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An innocent looking problem often gives no hint as to its true nature.
It might be like a marshmallow, serving as a tasty tidbit supplying a few moments of

fleeting enjoyment. Or it might be like an acorn, requiring deep and subtle new insights
from which a mighty oak can develop.

Paul Erdős
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SUMMARY

In this thesis, we use mathematical models to assist the Dutch Ministry of Defence with
understanding and decision-making within contemporary conflicts and crises. We ex-
plore ways to reduce the spread of COVID-19, study dynamics in the Sino-Indian border
dispute, and investigate the value of scouting in conflicts involving autonomous sys-
tems.

The first two chapters of this thesis are introductory. In Chapter 1, we discuss how this
thesis came to be and provide a comprehensive overview of its contents. In Chapter 2, we
introduce concepts and tools from game theory, network science and uniform distribu-
tion theory, fundamental to subsequent chapters in this thesis. Specifically, we discuss
the concept of discrepancy, necessary for Chapter 3, introduce small-world models, ap-
plied in Chapter 4, and present concepts from game theory, which we use in Chapters 5,
6 and 7.

Part I of the thesis involves mathematical sociology, applied to reduce the spread of
COVID-19. In Chapter 3, we study the distribution of points on a circle, with the aim
of maximizing the minimum distance between them. We delve into previous work and
introduce an novel adaptation to finite sequences, for which we provide an optimal so-
lution. This work has applications in optimizing social distancing. Chapter 4 focuses
on modeling the spread of the COVID-19 pandemic using network science. We show
that some specific social contacts are especially dangerous for virus spread. Our analysis
supports strategies aimed at reducing these high-risk social interactions, thereby allow-
ing for increased social contacts per person while still reducing the spread of the virus.

Part II of this thesis involves the application of game theory to contemporary conflicts.
In Chapter 5, we study the value of manpower versus intelligence, as seen in the Russo-
Ukrainian War. To model this dynamic, we introduce General Lotto games with scouts,
an adaptation of the well established General Lotto game. We provide optimal solutions
for this game, which leads to interesting insights about the value of manpower versus
intelligence. In Chapter 6, we study the Sino-Indian Border conflict. We examine the
trends of the last 15 years, and show they are not random. We use game theory to pro-
vide a possible explanation for the observed behaviour. In Chapter 7 we study search
games on a partially ordered set.

XI





SAMENVATTING

In dit proefschrift gebruiken we wiskundige modellen om Defensie te ondersteunen met
het begrijpen en het nemen van beslissingen in hedendaagse conflicten en crises. We
onderzoeken manieren om de verspreiding van COVID-19 te vertragen, bestuderen de
dynamiek in het grensgeschil tussen China en India, en onderzoeken de waarde van
verkenning in conflicten met autonome systemen.

De eerste twee hoofdstukken van dit proefschrift zijn inleidend. In Hoofdstuk 1 be-
spreken we hoe dit proefschrift tot stand is gekomen en geven we een uitgebreider over-
zicht van de inhoud. In Hoofdstuk 2 introduceren we concepten en andere hulpmid-
delen uit speltheorie, netwerkwetenschap en uniforme verdelingstheorie, die gebruikt
worden in de daaropvolgende hoofdstukken van dit proefschrift. We introduceren dis-
crepantie, noodzakelijk voor Hoofdstuk 3, small-world modellen, toegepast in Hoofd-
stuk 4, en concepten uit speltheorie, die worden gebruikt in Hoofdstuk 5, 6 en 7.

In deel I van dit proefschrift wordt wiskundige sociologie toegepast om de verspreid-
ing van COVID-19 te vertragen. In Hoofdstuk 3 bestuderen we de verdeling van punten
op een cirkel, met als doel de minimale afstand tussen een paar punten te maximalis-
eren. We beschrijven eerder werk voor dit probleem en introduceren een extensie naar
eindige rijen, waarvoor we de optimale oplossing vinden. Dit werk heeft toepassingen
bij het optimaliseren van social distancing. Hoofdstuk 4 richt zich op het modelleren van
de verspreiding van de COVID-19-pandemie met behulp van netwerk science. We tonen
aan dat bepaalde sociale connecties veel meer invloed hebben op de verspreiding van
het virus dan gemiddeld. Onze analyse ondersteunt strategieën gericht op het vermin-
deren van deze hoogrisico-sociale interacties, waardoor er meer sociale connecties per
persoon mogelijk zijn, terwijl de verspreiding van het virus nog steeds wordt afgeremd.

Deel II van dit proefschrift bevat de hoofdstukken waar speltheorie wordt toegepast op
hedendaagse conflicten. Hoofdstuk 5 bestuderen we de waarde van mankracht versus
intelligentie, zoals te zien is in de Russisch-Oekraïense oorlog. Om deze dynamiek te
modelleren, introduceren we General Lotto games with scouts, een extensie van het
gevestigde General Lotto spel. We vinden de optimale oplossingen van dit spel, en halen
daaruit interessante inzichten over de waarde van mankracht versus intelligentie. In
Hoofdstuk 6 bestuderen we het grensgeschil tussen China en India. We onderzoeken
de trends van de laatste 15 jaar en tonen aan dat ze niet willekeurig zijn. We gebruiken
speltheorie om een mogelijke verklaring te bieden voor het waargenomen gedrag. In
Hoofdstuk 7 bestuderen we zoekspellen op een deels geordende verzameling.

XIII





1
INTRODUCTION

In this thesis, we use mathematical models to assist defence with understanding
and decision-making in contemporary conflicts and crises. We explore ways to
reduce the spread of COVID-19, study dynamics in the Sino-Indian border dispute,
and investigate the value of scouting in conflicts involving autonomous systems. In
this introductory chapter, we explain how these projects started, what mathematical
models we use to solve them, and how this thesis is organized.

My PhD project is a collaboration between the Delft University of Technol-
ogy and the Dutch Ministry of Defence. In the world of defence and safety, one
often faces the challenge of optimizing the use of limited resources. This requires
smart decision-making, and this is where mathematicians can provide invaluable
support. However, there is frequently a gap between theory and practice, with those
tackling real-world challenges unaware of the potential assistance mathematicians
can provide, and vice versa. My PhD was established with the goal of bringing
these two worlds together. The initial aim was to talk to subject-matter experts
within defence, about different challenges and identify relevant mathematical
models to apply to these challenges. While we did find projects this way, the
unforeseen arrival of the COVID-19 pandemic caused my PhD to take a different turn.

The emergence of the COVID-19 introduced both challenges and opportuni-
ties. The existence of a pandemic made it difficult to engage with subject-matter
experts, shut down large parts of society and required all work to be done at home.
Being a fresh PhD student in a new city, this was quite challenging. However,
COVID-19 itself also turned out to be an interesting research opportunity. The world
was not prepared for a pandemic of this size, and there was an urgent need for
government policy to contain the outbreak. We decided that we would do our part,
and used mathematical models to determine how the spread of COVID-19 could be
reduced. In the meanwhile, tensions kept rising between the West and China, as
well as between the West and Russia, especially following the Russian invasion of
Ukraine.

The work I did during my PhD can be divided into two parts: Work on

1
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reducing the spread of COVID-19, and work using Game theory in contemporary
conflicts. We have studied reducing the spread of COVID-19 in two different ways.
Firstly, on an individual level, through ways to improve social distancing. Secondly,
on a group level, using social network models to study the impact of government
policies on the spread of the disease.

Part I of the thesis involves mathematical sociology. In a social experiment
that was carried out in 2021, we examined social distancing in a very practical
situation: a number of people enter a room, and take a seat at a round
table. They don’t know how many people will enter the room. Where
should you take a seat to maximize social distancing? A general version of
this problem is known as the stick-breaking problem. What happens if the
number of people entering the room has a known maximum? The results of this
experiment are reported in [1], while a broader mathematical study is presented in [2].

Furthermore, we applied a mathematical model of the spread of an infec-
tious disease, to study the COVID-19 Pandemic on a group level. To tackle the
spreading virus, people everywhere around the world had to minimize social contacts
and practice social distancing. However, some social contacts might be more danger-
ous than others. We used simulations based on open source data and small-world
models to test the effectiveness of different strategies for reducing virus spread, and
published our paper [3]. This work eventually led us to compete in the COVID-19
prediction challenge, a challenge in which researchers could use a prediction model
to predict the number of COVID-19 deaths. We participated in the USA category,
in which our model outperformed all other participants. The challenge organisers
have written a paper about the challenge and its results, of which we are co-author [4].

Part II of this thesis involves the application of game theory to contempo-
rary conflicts. Game theory is a branch of mathematics which studies cooperation
or conflict between rational decision makers. It involves the analysis of various
models and scenarios to understand how players make decisions and how their
choices affect the overall outcome of the game. The applications of game
theory are diverse and can be found in various fields, including economics,
psychology and political science. It has also been used to study many as-
pects of conflict and crises, from very specific situations during World War II,
to broad concepts, such as the dynamics of the nuclear arms race during the Cold War.

As time has progressed, both conflicts and their associated research have
evolved. For instance, the increased availability of open-source data provides new
opportunities for analysis, while the use of unmanned drones can influence the
dynamics of a conflict. While the game theory models developed in the past can
offer valuable insights into these new conflicts, they must be adapted to suit the
new situations. The aim of this research is to use game theory to help understand
certain dynamics in the problems we face today.
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During my PhD, we met with several subject-matter experts, to discuss if
they had challenges we could tackle with Game Theory. In this thesis, we study
two projects which use game theory on contemporary conflicts. Our first project
followed from conversations with the Robotic Autonomous Systems (RAS) unit within
the Royal Netherlands Army. They had a specific scenario, where an army unit
consisting of several autonomous systems had to retake a river area with several
bridges from the opposing forces. The question is: how should the troops be
divided over the different bridges for the best results? Furthermore, if they could
send out some scouting drones to gain some information about the distribution of
the opposing troops, how would that change the problem? How valuable is this
information gained by the scouts? What is the optimal mix of scouting drones and
units providing firepower, for a given budget? We use game theory to find answers
to these questions. The main result of this work appears in [5].

Figure 1.1.: THeMIS unmanned ground vehicles, part of the RAS unit

The second project is focused on the Sino-Indian border. This work was done
together with researchers at Northwestern University, Chicago. The Sino-Indian
border conflict is an ongoing conflict between China and India. Both countries
disagree where their border should be, which leads to regular flare-ups of violence
along the border. Many of these incidents are reported in newspapers, from which
we assembled a data set about border incursions from China into India of the last
15 years. We study this new set of data using game theory models, to see if the
incursions are random, or if they follow underlying mechanisms [6].

We conclude this thesis with our work on search and rescue games on a
partially ordered set. A search and rescue game is a new type of game on a graph
that has quickly found applications in scheduling, object detection, and adaptive
search. In our research, we broaden the definition of search and rescue games by
imposing a partial order on the search. This ordering means that if location A
appears before location B in the imposed order, then A can no longer be searched
after B has been searched. We extend known solutions of these games and pave the
way to further applications. [7]
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2
MATHEMATICAL BACKGROUND

In this chapter, we establish the mathematical foundation for subsequent chapters.
Each subsection starts with a specific mathematical problem. We delve into the
historical context of the problem, as well as the mathematical tools necessary to
solve it. For those readers already familiar with both the problem and its solution
methodology, the subsection may be safely skipped.

2.1. DISCREPANCY OF A SEQUENCE
This section provides an introduction to mathematics used in Chapter 3.

Say you want to distribute n points as equal as possible over a circle. For
a given n, the optimal solution is trivial, simply divide the circle into n
intervals of equal size, and place all your points at the endpoints of the
intervals. However, what if you want to add the points one by one, and
want to have all points to be relatively equally distributed at every step?

In 1935 J.G. van der Corput [8] asked himself this question. This problem turned
out to be complicated and marked the beginning of the research field of uniform
distribution theory [9]. In this section, we provide a brief introduction to uniform
distribution theory and its history. We provide the definitions of discrepancy, the
big O notation and the van der Corput sequence. For a more extensive description
concerning discrepancy and the work of van der Corput, we refer to Tijdeman [10]
and Faure, Kritzer en Pillichshammer [11].

As mentioned in the original problem, points are perfectly distributed if all intervals
between two adjacent points are equal. It is easy to see from Figure 2.1 alone that
achieving perfect distribution at every step is impossible. Specifically, this figure
demonstrates that when perfect distribution is obtained after four points have been
placed, the points cannot have been perfectly distributed when only the first three
points have been placed. So while perfect is not possible, van der Corput wondered
what the most equal distributed sequence possible would be. He proposed the
following conjecture [12], which we explain more afterwards:

7
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1

2

(a) After placing 2 points

1

2

3

(b) After placing 3 points

1

2

34

(c) After placing 4 points

Figure 2.1.: An example of placing 4 points on a circle. The points are perfectly
distributed over the circle when 2 points are placed and when 4 points
are placed, but are not when 3 points are placed.

Conjecture 2.1 (van der Corput, 1935). “If w = w1, w2, . . . is an infinite sequence
of real numbers lying between 0 and 1, then corresponding to any arbitrarily large
constant K , there exist a positive integer N and two subintervals, of equal length, of
the interval [0,1), such that the number of wn with n = 1,2, . . . , N that lie in one of
the subintervals differs from the number of such wn that lie in the other subinterval
by more than K .”

Firstly, notice that this conjecture concerns the interval [0,1) instead of the circle.
We can map the circle to the interval [0,1) by connecting the start and end of the
interval [0,1), as shown in Figure 2.2a.

0
0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

(a) Mapping the interval [0,1) to a circle.

S1

S2

w1

w7

w4

w9

w6

w8

w10
w2

w3

w5

(b) Two subintervals of equal length, S1 and S2.

Figure 2.2.: Left: How to map the circle to the interval [0,1). Right: Two subintervals
S1 and S2, after 10 points of a sequence w have been placed. The first
subinterval contains no points, while the second subinterval contains
two points.

In his conjecture, van der Corput compares the number of points in any two
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subintervals of equal size. An example is given in Figure 2.2b, where one interval has
no points, and the other interval has two points, so in this example the difference is
two. The claim of the conjecture is that this difference cannot be bounded by any
constant for any sequence.

To further describe this claim, we introduce the notion of discrepancy.

Definition 2.2 (Discrepancy). Let N ∈N. For a sequence w = w1, w2, . . . , its discrepancy
DN (w) is defined as:

DN (w) := sup
0≤α<β≤1

∣∣∣∣ AN ([α,β))

N
− (β−α)

∣∣∣∣ ,

where AN ([α,β)) is the number of points wn with n ≤ N and 0 ≤α≤ wn <β≤ 1.

A sequence is called equidistributed or uniformly distributed if its discrep-
ancy tends to zero for N to infinity, i.e.,

lim
N→∞

DN (w) = 0.

This means that every subinterval of [0,1) in the limit contains the fraction of the
points equal to the length of the subinterval. For example, any subinterval of length
0.2 must contain 20% of all points.

We recall the following notions from asymptotic analysis:

Definition 2.3 (Big O notation). For a given function f (x), we say that g (x) is
O( f (x)), denoted as g (x) =O( f (x)), if and only if there exist positive constants c and
x0 such that

|g (x)| ≤ c| f (x)|
for all x ≥ x0.

Big O belongs to a set of notations collectively known as the Bachmann–Landau
notation, named after the German mathematicians Paul Bachmann and Edmund
Landau. Other members of this notation used in this thesis include Big Omega and
Big Theta:

Definition 2.4 (Big Omega notation). For a given function f (x), we say that g (x) is
Ω( f (x)), denoted as g (x) =Ω( f (x)), if and only if there exist positive constants c and
x0 such that

c| f (x)| ≤ |g (x)|
for all x ≥ x0.

Definition 2.5 (Big Theta notation). For a given function f (x), we say that g (x) is
Θ( f (x)), denoted as g (x) =Θ( f (x)), if and only if there exist positive constants c1, c2,
and x0 such that

c1| f (x)| ≤ |g (x)| ≤ c2| f (x)|
for all x ≥ x0.
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With the definition of discrepancy, we can restate the conjecture of van der Corput.
His conjecture is equivalent to stating that

N ·DN (w) > K , for infinitely many N

for any constant K , or saying DN (w) is Ω( 1
N ). This conjecture turned out to be quite

difficult. It would eventually be proven by Mrs van Aardenne-Ehrenfest in 1945 [13].
However, there was still a gap between the best known sequence, and the lower
bound, so research continued. In 1949, van Aardenne-Ehrenfest [14] improved her
result, demonstrating that

N ·DN (w) >C
loglog N

logloglog N
.

This result was even further improved by Roth in 1954 [12], who showed that

N ·DN (w) >
√

C log N .

Finally, in 1972, Schmidt [15] proved that

N ·DN (w) >C log N , (2.1)

which matches the order of magnitude of the best known sequence. The only
unknown remains the constant. Some bounds have been found, but its exact value
remains an open problem.

THE VAN DER CORPUT SEQUENCE

In his 1935 paper, van der Corput also introduced a low discrepancy sequence.
It is nowadays called the van der Corput sequence (vdC-sequence). It is made by
writing numbers down in their binary form, and then mirroring their bits around
the comma.

Definition 2.6 (van der Corput sequence). Let n be any positive integer and let L be
the non-negative integer such that 2L ≤ n < 2L+1. The binary representation of n is

n =
L∑

k=0
dk (n)2k = d0(n)20 +d1(n)21 +·· ·+dL(n)2L ,

where dk (n) is either 1 or 0. Then the n-th number of the vdC-sequence is:

SvdC (n) =
L∑

k=0
dk (n)2−1−k = d0(n)2−1 +d1(n)2−2 +·· ·+dL(n)2−L−1.

As an example, take n=13. In binary notation, 13 is written as 1101, which becomes
0,1011 if mirrored around the comma. This translates back to 1

2 + 1
8 + 1

16 = 11
16 .

Thus, the 13th number of the vdC-sequence is 11
16 . The first few numbers of the

vdC-sequence are:

1

2
,

1

4
,

3

4
,

1

8
,

5

8
,

3

8
,

7

8
,

1

16
,

9

16
,

5

16
,

13

16
,

3

16
,

11

16
,

7

16
,

15

16
,

1

32
, . . .
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6 7

8 10 9 11

12 14 13 15

Figure 2.3.: The points of the vdC-sequence.

In Figure 2.3 the first few terms of the vdC-sequence are illustrated.

Van der Corput provided the first bound on the discrepancy of the vdC-sequence in
his 1935 paper:

N ·DN (w) ≤ 1+ log N

log2
, ∀N > 2.

If we compare this with the result of Schmidt [15] in Equation (2.1), we see
that this bound was already optimal in order of magnitude. Over time, there
have been several improvements of this upper bound, often with (variants of) the
vdC-sequence. Nowadays, the best known bounds are [16]:

D∗
N (w) ≥ c∞

log N

N
for infinitely many N ,

where 0.121128 · · · < c∞ < 0.353494. . . .
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The vdC-sequence also has several interesting properties, such as that at ev-
ery step, the intervals between points only have at maximum 2 different sizes.
vdC-sequences are important for Monte Carlo methods [11]. Specifically, if many
random samples are taken, it is important that every area is tested relatively equally
often. This can be quite a challenge in higher dimensional spaces.

2.2. SMALL WORLD NETWORKS
This section provides an introduction to mathematics used in Chapter 4.

In 1967, Stanley Milgram sent letters to random addresses in east USA. They
were accompanied by instructions to send these letters to a target person in
west USA. The information of this target person was limited to his full name
and the city he lived in. If the recipient of the letter knew the target person,
they were to forward the letter to him directly. If they did not know the
target person, they were to forward the letter to someone who they believed
had a better chance of knowing the target person. How many steps would it
take before the letters reach the target person?

The experiment, now known as the “small-world experiment”, was predicated on the
idea that even in a vast and seemingly disconnected society, individuals could be
linked through a surprisingly small number of intermediaries. As the letters traversed
the expanse from the east to the west, they highlighted the concept of “degrees
of separation”, signifying the number of connections it would take to bridge the
geographic and social gap between any two people. Milgram’s experiment revealed
that, on average, it took approximately six intermediaries for the letter to reach the
target person. This was the basis of the “six degrees of separation” hypothesis, the
idea that all people are six or fewer social connections away from each other.

In 1998, Watts and Strogatz [17] noted that small world models could be
classified based on two key characteristics, namely the clustering coefficient, and
average node-to-node distance. The clustering coefficient measures the degree to
which nodes in a network tend to cluster together, forming tightly-knit groups. Watts
and Strogatz provided an algorithm to create small world networks. Their model is
now known as the Watts–Strogatz model.
The algorithm works as follows:

• First, you decide on a number of nodes N , an average degree k and a
clustering coefficient 0 < p < 1.

• Secondly, create a regular ring lattice, a graph with N nodes each connected
to K neighbours

• Finally, for every edge (i , j ) with i < j , rewire it with probability p to the edge
(i ,k). Here k is chosen randomly, under the condition that the (i ,k) is not
already present.
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Figure 2.4.: An example of a Watts-Strogatz small-world graph with N = 100 nodes, each
with degree k = 20 and clustering coefficient p = 0.05.

The clustering coefficient p determines how often edges get rewired. for p = 0, the
graph remains a regular ring lattice. For large p, the graph resembles a random
graph.

2.3. FINITE CONSTANT-SUM GAMES
This section provides an introduction to mathematics used in Chapters 5 and 6.

Colonel Blotto commands four soldiers, with which to oppose an enemy
Colonel with four soldiers. There are three battlefields on which the battle
will take place in the morning. Whoever sends more soldiers to a battlefield
wins that battlefield, and both Colonels want to win as many battlefields as
possible. How should Blotto divide his troops over the battlefields?

This problem was first described by Borel in 1921, in this paper "The Theory of Play
and Integral Equations with Skew Symmetric Kernels" [18]. At that time, the field of
Game Theory had not yet been established, and in this paper Borel presented his
ideas on how a game between two players could be mathematically modelled. The
Colonel Blotto game was introduced in this paper as an example game, although it
did not have this name yet. The game received the name “Colonel Blotto” and the
accompanying backstory in 1924, when it appeared in The Weekend Puzzle Book by
Caliban. In this section, we demonstrate how to solve this game while introducing
some notions from Game Theory.

In his paper, Borel also described what a solution to this game would look like.
First, he requires both players to choose a "method of play", nowadays known as a
strategy. A strategy defines what decision a player takes for every possible situation
throughout the game. In the Colonel Blotto game, there is only one decision to
take, which is how to divide the soldiers over the battlefields. But in other games,
there might be many different decisions to take. For example, in chess, a strategy
would consist of a defined move for any possible state of the board. For any
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combination of two strategies, one for each player, the payoff for each player must
be defined. In the Colonel Blotto game, the payoff is measured in fields won. With
any combination of two strategies, it is possible to see which player wins which
battlefield, and thus calculate the payoff for each player. If both players send the
same amount of soldiers to any field, then both players get half of that field.

He remarks that the game is symmetric, which means that both players
have the same possible actions and receive the same payoffs for each combination
of actions. Furthermore, the game is a constant-sum game, which means that all the
payoff one player gets, must come as a cost to another player. The total payoff over
all players must remain constant for any combination of strategies. In the Colonel
Blotto game, there are three battlefields, and if a player wins one, the other player
loses that field. The sum of the payoff of the players is always equal to three, the
number of battlefields.

The solution to a game consists of the best possible strategies for the play-
ers. Borel states that the best strategy a player can have in a symmetric game,
is a strategy that guarantees himself at least as much payoff as his opponent.
In any constant-sum game, this would be half the total payoff. Better than half
is not possible, since the other player can use the same strategy to guarantee
themselves half. Therefore, this strategy would create an equilibrium, where
both players played this strategy and can not improve by switching to other
strategies. Such an equilibrium is called a Nash Equilibrium. In our Colonel
Blotto game, the solution would be an optimal strategy that guarantees that you
win 1.5 battlefields in expectation, against any possible distribution of the other player.

We can now look for the solution of the described Colonel Blotto game.
In this game, there are fifteen ways a player can divide the soldiers over the
battlefields. We simplify the game a bit and say the Colonels only have to divide
their soldiers into three unordered groups. The groups will then be randomly
assigned to different battlefields. This leaves four different strategies for both players:
(4,0,0), (3,1,0), (2,2,0) and (2,1,1). We describe the payoff of the game as the expected
number of battlefields that Colonel Blotto wins, in Table 2.1.

A matrix like Table 2.1, where all the strategies of the players and the payoff for
every combination of strategies is described, is called the Normal Form of a game.
Looking at this table, you might notice that if Colonel Blotto plays (2,2,0), then every
possible payoff is at least 1.5. This means that both players playing (2,2,0) is a Nash
equilibrium and the solution of this game.

Strategies of a player can be pure strategies or mixed strategies. The pure
strategies are (4,0,0), (3,1,0), (2,2,0) and (2,1,1). A player having a pure strategy,
means he chooses one of these with certainty. A mixed strategy is a probability
distribution on the set of pure strategies. For instance, choosing (4,0,0) and (2,2,0)
both with probability 1

2 . A Nash Equilibrium consisting of pure strategies, such as
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Enemy

(4,0,0) (3,1,0) (2,2,0) (2,1,1)

Blotto

(4,0,0)
3

2

4

3

4

3
1

(3,1,0)
5

3

3

2

3

2

4

3

(2,2,0)
5

3

3

2

3

2

5

3

(2,1,1) 2
5

3

4

3

3

2

Table 2.1.: The Colonel Blotto game for three fields and four soldiers on each side.
The matrix describes the expected number of battlefields won by Colonel
Blotto, for any chosen configuration of soldiers by Colonel Blotto and the
Enemy Colonel.

we found in the Colonel Blotto game, is called a pure Nash equilibrium.

So does such a solution always exist? In his 1921 paper, Borel claims that
"it is easy to see" that once a player has more than seven actions, in general no
solution exists. Luckily for us, this turned out to be wrong. In 1928, von Neumann
published his paper "Zur Theorie der Gesellschaftsspiele" [19], in which he proved
the existence of equilibria in any finite constant-sum game, using his minimax
theorem. Von Neumann’s paper is widely acknowledged as the starting point of the
field of Game Theory. Building upon this work, von Neumann, alongside Oskar
Morgenstern, wrote the influential book "Theory of Games and Economic Behavior"
in 1944 [20]. In 1951, Nash [21] extended the minimax theorem of von Neumann,
by proving that mixed Nash equilibria exist in any finite game for any number of
players. This is why these equilibria are now known as Nash equilibria. This work
would earn Nash the Nobel Prize.

Knowing Nash equilibria exist does not necessarily make them easy to find.
For finite games, the problem of finding Nash equilibria is PPAD-complete, a
complexity class that is a subclass of NP [22]. When the game is also constant-sum,
such as the Colonel Blotto game, it can be formulated as a linear program and
therefore solved in polynomial time. However, this does not guarantee these games
can be solved in a reasonable amount of time in practice. Our example game,
with three fields and four soldiers, is straightforward and can be solved almost
instantly. However, when the number of fields and soldiers are increased, finding
Nash equilibria can quickly become computationally infeasible.
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To completely solve a game, we need to find a general solution. For
Colonel Blotto, that is a solution for n fields, where Blotto has B troops and the
enemy Colonel has R troops. Due to the complexity of the game, such a general
solution is unlikely to be found. Luckily, there exists a variant of Colonel Blotto
games, which is better solvable. In his original paper, Borel introduced two versions
of the Colonel Blotto game: discrete Colonel Blotto and continuous Colonel Blotto.
The discrete Colonel Blotto game is the version we have studied until now, where the
number of troops sent to a field has to be a non-negative integer. In the continuous
Colonel Blotto game, this constraint is relaxed, and the number of troops can be
any non-negative number. Contrary to the discrete version, the continuous Colonel
Blotto has a known general solution.

The first solutions to the continuous Colonel Blotto game were found by
Gross and Wagner in 1950 [23]. They were able to solve the game completely for
two fields, for any number of troops on either side. They also provided solutions for
three or more fields, under the condition that both sides have an equal number of
troops. The continuous Blotto game was eventually completely solved by Roberson
[24], allowing for any number of fields and asymmetric troop numbers between
players. The discrete version remains a computational challenge, and algorithms to
solve it keep getting refined.
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3
A CONJECTURE BY DE BRUIJN AND

ERDOS

The focus of this chapter emerged from research conducted on social distancing
strategies during the COVID-19 pandemic. A research experiment asked a number
of people to consecutively take a seat at a round table, such that the minimal
distance between any two individuals is maximised. The catch was that none of the
participants were aware of how many people would take place at the table. This
created an interesting dilemma for the participants. Do you just take the best spot
for yourself, or do you sit down in a way that leaves extra space for the people
after you? If you are the last person to join the table, you would want to choose
the best spot, but if you are not the last one, leaving extra space would be much better.

For example, consider a scenario where three individuals need to take seats
at a table. Initially, the table is empty, allowing the first person the freedom to sit
anywhere. The second person faces a choice: they could strategically take a seat
directly opposite the first person or opt to sit slightly off-center, leaving some room
persons yet to join. This would improve the outcome massively in the case that
exactly three people join the table, see Figure 3.1.

It is clearly visible in this figure that the minimal distance is larger when person 2
plans one step ahead. However, if four people had to take place at the table instead
of three, this changes again. In that case, not planning ahead would actually do
better than planning ahead for the third person. And everything is different again if
five people had to take seats, because their best distribution is very different again.
This is what makes this problem so difficult, how do you plan a strategy that does
reasonably well in all these scenarios?

The research primarily focused on the strategies individuals would adopt in

Parts of this chapter been submitted to Journal of Mathematical Sociology [1]. Additional work
containing parts of this chapter is in preparation [2].
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1

2

3

(a) Person 2 does not plan ahead.

1

32

(b) Person 2 plans ahead, and leaves space
for person 3

Figure 3.1.: Three people take place at the table consecutively, and want to optimize
the minimal distance between any two persons.

the given scenario, but it also raised the question of what an optimal strategy
would be. As more individuals join the table, the minimum distance between any
two people would naturally decrease. However, we can still compare this outcome
to what would have been the best possible minimum distance for the number of
participants, and try to keep the ratio between the best solution and the actual
outcome as close to 1 as possible. This is quite difficult, particularly when the
number of individuals expected to join the table is unknown, and requires extensive
foresight.

While we investigated this problem for a round table, there are many appli-
cations possible. For instance, one could also ask this same question for the square
room in a cinema. During the high time of COVID-19, cinemas would use only a
small part of the chairs, so that everybody was 1,5 meters removed from everybody
else. At the time, there were some questions if 1,5 meters was even enough.
Even with the reduced number of people allowed, these cinemas weren’t always
completely filled at the time, and it would therefore be possible for everybody to sit
3 meters from another, while everybody would still fit in the cinema. This leads
us back to the same question of our research: How would you seat people, in
such a way that the minimum distance between any two persons is as large as
possible? You would not know how many people would show up to watch the movie,
but you can appoint them seats as they go in. The minimum distance between
people would slowly go down when more people joined, with a hard minimum
of 1,5 meter, at which point no extra people would be allowed to join the cin-
ema. A strategy like this could allow the same amount of people, just with extra safety.

Eventually this question lead us to work of de Bruijn and Erdős [25], who
had looked at this problem, albeit in a different context. Their paper contained
several interesting results, and also open conjectures. This specific work seemed
to be mostly forgotten with time. As evidenced when several years later the same
research question was asked anew by Ostrowski in 1957 [26], and was consequently
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solved by Toulmin [27], independently of the work of De Bruijn and Erdős.

The problem was later studied again in 1978 by Ramshaw [28], this time
under the name Stick-Breaking. After this it was forgotten again until in 2016 a
similar problem was studied by Chung and Graham [29], who managed to strengthen
a conjecture by D.J. Newman. Where we study the length of the intervals between
the first n points of a sequence, they study the length of the intervals between n
points of any subsequence anywhere in the sequence.

In this chapter, we first provide definitions and theory underlying the De
Bruijn-Erdős paper, as well as a summary of their main results and conjectures in
Section 3.1 and Section 3.2. As their focus was on infinite sequences, we expand
their proofs to show what bound they provide for finite sequences. We then follow
that with our experimental results about their conjecture in Section 3.3. Finally, we
describe our main result, how to create optimal finite sequences, in Section 3.4.
This extension to finite sequences is the solution to our original social distancing
problem.

3.1. GAPS BETWEEN POINTS ON A CIRCLE
In this section, we define the problem and provide the bounds and sequence found
by De Bruijn and Erdős. We follow the exposition from their paper [25].

Let w := (w1, w2, . . . ) be a sequence of points on a circle with circumference
1, i.e., all wi ∈ [0,1). By connecting the start and end of the interval [0,1), it is
mapped to the circle, as shown in Figure 3.2a:

0
0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

(a) Mapping the interval [0,1) to a circle.

M10

m10

w1

w7

w4

w9

w6

w8

w10
w2

w3

w5

(b) Mn and mn for a sequence with n = 10
points placed.

Figure 3.2.: How to map the circle to the interval [0,1), and how to measure Mn and
mn .

After the first n points have been placed, the circle is divided into n intervals, which
together sum up to 1. We are interested in the largest and the smallest interval. Let
Mn(w) denote the length of the largest interval and mn(w) denote the length of the
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smallest interval after n points have been placed. Let µn denote the ratio between
these, i.e.,

µn = Mn(w)

mn(w)
.

Since the n intervals together sum up to one, it follows that the average length of an
interval is 1

n , and thus

Mn(w) ≥ 1

n
≥ mn(w),

where this would only be equality’s if every interval had exactly length 1
n . The main

question is; How to create a sequence w such that Mn(w) and mn(w) are always
very close to 1

n , regardless of n? To that end, we introduce Λ(w), λ(w) and µ(w) as

limsup
n→∞

n ·Mn(w) =Λ(w)

liminf
n→∞ n ·mn(w) =λ(w)

limsup
n→∞

µn(w) =µ(w)

This means that, in the limit of n for a given sequence w , the largest interval is at
most Λ(w) times the average, the smallest interval is at least λ(w) times the average,
and the ratio between the largest and smallest interval is at most µ(w). These values
might only hold in the limit, it is possible that they are larger for smaller n.

Furthermore, let Λ be the greatest lower bound on Λ(w), let λ be the
lowest upper bound on λ(w) and let µ be the greatest lower bound on µ(w).

Determining the values of Λ, λ and µ and finding a sequence that
matches these values solves the problem. First, we provide a lower bound
on Λ in Section 3.1.2. Following that we provide an upper bound on λ in
Section 3.1.3 In Section 3.1.5, we present the De Bruijn-Erdős sequence, which
values for Λ, λ and µ match these bounds and therefore prove these bounds are sharp.

Finally, we look at an extension to consecutive intervals. Instead of looking
at the maximum or minimum size of a single interval, we now look at the maximum
and minimum size of r consecutive intervals.

3.1.1. HARMONIC NUMBERS

This problem turned out to have a strong connection to Harmonic Numbers. Har-
monic numbers are an interesting concept in mathematics, and have uses in several
parts of number theory. In this section, we introduce harmonic numbers and ex-
plain some of its interesting properties. We also provide a helpful lemma we use later.
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Harmonic numbers are derived from the harmonic series, which is the infi-
nite series formed by summing the reciprocals of all positive integers:

∞∑
i=1

1

i
= 1+ 1

2
+ 1

3
+ . . .

The name “harmonic series” comes from the concept of harmony in music. In music
theory, harmonics are the overtones or additional frequencies that are produced
when a musical instrument vibrates or when a sound wave propagates through a
medium. Harmonic frequencies are whole-number multiples of the fundamental
frequency of a musical note, and they play a crucial role in creating the timbre or
tone quality of a musical sound.

Each term in the series is the reciprocal of a positive integer, and these
terms are added together, much like the harmonic frequencies in music combine to
create complex sounds. The harmonic series is named in analogy to the harmonic
overtones in music due to this mathematical relationship between the terms and the
concept of harmonics in music.

The n-th harmonic number, denoted as Hn , is defined as the sum of the
first n elements:

Definition 3.1. For any positive integer n, the n-th harmonic number Hn is defined
as:

Hn = 1+ 1

2
+ 1

3
+ . . .+ 1

n
=

n∑
i=1

1

i
.

The Harmonic Series is a famous example of a divergent series. This means that as
n approaches infinity, Hn becomes arbitrarily large, and grows beyond any constant.
This was already proven by Oresme around 1360.

Harmonic Numbers also gained the attention of Euler, who used them for
a new proof to show the existence of infinitely many prime numbers. He also
studied the relation between the Harmonic Numbers and the natural logarithm, and
he proved in 1734 that their difference approaches a constant, now known as the
Euler–Mascheroni constant γ:

lim
n→∞ (Hn − ln(n)) = γ,

with γ≈ 0.5772. It is still an unsolved problem in mathematics whether this is a
rational number or not.

In this work, we have to calculate several versions of the difference H2n −Hn . For any
converging series, this would approach zero whenever n tends to infinity. However,
the harmonic series is a divergent series. The difference between the harmonic
numbers can be calculated in the following way:
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Lemma 3.2. The difference between the harmonic numbers H2n and Hn goes to ln(2)
in the limit, i.e.,

lim
n→∞ (H2n −Hn) = ln(2).

Proof.

lim
n→∞ (H2n −Hn) = lim

n→∞

(
H2n − ln(2n)+ ln(2n)−Hn + ln(n)− ln(n)

)
= lim

n→∞

(
ln

(
2n

n

)
+ (H2n − ln(2n))− (Hn − ln(n))

)
= ln(2)+γ−γ= ln(2)

When we need to calculate the difference between two harmonic numbers, we refer
back to Lemma 3.2 for the calculation method.

Aside from Lemma 3.2, there is another surprising property of harmonic
numbers we will use. It is given by the following lemma:

Lemma 3.3. The sequence (H2n − Hn) is strictly increasing, while the sequence
(H2n−1 −Hn−1) is strictly decreasing.

Proof. To prove (H2n − Hn) is strictly increasing, we need to show that for any
positive integer n:

H2n −Hn < H2(n+1) −Hn+1.

Rearranging terms yields

Hn+1 −Hn < H2(n+1) −H2n .

By using the definition of Harmonic numbers, this reduces to

1

n +1
< 1

2n +2
+ 1

2n +1
,

which always holds. In the same way, we can prove that the sequence (H2n−1−Hn−1)
is strictly decreasing:

H2n−1 −Hn−1 > H2n+1 −Hn

Hn −Hn−1 > H2n+1 −H2n−1

1

n
> 1

2n +1
+ 1

2n

which proves the lemma.
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3.1.2. LOWER BOUND ON Λ

In this section we study the maximum sized interval between two point of the
sequence, and provide a lower bound on Λ of 1

ln(2) , using the proof of De Bruijn and
Erdős [25].

Theorem 3.4 (Lower bound on Λ). Let w := (w1, w2, . . . ) be any sequence on the circle.
Then for any integer n > 0:

sup
n≤k<2n

k ·Mk (w) ≥ 1

H2n−1 −Hn−1
,

where Hn is the n-th harmonic number. Furthermore, by letting n go to infinity it
follows that

Λ≥ 1

ln2
.

Proof of Theorem 3.4. We prove this by contradiction. Assume there exists a sequence
w and a positive integer n such that

sup
n≤k<2n

k ·Mk (w) < 1

H2n−1 −Hn−1
. (3.1)

Let the lengths of intervals determined by w1, . . . , wn be a1, a2, . . . , an , sorted in
descending order. We have that Mn(w) = a1. Since adding any point to the sequence
can only destroy one interval to create 2 new intervals, it follows that after wn+1 is
placed, either the interval of length a1 or the interval of length a2 still exists. Thus,
we know that Mn+1(w) ≥ a2. We can repeat this for points wn+2, . . . , w2n−1 to derive:

Mn(w) = a1, Mn+1(w) ≥ a2, . . . , Mn+k (w) ≥ ak+1, . . . , M2n−1(w) ≥ an .

Since the entirety is a circle with a circumference of one, the sum of all intervals
a1, . . . , an must equal one. Therefore, we have

Mn(w)+Mn+1(w)+·· ·+M2n−1(w) ≥ a1 +a2 +·· ·+an = 1.

Furthermore, from Assumption (3.1), we know that Mk < 1
k(H2n−1−Hn−1) for all

n ≤ k < 2n. From this assumption, we can derive

Mn(w)+·· ·+M2n−1(w) < 1

H2n−1 −Hn−1

(
1

n
+ 1

n +1
+·· ·+ 1

2n −1

)
= H2n−1 −Hn−1

H2n−1 −Hn−1
= 1.

Combining these last two equations yields

1 ≤ Mn(w)+Mn+1(w)+·· ·+M2n−1(w) < 1,

which is a clear contradiction, and thus proves the first part of the theorem. We
now proceed to establish the limit value. Based on Lemma 3.3, we know that
(H2n−1 −Hn−1) is strictly decreasing. Consequently, the supremum of 1

H2n−1−Hn−1
is

achieved in the limit of n to infinity. Employing the approach used in the proof of
Lemma 3.2, it follows that

lim
n→∞ (H2n−1 −Hn−1) = ln2.
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3.1.3. UPPER BOUND ON λ

In this section, we look at the smallest interval and provide an upper bound on λ.

Theorem 3.5 (Upper bound on λ). Let w := (w1, w2, . . . ) be any sequence on the circle,
then for any integer n > 0:

inf
n<k≤2n

k ·mk (w) ≤ 1

2(H2n −Hn)
,

where Hn is the n-th harmonic number. Furthermore, by letting n go to infinity it
follows that

λ≤ 1

ln4
.

Proof of Theorem 3.5. We prove this by contradiction. Assume there exists a sequence
w and a positive integer n such that

inf
n<k≤2n

k ·mk (w) > 1

2(H2n −Hn)
. (3.2)

Let the length of the intervals determined by w1, . . . , w2n be a1, a2, . . . , a2n , sorted in
descending order. We have that m2n(w) = a2n . We now take one step back and
remove w2n . Removing any point of the sequence merges two intervals into one,
and doesn’t change the other intervals. This means that before w2n was placed, one
of the intervals of length a2n−2, a2n−1 or a2n already existed. Therefore, we know
that m2n−1(w) ≤ a2n−2. We can continue to work backwards and repeat this for the
points w2n−1, . . . , wn+1 to derive:

m2n(w) = a2n , m2n−1(w) ≤ a2n−2, . . . , m2n−k (w) ≤ a2n−2k , . . . , mn+1(w) ≤ a2.

Since the entirety is a circle, all intervals together sum up to one. Thus, we can
rewrite this as

1 =
2n∑

i=1
ai ≥ 2

n∑
i=1

a2i ≥ 2
n∑

i=1
mn+i .

Furthermore, by Assumption (3.2), we know that mk > 1
2k(H2n−Hn ) for all n < k ≤ 2n.

From this assumption, we can derive

n∑
i=1

mn+i > 1

2(H2n −Hn)

(
1

n +1
+·· ·+ 1

2n

)
= H2n −Hn

2(H2n −Hn)
= 1

2
.

Combining these last two equations gives

1 ≥ 2
n∑

i=1
mn+i > 1,

which is a clear contradiction, and thus proves the first part of the theorem. Similarly
as before, we can employ the approach used in the proof of Lemma 3.2 to show that
2(H2n −Hn) goes to ln4 for n →∞.
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3.1.4. MAXIMUM RATIO BETWEEN LARGEST AND SMALLEST INTERVAL

In this section, we determine a lower bound on µ. It is noteworthy that while we
already know that Λ

λ ≥ 2, this has no implications on µ. This is because for any
sequence Λ might occur after n1 points of the sequence are placed, and λ might
occur after n2 points of the sequence are placed, where n1 ̸= n2. By definition µ is
the limit supremum of µn , which is the ratio after a fixed number of points n is
placed, not the ratio between peaks for different n. Therefore, we can only conclude
that Λ

λ ≥µ, which does not yet provide a bound in this case. We do provide a bound
with Theorem 3.6. In this work, we use the notation lg for log2.

Theorem 3.6. Let w := (w1, w2, . . . ) be any sequence on the circle, then for any integer
n > 0:

sup
n≤k<2n

(
1+ 1

k

)1+c

µk (w) ≥ 2,

with

c =
lg

(
2

1+ 1
2n

)
lg (2+ 1

n )
=

1+ lg

(
1

1+ 1
2n

)
1+ lg (1+ 1

2n )
,

where 0 < c < 1. Furthermore, by letting n go to infinity, it follows that

µ≥ 2.

Proof. We begin by proving a property necessary for the theorem. Let n ≤ k < 2n and
let ai be the length of the interval that wk is placed in. Placing wk splits this interval
into two new intervals, whose lengths we denote by b1 and b2. It follows that

Mk (w) ≥ ai = b1 +b2 ≥ 2min(b1,b2) ≥ 2mk+1(w),

and consequently

Mk (w)

mk+1(w)
≥ 2. (3.3)

This is a nice property, and close to the required inequality. If we had Mk (w)
mk (w) ≥ 2,

we would be done. We now proceed to the statement of the theorem, proving it by
contradiction. Assume there exists a sequence w and a positive integer n such that
for any k with n ≤ k < 2n it holds that

µk (w) = Mk (w)

mk (w)
< 2(

1+ 1
k

)1+c = 2

(
k

k +1

)1+c

. (3.4)

Combining Equation (3.4) with Equation (3.3) leads to

mk+1(w)

mk (w)
<

(
k

k +1

)1+c

. (3.5)
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Using Equation (3.5) for all values of n ≤ k < 2n yields

m2n(w)

mn(w)
= m2n(w)

m2n−1(w)
· . . . · mn+1(w)

mn(w)
<

(
2n −1

2n

)1+c

· . . . ·
( n

n +1

)1+c
=

( n

2n

)1+c
= 1

21+c .

This can be rewritten in combination with the bound mn(w) ≤ 1
n as

m2n(w) < 1

21+c mn(w) ≤ 1

21+c n
. (3.6)

Using Equation (3.6) and the bound M2n(w) ≥ 1
2n , we can derive

µ2n = M2n(w)

m2n(w)
>

( 1
2n

)(
1

21+c n

) = 2c .

Combining this with Equation (3.4) we have

2c <µ2n < 2(
1+ 1

2n

)1+c(
2+ 1

n

)c

< 2(
1+ 1

2n

)
By definition of c, the left-hand side is exactly equal to the right-hand side. This
leaves us with a contradiction, and therefore the first part of the theorem must hold.
For µ we have the bound

µ= limsup
n→∞

µn(w) ≥ 2(
1+ 1

n

)2 .

Since
(
1+ 1

n

)
is a strictly decreasing function, the right-hand side is maximized by

letting n go to infinity:

µ≥ lim
n→∞

2(
1+ 1

n

)2 = 2.

3.1.5. THE DE BRUIJN-ERDŐS SEQUENCE

The bounds on Λ, λ and µ as mentioned in Theorem 3.4, Theorem 3.5 and Theorem
3.6, originate from the work of de Bruijn and Erdős [25]. In their work, they also
provided a sequence to show that these bounds were tight. We refer to this sequence
as the De Bruijn-Erdős sequence (DBE-Sequence). In this section, we describe this
sequence and show that this sequence has the best Λ, λ and µ possible.

Definition 3.7 (De Bruijn-Erdős sequence). The De Bruijn-Erdős sequence is a
sequence w := (w1, w2, . . . ) where the points are defined as

wk = lg (2k −1) mod 1. (3.7)
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w1

w2

w3

(a) The first three points of the De Bruijn-
Erdős sequence on the circle.

w1

w2

w3

w4
w5

w6

w7

w8

(b) The first eight points of the De Bruijn-
Erdős sequence on the circle.

Figure 3.3.: The first points of the De Bruijn-Erdős sequence on the circle.

1 1

2

3 4

5 6 7 8

9 10 11 12 13 14 15 16

Figure 3.4.: The points of De Bruijn-Erdős sequence. Every point is placed slightly
right of the middle of the largest gap available.

We show that the De Bruijn-Erdős sequence has the best λ(w) and Λ(w) possible by
proving the following theorem:

Theorem 3.8. For the De Bruijn-Erdős sequence w, it holds that Λ(w) = 1
ln2 ,

λ(w) = 1
ln4 and µ(w) = 2.

Proof. Let w1, . . . wn be the first n points from the De Bruijn-Erdős sequence, i.e.,

lg (1), lg (3), . . . , lg (2n −1) mod 1.

First we show that these points are a permutation of the points b1, . . . ,bn , with
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Person Position
w1 0
w2 0.585. . .
w3 0.322. . .
w4 0.807. . .
w5 0.170. . .
w6 0.459. . .
w7 0.700. . .
w8 0.907. . .

10 20 30 40 50 60

0.2

0.4

0.6

0.8

1.0

Figure 3.5.: The locations of the first points of the De Bruijn-Erdős sequence.

bi = lg(n −1+ i ) mod 1, i.e.,

lg (n), lg (n +1), . . . , lg (2n −1) mod 1.

To prove this, we show that no two wk and no two bi are congruent mod 1, yet
every bi is congruent to exactly one wk mod 1.

For any two numbers lg(x) and lg(y) with x ≥ y to be congruent mod 1, it
would require

lg (x)− lg (y) mod 1 = lg

(
x

y

)
mod 1 = 0.

This condition holds if and only if x
y is some power of two, i.e., x = 2p y for

some integer p. The sequence w1, . . . , wn consists of logarithms of odd numbers,
meaning no two wk can be congruent. Similarly, the sequence b1, . . . ,bn , which
starts with the logarithm of n and ends with the logarithm of (2n −1), can-
not have any congruent members since the ratio between n and 2n−1 is less than two.

Furthermore, every bi can be uniquely expressed as bi = lg(2p c), where
p ≥ 0 is a non-negative integer, and c is an odd integer between 1 and 2n −1. Since
lg(2p c) is congruent with lg(c) mod 1 and lg(c) must be part of w1, . . . , wn , it follows
that every bi is congruent with exactly one wi .

The advantage of the points b1, . . . ,bn is that every point bi is directly next
to the point bi+1 on the circle. Therefore, the sizes of the intervals, a1, . . . , an , are
equal to:

lg

(
n +1

n

)
, lg

(
n +2

n +1

)
, . . . , lg

(
2n −1

2n −2

)
, lg

(
2n

2n −1

)
. (3.8)

ordered from largest to smallest. We can conclude

nMn(w) = n lg

(
1+ 1

n

)
, and nmn(w) = n lg

(
1+ 1

2n −1

)
.
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Since nMn(w) is strictly increasing and nmn(w) is strictly decreasing, it holds that

Λ(w) = lim
n→∞nMn(w), λ(w) = lim

n→∞n ·mn(w), µ(w) = lim
n→∞

Mn(w)

mn(w)
= Λ(w)

λ(w)
.

We use the known limit limn→∞
(
1+ 1

n

)n = e to derive:

Λ(w) = lim
n→∞nMn(w) = lim

n→∞
ln

((
1+ 1

n

)n
)

ln2
= 1

ln2

λ(w) = lim
n→∞nmn(w) = lim

n→∞

( n

2n −1

) ln
((

1+ 1
2n−1

)2n−1
)

ln2

=
(

1

2

)
1

ln2
= 1

ln4

µ(w) = Λ(w)

λ(w)
= 2

which concludes the proof.

3.2. EXTENSION TO MULTIPLE INTERVALS
In this section, we aim to extend the earlier results for λ,Λ and µ from the
minimum and maximum size of a single interval, to the minimum and maximum
size of r consecutive intervals. We refer to r consecutive intervals of a sequence
as a r -interval. Similarly as was done for single intervals, we define M r

n(a) as the
largest r-interval and mr

n(a) as the smallest r-interval. Using these we can define the
generalisations of Λ, λ and µ as:

limsup
n→∞

nM r
n(a) =Λr (a)

liminf
n→∞ nmr

n(a) =λr (a)

limsup
n→∞

M r
n(a)

mr
n(a)

=µr (a)

In the following sections, we prove the three following bounds, which originated in
the work of De Bruijn and Erdős:

Λr ≥ 1

ln
(
1+ 1

r

) > r (3.9)

λr ≤
r

r+1

ln
(
1+ 1

r

) < r (3.10)

µr ≥ 1+ 1

r
(3.11)

It is unknown whether these bounds are tight. De Bruijn and Erdős conjectured the
following:

(Λr − r ) →∞ if r →∞
(r −λr ) →∞ if r →∞

r (µr −1) →∞ if r →∞
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3.2.1. LOWER BOUND ON Λr

In this subsection, we study the maximum size of r -intervals, and provide a lower
bound on Λr .

Theorem 3.9 (Lower bound on Λr ). Let w := (w1, w2, . . . ) be any sequence on the
circle. Then for any integer n > 0:

sup
1≤k≤n(r+1)

k ·M r
k (w) ≥ 1

Hn(r+1)−1 −Hr n−1
,

where Hn is the n-th harmonic number. Furthermore, by letting n go to infinity it
follows that

Λr ≥ 1

ln
(
1+ 1

r

) .

Proof of Theorem 3.9. We prove this by contradiction. Assume there exists a sequence
w and a positive integer n such that

sup
1≤k≤n(r+1)

k ·M r
k (w) < 1

Hn(r+1)−1 −Hr n−1
. (3.12)

Let the intervals be determined by w1, . . . , wr n . We divide these r n intervals into
n disjoint r -intervals ar

1 , ar
2 , . . . , ar

n , sorted in descending order. It follows that
ar

1 ≤ M r
k (w). Since any point after wr n can only be placed in one of the r -intervals,

the placement of wr n+1 leaves either the r-interval of length ar
1 or the r-interval of

length ar
2 untouched. Therefore, we know that Mr n+1(w) ≥ ar

2 . We can repeat this
for points wr n+2, . . . , wn(r+1)−1 to derive:

Mnr (w) ≥ ar
1 , Mr n+1(w) ≥ ar

2 , . . . , Mr n+k (w) ≥ ar
k+1, . . . , Mn(r+1)−1(w) ≥ ar

n .

Since the entirety is a circle with circumference 1, all r-intervals a1, . . . , an together
sum up to one. Therefore, we know that

Mr n(w)+Mr n+1(w)+·· ·+Mn(r+1)−1(w) ≥ ar
1 +ar

2 +·· ·+ar
n = 1.

Furthermore, from Equation (3.12) we know that Mk < 1
k(Hn(r+1)−1−Hr n−1) for all

1 ≤ k ≤ n(r +1). It follows that

Mr n(w)+·· ·+Mn(r+1)−1(w) < 1

Hn(r+1)−1 −Hr n−1

(
1

r n
+ 1

r n +1
+·· ·+ 1

n(r +1)−1

)
= 1.

Combining these last two equations yields

1 ≤ Mr n(w)+Mr n+1(w)+ . . .+Mn(r+1)−1(w) < 1.

This is a clear contradiction, and thus proves the first part of the theorem. Similarly
as before, we can show that Hn(r+1)−1 −Hr n−1 goes to ln

(
1+ 1

r

)
for n →∞:

lim
n→∞

(
Hn(r+1)−1 −Hr n−1

)= lim
n→∞ ln

(
1+ n

r n −1

)
= ln

(
1+ 1

r

)
.

This concludes the proof.
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3.2.2. UPPER BOUND ON λr

In this subsection, we look at the smallest interval and provide an upper bound on
λr .

Theorem 3.10 (Upper bound on λ). Let w := (w1, w2, . . . ) be any sequence on the
circle, then for any integer n > 0:

inf
nr<k≤n(r+1)

k ·mr
k (w) ≤ r

(r +1)
(
Hn(r+1) −Hnr

) ,

where Hn is the n-th harmonic number. Furthermore, by letting n go to infinity it
follows that

λr ≤
r

r+1

ln
(
1+ 1

r

) .

Proof of Theorem 3.10. We prove this by contradiction. Assume there exists a
sequence w and a positive integer n such that

inf
nr<k≤n(r+1)

k ·mk (w) > r

(r +1)
(
Hn(r+1) −Hnr

) . (3.13)

Let the length of the r -intervals determined by w1, . . . , wn(r+1) be ar
1 , ar

2 , . . . , ar
n(r+1),

sorted in descending order. We have that mr
n(r+1)(w) = an(r+1). Now we remove the

last point placed and look at the sequence when only n(r +1)−1 points were placed.
Any point is part of exactly r +1 r -intervals, thus removing one point can only
destroy r +1 intervals, and the rest must still exist. Therefore, it must hold that before
wn(r+1) was placed, one of the intervals of length ar

n(r+1), ar
n(r+1)−1, . . . , ar

(n−1)(r+1) still
exists. Thus, we know that m(n)(r+1)−1(w) ≤ a(n−1)r+1. We can repeat this for points
wn(r+1)−2, . . . , wnr+1 to derive:

mn(r+1)(w) ≤ ar
n(r+1), . . . , mn(r+1)−k (w) ≤ ar

(n−k)(r+1), . . . , mnr+1(w) ≤ ar
r+1.

Since the entirety is a circle with a circumference of one, the sum of all intervals
equals one. If we sum over all possible r -intervals, then every interval is counted
exactly r times. Thus, the total of this sum must be r , i.e.,

r =
n(r+1)∑

i=1
ar

i

By leveraging the fact that the intervals are sorted in descending order, we can derive

r =
n(r+1)∑

i=1
ar

i ≥ (r +1)
n∑

i=1
ar

i (r+1) ≥ (r +1)
n∑

i=1
mnr+i

r

r +1
≥

n∑
i=1

mnr+i
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Furthermore, from Equation (3.13) we know that mk > r
(r+1)k(Hn(r+1)−Hnr ) for all

nr ≤ k ≤ n(r +1). Thus:

n∑
i=1

mnr+i > r

(r +1)
(
Hn(r+1) −Hnr

) (
1

nr +1
+·· ·+ 1

n(r +1)

)
= r

r +1
· Hn(r+1) −Hnr(

Hn(r+1) −Hnr
) = r

r +1

Combining these last two equations gives

r

r +1
≥

n∑
i=1

mn+i > r

r +1
,

which is a clear contradiction, and thus proves the theorem.

3.2.3. MAXIMUM RATIO BETWEEN LARGEST AND SMALLEST INTERVAL µr

In this subsection, we prove a lower bound on µ of 1+ 1
r . Before we provide this

theorem and its proof, we start with a lemma.

Lemma 3.11. Let w := (w1, w2, . . . ) be any sequence on the circle, then for any integer
n > 0:

M r
n

mr
n+1

≥ 1+ 1

r
.

Proof. The proof for r = 1 can be found in Section 3.1.4. We now assume r > 1.
Let the intervals determined by w1, . . . , wn be a1, . . . , an , ordered in the way they
appear on the circle in clockwise order. Let ai be the interval in which wn+1 falls.
We want to look at the r −1 intervals immediately to the left and to the right of ai

on the circle, i.e., the set of 2r −1 intervals:

ai−r+1, ai−r+2, . . . , ai , ai+1, . . . , ai+r−1. (3.14)

which are consecutive on the circle.

Let I j be the length of interval a j and let Ma be the maximum length of
r consecutive intervals, using only intervals in Equation (3.14). It follows that
Ma ≤ M r

n . Since every r -interval contained in Equation (3.14) must contain the
interval ai , it must also be part of the r -interval with length Ma . Thus, we can say
that the sum of the length of the other r −1 intervals is Ma − Ii . Since at least one of
these intervals has to be equal or larger than average, we can say that there must
exist an interval a j for which

I j ≥ Ma − Ii

r −1
. (3.15)

Without loss of generality, assume j > i . After wn+1 is placed, we can form a
r-interval starting with a j−r+1 going clockwise, with total length:

I j−r+1 +·· ·+ Ii−1 +γ1 +γ2 +·· ·+ I j−1 = Ma − I j .



3.2. EXTENSION TO MULTIPLE INTERVALS

3

37

Combining this with Equation (3.15) allows us to derive

mr
n+1 ≤ Ma − I j ≤ r −2

r −1
Ma + Ii

r −1
≤ r −2

r −1
M r

n + Ii

r −1

This can be rewritten as follows

1+ 1

r −2

(
1− Ii

mr
n+1

)
≤ M r

n

mr
n+1

(3.16)

We can also construct two separate r -intervals from ai−r+1 to γ1 and from γ2 to
ai+r−1. This yields

mr
n+1 ≤ Ii−r+1 +·· ·+γ1 ≤ Ma −γ1 ≤ M r

n −γ1

mr
n+1 ≤ γ2 +·· ·+ Ii−r+1 ≤ Ma −γ2 ≤ M r

n −γ2

Combining these two equations gives

2mr
n+1 ≤ 2M r

n −γ1 −γ2

mr
n+1 ≤ M r

n − 1

2
Ii

1+ Ii

2mr
n+1

≤ M r
n

mr
n+1

(3.17)

We want to prove
M r

n
mr

n+1
≥ 1+ 1

r . If Ii
2m ≥ 1

r , this follows directly from Equation (3.17).

If Ii
2mr

n+1
< 1

r , we can rewrite Equation (3.16) as follows:

M r
n

mr
n+1

≥ 1+ 1

r −2

(
1− Ii

mr
n+1

)
> 1+ 1

r −2

(
1− 2

r

)
= 1+ 1

r −2

(
r −2

r

)
= 1+ 1

r

which concludes the proof.

Now for the main theorem of this section, the bound on µr :

Theorem 3.12. Let w := (w1, w2, . . . ) be any sequence on the circle, then for any integer
n > 0:

sup
n≤k≤2n

(
1+ 1

k

)2 M r
k (w)

mr
k (w)

≥ 1+ 1

r
.

Furthermore, by letting n go to infinity it follows that

µr ≥ 1+ 1

r
.
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Proof. We prove the theorem by contradiction. Assume there exists a sequence w
and a positive integer n such that for any k with n ≤ k ≤ 2n it holds that

M r
k (w)

mr
k (w)

< 1+ 1
r(

1+ 1
k

)2 . (3.18)

From Lemma 3.11 we know that M r
k (w) ≥ (1+ 1

r )mr
k+1(w). Inserting this into Equation

(3.18) gives: (
1+ 1

r

)
mr

k+1(w)

mr
k (w)

<
(
1+ 1

r

)
(
1+ 1

k

)2

mr
k+1(w)

mr
k (w)

< k2

(k +1)2 (3.19)

Using Equation (3.19) for all values of n ≤ k ≤ 2n yields

mr
2n(w)

mr
n(w)

= mr
2n(w)

mr
n−1(w)

· mr
2n−1(w)

mr
2n−2(w)

· . . . · mr
n+1(w)

mr
n(w)

< (2n −1)2

(2n)2 · . . . · n2

(n +1)2 = n2

(2n)2 = 1

4

This can be rewritten in combination with the bound mn(w) ≤ r
n as

mr
2n(w) < 1

4
mr

n(w) ≤ r

4n
(3.20)

Using Equation (3.20) and the bound M2n(w) ≥ r
2n , we can conclude that

M r
2n(w)

mr
2n(w)

>
( r

2n

)( r
4n

) = 2

which contradicts Equation (3.18), and thus the first part of the theorem must hold.
Since it is a strictly increasing function, it is maximized by letting n go to infinity:

µ≥ limsup
n→∞

M r
n(w)

mr
n(w)

= lim
n→∞

M r
n(w)

mr
n(w)

= lim
n→∞

(
1+ 1

r

)
(
1+ 1

n

)2 = 1+ 1

r

which concludes the proof.

3.3. THE DE BRUIJN-ERDŐS CONJECTURES
De Bruijn and Erdős conclude their work with three conjectures that still remain
open today. They state that the bounds given on λr ,Λr and µr are probably not the
best possible for r ≥ 2 and they conjecture1 that:

(Λr − r ) →∞ if r →∞ (3.21)

(r −λr ) →∞ if r →∞ (3.22)

r (µr −1) →∞ if r →∞ (3.23)

1In their paper, De Bruijn and Erdős conjecture that the expressions r (Λr −1) and r (1−λr ) tend to
infinity if r →∞, but this is most likely a typing error, and the conjectures were meant as stated
here.
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Note that since ∆r and µr are greatest lower bounds and λr is a lowest upper bound,
these conjecture do not need to hold for every sequence. They are already proven if
they hold for a single sequence.

The third conjecture can be seen as the most important one, since it com-
bines aspects of the first two. In this section, we investigate this conjecture. We
derive three subquestions from this conjecture and use experimental data on van
der Corput sequences to gain insights. Finally, De Bruijn and Erdős claim that this
conjecture would imply the theorem of van Aardenne-Ehrenfest. We explain why
this claim holds in Section 3.3.3.

3.3.1. THREE QUESTIONS FOLLOWING FROM THE CONJECTURE

We break down this conjecture into three subquestions:

Question 1: Does µr approach 1?
The first thing to note is that the conjecture implicitly assumes that µr approaches 1
for r →∞. This assumption arises because by definition, µ cannot be smaller than
1, and if it would not approach 1, the conjecture would trivially follow. Thus, it is
a necessary condition for the conjecture that µr approaches 1 for r →∞. However,
whether this condition holds true is unknown. Therefore, our first question is: Does
it hold that limr→∞µr = 1? This question is more difficult than it appears at first
glance. For instance, this does not hold for the DBE-sequence.

The DBE-sequence is optimal for r = 1 and therefore one might assume that
its performance extends to higher values of r . However, as illustrated in Lemma 3.13,
this is not the case. Consequently, we use a different sequence for our experimental
results.

Lemma 3.13. The DBE-Sequence has µr (w) = 2 for all r ∈N
Proof. From Equation (3.8), we know that the interval lengths of the DBE-Sequence
for given n are

lg

(
n +1

n

)
, lg

(
n +2

n +1

)
, . . . , lg

(
2n −1

2n −2

)
, lg

(
2n

2n −1

)
.

This means that we can calculate the ratio between the longest and shortest
r-intervals after n points have been placed:

lg
( n+1

n

)+·· ·+ lg
( n+r

n+r

)
lg

( 2n−r+1
2n−r

)+·· ·+ lg
( 2n

2n−1

) = lg
( n+r

n

)
lg

( 2n
2n−r

) = lg
(
1+ r

n

)
lg

(
1+ r

2n−r

) .

Now we can calculate µr :

µr (w) = lim
n→∞

lg
(
1+ r

n

)
lg

(
1+ r

2n−r

) = lim
n→∞

2n − r

n
· lg

((
1+ r

n

)n)
lg

((
1+ r

2n−r

)2n−r
) = 2 · lg(e)

lg(e)
= 2.
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Note that this does not disprove the conjecture, as the conjecture only requires there
to exist a single sequence w for which µr (w) approaches 1 for r →∞.

Question 2: Does µr approach 1 slower than the provided lower bound?
The important claim the conjecture makes is that the lower bound on µr leaves
room for improvement, and that µr approaches 1 significantly slower than 1+ 1

r . To
understand what this means, we use the Big Omega notation. Recall that De Bruijn
and Erdős provided the lower bound of µr ≥ 1+ 1

r . In the hypothetical case some
upper bound would exist of the form (µr −1) ≤ c

r for some constant c, we would

know that (µr −1) =O( 1
r ). This would give us a good indication how µr behaves for

large r and how fast µr approaches 1. However, the conjecture claims such an upper
bound can not exist, since in that case

r (µr −1) = r
(
1+ c

r
−1

)
= c.

Which would contradict the conjecture. Therefore, the conjecture is equivalent to
the statement

(µr −1) =Ω

(
1

r

)
.

This conjecture was made by de Bruijn and Erdős in 1948 and to the best of our
knowledge has remained open ever since.

Question 3: How fast does µ approach 1?
The conjecture claims that µr approaches 1 slower than the bound requires, which
is an interesting question in its own right, but it also creates an intriguing follow-up
question. If the conjecture is correct, then how fast does µ approach 1? Is it perhaps
possible to find a lower bound of the type:

µr ≥ 1+ c
log(r )

r
. (3.24)

for some constant c? If we require this to be a tight bound, the question becomes:

(µr −1) =Θ

(
log(r )

r

)
.

These are the three questions we investigate. We use an experimental approach and
compute µr numerically.

3.3.2. EXPERIMENTAL RESULTS

The first question to investigate is whether µr approaches 1 for r →∞. As shown
in Lemma 3.13, this does not hold for the DBE-sequence. The DBE-Sequence is
designed for r = 1, and its µ1 is optimal. However, it does not perform well for
higher r . The r intervals of largest length are always right next to each other, and
the same for the intervals of smallest length. Much better results would be possible
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for sequences where the r largest and smallest intervals are more spread out, instead
of next to each other. Therefore, we have to find another sequence, which does
have this property. If we look into equidistribution literature, we find that the van
der Corput sequence is a good candidate. Variants of this sequence are often used
to create sequences with low discrepancy, which makes it a good candidate for our
problem.

1 1

2

3 4

5 6

7 8

9 11 10 12

13 15 14 16

Figure 3.6.: The points of the vdC-sequence.

We test r = 1, . . . ,2304 for vdC-sequence of lengths n = 4096, . . . ,8192. The result can
be found in Figure 3.7.

From the figure, we can see that the vdC-sequence does seem to satisfy µr → 1 for
r →∞. It starts out from µ1 =µ2 = 2, and it descends rapidly. This was tested up to
r = 2304, for which µ2304 = 2764

2757 ≈ 1.0025.

Now that we know it is likely that µr → 1, we investigate the vdC-sequence again,
this time to determine its order of approximation. In Figure 3.8 we add three
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Figure 3.7.: The µr of the vdC-sequence, for different r . Tested for the first 1024
numbers of the sequence.

functions to the graph: the red line is the lower bound provided by Erdős and De
Bruijn, and the dotted oranges line are the functions:

1+
4
9 lg(r )

r
and 1+ 2+ 4

9 lg(r )

r
(3.25)

In Figure 3.8, there seems to be a significant gap between the lower bound and
the data from the vdC-sequence. However, the two functions from (3.25) seem to
enclose the data from the vdC-sequence nicely. This implies the data seems to
follow a logarithmic trend.

To further investigate if such a function of the form 1+ c lg(r )
r would fit as

a lower bound on µr , we plot r (µr −1) on a logarithmic scale in Figure 3.9.

If a lower bound of this form exists, then the data should be able to be bounded
by a straight line in the figure. We also plot the bounds as mentioned in Equation
(3.25). The data can be bounded by these equations, and it does appear to follow a
straight line in the figure. However, the behaviour is also erratic, so it’s hard to say
whether these specific bounds would work for all r .

The experimental results suggest there likely exists a lower bound to the

vdC-sequence for which (µr (w)−1) =Θ
(

log(r )
r

)
. The vdC-sequence is the sequence



3.3. THE DE BRUIJN-ERDŐS CONJECTURES
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Figure 3.8.: The blue dots are (µr −1) of the vdC-sequence for different r . The dotted
oranges lines are the functions of Equation (3.25). The red line is the
known lower bound on µr .

with the lowest µr (w) we found, and therefore these results support the original
conjecture.

3.3.3. CONNECTION TO VAN AARDENNE-EHRENFEST

De Bruijn-Erdős claim that if their µ conjecture would hold, it would imply the
famous theorem by Mrs van Aardenne-Ehrenfest about just “distributions”. This
claim is not easy to see. Here we show why this claim holds.

Recall that the discrepancy of a sequence is defined as follows:

DN (a) := sup
0≤α<β≤1

∣∣∣∣ AN ([α,β))

N
− (β−α)

∣∣∣∣ .

The Aardenne-Ehrenfest Theorem stated that N ·DN (a) cannot be bounded by any
constant, i.e.,

lim
N→∞

N ·DN (a) =∞.

Now back to the question, how is this implied by the conjecture? We show this
in two steps. First, we show that the conjecture of (3.23) implies that at least
one of (3.21) or (3.22) has to hold. Afterwards, we show that this implies the
Aardenne-Ehrenfest Theorem.
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Figure 3.9.: r(µr −1) for the vdC-sequence, for different r . Tested for the first 8192
numbers of the sequence.

Lemma 3.14. If r (µr −1) →∞ for r →∞, then (Λr −λr ) →∞ for r →∞.

Proof. First, we rewrite the conjecture using the fact that µr ≤ Λr
λr

:

r (µr −1) ≤ r

(
Λr

λr
−1

)
= r

λr
(Λr −λr ).

Now we want to use λr ≥ r
2 . This is a broad bound we can derive from the

vdC-sequence, where all intervals at any given moment only have two different sizes,
and one is half the size of the other. Thus:

r

2n
≤ mr

n ≤ r

n
≤ M r

n ,≤ 2r

n

and therefore

1

2
r ≤ n ·mr

n ≤λr ≤ r ≤Λr ≤ n ·M r
n ≤ 2r.

We rewrite this bound as r
λr

≤ 2, which we can use as follows:

r (µr −1) ≤ r

λr
(Λr −λr ) ≤ 2(Λr −λr ).

This means that if r (µr −1) →∞ for r →∞, then it also has to hold that (Λr −λr ) →∞
for r →∞.
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This in turns means that if the µ-conjecture holds, either Equation (3.21) or (3.22)
has to hold, because

(Λr −λr ) = (Λr − r )+ (r −λr )

and if the left-hand side goes to infinity for r to infinity, then at least one of the
terms on the right-hand side has to as well. We finish the claim by showing that
either one of these implies the Aardenne-Ehrenfest Theorem.

Lemma 3.15. If (Λr −λr ) tends to ∞, then limN→∞ N ·DN (a) =∞.

Proof. We show this by proving the following 2 statements:

Λr − r ≤ sup
0≤α<β≤1

N

(
(β−α)− AN ([α,β))

N

)
(3.26)

r −λr ≤ sup
0≤α<β≤1

N

(
AN ([α,β))

N
− (β−α)

)
(3.27)

Since (Λr −λr ) →∞ implies Λr − r or r −λr must tend to ∞, proving these two
statements would mean that:

Λr −λr tends to ∞⇒ sup
0≤α<β≤1

N

∣∣∣∣(β−α)− AN ([α,β))

N

∣∣∣∣ tends to ∞,

which proves the original statement.

First, we show that Equation (3.26) holds. For any sequence, choose [α,β)
to be the largest r -interval. Then it must hold that:

sup
0≤α<β≤1

N

(
(β−α)− AN ([α,β))

N

)
≥ N

(
M r

N (a)− r

N

)
= (

N M r
N (a)− r

)≥ (Λr − r ),

which proves Equation (3.26). The proof of Equation (3.27) is similar, but is done
with the smallest r -interval:

sup
0≤α<β≤1

N

(
AN ([α,β))

N
− (β−α)

)
≥ N

( r

N
−mr

N (a)
)
= (

r −N mr
N (a)

)≥ (r −λr ).

This concludes the proof.

3.4. FINITE DE BRUIJN-ERDŐS SEQUENCES
In this section, we investigate the best possible λ and Λ for finite sequences. We
first show that optimal sequences have unique lengths of intervals. Afterwards, we
provide a formula for optimal finite De Bruijn-Erdős sequences, and prove their
optimality.

Let mk (w) be the smallest interval after the first k points of the sequence
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w have been placed. De Bruijn and Erdős [25] found the upper bound described in
Section 3.1.3, which tells us that for any sequence w it holds that:

inf
1≤k≤2n

k ·mk (w) ≤ 1

2(H2n −Hn)
, (3.28)

where Hx is the x-th harmonic number. The right side of the equation approaches
1

2ln(2) from above, as n goes to infinity. De Bruijn and Erdős also provided a
sequence which matches this upper bound as n goes to infinity, showing that for
infinite sequences, no better sequence is possible. However, since the bound is
only tight in infinity, it leaves an opportunity for improvement for finite sequences.
Especially for small n, there is a decent gap between these. In Figure 3.10 nMn and
nmn for the first n points of the De Bruijn-Erdős Sequence is plotted versus the best
possible values according to the bounds from Sections 3.1.2 and 3.1.3.

0 5 10 15 20

0.8

1.0

1.2

1.4

Figure 3.10.: The continuous lines are nMn and nmn for the de Bruijn-Erdős
sequence, the dots are the best upper and lower bounds possible for a
sequence of n length, and the dashed lines are the asymptotes.

We want to close this gap. It turns out that the upper bound of Equation (3.28) is
achievable. We first show that any sequence which matches this upper bound has
unique lengths of intervals. Afterwards, we give a formula and prove that this does
provide an optimal finite DBE-sequence.

3.4.1. UNIQUENESS OF INTERVAL LENGTH

In this section, we show how to construct optimal finite DBE-Sequences and that
the lengths of the intervals are uniquely determined. By uniquely determined, we
mean that if the interval lengths are sorted on length, the sorted sequence is unique.
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If two seating sequences end up with the same sorted interval lengths at every step,
we regard those as equivalent. We start with showing that the lengths of the intervals
are unique after all the points of the sequence have been placed, and afterwards
extend this to show they are unique at every step.

Lemma 3.16. For any optimal finite DBE-Sequences, the lengths of the intervals are
uniquely determined, after all points have been placed

Proof. Let w be a sequence and let the length of its intervals be a1, a2, . . . , a2n , sorted
in descending order. Theorem 3.5 provides the following lower bound on all a j :
for any a j with j even, it holds that:

a2n ≥ λ(w)

2n
, . . . , a2n−2k ≥ λ(w)

2n −k
, . . . , a2 ≥ λ(w)

n +1
. (3.29)

For any a j with j odd, a j ≥ a j+1 provides a lower bound. Theorem 3.5 establishes
an upper bound on λ by summing the lower bounds on the lengths of all intervals
present after placing all 2n points. Since this DBE-Sequence w is optimal, it is tight
on this upper bound on λ. Therefore, it must hold that the lengths of the intervals
are tight on these lower bounds. This means that these are the only possible lengths
of intervals, and thus unique.

We now want to extend this to uniqueness at every step. To understand why this
is the case, we first look at the example of an optimal DBE-Sequence of length 8,
before proving it formally. For an optimal DBE-Sequence w of length 8, the lengths
of the 8 intervals after all points have been placed must be: λ

8 , λ8 , λ7 , λ7 , λ6 , λ6 , λ5 , λ5 ,
where the sum of them is exactly 1.

From these interval lengths, we can determine how the sequence was cre-
ated. Any interval of length λ

x can only exist after at least x points have been placed,
otherwise the sequence would not have λ(w) = λ. Therefore, the two intervals of
length λ

8 could only be created by the 8th and final point. This means the two

intervals of length λ
7 must have been created by the 7th point, since adding any

point can only create two new intervals. In the same way, it follows that the intervals
of length λ

6 and λ
5 were created by the 6th and 5th point of the sequence respectively.

We have now determined exactly when the eight final intervals were cre-
ated. They were all created by the placement of points 5, 6, 7 or 8.
Since all these intervals exist when all points have been placed, we now
know that none of the points 5, 6, 7 or 8 can be adjacent to each other, since
this would destroy an earlier created interval. Thus, the sequence would look like this:

? ?? ?5 6 7 8
1
5λ

1
5λ

1
6λ

1
6λ

1
7λ

1
7λ

1
8λ

1
8λ
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We still don’t know the exact locations of the points, and we don’t know which
points they are adjacent to. We can determine this by looking at the interval after
four points have been placed. We now know that the four intervals existing at that
moment must have had the specific lengths: 2λ

5 , 2λ
6 , 2λ

7 and 2λ
8 . Using the same

reasoning as before, it follows that the intervals with length 2λ
8 and 2λ

7 have to

be adjacent to the 4th point, and the intervals with length 2λ
6 and 2λ

5 have to be
adjacent to the 3rd point.

? ?3 4
2
5λ

2
6λ

2
7λ

2
8λ

Since the choice of the first and second point are symmetric, this means the interval
lengths are fully determined at each step. This process can be repeated for any finite
DBE-Sequence, to place all points. In general, it holds that, for any point of any
optimal finite DBE-Sequence:

• The length of an interval in which a point is placed is unique.

• The lengths of the two intervals created are unique.

• As a consequence, the lengths of all intervals at every step are unique.

Lemma 3.17. Let w be an optimal DBE-sequence of length 2n. After 2 j points of the
sequence have been placed, let the lengths of the intervals be a1, a2, . . . , a2 j , sorted in
descending order. It then holds that:

λ

j + i −1
> a2i−1 ≥ a2i ≥ λ

j + i

for i = 1, . . . , j . Furthermore, every time a point is placed, it is placed in the interval
with the largest length, and the two newly created intervals are smaller than all
pre-existing intervals.

Proof. We prove this by backward induction. From Lemma 3.16, we know that these
interval lengths hold after all 2n points of the sequence have been placed. We now
want to show that if this holds when 2 j points have been placed, it also holds when
2 j −2 points have been placed. Furthermore, we show that both point 2 j and 2 j −1
are placed in what was the largest interval at the time, and created the two newly
created intervals, which are smaller than all pre-existing intervals.

From the induction hypothesis we can determine that for the smallest two
intervals it holds that λ

2 j−1 > a2 j−1, a2 j . However, in an optimal DBE-sequence, any

interval smaller than λ
x cannot exist after x points have been placed. This must

mean that these two intervals were created when the 2 j -th point was added. So,
after only 2 j −1 points were placed, a2 j−1 and a2 j still formed one interval together,
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of length a2 j−1 +a2 j . Let us call this interval y with length Iy . Since Iy = a2 j−1 +a2 j ,
it holds that:

2λ

2 j −1
> Iy ≥ 2λ

2 j

λ

j −1
> λ

j − 1
2

> Iy ≥ λ

j

This means interval y was the interval with the largest length when point 2 j was
placed. Thus, point 2 j was placed in the interval with the largest length, and the
two newly created intervals are smaller than all pre-existing intervals.

Now we look at the intervals with lengths a2 j−3, a2 j−2. These are the
smallest intervals after 2 j −1 points have been placed, since the intervals with
lengths a2 j−1 and a2 j no longer exist. From the induction hypothesis we get that
λ

2 j−2 > a2 j−3, a2 j−2. Since these intervals are therefore too small to be created by one
of the first 2 j −2 points, it must mean that these two intervals were created when
the (2 j −1)-th point was added. So, after only 2 j −2 points were placed, a2 j−3 and
a2 j−2 formed one interval together. We call this interval z with length Iz . Since
Iz = a2 j−3 +a2 j−2, it holds that

2λ

2 j −2
> Iz ≥ 2λ

2 j −1

λ

j −1
> Iz ≥ λ

j − 1
2

> λ

j

Since it holds that

Iz ≥ λ

j − 1
2

> Iy ,

it follows that z was the interval with the largest length when point 2 j −1 was
placed. Hence, point 2 j −1 was also placed in the interval with the largest length,
and the two newly created intervals are smaller than all pre-existing intervals.

So, after 2 j − 2 points have been placed, there exist 2 j − 2 intervals with
lengths Iz ≥ Iy ≥ a1 ≥ a2 ≥ ·· · ≥ a2 j−4. Since we have shown that

λ

j −1
> Iz ≥ Iy ≥ λ

j

and it still holds that

λ

j + i −1
> a2i−1 ≥ a2i ≥ λ

j + i

for i = 1, . . . , ( j −2), we have the bounds on interval lengths required by the induction
step.
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Using these two Lemmas, we can prove uniqueness of interval length

Theorem 3.18. For any optimal finite DBE-Sequences, the lengths of the intervals are
unique after any number of points is placed.

Proof. In Lemma 3.17, we proved that any point of the sequence must always be
placed in the largest interval, and splitting it into the two smallest intervals. If the
length of these two smaller intervals are unique, then the length of the original
largest interval must also be unique. Since we have shown in Lemma 3.16 that
the lengths of the intervals are unique when all points are placed, it follows from
backwards induction that all lengths of the intervals are unique after any number of
points are placed.

The only difference allowed in optimal finite DBE-Sequences is in symmetries, as
there are always two positions that can be chosen to divide an interval into two
specific different lengths. For example, to split an interval of length 1 into two
intervals of lengths 0.4 and 0.6, you could place a point at either 0.4 or 0.6. In Figure
3.11, there are two optimal finite DBE-Sequences of length 8, in which the location
of the second point is chosen differently between them. This causes the fifth and
sixth point to differ as well. The lengths of the 8 intervals are still unique, just in a
different order.

1 23 45 6 7 8
1
5λ

1
5λ

1
6λ

1
6λ

1
7λ

1
7λ

1
8λ

1
8λ

1

1 23 46 5 7 8
1
6λ

1
6λ

1
5λ

1
5λ

1
7λ

1
7λ

1
8λ

1
8λ

1

Figure 3.11.: Two optimal DBE-Sequences of length 8

3.4.2. FINITE DBE-SEQUENCE WITH BEST POSSIBLE λ

Now we know what the lengths of the intervals should be, and that they are unique.
In this section, we provide a formula for optimal finite DBE-Sequences. We show
that the sequence we provide matches the upper bound of Equation (3.28), proving
that our sequence is the best possible.

We refer to our sequence as the 2n-sequence. It is defined as follows:
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Definition 3.19 (2n-sequence). Let 2n be any even integer. The 2n-sequence is a
finite sequence w := (w1, w2, . . . , w2n) where the points are defined as:

wk =


2Hb(1) −2H(2k−1)b(k)

2(H2n −Hn)
mod 1 For 1 ≤ k ≤ n

2Hb(1) −Hk −Hk−1

2(H2n −Hn)
mod 1 For n < k ≤ 2n

where

b(k) = 2
⌊

lg 2n
2k−1

⌋
We show that this sequence is optimal with the following theorem:

Theorem 3.20. For the 2n-sequence, it holds that

inf
1≤k≤2n

k ·mk (w) = 1

2(H2n −Hn)

Proof. Let wk be the k-th point of the 2n-sequence and let Il , Ir be the length of the
two intervals created by placing wk . For the theorem to hold, we have to prove that

Il , Ir ≥ 1

2k (H2n −Hn)
(3.30)

Since this function is strictly decreasing in k, we only have to prove it for the
two new intervals formed. Together with the upper bound of Equation (3.28), the
theorem follows. We prove Equation (3.30) in two steps. First we show that this holds
in the case of 1 < k ≤ n, and afterwards we show this holds for the case n < k ≤ 2n.

Case 1: 1 < k ≤ n
In the case of 1 < k ≤ n, wk is placed at

2Hb(1) −2H(2k−1)b(k)

2(H2n −Hn)
mod 1

To determine Il and Ir , we need to which of the points w1, . . . , wk−1 are closest to
wk . Specifically, we are looking for the largest wl and smallest wr for which holds
that wl ≤ wk ≤ wr . Since w1 = 0, we know wl always exists. If no wi is larger than
wk , take wr = 1, which is equal to w0 mod 1.

To determine the location of wl and wr , we look at the definition of the
sequence. The location of a point wi is completely determined by the value of
(2i −1)b(i ). If the value of (2i −1)b(i ) is close to (2k −1)b(k), then wi is close to wk .
Specifically, for wl and wr , (2l −1)b(l ) > (2k −1)b(k) > (2r −1)b(r ) are the closest in
value for any i . Now we study how close this value can get.

Note that b(i ) is a monotone decreasing function, which is always a power
of 2. Therefore, for all wi placed before wk , (2i −1)b(i ) is always divisible by b(k).
This means for wl and wr that (2l −1)b(l ) ≥ (2k)b(k) and (2k −2)b(k) ≥ (2r −1)b(r ).



3

52 3. A CONJECTURE BY DE BRUIJN AND ERDOS

Therefore, the two closest points possible are:

wl =
2Hb(1) −2H(2k)b(k)

2(H2n −Hn)
mod 1

and

wr =
2Hb(1) −2H(2k−2)b(k)

2(H2n −Hn)
mod 1

where the interval Il is always smaller or equal to Ir . It also follows that the size
of this interval is decreasing in k, therefore this is always the smallest interval that
exists. The exact size of the interval Il is:

Il = wl −wk = 2H(2k)b(k) −2H(2k−1)b(k)

2(H2n −Hn)

= 1

2(H2n −Hn)

(2k)b(k)∑
i=(2k−1)b(k)+1

2

i

≥ 1

2(H2n −Hn)
b(k)

2

2kb(k)
= 1

2k(H2n −Hn)

which is the required inequality.

Case 2: n < k ≤ 2n
In the case of n < k ≤ 2n, wk is placed at:

2Hb(1) −Hk −Hk−1

2(H2n −Hn)
mod 1

Thus the closest two points possible are:

wl =
2Hb(1) −2Hk

2(H2n −Hn)
mod 1

and

wr =
2Hb(1) −2H(k−1)

2(H2n −Hn)
mod 1

The intervals between these points and wk are both of size:

Hk −Hk−1

2(H2n −Hn)
= 1

2k(H2n −Hn)

which is exactly the required lower bound. It also follows that the size of this
interval is decreasing in k, therefore this is always the smallest interval that exists.
This concludes the proof.
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4
“STAY NEARBY OR GET CHECKED”:

A COVID-19 CONTROL STRATEGY

In this chapter, we study the spread of COVID-19, using social network models. This
research was done at the height of the outbreak in 2020. These were times filled with
a sense of uncertainty, as this epidemic was unprecedented in the modern world. The
epidemic presented novel challenges, prompting widespread measures like lockdowns
and a swift transition to remote work. The abrupt reduction in social contacts had
negative effects on most people. This chapter contains our ideas on how to control
the spread of the epidemic, while allowing for more social contacts. This work is
written with the data available at that time, as we wanted to offer our solutions
as soon as possible. This means we mostly use data up until June 2020, and fo-
cus our ideas on reducing the second wave, as these were important issues at the time.

Our model is based on the classical insight from network theory that long-
distance connections drive disease propagation. We repurpose this insight into a
strategy for controlling COVID-19. We simulate a scenario in which long-range
transmission in a population is kept at a minimum. Simulated spreading patterns
resemble recent distributions of COVID-19 across EU member states, German and
Italian regions, and New York City zip codes, providing some model validation. Results
suggest that our proposed strategy may significantly reduce peak infection. We also
find that flare-ups remain local longer, providing more time for geographical con-
tainment. These results suggest a tailored policy in which individuals who frequently
travel to places where they interact with many people are offered greater protection,
tracked more closely, and are regularly tested. This policy can be communicated
to the general public as a simple and reasonable principle: Stay nearby or get checked.

This work eventually led us to compete in the COVID-19 prediction chal-
lenge, a challenge in which researchers could use a prediction model to predict the
number of COVID-19 deaths. We participated in the USA category, in which our

Parts of this chapter have been published in Infectious Disease Modelling 6, 36–45 (2021) [3].
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model outperformed all other participants. The challenge organisers have written a
paper about the challenge and its results, of which we are coauthor [4].

4.1. INTRODUCTION
Many countries are currently experiencing a second wave of COVID-19 after having
exited a lockdown regime in which person-to-person contact was severely restricted.
The constraints placed on social and economic interaction have had high costs.
Public support for nation-wide restraints on freedom of movement has waned. This
raises the question what alternative control strategies may be possible that are less
taxing?

Here we explore the leverage gained from differentiating between short-distance
and long-distance ties in post-lockdown policy. The idea is that the blockage of
transmission through long-distance ties increases the effective diameter of a network,
which is inversely related to the speed of propagation [30, 31]. In practice, such
geographic differentiation may be achieved through prioritization of non-local travel
and transport in policy restrictions, enforcement and medical testing as well as
location tracking technologies. The relative sparsity of long-range ties may make
tight control feasible through a focus of resources on a small number of key
individuals or interactions.

Results show that reductions in transmission through long-range ties slow
down COVID-19 to a much greater extent than reductions in short-range ties.
Selective scrutiny of long-distance ties has two added benefits: Flare-ups of
COVID-19 are local, allowing geographically focused interventions that are of limited
economic damage and logistically more feasible. And social toll is diminished, as
the intimacy of human relations and need for face-to-face contact are known to
decrease sharply with geographical distance [32–38].

Our work is organized as follows. In Section 4.2 we describe our proposed
strategy. In Section 4.3 we describe our mathematical model and validate it against
the data. In Section 4.4 we present the results of model simulations. Section 4.5
summarizes our findings and recommendations.

4.2. RELATED WORK
Social network models of disease spreading have been around for decades. What
sets our work apart is an analysis of the epidemiological leverage of government
policies that differentiate long-distance from short-distance ties in social networks.

4.2.1. SOCIAL NETWORK MODELS OF INFECTIOUS DISEASE SPREAD

Many epidemiological studies assume random mixing of individuals within demo-
graphic subgroups (e.g. by age) [39, 40]. However, most contact occurs between
people who live very close to one another [41, 42]. We draw on the well-known
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small-world model of Watts and Strogatz [17] to capture the fundamental difference
in viral risk between close-range and long-range ties: Close-range ties connect
infected individuals with others who are already infected or will probably be soon
anyway. Long-range ties connect infected areas with uninfected areas, acting as
highways of transmission.

The small-world approach to the study of epidemiological dynamics is not
new. Network analysis was introduced into mainstream epidemiology at the turn
of the century to explicitly incorporate the contact structure among individuals. It
is well known that diffusion processes on networks depend on the corresponding
connectivity patterns [43]. Research has shown that subtle features of the network
structure have a major impact on the transmission of an epidemic [44, 45] and that
social networks can be modelled through random modifications of regular networks,
such as lattice networks [17, 46]. This subtle difference consists of a small portion
of random ties to distant localities on the lattice, producing a dramatic reduction in
a network’s diameter. The epidemiological dynamics on such networks has been
examined for a range of models in [47–49], which all show that the speed of the
spread is inversely proportional to the diameter. As social networks have a small
diameter (the well known six degrees of freedom), epidemics are hard to contain in
time within confined regions of a population.

Since all social networks show similar epidemiological dynamics,1 we choose
to model the COVID-19 epidemic on a small-world graph, which is a very well
understood model. A small-world SEIR model was used in [50] to model an
influenza outbreak in the city of Oran (Algeria). In a study closest to ours, Small
and Tse investigate disease spread in a small-world network with separate infection
probabilities for short-distance and long-distance ties [51]. Using a SEIR model of
the SARS epidemic dynamics they find that exponential growth in infection occurs
upon onset of several non-local infections. They conclude that key to capturing the
empirically observed transmission dynamics is differentiating local from non-local
transmission probabilities. We build on this observation to explore the leverage that
the targeting of Covid-19 policy at reductions of non-local transmission may provide
to global, national, or regional policy makers.

4.2.2. INTERVENTIONS

In epidemiological models, effects of both general and targeted interventions on
disease spread have been studied [52]. General interventions such as social
distancing and school closures aim to bring down overall infection probabilities or
those within and between demographic subgroups [40]. Targeted interventions seek
to identify high-risk individuals [39]: Antiviral treatment and household isolation of
identified cases, prophylaxis and quarantine of household members. We propose a
kind of targeting that is aimed at nodes that connect dangerous edges in a network.

1This applies to diseases such as influenza or COVID-19, which affect the entire society. Sexually
transmitted diseases such as HIV require more special network models [47]
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A challenge faced by contemporary policy makers is when and how to ease
interventions. It is well known that when a lockdown is lifted, a virus tends to
re-appear [53] and this has indeed happened in many countries. How can a second
wave be contained while at the same time preventing enormous economic costs?
Therefore, it is of paramount importance to find ways to regain some form of normal
life (alleviating lockdown) while at the same time maintaining control over the virus.
The main idea proposed here is that restricting certain high-risk interactions within
the social network may be an effective alternative strategy to restricting movement of
an entire population. ‘Long-distance’ ties represent interaction between individuals
that are distant to each other in a network. Typically, this means they are also
physically distant, i.e., think of a truck driver that delivers goods to a company on the
other side of the country or individuals traveling by plane that encounter each other
at airports and in airplanes where social distancing is difficult or next to impossible.
Small-world models suggest that long-distance ties greatly accelerate the speed of
transmission. Long-range ties stemming from infected individuals allow disease to
start spreading in not-yet-infected individuals and regions. At a global level, long ties
predominantly involve international highways and airline transportation. Topological
properties of airline transportation networks can explain patterns in viral disease
spread worldwide [42, 54]. At a national level, long ties pertain to mobility through
major roads and trains between cities. At a regional level, they involve commuting
and local delivery services.

4.3. MODEL

4.3.1. SMALL WORLD SEIR MODEL

We model the spread of the disease by a small world network, in which each node
of the network is either Susceptible, Exposed, Infectious, or Recovered (an SEIR
model [50, 55]). In this model, nodes are individuals and we extrapolate our results
to large communities (countries, continents). Initially, a node is in state S. If it is
infected, it moves through states E , I , and R. While in state I , a node may infect
each of its neighbors with a probability r per time step (fixed at one day in our
simulations). The duration of state E is the incubation period, and the duration of
state I is the infection period, both of which are lognormally distributed [56]. The
probability r is our single calibration parameter, and all other parameters are fixed
according to values that have been reported in the literature. In our simulations, the
incubation period has a mean of 5 days and the infection time has a mean of 6.5
days, both periods have a standard deviation of 3 days. This is comparable to values
reported in [40, 57–59]. Each simulation is started by infecting a single random node
(patient zero).

The network in our model is the familiar Watts-Strogatz small world net-
work, which distinguishes between short and long ties. An illustration of a small
example network with N = 100, k = 20, and p = 0.05 is shown in Figure 4.1. It allows
us to focus on a policy in which individuals that travel and interact with many
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people need to be regularly tested (checked). We call this policy: stay nearby or get
checked.

The network is described by two parameters k, p, where k is the number
of ties per node, which is equal for all nodes, and p is the fraction of randomly
selected long ties. In the simulations we fix N = 10000, k = 20, and p = 0.1, which
is in the standard range [60] and has been used to model an influenza outbreak in
the Oran region of Algeria [50]. Results are robust to reasonable changes in these
parameters.

Figure 4.1.: An example of a Watts-Strogatz small-world graph with N = 100, k = 20 and
p = 0.05.

4.3.2. MODEL CALIBRATION

We calibrated our model against the number of infections in Wuhan (source: Johns
Hopkins), which went into an initial lockdown from January 23, followed by a heavy
lockdown from February 10 [59]. A substantial number of infections remained
undetected and our simulations are based on the estimate that only ten percent
of the infected cases were officially confirmed [61]. After an exposed individual
becomes infectious, it may take several days to develop symptoms, and from
development of symptoms it takes an average of around 5 days to diagnosis [59],
after which the patient quarantines and no longer spreads the disease. We therefore
set the duration of the infectious state to 10 days in our model. We calibrated our
model parameter r with values 0.055 in the period before lockdown, 0.0065 for the
initial lockdown and 0.0012 for the severe lockdown. By using these values, we were
able to reproduce the total number of officially confirmed cases, as demonstrated in
Figure 4.2.

The reproduction number R0 at the onset of the epidemic is equal to r ·k · t in
our model. This value is high at the onset, but reduces already before the initial
lockdown due to the clustered structure of the network. We find an average R0 = 3.9
pre-lockdown, R0 = 0.54 during the initial lockdown and 0.12 during the severe
lockdown. These numbers agree with the statistical analysis in [59].
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Figure 4.2.: Total number of officially confirmed cases (left) and daily number of new cases
in the Hubei area. The shaded part represents the initial lockdown, between Jan
23 and Feb 10. The spike in new cases on Feb 12 was due to an inclusion
of previously uncounted clinically diagnosed patients. The model data are an
average of 200 Monte Carlo simulations.

Figure 4.3.: The computed reproduction number R0 during the simulation reduces from an
initial 7.15 (from r = 0.055,k = 20, t = 6.5) but drops even before the lockdown of
January 23. Its average is 0.54 during the initial lockdown (shaded area) and
reduces even further during the severe lockdown.

We fixed r = 0.055 for all simulations of the spread of the disease before lockdown.
We calibrated r after lockdown against the data of several European countries: Italy,
Austria, Sweden, Germany. Italy announced its lockdown relatively late. We used
r = 0.01 after lockdown. We find R0 = 4.0 pre-lockdown, which is marginally higher
than the 3.8 found in [59], and R0 = 0.84 post-lockdown.

Austria implemented a relatively severe lockdown. We found that a parameter value
of r = 0.0055 post-lockdown reproduces the number of confirmed cases.

To verify if the spread of the virus in our network model matches the observed
spread of the disease, we compare our model to data on different scales: countries
(American states, European countries), regions (in Italy and Germany), and cities
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Figure 4.4.: Daily number of officially confirmed new cases in Italy (left) with r = 0.01 after
lockdown. Our simulation starts with a single infected node on January 31 and
we set the initial date of the lockdown on March 9, when the government
announced nationwide regulations. We plotted one standard deviation difference
in dark green, and a 98 percent confidence interval in light green around
the model data to illustrate the accuracy of our model. We find an average
reproduction number R0 = 4.0 (right) before lockdown and R0 = 0.84 after
lockdown.

Figure 4.5.: Daily number of officially confirmed new cases in Austria (left) with r = 0.0055
after lockdown. Our simulation starts with a single infected node on February
22 and a lockdown at March 15. We find an average reproduction number
R0 = 4.2 (right) before lockdown and R0 = 0.55 after lockdown.

(New York City zip codes). We order the data from largest to smallest and normalize
by dividing by the largest number of cases. We find that the spread of the disease
in our network model is comparable to the data, as illustrated in Figure 4.7. We
summarize our calibration of the model in a table:
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Figure 4.6.: A comparison of the daily number of officially confirmed new cases in ten EU
countries during March and April 2020. The numbers are averaged over six days.
In the right-hand figure, this data is adjusted so that the peak of the number
of cases occurs after 50 days. This is compared to the 99% confidence band
of a model computation with r = 0.055 pre-lockdown and r = 0.0075 during
lockdown. Not all countries fit in the confidence band because their waves
plateaued, while our model shows a sharp peak. The increase and decrease of
the wave in our model does match the data.

r Interpretation
0.001 Complete lockdown as in Wuhan after February 10th. Fully controlled society.

0.005 Severe lockdown as in Austria. Strong restrictions on travel, shopping, gatherings.

0.01 Moderate regulations and social distancing. As in many EU countries after March 15.

0.02 Requested social distancing, but no regulations.

0.055 Pre-lockdown situation. No social distancing.

Figure 4.7.: Number of confirmed cases on three different scales: USA and Europe – Regione
and Bundesländer – NYC zip codes. The data is ranked from largest to smallest
and normalized. On each scale, the spread of the disease displays a similar
exponential decay. The figure also shows the spatial distribution of Covid-19
spread in our model after 60 days, 25 days into lockdown. To this end, we
arbitrarily divided the ring lattice of N = 10,000 nodes into 100 regions of 100
nodes each. The spatial distribution in our network is comparable to the data
of Europe, Germany, Italy, and New York City. The spread of the disease in the
USA is more concentrated, with an exceptional number of cases in New York
and New Jersey.



4.3. MODEL

4

65

4.3.3. MODEL VALIDATION

We calibrated our model against the initial outbreaks in China and the subsequent
outbreaks in Europe at the beginning of 2020. In the European Union, the outbreak
was followed by a lockdown which was more or less imposed simultaneously and
uniformly by all member states in March, and was eased cautiously about three
months later by first opening internal borders mid-June, followed by some external
borders on 1 July, and a further relaxation of the rules in August. The response of
the USA to the disease was more checkered. After an initial lockdown, which as in
the EU began in March, some states eased their regulations at the end of April, and
others did this one month later. This was followed by more tightened regulations,
again varying from state to state, at the end of July.

Figure 4.8.: Number of infections per 1 million of the population (source:Johns Hopkins).
Europe versus USA. Our model parameters were r = 0.008 during a lockdown of
eighty-five days in the EU and r = 0.01 for seventy days in the USA. We split the
post-lockdown period of EU into 2 parts. The first is thirty-five days where we
used r = 0.011, followed by r = 0.015 for the remaining days. For the USA we
used r = 0.016 for the post-lockdown. The post-lockdown in the USA lasted for
thirty-six days in our model computations, after which we reduced to r = 0.01
again for forty-five days, followed by r = 0.012 for the remaining days. To match
the number of infections in our model with the real world data, we assumed
that currently only 10 percent of positive cases are detected.

We validated our model against the number of infections in the EU and the USA
using the calibrated parameters. For our simulation of the number of infections, we
varied r uniformly. For EU, it was set at 0.008 during lockdown, 0.011 after lockdown
when the internal borders opened up, and 0.015 post-lockdown. For the USA, we
used a more varied approach. The lockdown was shorter and was followed by a
post-lockdown parameter of 0.016. This was followed by a reduction to 0.01 thirty-six
days later. After another forty-five days, it was set to 0.012 for the remaining days.
The results in Figure 4.8 show that our small word SEIR model is able to reproduce
the transmission of the disease quite well.
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4.4. IMPACT OF A STAY-NEARBY-OR-GET-CHECKED POLICY

4.4.1. PEAK REDUCTION

As countries get out of lockdown, restrictions are lifted, and the basic reproduction
number increases, inducing a second wave. Our proposed policy is to control the
long ties to flatten the second wave. To simulate this policy, we use the parameters
of the calibrated model. During an initial lockdown of 75 days, spreading risk
is reduced to r = 0.0075. After lockdown, the parameter is increased to r = 0.02
(requested social distancing, but no regulations), a value (slightly) above the current
values for the EU and US but sufficient to evaluate the effect of our policies. Some
fraction of edges is checked, preventing propagation along those edges. Figure 4.9
contrasts a scenario in which random edges are checked (panel A) with one in
which only long edges are checked (panel B). Results show that targeting long edges
is efficient. Without intervention, a second wave occurs with a peak several times
higher than the first. By targeting long ties, checking 7.5% of ties is sufficient to
bring the second peak below the first peak, thereby also delaying its occurrence. If
instead random ties are chosen, the second wave peak remains well above the first.

(a) Check random edges (b) Check long edges

Figure 4.9.: Peak reduction with baseline r = 0.02 and some edges checked

In Figure 4.10 we contrast three post-lockdown strategies for controlling a second
wave. Here we use rshor t to denote transmission probabilities on all short ties
and rlong transmission probabilities on long ties. The first strategy is to not
differentiate long ties from short ties (panel A). Results show that at rlong = rshor t =
0.02 (requested social distancing without further regulations) the second wave peaks
much higher than the first, and that further regulation is needed to control it.

The second strategy is to open up society back to what it was before the
pandemic (rshor t = 0.055), with no social distancing, and then target the 10% of long
ties for checking. Panel B shows various levels of effectiveness in intervening on long
ties, varying rlong . Panel B shows that this strategy only works if disease propagation
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in long ties can be fully prevented. In panel C, society is opened back up but social
distancing is requested at an r = 0.02. Now, imperfect checking of long ties rlong =
0.005 can also accomplish a reduction of the second peak below the first.

(a) Vary rshor t and rlong together

(b) Vary rlong , keep rshor t = 0.055 (c) Vary rlong , keep rshor t = 0.02

Figure 4.10.: Three policy approaches to opening up a lockdown of 75 days, with varying
post-lockdown levels of r : (a) policy does not differentiate long and short ties,
(b) policy targets long ties while all other restrictions are lifted, and (c) policy
targets long ties while social distancing is encouraged.

4.4.2. SPATIAL CONCENTRATION

Post-lockdown flare-ups are more easily controlled with geographically focused
efforts when they remain local longer. Economic and social costs of control measures
are then also lower. We study the spatial concentration of COVID-19 outbreaks
by measuring the number of components of the subgraph of infected nodes and
short edges. Figure 4.9 compares the spread of the virus for the scenario where
rl ong = rshor t = 0.055 with the alternative scenario where long-range transmission
is maximally repressed, rlong = 0. The latter scenario is characterized by a smaller
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number of components during the second wave. The spread of the virus with
rlong = 0 is contained in one region.

Figure 4.11.: Effect of shutting down long-range transmission. From left to right
graphs show disease propagation at 25-day intervals in a small-world
network with N = 150, k = 10 and p = 0.1. All graphs have rshor t = 0.055.
The top graphs have rl ong = 0.055, while the bottom graphs have
rlong = 0. Node color indicates SEIR states, blue = susceptible, yellow =
exposed, red = infectious, black = resistant.

4.5. DISCUSSION AND POLICY
In this work, we have through model simulation explored spatially differentiating
policies in which interventions target nonlocal spread of COVID-19. Our results
show that reductions of long-distance transmission are highly efficient for curbing
the spread of COVID-19. The close monitoring and checking of long-distance ties
allows overall policy to be more permissible and still control a second wave. Because
flare-ups remain local longer, interventions can be of limited geographical scope and
thus less costly and invasive.

What policies could constrain long-range transmission? Medical testing and
mobility-tracking apps may be targeted specifically at transport, travel, and delivery.
Perhaps medical testing and / or mobility tracking should be encouraged or required
for flight, use of highways, trains, regional bus lines and for individuals with jobs in
the transport and delivery sector. Self-isolation after exposure of such individuals
may perhaps be more stringently enforced. What helps is that long-range ties are
relatively sparse, so resources may be focused on a limited number of individuals
or activities. That said, our results show that effects are particularly strong when
transmission through long-range ties is not just reduced, but largely eliminated. This
concords with studies showing that international traffic constraints are particularly
effective when severe [42]. The logistical, technological and ethical challenges of
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geographic targeting in location tracking, testing, and police enforcement require
further interdisciplinary study.

Finally, we point out that we studied the effect of our proposed policy by
a mathematical model, which necessarily leaves out potentially relevant real world
details. In the real world, the pandemic will cease if a sufficient percentage of
the population reaches immunity (either through contracting the disease or through
immunization). In our model, immunity is only reached if everybody has contracted
the disease. The size of our network is in the order of 10 thousand nodes, while the
actual scale of the societies that we model is 10 to 100 million people. Our model is
too coarse to capture the passing of the epidemic, which is a known weakness of
SEIR models, see [62]. However, the model does reproduce the early and middle
stage, when government policy can be most effective. The small-world network that
we use in our computations is a simple approximation of actual societal networks.
It only has two scales (short and long) while real social networks have more scales,
and can even be scale-free. There is reason to expect that our proposed policy of
‘getting checked’ will be even more effective in the real world than in our model.
The small world network lacks highly connected nodes (superspreaders) that contact
surveys reveal exist[39]. Such hubs could be efficiently targeted, neutralizing a large
fraction of dangerous edges through restrictions on a small number of individuals.
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5
GENERAL LOTTO GAMES WITH

SCOUTS: INFORMATION VERSUS

STRENGTH

In this chapter, we describe the work we did with the Robotic autonomous systems
(RAS) unit, the unit of Royal Netherlands Army dedicated to autonomous drones
and vehicles. They asked us to analyse the scenario of retaking a river area with
several bridges from the opposing forces. There are two main questions. First, how
should the troops be divided over the different bridges for the best results? Secondly,
if they could send out some scouting drones to gain some information about the
distribution of the opposing troops, how would that change the scenario? To model
this scenario, we introduce General Lotto games with Scouts. Solving this game then
provides the strategies for optimal troop distributions. Furthermore, we quantify the
value of information gathered by the scouts. This allows us to describe the best
combinations of scouting information versus firepower, for given budgets. Finally,
we discuss what these results mean for the original scenario provided by RAS.

5.1. INTRODUCTION
The Colonel Blotto game in its most basic form was introduced by Borel in 1921
[18]. The main idea is that two opposing Colonels simultaneously allocate a
fixed amount of resources over a finite number of fields. Each field is won by
whichever player sends the most resources there, and the goal is to win as many
fields as possible. The Colonel Blotto game and its variations and generalisations
have been used to model various strategic situations, ranging from division of
troops and the placement of missiles [63] to budget allocation during elections [64, 65].

Borel introduced two versions of the Colonel Blotto game in his original

Parts of this chapter have been submitted to Dynamic Games and Applications [5].
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paper: the discrete Colonel Blotto game, where the number of resources sent to
a field has to be an integer, and the continuous Colonel Blotto game, where the
number of resources can be any non-negative number. The first solutions to the
continuous Colonel Blotto game were found by Gross and Wagner in 1950 [23]. They
solved the game completely for two fields. They also provided solutions for three or
more fields, under the condition that both sides have an equal number of resources.
The continuous Blotto game was eventually completely solved by Roberson in 2006
[24], allowing for any number of fields and asymmetric resource numbers between
players. The discrete version turned out to be quite difficult to solve, as even now it
is considered very computationally intensive to find solutions. There is a substantial
literature on the computational complexity of the discrete Blotto game, see the work
of Behnezhad [66] and the references therein. Even so, Liang [67] showed that the
equilibrium payoff for two-battlefield games is generally the same in the continuous
version as in the discrete version.

Hart [68] introduced a more computable variant of Colonel Blotto games,
which he called General Lotto games. These games relax the budget constraint on
the number of resources allocated to a field, only requiring it to hold in expectation.
Hart showed how these games could be used to find optimal strategies for symmetric
discrete Colonel Blotto games. While General Lotto games were introduced as a tool
to study Colonel Blotto games, they have shown to be interesting games in their own
right.

In standard General Lotto games, the resources allocated to each of the
fields are revealed simultaneously. In practice, however, this need not always be
the case. Intelligence, surveillance and reconnaissance efforts might unveil adversary
troop allocations beforehand. A reconnaissance drone or satellite image could
identify troops en route to the field, a spy might uncover the number of missiles
in a specific location, or a leaked document could detail the budget allocated to a
certain state during elections. Knowledge of such events significantly influences the
strategies of both players.

In this chapter, we present a new variation of the General Lotto game that
accommodates such information. We consider the following variation of a
General Lotto game. Consider two players, Blue and Red. First, Red allocates
a number of resources to the field, as done in a standard General Lotto
game. Next, Blue may obtain knowledge of Red’s resource allocation, i.e., with
some probability Blue learns the exact number of resources Red has allocated.
Blue can now choose to match this number and win the corresponding field,
or allocate no resources to the field. Since it is a General Lotto game, the
number of resources allocated by the players has to match their budget in expectation.

Our research is inspired by the real-world scenario of a scouting drone
spotting enemy troops on their way to a field, which is a problem that was provided
to us by the Dutch ministry of Defence. This setting has since then only grown
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in relevance, with the war in Ukraine using surveillance drones on a large scale,
making troop movements more transparent than ever [69]. We abstracted this to a
problem of information versus strength with fixed budgets.

The goal of this chapter is to study the effect of information asymmetry on
resource allocation. Furthermore, we want to gain insights into optimal config-
urations of different types of resources: resources that yield strength (troops) or
information (drones). We focus on two main research questions. First, we assume
that the amount of information and strength is predetermined. With the information
that is provided, what are the optimal strategies? Specifically, how does Blue use
his information efficiently, and how does Red change her strategy to deal with Blue
possibly gaining information? We provide several insights and guidelines to answer
these questions.

The second research question is a generalisation of the first: What if you
are allowed to choose your own configuration of information and strength under a
given budget? This is the so-called weapons mix problem [70]. You are about to face
a series of battles, and you have to assemble your troops. Given is a fixed budget
to divide between scouting drones which provide information, and weaponized
unmanned vehicles which provide firepower. What is the mix of information and
strength that maximises expected wins?

RELEVANT LITERATURE

General Lotto games are a valuable framework for exploring information and
asymmetry in resource allocation. There are many aspects of the game where there
can exist asymmetry: players may have different field valuations, resources could
vary in strength between players, or a player might have a strategic advantage, such
as in our game.

Several extensions of General Lotto Games have been developed to investi-
gate the effects of these asymmetries. An example is work by Kovenock and
Roberson [71], where the players have asymmetric valuations for the fields, which
are known to both players. Another approach is in the work of Paarporn [72], where
the valuation of fields is the same for both players, but only one player knows the
exact value, and the other player only knows its distribution.

Vu and Loiseau [73] provided solutions for General Lotto games with favouritism,
where some of the resources are pre-allocated beforehand, and remaining resources
have differing strengths per field and player. The number of resources pre-allocated
for each field is fixed. Chandan et al. [74] build upon this idea, by including
pre-allocation in the strategy. They extend General Lotto games to two-stage games,
where in the first phase a fixed budget of resources must be pre-allocated over
fields, but the player now has freedom to choose how to divide these resources. In
the second stage, these resources are revealed, and the General Lotto game with
favouritism is played.
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An alternate extension of General Lotto games are Winner-Take-All games, as
studied by Alpern and Howard [75]. Where General Lotto games have two players
competing, Winner-Take-All games allow for any number of players. Each player is
tasked with selecting a distribution following predefined constraints. Subsequently,
scores are sampled from these distributions, and the player achieving the highest
score wins. Notably, two player Winner-Take-All games with constraints on the
expectation of the distribution are equivalent to General Lotto games.

MAIN CONTRIBUTIONS AND RESULTS

We first study General Lotto games with Scouts on a single field. We show that based
on the amount of resources and the probability that the field is revealed, the analysis
of this game can be split into three different cases. We provide optimal strategies for
all three. We also study a multi-stage version of the game with multiple fields, which
all have their own value and own probability to be revealed. For this version, we
provide upper and lower bounds on the value of the game. These bounds are tight
in some settings. We devise several ways to compare the value of information and
resources. We conclude with several qualitative insights.

OVERVIEW OF THE CHAPTER

We first introduce the game model and its notation in Section 5.2. We focus on
single field General Lotto games with Scouts in Section 5.3, where we provide
optimal strategies for both players. In Section 5.4 we move on to a multi-stage
version with multiple fields and provide upper and lower bounds on the value of this
game. In Section 5.5, we introduce methods to measure information versus strength.
We discuss the insights gained about the value of information in Section 5.6. We
conclude and discuss future work in Section 5.7.

5.2. MODEL, NOTATION AND ASSUMPTIONS

As described in the introduction, General Lotto games as introduced by Hart [68] are
a relaxed version of Colonel Blotto games, in the sense that the resource constraint
should only hold in expectation, rather than with probability 1. We want to study
a version of the General Lotto game where one player receives information on the
resource configuration chosen by the other player. This act of receiving information
is symbolised by the idea of sending a scout. The game is therefore denoted as
GL-S, meaning General Lotto with Scouts. In this section we first formally introduce
the General Lotto game and its optimal strategies. Afterwards we generalise it to
General Lotto with Scouts on a single field, which exhibits insightful properties. In
later sections we analyse a multi-stage version with multiple fields, which will be
introduced in the relevant section.
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5.2.1. GENERAL LOTTO

Before introducing General Lotto with Scouts, we first define the General Lotto game.
This game involves two players, Red and Blue, competing on a single field. Blue is
endowed with resource budget B > 0, and Red possesses a resource budget R > 0.
Red chooses as her strategy a (distribution of a) nonnegative random variable X
with E(X ) = R, Blue chooses as his strategy a (distribution of a) nonnegative random
variable Y with E(Y ) = B .

To determine the winner, two numbers, r and b, representing the amount
of resources allocated to the field by Red and Blue respectively, are sampled from
their strategies. The player with the highest amount of allocated resources wins the
game, with ties being resolved in favor of Blue. I.e., the game is constant-sum with
the following pay-off for Blue:

P (b,r ) =1(b ≥ r ).

The way in which ties are broken is chosen to avoid technical complications and
does not influence the value of the game. We define the value of the game as the
probability Blue wins:

V = P (X ≤ Y )

This game was solved by [68]. He proved the value of the game and the optimal
strategies were as in Theorem 5.1.

Theorem 5.1 (Hart). Let R ≥ B > 0. The value V of the General Lotto game is

V = B

2R

and the unique optimal strategies are X ∗ for Red and Y ∗ for Blue, where

X ∗ ∼U[0,2R]

Y ∗ ∼U[0,2R] with prob.
B

R
, else 0

5.2.2. GENERAL LOTTO WITH SCOUTS

We now consider General Lotto games with Scouts, denoted as GL-S(B ,R,u).
Similar to the standard General Lotto game, GL − S involves the two players
Blue and Red, with resource budgets B ,R > 0, competing on a single field.
However, in this variant, Blue obtains information insight into Red’s resource alloca-
tion with a probability u ∈ [0,1]. This influences how both players approach the game.

To describe the feasible strategies, we begin with an assumption and an
observation.
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• First, we assume that both players choose their strategies before knowing
whether the number of Red resources will be revealed. This means that the
strategy of Blue consists of two parts: actions in case the field is revealed, and
actions for when it is not. The expectation over these two together has to
match Blue’s total resources B .

• Second, note that if the number of resources allocated by Red is revealed,
Blue either allocates the exact same amount of resources (Call) or allocates
no resources at all (Fold). It is clear that any other course of action is less
beneficial for Blue, i.e., is dominated by this strategy.

A strategy for Red, denoted by σR = (X ), is a random variable X on [0,∞) that
satisfies:

E(X ) ≤ R.

The space of all Reds strategies is denoted by ΣR . We denote the number of
resources allocated by Red by TR (X ).

A strategy for Blue, denoted by σB = (t , Z ), consists of a function t : [0,∞) → [0,1]
and a random variable Z on [0,∞). Here t (x) is defined as the probability that
Blue calls if it is revealed that Red has allocated x resources, and Z determines the
number of resources that Blue allocates if the field is not revealed. We denote the
number of resources allocated by Blue by TB (t , Z , X ). Now we see that

TB (t , Z , X ) =
{

X with prob. t (X ), else 0 if the field is revealed

Z , if the field is not revealed

Given that Red plays strategy σR = (X ) and Blue plays strategy σB = (t , Z ), we see
that

ETB (t , Z , X ) = uE (t (X )X )+ (1−u)E(Z ).

Since the Blue resource constraint must hold for any strategy of Red, we require that

uE (t (X )X )+ (1−u)E(Z ) = ETB (t , Z , X ) ≤ B

for all random variables X on [0,∞) that satisfy E(X ) ≤ R. The space of all such
strategies of B is denoted by ΣB .

The value of the game is the expected payoff to Blue. Given that Blue
plays strategy σB = (t , Z ) and Red plays strategy σR = (X ), the value of the game V is
given by

V = P (σB ,σR ) = uE(t (X ))+ (1−u)P(Z ≥ X ).

Blue want to find a strategy which maximises the value, and Red want to find a
strategy which minimises the value.
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5.3. GENERAL LOTTO WITH SCOUTS: SINGLE FIELD

In the last section, we introduced the GL-S game. In this section, we find its value
and optimal strategies. The main result is given in Theorem 5.5 at the end of the
section.

Based on the resource ratio B/R, we split the analysis into the following
three cases:

• Case 1: GL-S with 1 ≤ B/R

• Case 2: GL-S with u ≤ B/R ≤ 1

• Case 3: GL-S with B/R ≤ u

The cases have different optimal strategies and are therefore treated separately. At
the end of the section, the results are combined into Theorem 5.5. Every time we
propose two strategies and show that they both guarantee the same payoff V . Thus,
these strategies must be optimal and the value of the game is V .

5.3.1. CASE 1: GL-S WITH 1 ≤ B/R
We introduce two new parameters q(u) and C (u):

q(u) = 1−u( B
R

)−u

C (u) = R

q(u)
= R

(
B
R −u

1−u

)
= B +u

B −R

1−u

Since B ≥ R, it follows that 0 ≤ q(u) ≤ 1 and C (u) ≥ B ≥ R.

We show that σ∗
R = (X ∗) and σ∗

R = (t∗, Z∗) are optimal strategies, where:

X ∗ ∼U[0,2C (u)] with prob. q(u), else 0

t∗ = 1 ∀x

Z∗ ∼U[0,2C (u)]

U[a,b] denotes the uniform distribution with support [a,b]. This strategy consists
of Blue always replicating Red’s allocation if the field is revealed, or Blue plays
a uniform distribution if the field is not revealed. Red plays the same uniform
distribution with probability q(u), and 0 with probability 1−q(u).

Lemma 5.2. These strategies are optimal strategies in the case B
R ≥ 1, and the value of

the game equals V = 1− (1−u)2

2( B
R −u)

.
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Proof. First we show that the resource constraints are satisfied:

ETR (X ∗) = E(X ∗) = q(u) ·C (u)+ (1−q(u)) ·0 = q(u) · R

q(u)
= R

ETB (t∗, Z∗, X ) = uE
(
t∗(X )X

)+ (1−u)E(Z∗) = u ·R + (1−u) ·C (u) = B ,

where X is an arbitrary non-negative random variable such that EX = R.
Now it suffices to prove the following two claims.

Claim 1: given that Red plays σ∗
R , the payoff is at most V .

If Red plays σ∗
R , the payoff for any σB is:

P (σB ,σ∗
R ) = uE(t (X ∗))+ (1−u)E

(
1[Z ≥ X ∗]

)
We can rewrite E (1[Z ≥ X ∗]) by conditioning on Z :

E
(
1[Z ≥ X ∗]

)= E(
E
(
1[Z ≥ X ∗]|Z )) = 1−q(u)+q(u)E (E (1[Z ≥U ]|Z ))

Where U ∼U[0,2C (u)]. We can use this to rewrite as follows:

E (1[Z ≥U ]|Z ) =
(

Z

2C (u)

)
1[2C (u) ≥ Z ]+1 ·1[2C (u) < Z ]

=
(

Z

2C (u)

)
(1−1[2C (u) < Z ])+1 ·1[2C (u) < Z ]

=
(

Z

2C (u)

)
−

(
Z

2C (u)
−1

)
·1[2C (u) < Z ]

Plugging this back in gives:

E
(
1[Z ≥ X ∗]

)= 1−q(u)+q(u)

(
E

(
Z

2C (u)

)
−E

((
Z

2C (u)
−1

)
·1[2C (u) < Z ]

))
= 1−q(u)+q(u)

(
E(Z )

2C (u)
−E

((
Z

2C (u)
−1

)
·1[2C (u) < Z ]

))
= 1−q(u)

(
1− E(Z )

2C (u)

)
−q(u)E

((
Z

2C (u)
−1

)
·1[2C (u) < Z ]

)
≤ 1−q(u)

(
1− E(Z )

2C (u)

)
Using this equation, we can rewrite the payoff as:

P (σB ,σ∗
R ) ≤ uE(t (X ∗))+ (1−u)

(
1−q(u)

(
1− E(Z )

2C (u)

))
= uE(t (X ∗))+ (1−u)(1−q(u))+ q(u)

2C (u)

(
B −uE

(
t (X ∗)X ∗))

= uE

(
t (X ∗)

(
1− q(u)X ∗

2C (u)

))
+ (1−u)(1−q(u))+ q(u)B

2C (u)
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Since 0 ≤
(
1− q(u)X ∗

2C (u)

)
, this expression is maximised by taking t (x) = 1∀x. This yields

P (σB ,σ∗
R ) ≤ uE

(
1− q(u)X ∗

2C (u)

)
+ (1−u)(1−q(u))+ q(u)B

2C (u)

= 1+u −u −q(u)(1−u)+ q(u)

2C (u)
(B −uR)

= 1−q(u)(1−u)+ q(u)

2

B −uR

C (u)

= 1− 1

2
q(u)(1−u) = 1− (1−u)2

2( B
R −u)

=V

This proves Claim 1.

Claim 2: given Blue plays σ∗
B , the payoff is at least V .

If Blue uses the strategy σ∗
B , the payoff for any σR is:

P (σ∗
B ,σR ) = uE(t∗(X ))+ (1−u)E

(
1[Z∗ ≥ X ]

)
= uE(1)+ (1−u)E

(
1[Z∗ ≥ X ]

)
= u + (1−u)E

(
1[Z∗ ≥ X ]

)
We can rewrite E (1[Z∗ ≥ X ]) by conditioning on X :

E
(
1[Z∗ ≥ X ]

)= E(
E
(
1[Z∗ ≥ X ]|X ))

Where Z∗ ∼U[0,2C (u)]. We can use this to rewrite as follows:

E
(
E
(
1[Z∗ ≥ X ]|X ))= E((

1− X

2C (u)

)
1[2C (u) ≥ X ]+0 ·1[2C (u) < X ]

)
= E

((
1− X

2C (u)

)
(1−1[2C (u) < X ])

)
= E

(
1− X

2C (u)

)
+E

(
1[2C (u) < X ]

(
X

2C (u)
−1

))
= 1− R

2C (u)
+E

(
1[2C (u) < X ]

(
X

2C (u)
−1

))
≥ 1− R

2C (u)
= 1− q(u)

2

The last step follows from the fact that the expectation on the RHS is non-negative.
Plugging this into the original equation for payoff gives:

P (σ∗
B ,σR ) ≥ u + (1−u)

(
1− q(u)

2

)
= 1− (1−u)

q(u)

2

= 1− (1−u)2

2( B
R −u)

=V

This proves Claim 2 and therefore completes the proof.
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5.3.2. CASE 2: GL-S WITH u ≤ B/R ≤ 1

This is the most interesting of the three scenarios. Blue is outnumbered, but can use
information to be competitive. We introduce the following parameter:

p(u) =
B
R −u

1−u
= 1

q(u)

Since u ≤ B
R ≤ 1, it follows that 0 ≤ p(u) ≤ 1.

We show that σ∗
R = (X ∗) and σ∗

R = (t∗, Z∗) are optimal strategies, where:

X ∗ ∼U[0,2R]

t∗ = 1 ∀x

Z∗ ∼U[0,2R] with prob. p(u), else 0

This strategy consists of Blue always replicating Red’s allocation if the field is
revealed, or Blue plays a uniform distribution with probability p(u) if the field is
not revealed, and 0 with probability 1−p(u). Red always plays the same uniform
distribution, which is equivalent to her strategy in General Lotto games without scouts.

Lemma 5.3. These strategies are optimal in the case u ≤ B
R ≤ 1, and the value of the

game equals V = 1
2

(
u + B

R

)
.

Proof. First, we show that the resource constraints are satisfied:

ETR (X ∗) = E(X ∗) = R

ETB (t∗, Z∗, X ) = uE
(
t∗(X )X

)+ (1−u)E(Z∗) = uR + (1−u)p(u)R = B ,

where X is an arbitrary non-negative random variable such that EX = R.
Now it suffices to prove the following two claims.

Claim 1: given that Red plays σ∗
R , the payoff is at most V .

If Red plays σ∗
R , the payoff for any σB is:

P (σB ,σ∗
R ) = uE(t (X ∗))+ (1−u)E

(
1[Z ≥ X ∗]

)
We can rewrite E (1[Z ≥ X ∗]) by conditioning on Z :

E
(
1[Z ≥ X ∗]

)= E(
E
(
1[Z ≥ X ∗]|Z ))
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Where X ∗ ∼U[0,2R]. We can use this to rewrite as follows:

E
(
E
(
1[Z ≥ X ∗]|Z ))= E((

Z

2R

)
1[2R ≥ Z ]+1 ·1[2R < Z ]

)
= E

((
Z

2R

)
(1−1[2R < Z ])+1 ·1[2R < Z ]

)
= E

(
Z

2R

)
−E

((
Z

2R
−1

)
·1[2R < Z ]

)
= E(Z )

2R
−E

((
Z

2R
−1

)
·1[2R < Z ]

)
≤ E(Z )

2R

Using this equation, we can rewrite the payoff as:

P (σB ,σ∗
R ) ≤ uE(t (X ∗))+ (1−u)

(
E(Z )

2R

)
If we rewrite the expectation requirement, we get:

(1−u)E(Z ) = B −uE (t (X )X )

Plugging this in gives:

P (σB ,σ∗
R ) ≤ uE(t (X ∗))+ 1

2R

(
B −uE

(
t (X ∗)X ∗))

= B

2R
+uE

(
t (X ∗)

(
1− X ∗

2R

))

Since 0 ≤
(
1− X ∗

2R

)
, the payoff is optimised by taking t (·) as large as possible. It is

therefore maximised by taking t (x) = 1∀x, which gives:

P (σB ,σ∗
R ) ≤ B

2R
+uE

(
1

(
1− X ∗

2R

))
= B

2R
+u

(
1− R

2R

)
= 1

2

(
B

R
+u

)
=V

This proves Claim 1.

Claim 2: given that Blue plays σ∗
B , the payoff is at least V .

If Blue uses the strategy σ∗
B , the payoff for any σR is:

P (σ∗
B ,σR ) = uE(t∗(X ))+ (1−u)E

(
1[Z∗ ≥ X ]

)
= uE(1)+ (1−u)E

(
1[Z∗ ≥ X ]

)
= u + (1−u)E

(
1[Z∗ ≥ X ]

)
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We can rewrite E (1[Z∗ ≥ X ]) by conditioning on X :

E
(
1[Z∗ ≥ X ]

)= E(
E
(
1[Z∗ ≥ X ]|X ))

= E(
E
(
(1−p(u)) ·0+p(u)1[U ≥ X ]|X ))

= p(u)E (E (1[U ≥ X ]|X ))

Where U ∼U[0,2R]. We can use this to rewrite as follows:

E (E (1[U ≥ X ]|X )) = E
((

1− X

2R

)
1[2R ≥ X ]+0 ·1[2R < X ]

)
= E

((
1− X

2R

)
(1−1[2R < X ])

)
= E

(
1− X

2R

)
+E

(
1[2R < X ]

(
X

2R
−1

))
=

(
1− R

2R

)
+E

(
1[2R < X ]

(
X

2R
−1

))
= 1

2
+E

(
1[2R < X ]

(
X

2R
−1

))
≥ 1

2

Here, the last step follows from the fact that the expectation on the RHS is
non-negative. Plugging this into the original equation for the game payoff yields

P (σ∗
B ,σR ) ≥ u + (1−u)

(
p(u)

2

)
= u +

B
R −u

2

= 1

2

(
u + B

R

)
=V

This proves Claim 2 and therefore completes the proof.

5.3.3. CASE 3: GL-S WITH B/R ≤ u
In this case Blue is outnumbered, but has a significant amount of information.
The optimal strategies of this case are surprising, as Red will do away with any
randomness in her strategy.

We show that σ∗
R = (X ∗) and σ∗

R = (t∗, Z∗) are optimal strategies, where:

X ∗ = R

t∗ = B

uR
∀x

Z∗ = 0

This strategy consists of Blue replicating Reds allocation with probability B
uR

whenever the field is revealed, independently of the number of resources spotted.



5.3. GENERAL LOTTO WITH SCOUTS: SINGLE FIELD

5

89

If the field is not revealed, Blue allocates no resources. Red always allocates R
resources, effectively removing any random element from her strategy, and thus
removing the advantage Blue has with his scouts.

Lemma 5.4. These strategies are optimal strategies in the case u ≥ B
R , and the value of

the game is V = B
R :

Proof. First we show that the resource constraints are satisfied:

ETR (X ∗) = E(X ∗) = R

ETB (t∗, Z∗, X ) = uE
(
t∗(X )X

)+ (1−u)E(Z∗)u

(
B

uR

)
E (X )+ (1−u) ·0 = B ,

where X is an arbitrary non-negative random variable such that EX = R.
Now it suffices to prove the following two claims.

Claim 1: given that Red plays σ∗
R , the payoff is at most V .

If Red uses the strategy σ∗
R , the payoff for any σB is:

P (σB ,σ∗
R ) = uE(t (X ∗))+ (1−u)E

(
1[Z ≥ X ∗]

)
= uE(t (X ∗))+ (1−u)E (1[Z ≥ R])

= 1

R

(
uE(R · t (X ∗))+ (1−u)E (R ·1[Z ≥ R])

)
Note that:

E(R · t (X ∗)) = E(t (X ∗)X ∗)

and

E (R ·1[Z ≥ R]) ≤ E (Z ·1[Z ≥ R]) ≤ E(Z )

Plugging these into the equation for the payoff gives:

P (σB ,σ∗
R ) ≤ 1

R

(
uE

(
t (X ∗)X ∗)+ (1−u)E (Z )

)
= 1

R
(B) = B

R
=V ,

where the last step follows from the expectation requirement for Blue.
This proves Claim 1.

Claim 2: given that Blue plays σ∗
B , the payoff is at least V .

If Blue uses the strategy σ∗
B , the payoff for any σR is:

P (σ∗
B ,σR ) = uE(t∗(X ))+ (1−u)E

(
1[Z∗ ≥ X ]

)
= u

(
B

uR

)
+ (1−u) ·P [X = 0]

≥ B

R
=V.

This proves Claim 2 and therefore completes the proof.
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As the payoff in this case no longer depends on the u, it follows that increasing the
u past B

R no longer increases the payoff.

5.3.4. SOLUTION OF GL-S
We combine the results of Lemma 5.2, 5.3 and 5.4 to form our main result:

Theorem 5.5. In GL-S, it is optimal for Blue to play σ∗
B = (t∗, Z∗) and optimal for

Red to play σ∗
R = (X ∗), where X ∗, t∗ and Z∗ are chosen according to Table 5.1.

X ∗ t∗(·) Z∗

B
R ≤ u R B

uR 0

u ≤ B
R ≤ 1 U[0,2R] 1 U[0,2R] w.p. p(u), else 0

1 ≤ B
R U[0,2C (u)] w.p. q(u), else 0 1 U[0,2C (u)]

Table 5.1.: Optimal strategy of GL-S.

The value V of GL-S is therefore:

V = P (σ∗
B ,σ∗

R ) =


B
R , if B

R ≤ u,
u+ B

R
2 , if u ≤ B

R ≤ 1

1− (1−u)2

2( B
R −u)

, if 1 ≤ B
R ,

The value of GL-S depends on both u and the ratio B/R. We illustrate this function
in three different figures. The detection chance u is fixed in Figure 5.1, the ratio B/R
is fixed in Figure 5.2 and the value of the game is portrayed as a heatmap in Figure 5.3.

Some interesting insights follow from this optimal solution to the GL-S game. The
first is that t (·) is always maximised, meaning that Blue calls as many fields as
he can, given his budget. Calling a field is always a more efficient way of using
resources, than using resources on a field that was not revealed.

The second insight follows from the question whether Red should distribute
her resources more or less evenly compared to a standard Lotto game. The answer
is both, but in different cases. If Red heavily outnumbers Blue, i.e., B

R < u, she
plays as evenly as possible, sending exactly R resources every time. However, if
Blue outnumbers Red, Red plays riskier than in the standard General Lotto game,
allowing a higher number of resources per round, but also sending 0 resources more
often. This also means that, as long as u < 1, Red always has a chance to win, even
if heavily outnumbered.
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Figure 5.1.: The value of GL-S for fixed detection probability u as a function of B/R.

Figure 5.2.: The value of GL-S for fixed B/R ratios as a function of the detection
probability u.

Remark 5.6 (Comparison with known results when u = 0). By setting the detection
probability u in GL-S to 0, we retrieve a General Lotto game of which the value
should be consistent with earlier work. The value of this game is B

2R whenever B ≤ R

and 1− R
2B otherwise. This is consistent with Corollary 1 of Kovenock and Roberson
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Figure 5.3.: A heatmap of the value of GL-S, with the resource ratio B/R on the
x-axis and the detection probability u on the y-axis.

[71]. Furthermore, the optimal strategies found there coincide with the optimal
strategies that we use. It is also consistent with Hart [68] and Sahuguet and Persico
[76] who showed this result earlier.

Remark 5.7 (Comparison with known results when u = 1). By setting u = 1 we obtain
a game that is in some respects similar to the pre-allocation game in Chandan et
al. [74]. Namely, when u = 1 Blue always sees what Red does and in that sense Red
‘pre-allocates’. There are two major differences. The first is that in our case, Red does
not get the opportunity to allocate any additional resources and in that sense forcibly
pre-allocates all her resources. The second difference is that the pre-allocation in their
work is performed ‘Blotto-style’, i.e., such that the sum of the pre-allocated resources
equals a fixed constant. In our case, it should only in expectation equal the total
resources.

5.4. GENERAL LOTTO WITH SCOUTS: MULTISTAGE
In this section, we consider a multistage version GL-MS of GL-S where Blue and
Red first divide their total resources over the battlefield and then play GL-S on each
battlefield. The latter step was solved in Section 5.3, so we know the value of the
games on the individual fields. Therefore, this multistage version of the game can be
considered a Colonel Blotto game with a complicated payoff function given by those
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game values. First, we introduce the game and discuss under which conditions
the game value exists. Subsequently, we provide strategies for Blue and Red, which
provide upper and lower bounds on the value of the multistage game. Lastly, we
specify under which conditions these bounds coincide, in which case these strategies
must be optimal.

5.4.1. THE MULTISTAGE GAME

We start out with the same two players with total resources B ,R > 0, respectively.
Next, let there be n fields, where n is an integer larger than one. Each field is
endowed with a worth wi > 0 and a detection probability ui ∈ [0,1]. We assume that∑

i wi = 1. We denote the Multistage General Lotto game with Scouts with these
parameters by GL-MS(B ,R, {ui }, {wi }).

The game is played in two stages.

i) Red chooses a distribution R = (R1, ..,Rn) of her total resources over the fields
such that

∑
i Ri = R. Simultaneously, Blue chooses a distribution B = (B1, ..,Bn)

of his total resources over the fields such that
∑

i Bi = B .

ii) On each field, a GL-S(Bi ,Ri ,ui ) game is played with worth wi .

The total payoff for Blue is the sum of the individual payoffs.

Recall from Section 5.3 that given the resources Bi ,Ri at field i and given
its worth wi and the detection probability ui , the payoff at field i equals φi (Bi /Ri )
where

φi (x) = wi


x x ≤ ui
1
2 (x +ui ) ui ≤ x ≤ 1

1− (1−u)2

2(x−u) x ≥ 1

Note that the field worth wi was not present before, but is included in φi here.
Since for n = 1 there is just one field with worth 1, this is consistent with before.

Therefore, the first stage of the game has payoff function

H(B ,R) =
n∑

i=1
φi

(
Bi

Ri

)
.

Our goal is to solve this game with the constraints

n∑
i=1

Bi = B ,
n∑

i=1
Ri = R.

5.4.2. EXISTENCE OF GAME VALUE

There are three things that make it difficult to derive the game value. First, even
though H is concave in B1, ..,Bn , it is not convex in R1, ..,Rn . Second, H is not
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everywhere differentiable, because of the sharp turn in the φi ’s at x = ui . Third, H is
ill-defined at Bi = Ri = 0 for any i and cannot be continuously extended there.

Without the singularity at (0,0), the payoff function is continuous and we
can guarantee the existence of the game value. Allocating zero resources to a field is
both theoretically and in practice unlikely to be an optimal strategy. It is possible to
remove this singularity from the game in the following way: we fix ϵ> 0 and require
that Bi ,Ri ≥ ϵ for all i . This creates a new, slightly more restricted game. As a result
of this restriction H is continuous on the domain of strategies while the domain
is still compact. By a classical result of Glicksberg [77], there must exist a Nash
equilibrium for the corresponding game.

Now that we have discussed existence, we want to study the exact value of
the game. To bound the value of the game, we provide strategies for Red And Blue
and prove that these strategies guarantee certain upper and lower bounds. Whenever
those bounds coincide, we know the exact value of the game.

To find a good guess for optimal strategies for Red and blue, we explore
the case where H is continuously differentiable, even though it is not. If the φ’s were
C 1, then any Nash equilibrium would have to satisfy the equations in Lemma 5.8,
with the provided optimal strategies. We use these strategies to provide bounds on
the original game.

Lemma 5.8. Let φi : [0,∞) → R, i = 1, ..,n, be C 1 and increasing and let B ,R > 0.
Suppose that B1, ..,Bn , R1, ..,Rn satisfy

n∑
i=1

φi

(
Bi

Ri

)
= inf

R ′
1,..,R ′

n

max
B ′

1,..,B ′
n

n∑
i=1

φi

(
B ′

i

R ′
i

)
= sup

B ′
1,..,B ′

n

min
R ′

1,..,R ′
n

n∑
i=1

φi

(
B ′

i

R ′
i

)
(5.1)

given
n∑

i=1
Bi = B ,

n∑
i=1

Ri = R, Bi ,Ri ≥ 0.

Then Bi = ci B and Ri = ci R, where

ci =
φ′

i (B/R)∑n
j=1φ

′
j (B/R)

.

Proof. Suppose that B1, ..,Bn , R1, ..,Rn , form a solution. Then in particular B1, ..,Bn

maximise

f : (x1, .., xn) 7−→
n∑

i=1
φi

(
xi

Ri

)
given 0 = g (x1, .., xn) := x1 + ..+ xn −B . Using the theory of Lagrange multipliers, we
see that then for all i :

λ= Ç

Çxi
f (x1, .., xn)

∣∣∣∣
B1,..,Bn

= 1

Ri
φ′

i

(
Bi

Ri

)
, (5.2)
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where λ ∈ R is a fixed constant. Reasoning similarly starting from the RHS of (5.1),
we see that there is a Lagrange multiplier µ such that

µ= −Bi

R2
i

φ′
i

(
Bi

Ri

)
. (5.3)

Plugging (5.2) into (5.3), we see that

µ= −Bi

R2
i

φ′
i

(
Bi

Ri

)
= −Bi

Ri

1

Ri
φ′

i

(
Bi

Ri

)
= −Bi

Ri
λ,

so
Bi

Ri
= −µ

λ
:= c

is constant. Using the boundary conditions, we obtain

B =
n∑

i=1
Bi =

n∑
i=1

cRi = c
n∑

i=1
Ri = cR,

so c = B
R , so in particular Bi = B

R Ri . Plugging this back into (5.2) and rearranging
yields

Ri = 1

λ
φ′

i

(
B

R

)
.

Since R1, ..,Rn must sum to R, this implies that

λ= 1

R

n∑
j=1

φ′
j

(
B

R

)
,

so Ri = ci R with ci defined as in the lemma statement. Using now that Bi = B
R Ri ,

this gives what we wanted.

5.4.3. UPPER BOUND ON THE GAME VALUE

To obtain an upper bound on the game value, we let Red use the strategy that is
suggested by Lemma 5.8.

Lemma 5.9 (Upper bound). The game value is bounded from above by

n∑
i=1

φi

(
B

R

)
.

Proof. First, we assume that B
R ̸= ui for all i . This implies that each φi is

differentiable at B/R, so we can set Ri according to Lemma 5.8:

Ri = R
φ′

i (B/R)∑n
j=1φ

′
j (B/R)

.
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Now let B1, ..,Bn be an arbitrary strategy of Lotto. Then, using a Taylor expansion
for each i of φi around B/R and the concavity of the φi ’s, we obtain the following
bound for the payoff:

P (R1, ..,Rn ,B1, ..,Bn) =
n∑

i=1
φi

(
Bi

Ri

)
≤

n∑
i=1

[
φi

(
B

R

)
+φ′

i

(
B

R

)(
Bi

Ri
− B

R

)]
.

Now substituting the expression for Ri we see that

n∑
i=1

φ′
i

(
B

R

)(
Bi

Ri
− B

R

)
=

n∑
i=1

φ′
i

(
B

R

) Bi
∑

j φ
′
j

( B
R

)
Rφ′

i

( B
R

) − B

R

n∑
i=1

φ′
i

(
B

R

)
= 1

R

n∑
i=1

Bi

n∑
j=1

φ′
j

(
B

R

)
− B

R

n∑
i=1

φ′
i

(
B

R

)
= 0,

where in the last equation we used that the Bi ’s sum to B . This implies that

H(B1, ..,Bn ,R1, ..,Rn) ≤
n∑

i=1
φi

(
B

R

)
,

which is what we wanted.

To deal with the case where ui = B/R for some (or possibly multiple ui ),
change all such ui by at most ϵ to u∗

i . Now note that there is a constant L such
that each φi only changes by at most Lϵ (with respect to the uniform norm). This
implies that the game value can change by at most nLϵ. Similarly, the bound in this
lemma only changes by at most a constant times ϵ. Since this holds for all ϵ, the
bound of this lemma must also hold for ϵ= 0.

Now we work out what this means in the case B
R < 1. We assume WLOG that

u1 ≤ u2.. ≤ un . Suppose there is 0 ≤ k ≤ n such that uk < B
R < uk+1 (where we set

u0 = 0 and un+1 = 1). In this case, we obtain that

φ′
i

(
B

R

)
=

{
wi
2 i ≤ k

wi i > k

Denoting w(k) =
∑

i≤k wi , this implies that

n∑
i=1

φ′
i

(
B

R

)
= 1− w(k)

2
.

The strategy for Red from Lemma 5.8 is therefore given by

Ri =
{

R wi
2−w(k)

i ≤ k

R 2wi
2−w(k)

i > k
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The upper bound from Lemma 5.9 now equals

n∑
i=1

φi

(
B

R

)
=

k∑
i=1

wi

2

(
ui + B

R

)
+

n∑
i=k+1

wi
B

R

= 1

2

k∑
i=1

wi ui + B

R

(
1− w(k)

2

)
.

5.4.4. LOWER BOUND ON THE GAME VALUE

As noted before, GL-MS does not generally have a Nash equilibrium because of the
non-convexity of H . This non-convexity is in turn caused by the non-convexity of
φi (1/·) for each i . To obtain a lower bound on the game value, we devise a different
version of the game where this convexity does hold and find the optimal solution
for that game.

NEW PAYOFF FUNCTION

To devise the new game, we take the following steps:

i) We take the functions φi and consider ψi : x 7→φi (1/x).

ii) We then define ψ†
i as the lower convex envelope of ψi (i.e., the largest convex

function that is dominated by ψi ).

iii) We transform ψ†
i back in the same way to define φ†

i : x 7→ ψ†
i (1/x). This

function is dominated by φi and is still concave. However, by construction
φ†

i (1/·) is now convex.

(a) ψi and ψ†
i for ui = 2

5 (b) ψi and ψ†
i for ui = 7

10

Figure 5.4.: The function ψi and its convex envelope ψ†
i for two different ui , both

with wi = 1.

We first follow this recipe for ui > 0. In that case we get

1

wi
ψi (x) =


1− x(1−ui )2

2(1−ui x) x ≤ 1
ui
2 − 1

2x 1 ≤ x ≤ 1
ui

1
x x ≥ 1

ui

.
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To understand how to obtain the convex envelope ψ†
i , the graph of ψi is shown

in Figure 5.4 for two different ui , along with their convex envelopes. As can be
observed from the graph, depending on ui , there are two different versions of the
convex envelope. The formulas are straightforward to derive.

i) For ui ≤ 2−p
2 there is a linear part, then u/2+1/(2x), another linear part and

finally 1/x. The equations are straightforward to derive and are given by

1

wi
ψ†

i (x) =



1− x
2α2

i
x ≤αi

u
2 + 1

2x αi ≤ x ≤βi
2γi−x
γ2

i
βi ≤ x ≤ γi

1
x x ≥ γi ,

where

αi = 2

2−ui
, βi = 2(

p
2−1)

ui
, γi = 2(2−p

2)

ui
.

Note that for all i

1 ≤αi ≤βi ≤ 1

ui
≤ γi .

ii) For ui ≥ 2−p
2 we get a linear part, followed by 1/x:

1

wi
ψ†

i (x) =
{

1− x
4 x ≤ 2

1
x x ≥ 2

.

(a) φi and φ†
i for ui = 2

5 (b) φi and φ†
i for ui = 7

10

Figure 5.5.: The function φi and the transformed convex envelope φ†
i for two

different ui , both with wi = 1.

Now we transform this to φ†
i by again considering ψ†

i (1/x). The two different
versions are shown in Figure 5.5. The formulas are as follows.



5.4. GENERAL LOTTO WITH SCOUTS: MULTISTAGE

5

99

i) For ui ≤ 2−p
2

1

wi
φ†

i (x) =



x x ≤ 1
γi

2γi x−1
γ2

i x
1
γi

≤ x ≤ 1
βi

u
2 + x

2
1
βi

≤ x ≤ 1
αi

1− 1
2α2

i x
x ≥ 1

αi

ii) For ui ≥ 2−p
2

1

wi
φ†

i (x) =
{

x x ≤ 1
2

1− 1
4x x ≥ 1

2

.

This was all in case ui > 0. For ui = 0, we see analogously that

1

wi
φi (x) =

{
x
2 x ≤ 1

1− 1
2x x ≥ 1

so
1

wi
ψi (x) =

{
1− x

2 x ≤ 1
1

2x x ≥ 1.

Note that this function is already convex. Therefore ψ†
i =ψi and φ†

i =φi .

By construction, the φ†
i are now reciprocally concave, i.e., φ†

i is concave

and φ†
i (1/·) is convex. We use these to define a new payoff function

H †(B1, ..,Bn ,R1, ..,Rn) =
n∑

i=1
φ†

i

(
Bi

Ri

)
.

Note that H † is concave in B1, ..,Bn and convex in R1, ..,Rn . Also note that setting
φi (Bi /0) = 1 and Bi ≥ ϵ> 0 ensures continuity of H † everywhere.

VALUE OF THE DOMINATED GAME

We now define a new game with payoff H †, which has the required convex-concavity.
First fix B ,R > 0 and set

ci =
(φ†

i )′(B/R)∑n
j=1(φ†

j )′(B/R)
.

We fix ϵ so that 0 < ϵ< B mini ci and require that Bi ≥ ϵ for all i . Note that this extra
restriction can only lower the value for Blue, so the value of the resulting game is
still a lower bound for the original game.

All the φ†
i ’s are C 1, so we can apply Lemma 5.8 to conclude that the

unique Nash equilibrium is obtained by setting Bi = ci B and Ri = ci R. Moreover,
the game value is

∑
i φ

†
i (B/R). Note that by construction of ϵ, the Bi all satisfy the

restriction Bi ≥ ϵ.
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To compute the ci ’s more explicitly, one needs the derivative of φ†
i , which

is given below.

i) For ui = 0

1

wi
(φ†

i )′(x) =
{

1
2 x ≤ 1

1
2x2 x ≥ 1

ii) For 0 ≤ ui ≤ 2−p
2

1

wi
(φ†

i )′(x) =



1 x ≤ 1
γi

1
γ2

i x2
1
γi

≤ x ≤ 1
βi

1
2

1
βi

≤ x ≤ 1
αi

1
2α2

i x2 x ≥ 1
αi

iii) For ui ≥ 2−p
2

1

wi
(φ†

i )′ =
{

1 x ≤ 1
2

1
4x2 x ≥ 1

2

5.4.5. VALUE OF THE ORIGINAL GAME

So far we have obtained an upper bound and a lower bound for the game. Now note
that in some cases, the ci ’s as computed in Section 5.4.4 coincide with the ones that
were used in Section 5.4.3. Namely, when for each i one of the following conditions
holds:

i) ui = 0

ii) 0 ≤ ui ≤ 2−p
2 and either

B

R
≤ 1/γi = ui

2(2−p
2)

or
ui

2(
p

2−1)
= 1/βi ≤ B

R
≤ 1/αi = 1−ui /2

iii) ui ≥ 2−p
2 and B

R ≤ 1/2

Therefore, in these cases the upper and lower bound coincide. This implies that the
value of the game equals

n∑
i=1

φi

(
B

R

)
,

since this is the upper bound we found. In particular, when all ui ’s are 0, the value is

1

2

B

R
.
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(a) u1 = 3
10 ,u2 = 4

10 ,u3 = 5
10 (b) u1 = 3

10 ,u2 = 4
10 ,u3 = 5

10

(c) u1 = 0.31,u2 = 0.33,u3 = 0.35 (d) u1 = 0.31,u2 = 0.33,u3 = 0.35

Figure 5.6.: The value of the GL-MS with 3 fields, for different values of ui . All three
fields have value 1/3. The right figures are zoomed-in versions of the left
figures.

We get back to this in Section 5.6. In the other cases, the bounds do not coincide,
so we only obtain a range of possible game values. Figure 5.6 shows the lower and
upper bounds for a fixed choice of wi ,ui as a function of B/R.

Remark 5.10 (Comparison with known results). When all ui ’s are set to 0, we
obtain the following unique second-stage strategy: Bi = wi B and Ri = wi R. Then on
each field a single field General Lotto game is played with the same resource ratio
Bi /Ri = B/R. The total expected payoff still equals B

2R whenever B ≤ R and 1− R
2B

otherwise. This is (like in Remark 5.6) consistent with Corollary 1 of Kovenock and
Roberson [71]. The difference between our case and theirs is that they treat the game
as a one-shot game. Apparently, changing the game to a multistage variant did not
affect the value.
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5.5. MEASURING INFORMATION VERSUS STRENGTH
In the preceding sections, we have determined the optimal strategies and value for
games with fixed amounts of resources and information, effectively addressing our
first main research question. For this section, we transition to our second main
research question: The influence of information versus strength and the weapons mix
problem. The weapons mix problem consists of choosing the optimal combination
of information (scouting drones) and resources which provide strength (troops). In
this section, we present three different ways to compare the influence of information
against the influence of resources for GL-S, ending with the weapons mix problem.
Two of these ways are similar to methods that were independently used in Chandan
et al. [74].

5.5.1. INFLUENCE RATIO

One way to measure the influence of information versus strength is to compare the
increase in game value under the addition of information against the increase of the
game value under the addition of resources. To this end we fix R > 0 and compute
for each pair of B ,u, the ratio of derivatives of the game value with respect to B and
u, respectively. This yields the following:

Vu := ÇV

Çu
=


0 B

R < u
1
2 u < B

R < 1
(1−u)(2B/R−1−u)

2
(

B
R −u

)2 1 < B
R

VB := ÇV

ÇB
=


1
R

B
R < u

1
2R u < B

R < 1
(1−u)2

2R(B/R−u)2 1 < B
R

This allows us to define the influence ratio IR:

I R := 1

R

Vu

VB
=


0 B

R < u

1 u < B
R < 1

1+ 2
1−u

( B
R −1

)
1 < B

R

The graph of the influence ratio is shown for R = 1 in Figure 5.7. The diagonal
line u = B between blue and purple marks the ‘Exploitation Line’, i.e., under this
line additional information is valuable because it can be used, but above this line
there are simply not enough resources. Using this, the graph can be divided into
3 parts. Directly above the exploitation line we have the upper triangular region,
where the influence ratio is 0, which means adding information does not increase
the value of the game. Directly below the exploitation line is the lower triangular
region, where the influence ratio is exactly 1, which means everywhere in the lower
triangle, increasing either u or B by the same amount, leads to the same increase in
value. And on the right side we have the right rectangle, where the influence ratio
is larger than 1, which means the value increases more for an increase in u than



5.5. MEASURING INFORMATION VERSUS STRENGTH

5

103

for the same increase in B . Note the interesting behaviour around the point (1,1).
The reason is that for B < 1, going from information u = 1−ϵ to u = 1 is not valuable
at all, because there are not enough resources to use the information. However, for
B > 1 the increase of information from 1−ϵ to 1 is extremely valuable. The reason
for this is that when u = 1−ϵ adding resources will never yield a value of 1, where
adding just the final ϵ bit of information does yield game value 1.

Figure 5.7.: Heatmap of the Influence Ratio, as a function of resources B and
information u. A higher influence ratio indicates that information is
more valuable.

5.5.2. RESOURCES NEEDED TO ATTAIN A GIVEN GAME VALUE

Another way to quantify the influence of information is by studying how many
resources are needed to obtain a certain game value given a level of information.
The resource ratio B/R that is needed to attain game value v given information u
equals

B

R
=


u + (1−u)2

2(1−v) u ≤ 2v −1

2v −u 2v −1 ≤ u ≤ v

v u ≥ v
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Note that for any given fixed value v , the equation above exactly represents the
contour line of the value function for this particular value v . In Figure 5.8, we
display several of these contour lines. This visualization also provides insight into
how to maximize the game value with minimal additional information or resource
allocation. Specifically, this can be achieved by moving perpendicular to the contour
lines. Notably, in the top-left region, we observe once again that adding information
does not enhance the game value; instead, only the addition of resources can lead
to an increase.

Figure 5.8.: Contour plot of the value of GL-S as a function of B/R and u. The
arrows indicate the direction in which the value increases most steeply.

5.5.3. OPTIMISING INFORMATION VS STRENGTH

In this section, we delve into the weapons mix problem, which revolves around a
fixed budget D to be divided between resources and information. We assume R = 1
and set the cost of resources B to 1 per unit and the cost of information at c per
unit. This yields the restriction that B + cu ≤ D . Using the solution found to GL-S
in Section 5.3, we can determine the B and u that maximise the game value under
this constraint, thereby identifying the optimal allocation of the budget between
resources and information.

Varying the total budget D produces the graphs in Figure 5.9. The line
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corresponding to c = 100 was included to illustrate the case in which information is
so expensive that it is not used at all, resembling the ‘no-information case’.

The top-left graph of Figure 5.9 shows the maximum attainable value for a
budget D . It’s evident that a higher cost c of information always leads to a lower
game value.

Moving to the top-right graph, we see that for c < 1 it is optimal for any
budget D to invest in both resources and information, with both steadily increasing
for higher budgets until a game value of 1 is reached. For c > 1 it is better to
only invest in resources for when the budget is small. However, if we increase the
budget, there is a certain point after which it also becomes worthwhile to invest
in information as well. Interestingly, from that point onwards Blue will actually
start decreasing the amount spent on resources, as his investment in information
increases faster than the increase in budget. The decrease in resources bought can
be seen in the bottom-left graph.

Finally, note from the top-left graph that a budget D ≥ 1+ c ensures that
the game value is 1. This outcome is understandable since c can be spent on buying
information, thereby acquiring perfect information u = 1. With perfect information,
Blue only needs to spend R = 1 on resources to always match Red and thus always
win. Since a budget of 1+ c guarantees Blue always wins, the surplus budget need
not be used. The unused budget is shown in the bottom-right graph.

5.6. INTERPRETATION
In the previous sections, we have tackled the two main research questions outlined
at the start of this chapter: the weapons mix problem and efficient strategies when
using scouts. Now, our focus shifts towards interpreting these questions and their
respective solutions within a military context, particularly concerning the scenario
of troops providing firepower and scouting drones providing information. In this
section we outline general guidelines for optimal strategies, the most effective
combination of troops and scouting drones, and whether to prioritise additional
troops or additional scouting drones. Underlying these guidelines are the insights
obtained in various parts of the chapter. We use the strategies and values calculated
for the GL-S model and employ the three distinct ways to compare information and
strength within these models.

5.6.1. EFFICIENT STRATEGIES WITH SCOUTS

We start with guidelines for efficient strategies when the number of resources and
the amount of information are predetermined. The situation we analyse is as follows:
Red and Blue will face each other in a number of battles. Both have a given amount
of resources and additionally Blue has a given number of scouts, which roughly
translates to a probability to gain information about Red’s allocation of resources.
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Figure 5.9.: Let D be the fixed budget to be spent between information and resources.
Here we plot the characteristics as function of the total budget D , for
several different costs of information c.

Blue and Red have different challenges in formulating their strategies. For
Blue, the strategy can be split into two sub-strategies: what to do if Blue gains
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information, and what to do if Blue doesn’t gain information. How does Blue best
convert his scouting advantage into the battle? Red aims to provide a strategy
that is as scout-resistant as possible, recognising the possibility of her allocation to
be scouted to Blue. Is this achieved by playing more stable and always sending
the same number of resources, which causes Blue to learn nothing extra when
he gains information? Or is this done by playing more risky and pooling a
large part of resources together for a large attack, hoping that this one is not revealed?

The answer to all of these questions depends on the probability of Blue
gaining information and the resource ratio B/R. There are three distinct cases, each
with its own set of strategies for Blue and Red. We discuss these cases separately
and provide insights based on Theorem 5.5, which describes an optimal solution to
GL-S.

RED HEAVILY OUTNUMBERS BLUE, WHO HAS MANY SCOUTS (B/R < u)

In this case, Blue’s optimal strategy involves only allocating resources when
information about Red’s allocation is obtained, conserving resources otherwise. Blue
does not have enough resources to match Red every time the field is revealed, but
should try to match as often as possible. Red’s best response is to always allocate
the exact same number of resources, thus neutralising the advantage Blue has when
he gets information about Red’s allocation.

RED OUTNUMBERS BLUE, WHO HAS FEW SCOUTS (u < B/R < 1)

Here Red uses the same strategy as she would in a standard General Lotto Game,
always allocating resources but randomising the exact amount slightly. Blue can
match Red’s allocation whenever it is revealed and still have resources left in his
resource budget. Therefore, Blue should also allocate resources occasionally when
he has no information about Red’s allocation. If Blue decides to allocate resources,
he should follow Red’s strategy for determining the exact number.

BLUE OUTNUMBERS RED (1 < B/R)

Now Blue can match Red’s allocation whenever it is revealed and additionally allocate
resources every time it is not revealed. The exact amount should be randomised
slightly. For Red, it is best to allocate resources even less often than in a standard
General Lotto game. This means that Red should often not allocate any resources,
and occasionally allocate a large number, while still randomising the exact amount.
The level of risk taken by Red increases with both the ratio with which she is
outnumbered and how often Blue gains information on her resource allocation. If
Red decides to allocate resources, she should follow Blue’s strategy for determining
the exact number.

5.6.2. WEAPONS MIX PROBLEM

Now that we have provided guidelines for efficient strategies given fixed amounts of
resources and information, we discuss guidelines for when the amounts of resources
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and information are not fixed, and can instead be chosen under a fixed budget. First,
we discuss the influence of information and resources, respectively, and how they
relate to military practice and experience. Then we consider the budget constraints,
thereby addressing the weapons mix problem.

THE VALUE OF INFORMATION

To analyse the value of information, recall Figure 5.2. Two modes of behaviour exist,
depending on whether Blue has more (B/R > 1) or less (B/R < 1) resources than Red.
In the first case, an increase in information always leads to an increase of value.
However, in the second case, there is a cut-off point: initially, extra information
is beneficial, but beyond the cut-off point, there is no additional gain. The main
takeaway from these considerations is that information only provides value as long as
there are enough resources in strength available to take advantage of this information.

We see something similar in military practice, for instance in the war fol-
lowing the Russian invasion of Ukraine. Ukraine has a great intelligence position
due to help from many allies. However, beyond a certain point, more intelligence
does not yield any better results. Knowing exactly what the opponent does is not
helpful when there are no resources to counter them.

THE VALUE OF RESOURCES

For a deeper analysis of the value of resources, we turn to Figure 5.1. Again, there
is a clear breakpoint. When B/R is smaller than u, all of the Blue forces are used
to counter Red forces when they are observed, hence they are always employed
effectively. However, when B/R is larger than u, some of the Blue resources are
used in situations where Red is not observed. These Blue resources are used less
effectively. This results in a smaller increase in game value after the break point.

Similarly, in military practice, deploying troops is much more effective when
the strength of the opponent in the area is known. As soon as all available
information on the opponent has been exploited, any new troops are used in more
uncertain situations and are therefore less effective. We find this reflected in the
Russian-Ukrainian war, where Russia has many more troops and weaponry to deploy
but has an inferior intelligence position. This makes the deployment of Russian
troops less effective.

BUDGET CONSTRAINTS

Finally, we arrive at our second research question: how to optimally distribute a
military budget over resources and information. We studied this question most
directly in Section 5.5.3, of which the main results are shown in Figure 5.9. From
this figure, we can extract three regimes, which we show in Table 5.2.

(I) In this case, information is cheap compared to resources. This corresponds to
c < 1 in Figure 5.9. In this case it is directly worthwhile to buy information, so
as budget increases resources and information are bought equally.
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(II) Here information is expensive (so c > 1) and there is a low budget. In this case
it is not worthwhile to invest in information, and it is best to spend the entire
budget on resources.

(III) As in case (II) information is expensive (so c > 1), but there is also a high
budget. Now it is again worthwhile to buy information. In fact, with a higher
budget, some resources are exchanged for more information (as one can tell
from the decreasing lines in the bottom-left graph of Figure 5.9).

The main takeaway here is that if information is cheap, you should always buy it,
along with resources. If information is expensive, you should focus on resources first
and only buy information if your budget is high enough.

Information
Cheap Expensive

Budget
Low

(I) Combine
(II) Only resources

High (III) Focus on information

Table 5.2.: Preferred strategy in cases of high and low budget and with cheap and
expensive information. Derived from Figure 5.9.

5.7. DISCUSSION
In this chapter, we introduced the General Lotto Game with Scouts, a resource
allocation game enhanced with the possibility of gaining information on the opposing
player through scouting. We provided a complete solution for the game concerning
a single field. Subsequently, we extended our analysis to a multistage version,
establishing upper and lower bounds for its value and determining conditions on
when they coincide. Additionally, we introduced several metrics to quantify the
trade-off between information and resources. Finally, we interpreted these findings
and drew qualitative conclusions, summarised as follows:

• Information is only useful when there are enough resources to exploit it.

• Resources are employed more efficiently in the presence of information.

• When information is cheap, one should always buy it alongside resources.
When it is expensive, one should first focus on buying resources and only
invest in information if the budget is high enough.

• When Blue receives information, it is always best to call as often as possible.

• Red should play very stable if she heavily outnumbers Blue, and very risky if
Blue heavily outnumbers her.

In this section, we discuss the model and results. We conclude with some suggestions
for future work.
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5.7.1. DISCUSSION OF THE MODEL AND RESULTS

LOTTO CONSTRAINT BEFORE OR AFTER OBSERVING RED’S RESOURCE ALLOCATION

The characterising feature of a General Lotto model is the constraint that the total
allocated budget should equal a fixed constant in expectation. Since our studied
situation involves potential information revelation, one faces a decision when this
constraint should be applied: one can require the expected total resources to equal
a constant before or after potentially revealing Red’s resource allocation.

The second option might seem more natural, but has certain curiosities in
the General Lotto framework. For instance: whenever Red allocates less resources
than Blue’s total budget, she always loses. Therefore, Red will likely alternate
between allocating nothing and allocating significantly more than Blue’s budget.
Additionally, Blue has only one sensible response when Red’s allocation is revealed,
namely matching Red with the highest possible probability.

In this chapter, we chose for the former definition: requiring the budget
constraint before the allocation is revealed. This allows Blue to decide how much of
the budget he wants to allocate in the information and no-information case, which
in turn allows us to study where he can use his budget most effectively. The only
drawback is that since Blue’s allocation depends on Red’s, his allocation distribution
depends on Red’s allocation distribution.

CONSTANT PRICE OF INFORMATION

In Section 5.5.3, we examined a fixed budget D to be divided between resources
and information. We assigned information a fixed cost of c per unit. However,
this straightforward approach implies that the cost of increasing information from
0 to 0.1 is identical to the cost of increasing from 0.9 to 1. In practical scenarios,
obtaining basic information about a situation is often much cheaper than acquiring
the final details.

This choice for a fixed cost model significantly impacts the perceived value
of information in comparison to resources. In particular, in the top-right part of Fig-
ure 5.7, the value of information is much larger than the value of resources. This large
difference stems from the fact that even a marginal increase in information can el-
evate the game value to 1, a feat unachievable solely through an increase in resources.

To better reflect real-world conditions, one could consider assigning informa-
tion a non-linear cost. For instance, introducing a cost function such as
F (u) = 1/(1−u)−1 would result in the cost of acquiring information increasing
with each unit purchased. Consequently, perfect information becomes impossibly
expensive to attain, thereby imposing a practical limit on information acquisition.
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5.7.2. FUTURE WORK

We conclude this work with potential avenues for extending our research beyond its
current scope. While we have already mentioned adjusting the Lotto constraint and
the introduction of a non-linear price of information, there are several additional
options for future research.

First, one could consider more complicated scenarios for the single field
case. For instance, one could investigate scenarios where the information obtained
by Blue is partial, perhaps by revealing each of Red’s units independently with certain
probabilities. Another intriguing possibility is to introduce false signals, complicating
the accuracy of the information gained by Blue and adding an element of uncertainty.

Second, it could be interesting to study extensions to the multistage version
of the game. For example, one could explore allowing Blue to optimise the detection
probabilities u1, ..,un under a fixed budget constraint. Additionally, each field could
have a ‘visibility’ parameter, which influences how hard it is for Blue to obtain
information, resulting in varying information costs per field. Another option is
to give Blue a fixed amount of scouts, which he must then distribute strategically
among the fields. I.e., if blue has only two scouts, only the two fields he sends these
to could be revealed. These extensions might give a ‘search game dynamic’ where
a trade-off will be sought between allocating resources and search capacity to more
and less visible fields.
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6
RISING TENSION IN THE

HIMALAYAS: A GEOSPATIAL

ANALYSIS

The China-India border is the longest disputed border in the world. The countries
went to war in 1962 and there have been recurring border skirmishes ever since.
Reports of Chinese incursions into Indian territory are now a frequent occurrence.
This rising tension between the world’s most populous countries not only poses risks
for global security and the world economy, but also has a negative impact on the
unique ecology of the Himalayas, because of the expanding military infrastructure.
We have assembled a unique data set of the dates and locations of the major
incursions over the past 15 years. We find that the conflict can be separated into
two independent conflicts, the western and eastern sectors. The incursions in
these sectors are statistically independent. However, major incidents do lead to an
increased tension that persists for years all along the entire Line of Actual Control
(LAC). This leads us to conclude that an agreement on the exact location of a limited
number of contested regions, such as the Doklam plateau on the China-Bhutan
border, has the potential to significantly defuse the conflict, and could potentially
settle the dispute at a further date. Building on insights from game theory, we find
that the Chinese incursions in the west are strategically planned and may aim for a
more permanent control over specific contested areas. This finding is in agreement
with other studies into the expansionist strategy of the current Chinese government.

6.1. INTRODUCTION
On 15 June 2020, an Indian patrol and a Chinese patrol clashed in the Galwan river
valley, a disputed area along the China-India border. The patrols were unarmed in
accordance with bilateral agreements, but the soldiers used rocks and sticks. This

Parts of this chapter have been published in PloS one [6].
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resulted in the deaths of 20 Indian soldiers and an unknown number of Chinese
soldiers [78] (the Chinese government reported 4 deaths, while Time magazine [79]
estimated 35). This was by far the most violent border incident in years, but
the number of Chinese incursions along the China-India border had been steadily
increasing, and it seemed like an accident waiting to happen [80]. Immediately after
the clash, both sides sought to reduce the tension through rounds of talks [81],
meanwhile increasing their military presence [82]. In 2021, they agreed to withdraw
their troops from a number of red-zones and the number of incursions now seems
to be dropping [83].
The Line of Actual Control (LAC) between China and India remains the longest
disputed land border on earth. After a brief war in 1962, the two countries signed
several bilateral agreements. In 2005, this culminated in a protocol [84] to develop a
long-term constructive partnership, pending an ultimate resolution of the conflict.
The countries agreed to not use force, nor threaten to use force, against each
other. However, since then, the relationship has deteriorated for several reasons.
The trade surplus that India enjoyed up until 2005 has turned into a multi-billion
dollar deficit, which has created strong undercurrents of mistrust [85]. Moreover,
China significantly increased both its military spending and its military support for
Pakistan, which raised a high degree of concern in India [86].
China and India possess nuclear weapons, but both countries subscribe to a
no-first-use policy, and the risk of nuclear escalation seems minimal. However,
the border conflict could escalate into the use of conventional missiles. Experts
have pointed out that these are co-located with nuclear missiles, and that it is
challenging to distinguish between the two [87]. The risk of nuclear escalation
therefore is minimal, but not negligible. Meanwhile, the conventional escalation of
the conflict is ongoing. Tens of thousands of troops are now stationed across the
mountains [88]. To support their military presence, both countries keep extending
their infrastructure, which leads to ecological degradation of the borderlands [89].
This paper seeks to build an understanding of what drives the conflict. We have
assembled an original data set on Chinese incursions into India over the period
2006-2020, starting at a time of détente and ending with a year of heightened
tension, when the pandemic had not yet disrupted the world.1 We apply statistical
and game-theoretic methods to study the dynamic of rising and falling tensions
along the LAC. Our findings provide a glimmer of hope for a possible way out of the
conflict through a step-by-step de-escalation. A resolution of the conflict would be of
great benefit for international security, the world economy as well as the economies
of the two countries (which are strongly linked), and the ecological preservation of
the Himalayas.

STATUS QUO OF THE LAC
The LAC separates the territories controlled by China and India and is perceived
by both sides as a kind of working border. It was first suggested by Chinese

1We do not consider border incursions by India into China because there are relatively few reports of
such incursions during the 15-year period of our study.
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prime minister Zhou Enlai in a letter to Indian prime minister Jawaharlal Nehru in
1959 [90]. It is a legacy of agreements between foreign powers. Indeed, a part of it is
still named after a British administrator. Historically, the LAC is divided into three
sectors [90–92], as illustrated in Fig 6.1:

1. The western sector from the Karakoram pass to Mount Gya, along Chinese
controlled Aksai Chin. The Galwan river valley is located here.

2. The middle sector from Mount Gya to the border with Nepal, which is the
least contested part of the border.

3. The eastern sector, also known as the McMahon line, along the state of
Arunachal Pradesh on the Indian side. This sector also includes the border
between Sikkim and Tibet.

Figure 6.1.: A map of the LAC and its three sectors. The locations of incursions
along the LAC. The shade represents the number of incursions. The
largest contested territories are Aksai Chin in the west and Arunachal
Pradesh in the east. (Topographic base maps in our article are accessed
from the USGS National Map Viewer).

Formally, both countries claim large areas that are controlled by the other side.
The Indian claim of Chinese controlled Aksai Chin, a highland of 40,000 square
kilometers, was the major cause of the short war in 1962 [91]. This virtually
uninhabited plateau is a vital passage point between the Chinese autonomous
regions of Tibet and Xinjiang [93]. China in turn claims 80,000 square kilometers of
Arunachal Pradesh, and briefly occupied it during the 1962 war. Some speculate that
China will accept the McMahon line as its border, if India waives or sharply modifies
its claim to Aksai Chin [94, 95]. Other analysts believe that India wishes to freeze the
status quo, a position for which China has little respect [96, 97].

GEOGRAPHICAL, POLITICAL, AND STRATEGIC ASPECTS OF THE CONFLICT

Territorial conflicts usually involve ethnic, geographic or economic conditions [98].
We survey several factors that may play a role in the conflict.
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GEOGRAPHICAL FACTORS

The LAC is exceptionally long and the conditions along the border vary considerably.
The borderland along the middle and eastern sectors is more accessible, fertile and
densely populated than the Aksai Chin in the western sector, which is a barren
plateau with a total population of less than 10,000. It is, however, of great economic
importance to China, since Aksai Chin connects Tibet and Xinjiang. It is near the
China-Pakistan Economic Corridor, a major project to connect Xinjiang to Pakistan’s
Gwadar port [99].
In the eastern sector, the Siliguri corridor is 130 km away from the Sikkim border.
This narrow stretch of land is the only connection between India’s North-Eastern
states and the rest of the country. The Doklam standoff in 2017 was caused by
intended Chinese road constructions that were perceived by India as a threat to this
corridor [100].
The borderland is rich in mineral reserves, and there are several mines that are
exploited or explored. The Aksai Chin has one of the largest zinc-lead deposits in
the world, which is currently being prepared for exploitation [101]. Fifty kilometers
north of the McMahon line, China launched large-scale investments into mining
gold and silver in Lhünzê County. Another aspect is the future use of hydroelectric
power. The McMahon line runs through the Brahmaputra river basin, where both
China and India have plans for the construction of major hydropower plants [102].

STRATEGIC FACTORS

The People’s Republic Army (PLA) is a dominant force. China’s policy is increasingly
assertive, employing a coercive policy against Taiwan, while staying in the gray zone
below open conflict [103]. It is continually extending control over the South China
Sea. Its dispute with Japan over the Senkaku/Diaoyudao islands shows the same
rising tension as the dispute over the LAC [104].
According to Indian military strategists, the number of Chinese patrols in Indian
territory is increasing each year [105]. The PLA has constructed military structures,
and even entire villages, in disputed areas of the LAC [106–109]. The PLA strategy
is often referred to as salami slicing by the Indian media. On the other hand, the
terrain around the LAC is more accessible from the Indian side [88] and India’s
military bases are much nearer to the disputed areas than China’s [100]. The balance
of (military) power in the conflict is unclear.

POLITICAL FACTORS

China and India have close economic ties and would benefit from a settlement of the
border dispute, but they are also the two dominant powers in the region and political
rivals. The dispute goes through a dynamic between cooperation and conflict, see
Table 6.1, that is typical for the political relations between rival powers [110]. In
recent years, India’s prime minister Modi and China’s President Xi Jinping established
close personal relations [111]. After the Doklam standoff in 2017, they sought to
overcome strategic differences through several informal summits. This was disrupted
by the Galwan standoff in 2020, which was possibly triggered by India’s decision to
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dissolve the special status of the state of Jammu and Kashmir [112]. The incident
has been a political setback for prime minister Modi, whose Bharatiya Janata Party
(BJP) stands for India’s territorial unity more strongly than any other party [113].

2005 Protocol on confidence building
measures along the LAC.

2012 Agreement on a Working
Mechanism for Consultation and
Coordination on India-China
Border Affairs.

2013 Depsang standoff followed by the
Border Defence Agreement to
“establish peace and tranquillity”.

2014 Chinese incursion in Chumur
just ten days before Xi visits
India and signs a twenty billion
dollar investment agreement.

2017 Doklam Plateau standoff

2018 Informal talks between Modi and
Xi

2020 Galwan River Valley standoff

Table 6.1.: Timeline of the border conflict – a concatenation of military confrontations
and bilateral agreements.

India’s participation in the Quad, the security dialogue between the United States,
India, Japan and Australia, may have served as a trigger for Chinese activity along
the China–India border. The incursions in the Aksai Chin could be a statement
from Beijing to both New Delhi and Washington, that it will continue to ensure its
regional interests [90].

6.2. METHODS

DATA

We built a data-set of Chinese incursions into disputed areas from 2005-2020. We
define incursions as unauthorized Chinese entries into areas that are internationally
accepted as either Indian or disputed territories. We do not distinguish between foot
patrols, motor patrols, or combat air patrols. We collected the data using journalistic
and academic sources from the LexisUni database. It therefore is as much a study of
the media attention as of the incursions. We rely on reports of Chinese incursions
that are well documented by multiple independent media outlets and are reported
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by major Indian newspapers or international media. We do not record incursions
that are reported by the Indian government but not verified by a third party (India
currently ranks 150 out of 180 on the World Press Freedom Index of Reporters
without Borders (RSF), China ranks 175). The focus of this study is on Chinese
incursions into India. We do not consider Indian incursions into China, as these
there are few instances that can be verified across multiple independent sources.
Most often, these incursions are reported only by the Chinese state media.

year Gov India Our data
2020 - 14
2019 663 3
2018 326 18
2017 426 16
2016 273 9
2015 290 5
2014 460 14
2013 411 14
2012 426 6
2011 213 6
2010 228 5
2009 270 6
2008 280 2
2007 140 1
2006 265 1

mean µ 334 8.0
stdev σ 132 5.6
σ/µ 0.40 0.70

Table 6.2.: Validation of our data. The Indian government publishes yearly numbers
of border incidents (numbers of the Indo-Tibetan Border Police), which
are compared to the numbers reported by the media in our data. The
official numbers correlate well with our data. The official numbers peaked
in 2014 and again in 2019. Remarkably, the number of media reports on
incursions in 2019 was very low.

The Indian government publishes yearly numbers of border incursions and
transgressions, with an average of 334 incursions per year over the period 2006-2019,
see [104]. The number of incursions in 2020 has not been reported yet. The
government numbers include minor incidents, such as finding cans of food
consumed by Chinese patrols on Indian territory, that are not reported by the media.
The official numbers are compared to our numbers in Table 6.2. The numbers
reported in the media have a higher coefficient of variation (st.dev/mean) than the
official numbers (0.70 versus 0.40). In other words, the numbers presented by the
media are more volatile. It is likely that this higher volatility is a consequence of the
self-reinforcing nature of media attention [114]. We should keep in mind that our
data measures the number of incursions through a slightly distorted lens.



6.2. METHODS

6

121

We found an average number of 8.0 incursions per year that were reported by the
media (our data set). If we adjust the scales to compare the two time series, as
illustrated in Fig 6.2, then they show the same trend. The number of incursions has
been rising since 2006. There have been years in which the numbers were stable or
even reduced, but they were invariably followed by a further increase.

Figure 6.2.: Comparison of our data and the official numbers on adjusted scales.
The upward trend over the entire period is the same in both data sets,
but the numbers in our data are clearly more volatile than the official
numbers.

The Indian government reported no less than 663 transgressions in 2019, but only
3 of these made it to the international media. Indian prime minister Modi and
Chinese President Xi held several informal meetings at the time and reiterated their
effort to ensure peace, in accordance with the 2005 protocol [115]. The chief of the
Indo-Tibetan Border Police (ITBP) reported a peaceful situation [116]. These efforts
to downplay the actual situation, with an all-time high number of transgressions,
worked: the media reported an exceptionally low number of incursions that year. If
we delete this outlier from our data set, the correlation between the government
numbers and our data is 0.69. All things considered, our data agrees well with the
official numbers of the Indian government.
A data set that is similar to ours, though much more restricted, has been assembled
by the Observer Research Foundation [117]. This data set contains only biennial
numbers of incursions over the years 2006-2014. The ORF data set is very close to
ours (corr. coeff. 0.99).

DATA PROCESSING

Media reports rarely specify the exact time or location of the incursions. They specify
the date and the name of a village, a military base, or a geographical landmark close
to where the incursion took place. It is impossible to pinpoint the incursions with
absolute precision in time or space. Our data contains the date of the incursion and
a best estimate for its geographic coordinates. The LAC runs across mountain crests
and only a few passes and valleys can be patrolled, so that these coordinates should
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be approximately correct, within a few kilometers of the actual locations. A heat map
of the incursions in Fig 6.3 clearly shows that the incursions are clustered in space.

Figure 6.3.: A heat map of the incursions. The media reports do not always give the
exact coordinates and only mention a military base or village nearest to
the incursion. It is impossible to pinpoint the precise locations of the
incursions. However, it is clear that the incursions are clustered around
hot spots where the border is not clearly defined. These are the so-called
red-zones (USGS base map).

location (W) coordinates incursions location (E) coordinates incursions
Depsang 35.3N, 78.0E 23% Sikkim 27.6N, 88.8E 30%
Galwan 34.8N, 78.2E 6% Tawang 27.7N, 91.8E 20%

Hotspring 34.3N, 79.0E 5% Lhunze 28.5N, 93.3E 10%
Pangong 33.7N, 79.4E 26% Bishing 29.1N, 95.0E 5%

Demchok 32.8N, 79.4E 16% Anini 29.0N, 96.0E 10%
Chumur 32.7N, 78.6E 24% Kibithu 28.3N, 97.2E 25%

Table 6.3.: The incursions in the western and eastern sector. The distribution is not
even. In the western sector, almost all incursions occurred in Chumur,
Demchok Depsang, and Pangong. In the eastern sector, three quarters of
the incursions occurred in Sikkim, Tawang, and Kibithu.

The incursions in the middle sector are concentrated around the Barahoti military
base. In the eastern sector there are six red-zones, one along the Sikkim border
and five along the McMahon line. The data is more diffuse in the western sector,
where the media reports incursions near six locations: Depsang, Pangong, Demchok,
Chumur, Hot Springs, and Galwan Valley. The majority of the incursions occur in
four locations, see Table 3 and the heat map in Fig 6.4.
We treat the locations of the incursions as categorical data, divided into thirteen
locations, see Fig 6.5. The incursions in the middle sector are all in the Barahoti
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Figure 6.4.: Heat map of the incursions in the western sector. The majority of the
incursions occur near four red-zones: 1 Depsang Plateau, 2 Pangong
Lake, 3 Demchok, 4 Chumur. Some of the incursions are outside these
four red zones: near the Galwan Valley (g) or near the Hot Springs
border checkpost (h), which are relatively close to each other. Pangong
Lake, which is patrolled by fast boats, is 134 km long, making the
incursions very difficult to locate. Chumur is close to the middle sector
and the incursions here take place over a larger area, with two incursions
formally located in Uttarakhand (middle sector), but close to Chumur.
We group all of these into this single red-zone.

area. They are more spread out in the other two sectors. In both the eastern sector
and the western sector, there are six red-zones.
The meteorological conditions near the LAC are forbidding, with high altitudes (40
percent of the incursions occur above 5,000m) and sub-zero temperatures. As
a consequence of this, the incursions are not only clustered in space, but also
clustered in time, as can be seen in Fig 6.6. Half of the incursions (51 percent) take
place during June–August, and almost none during December–February.
We remark that a detailed study of when incursions occur, in relation with
socio-economic and political factors, was previously carried out in Greene et al.
[118]

STATISTICAL METHODS

Border conflicts involve many different factors, which manifest themselves on
different scales. They often involve totally scattered confrontations, which can spill
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Figure 6.5.: Grouping the incursions into thirteen red-zones. The distribution of the
incursions over the thirteen red-zones, colored by sector (west-middle-
east).

Figure 6.6.: The incursions through time. The red line marks the Depsang incursion,
which has been a turning point in the conflict: the number of incursions
doubled since then and remained at an elevated level. The events are
clearly seasonally clustered.

over from one location to the next [119, 120]. The incursions themselves are local
incidents, but may be part of military strategies that are played out on a larger scale.
We therefore analyze the data at different spatial and temporal levels.

The length of the LAC is enormous, with a distance of well over a thousand
kilometers between Indian-claimed Aksai Chin and Chinese-claimed Arunachal
Pradesh. The western/middle sector and the eastern sector are separated by the
independent countries of Nepal and Bhutan. We test if the incursions in these two
parts of the border are statistically independent events by means of a Wald-Wolfowitz
run test. To this end, we label the incursions as "E" and "W" to obtain a sequence
of elements for which we count the number of runs, i.e., we count the number of
segments of the sequence consisting of adjacent equal elements. If the incursions in
these two parts of the LAC are statistically independent, then the number of runs is

asymptotically normal with mean µ= 2n1n2
n1+n2

+1 and variance σ2 = (µ−1)(µ−2)
n1+n2−1 . Here n1
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is the number of incursions in the East and n2 is the number of incursions in the
West. We use this method to test the statistical dependence of the incursions in the
three sectors. We also apply a multivariate Wald-Wolfowitz test for the number of
runs in the western sector. There is no closed form formula for the number of runs
in a multivariate test, but the expected number of runs and its standard deviation
can be simulated [121, p 217].

Mathematically, the incursions along the LAC can be modelled by a point process,
in which each location on the border has a probability intensity of incursion. In
such models, it is customary to split a time series into a background process and an
offspring process [122]. The offspring process contains the events that are triggered
by the background process, as aftershocks of an earthquake. We therefore split the
data set into primary incursions and secondary (triggered) incursions. We define an
incursion as secondary if it occurs within 10 days in the same red-zone as an earlier
incursion. The choice of 10 days is arbitrary, but the results are stable under a
variation of plus or minus 3 days. It adjusts for the self-reinforcing nature of media
attention, which is on a timescale of days only [123].

In the Wald-Wolfowitz test, we study incursions per sector. To understand the
military strategy behind the Chinese incursions, the alleged salami-slicing, we study
the incursions per red-zone. Game theory predicts that adversaries try to establish
permanent control over a battleground (red-zone) by allocating more troops for a
longer time than their opponents. Such a tactical allocation of troops and other
military resources is a common phenomenon in border disputes [124, 125], which
can be described by a Colonel Blotto game. This is a classical two-person constant
sum game, in which the players allocate troops over several battlefields. A battlefield
is won by the player that allocates more troops to that battlefield. The payoff is
equal to the number of won battlefields. Of course, this game is a simplification
of the actual situation. Blotto is a one-shot game in which the players can access
the battlefields without constraint, while in reality the border conflict is an ongoing
struggle and the accessibility differs per red zone. However, analysts have pointed
out that China and India are engaged in a ‘war of attrition’ over the red-zones, in
which they try to wear each other out, while avoiding a full confrontation [86]. We
interpret the Chinese incursions as attempts to establish a temporary presence in a
red-zone, which can be modelled by a Blotto game that is played over rounds. We
compare the yearly incursions per red-zone to optimal strategy in a Blotto game.
A pure strategy in a Blotto game is an allocation (x1, . . . , xk ) over k battlefields such
that the xi add up to the total total number of troops available to the player.
An optimal mixed strategy selects an allocation and then assigns the numbers xi

uniformly at random to the battlefields [125]. We note that computing the specific
xi is non-trivial even for a limited number of battlefields [126]. Experimental game
theorists have established that humans tend to play this game more aggressively
and in a more targeted manner than predicted by the mathematical optimum [127].
In particular, the player with the least resources tends to follow a ‘guerilla warfare’
strategy, targeting a limited number of battlefields. To detect this targeting, we
applied a k-means analysis and used silhouette scoring to determine incursion
clusters on a yearly basis [128]. If a Blotto game is played over rounds, then the
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cumulative allocation per battlefield evens out, because it is randomly assigned. We
apply a chi-square test to determine if there is a significant difference between the
cumulative allocation and the average.

The number of incursions has been rising since 2005, but this has not been a steady
increase. There have been several major standoffs, which seem to have sparked
subsequent incursions. The Doklam standoff in 2013 was a turning point in the
conflict and led to a much more volatile situation and increased media attention. To
take care of this, in our time-series analysis we mainly consider primary incursions.
We compute its auto-correlation to detect cycles of rising and falling tension, and
we compute the correlation between east and west to check if the tension is in sync
along the LAC. Finally, we apply an auto-regressive model to forecast the future
development of the conflict.

6.3. RESULTS AND DISCUSSION

INCURSIONS PER SECTOR

The center of gravity of the dispute is in the western sector, which has the largest
number of incursions by far, see Table 6.4. The western sector and the middle sector
are contiguous and the number of yearly incursions is weakly positively correlated
(corr. coef. 0.26, 95% conf. int. (-0.28,0.81)). The eastern sector (Sikkim and the
McMahon line) is disconnected from the western/middle sector, with the sovereign
states of Nepal and Bhutan in between. The number of yearly incursions in the
western sector and the eastern sector is uncorrelated (corr. coef. -0.11, 95% conf. int.
(-0.57,0.41)). We first count the number of runs (a segment of consecutive incursions
in the same sector) in the western sector versus the middle sector. It is equal to 25.
The Wald-Wolfowitz run test (parameters n1 = 80,n2 = 20, cf. Table 6.4) predicts an
average number of 33 runs with a standard deviation of 3.1. It rejects the hypothesis
that the incursions in the western and middle sector are independent random events
(p = 0.005). This supports the hypothesis that the western sector and the middle
sector can be seen as one sector, which is in line with how China and India see it.
They have described it as a single sector in their 2005 bilateral agreement.
If we partition the incursions into the western/middle sector versus the eastern
sector, then the number of runs is 32. The Wald-Wolfowitz run test (parameters
n1 = 100,n2 = 20) predicts 34.3 runs (st.dev 3.0), and returns a p-value of 0.22, which
at the standard confidence level of five percent supports the hypothesis (or at least,
does not refute it) that incursions in the east and west are independent random
events. If we repeat this analysis for primary incursions, then the number of runs is
30 (down from 32). There are 68 primary incursions in the western/middle sector
(down from 100) and 19 primary incursions in the eastern sector (down from 20).
The Wald-Wolfowitz run test predicts of 30.7 runs (st. dev 2.7) and returns a p-value
of 0.40. This supports the hypothesis that incursions in the west and in the east are
independent events.
We conclude that both the correlation coefficient and the Wald-Wolfowitz test
support the hypothesis that the incursions in the western/middle sector and in the
eastern sector are statistically independent events. The border dispute can therefore
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year western middle eastern
2020 13 0 1
2019 1 0 2
2018 7 9 2
2017 8 4 4
2016 3 2 4
2015 4 0 1
2014 12 2 0
2013 12 1 1
2012 6 0 0
2011 5 0 1
2010 3 1 1
2009 5 1 0
2008 1 0 1
2007 0 0 1
2006 0 0 1
total 80 20 20

mean 5.3 1.3 1.3
std.dev. 4.4 2.4 1.2

Table 6.4.: Yearly incursions in three sectors of the LAC. The incursions in the
western and middle sector are weakly correlated (corr. coef. 0.26) and the
western and eastern sector are uncorrelated (corr. coef. -0.11).

be divided into two separate conflicts, centered around Aksai Chin and Arunachal
Pradesh. This conclusion holds for the incursions, which are local and tactical
events.

INCURSIONS PER RED-ZONE

In the previous section, we grouped the incursions per sector. We now consider a
finer scale and consider incursions per red-zone. These are areas along the border,
where the exact position of the LAC is contested. Almost all incursions are in these
zones. We have identified thirteen red-zones, as given in Fig 6.5.
The majority of these incursions are in six red-zones in the western sector. A
multi-variate Wald-Wolfowitz test rejects the hypothesis that the incursions in the
western sector are independent. The number of runs in our data is 50 while the
expected number of runs in a Wald-Wolfowitz test is 63.3 with standard deviation
3.4 (p = 0.0001). This implies that the incursions are not random events and that
red-zones in the western sector are strategically targeted.
The number of incursions per red-zone in the western sector is given in Table 6.5.
In at least 75% of the last nine years (a period of heightened tension), the PLA
targeted a cluster (covering at most 2 locations) containing at least 3 times as many
incursions as all other incursions in the western sector. If we compare the time-line
of the incursions at both ends of the western sector in Depsang and Chumur, see
Fig 6.7, then we see that the incursions there are clustered in time. The weather is
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more severe at Depsang, which is at a higher altitude and on average is 5 degrees
colder than Chumur. We find the same temperature difference for the dates of the
incursions, which indicates that the local weather conditions do not influence the
strategic allocation of the troops.

Figure 6.7.: Incursions in Depsang and Chumur The incursions in time in the two
outermost points of the western sector, which are 300 km apart. The 37
incursions are numbered in following order. They are clearly clustered,
indicating that one of the two zones is targeted at a time.

We compare the incursions in the six red-zones with optimal play in a Blotto game.
Incursions are clustered using k-means (for k with the highest silhouette score)
and color coded in Table 5. It demonstrates that the PLA almost always targets
clusters (with 3 times the number of incursions with respect to the others) of 1 or
2 locations. In 2017 and 2018 the PLA targeted a single red-zone, and in 2013 it
targeted two red-zones. If we test the maximum number of incursions in these years
against a uniform distribution, then the p-values are respectively 0.0004, 0.002 and
0.10, which is another indication that these are not random encounters. Such a
targeted strategy is consistent with an asymmetric Blotto game, in which the player
with less resources assigns the troops to a limited number of battlefields and forfeits
the others (guerrilla warfare strategy). Our model thus indicates that China adopts a
weaker player strategy, which seems to contradict that it has a stronger military force
and a better developed border infrastructure [129]. However, it has been observed
that China’s strength in numbers could be misleading and India’s military position
may be stronger than usually acknowledged by its military analysts [88, 130]. The
Indian army has established new mountain divisions and improved its access to the
red-zones, after the completion of the all weather Darbuk–Shyok–DBO Road in 2019.
Indeed, this may have spurred an increase in Chinese activities [100, 131].

Game theory predicts that the number of incursions per red-zone averages out over
time [125]. If we combine the relatively closely located Galwan valley and the
Hotspring area into one, then the distribution of the incidents over the resulting five
red-zones is (0.23,0.11,0.26,0.16,0.24), while game theory predicts a distribution of
20% per red-zone. A chi-square test of the hypothesis that the incursions are drawn
from a uniform distribution is inconclusive with a p-value of 0.09. The red-zones
Galwan and Hotspring are relatively small and if we remove them altogether, then
the p-value is 0.58. This indicates that the Chinese incursions in the Aksai Chin
average out over time and that the four major red-zones in that area are of equal
strategic importance to the PLA. Recent developments support this. In our data,
the number of incursions in Demchok is below average, but the PLA is building up
its presence there. In December 2020, it constructed a new housing colony in this
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year Depsang Galwan Hotspring Pangong Demchok Chumur
2020 0 2 3 4 2 2
2019 0 0 0 1 0 0
2018 6* 0 0 0 1 0
2017 1 0 0 7* 0 0
2016 0 0 1 1 1 0
2015 3* 0 0 1 0 0
2014 1 1 0 3 2 5
2013 5 0 0 0 1 6*
2012 0 0 1 1 1 3*
2011 0 1 0 2 1 1
2010 1 0 0 1 1 0
2009 1 0 0 0 2 2
2008 0 0 0 0 1 0
total 18 4 5 21 13 19

Table 6.5.: Yearly incursions in the western sector. Clusters of incursions are colored
red (high), blue (middle) and green (low). During at least 75% of the years
between 2012-2022, the cluster with the most incursions contains at least
3 times as many incursions as the others. Yearly clusters are determined
using k-means for k=2,3,4,5 and selecting k with the highest silhouette
score. The asterisk marks battlefields which receive half or more of all
incursions in that year. In the years 2013, 2017, and 2018 almost all
incursions targeted a single battlefield.

red-zone [132]. Similar constructions have been observed all along the LAC, thanks
to satellite imagery of Maxar Technologies [107, 130]. We conclude that a Blotto
game models the military strategy of the PLA, and the incursions are strategically
planned to gain control over the red-zones.

In the eastern sector, the conflict is much more controlled, see Table 6.6, although
the number of incursions increased markedly in 2016, which is the year before the
Doklam standoff. There has been a remarkable rise in the number of incursions
in Kibithu, at the easternmost part of the border, close to Myanmar. The reason
behind this is unclear, as this is not a region of strategic or economic importance.
In the eastern sector, the number of incursions per red-zone is too low to draw any
conclusions that are statistically meaningful.

The Chinese incursions in both the western and the eastern sector target a few
red-zones at a time. In the western sector we can model the incursions by a Blotto
game and our data matches the randomized allocation which is optimal in such a
game. The incursions are clustered in time and space, but average out over time.
This indicates that there is an ongoing competition for control of all the red-zones,
in which the PLA has constructed semi-permanent fortifications. This may, however,
not be a sign of strength as the strategy of the PLA is similar to that of a weaker
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year Sikkim Tawang Lhunze Bishing Anini Kibithu
2020 1 0 0 0 0 0
2019 0 0 0 0 0 2
2018 1 0 0 0 1 0
2017 1 0 1 1 0 1
2016 0 2 0 0 0 2
2015 0 0 0 0 1 0
2014* 0 0 0 0 0 0
2013 1 0 0 0 0 0
2012* 0 0 0 0 0 0
2011 0 0 1 0 0 0
2010 0 1 0 0 0 0
2009* 0 0 0 0 0 0
2008 1 0 0 0 0 0
2007 0 1 0 0 0 0
2006 1 0 0 0 0 0
total 6 4 2 1 2 5

Table 6.6.: Yearly incursions in eastern sector. The number of incursions is
comparatively small. During three years there were no incursions and
eight years only had one incursion.

player in a Blotto game.

INCURSIONS OVER TIME

The majority of the incursions take place during the summer season. This is
demonstrated in Fig 6.8, where we present the number of monthly incursions and
extremal temperatures (observed min and max during 2007-2021). The red-zones
are at high altitudes of over 4,000m and temperatures are extremely low in winter.
The majority of the incursions take place at moderate temperatures of 5◦C or above.
The exception is Depsang, where 40% of the incursions took place at extreme
temperatures of around −20◦. Incursions at such temperatures have occurred in
other red-zones, but only rarely. Due to the seasonality of the incursions and the
modest size of our data set, we mainly consider the number of incursions per year.
The 21 day Depsang standoff in April 2013 was a decisive moment in the border
dispute. It was followed by a sharp increase in incursions and a sequence of
standoffs and skirmishes (Chumur 2014, 16 days; 2015 Burtse, 5 days; Doklam 2017,
73 days; Galwan 2020, 2 days). As a result of this, we cannot expect the time-series
of incursions to be stationary. However, it clearly shows periodic fluctuations around
an upward trend, as illustrated in Fig 6.9. The primary incursions show the same
4-year periodicity and the same upward trend. The periodic fluctuation around the
trend is now also clearly visible in the incursions prior to 2013. According to the
KPSS test (3 lags) the primary incursions are trend stationary (p-value 0.03).
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Figure 6.8.: Incursions per month versus temperature. Incursions per month in the
three sectors (for selected red-zones) show that the majority occur in
summer. In the western sector, the incursions in Pangong Lake occur
mainly during August-November, while those in Chumur occur mainly in
January-July. The weather in the eastern sector is less extreme than in
the western/middle sector.

Figure 6.9.: The periodicity of the conflict. The number of incursions under a
time shift of 4 years. The overlapping graphs illustrate the periodicity
of the conflict (auto correlation 0.73). The graphs of primary incursions
produce a similar overlap under a lead of 4 years (auto correlation 0.75)
and upward trend.

We applied an ARIMA(3,1,0) model to the time-series of primary incursions as
illustrated in Fig 6.10. Note that the model underpredicts the increase of 2013,
which is the year of the Depsang standoff. It overpredicts the number of incursions
in 2019, when the Indian media underreported Chinese incursions. The conflict is
dominated by sudden military incidents or political developments, which are hard to
pick up in an autoregression. However, the model shows the same periodicity as the
data, but its fluctuation is more moderate. A forecast of the next four years predicts
that this fluctuation persists.
The number of primary incursions in the western/middle sector and the eastern
sector is uncorrelated (-0.02) but varies under a time shift, as shown in Table 6.7.
As is to be expected, the maximum correlation occurs for a lead of 3 years, because
of the periodicity of the time-series. In particular, a positive lead of 3 years for
incursions in the west gives a high correlation (0.74). Again, this is as expected.
The Depsang standoff, which is the first major incident in the west, preceded the
Doklam standoff in the east by four years. In our analysis of incursions per sector,
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Figure 6.10.: Autoregression of the primary incursions. We applied an ARIMA(3,1,0)
model to the time-series (lag 3, integration 1, moving average 0) and
used it to forecast the period 2015-2024. It predicts that the cyclicity of
the conflict will persist.

we found that these are independent events. However, if we compare the incursions
under a time shift, then we observe that the tension of the conflict fluctuates in sync
along the entire LAC.

lead (years) -3 -2 -1 0. 1 2 3
corr. coef. -0.10 0.04 0.17 -0.02 -0.02 0.40 0.74

Table 6.7.: Correlation between the primary incursions in the west and the east.
We combine the western and eastern sector in one sector and apply
varying leads between -3 and 3 years. A positive lead (predicting the
incursions in the east) clearly increases the correlation. A negative lead
(predicting the incursions in the west) has no significant effect.

6.4. CONCLUSION
We assembled a data set on incursions along the LAC that were reported in the
media. From our analysis, we conclude that Chinese incursions in the west and
in the east are independent. Militarily, the west and east can be seen as two
different conflicts. Furthermore, the Chinese incursions do not seem to be random
encounters, but are strategically planned in line with the optimal play in a Blotto
game. However, the fluctuation of the tension (the number of yearly incursions)
appears to be in sync in the west and the east. Tensions rise after major skirmishes
or standoffs, which occur in the most contested red-zones of Depsang, Pangong,
Chumur, Barahoti, and Doklam. Such standoffs are followed by bilateral talks to
avoid further escalation of the conflict. The two countries remain at a constant state
of high alertness. There are no signs that this situation will improve in the near
future.
Our data set was built from media reports. In order to deal with the self-reinforcing
nature of media attention, we considered incursions that were not preceded by
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another incursion in the same red-zone. This adjusts for over reporting by the
media. It does not adjust for under reporting, which happened in the year 2019. The
fluctuation that we find in our analysis may be less strong in reality. The ability of
the political leaders to downplay media attention could be an advantage for reaching
an agreement. It could also be a disadvantage, if the media attention is drummed
up. The future development of the conflict is in the hands of the political leaders.
China’s foreign policy has become increasingly aggressive, stepping up its military
exercises around Taiwan and extending its presence in the South China Sea. To
counter China’s expansive policies, Australia, the UK, and the USA have entered a
partnership and one option for India is to align itself with the AUKUS countries.
The military effort to step up its presence in the red-zones and counter the Chinese
incursions, requires an enormous effort by India that can only be achieved through
assistance by a strong partnership. This appears to be the approach that is favored
by the Modi administration. It has strengthened its ties with Australia, Japan, and
the USA ("the Quad") to counter Chinese expansion in the Indo-Pacific region.
Another option for India is a continued diplomatic approach, through ongoing
bilateral talks with China. This may seem like a dead-end, since diplomacy has
not made much progress over sixty years. On the contrary, Modi’s efforts of
rapprochements with China have failed, and India imposed economic sanctions
against China after the Galwan incident. The best that bilateral talks have achieved
so far is defusing conflicts to prevent further escalation. In spite of all this, there
are several arguments that can be made in favor of a renewed diplomatic approach.
The two countries are inextricably linked economically. A reduced military presence
would reduce the ecological footprint. According to our analysis, only a few
contested areas lie at the root of the conflict, and seem to generate incursions in
other red-zones all over the LAC. The two countries could try to reach an agreement
on only a limited part of the LAC. A good starting point would be an agreement
on the border in the Sikkim sector and its nearby disputed zones on the border
between China and Nepal or Bhutan. This would defuse the conflict in the eastern
sector, and if our analysis is right, likely also in the western sector. This could be an
important first step in a step-by-step resolution of the entire conflict.
Unfortunately, recent developments indicate that China is taking steps in the wrong
direction. China and Bhutan have just signed a bilateral agreement to settle their
dispute about the Doklam plateau, leaving India out of the equation. The Chinese
media have presented this agreement as a snub to the Indian government [133],
which does not bode well. If China pursues this approach, this could lead to a
worsening of the conflict, leaving a strong military alliance with the AUKUS countires
as the only option for India.
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7
SEARCH AND RESCUE ON A POSET

A Search and Rescue game (SR game) is a new type of game on a graph that has
quickly found applications in scheduling, object detection, and adaptive search. In
this chapter, we broaden the definition of SR games by putting them into the context
of ordered sets and Bayesian networks, extending known solutions of these games
and opening up the way to further applications.

7.1. INTRODUCTION
A search-and-rescue game, or SR game, is a two-player win-lose game that which is
played on a finite set X of locations. Hider chooses h ∈ X and Searcher chooses a
permutation σ of X , which we call a search. If σ( j ) = h then {σ(i ) : i ≤ j } is the set
of searched locations. For each x ∈ X there is a Bernoulli random variable βx with
known distribution to both players. Searcher wins (rescues) if the product of βx over
the searched locations is equal to one, and otherwise she loses. In particular, the
search halts as soon as βx = 0. Searcher’s payoff Π(σ,h) is the probability that she
wins, which we call the rescue probability. Hider wins if he is not rescued, i.e., we
have a suicidal Hider.
SR games were first defined by Lidbetter in [134] and quickly proved to be a fruitful
avenue of new study. They have been applied to scheduling problems [135, 136],
object detection [137], rendezvous problems [138], and adaptive search [139]. For
such applications, it is natural to impose an order on the set of locations, as some
jobs can be performed only if other jobs have finished. In our paper, we therefore
consider SR games on a partially ordered set X . A search now has to respect the
order and is only allowed if σ(i ) < σ( j ) implies i < j . For instance, if m ∈ X is a
maximal element for which x < m for all x ̸= m, then a search halts in m. We call
this an ordered search-and-rescue game, or simply an OSR game. We also consider
the stronger restriction that σ is only allowed if i < j implies σ(i ) <σ( j ). A function
with this property is called a chain [140] and we say that this game is a chained SR
game, or simply a CSR game. If we represent the partial order by a Hasse diagram,

Parts of this chapter have been submitted to Naval Research Logistics [7].

139



7

140 7. SEARCH AND RESCUE ON A POSET

then we get a search game on a (directed) graph, which is a topic of its own [141]. A
search is a path on the Hasse diagram in which Searcher may skip some vertices but
is not allowed to backtrack. She can either search a node or skip it without turning
back. This appears to be a new game on a graph.
The original SR game as defined by Lidbetter is a game on an (undirected) graph.
Searcher chooses a path and Hider chooses a vertex h. Searcher’s payoff is the
product of all βv over all vertices v in the path prior to h. More specifically, let the
path be a walk along the vertices v1, v2, . . . , vn and let v j be the first vertex that is
equal to h. Then Searcher’s payoff is the expected value of∏

x∈{v1,...,v j }
βx ,

i.e., the product of the success probabilities. Note that {v1, . . . , v j } is a multi-set.
Searcher is allowed to backtrack. Even if x occurs twice or more in the multi-set,
then still βx is only sampled once. If the graph is a rooted tree and if Searcher
can only start from the root, then Hider selects a leaf because all internal nodes of
the tree are dominated. Lidbetter proves that an optimal search consists of a mix
of depth-first searches. For instance, consider the following example from [134] of a
rooted tree with three leaves a,b,c and one internal node. The depth first searches
in terms of arrivals at the leaves are abc,bac,cab,cba. If h = a and the depth-first

1/2

r

3/5

i

1/3

a

1/2

b

2/3

c

Figure 7.1.: A tree with three leaves a,b,c, root r and internal node i . Success
probabilities displayed in the nodes.

search is abc then Searcher’s payoff is 1
10 . If the depth-first search is bac then the

payoff is 1
20 .

In our approach, this SR game on a tree in Fig. 7.1 can be defined as an OSR
game on the unordered set X = {a,b,c} with correlated random variables βa ,βb ,βc .
The nodes r, i correspond to events that determine whether or not Searcher rescues.
For instance, let r be the event “no storm” and let i be the event “high visibility”.
A rescue in a and b requires no storm and high visibility. A rescue in c only
requires no storm. On top of that, the locations a,b,c each have particular
rescue probabilities, dependent on these events r, i . In this approach the tree is
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a Bayesian network [142, 143] in which r, i are latent variables. More formally,
let Pr (x) = Pr (βx = 1) be the probability of a successful search of location x. If
we put Pr (a) = 1

10 ,Pr (b) = 3
20 ,Pr (c) = 1

3 and we put the conditional probabilities
Pr (b|a) = 1

2 ,Pr (c|a) = Pr (c|b) = Pr (c|b, a) = 2
3 , then the probability distribution is

determined. We retrieve Lidbetter’s game on a tree, in which Searcher can only
search the leaves. The probabilities of the internal nodes correspond to the
correlations between the events a,b,c.

What happens to Lidbetter’s depth-first search theorem if we replace the Bernoulli
random variables by other random variables? Can we find effective bounds on the
value of the game? What happens if the search is ordered? These are the motivating
questions for this study.

The paper is organized as follows. We first introduce notation and terminology. We
then solve the CSR and OSR games on a poset for uncorrelated Bernoulli random
variables. Surprisingly, despite having a more restricted strategy space, the CSR game
is more difficult to solve. We then consider correlated random variables, extending
the work of Lidbetter in [134] and linking the SR game to Bayesian networks. We are
able to give bounds on the value of the SR game, but we can only solve it for simple
posets under restrictions on the probability distribution of the Bernoulli random
variables. In the final section, we discuss some further generalizations of SR games.

7.2. DEFINITIONS AND NOTATION

In this paper we consider games on a partially ordered set (poset) (X ,<) with an
associated collection of Bernoulli random variables βx indexed by X . An SR game is
an example of a search game between an immobile hider and a mobile searcher on
a finite set of locations [144, Ch 3]. The strategy space of player II (Hider) is the
set of locations X and the strategy space of player I (Searcher) are permutations of
subsets of X . Usually, in a search game the payoff is measured in duration or costs
and Hider is the maximizer. In an SR game, payoff is measured in probability and
Hider is the minimizer.

Throughout this work, we need some basic notions and results on posets, for
which [140] is a standard reference. The set {1, . . . ,n} with its standard total order is
denoted [n]. A function f : [n] → X is order-reflecting if f (i ) < f ( j ) implies i < j . We
consider injective functions only. Locations can be searched only once. The function
is a chain if i < j implies f (i ) < f ( j ), in which case the image f ([n]) is a totally
ordered subset of X . We associate functions with searches and denote them by σ

instead of f .

We have a collection of Bernoulli random variables βx with x ∈ X . These random
variables may be dependent. We write Pr (S) for the probability that βx = 1 for all
x ∈ S. If S contains just one or two elements, we write Pr (x) or Pr (x, y). Pr (X ) is
the probability that all searches are successful.

Hider selects a single element h ∈ X . Searcher selects an order-reflecting function σ.
Let k be the minimal number such that h ∈ σ([k]). If there is no such k then
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Searcher receives 0 and Hider receives 1. Otherwise, Searcher’s payoff is

Π(σ,h) = Pr (σ([k])) (7.1)

and Hider’s payoff is the complementary probability. There is an abundance of P’s: Π
is payoff and Pr is probability. We say that this is an OSR game. It models a process
of progressive search. Once x is searched, all unsearched y < x become inaccessible.
We have a CSR game if Searcher is limited to chains. It models a process of urgently
progressive search. Once x is searched all y < x and all y that are unrelated to x
become inaccessible. We denote the value of an SR game by V (X ). It will be clear
from the context what type of SR game we consider.
Both players face a decision problem in which they weigh their options. Ratios
of probabilities play a role, and therefore it is convenient to consider the odds of
events. For x ∈ X we denote the odds of failure by

ox = 1−Pr (x)

Pr (x)
.

If Pr (x) = 0 then Hider will hide in x and cannot be rescued. We require that
Pr (x) > 0 for all x ∈ X so the odds are well-defined. For S ⊂ X we denote the sum of
the odds by

OS = ∑
x∈S

ox .

It is a quantity that often turns up in decision problems [145].
Lidbetter proved that an optimal search and rescue on a tree can be described by
weighed coin tosses, as in a behavior strategy [146]. It goes as follows. Suppose i is
an internal node with children a and b. Let S ⊂ X be the leaves that are descendants
of i and let A and B be the descendants of a and b. In particular, S = A ∪B . Let
V (A) be the value of the subgame on the tree with root a, and let V (B) be the value
for b. Searcher flips a coin with odds

1

V (A)
− Pr (B)

V (B)
:

1

V (B)
− Pr (A)

V (A)
(7.2)

to decide between a and b. After reaching a leaf, Searcher continues by backtracking
as in depth-first search. Note that V (A) is the probability of rescue in subgame A,
which is greater than or equal to Pr (A), the probability of successful search of all
locations. Therefore, 1

V (A) ≥ 1 and Pr (B)
V (B) ≤ 1, so these odds are well-defined. Also note

that the odds favor the subgame with the smaller rescue probability. An optimal
search is most likely to start in the most difficult subset first.
Hider can also select h optimally by tossing coins and going down the tree. At node
i the odds of choosing between A and B are

1−Pr (A)

V (A)
:

1−Pr (B)

V (B)
. (7.3)

A suicidal Hider obviously has a preference for the set with the least rescue
probability and the largest probability of failure of the search.
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7.3. UNCORRELATED SEARCH AND RESCUE
In this section, the random variables βx are uncorrelated.

Lemma 7.1. Suppose (X ,≺) is an extension of (X ,<), i.e., x < y implies x ≺ y. Then
V (X ,≺) ≤V (X ,<) for the OSR game and V (X ,≺) ≥V (X ,<) for the CSR game.

Proof. If a map is order-reflecting for ≺, then it also is order-reflecting for <. In the
OSR game, the strategy space for Searcher does not decrease if we replace ≺ by <.
Therefore, the value of the OSR game does not decrease if we replace ≺ by <. If a
map is a chain for <, then it also is a chain for ≺. By the same argument, the value
of the CSR game does not decrease if we replace < by ≺.

Unordered X . Suppose that the partial order on X is trivial, i.e., the only order
relation is x = x. Chains are singletons and in the CSR game Searcher can only
search a single location. The payoff matrix is diagonal, with probabilities Pr (x) on
the diagonal. It is optimal for both players to select x with probability inversely
proportional to Pr (x). The value of the CSR game can be expressed neatly in terms
of the cardinality of X plus the sum of the odds of failure:

1

|X |+OX
. (7.4)

In the OSR game, every search is allowed. This game is one of the motivating
examples that led Lidbetter to define SR games. It is related to single machine
scheduling, see [134]. Hider chooses x with probability proportional to ox . Searcher
starts a search in x with probability proportional to ox , and continues randomly.
The value of the OSR game is equal to

1−Pr (X )

OX
. (7.5)

In the degenerate case, when Pr (X ) = 1 the rescue is always successful and the odds
of failure add up to zero. In this case, the value of the game is equal to 1.

Totally ordered X . If X is totally ordered, then an order-reflecting function is a
chain, which means that the CSR game and the OSR game are the same. We can
identify X with {1, . . . ,n}. A search halts as soon as it reaches the greatest element n.
Suppose Searcher limits herself to searches in which she starts in i and searches the
remaining locations in increasing order. Then Hider and Searcher both have n pure
strategies and the payoff matrix M is triangular.

M =


p1 p1p2 p1p2p3 · · · p1p2p3 · · ·pn

0 p2 p2p3 · · · p2p3 · · ·pn

0 0 p3 · · · p3 · · ·pn
...

...
...

. . .
...

0 0 0 · · · pn

 (7.6)

The optimal Searcher strategy in this restricted game is to start from i > 1 with
probability proportional to oi and to start from 1 with probability inversely
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proportional to p1. The optimal Hider strategy is to choose location i < n with a
probability proportional to oi and location n with a probability inversely proportional
to pn . The value of the game with matrix M is equal to

1

1+OX
. (7.7)

Now we limited Searcher’s strategies, but notice that Hider’s strategy remains the
same if we reorder the locations 1, . . . ,n−1 in a random way. Hider’s strategy remains
optimal in the full game, and therefore we have solved the game.

Lemma 7.2. The value of the OSR game on a poset (X ,<) with uncorrelated Bernoulli

random variables is contained in the interval
[

1
1+OX

, 1−Pr (X )
OX

]
. The value of the CSR

game is contained in the interval
[

1
|X |+OX

, 1
1+OX

]
.

Note that Pr (X ) is small and OX is large for large X . The bounds on the value of
the OSR game produce a narrow interval if X is large. We will return to this lemma
in the next section for correlated random variables.

Proof. The value of the OSR game on an unordered X is equal to 1−Pr (X )
OX

, which
by Lemma 7.1 puts an upper bound on the value. For the lower bound, consider
any extension of (X ,<) to a total order. This restricts Searcher and gives the lower
bound. For the CSR game, the same argument works in the opposite direction by
Lemma 7.1.

The multi-stage OSR game. Let X = X1 ∪·· ·∪Xn be a union of disjoint sets and put
x < y if and only if x ∈ Xi and y ∈ X j for i < j . In other words, X is an ordinal sum
of unordered subsets, see [140, p 100]. We say that X j is stage j . Once a search
enters a stage, it cannot continue in an earlier stage. The game on this poset is very
similar to the game on a total order. Note that it is optimal to end with a full search
of the final stage. Searching an extra location cannot decrease the rescue probability.
Let V j be the value of the OSR game restricted to X j , which is unordered. We write

P j = Pr (X j ) and O j = OX j . By Equation (7.5) we have V j = 1−P j

O j
. As in the game

on a total order, suppose Searcher limits herself to searches of consecutive stages
j , j +1, . . . ,n. Within each Xi her search is optimal for the restricted game on this
set. Under this restriction, Searcher essentially only selects the initial stage j and
therefore has n strategies. In response, Hider also selects a stage and applies his
optimal strategy, so he essentially has n strategies as well. The payoff matrix L is
very similar to the matrix for the total order.

L =


V1 P1V2 P1P2V3 · · · P1P2P3 · · ·Vn

0 V2 P2V3 · · · P2P3 · · ·Vn

0 0 V3 · · · P3 · · ·Vn
...

...
...

. . .
...

0 0 0 · · · Vn
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The solution of this restricted game is similar to that of the total order. Hider

chooses stage j < n with probability proportional to
1−P j

V j
= O j and stage n with

probability proportional to 1
Vn

= On
1−Pn

. Note that Vn = 1 if Pn = 1. Searcher starts

in stage j > 1 with probability proportional to 1
V j

− P j−1

V j−1
and starts in stage 1 with

probability inversely proportional to V1. In this way, Searcher makes sure that she
searches stage j with probability proportional to 1

V j
. The value of the game with

matrix L is
1

PnOn
1−Pn

+OX

. (7.8)

We need to argue that Searcher cannot do better than this. Suppose we combine
X j−1 ∪X j for j < n, then the number of stages goes down by one which gives more
freedom to Searcher, but we argue that Hider’s optimal strategy does not change. In
the game with n stages, Hider selects stage j < n with probability proportional to
O j . He then selects x ∈ X j with probability proportional proportional to ox . This is
the same as first selecting stage X j−1 ∪X j with probability proportional to O j−1 +O j

and then tossing a coin with odds O j−1 : O j to select from X j . We can combine or
split up stages without affecting the optimal Hider strategy. The game is equivalent
to the two-stage game on the ordinal sum (X \ Xn)∪ Xn . All searches that start in
X \ Xn and end with a full search of Xn have expected probability of rescue given by
Equation (7.8).

An element m ∈ X is a maximum if there are no x > m. Let M ⊂ X be the subset
of maxima. An optimal search always ends in M . If σ does not end in M , then it
can be extended by some m ∈ M without decreasing the probability of rescue. Since
there is no order relation between different elements of M , an optimal search ends
with a full search of M .

Theorem 7.3. Let M ⊂ X be the subset of maxima. Let PM be the product of all
success probabilities over m ∈ M and let OM be the sum of the odds over M. The
value of the OSR game on X is equal to

1
PM OM
1−PM

+OX

. (7.9)

Proof. Let (X \ M)∪M be the ordinal sum of two unordered subsets. The value of
the OSR game on this poset is given by Equation (7.9). By Lemma 7.1 this puts an
upper bound on the value of the OSR game on X . Conversely, extend the partial
order of X \ M to a total order and consider the OSR game on the resulting poset.
By Lemma 7.1 the value of the game on this poset puts a lower bound. This is a
multi-stage game that ends in M such that all previous stages are singletons. The
value of this game is again given by Equation (7.9) and the lower bound equals the
upper bound.

This theorem settles OSR games, and we now turn our attention to CSR games. Our
next lemmas sharpen the bounds of Lemma 7.2.
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Lemma 7.4. Let M ⊂ X be the subset of maxima. If Hider hides in m ∈ M
with probability inversely proportional to Pr (m) and in x ∈ X \ M with probability
proportional to ox , then the rescue probability is at most

1

|M |+OX

for any search. This puts an upper bound on the value of the game.

Proof. For any chain x1, x2, . . . , xk that ends in xk ∈ M , the expected rescue probability
is

(1−Pr (x1))+Pr (x1)(1−Pr (x2))+·· ·+Pr (x1) · · ·Pr (xk−1)

|M |+OX
= 1

|M |+OX
.

If the chain does not end in a maximum, then the rescue probability is less.

An antichain is a subset S ⊂ X such that any two elements of S are incomparable.
The width of X is the size of its largest antichain. By Dilworth’s theorem [147], it
equals the minimum number of disjoint chains into which the set can be partitioned

Lemma 7.5. Let w be the width of X . There exists a mixed Searcher strategy with
rescue probability at least

1

w +OX
.

This puts a lower bound on the value of the game.

Proof. Consider the following strategy for Searcher. She decomposes X into w
disjoint chains and selects a random x ∈ X to start the search. The search proceeds
along the unique chain that contains it. Searcher selects initial elements x with
probability inversely proportional to Pr (x) and all other elements with probability
proportional to ox . Suppose Hider selects h and let S = {x1, . . . , xk } be the chain that
contains h with x j = h. Within this subset S we have the game on a total order in
which Searcher applies the optimal strategy. The rescue probability is the same for
all elements. Hider is indifferent between all elements of X .

In particular, we have solved the game if M is a maximal antichain of X . For
instance, if the Hasse diagram is a tree. The upper bound on the game depends on
|M | which can be computed in linear time by depth-first search. The lower bound
on the game depends on w which can be computed in polynomial time [148].

The multi-stage CSR game. We reconsider the ordinal sum X = X1 ∪·· ·∪ Xn of
unordered subsets, this time for the CSR game, in which Searcher can only search
one location from each Xi . In the OSR game, Searcher can search all locations from
Xi . As before, we write O j for the sum of the odds over the elements in the stage X j

for i and we write O≤ j for the sum of the odds over all stages ≤ j . Let k be such
that |Xk |+O≤k is maximal. By Lemma 7.4 Hider can limit the rescue probability to

1

|Xk |+O≤k
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by choosing h from the first j stages only. We show that Searcher can actually
achieve this rescue probability.
We add an initial node s at stage zero and a terminal node t at stage n +1 with
Pr (s) = Pr (t ) = 1. This does not change the game as s and t can be searched for free
and therefore Hider will not select these nodes. We represent the search strategy as
a network flow on the Hasse diagram of this order, which has a single source s and
a single sink t . Searcher starts from s with probability one. We need to prove that
Searcher achieves a rescue probability ≥ 1

|Xk |+O≤k
at each node. Instead of probability

one, we give Searcher a total weight of |Xk |+O≤k at node s. Now she needs to make
sure that the rescue probability is ≥ 1 for each node. The inflow Ix at each node x
has to be ≥ 1

Pr (x) which is needed to achieve rescue probability one. Excess flow can
skip the node. The rescue fails with probability 1−Pr (x) and therefore takes away
ox from the flow. The outflow is Ix −ox . The entire stage j takes away O j from the
flow. After j < k stages, the total flow is reduced to O≤k −O≤ j +|Xk |. The next stage
requires an inflow of O j+1 +|X j+1| which can be satisfied since

O≤k −O≤ j +|Xk | ≥O j+1 +|X j+1|

by the fact that O≤i +|Xi | is maximal at k. After k stages, the outflow is equal to
|Xk |. The required inflow for a stage j > k is equal to O j +|X j | and this stage takes
away O j from the flow. Since we have

|Xk |−Ok+1 − . . .−O j ≥ |X j |

the required inflow can always be met. This guarantees a rescue probability ≥ 1 for
each node, and if we normalize the probability, then we find that the value of the
game is 1

Ok+|Xk | .

An antichain A ⊂ X is maximal if for every x ∈ X there is an a ∈ A such that either
a ≤ x or x ≤ a. A maximal antichain partitions the poset X into A− = {x : ∃a ∈ A, x ≤ a}
and A+ = {x : ∃a ∈ A, a < x}. In other words, A is a cut. The elements of A are
maximal in the poset A− with the order inherited from X . Hider can guarantee a
rescue probability ≤ O A− +|A| by hiding in x ∈ A− with probability ox if x ̸∈ A and
probability inversely proportional to Pr (x) if x ∈ A.

Theorem 7.6. Let A be a maximal antichain that maximizes O A− +|A|. The value of
the CSR game on X is equal to

1

O A− +|A| .

Proof. Hider can achieve this rescue probability. We need to prove that Searcher can
achieve it as well. We add a source s and a sink t with rescue probability one, with
s < x < t for all x ∈ X . Searcher’s task is to find a network flow such that the inflow
Ix ≥ 1

Pr (x) for all nodes. Each node reduces the flow by ox . We have a network flow
problem but unlike the standard max-flow min-cut problem it is max-cut min-flow
and the flow is dissipative. However, it is possible to modify the proof of the
max-flow min-cut theorem for this problem. We have adapted the proof given by
Trevisan [149, Ch 15].
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Let E be the edge set and let fx y be the flow on (x, y) ∈ E . There are two constraints
at each x ∈ X : inflow at least 1

Pr (x) = ox +1 to guarantee rescue probability one, and
dissipation (inflow minus outflow) is at least ox to guarantee a full search of the
node.

minimize
∑

(s,x)∈E
fsx

subject to ∀x ∈ X ∑
(v,x)∈E

fv x ≥ ox +1,∑
(v,x)∈E

fv x −
∑

(x,w)∈E
fxw ≥ ox ,

where all fx y ≥ 0. The dual problem has two variables for the two constraints at each
x ∈ X and has one constraint for each (v, x) ∈ E .

maximize
∑

x∈X
(ox +1)gx +ox hx ,

subject to
gx +hx ≤ 1, ∀(s, x) ∈ E ,
gx +hx −hv ≤ 0, ∀(v, x) ∈ E , v ̸= s,

where all gx ,hx ≥ 0. If we put ga = 1 for all a ∈ A a maximal antichain and hb = 1 for
all b < A, and zero elsewhere, then the constraints of the dual problem are satisfied.
This choice is feasible and in this case∑

x∈X
(ox +1)gx +ox hx =O A− +|A|.

We need to show that this is a solution of the dual problem for some antichain,
because then the minimax theorem implies that Searcher has a feasible flow that
achieves the required rescue probability.
Let gx and hx be a feasible solution of the dual problem. Pick 0 ≤ T ≤ 1 uniformly
at random and put h̄x = 1 if hx ≥ T and ḡx = 1 if hx + gx ≥ T > hx . For all other x
we set h̄x = ḡx = 0. This implies that h̄x + ḡx ≤ 1 and if h̄x + ḡx = 1 then h̄v = 1 for
all (v, x) ∈ E . Therefore, ḡx and h̄x are feasible. We claim that A = {x : ḡx = 1} is a
(random) antichain. In other words, there is no path between any a,b ∈ A. To see
this, notice that ha < T and by the second constraint gx +hx < T for all successors of
a. If gb +hb ≥ T then b is not a successor of a and A is indeed an antichain.
The value of

∑
x∈X

(ox +1)ḡx +ox h̄x is equal to O A− +|A|, since all x ∈ A− either have

ḡx = 1 or h̄x = 1 and all x ∈ A have ḡx = 1. The expected value is equal to∑
x∈X

(ox +1)Pr (gx +hx ≥ T > hx )+ ∑
x∈X

Pr (hx ≥ T ) = ∑
x∈X

(ox +1)gx +
∑

x∈X
hx ,

which is maximal. Therefore, there must be an antichain such that O A− +|A| equals
the solution of the dual problem, as required.

The optimal Searcher strategy is a feasible solution of an LP problem and can
therefore be computed in polynomial time in terms of |X |. The optimal Hider
strategy can also be computed in polynomial time, by solving the dual problem and
random rounding.
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7.4. CORRELATED SEARCH AND RESCUE
In this section, the random variables βx are correlated. This makes the games much
more difficult to solve. We are only able to solve the games for simple posets under
strong restrictions on the distribution of the Bernoulli random variables.
We first consider the OSR game on an unordered X : any permutation of X is
an admissible search. If there are only two locations X = {a,b} we have a simple
symmetric matrix game (

Pr (a) Pr (a,b)
Pr (a,b) Pr (b)

)
,

which is easy to solve. For three locations the game is already much more elaborate.

Definition 7.7. For three locations x, y, z we say that x and y are conditionally
independent with respect to z if

Pr (x, y |z) = Pr (x|z)Pr (y |z).

It is denoted (x ⊥⊥ y |z).

The common way to define conditional independence is for events, which in our
case are successful searches of locations. We note that if A,B ,C are three events
such that A ⊥⊥ B |C , then it does not necessarily hold that A ⊥⊥ B |C , where C denotes
the complementary event of C .
Conditional independence is often interpreted in terms of learning [143]. An
equivalent way to define (x ⊥⊥ y |z) is Pr (x|z, y) = Pr (x|z). In terms of learning: if we
learn that z has happened, then the probability of x gets a Bayesian update Pr (x|z),
but if we then learn that y has also happened, we learn nothing new. In the SR
game on three locations {a,b,c} in Fig. 7.1 we have that Pr (c|a) = Pr (c|b) = Pr (c|b, a)
and therefore both a ⊥⊥ c|b and b ⊥⊥ c|a.

The OSR game on three unordered locations. Let X = {a,b,c} and suppose that both
a ⊥⊥ c|b and b ⊥⊥ c|a. We build a graphical model of this probability distribution in
Fig. 7.2 in analogy of the SR game on a tree in Fig. 7.1.
The three leaves of the graphical model are labeled by the three locations. Contrary
to Fig 7.1, the internal nodes q,r do not necessarily correspond to events. The
edge weights are ratios of conditional probabilities, which may be larger than one,
which is why we say this is a pseudo-Bayesian network. In Bayesian networks, nodes
correspond to events and edge weights are conditional probabilities, which are at
most one. To compute the rescue probability of a leaf, multiply the edge weights of
the path to that leaf. More generally, to compute Pr (S) for S ⊂ {a,b,c} multiply the
edge weights of its spanning tree. For instance,

Pr (a,c) = Pr (c)

Pr (c|b)
· Pr (b|c)

Pr (b|a)
·Pr (c|b) ·Pr (a|b) = Pr (b,c) ·Pr (a)

Pr (b)

which is equal to Pr (c|b) ·Pr (a) = Pr (c|a) ·Pr (a), for this tree. This is indeed equal
to Pr (a,c).
In this setup, searching a leaf requires the probabilities of the path leading up to
it, as in Lidbetter’s SR game. If all edge weights are bounded by one, then we
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q

r

a

Pr (a|b)

b

Pr (b|a)

Pr (b|c)
Pr (b|a)

c

Pr (c|b)

Pr (c)
Pr (c|b)

Figure 7.2.: The tree of Fig. 7.1 revisited as a network with events a,b,c and internal
nodes q,r . The events a,b,c represent successful rescue in these three
locations. The weights of the directed edges are ratios of conditional
probabilities.

are back at the original SR game on a tree. In fact, there is no need to bound
the weight Pr (c)

Pr (c|b) of the first incoming edge. It is a common divisor of all rescue
probabilities. It is a sunk cost that can be replaced by one, without changing the
optimal strategies of the players. Then we multiply all payoffs by Pr (c|b)

Pr (c) and the
game remains essentially the same.
Suppose Searcher first successfully searches b. The probabilities of the two remaining
locations are now updated to Pr (a|b) and Pr (c|b). The Bayesian factors for these
updates satisfy

Pr (c|b)

Pr (c)
≤ Pr (a|b)

Pr (a)

because the paths of a and b have more edges in common than the paths of c and
b. The weights of these edges are taken out by the update, which is why the Bayes
factor for a is larger, and hence the incentive to now search a is stronger. This is a
Bayesian interpretation of depth-first search.

In order to extend this example from three to more locations, we need some further
terminology. First of all, conditional independence extends from three events as in
Definition 7.7 to collections of random variables. It is a central topic of study in
probabilistic learning [150]. We will need a rather special notion that is tailored to
SR games.

Definition 7.8 (co-independence). Let X = A∪B be a partition into disjoint sets such
that for any A′ ⊂ A,B ′ ⊂ B and any a ∈ A,b ∈ B it holds that Pr (A′|B ′) = Pr (A′|b) and
Pr (B ′|A′) = Pr (B ′|a). Furthermore, Pr (A′|a,b) = Pr (A′|a) and Pr (B ′|a,b) = Pr (B ′|b).
Then we say that A and B are co-independent, denoted X = A∥B or simply A∥B.

Informally speaking, each element of A teaches us the same about B and any
element from B teaches us more about B than all of A.
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Definition 7.9. Let X be a set of two locations or more. We say that X is reducible
if it admits a partition X = A ∪B into disjoint non-empty subsets A∥B. We say that
it is completely reducible if every subset Y ⊂ X containing two elements or more is
reducible.

In particular, if X is completely reducible then X = A0∥A1, which can be partitioned
into A0 = A00∥A01 and A1 = A10∥A11 etc. In the SR game on a tree, the probability
distribution on the leaves is completely reducible. For instance, in the SR game of
Fig. 7.1 we have {a,b}∥c and {a}∥{b}.

Lemma 7.10. If X = A∥B then the Bayes factor

Pr (A′|B ′)
Pr (A′)

is the same for any nonempty B ′ ⊂ B and A′ ⊂ A.

Proof. Let a ∈ A and b ∈ B . By co-independence and the properties of conditional
probability

Pr (A′|B ′)
Pr (A′)

= Pr (A′|b)

Pr (A′)
= Pr (b|A′)

Pr (b)
= Pr (b|a)

Pr (b)
,

which does not depend on A′ and B ′.

Theorem 7.11. Suppose that X is completely reducible such that X = A0∥A1 and each
subsequent Aw = Aw0∥Aw1 for a binary word w. Then the probability distribution can
be represented by a pseudo-Bayesian tree with nodes Aw and root X , which has an
incoming edge without an initial node. Each Aw has sibling Aw̄ , such that w and w̄
have common prefix v and only differ in the last digit. In particular, Av is the parent
of Aw . The incoming edge of Aw has weight

Pr (aw0|aw̄ )

Pr (aw0|aw1)
,

for arbitrary elements aw ∈ Aw . The incoming edge of the root has weight Pr (a0)
Pr (a0|a1) ,

because the root has no sibling. If T is the spanning tree of S ⊂ X then Pr (S) is the
product of the weights of the edges in T .

Proof. By induction, the conditional distribution Pr (·|ai ) on Ai for i ∈ {0,1} can be
represented by pseudo-Bayesian trees. These are the two subtrees that spring from
the root X . Let Si = S ∩ Ai for i ∈ {0,1}. Then

Pr (S) = Pr (S1|S0)Pr (S0) = Pr (S1|a0)Pr (S0).

By induction, Pr (S1|a0) equals the product of the weights for its spanning tree T1 in
the pseudo-Bayesian subtree for A1. By Lemma 7.10

Pr (S0) = Pr (S0|a1) · Pr (a0)

Pr (a0|a1)

the right-hand side of which is equal to the product of the weights over the spanning
tree T0 and the weight of the incoming edge at X .
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Note that we may switch the labels 0 and 1 and therefore Pr (aw0|aw̄ )
Pr (aw0|aw1) = Pr (aw1|aw̄ )

Pr (aw1|aw0) .
Indeed, this is a consequence of co-independence, since

Pr (aw0|aw̄ )

Pr (aw1|aw̄ )
= Pr (aw̄ |aw0)Pr (aw0)

Pr (aw̄ |aw1)Pr (aw1)
= Pr (aw0)

Pr (aw1)
= Pr (aw0|aw1)

Pr (aw1|aw0)
.

If all weights are bounded by one (with the possible exception of the incoming edge
of the root, which is a sunk cost), then we have a proper Bayesian network of events.
In this case, the game is equivalent to an SR game on a tree.

Corollary 7.12. Lidbetter’s solution of the SR game on a tree extends to the OSR game
for a completely reducible distribution on an unordered X provided that all Bayesian
factors Pr (aw0|aw̄ )

Pr (aw0|aw1) ≤ 1.

Corollary 7.13. Let X be unordered and completely reducible such that all weights on
the pseudo-Bayesian network are ≤ 1 including the weight on the incoming edge at
the root. The OSR game on X has value V (X ) ≤ 1−Pr (X )

OX
.

Proof. Let the decomposition of X begin with A∥B and let w be the weight of the
incoming edge at the root. Searcher either starts with an exhaustive search of A
followed by B , or vice versa. Hider hides in A or in B . Essentially we have a 2×2
payoff matrix (

wV (A) wPr (A)V (B)
wPr (B)V (A) wV (B)

)
,

where V (A),V (B) are the values of the subgames on the two trees that spring from
the root and Pr (A),Pr (B) are the products of the weights of these two trees. Searcher
incurs the cost w and flips a coin as in Equation (7.2). The value of the game is

w(1−Pr (A)Pr (B))
1−Pr (A)

V (A) + 1−Pr (B)
V (B)

.

By induction the denominator is ≥ O A +OB = OX . We also have Pr (X ) =
w ·Pr (A) ·Pr (B). Therefore, the denominator is w −Pr (X ) ≤ 1−Pr (X ) by our
assumption that w ≤ 1.

Lidbetter showed that depth-first search is optimal. Searcher starts at the root and
continues until it reaches a leaf and backtracks, continuing at an unsearched node
that is closest to the leaf. What can be said if all Bayesian factors are ≥ 1? A search is
backjumping [151] if it continues at an unsearched node that is closest to the root. It
is a common method in AI and automatic theorem proving [152] to prevent a search
more dispersive. To specify this, suppose that a node x has two children a and b
with offspring A and B . If a search first visits a leaf in A then it does not re-enter A
before visiting a leaf of B . Backjumping search is the opposite of backtracking search
It is a natural procedure if all Bayesian factors are ≥ 1, when it is unlikely that a
search of a nearby leaf will be successful. Numerical experiments show that it is not
true that the optimal search is a mix of backjumping searches if all Bayesian factors
are ≥ 1. They do indicate that the following weaker statement is true.
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Conjecture 7.14. Consider the OSR game with a completely reducible distribution
with all Bayesian factors ≥ 1. An optimal Searcher strategy contains a pure strategy
that is backjumping.

Definition 7.15. We say that the probability distribution on X is positively correlated
if Pr (A|B) ≥ Pr (A) for all A,B ⊂ X . We say that it is negatively correlated if
Pr (A|B) ≤ Pr (A).

This property extends to arbitrary random variables for which it is known as positive
or negative association [153]. Note that a completely reducible distribution on X
with all weights ≤ 1 is positively correlated. It is negatively correlated if all weights
are ≥ 1. For positively correlated X the search gets progressively easier, which is
a general assumption in search games [154]. For negatively correlated X it gets
progressively more difficult, which may be a more natural assumption for a rescue
operation.

Lemma 7.16. The value of the OSR game on a positively correlated poset X is ≥ 1
1+OX

.
The value of the CSR game on a negatively correlated poset X is contained in the
interval [ 1

|X |+OX
, 1

1+OX
].

In particular, the value of the OSR game on a completely reducible X with all
weights ≤ 1 is contained in the interval [ 1

1+OX
, 1−Pr (X )

OX
].

Proof. For a positively correlated distribution we have that

Pr (A) = Pr (A \ {a}|a) ·Pr (a) ≥ Pr (A \ {a})P (a)

for any a ∈ A. By induction, Pr (A \ {a}) ≥∏
b∈A\{a} Pr (b). Therefore, the payoff matrix

is bounded from below by the matrix for the uncorrelated SR game. By Lemma 7.2
we conclude that V (X ) ≥ 1

1+OX
for the OSR game. For a negatively correlated

distribution, we have the opposite signs, and we conclude that V (X ) ≤ 1
1+OX

for the
CSR game. The worst case CSR game is an unordered X in which Searcher can only
search one location. The payoff matrix is diagonal with entries Pr (a). This game has
value 1

|X |+OX
.

So far, we mainly considered unordered X , which is the least restrictive for Searcher
in the OSR game. A total order is most restrictive, and we are only able to solve that
game in a limited case. Before doing that, we first exhibit some examples to show
that the solution of the OSR game is not trivial.

The OSR game on a total order. Let X = {a,b,c} be a total order a < b < c. The
payoff matrix of the game is

Pr (a) Pr (a,b) Pr (a,b,c)
Pr (a) 0 Pr (a,c)

0 Pr (b) Pr (b,c)
0 0 Pr (c)

 .
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We write x̄ for the event that the search in x is unsuccessful. A straightforward
but tedious computation shows that the solution of the game depends on the Bayes
factor

Pr (a|b̄,c)

Pr (a|b)
. (7.10)

If it is more than one, Searcher’s optimal strategy mixes the searches in rows 2,3,4.
If it is less than one, she mixes the searches in rows 1,3,4.

The CSR game on a star. Let X =U ∪ {∗} where U is unordered and u < ∗ for all
u ∈U . The Hasse diagram of this poset is a star graph. A search either consists of
∗ or of {u,∗}. Suppose that ∗ is independent of U , i.e., Pr (u,∗) = Pr (u) ·Pr (∗). If
Searcher selects {u,∗} with probability proportional to 1

Pr (u) , then Hider is indifferent
between all locations in U . The rescue probability in ∗ is proportional to |U | ·Pr (∗).
If Pr (∗) > 1

|U | then Hider does not hide in ∗. The game reduces to the CSR game on

U with value 1
OU+|U | . Not all Hider strategies are active.

If Pr (∗) < 1
|U | then Searcher includes the search {∗} with probability proportional to

1
Pr (∗) −|U | to make Hider indifferent. Under this strategy, the rescue probability is

1
OX +1 for all locations. If Hider hides in u with probability proportional to 1−Pr (u)

Pr (u)

and in ∗ with probability proportional to 1
Pr (∗) , then the rescue probability is 1

OX +1 .
This is the value of the game.
The CSR game on a star falls apart in two separate cases. Now consider an OSR
game on a total order X = {1,2, . . . ,n}. such that Pr (A) = 0 for all sets of cardinality
> 1 except for sets A = { j ,n}. This is the CSR game on a star, again illustrating that
the OSR game on a total order falls apart into different cases.

Theorem 7.17. Let X = {1,2, . . . ,n} be a negatively correlated total order such that n is
independent of the other locations, i.e., Pr (A|n) = Pr (A) for all A ⊂ X \ {n}, and such
that Pr (n) ≤ 1

n−1 . Then the value of the game is V (X ) = 1
OX +1 .

Proof. By Lemma 7.16 we know that V (X ) ≤ 1
OX +1 . It suffices to find a Searcher

strategy that guarantees this rescue probability. Suppose Searcher limits herself to a
search of only one or two locations, one of which is n. Then we have the SR game
on a star with uncorrelated random variables, which by the example above has the
required value.

7.5. FURTHER GENERALIZATIONS OF SR GAMES
There are several ways to generalize SR games that may deserve further study. We
discuss some of them here, without going into a full analysis.

General random variables. The most straightforward generalization is to replace
the {0,1}-valued random variables by arbitrary non-negative random variables. Let’s
denote the set of locations by [n] = {1, . . . ,n} with partial order ≺ so that we can
denote the random variable of location i by Xi . A possible interpretation of Xi is
that the rescue comes with a certain (random) reward that depends on the location.
For example, an adversarial Hider that is out to do damage can be more or less
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detrimental, depending on the location. In this setting, it is natural to replace
{0,1}-valued variables by weighted variables. In analogy of Equation (7.1) we now
have a zero-sum game with payoff equal to the expected value of the product over
the visited locations:

Π(σ,h) = E[Xi1 ·Xi2 · · ·Xik ],

where i1, i2, . . . , ik−1 are the searched locations before arriving at the hideout h = ik .
If the random variables are independent and the expected values are ≤ 1, then the
payoff matrix for this game is equivalent to a payoff matrix for Bernoulli random
variables. Our results from section 2 carry over to this case.
If the expected values are not bounded by one, then the game gets more difficult to
solve. We illustrate that for the OSR game on a total order [n] with expected values
ei = E [Xi ]. If we limit Searcher to searches of consecutive locations, then we get the
payoff matrix of Equation (7.6):

A =


e1 e1e2 e1e2e3 · · · e1e2e3 · · ·en

0 e2 e2e3 · · · e2e3 · · ·en

0 0 e3 · · · e3 · · ·en
...

...
...

. . .
...

0 0 0 · · · en


We say that a subset of consecutive locations i , i +1, . . . , j is a run if all cumulative
products ei ,ei ei+1, . . . ,ei ei+1 · · ·e j are ≥ 1. For a run, we have that row i of the matrix
dominates the following rows from i +1 up to j +1. We can delete these rows from
the matrix. If j happens to be the final location n, then we only delete rows up to j .
Columns i up to j +1 (or n) in the remaining matrix are multiples of column i by
factors 1,ei+1,ei+1ei+2, . . . ,ei+1ei+2 · · ·e j+1. The column with the minimum multiple
dominates the others, which can be deleted, so that the resulting matrix is again
triangular. Let k be the location of the remaining column. If Searcher searches
k, then she also searches the locations from i up to k, so we can replace Xk by
Xi · · ·Xk . Similarly, we can replace X j+2 by Xk+1 · · ·X j+2. Essentially, we have an OSR
game on a total order, with a reduced number of locations. By removing the runs,
we end up with a game in which only the final location possibly has expected value
> 1. The previous solution of the OSR game with uncorrelated Bernoulli random
variables carries over to this situation.

Random rescue sets. Let X denote the poset of locations, as before. A draw from
{0,1}-valued random variables βx corresponds to a random subset R ⊂ X , which
we call the rescue set. It is selected by Nature. The players do not know which
R is drawn, but they do know Nature’s probability distribution on the family of
subsets 2X . For instance, weather conditions could limit the search to k out of n
locations, but it is impossible to predict which locations will have bad weather. In
this example, Nature draws uniformly from the subsets of cardinality k. If k = 1 then
we have the special case of a CSR game on an unordered X in which every location
has rescue probability 1

n . If k = n then all locations can be searched and the only
restriction is the order. This is an example of the hypergraph incidence game [155].
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In an SR game, the search halts once it reaches a location x ̸∈ R. Bad weather may
prevent a successful rescue in a certain location, but it does not stop the operation.
A search can continue even if it visits a location that is not in R. Let S ⊂ X be the
set of searched locations, i.e., the image of σ. Then the payoff is one if h ∈ R ∩S and
zero otherwise. This is an extension of the hypergraph incidence game, in which
Searcher chooses an edge S, Hider chooses a location h, and Searcher wins if h ∈ S.

Search and Recovery. In 2009 Air France Flight AF 447 disappeared on its way
from Rio to Paris over the middle of the Atlantic. After several unsuccessful search
operations, the wreckage was recovered two years later using Bayesian search [156].
In this approach, the probability distribution of the location of the wreckage (the
prior) is updated after a search by a Bayesian factor that compensates for the
probability of detection. We can easily adapt SR games to this situation, by
interpreting βx as the probability of detection instead of the probability of successful
search. As in the case of rescue sets in the previous example, a search is allowed to
continue if βx is equal to zero. This is Bayesian search against a worst-case prior
distribution. If Hider can move once a search is over and before a new search
begins, then the game models a manhunt or a hunt for prey. Similar games have
been studied by Owen and McCormick [157] and Gal and Casas [158].

7.6. CONCLUSION
We have presented a new type of Search and Rescue game on partially ordered
sets. We were able to solve the game in polynomial time in terms of the number
of locations for uncorrelated random variables. We showed that the SR game on a
tree can be interpreted as a game with correlated random variables, for which the
distribution is completely reducible. This game was solved by Lidbetter under the
restriction that Bayesian factors are bounded by one from above. If they are bounded
by one from below, the solution appears to be more difficult. We conjecture that
an optimal search involves a backjumping search. A full solution of the game for
general Bayesian factors seems to be out of reach, but we did find general bounds
on the value of the game. We hope that SR games on posets and Bayesian networks
provide a fruitful avenue of further research and applications.
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Bruijn and Erdős”. Paper in preparation (2024)

• J.F. Brethouwer, B. Van Ginkel, and R. Lindelauf. “General Lotto Games with Scouts: Infor-
mation versus Strength”. arXiv:2404.05841, submitted to Dynamic Games and Applications
(2024)

• J.F. Brethouwer and R. Fokkink. “Search and Rescue on a Poset”. arXiv:2312.06622, submit-
ted to Naval Research Logistics, (2024)

• M. A. Golden, T. Slough, H. Zhai, A. Scacco, M. Humphreys, E. Vivalt, A. Diaz-Cayeros, K.
Y. Dionne, S. KC, E. Nazrullaeva, P. M. Aronow, J.F. Brethouwer, A. Buijsrogge, J. Burnett,
S. DeMora, J. R. Enríquez, R. Fokkink, C. Fu, N. Haas, S. V. Hayes, H. Hilbig, W. R. Hobbs,
D. Honig, M. Kavanagh, R. H. A. Lindelauf, N. McMurry, J. L. Merolla, A. Robinson, J. S.
Solís Arce, M. ten Thij, F. F. Türkmen, and S. Utych. “Gathering, Evaluating, and Aggregating
Social Scientific Models”. Submitted to Political Analysis (2023)

• A. Buijsrogge, R. Lindelauf, A. van de Rijt, and J.F. Brethouwer. “Self-Organized Social Dis-
tancing”. Submitted to the Journal of Mathematical Sociology (2023)

• J.F. Brethouwer, R. Fokkink, K. Greene, R. Lindelauf, C. Tornquist, and V. Subrahmanian.
“Rising tension in the Himalayas: A geospatial analysis of Chinese border incursions into
India”. In: PloS one 17.11 (2022), e0274999

• J.F. Brethouwer, A. van de Rijt, R. Lindelauf, and R. Fokkink. ““Stay nearby or get checked”:
A Covid-19 control strategy”. In: Infectious Disease Modelling 6 (2021), pp. 36–45

LIST OF CONFERENCE PRESENTATIONS

• General Lotto Games with Scouts: Information versus Strength, 2023 LSE-Warwick
Workshop on Search Games and Patrolling, London School of Economics, Londen,
July 3-4 2023

• The Value of Information on the Opponent’s Strategy: Two-stage asymmetric Gen-
eral Lotto games with Partial Information, 13th ISDG Workshop, University of Naples
"Parthenope", Naples, June 7-9, 2023

• Understanding the timing of Chinese border incursions into India, Poster presenta-
tion, Conference on AI & National Security, Northwestern Roberta Buffett Institute
for Global Affairs, Chicago, Oktober 20, 2022

163



164 CURRICULUM VITÆ

• Learning in a Game of Search and Pursuit, 19th International Symposium on Dy-
namic Games and Applications, University of Porto, Porto, July 25-28, 2022

• Stay nearby or get checked: Sociale netwerk analyse als middel tegen Covid-19, Lunch-
colloquia NLDA, December 10, 2020


	Contents
	Summary
	Samenvatting
	Introduction
	Mathematical background
	Discrepancy of a sequence
	Small world networks
	Finite constant-sum games

	Covid-19 Spread and Social Distancing
	A conjecture by De Bruijn and Erdos
	Gaps between points on a circle
	Harmonic numbers
	Lower bound on Λ
	Upper bound on λ
	Maximum ratio between largest and smallest interval
	The De Bruijn-Erdős sequence

	Extension to multiple intervals
	Lower bound on Λ-r
	Upper bound on λ-r
	Maximum ratio between largest and smallest interval μ-r

	The De Bruijn-Erdős Conjectures
	Three questions following from the conjecture
	Experimental results
	Connection to van Aardenne-Ehrenfest

	Finite De Bruijn-Erdős sequences
	Uniqueness of interval length
	Finite DBE-Sequence with best possible λ


	“Stay nearby or get checked”: A Covid-19 control strategy
	Introduction
	Related work
	Social network models of infectious disease spread
	Interventions

	Model
	Small World SEIR model
	Model calibration
	Model validation

	Impact of a stay-nearby-or-get-checked policy
	Peak reduction
	Spatial concentration

	Discussion and Policy


	Game Theory in Contemporary Conflicts
	General Lotto games with scouts: information versus strength
	Introduction
	Model, notation and assumptions
	General Lotto
	General Lotto with Scouts

	General Lotto with Scouts: Single Field
	Case 1: GL-S with 1 < B/R
	Case 2: GL-S with u < B/R < 1
	Case 3: GL-S with B/R < u
	Solution of GL-S

	General Lotto with Scouts: Multistage
	The multistage game
	Existence of Game Value
	Upper bound on the game value
	Lower bound on the game value
	Value of the original game

	Measuring information versus strength
	Influence ratio
	Resources needed to attain a given game value
	Optimising information vs strength

	Interpretation
	Efficient strategies with scouts
	Weapons mix problem

	Discussion
	Discussion of the model and results
	Future work


	Rising tension in the Himalayas: A geospatial analysis
	Introduction
	Methods
	Results and Discussion
	Conclusion

	Search and Rescue on a poset
	Introduction
	Definitions and notation
	Uncorrelated Search and Rescue
	Correlated Search and Rescue
	Further generalizations of SR games
	Conclusion

	Acknowledgements
	Curriculum Vitæ
	List of Publications


