of MC simulations
are provided in section 6.2.

and co-workers [224]. The inherent uncertainties of the total pressure are lim-
ited by the sensitivity of the pressure transducer used for these measurements,
which is ± 0.015 bar. Conversely, this means that the uncertainty of the esti-
mated CO2 partial pressures is ± 0.021 bar due to error propagation. One can see
in Figure 6.3 that those are very small uncertainties when considering the span of
pressures measured in the series of experiments. In the Supporting Information
of Ref. [171], solubility data from experiments and MC simulations are provided
in a tabulated from along with their uncertainties.

In Figure 6.4, solubilities measured in this work at T = 373.15 K are compared
to solubilities from other experimental studies. The measurements in this work
were found to match the data from Jou et al. [186] at low pressures. At higher
pressures, CO2 solubility from other experimental works slightly differ from re-
sults of this work. Figure 6.4 also shows that loadings computed using MC simu-
lations agree the most with our experimental results.

Besides absorption isotherms, it is also possible to describe solubility of gases
in solvents through Henry coefficients. The Henry coefficient of solute 2 in sol-
vent 1 is defined as [226]:

H21 = lim
x2→0

P2

x2
= lim

x2→0

f2

x2
(6.4)
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Figure 6.4: Absorption isotherm of CO2 in MEG at T =373.15 K. Open symbols represent experi-
mental data of this work, from Jou et al. [186] and from Galvao et al. [225]. Closed symbols are MC
simulations results, details are provided in section 6.2.

where P2 and x2 are the partial pressure and mole fraction of solute 2, respec-
tively. f2 is the fugacity of the solute. With these experimental values, the Henry
coefficient is defined as the partial pressure of CO2 in bar divided by the molar
fraction of CO2 in MEG. In MC simulations, Henry coefficients H21 are computed
from the excess chemical potential of the solute µex

2 [227],

H21 = lim
x2→0

kBTρ1 exp

[
µex

2

kBT

]
(6.5)

In Table 6.3, Henry coefficients of CO2 in MEG HCO2,MEG computed using MC
simulations are reported at different temperatures and compared to Henry coef-
ficients from experiments. Both methods demonstrate that the value of HCO2,MEG

increases with temperature. The maximum difference between experimental
and computed Henry coefficients is 30%. The difference consistently decreases
with increasing temperature to reach 13% at T = 373.15 K. Predictions from MC
simulations are satisfactory considering that the force fields and the mixing rules
used for MEG and CO2 were not modified. The Henry coefficients reported in Ta-
ble 6.3 indicate that pure MEG would not be a good absorbent for CO2. In a study
of Ramdin et al. [228], Henry coefficients at T = 333 K of CO2 in selexol and the
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Table 6.3: Henry coefficient of CO2 in MEG at different temperatures obtained from experiments
(this work) and molecular simulation.

HCO2,MEG, bar/(mol CO2/mol EG)
T /[K] Experimental MC Simulations
333.15 634±2 445±20
353.15 736±2 576±15
373.15 843±2 730±21

ionic liquid [bmim][TF2N] were reported to be 68 bar and 66 bar, respectively. At
the same temperature, experimental Henry coefficient of CO2 in MEG is 634 bar
(Table 6.3).

From the knowledge of solubility of CO2 at different temperature, the heat of
absorption q of CO2 in MEG can be calculated using

−q

R
= ∂ ln(HCO2,MEG/Po)

∂(1/T )
(6.6)

where R is the ideal gas constant and Po is a reference pressure to make the ar-
gument of the logarithm dimensionless. Using solubilities of CO2 in MEG from
MC simulations of this work, q was found to be equal to -12.8 kJ/mol, indicating
that the absorption of CO2 is an exothermic process. This value is in good agree-
ment with experimental findings. In a study by Wanderley et al. [229], where the
heat of absorption was measured using calorimetric experiments resulting in -14
kJ/mol at 343.15 K.

The differences between theoretical and experimental solubilities can be at-
tributed to the force field used to describe MEG. From our simulations, it is ob-
served that the TraPPE-UA force field underpredicts the density of pure MEG (see
Table 6.2). Lower MEG densities can potentially lead to higher absorption capac-
ities of solutes. Moreover, the force field parameters of TraPPE-UA [199] were
obtained using VLE experimental data of MEG at high temperatures (> 400 K), as
a result inaccuracies at lower temperatures can be expected as we move outside
the fitting range of the TraPPE force field.

Figure 6.3 shows that deviations between experiments and simulations are
larger at lower temperatures. While deviations can be reduced by optimising the
force field parameters of MEG, force field parameters of the solute have to be
considered as well. For CO2, TraPPE force field parameters are obtained using
pure component data and not data of multi–component systems. Predictions
of MC simulations can be improved by revising force field parameterisation or
considering different force field combinations. Alternatively, one might consider
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changes to the used combination rules. To improve the predictions of MC sim-
ulations, deviations from the Lorentz–Berthelot rules can be used. For instance,
other combination rules can be considered and/or adjustable parameter(s) can
be added to fine–tune solute–solvent interactions.

6.3.2. SOLUBILITY OF CH4, H2S AND N2 IN MONOETHYLENE GLYCOL

MC simulations were used to compute the solubility of other pure gases in MEG
at 373.15 K. MC simulation results were compared to experimental data from
literature.

In Figure 6.5 the absorption isotherm of CH4 in MEG is shown for T =
373.15 K and pressures ranging from 1 to 10 bar. At this pressure range, low load-
ings of CH4 are obtained from MC simulations. To validate computational re-
sults, experimental solubilities [225] at higher pressures are shown in Figure 6.5.
At P = 17.9 bar, MC simulations overpredicts the solubility of CH4 in MEG by ca.
25%. As discussed earlier in section 6.3.1, higher absorption of solutes is due to
the underestimated densities of MEG when using the TraPPE-UA force field.

In Figure 6.6, solubilities of H2S in MEG at T = 373.15 K from MC simula-
tions using two different H2S force fields are compared to experimental solu-
bilities from Ref. [186]. A reasonable agreement between MC simulations and
experiments is obtained for the two force fields, but larger deviations appear at
high pressures. The H2S-TraPPE force field underpredicts loadings of H2S, while
the H2S-KL force field overpredicts loadings at the studied conditions. At atmo-
spheric pressure, solubilities computed using H2S-KL were found to be closer to
the experimental value reported by Jou et al. [186], compared to the solubility
computed using H2S-TraPPE.

In Figure 6.7, the absorption isotherm of N2 in MEG at T = 373.15 K is shown.
The loading of N2 is computed using MC simulations and is compared to exper-
imental data from Zheng et al. [177]. Since the absorption of N2 in MEG is neg-
ligible at atmospheric pressures, simulations were performed at pressures rang-
ing from 10 bar to 100 bar. From Figure 6.7 it can be seen that the computed
loadings deviate considerably from experimental values, and that the deviations
increase systematically with pressure. As discussed earlier, differences between
MC simulations and experimental data at high pressures data can be improved
by modifying the used force fields, or fine–tune solute–solvent interactions.

In Table 6.4, Henry coefficients computed using MC simulations of CH4, H2S,
and N2 are listed. Experimental Henry coefficients of CH4 and H2S are also
shown. Average differences between experimental and computational values are
around 25%. From the Henry coefficients at T = 373.15 K, the following order of
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Figure 6.5: Absorption isotherm of CH4 in MEG at T = 373.15 K. Closed symbols are solubilities
from MC simulations in the osmotic ensemble (details in section 6.2) and open symbols are ex-
perimental data from Ref. [225].

Figure 6.6: Absorption isotherm of H2S in MEG at T = 373.15 K. Closed symbols are solubilities
from MC simulations (details in section 6.2) using two force fields: H2S-TraPPE and H2S-KL [207].
Open symbols are experimental data from Ref. [180].
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Figure 6.7: Absorption isotherm of N2 in MEG at T = 373.15 K. Closed symbols are solubilities from
MC simulations (details in section 6.2) and open symbols are experimental data from Ref. [177].

solubilities is exhibited: H2S > CO2 > CH4 > N2. From the Henry coefficients,
the ideal selectivity of the desired component i from the undesired component
undesired component j can be expressed as [230]

Si / j =
[

H j

Hi

]
T

(6.7)

In Table 6.5, ideal selectivities for the separation of CO2 using MEG are provided,
computed using Henry coefficients from experiments and MC simulations. The
results show that CO2 is more selectively absorbed in MEG than CH4 and N2.
However, that is not the case for the separation of CO2 using MEG in the presence
of H2S.
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Table 6.4: Henry coefficients of CH4, H2S and N2 in MEG obtained from experiments and MC sim-
ulation. Experimental values are taken from Refs. [225], and [177] for CH4, and H2S, respectively.

Hi , j , bar/(mol i /mol EG)
Solute Experimental MC Simulations

CH4 5673 4504±165
H2S–TraPPE 227.4 302±14

H2S–KL 227.4 173±5
N2 – 10815±248

Table 6.5: Ideal selectivities of CO2, CH4, H2S and N2 in MEG computed using Henry coeffi-
cients from experiments and MC simulation at T =373.15 K. Experimental values are taken from
Refs. [225], and [177] for CH4, and H2S, respectively.

Si , j

Separation Experimental MC Simulations
CO2/CH4 6.73 6.17

CO2/H2S–TraPPE 0.27 0.41
CO2/H2S–KL 0.27 0.24

CO2/N2 – 14.81

6.4. CONCLUSIONS
In this chapter, we predict the absorption of CO2, CH4, H2S, and N2 in MEG us-
ing MC simulations in the osmotic ensemble. The CFCMC method was used to
facilitate insertions/deletions of molecules into the solvent. The TraPPE force
field was used to model all species. For H2S, two force fields were compared, i.e.
H2S-TraPPE and H2S-KL. The solubility of CO2 in MEG was measured at the fol-
lowing temperatures: 333.15 K, 353.15 K, and 373.15 K. From experiments and
MC simulations, CO2 was found to be better absorbed at lower temperatures.
At T = 373.15 K, CO2 and H2S were found to have higher solubilities in MEG
than CH4 and N2. Solubilities predicted by MC simulations are in reasonable
agreement with experimental data. For all the solutes studied in this work, de-
viations between MC simulations and experiments were found to increase with
pressure. For the solubility of H2S, predictions from the H2S-KL force field were
closer to experimental measurements than H2S-TraPPE. Other than absorption
isotherms, Henry coefficients were also computed. The order of solubilities of
the gases in MEG at 373.15 K was found to be as follows: H2S > CO2 > CH4 > N2.
The average difference between Henry coefficients from experiments and Henry
coefficients from MC simulations is ca. 20%. These results can be regarded sat-
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isfactory, considering that force fields from literature were directly used without
fitting binary interaction parameters. To improve predictions at high pressures,
force field adjustments are required. For the solubility of CO2 in MEG, the ex-
perimental data provided in this work may be used to generate new force field
parameters.
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The Kirkwood-Buff (BF) theory is one of the most powerful theories connect-
ing the microscopic structure of isotropic fluids to their macroscopic proper-
ties. KBIs are defined either in terms of RDFs over infinite and open volumes,
or in terms of density fluctuations in the grand–canonical ensemble. KBIs are re-
lated to a number of thermodynamic quantities such as partial derivatives of the
chemical potential with respect to composition, partial molar volumes, and the
isothermal compressibility. Consequently, chemical potentials and other ther-
modynamic properties can be obtained from KBIs. The main advantage of the
KB theory is that it can be applied to any type of interactions, making it an attrac-
tive alternative to molecular simulations in open ensembles which are usually
carried out to predict phase equilibria. Molecular simulations in open ensembles
require insertions/deletions of molecules, which can be challenging for dense
liquids with strong molecular interactions. While KBIs are derived for open and
infinitely large systems, they can be computed from molecular simulations of
finite and closed systems (e.g. simulations in the NV T and N PT ensembles).
Krüger and co–workers [74] derived an expression for KBIs of small and open
subvolumes embedded in a larger reservoir (simulation box). These KBIs scale
with the inverse size of the subvolume and extrapolating this scaling to the ther-
modynamic limit yields KBIs of open and infinite systems.

To accurately apply the method of Krüger and co–workers [63, 74], a number
of effects were examined. In chapter 2, the effect of the shape of the subvolume
was investigated. When computing KBIs, the weight function w(x) is the only
term in the method of Krüger and co–workers [63, 74] that depends on the shape
of the subvolume. In chapter 2, a method to compute w(x) for subvolumes with
arbitrary shape was developed. From computing w(x) and KBIs of various sub-
volume shapes, it was demonstrated that KBIs in the thermodynamic limit are
independent of the shape of the used subvolume. For small values of x and for
all shapes, all functions w(x) can be transformed on to a universal function that
only depends on the area to volume ratio of the subvolume. Using this universal
expression for w(x), it was confirmed that the truncation of KBIs for infinitely
large systems, which is the most commonly used approach to compute KBIs, is
not correct and nonphysical. Two system size effects are observed in MD simu-
lations: (1) effects due to the size of the simulation box and the size of the finite
subvolume embedded in the simulation box, and (2) effects due to computing
RDFs from a closed and finite system. In chapter 3, finite–size effects of comput-
ing KBIs from molecular simulations were investigated using systems of WCA
particles. It was demonstrated that calculations of KBIs should not be extended
beyond half the size of the simulation box. For finite–size effects related to RDFs,
the Ganguly and Van der Vegt correction [113] was found to yield the most accu-
rate results. Numerical inaccuracies may also arise from extrapolating the scaling
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of KBIs of small subvolumes with the inverse size of the subvolume. In chapter 4,
alternative approaches for extrapolating RDFs of finite systems to compute KBIs
in the thermodynamic limit were considered. These methods also allow for the
computation of surface effects. KBIs and surface terms in the thermodynamic
limit were computed for LJ and WCA fluids. It was found that the methods dis-
cussed in chapter 4 converge to the same value in the thermodynamic limit. The
main differentiating factor was the quality of the convergence with the size of the
subvolume L. The method that required the smallest size was the one which ex-
ploited the scaling of finite volume KBIs multiplied by L. KBIs and surface terms
were computed at different densities. As the density is increased, differences in
KBIs of LJ and WCA fluids vanish due to dominating repulsive interactions. The
values of the surface terms were of the order of magnitude of KBIs.

The method of Krüger and co–workers [74] provides the advantage of access-
ing a grand–canonical setup in a closed system. As a result, KBIs of ionic sys-
tems can be computed while maintaining the electroneutrality of the system. In
chapter 5, KBIs of solutions of choline chloride and urea were computed using
MD simulations. The outcome from chapters 3 and 4 were applied to mitigate
finite–size effects and obtain KBIs in the thermodynamic limit. KBIs were com-
puted for systems of choline chloride and urea with varying molar ratios, and
were used to study the affinity between components of the system at varying
composition. Also, thermodynamic and transport properties were computed,
and from KBIs, the thermodynamic factors and partial molar volumes were com-
puted. KBIs and the thermodynamic factors were found to be useful in examin-
ing the effect of composition on molecular interactions. As more urea is added
to the system, urea-urea interactions become stronger while interactions of pairs
of urea-ChCl and pairs of ChCl-ChCl slightly decreased. The values of the ther-
modynamic factors was found to be larger than one, indicating that, on average,
urea-ChCl interactions are stronger than interactions of identical components
at the studied compositions (ranging from molar ratios of ChCl to urea of 2:1 to
1:5). While KBIs provide a connection to fluctuations in the grand–canonical en-
semble and hence to several thermodynamic quantities, in some cases, it is more
convenient to directly perform simulations in an open ensemble. For instance,
when computing the solubility of gases in liquid solvents, MC simulations in the
grand–canonical and osmotic ensembles are commonly used for this. In chap-
ter 6, solubilities of CO2, CH4, H2S, and N2 in monoethylene glycol (MEG) were
computed using MC simulations in the osmotic ensemble. The CFCMC method
was used. Solubilities from experiments and simulations are in good agreement
at low pressures, but deviations were observed at high pressures. The order of
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solubilities of the gases in MEG at 373.15 K was computed as H2S > CO2 > CH4

> N2. Force field modifications may be required to improve the prediction of
solubilities of gases in MEG at high pressures and low temperatures.

In this thesis, the KB theory and the CFCMC method were used to predict
thermodynamic properties of fluids with strong molecular interactions. In both
methods, long simulations were required to achieve low statistical errors and
experienced challenges were specific to the studied systems. When simulating
urea–ChCl mixtures, sampling the system was found to be computationally de-
manding, while difficulties in scaling the interactions of the fractional molecules
were faced when simulating MEG. Further research can be carried out to com-
pare the two methods and assess their performance in predicting thermody-
namic properties of complex systems.
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SUMMARY

The Kirkwood–Buff (KB) theory is one of the most rigorous solution theories that
connects molecular structure to macroscopic behaviour. The key quantity, the
so–called KB Kirkwood–Buff Integrals (KBIs), are defined either in terms of fluc-
tuations in the number of molecules or integrals over radial distribution func-
tions over open subvolumes. In the grand–canonical ensemble, KBIs of infinitely
large and open systems are directly related to thermodynamic properties such
as partial derivatives of chemical potentials and partial molar volumes. Using
molecular simulations, it is only possible to study small systems with a finite
number of molecules, and therefore finite–size effects should be considered. In
chapter 1, a literature review of studies of KBIs was conducted. This review fo-
cused on: (1) inversion of the KB theory, where KBIs are estimated from macro-
scopic properties; (2) available methods to compute KBIs from molecular simu-
lations, and (3) applications of KBIs to molecular systems. Generally, three levels
of estimations for KBIs were used in literature: (1) the easiest, and most com-
mon approach is to simply truncate KBIs of open and infinite systems to half the
size of the simulation box; (2) a number of mathematical involved methods were
developed that are not easily extended to complex molecules; (3) The approach
of Krüger and co-workers provides an approach that is more accurate than trun-
cating KBIs and with an intermediate difficulty. To compute KBIs from molecu-
lar simulations, Krüger and co-workers derived an expression for KBIs of finite
and open subvolumes embedded in larger reservoirs. According to thermody-
namics of small systems (nanothermodynamics), thermodynamic properties of
small systems scale linearly with the inverse size of the subvolume. Extrapolating
KBIs to the thermodynamic limit yields KBIs of open and infinite systems. In this
thesis, various aspects related to estimating KBIs from molecular simulations of
finite and closed systems were investigated. As a result, an improved framework
to compute KBIs accurately and conveniently is developed. The methodology
was used to compute KBIs of model systems, and realistic solutions.

In chapter 2, shape effects of KBIs from molecular simulations are investi-
gated. The dependence of KBIs on the shape and dimensionality of the sub-
volume is characterised by a weightfunction w(x). A method to numerically
compute the weightfunction w(x) for any arbitrary convex subvolume was devel-
oped. We computed KBIs of an analytic Radial Distribution Function (RDF) for
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162 SUMMARY

the following shapes of the subvolume: sphere, cube, and cubiods and spheroids
with different aspect ratios. It turns out that in the thermodynamic limit, KBIs
are independent of the shape of the used subvolume.

In chapter 3, finite–size effects related to computing KBIs from molecular
simulations were investigated. Finite–size effects originating from the size of
the system and the size of the used subvolumes were studied using an analytic
RDF. From KBIs computed for different sizes of the subvolume, we found that
the size of the subvolume should not exceed the size of the simulation box. In
this chapter, finite–size effects related to computing RDFs from closed systems
were also studied for a Weeks-Chandler-Andersen (WCA) fluid. RDFs computed
from Molecular Dynamics (MD) simulations of closed and finite systems were
corrected to estimate RDFs of open systems, which are required by the KB the-
ory. The performance of three correction methods was assessed: (1) a 1/N cor-
relation [74], (2) a correction by Ganguly and van der Vegt [113], and (3) an ex-
pression by Cortes-Huerto and co–workers [83]. The correction by Ganguly and
van der Vegt was found to provide the most accurate KBIs. KBIs in the thermo-
dynamic limit were obtained from the linear part of the scaling of KBIs of small
subvolumes (GV

αβ
) with the inverse size of the system 1/L. Identifying a linear

regime was not straightforward, and some guidelines were provided.
In chapter 4, KBIs of Lennard–Jones (LJ) and WCA fluids at various densities

were computed. To obtain KBIs in the thermodynamic limit from RDFs com-
puted using MD simulations of finite systems, three extrapolation methods were
considered. All extrapolation methods resulted in similar estimations of KBIs,
however, the scaling of LGV

αβ
with L was found the easiest to use. Additionally,

surface effects of KBIs of LJ and WCA fluids were quantified. The results demon-
strated that for LJ and WCA systems, surface terms can be of the same order of
magnitude of KBIs.

In chapter 5, KBIs of mixtures of urea and choline–chloride (ChCl) were com-
puted using MD simulations. The system was studied at T = 343.15 K, atmo-
spheric pressure, and molar ratios of ChCl to urea ranging from 2:1 to 1:5. RDFs
were corrected using the Ganguly and van der Vegt correction, and the scaling
of LGV

αβ
with L was used to obtain KBIs in the thermodynamic limit. KBIs were

used to examine the affinity between the various components at different molar
ratios. From the KBIs, thermodynamic factors and partial molar volumes were
directly computed. Also, from MD simulations, a number of transport proper-
ties were studied including MS diffusivities, that are connected to Fick diffusion
coefficients via the thermodynamic factors. It was shown that the KB theory is
advantageous for simultaneously studying molecular interactions and comput-
ing thermodynamic properties of salt solutions.
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The KB approach proves to be a useful tool for studying interactions in multi-
component fluids. As KBIs are linked to fluctuations in the grand–canonical en-
semble, thermodynamic properties can be computed while avoiding insertion
and deletion of molecules. However, when computing some thermodynamic
quantities, molecular simulations in open ensembles are commonly used. Phase
equilibria and solubilities are typically computed from Monte Carlo (MC) simu-
lations in open ensembles. In chapter 6, the solubilities of CO2, CH4, H2S, and N2

in monoethylene glycol (MEG) were computed using MC simulations in the os-
motic ensemble. The Continuous Fractional Component Monte Carlo (CFCMC)
method was used to enhance the efficiency of MC simulations. Classical force
fields were used without any reparameterisation. Predictions of CFCMC calcu-
lations were compared to experimental data. Good agreement between simu-
lations and experiments was observed when comparing solubilities at low pres-
sures. At high pressures, force field modifications may be required to improve
predicted solubilities of small gas molecules in MEG.
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SAMENVATTING

De Kirkwood-Buff theorie is een van de meest rigoureuze vloeistoftheorieën die
moleculaire structuur verbindt met macroscopisch gedrag. De belangrijkste
grootheid, de zogenaamde Kirkwood-Buff Integraal, wordt gedefinieerd in ter-
men van fluctuaties in het aantal moleculen in een bepaald volume, of door de
integraal van de radiale distributiefunctie over een open volume. In het groot-
canonieke ensemble zijn Kirkwood-Buff integralen van oneindig grote en open
systemen direct gerelateerd aan thermodynamische eigenschappen zoals parti-
ële afgeleiden van chemische potentialen en partiële molaire volumes. Met be-
hulp van moleculaire simulaties is het alleen mogelijk om relatief kleine syste-
men met een eindig aantal moleculen te bestuderen, en daarom moet er reke-
ning worden gehouden met zogenaamde finite-size effecten. In hoofdstuk 1 van
dit proefschrift is een literatuuroverzicht van studies over Kirkwood-Buff integra-
len uitgevoerd. Deze studie was gericht op: (1) de inversie van de Kirkwood-Buff
theorie, waarbij Kirkwood-Buff integralen worden geschat op basis van macro-
scopische eigenschappen; (2) methoden om Kirkwood-Buff integralen te bereke-
nen uit moleculaire simulaties, en (3) toepassingen van Kirkwood-Buff integra-
len op moleculaire systemen. In het algemeen worden in de literatuur drie me-
thodes voor het berekenen van Kirkwood-Buff integralen gebruikt: (1) de gemak-
kelijkste en meest gebruikelijke benadering is om de uitdrukking van Kirkwood-
Buff integralen voor open en oneindige systemen af te kappen tot de helft van de
grootte van de simulatiedoos; (2) in de literatuur zijn een aantal complexe me-
thoden ontwikkeld die niet gemakkelijk kunnen worden uitgebreid tot complexe
moleculen; (3) de niet al te complexe methode van Krüger en collega’s levert een
benadering op die nauwkeuriger is dan afgekapte Kirkwood-Buff integralen. Om
Kirkwood-Buff integralen te berekenen uit moleculaire simulaties hebben Krü-
ger en collega’s een uitdrukking afgeleid voor Kirkwood-Buff integralen van ein-
dige en open subvolumes ingebed in grotere reservoirs. Volgens de thermody-
namica van kleine systemen (nanothermodynamica) schalen de thermodyna-
mische eigenschappen van kleine systemen lineair met de inverse grootte van
het subvolume. Extrapolatie van Kirkwood-Buff integralen naar de thermodyna-
mische limiet levert Kirkwood-Buff integralen van open en oneindige systemen
op. In dit proefschrift zijn verschillende aspecten onderzocht die verband hou-
den met het afschatten van Kirkwood-Buff integralen uit moleculaire simulaties
van eindige en gesloten systemen. Er is een verbeterd raamwerk ontwikkeld om
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Kirkwood-Buff integralen nauwkeurig en gemakkelijk te berekenen. Deze me-
thodologie werd gebruikt om Kirkwood-Buff integralen van modelsystemen en
realistische oplossingen te berekenen.

In hoofdstuk 2 worden vormeffecten van Kirkwood-Buff integralen berekend
uit moleculaire simulaties onderzocht. De afhankelijkheid van Kirkwood-Buff
integralen van de vorm en dimensionaliteit van het subvolume wordt geken-
merkt door een gewichtsfunctie w(x). Er werd een methode ontwikkeld om deze
gewichtsfunctie w(x) numeriek te berekenen voor een willekeurig convex sub-
volume. We hebben Kirkwood-Buff integralen van een analytische radiale distri-
butiefunctie berekend voor de volgende vormen van het subvolume: bol, kubus
en kubussen en sferoïden met verschillende aspectverhoudingen. Het blijkt dat
Kirkwood-Buff integralen in de thermodynamische limiet onafhankelijk zijn van
de vorm van het subvolume.

In hoofdstuk 3 worden finite-size effecten gerelateerd aan het berekenen van
Kirkwood-Buff integralen uit moleculaire simulaties onderzocht. Finite-size ef-
fecten die voortkomen uit de grootte van het systeem en de grootte van de ge-
bruikte subvolumes werden bestudeerd met behulp van een analytische radi-
ale distributiefunctie. Uit Kirkwood-Buff integralen berekend voor verschillende
groottes van het subvolume werd gevonden dat de grootte van het subvolume de
grootte van de simulatiedoos niet mag overschrijden. In dit hoofdstuk werden
ook finite-size effecten gerelateerd aan het berekenen van radiale distributie-
functies voor gesloten systemen bestudeerd voor een Weeks-Chandler-Andersen
(WCA) vloeistof. Radiale distributiefuncties berekend met Moleculaire Dyna-
mica (MD) simulaties van gesloten en eindige systemen werden gecorrigeerd
om radiale distributiefuncties van open systemen te schatten, die vereist zijn in
de Kirkwood-Buff theorie. De prestaties van drie correctiemethoden werd on-
derzoek: (1) een 1/N correlatie [74], (2) een correctie door Ganguly en van der
Vegt [113], en (3) een methode ontwikkeld door Cortes-Huerto en collega’s [83].
De methode van Ganguly en van der Vegt bleek de meest nauwkeurige Kirkwood-
Buff integralen te leveren. Kirkwood-Buff integralen in de thermodynamische li-
miet werden verkregen uit het lineaire deel van de schaling van Kirkwood-Buff
integralen van kleine subvolumes (GV

αβ
) met de inverse grootte van het systeem

1/L. Identificatie van een lineair regime was niet altijd eenvoudig en hiervoor
werden enkele richtlijnen gegeven.

In hoofdstuk 4 werden Kirkwood-Buff integralen van Lennard-Jones (LJ) en
WCA-vloeistoffen met verschillende dichtheden onderzocht. Om Kirkwood-Buff
integralen in de thermodynamische limiet te verkrijgen uit radiale distributie-
functies berekend met behulp van MD simulaties van eindige systemen, werden
drie extrapolatiemethoden onderzocht. Alle extrapolatiemethoden resulteerden
in vergelijkbare schattingen van Kirkwood-Buff integralen. De schaling van het
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product LGV
αβ

met L bleek het gemakkelijkst te gebruiken. Bovendien werden
oppervlakte-effecten van Kirkwood-Buff integralen van LJ- en WCA-vloeistoffen
gekwantificeerd. De resultaten toonden aan dat voor LJ- en WCA-systemen
oppervlakte-termen van dezelfde orde van grootte kunnen zijn als de Kirkwood-
Buff integralen zelf.

In hoofdstuk 5 werden Kirkwood-Buff integralen van mengsels van ureum en
choline-chloride (ChCl) berekend met behulp van MD simulaties. Het systeem
werd bestudeerd bij T =343,15 K, atmosferische druk en molverhoudingen ChCl
/ ureum variërend van 2:1 tot 1:5. Radiale distributiefuncties werden gecorri-
geerd met behulp van de Ganguly en van der Vegt-correctie en de schaling van
het product LGV

αβ
met L werd gebruikt om Kirkwood-Buff integralen in de ther-

modynamische limiet te verkrijgen. Kirkwood-Buff integralen werden gebruikt
om de affiniteit tussen de verschillende componenten bij verschillende molver-
houdingen te onderzoeken. Uit de Kirkwood-Buff integralen werden thermo-
dynamische factoren en partiële molaire volumes direct berekend. Ook werden
met behulp van MD simulaties een aantal transporteigenschappen bestudeerd,
waaronder Maxwell-Stefan diffusiecoëfficiënten, die via de matrix van thermo-
dynamische factoren verbonden zijn met Fick diffusiecoëfficiënten. Er werd
aangetoond dat de Kirkwood-Buff theorie handig is voor het gelijktijdig bestu-
deren van moleculaire interacties en het berekenen van thermodynamische ei-
genschappen van systemen bestaande uit ionen.

De Kirkwood-Buff methode blijkt een nuttig instrument om interacties in
vloeistoffen bestaande uit meerdere componenten te bestuderen. Aangezien
Kirkwood-Buff integralen gekoppeld zijn aan fluctuaties in het groot-canonieke
ensemble, kunnen macroscopische thermodynamische eigenschappen worden
berekend terwijl het inserteren en verwijderen van moleculen (zoals vereist in
het groot-canonieke ensemble) wordt vermeden. Bij het berekenen van som-
mige thermodynamische grootheden worden echter vaak moleculaire simula-
ties in open ensembles gebruikt. Fase-evenwichten en oplosbaarheden worden
typisch berekend uit Monte Carlo (MC) simulaties in open ensembles. In hoofd-
stuk 6 werden de oplosbaarheden van CO2, CH4, H2S, and N2 in monoethyleen-
glycol (MEG) berekend met MC simulaties in het osmotische ensemble. De zo-
genaamde Continuous Fractional Component Monte Carlo (CFCMC) methode
werd gebruikt om de efficiëntie van deze MC simulaties te verbeteren. Klassieke
krachtvelden werden gebruikt zonder enige additionele parametrisering. Voor-
spellingen van CFCMC-berekeningen werden vergeleken met experimentele ge-
gevens. Een goede overeenkomst tussen simulaties en experimenten werd waar-
genomen voor oplosbaarheden bij lage druk. Bij hoge druk kunnen modificaties
van het krachtveld nodig zijn om de voorspelde oplosbaarheid van kleine gas-
moleculen in MEG te verbeteren.
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