

Delft University of Technology

Federated Synthetic Data Generation with Stronger Security Guarantees

Ghavamipour, Ali Reza; Turkmen, Fatih; Wang, Rui; Liang, Kaitai

DOI
10.1145/3589608.3593835
Publication date
2023
Document Version
Final published version
Published in
SACMAT 2023 - Proceedings of the 28th ACM Symposium on Access Control Models and Technologies

Citation (APA)
Ghavamipour, A. R., Turkmen, F., Wang, R., & Liang, K. (2023). Federated Synthetic Data Generation with
Stronger Security Guarantees. In SACMAT 2023 - Proceedings of the 28th ACM Symposium on Access
Control Models and Technologies (pp. 31-42). (Proceedings of ACM Symposium on Access Control Models
and Technologies, SACMAT). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3589608.3593835
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3589608.3593835
https://doi.org/10.1145/3589608.3593835

Federated Synthetic Data Generation with Stronger Security
Guarantees

Ali Reza Ghavamipour

University of Groningen

The Netherlands

a.r.ghavamipour@rug.nl

Fatih Turkmen

University of Groningen

The Netherlands

f.turkmen@rug.nl

Rui Wang

Delft University of Technology

The Netherlands

r.wang-8@tudelft.nl

Kaitai Liang

Delft University of Technology

The Netherlands

kaitai.liang@tudelft.nl

ABSTRACT
Synthetic data generation plays a crucial role in many areas where

data is scarce and privacy/confidentiality is a significant concern.

Generative Adversarial Networks (GANs), arguably one of the most

widely used data synthesis techniques, allow for the training of a

model (i.e., generator) that can generate real-looking data by play-

ing a min-max game with a discriminator model. When multiple

organizations are reluctant to share their sensitive data, GANs mod-

els can be trained in a federated manner, commonly with the use

of differential privacy (DP). In order to achieve a reasonable level

of model utility, DP trades privacy exhibiting vulnerability to vari-

ous attacks (e.g., membership inference attack). In this paper, we

propose a hybrid solution, PP-FedGAN, to the asynchronous feder-

ated, privacy-preserving training of GANs models by combining

the CKKS homomorphic encryption (HE) scheme with differential

privacy. The addition of HE results in around 10 seconds of over-

head on the client side per round and 115 seconds on the entire

training procedure. We also analyze the security of PP-FedGAN un-

der the honest-but-curious security model. Where stronger security

guarantees are required, our proposal presents a better alternative

to solutions that only employ DP.

CCS CONCEPTS
• Security and privacy→Privacy-preserving protocols; •Com-
puting methodologies→Machine learning algorithms.

KEYWORDS
federated learning; synthetic data; gan; homomorphic encryption;

differential privacy

ACM Reference Format:
Ali Reza Ghavamipour, Fatih Turkmen, Rui Wang, and Kaitai Liang. 2023.

Federated Synthetic Data Generation with Stronger Security Guarantees.

In Proceedings of the 28th ACM Symposium on Access Control Models and
Technologies (SACMAT ’23), June 7–9, 2023, Trento, Italy. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3589608.3593835

This work is licensed under a Creative Commons Attribution

International 4.0 License.

SACMAT ’23, June 7–9, 2023, Trento, Italy
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0173-3/23/06.

https://doi.org/10.1145/3589608.3593835

1 INTRODUCTION
A Generative Adversarial Networks (GANs) [16] can learn from a

set of training data and generate new data with the same character-

istics as the training data. GANs are employed in several domains,

such as healthcare, energy systems, mobile communications, and

finance [42]. Training a GANs over a diverse dataset improves the

accuracy of the trained models. However, diverse training data is

often distributed across multiple sources and organizations are re-

luctant to share their data due to legal restrictions over privacy or

competition between participants. Therefore, organizations need a

way of training GANs in a distributed way so that the whole data

set is employed through local training therefore protecting privacy.

For distributed training of GANs, Federated learning (FL) [25] can

help. FL is a machine learning technique in which multiple clients

collaborate to train a machine learning model without sharing their

private data. Federated learning has gradually garnered much at-

tention in both research and industry as a multi-party collaborative

machine learning technique. Training GANs in a federated way

enables the creation of more accurate and diverse models, as the

model is able to make use of a wider range of data from multiple

sources that lead to more realistic and diverse generated data. Ad-

ditionally, federated learning GANs can preserve the privacy of

the participating organizations’ data, as the data is never shared

with any other organization. This can be particularly useful in cases

where the data contains sensitive or confidential information.

However, it has been shown that federated learning itself may be

subject to privacy issues as communicating model updates through-

out the training process can reveal sensitive information [4][26].

By retrieving the shared model updates, an adversary can recon-

struct the training data or infer “unintended” information such as

membership [37] and property [12]. Moreover, final release of both

the discriminator and generator can be the target of such attacks.

Chen et al. [6] and Hayes et al. [17] propose membership inference

attack against GANs to determine whether a particular data point

was used during the training of the generative model.

To alleviate these privacy issues, it is important to employ appro-

priate privacy-preserving techniques, such as differential privacy

and homomorphic encryption, in the federated learning process.

These techniques can protect the privacy of the participating organi-

zations’ data while still allowing the model to be trained effectively.

Existing solutions for privacy-preserving FL mostly employ differ-

ential privacy due to the minimal overhead it introduces. However,

1

31

https://doi.org/10.1145/3589608.3593835
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589608.3593835
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589608.3593835&domain=pdf&date_stamp=2023-05-24

SACMAT ’23, June 7–9, 2023, Trento, Italy Ali Reza Ghavamipour, Fatih Turkmen, Rui Wang, and Kaitai Liang

recent work [34] showed that while these models may offer a cer-

tain level of privacy, they may also suffer from the poor model

utility. They exhibit moderate vulnerability to the membership in-

ference attack when offering an acceptable utility level. Indeed,

techniques such as multi-party computing, homomorphic encryp-

tion, and Trusted Execution Environment (TEE) strengthening the

security guarantees provided by DP are recommended where nec-

essary [20][14].

In this paper, we present a novel method for the asynchronous

federated training of a synthetic data generator model with stronger

privacy guarantees compared to existing proposals. More specifi-

cally, we employ an extension of the FL algorithm introduced by

Abadi et al. [1] for supporting DP in the federated training of GANs

and carefully add CKKS HE [8] on it for achieving stronger pri-

vacy guarantees. Thus, the main contributions of this paper are as

follows:

• We design a hybrid approach to asynchronous federated

generative adversarial training using CKKS homomorphic

encryption scheme and differential privacy, which is the first

work in this direction to the best of our knowledge.

• We demonstrate that the proposed approach can be utilized

to train GANs that offer privacy guarantees and are resistant

to multiple potential adversaries.

• We also extensively study the performance of proposed

framework with different real-world datasets. We measure

the output quality using commonly used GANs quality met-

rics such as IS, FID, and KIS and compare our proposed

approach with other existing studies.

The remainder of the paper is structured as follows: first, in

Section 2, we introduce the building blocks of our framework, the-

oretical properties, and problem descriptions. Then, we will briefly

overview the related literature in Section 3. The proposed approach

and algorithm will describe in section 4. Our framework is evalu-

ated in Section 5. Section 6 discusses the proposed framework and

compares it with existing works. Finally, we give an overview of

related work and some concluding remarks.

2 PRELIMINARY
This section introduces the building blocks of our approach and

threat model and describes our problem definition.

2.1 Generative Adversarial Networks
The Generative Adversarial Networks (GANs) [16] architecture

comprises two deep neural networks, the generator (G) and the

discriminator (D), which makes it computationally expensive. The

generator and discriminator are closely linked in a traditional GANs

setup to achieve the target learning rate. The generator trains itself

to generate artificial data, while the discriminator trains itself to

differentiate between the original and generated data, and both

gradually improve their performance over time. After a certain

number of iterations, the generator can produce data that closely

resembles the original data. In addition, the discriminator becomes

better at identifying the data source. This process can be viewed

as a min-max game framework, which the following function can

represent:

min

𝐺
max

𝐷
=
[
𝐸𝑥∼𝑃data [log𝐷𝑖 (𝑥)] + 𝐸𝑧∼𝑃𝑧 [log (1 − 𝐷𝑖 (𝐺𝑖 (𝑧)))]

]
(1)

The generator produces synthetic data 𝐺 (𝑧) and the discrimina-

tor outputs a probability 𝐷 [0, 1] of the data being real or fake. The

generator aims to minimize the discriminator’s ability to identify

the source of the data, while the discriminator tries to maximize it.

Moreover, each GANs comprises a discriminator and generator

with corresponding parameter vectors 𝜽 and 𝒘 respectively, loss

functions L𝐷 and L𝐺 , local true gradients 𝒉 (𝜽 ,𝒘) and 𝒈 (𝜽 ,𝒘),
and local stochastic gradients.

Note that in this work, for a fair comparison with recent works,

we mainly consider Deep Convolutional GANs (DCGANs) [33].

The DCGANs architecture is a variant of GANs that employs con-

volutional neural networks (CNNs) for generating high-quality

synthetic images that facilitate the learning of hierarchical fea-

tures in the images. The generator network of DCGANs learns to

generate realistic images by converting random noise inputs into

synthetic images, while the discriminator network learns to distin-

guish between real and synthetic images. The ability of DCGANs

to produce highly realistic images has rendered them a preferred

choice for image generation applications across diverse domains,

including computer vision and graphics.

2.2 Federated Learning
Federated Learning (FL) enables𝑚 clients to train a global model𝒘
collaboratively without revealing local datasets. Unlike centralized

learning, where local datasets have to be collected at a central server

before training, FL requires clients to upload the weights of local

models ({𝒘𝑖 | 𝑖 ∈𝑚}) to an aggregation server. Given the weights,

it aims to optimize the following loss function:

min

𝒘
ℓ (𝒘) =

𝑚∑︁
𝑖=1

𝑘𝑖

𝐾
𝐿𝑖 (𝒘), 𝐿𝑖 (𝒘) =

1

𝑘𝑖

∑︁
𝑗∈𝑃𝑖

ℓ𝑗 (𝒘, 𝑥 𝑗), (2)

where 𝐿𝑖 (𝒘) and 𝑘𝑖 are the loss function and local data size of

𝑖-th client respectively. 𝑃𝑖 refers to the set of data indices with size

𝑘𝑖 .

Without loss of generality and correctness, at 𝑡-th iteration, the

training of FL using FedAvg [25] algorithm can be divided into four

main steps.

• Global model download. All connected clients download the global
model𝒘𝑡 from the server.

• Local training. Each client updates the model parameters through

training with their own dataset:𝒘𝑖
𝑡 ← 𝒘𝑖

𝑡 −𝜂
𝜕𝐿 (𝒘𝑡 ,𝑏)

𝜕𝒘𝑖
𝑡

, where 𝜂 and

𝑏 refer to learning rate and local batch respectively.

• Aggregation. After the clients upload local updates {𝒘𝑖
𝑡 | 𝑖 ∈𝑚},

the server can output the global model by averaging them:𝒘𝑡+1 ←
𝑚∑
𝑖=1

1

𝑚𝒘𝑖
𝑡 .

• Model distribution. The new global model is sent back to the

participating clients, and the process repeats.

The application of classic FL to resource-constrained clients

presents various limitations [31]. These include: (1) the unreliability

of heterogeneous clients that may go offline unexpectedly, causing

the aggregation server to wait for updated local gradients from

selected clients; (2) low round efficiency due to the disparity in client
2

32

Federated Synthetic Data Generation with Stronger Security Guarantees SACMAT ’23, June 7–9, 2023, Trento, Italy

and data heterogeneity, where faster clients must wait for stale

local models uploaded from slower clients in each training round;

and (3) low resource utilization resulting from inefficient node

selection algorithms. To overcome these challenges in this work,

asynchronous federated learning (AFL) [31] has been employed,

where the server uses a buffer (with the size of𝐾) to store the model

updates from each client and aggregates a global model as soon as

it collects certain number of local model.

2.3 Homomorphic Encryption
Homomorphic Encryption (HE) is a cryptographic technique that

enables users to evaluate (polynomial) computations on ciphertexts

without revealing the underlying plaintexts. An encryption scheme

is called partial HE if it only supports addition [32] or multipli-

cation [11]. Fully HE [13] on the other hand may support both

operations. An HE scheme usually includes the following steps.

• Key Generation: (pk, sk) ← KGen (1
𝜆
), where based on the secu-

rity parameter 𝜆, public key pk and secret key sk are generated.

• Encryption: (𝑐1, 𝑐2) ← Enc(pk,𝑚1,𝑚2). By using pk, the prob-

abilistic algorithm Enc encrypts messages 𝑚1,𝑚2 to ciphertexts

𝑐1, 𝑐2.

• Homomorphic evaluation: Eval(𝑐1, 𝑐2) = 𝑐1 ◦ 𝑐2 = Enc(pk,𝑚1) ◦
Enc(pk,𝑚2) = Enc(pk,𝑚1 ◦𝑚2), where ◦ refers to an operator, e.g.,

addition or multiplication.

• Decryption:𝑚1 ◦𝑚2 ← Dec(sk, Enc(pk,𝑚1 ◦𝑚2)). Using sk, the
operational results of𝑚1 and𝑚2 can be derived.

Our method is based on a variant of fully homomorphic encryp-

tion (FHE) scheme called leveled homomorphic encryption (LHE)

that supports both addition and multiplication, but only for limited

number of times. More specifically, we employ the LHE scheme

proposed by Cheon-Kim-Kim-Song (CKKS) [8] that works on an

approximation of arithmetic numbers. CKKS, as an emerging en-

cryption scheme, has excellent encryption speed compared to the

Paillier and RSA encryption schemes [7]. The CKKS scheme has

faster encryption/decryption speed, and supports both additive and

multiplicative HE. Similar to the steps in the general homomorphic

computations, the CKKS scheme involves the following operations:

key generation, encryption, decryption, homomorphic addition,

and homomorphic multiplication.

2.4 Differential Privacy
Differential Privacy (DP) [9, 10] is a data protection system tailored

to statistical data releases where the privacy of the individuals

contributing to the data set is preserved. Suppose we have a dataset

D containing sensitive information that must be made public. To

prevent any individual tuple withinD from being easily identifiable,

DP is employed. DP involves the use of a randomized algorithm,

A, to modify D in a way that the output produced by A reveals

minimal information about any specific tuple withinD. The formal

definition of DP is outlined below.

Definition 2.1. ((𝜖, 𝛿) - Differential Privacy) Given two real

positive numbers (𝜖, 𝛿) and a randomized algorithm A: D𝑛 → Y,
the algorithm A provides (𝜖, 𝛿) - differential privacy if for all data

sets D, 𝐷
′ ∈ D𝑛

differing in only one data sample, and all S ⊆ Y:

𝑃𝑟 [A(𝐷) ∈ S] ≤ 𝑒𝑥𝑝 (𝜖) · 𝑃𝑟 [A(𝐷
′
) ∈ S] + 𝛿. (3)

where 𝜖 is the privacy budget and 𝛿 is the fault-tolerant probability.

We focus on Gaussian noise for differential privacy, as it offers

better analysis through Rényi differential privacy framework.

Let 𝑥 be the input dataset, and let 𝑓 be a query function. The

Gaussian Mechanism adds noise to the output of the query function

according to the following formula:

AGauss (𝑥, 𝑓 , 𝜖, 𝛿) = 𝑓 (𝑥)+N
©­­«𝜇 = 0, 𝜎2 =

2 ln

(
1.25
𝛿

)
· (Δ𝑓)2

𝜖2

ª®®¬ (4)

where A is a random variable with mean 0 and standard deviation

𝜎 such that 𝜎 = 𝑆
𝜖 , and 𝜖 is the privacy budget, a measure of the

maximum amount of privacy loss that is acceptable for the dataset.

While the original definition of (𝜖, 𝛿)-DP offers strong data pri-

vacy protection, it falls short in addressing privacy leakage result-

ing from the composition. This issue is also prevalent in federated

learning models, where increasing the number of training epochs

amplifies privacy leakage. For instance, if a FL client apply 𝜖-DP

mechanismA to the gradient before sending it to the central server

for 𝑘 epochs would result in a cumulative privacy loss of 𝑘 × 𝜖 (due
to the composition theorem) at the end of the training.

To address this issue, Mironov [27] introduced Rényi differential

privacy (RDP) as a more precise alternative to DP to achieve tighter

analysis of composition and amplification methods. Thus, we adopt

RDP and its related lemma for the following privacy analysis in

this paper.

Definition 2.2. (Rényi Differential Privacy (RDP)). A randomized
mechanism A with domain D and range R satisfies (𝜆, 𝜀)-Rényi
differential privacy with orders 𝜆 ∈ (1,∞) if for any two adjacent
inputs 𝐷,𝐷′ ∈ D it holds that:

𝐷𝜆

(
A(𝐷)∥A

(
𝐷′

))
=

1

𝜆 − 1 log𝐸𝜃∼A(𝐷 ′)

[(
𝑝A(𝐷) (𝜃)
𝑝A(𝐷 ′) (𝜃)

)𝜆]
≤ 𝜀

where RDP function 𝐷𝜆 (A(𝐷)∥A (𝐷′)) is expressed using Rényi

divergence, and 𝑝A(𝐷) (𝜃) and 𝑝A(𝐷 ′) (𝜃) are the densities ofA(𝐷)
and A (𝐷′), respectively.

In particular, a privacy accounting technique is used to effectively

keep track of the (𝜆, 𝜀) − RDP parameters over the entire range of

𝜆. Then RDP can be converted to standard (𝜀, 𝛿)-DP for any 𝛿 > 0

based on the following Lemma:

The adaptive composition theorem of RDP states that the privacy

of a combination of adaptive mechanisms can be determined in

relation to the privacy of each individual mechanism. We say a

sequence of mechanisms (A1, . . . ,A𝑘) are chosen adaptively ifA𝑖

can be chosen based on the outputs of the previous mechanisms

A1 (𝑆), . . . ,A𝑖−1 (𝑆) for any 𝑖 ∈ [𝑘].

Lemma 2.3. (Adaptive Composition of RDP [27]). If a mechanism
A consists of a sequence of adaptive mechanisms (A1, . . . ,A𝑘) with
A𝑖 satisfying (𝜆, 𝜌𝑖)-RDP, 𝑖 ∈ [𝑘], thenA satisfies

(
𝜆,
∑𝑘
𝑖=1 𝜌𝑖

)
-RDP.

3

33

SACMAT ’23, June 7–9, 2023, Trento, Italy Ali Reza Ghavamipour, Fatih Turkmen, Rui Wang, and Kaitai Liang

Lemma 2.4. (From RDP to DP[27]). If a randomized mechanism

A satisfies (𝜆, 𝜀) − RDP, then A satisfies
(
𝜀 + log 1/𝛿

𝜆−1 , 𝛿

)
-DP for any

𝛿 ∈ (0, 1). When 𝜆 →∞, RDP converges to (𝜀, 0)-DP.
The following lemma demonstrates that privacy is always main-

tained by a post-processing procedure.

Lemma 2.5. (Post-processing [27]). Let A : Z𝑛 → W1 satisfy
(𝜆, 𝜀)-RDP and 𝑓 :W1 →W2 be an arbitrary function. Then 𝑓 ◦A :

𝑍𝑛 →W2 satisfies (𝜆, 𝜀) − 𝑅𝐷𝑃 .

2.5 Threat model
In our work, we consider the honest but curious aggregation servers
and clients. In what follows, we summarize the privacy threats

posed by each of these actors.

Aggregation Server: The server adheres to the defined pro-

tocol (i.e., actively and honestly participates in the training) yet

attempts to learn all possible information from legitimately received

messages and/or the uploaded models. We consider mainly infer-

ence/extraction and reconstruction attacks where the server can

calculate the training data of participants unknown to themwithout

colluding with any individual client.

Clients: We assume that the clients may pry at each other’s

sensitive information to enhance their knowledge by analyzing

all the messages they receive. The final users of the synthetic data

generator are also assumed to be honest but curious, although they

do not necessarily participate to the training protocol.

2.6 Problem description
This work investigates generating synthetic data faithful to the

original input distribution using GANs framework. The challenge

with this setting is that having only one data center may result

in limited and homogeneous data, leading to low generalization

performance of the model. To overcome this, we look at a scenario

that involves multiple data centers with large amounts of data.

To allow for collaborative training, the classic FedAvg algorithm

in federated settings is used, which exchanges model parameters

between the clients and the server. However, this approach does

not protect user data from leakage and needs to be improved.

To ensure that the privacy of the original training data is pro-

tected against the honest but curious client , the noise will be added

to the gradients during the GANs training process. To prove that

the GANs preserves privacy, we demonstrate that the generator’s

parameters guarantee differential privacy concerning the sampled

training data. This means that any data generated from the gener-

ator will not disclose the privacy of the original training data. To

obtain tight privacy bounds, we use the RDP accountant technique,

which is a method for measuring privacy loss.

Moreover, using the homomorphic encryption we eliminated

the possibility of inference by the honest but curious aggregation

server. The encrypted updates are combined to form an encrypted

aggregatedmodel, which is then sent back to the parties. The parties

then decrypt the model and proceed with the next round of training.

3 RELATEDWORKS
Our work is related to two areas: federated GAN and privacy-

preserving machine learning. As a result, existing research can

be classified into the following two categories:

3.1 Attacks against Federated Learning
Numerous studies, such as [24, 29, 44], have confirmed that even

though local datasets are not directly exposed during Federated

Learning (FL) training, the uploaded updates (consisting of gradi-

ents and weights) can still pose a significant risk to privacy. This

risk is exceptionally high if the server is honest-and-curious, as

plaintext updates can be retrieved easily on the server side and

used to reveal the clients’ training data.

Zhu et al. [44] proposed a method for training data reconstruc-

tion that enables a server to obtain a reconstructed version of the

local training dataset of a client in a privacy-preserving manner.

The proposed method involves optimizing the Euclidean distance

between the uploaded gradients and the gradients trained from

dummy samples, which enables the server to retrieve the recon-

structed training dataset with high accuracy. To counteract this

inference attack, we can utilize homomorphic encryption and dif-

ferential privacy schemes to ensure that clients can encrypt the

updates and send them to the server securely. By using these meth-

ods, the updates are protected on the server side since the server

does not have sufficient knowledge to perform update reconstruc-

tion, which helps to safeguard the privacy of the clients’ data.

3.2 Federated Learning GAN
In their study, Rasouli et al.[35] proposed FedGAN, which periodi-

cally synchronizes local generators and discriminators through an

intermediary that averages and broadcasts the parameters. How-

ever, since Federated Learning (FL) suffers from non-IID data among

clients, Li et al.[23] developed a novel framework called SDA-FL.

This framework involves each client pretraining a local GANs to

generate DP synthetic data, which are then uploaded to the server

to construct a global shared synthetic dataset. They also proposed

an iterative pseudo-labeling mechanism performed by the server

to generate confident pseudo-labels for the synthetic dataset. By

combining the local private and synthetic datasets with confident

pseudo labels, SDA-FL achieves nearly identical data distributions

among clients, improving consistency among local models and

benefiting global aggregation.

In addition to optimizing FL-GAN, Xin et al. [41] proposed Pri-

vate FL-GAN to defend against the aforementioned attack. GAN

can be securely transmitted through clients and the server using

the Lipschitz limit with differential privacy. It is important to note

that Private FL-GAN requires the client to transfer the model se-

quentially during training, whereas the proposed solution allows

for parallel GAN training in each round.

Augenstein et al.[2] presents a novel federated generative ap-

proach that utilizes global differential privacy and a trusted server

to preserve data privacy while enabling accurate machine learning

on private datasets. The authors discuss the limitations of existing

techniques in preserving privacy and maintaining performance

in decentralized settings, and introduce their approach that uses

DP to address these issues. They provide experimental results to

demonstrate the effectiveness of their approach, which allows for

accurate machine learning on private datasets while preventing

privacy leakage.

4

34

Federated Synthetic Data Generation with Stronger Security Guarantees SACMAT ’23, June 7–9, 2023, Trento, Italy

Figure 1: The framework of PP-FedGAN

4 APPROACH
Federated training of a synthetic data generator over sensitive data

presents a good alternative to centralized training. However, the

global model may seriously compromise privacy [6, 26] once re-

leased. The PP-FedGAN framework (Figure 1) presents an asynchro-

nous and (cryptographically) hybrid solution to address possible

privacy threats posed by the aggregation server and the clients

themselves. In PP-FedGAN, each client encrypts its model updates

by using a fast and secure approximate-based CKKS HE scheme

before sending it to the aggregation server. The server then takes

the average of the (encrypted) updates it receives and broadcasts

the results to the clients. Note that we do not need bootstrapping

in our method since the number of homomorphic operations is

predetermined according to the number of iterations.

For the privacy threats pertinent to clients, we limit the exposure

of sensitive information by using DP during local training. More

specifically, we adapt a differentially private variant of stochastic

gradient descent algorithm (DP-SGD [1]) to GANs, which reduces

the impact of individual training examples on the final model. PP-

FedGAN meets client-side privacy requirement by guaranteeing

the privacy of every sample, not every batch (since these are not

meaningful units privacy-wise) in two steps. First, for each sample

in the batch, we compute its parameter gradient, and if its norm is

larger than the clipping threshold C, we clip the gradient by scaling

it down to C. Second, we add random noise from the Gaussian

distribution to the gradients before processing.

Our framework consists of three main components:

• Key Distribution Server (KDS) to distribute the CKKS Homo-

morphic Encryption key pairs. We assume the KDS server uses

a private channel to distribute the keys to clients.

• Aggregation Server broadcasts the average of the received

model updates each round.

• Clients locally updates themodel and sends it to the aggregation

server.

We assume that there exists a set of𝑚 clients 𝐶1,𝐶2, ...,𝐶𝑚 that

adhere to the agreed GANs structure and with their (disjoint) re-

spective datasets 𝐷1, 𝐷2, ..., 𝐷𝑚 , and an aggregation server. This

means the number of clients is known a priori. We also assume

that there are secure channels between clients and the aggregation

server. This provides message authentication for incoming mes-

sages and prevents an adversary, whether external or a malicious

data party, from injecting their own responses.

We consider the following scenario:

5

35

SACMAT ’23, June 7–9, 2023, Trento, Italy Ali Reza Ghavamipour, Fatih Turkmen, Rui Wang, and Kaitai Liang

Algorithm 1: Server-side training in PP-FedGAN

Input :Ciphertexts received (𝑐𝑖
1
, 𝑐𝑖

2
) from k clients such

that 𝑘 ≤ 𝑚 and 𝑖 ∈ {1, . . . , 𝑘}. Training period N,

buffer size k and Public Key 𝑃𝑘 received from Key

Distribution Server

Output :Average of the received inputs (𝑐1, 𝑐2)
Receive the (𝑃𝑘) from the KDS

while n < N do
if n = 0 then

Loads the initial models (𝜃0,𝒘0)
Serializes the models 𝑆𝑒𝑟 (𝜃0,𝒘0)
Broadcasts them to clients

else
while k updates received from clients do

Receives (𝑐𝑖
1
, 𝑐𝑖
2
)

end
Deserializes the encrypted model parameters

Deser(𝑐𝑖
1
, 𝑐𝑖

2
)

Computes the average of received data:

𝑐1 =
1

𝑘

𝑘∑
𝑖=0

𝑐𝑖
1

𝑐2 =
1

𝑘

𝑘∑
𝑖=0

𝑐𝑖
2

Serializes 𝑆𝑒𝑟 (𝑐1, 𝑐2)
Broadcasts 𝑆𝑒𝑟 (𝑐1, 𝑐2)

end
n = n + 1

end

• Setup: The KDS creates the keypairs and sends them to the

clients. Also, the KDS sends only the public key to the aggrega-

tion server.

• Step 1: The aggregation server runs the Algorithm 1 and initial-

izes the models (discriminator and generator), and broadcasts

them to all the clients after (homomorphically) computing the

averages. Next, the server waits for the encrypted model updates

from the clients.

• Step 2: Clients run the Algorithm 2 in which they receive the

global model and update it through several epochs. During the

training, differential privacy noise is added to the discriminator

model parameters. Next, each layer of the discriminator and

generator is encrypted separately. Finally, the encrypted tensors

will be serialized since the resulting ciphertexts for the model

parameters are too large, and sent to the aggregation server.

• Step 3: The aggregation server receives the serialized encrypted

model parameters from the clients and store them to the buffer

(the buffer size is predefined). If the aggregation server receives

enough model updates from the clients, it will deserialize them

and compute the average of the encrypted models’ parameters

by using the client’s public key. Finally, the averaged models

will be serialized and broadcast to the clients.

At a high level, PP-FedGAN is an asynchronous Federated Gener-

ative Adversarial Network that enables differentially private train-

ing of GANs in a secure federated setting. It improves the privacy

of the GANs training framework by adding random Gaussian noise

in the updates of the discriminator. The cumulative privacy loss is

tracked by using Rényi Differential Privacy (see Section 2.4). More-

over, the locally trained generator and discriminator models are

sent to the honest but curious aggregation server in an encrypted

form by each client. The aggregation server then computes the av-

erage of the encrypted model parameters and broadcasts the results

to clients.

4.1 Formal Security Analysis
The security offered by PP-FedGAN relies on the guarantees pro-

vided by the underlying cryptographic techniques, which we for-

malize below.

Theorem 4.1. The PP-FedGAN protocol is IND-CPA secure against
inference attacks by an honest-but-curious server.

Proof. Each client in the PP-FedGAN protocol trains their mod-

els locally and encrypts the models’ parameters (denoted as 𝑐𝑖
1
, 𝑐𝑖

2
)

using the HE CKKS scheme in each round of Algorithm 1. The

CKKS scheme involves adding a small error to the message during

encryption and relies on the hardness of the Ring learning with

errors (RLWE) problem. This scheme is considered to provide IND-

CPA security, which is provably an equivalent notion of semantic

security [8]. In other words, knowing only ciphertexts, it is infeasi-

ble for a computationally-bounded adversary to derive significant

information about the plaintexts [15].

In the federated learning setting, the CKKS scheme guarantees

the confidentiality and privacy of client model parameters by ensur-

ing that the server cannot learn anything about the model updates

of individual clients. The server performs the necessary computa-

tions on the encrypted data and sends the encrypted result back to

the clients for decryption. By using CKKS, the PP-FedGAN protocol

ensures the privacy of each client and guarantees the confidentiality

of their model parameters against the honest-but-curious server.

□

Theorem 4.2. The PP-FedGAN protocol provides (𝜖, 𝛿) differential
privacy guarantee under the appropriately selected noise scale 𝜎 and
the clipping threshold 𝐶 against honest-but-curious clients.

Proof. During the local training of GANs in PP-FedGAN frame-

work, the gradient of the discriminator undergoes the addition of

Gaussian noise with a scale of 𝜎 . This ensures that the discrimi-

nator satisfies (𝜆, 𝜀)-RDP, as defined in Definition 2.2, where 𝜀 is

calculated by the RDP accountant. Because of the post-processing

property of differential privacy, as described in Lemma 2.5, the

privacy guarantee of PP-FedGAN extends to the generator as well.

Specifically, the generator satisfies (𝜆, 𝜀)-RDP, which can be lin-

early accumulated over rounds of iterations to obtain a cumulative

privacy loss (Lemma 2.3. To ensure stronger privacy guarantees, the

RDP privacy parameters are converted to the standard (𝜖, 𝛿)-DP.
This is done by applying Lemma 2.4, which converts the (𝜆, 𝜀)-RDP
guarantee to (𝜖, 𝛿)-DP. This provides a strong privacy guarantee,

ensuring that the probability of the algorithm leaking any client’s

information is bounded by 𝛿 . Therefore, PP-FedGAN provides a

robust privacy framework for training GANs locally, ensuring that

clients’ data privacy is protected while enabling the generation of

high-quality synthetic data.

□

6

36

Federated Synthetic Data Generation with Stronger Security Guarantees SACMAT ’23, June 7–9, 2023, Trento, Italy

Algorithm 2: Client-side training in PP-FedGAN

Input : Initial global GANs model (𝜃0,𝒘0) or encrypted GANs model (𝑐1, 𝑐2) from server S. Training period 𝑁 . Local training round

𝑇 . Learning rates of the discriminator (𝜂𝐷) and generator (𝜂𝐺).

Output :Updated and encrypted GANs model parameters (𝑐1, 𝑐2)
(𝑃𝑘 , 𝑆𝑘) (Receive the Public Key and Private Key from the KDS)

while 𝑛 < 𝑁 do
if n = 0 then

(𝜃0,𝒘0) (Receives the initial models from the server)

𝜃 = 𝜃0 𝒘 = 𝒘0 (Set local GANs model parameters to global model parameters received)

else
(𝑐1, 𝑐2) (Receives and deserializes the encrypted data)

𝜃𝑛 = 𝐷𝑒𝑐
𝑆𝑘
(𝑐1) 𝒘𝑛 = 𝐷𝑒𝑐

𝑆𝑘
(𝑐2) (Decrypts the received data)

𝜃 = 𝜃𝑛 𝒘 = 𝒘𝑛 (Replaces the local GANs discriminator and generator)

end
Training discriminator for T rounds:

𝒈 (𝑡) := ∇𝜽L (𝜽𝒘) (Compute the per-sample gradients)

�̂� (𝑡) := A𝜎,𝐶

(
𝒈 (𝑡)

)
= clip

(
𝒈 (𝑡) ,𝐶

)
+ N

(
0, 𝜎2𝐶2𝑰

)
(Clipping and noise addition)

𝜽 (𝑡+1) := 𝜽 (𝑡) − 𝜂𝐷 · �̂� (𝑡) (Gradient descent step)

Training generator for T rounds:

𝒘 (𝑡+1) := 𝒘 (𝑡) − 𝜂𝐺 · 𝒉(𝑡) (Gradient descent step)

𝑐1 = 𝐸𝑛𝑐𝑃𝑘 (𝜃) 𝑐2 = 𝐸𝑛𝑐𝑃𝑘 (𝒘) (Encrypts the discriminator and generator parameters)

𝑆𝑒𝑟 (𝑐1, 𝑐2) (Serializes the encrypted discriminator and generator)

Sends the serialized encrypted model parameters to the server S

n = n + 1

end

5 EXPERIMENTS
This section provides details about implementing the PP-FedGAN

protocol and reports on the results of various experiments we con-

ducted
1
. Our experiments include, among others, analysis of the

training performance compared to existing work ([40]) and the

quality of the generated images given the introduced overhead.

5.1 Experimental setup
PyTorch has been used to implement all algorithms in this work,

while TenSEAL [3] and Opacus [43] libraries were employed in

implementing homomorphic encryption and differential privacy.

All results were obtained on Jupyter Notebooks running on a GPU

node with an NVidia V100 GPU, 128GB RAM, and a Linux OS. All

the clients used a shared GPU to execute their code during our

evaluations.

5.1.1 Framework structures and datasets . Table 1 and 2 present the
details of the selected GANs’ architecture. The Adam optimizer was

utilized with a learning rate of 0.0002 for both the discriminator

and generator during training, which lasted for 20 epochs. The

Uniform With Replacement Sampler from the Opacus package was

employed to sample the training images randomly. The sampling

rate was calculated as the batch size of 128 divided by the number

of samples, which was 6000 for each client.

We developed our communication system in Python, utilizing

ZeroMQ sockets for their low latency and support of atomic multi-

part messages. This allowed us to integrate components easily and

1
Source code available at https://github.com/gronsec/PP-FedGAN

achieve high-throughput in communications. Our implementation

was designed to enable intra- and inter-machine communication,

making it ideal for facilitating communication between simulated

nodes on the same machine or different machines.

Moreover, the CKKS homomorphic encryption layer was imple-

mented using the following parameter values. The value of 8192 was

selected as the polynomial modulus, which determines the degree

of the polynomials in the ring used for encryption. Additionally,

the value of coefficient modulus size was set to [60, 40, 60], where

each prime number represents the size of a polynomial modulus.

Finally, a precision value of 40 was selected, which refers to the

number of bits used to represent each coefficient of the encrypted

values. These parameter values were set to the default in all of our

experiments involving homomorphic encryption.

We assess the effectiveness of our approaches using three widely

used deep learning datasets: MNIST [21], Fashion-MNIST [38], and

SVHN [30]. MNIST consists of 60,000 grayscale images of hand-

written digits in the training dataset and 10,000 images in the test

dataset, each of which is 28x28 pixels. Each digit has 6,000 and

1,000 images in the training and test datasets, respectively. SVHN

comprises of 99,289 digits from 10 classes, obtained from house

number images in Google Street View. The dataset includes 73,257

digits for training and 26,032 digits for testing, and all digits have

been resized to a fixed resolution of 28x28 pixels. Fashion-MNIST

consists of 60k images covering ten classes of fashion items at a res-

olution of 28x28 pixels, which includes 60k training images and 10k

test images. We only use the training images in our experiments.

7

37

SACMAT ’23, June 7–9, 2023, Trento, Italy Ali Reza Ghavamipour, Fatih Turkmen, Rui Wang, and Kaitai Liang

Layer Description
Convolution 1 32 filters 4x4

GroupNorm (64, 64)

Convolution 2 64 filters 4x4

GroupNorm (64, 128)

Convolution 3 128 filters 4x4

Convolution 4 1 filter 4x4

Table 1: Discriminator ar-
chitecture

Layer Description
ConvTranspose 1 128 filters 4x4

GroupNorm (32, 128)

ConvTranspose 2 64 filters 4x4

GroupNorm (32, 64)

ConvTranspose 3 32 filters 4x4

GroupNorm (32, 32)

ConvTranspose 4 1 filter 4x4

Table 2: Generator architec-
ture

Figure 2: Comparing the effect of increasing number of
clients on training federated GANs using different algo-
rithms.

5.2 Evaluation on the Training Performance
We now discuss the communication and computation costs PP-

FedGAN introduces during training in terms of the overhead im-

posed by each layer of protections.

5.2.1 Communication Cost. Weassume that the PP-FedGAN frame-

work consists of 𝑀 clients. In our analysis, we only consider the

actual size of 𝜃𝑀 and𝒘𝑀 without taking into account any additional

transmission costs incurred by the ciphertext. To further examine

the communication costs of the framework, we analyze the costs

associated with each round of model aggregation. Specifically, dur-

ing each round, clients transmit Enc(𝜃𝑀 ,𝒘𝑀) to the aggregation

server, and receive Enc(𝜃𝑀 ,𝒘𝑀) from the server. Therefore, the

communication costs incurred by the server and each client are

O(𝐸𝑛𝑐 (𝜃𝑀 ,𝒘𝑀)) + O(𝐸𝑛𝑐 (𝜃𝑀 ,𝒘𝑀)).

As the ciphertext constitutes a significant proportion of the com-

munication cost, we will examine the computational cost of the

ciphertext in the next subsection.

5.2.2 Computation cost. We conducted an analysis of the computa-

tional costs of the proposed protocol, with a focus on the employed

HE scheme. As described in Section 2.3, the CKKS approach involves

a range of operations, including encryption, ciphertext addition,

ciphertext multiplication, and decryption. Table 3 shows the com-

putational costs of ciphertext operations for different sizes of model

parameters. This table demonstrates that ciphertexts are consider-

ably larger than plaintexts. Furthermore, the computation cost of

model encryption is directly influenced by the number of model

parameters. For instance, the encryption time of the discrimina-

tor model, which has 109,440 parameters, is 40% faster than the

encryption time of the generator model with 312,256 parameters.

5.2.3 Time measurements. The performance of PP-FedGAN is af-

fected by the overhead of multiple security and privacy protection

layers. We conducted an experiment with four clients which locally

computed the GANs model utilizing a shared GPU unit and commu-

nicated with a server over a socket. The time overhead associated

with each protection layer and its impact on the overall system per-

formance is shown in Table 4. The first row of the table represents

the training time for a naive federated GANs (FEDGAN) implemen-

tation without any protection, resulting in efficient training with no

extra overhead. However, adding a HE layer to encrypt the trained

local model of each client (and to decrypt the received models from

the server) increased the training time on the client side by 10

seconds per round. Furthermore, the server needs to perform oper-

ations on received ciphertexts to take their average, which results

in the most overhead in the whole training process and adds 115

seconds to the entire training procedure. Similarly, adding DP noise

during the training increased the FEDGAN training time from 26

to 78 seconds but did not impose any extra overhead on the server.

Finally, the last row of the table shows the PP-FedGAN training

time. As we expected, combining multiple layers of protection sig-

nificantly impacted the training procedure. Each round of federated

GANs training using the PP-FedGAN architecture took around 3.4

times longer than FEDGAN, increasing the whole training time

from 261 to 2096 seconds, which was approximately eight times

longer than the naive solution.

Moreover, increasing the number of operations on ciphertext

imposes extra computation overhead [28]. In our framework, more

operations are needed to be performed by increasing the number

of clients. Therefore, it is expected that the total training time will

be affected. Figure 2 compares the effect of the increasing number

of clients on the total training time of a GANs model using our

framework and Priv-FedGAN[40, 41] and FEDGAN. As expected

and unlike the FedGAN algorithm, raising the number of clients

from 3 to 10 increases the training time of our framework from

43 minutes to 131 minutes. The implementation of a sequential

structure in Priv-FedGAN has a notable effect on its execution time,

although it does not employ homomorphic encryption. Empirical

results indicate that, when the number of clients is set to ten, PP-

FedGANshows a performance improvement of up to 36% over Priv-

FedGAN.

8

38

Federated Synthetic Data Generation with Stronger Security Guarantees SACMAT ’23, June 7–9, 2023, Trento, Italy

(a) 𝜖 = 8.49 (b) 𝜖 = 2.47 (c) 𝜖 = 1.39

(d) 𝜖 = 6.2 (e) 𝜖 = 2.1 (f) 𝜖 = 1.3

Figure 3: Generated images according to different values of privacy parameters on MNIST and Fashion-MNIST datasets.

Model Number of Parameters Before Enc. (MB) After Enc. (MB) Encryption time (s)

Discriminator 109440 0.432 708.34 6.1

Generator 312256 1.2 708.79 10.2

Table 3: The impact of homomorphic encryption of models on storage and computation.

5.3 Evaluation on generated image quality
This section presents a visualization of the synthetic images gener-

ated by our proposed framework, which employs multiple layers

of security protection, including homomorphic encryption and dif-

ferential privacy. We also evaluate PP-FedGAN using commonly

used metrics for assessing image-generating models and compare

our results to those of other existing work.

5.3.1 Visual quality comparison. We conducted experiments on

MNIST and Fashion-MNIST datasets to illustrate the relationship

between the privacy level and the quality of output images of the

generator. Additionally, since the CKKS scheme is an approximate

homomorphic encryption scheme (i.e., RLWE), it can introduce

some approximation errors in the computation. Therefore, it is

crucial to evaluate the quality of the output generated by the PP-

FedGAN framework, particularly the image quality. To further

ensure the quality of the synthetic data, the PP-FedGAN framework

was tested with different levels of differential privacy parameters

and with the default values of the HE parameters of the CKKS

scheme described in Section 5.1.1.

The synthetic data generated by the framework is presented

in Figure 3, along with the corresponding selected values of DP

parameters for each image. Table 5, provides the selected training

parameters corresponding each generated image in Figure 3. The

clipping parameter for all datasets was set to a constant value of

1.0 in all experiments. To ensure reliable results, each GAN trained

with additional noise was trained five times.

As shown in Figure 3, the DP noise multiplier parameter directly

affects the image quality. As the noise multiplier increases, the

value of 𝜖 decreases, resulting in lower-quality output. Particularly,

when the noise multiplier is increased from 0.5 to 1.0, the value of 𝜖

9

39

SACMAT ’23, June 7–9, 2023, Trento, Italy Ali Reza Ghavamipour, Fatih Turkmen, Rui Wang, and Kaitai Liang

Each round

(Client-side)

Each round

(Server-side)

10 rounds

training

FedGAN 26 - 261

FedGAN + HE 36 115 1531

FedGAN + DP 78 - 784

PP-FedGAN 89 115 2096

Table 4: Training time overhead of each protection layer
(seconds).

Figure 3 sub-image a b c d e f

Epsilon 𝜖 8.49 2.47 1.39 6.2 2.1 1.3

Clipping norm 1.0 1.0 1.0 1.0 1.0 1.0

Noise multiplier 0.5 0.7 1.0 0.5 0.7 1.0

Batch size 128 128 128 128 128 128

Targeted 𝛿 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

Table 5: The different privacy regimes (𝜖, 𝛿) with the corre-
sponding hyperparameters

decreases, leading to a reduction in image quality in all the images.

This can be observed in the decreased sharpness and resolution of

the images as the noise multiplier increases. Therefore, choosing

the appropriate value for 𝜖 parameter is crucial for balancing the

trade-off between image quality and privacy protection in synthetic

data generation using PP-FedGAN.

5.3.2 Quality comparison using evaluation metrics. Evaluation of

generative models, including GANs, is a challenging task and needs

to capture image diversity and quality. In a perfect world, evaluating

the quality of generated data would require human judgment. As a

result, promising approaches to mimicking this human judgment

are being developed in the field of GANs.

One of the most popular metrics is the Inception Score (IS) pro-

posed by Salimans et al. [36] and has been demonstrated to be

closely linked to human judgment. The IS works by passing the

generated data through a pre-trained Inception classifier, where a

high score indicates diverse and high-quality images, while a low

score suggests uniform and low-quality images. However, the In-

ception model may struggle to capture significant feature variation

from GANs trained on MNIST and SVHN datasets. To achieve more

reliable results on the MNIST dataset, we adapted the LeNet [22]

model instead of the Inception model to calculate these scores.

In addition to IS, we also utilize the Fréchet Inception Distance

(FID) [18] and Kernel Inception Distance (KID) [5] metrics. The FID

measures the distance between the generated image distribution

and the real data. It utilizes the Inception network to compare

both sets of data and assumes that their outputs have Gaussian

distributions. Similarly, the KID score measures the dissimilarity

between two probability distributions based on random samples

from each distribution, using the Inception network. The KID score

is impartial and thus more reliable, especially when there are fewer

test images than the Inception features’ dimension. Lower FID and

KID scores suggest better regenerated input images, indicating

the model’s ability to preserve the original quality. To evaluate

performance on the MNIST dataset, we use the LeNet [22] model

instead of the Inception model to calculate these scores.

To assess the effect of privacy budgets on the performance of PP-

FedGAN, we conducted experiments using different noise multiplier

values ranging from 0.1 to 2, which correspond to different values

of 𝜖 in the Opacus library. By evaluating our model under different

levels of privacy protection, we can determine the optimal privacy

budget that allows us to generate high-quality synthetic images

while ensuring the privacy and security of the training data.

Furthermore, we compared the quality of the generated images

by PP-FedGAN with the closest works to ours, Priv-FedGAN [41]

and DP-GAN [39] frameworks. By adapting their algorithm to our

experimental setup, we were able to compare their performance

with that of PP-FedGAN and determine which framework per-

formed best under different privacy budgets.

Strict privacy budgets lead to a rise in the Inception score, indi-

cating a decline in the quality of the synthesized samples. Figure

4 (a) and (b) represent the IS score for SVHN and MNIST datasets,

respectively. We gradually increase the noise multiplier value from

0.1 to 2.0, which corresponds to a reduction in the epsilon value,

the Inception score for the images produced by PP-FedGAN on the

MNIST dataset decreases from 6.2 to 2.21, while for images gener-

ated on the SVHN dataset, the Inception score decreases from 7.01

to 1.53. In comparison, Priv-FedGAN performs marginally better

than PP-FedGAN, and DP-GAN achieved the lowest score among

the three training algorithms.

Figures 4 (c) and (d) illustrate the FID and KID scores for MNIST

data using three different privacy-preserving algorithms. Gradually

increasing the noise multiplier value from 0.1 to 2.0 causes the

PP-FedGAN’s FID score to increase from 2.32 to 73.73. In other

words, the quality of the generated images decreases gradually

when the noise multiplier value exceeds 1.5. In this experiment,

DP-GAN achieves a highly similar score to PP-FedGAN. Meanwhile,

Priv-FedGAN generates images with slightly lower quality than

the other algorithms.

Similarly, for the KID score, FED-DGAN and PP-FedGAN out-

perform the Priv-FedGAN algorithm. The FED-DGAN achieves a

score of 0.026, PP-FedGAN achieves 0.053, and Priv-FedGAN only

manages 0.25. As expected, the performance of all generator models

decreases rapidly as the privacy budget shrinks.

Also, the Figure 4 (c) and (d) corresponding to the FID and KID

scores over MNIST data. By slowly increasing the noise multiplier’s

value from 0.1 to 2.0, FID score increases from 2.32 to 73.73 and KID

score from 0.053 to 2.264. As we expected, the performance of all

models rapidly deteriorates as the privacy budget becomes smaller.

When the privacy budget is significant, our model generates higher-

quality images.

6 DISCUSSION
The PP-FedGAN framework is designed to generate synthetic data

using an asynchronous federated learning approach in a privacy-

preserving manner. In our framework (same as Augenstein et al.’s
work [2]), the server-based FedAVG is selected as the federated

learning algorithm. Unlike PP-FedGAN, Priv-FedGAN uses a se-

quential federated learning approach, with DP used to ensure pri-

vacy guarantees. Sequential training can be more prone to overfit-

ting than parallel training because the model is only trained on a

single client’s data. As a result, the model may learn to perform well

10

40

Federated Synthetic Data Generation with Stronger Security Guarantees SACMAT ’23, June 7–9, 2023, Trento, Italy

(a) (b)

(c) (d)

Figure 4: Comparison of evaluation metrics on SVHN and MNIST datasets

on the training data from that specific client but may need to gener-

alize better to other clients. Also, as the results of our experiments

expressed, training can take longer to converge to a solution than

parallel training because the model must be trained on each client’s

data in sequence. This can result in longer overall training times

and thus less fault tolerance, which can be a significant drawback

for larger datasets or when working with many clients.

Moreover, the PP-FedGAN framework incorporates local differ-

ential privacy (DP) and homomorphic encryption (HE) to provide

privacy guarantees at both local and global levels. Local DP ensures

privacy during training, while HE prevents the server from access-

ing the model updates. In contrast, Augenstein et al.’s approach
employs global differential privacy, which depends on a trusted

aggregation server to ensure privacy. This can potentially result in

reduced privacy protection due to the possibility of sensitive data

leakage [19].

Overall, the PP-FedGAN framework provides a solid approach to

privacy-preserving synthetic data generation, with several unique

advantages over existing methods. Using HE and DP in a parallel

federated learning setting, in conjunction with the separate training

of the generator and discriminator models, allows for greater con-

trol over the quality of the synthetic data generated while providing

strong privacy guarantees.

7 CONCLUSION
In this paper, we proposed a novel privacy-preserving federated

learning scheme (PP-FedGAN) based on the asynchronous FedAVG

algorithm that utilizes homomorphic encryption and differential

privacy. Using DP, we can guarantee overall privacy from the in-

ference of any model output of our framework and available inter-

mediate results. Additionally, employing HE guarantees that any

messages exchanged between the client and server are not revealed

and therefore do not leak private information.

Given these guarantees, the generative model produced by our

system achieved up to 30% better training performance than ex-

isting works such as Priv-FedGAN. Additionally, we conducted

experiments on three public datasets, and the experimental results

showed that our framework can generate high-quality synthetic

11

41

SACMAT ’23, June 7–9, 2023, Trento, Italy Ali Reza Ghavamipour, Fatih Turkmen, Rui Wang, and Kaitai Liang

data. We achieved the inception score of 6.9 when the 𝜖 value was

8.49 compared with 6.85 for DP-GAN.

For future work, we are planning to consider Byzantine adver-

saries, which can send arbitrary incorrect messages to the primary

server with the aim of data corruption, communication failure, or

malicious attacks, thereby deviating from the learning model.

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] Sean Augenstein, H Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy,

Peter Kairouz, Mingqing Chen, Rajiv Mathews, et al. 2019. Generative models for

effective ML on private, decentralized datasets. arXiv preprint arXiv:1911.06679
(2019).

[3] Ayoub Benaissa, Bilal Retiat, Bogdan Cebere, and Alaa Eddine Belfedhal. 2021.

TenSEAL: A library for encrypted tensor operations using homomorphic encryp-

tion. arXiv preprint arXiv:2104.03152 (2021).
[4] Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan

Rogers. 2018. Protection against reconstruction and its applications in private

federated learning. arXiv preprint arXiv:1812.00984 (2018).
[5] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton.

2018. Demystifying mmd gans. arXiv preprint arXiv:1801.01401 (2018).
[6] Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz. 2020. Gan-leaks: A taxon-

omy of membership inference attacks against generative models. In Proceedings
of the 2020 ACM SIGSAC conference on computer and communications security.
343–362.

[7] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. 2019. Efficient multi-key

homomorphic encryption with packed ciphertexts with application to oblivious

neural network inference. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 395–412.

[8] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-

morphic encryption for arithmetic of approximate numbers. In International
conference on the theory and application of cryptology and information security.
Springer, 409–437.

[9] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our data, ourselves: Privacy via distributed noise generation. In

Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 486–503.

[10] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating noise to sensitivity in private data analysis. In Theory of cryptography
conference. Springer, 265–284.

[11] Taher ElGamal. 1985. A public key cryptosystem and a signature scheme based

on discrete logarithms. IEEE transactions on information theory (1985), 469–472.

[12] Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov. 2018.

Property inference attacks on fully connected neural networks using permutation

invariant representations. In Proceedings of the 2018 ACM SIGSAC conference on
computer and communications security. 619–633.

[13] Craig Gentry. 2009. A fully homomorphic encryption scheme. Stanford university.
[14] Ali Reza Ghavamipour, Fatih Turkmen, and Xiaoqian Jiang. 2022. Privacy-

preserving logistic regression with secret sharing. BMC Medical Informatics
and Decision Making 22, 1 (2022), 1–11.

[15] Shafi Goldwasser and Silvio Micali. 1982. Probabilistic Encryption and How

to Play Mental Poker Keeping Secret All Partial Information. In Proceedings of
the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San
Francisco, California, USA, Harry R. Lewis, Barbara B. Simons,Walter A. Burkhard,

and Lawrence H. Landweber (Eds.). ACM, 365–377.

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial

networks. Commun. ACM 63, 11 (2020), 139–144.

[17] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. 2017.

Logan: Membership inference attacks against generative models. arXiv preprint
arXiv:1705.07663 (2017).

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and

Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to

a local nash equilibrium. Advances in neural information processing systems 30
(2017).

[19] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep models

under the GAN: information leakage from collaborative deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC conference on computer and communications
security. 603–618.

[20] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-

nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,

Rachel Cummings, et al. 2021. Advances and open problems in federated learning.

Foundations and Trends® in Machine Learning 14, 1–2 (2021), 1–210.

[21] Yann LeCun. 1998. The MNIST database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998).

[22] Yann LeCun et al. 2015. LeNet-5, convolutional neural networks. URL: http://yann.
lecun. com/exdb/lenet 20, 5 (2015), 14.

[23] Zijian Li, Jiawei Shao, Yuyi Mao, Jessie Hui Wang, and Jun Zhang. 2022. Feder-

ated learning with gan-based data synthesis for non-iid clients. arXiv preprint
arXiv:2206.05507 (2022).

[24] Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. 2021. Feature

inference attack on model predictions in vertical federated learning. In ICDE.
181–192.

[25] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In AISTATS. 1273–1282.
[26] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.

2019. Exploiting unintended feature leakage in collaborative learning. In 2019
IEEE symposium on security and privacy (SP). IEEE, 691–706.

[27] Ilya Mironov. 2017. Rényi differential privacy. In 2017 IEEE 30th computer security
foundations symposium (CSF). IEEE, 263–275.

[28] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. 2011. Can homo-

morphic encryption be practical?. In Proceedings of the 3rd ACM workshop on
Cloud computing security workshop. 113–124.

[29] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy

analysis of deep learning: Passive and active white-box inference attacks against

centralized and federated learning. In IEEE S&P. 739–753.
[30] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-

drew Y. Ng. 2011. Reading Digits in Natural Images with Unsupervised Feature

Learning. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011. http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

[31] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat,

Mani Malek, and Dzmitry Huba. 2022. Federated learning with buffered asyn-

chronous aggregation. In International Conference on Artificial Intelligence and
Statistics. PMLR, 3581–3607.

[32] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree resid-

uosity classes. In EUROCRYPT. 223–238.
[33] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised represen-

tation learning with deep convolutional generative adversarial networks. ICLR
(2015).

[34] Md Atiqur Rahman, Tanzila Rahman, Robert Laganière, Noman Mohammed, and

Yang Wang. 2018. Membership Inference Attack against Differentially Private

Deep Learning Model. Trans. Data Priv. 11, 1 (2018), 61–79.
[35] Mohammad Rasouli, Tao Sun, and Ram Rajagopal. 2020. Fedgan: Federated gen-

erative adversarial networks for distributed data. arXiv preprint arXiv:2006.07228
(2020).

[36] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

and Xi Chen. 2016. Improved techniques for training gans. Advances in neural
information processing systems 29 (2016).

[37] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-

bership inference attacks against machine learning models. In 2017 IEEE sympo-
sium on security and privacy (SP). IEEE, 3–18.

[38] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel

image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017).

[39] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. 2018. Differ-

entially private generative adversarial network. arXiv preprint arXiv:1802.06739
(2018).

[40] Bangzhou Xin, Yangyang Geng, Teng Hu, Sheng Chen, Wei Yang, Shaowei Wang,

and Liusheng Huang. 2022. Federated synthetic data generation with differential

privacy. Neurocomputing 468 (2022), 1–10.

[41] Bangzhou Xin, Wei Yang, Yangyang Geng, Sheng Chen, Shaowei Wang, and

Liusheng Huang. 2020. Private fl-gan: Differential privacy synthetic data gen-

eration based on federated learning. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2927–2931.

[42] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federatedmachine

learning: Concept and applications. ACM Transactions on Intelligent Systems and
Technology (TIST) 10, 2 (2019), 1–19.

[43] Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine,

Karthik Prasad, Mani Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj,

Jessica Zhao, et al. 2021. Opacus: User-friendly differential privacy library in

PyTorch. arXiv preprint arXiv:2109.12298 (2021).
[44] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients. NIPS

(2019).

12

42

http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Generative Adversarial Networks
	2.2 Federated Learning
	2.3 Homomorphic Encryption
	2.4 Differential Privacy
	2.5 Threat model
	2.6 Problem description

	3 Related Works
	3.1 Attacks against Federated Learning
	3.2 Federated Learning GAN

	4 Approach
	4.1 Formal Security Analysis

	5 Experiments
	5.1 Experimental setup
	5.2 Evaluation on the Training Performance
	5.3 Evaluation on generated image quality

	6 Discussion
	7 Conclusion
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 297.70, 61.58 Width 15.49 Height 18.81 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 297.6997 61.5843 15.4937 18.8137

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 12
 11
 12

 1

 HistoryList_V1
 qi2base

