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”Thousands have lived without love, not one without water.”

— W. H. Auden
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A B S T R A C T

The surface water extent around the world is constantly changing due to natural
factors (e.g. geology and over-abstraction of water), climate change (e.g. higher
water evaporation due to warmer climate) or human activities (e.g. reservoir con-
struction). Water reservoirs are important for the management of the ecosystem, as
both humans and the natural environment depend highly on them for their exis-
tence and well being. Flood control, agricultural irrigation, electricity generation,
drinking and municipal water supply are only some of their main uses. Consid-
ering this, it is of high importance to have accurate maps that depict the reservoir
outlines to determine their surface extend and storage capacity. However, their ex-
tend is not always well defined or there are discrepancies between various surface
water datasets.

This dissertation aims to provide an answer about which datasets match better
as well as identifying the problematic areas by performing a quality control anal-
ysis. The main challenge of this thesis is that all available datasets have certain
limitations regarding their coverage and quality. The waterbody delineation from
satellite images is affected by the atmospheric conditions (e.g cloud obstructions)
or topographic elements that create artifacts and influence the correct classification
of water pixels. OpenStreetmap (OSM) on the other hand, has uncertain quality
over locations, as the data is freely supplied by volunteers. Moreover, HydroLAKES
which was created based, amongst others, on the Global Reservoir and Dam Dataset
(GRanD), is still incomplete.

In this thesis, an intercomparison of accuracy algorithm that can perform large
scale analysis is created, by using the country of Angola as a use case, five datasets
as input (Global Surface Water, Sentinel 2, OSM, HydroLAKES, GRaND) in both
raster and vector format and the cloud processing platform of Google Earth engine.

The identification of similarities or mismatches between the datasets is performed
in terms of positional accuracy. Two quality measures have been considered for the
pairwise comparison of features: percentage of overlap and Hausdorff distance. In
addition the completeness of the datasets respectively to the total common water
area of the water reservoir datasets is reviewed.

The results of this research shows that large scale analysis for the comparison
of accuracy between water reservoir datasets of different formats is possible. The
pre-processing of the input Satellite data is semi-automated. The created automated
algorithm for the main analysis offers information for all corresponding features be-
tween datasets. More specifically, statistics about the shape similarity, the percent-
age of overlap and the water area completeness of the datasets are being presented.
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1 I N T R O D U C T I O N

Water is one of the most vital elements on earth. It is of high importance for
the preservation of all forms of life, humans, animals, and plants [Khodaei and
Nassery, 2008]. To manage these water resources, accurate maps that provide reli-
able information on the spatial distribution, seasonal and annual changes of surface
water are essential [Santoro et al., 2015].

The accurate knowledge of the available water stocks in the world can provide
answers to questions related to water availability, flood hazards, food and health
safety, agricultural and industrial usage, but also support hydrological and ecolog-
ical processes. Water reservoirs, either man made or created by nature, are used
to generate electricity and prevent floods. There are millions of water reservoirs in
the world and their storage capacity can have a big impact on the living of people
and the surrounding ecosystems. The increase of water demand due to the grow-
ing population combined with the water reservoir fluctuations because of climate
changes, have made the monitoring of their dynamics necessary, now more than
ever. An accurate representation of the truly permanent geometry of the existing
water reservoirs can provide a clear picture of the area of surface water, the storage
volume or any changes that take place.

There are many available sources of information. Satellite imagery has been
extensively used for water detection purposes. The large variety and amount of
Earth Observations, together with the processing cloud platform of Google Earth
Engine that offers enormous computational resources, provided us with the abil-
ity for planetary scale mapping. Moreover, initiatives where citizens are allowed
to participate in data collection, also known as Volunteered Geographic Informa-
tion (VGI), made worldwide mapping efforts that provide free geographic data,
possible. OpenStreetMap (OSM), a type of crowd-sourcing editable world map, is
currently the biggest freely available geodata platform, that has been used in a
wide range of Geographic Information Systems (GIS) and applications as an alterna-
tive source information, or supplementary with other official authoritative datasets
[Brovelli and Zamboni, 2018].

1.1 problem statement and motivation
The amount of Earth Observations and other geospatial information is constantly
increasing. The foremost advantage of remote sensing-based techniques is that
they provide an effective way of monitoring the surface of Earth continuously on
a global scale. This is due to the ease of data access that is offered freely and
openly in different temporal and spatial resolutions [Jakovljević et al., 2019; Huang
et al., 2015; Avisse et al., 2017]. However, there are some factors that affect the
final accuracy and lead to the miss-classification of water pixels (error of omission
and commission). Optical earth observation imagery is easily affected by cloud
obstructions, terrain and cloud shadows, snow, ice and ”dark” vegetation as they
present similar spectral properties with surface water [Thissen, 2019].

On the other hand, OSM is based on the collection of Geographic Information
gathered and updated by volunteers [Bhattacharya, 2012]. These data are provided
from sources such as Global Positioning System Global Positioning System (GPS)
devices, cadastral data, through manual digitizing (editing) on medium and high-
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2 introduction

resolution satellite and aerial imagery or from knowledge about an area [Goetz and
Zipf, 2013; Barron et al., 2014]. The most significant advantage of this provider is
its global coverage and up to date nature. Many studies, however, are questioning
the OSM data quality [Kato, 2018], as they are created without any formal quali-
fications. This is the main reason why the use of these georeferenced data have
not been extensively adopted by GIS professionals [Mooney et al., 2010a]. Other
vector surface water datasets, such as HydroLAKES and the Global Reservoir and
Dam Database (GRaND) were created in a joint international effort to compile the
existing water reservoir and dam data and gather all this information in one reli-
able database. Even though, data dissimilarities and record gaps were corrected
during the development of these databases, they are still incomplete as information
about many existing water reservoir is missing [Lehner et al., 2011]. Examples of
the various dataset inconsistencies are given in the following figures. More specif-
ically, Figure 1.1 shows an example of a reservoir that is only present in the OSM
database, Figure 1.2 only detected with Sentinel 2 and Figure 1.3 another found
only with Global Surface Water (GSW) and Sentinel 2. Figure 1.4 gives an example
of a reservoir noticed from OSM and Sentinel 2 but not GSW possibly because of its
lower resolution. In Figure 1.5 a water feature was located with Sentinel 2, GSW and
HydroLAKES but not OSM. Figure 1.6 identifies a false positive OSM water feature
registration and lastly, Figure 1.7 illustrates the geometric differences of a feature
present in all five datasets.

(a) Satellite Image (b) OSM water feature

Figure 1.1: Example of OSM water feature
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(a) Satellite Image (b) Sentinel 2 water feature

Figure 1.2: Example of Sentinel 2 water feature

(a) Satellite Image (b) GSW and Sentinel 2 water features

Figure 1.3: Visual comparison of extracted waterbodies from different data sources

(a) Satellite Image (b) OSM and Sentinel 2 water features

Figure 1.4: Visual comparison of extracted waterbodies from different data sources
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(a) Satellite Image (b) Sentinel 2, GSW and HydroLAKES water features

Figure 1.5: Visual comparison of extracted waterbodies from different data sources

(a) Satellite Image (b) OSM feature

Figure 1.6: Example of false positive water feature
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(a) Satellite Image (b) Sentinel feature

(c) GSW feature (d) OSM feature

(e) HydroLAKES feature (f ) GRaND feature

Figure 1.7: Visual comparison of extracted waterbodies from different data sources

The dynamic nature of the water extend both in space and time along with the
limitations mentioned above in the various water detection methods and datasets,
make it very hard to create an accurate high-resolution waterbody map [Yamazaki
et al., 2015]. In order for these datasets to be completely reliable, we would need an
objective confidence map of every water mask. However, assessing the level of trust
as to whether the data is accurate is not easy, as all datasets contain uncertainties
and even in situ observations, are only point-based and cannot give a representative
idea of the spatial distribution of water in time and in large scale. Therefore, in
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order to see how well these datasets match or mismatch, a comparison process
for the water reservoir geometries at larger scale is needed. This can increase the
confidence of the outline water reservoir geometries by analysing the correlation of
the remotely sensed and official vector datasets with OSM.

1.2 research questions
Having the introduced problem statement in mind, the formulation of the following
main research question emerges:

What are the spatial differences between Earth Observation based and Volunteered
Geographic Information for water reservoirs and how can they be addressed in an
automated way at a large scale?

Answering this research question would arouse a positive contribution in various
fields that are not only relevant to the scientific/research community but also to
policy and decision making of public administrations and various environmental
strategies. To achieve that, the following sub-questions need to be addressed:

• What are the differences in terms of spatial coverage?

• What are the differences in terms of positional accuracy?

1.3 research scope
The focus of this thesis is to create a comparison of accuracy algorithm that can
operate in a large scale using different water reservoir datasets. A workflow has
been developed that is tested in a smaller extend than the whole world, and more
specifically in the country of Angola. However, the created algorithm can be used
also for bigger datasets.

A methodology that explores the positional accuracy and completeness of OSM

water masks compared to GSW, Sentinel 2, GRaND and HydroLAKES water datasets
is being applied. Focus has been given only to polygon water features from the
OSM database, as linear primitives have not been considered. The OSM dataset has
been filtered out to contain only features that show a possible relevance to water
reservoirs. Nevertheless, the algorithm can work for any two polygon datasets given
as input.

It is important to highlight that the performed analysis does not ensure the qual-
ity of the data, as it doesn’t utilize ground truth information, i.e. information pro-
vided by empirical observations. It focuses on the evaluation of the data by per-
forming an intercomparison of datasets. Therefore, the main goal of this research is
to assess the level of agreement amongst different sources and identify unreliable
or missing water reservoir areas depending on their dis/similarity as indicated by
the diverse chosen quality criteria.

This research was initiated by Deltares, which is an independent institute for
applied research in the field of water, subsurface and infrastructure. It runs sev-
eral projects throughout the world such as reservoir planning, design and opera-
tion. Deltares has created its own water reservoir dataset by combining information
from different sources. The developed algorithm of this thesis shall facilitate the
improvement of this database.

The main limitation of the developed quality analysis tool, is the semi-automated
nature of the pre-processing of the Satellite data. It does not require heavy down-
loads and everything is processed on Google through it’s Earth Engine. However,
due to the use of large scale remote sensing data, the pre-processing of the Sentinel
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2 and GSW water datasets together with the quality analysis cannot be performed
on the fly, but instead the created water mask has to be first exported. Nonethe-
less, the algorithm could be applied on a global level in an automated way for both
the pre-processing and main analysis, as part of the suggested future work of this
thesis.

Another point that is out of the scope of this graduation project is the refine-
ment of the created Sentinel 2 water dataset by implementing additional operations
to avoid potential classification errors. Lastly, due to time constraints, fixing the
mismatches and creating water reservoir polygons based on the combination of all
input datasets, is not done in this study.

1.4 thesis outline
This thesis is structured as follows:

• Chapter 2 presents the theoretical background that is essential to understand
the scientific concepts analyzed throughout this thesis. An introduction to
the basic remote sensing principles are explained and various data processing
algorithms are introduced.

• Chapter 3 reviews the related research that has been done so far in the com-
parison of accuracy of different datasets, some concepts of which have also
been adopted in the implementation of this study.

• Chapter 4 describes the approach of the methodology that was chosen to an-
swer the research questions as a workflow. It presents the mathematical and
other concepts on which the pre-processing and main analysis was based.

• Chapter 5 mentions briefly the data and tools of this research.

• Chapter 6 offers a detailed description of the implementation of the method-
ology. The final results together with the potential challenges and factors that
affect them are being provided.

• Chapter 7 offers an insight of how a certain variable of the algorithm affects
the analysis results.

• Chapter 8 discusses the conclusions and answers to the research questions of
this thesis. Finally, it presents recommendations for future work.

Additionally, Appendix A contains an assessment of the reproducibility of this
research.





2 T H E O R E T I C A L B A C KG R O U N D

The implementation of this research is based on different scientific concepts and
technologies. This chapter aims to provide an overview of the theoretical back-
ground that is related to this study, which will facilitate the comprehension and
understanding of the concepts and results described in the following chapters. In
Section 2.1, an insight of the basic remote sensing principles is given. More specifi-
cally, Section 2.1.1 describes how the acquisition of information with remote sensing
works, as well as the different Spaceborn remote sensors that are widely used for
water detection purposes. Next, Section 2.1.2 gives a general introduction to vari-
ous surface water detection methods. Section 2.1.3 addresses the challenges when
analyzing satellite imagery to extract information about existing waterbodies.

In addition, Section 2.2 presents a number of raster and vector data processing
algorithms used throughout this research. Starting with Section 2.2.1 and Sec-
tion 2.2.2, data transformation algorithms referring to the change of the shape of
object in images and the conversion from vector to raster format are explained re-
spectively. In Section 2.2.3, a resampling method with bicubic interpolation, reviews
how the resolution of an image can be modified. Section 2.2.4 describes how all pos-
sible relation between two sets of data can be described by using the Venn Diagrams.
Lastly, Section 2.2.5 explains the steps of line simplification operation.

2.1 remote sensing principles

2.1.1 Optical Earth Observation Sensors

Remote sensing techniques are based on the principle of measuring the reflected
and emitted radiation from the Earth’s surface and the atmosphere by using several
parts of the Electromagnetic Spectrum (EM) that is not visible to the human eye (see
Figure 2.21). Satellites contain sensors that measure this electromagnetic radiation
(see Figure 2.12). There are two types of sensors, passive and active. Passive sen-
sors (digital cameras and multispectral scanners) are instruments that receive and
measure the reflected sunlight emitted from the sun (Sensor 1). This reflected en-
ergy takes place only during day time, when the sun illuminates the Earth. Passive
sensors (thermal scanners) utilize also the energy that is naturally emitted, such as
thermal infrared, which can be measured throughout the day and night but only in
cases where the amount of energy is big enough to be detected (Sensor 2).

1 https://www.pgc.umn.edu/guides/commercial-imagery/intro-satellite-imagery
2 https://www.omnisci.com/technical-glossary/remote-sensing
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Figure 2.1: Remote Sensing Process

Figure 2.2: Electromagnetic Spectrum

Active sensors (Radar and Lidar) on the other hand, emit their own electromag-
netic energy and record the energy that is scattered back in the direction of the
instrument (Sensor 3). This energy is in the visible and near-infrared part of the EM

spectrum which is produced by lasers or microwaves in order to collect data. Mi-
crowaves particularly, can work day and night and are highly weather independent
because microwaves are much larger than the water particles present in the air. As
a result the waves are not affected by them. Therefore, even in an area with tropical
climate where clouds cover the atmosphere, the radar can see through them. Same
thing also occurs in dense vegetation and in upper soil areas where radars are able
to penetrate them.

Optical sensors (imaging and thermal systems) use the visible, near-infrared, and
shortwave infrared spectrums. In order to work better however, they need good
weather conditions. Optical remote sensing has shown a big progress in the last
decades. Because of the high spatio-temporal availability of data, they have been
extensively used for water detection purposes [Huang et al., 2015]. As the years
go by, more satellite data with better spatial, temporal, and spectral resolutions are
acquired [Donchyts, 2018]. The spectral resolution describes the range of the EM in
which a satellite can sample the reflected radiance whereas the spatial resolution,
refers to the pixel size of a satellite image or in other words the ground area depicted
in this pixel. Lastly, the temporal resolution describes the time needed for a satellite
to orbit and revisit the same area.

The spatial resolution plays an important role in the process of surface water
detection, as it determines the level of detail of the detected water feature. High
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resolution images offer higher level of detail. On the other hand, high temporal
resolution offer the possibility of more frequent data. Amongst the various optical
sensors, the ones that have been used mostly for water mapping purposes, are the
ones with medium resolution (10-30 m) [Donchyts et al., 2016]. More specifically,
multispectral satellite imagery originating from Landsat 8 (30m) has been available
since 11\02\2013. Sentinel 2A, launched in 2015, is another, more recent, valuable
source of information for waterbody mapping as it offers a 10m resolution.

Figure 2.3: Commonly used Spaceborne Remote Sensors for Surface Water Detection
[Huang et al., 2018]

2.1.2 Surface water Detection methods

The reflectance of a surface depends on its material, and it varies with the wave-
length of the electromagnetic energy, which is what makes it possible to identify
Earth’s surface features differently by analyzing their spectral reflectance signa-
tures. Water detection is mainly based on its characteristic of significantly lower
reflectance in the infrared part of the EM compared to other landcover types [Huang
et al., 2018].

Figure 2.4: Reflectance of different Land types [Zhu et al., 2018]

Several surface water extraction methods have been developed in the past, to
separate water from non water features. Water indices are considered an easy and
effective way of extracting water. McFeeters [1996] created the Normalised Differ-
ence Water Index (NDWI) which is found from the normalized difference between
the green and Near-Infrared (NIR) bands, calculated using Equation 2.1. This way
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each pixel is assigned a value between -1 and 1, with water pixels having positive
values [McFeeters, 1996].

NDWI =
GREEN − NIR
GREEN + NIR

(2.1)

Another variation of the NDWI, is the Modified Normalised Difference Water In-
dex (MNDWI) of Xu [2006] in which NIR was replaced by the Short-Wave Infrared
(SWIR) band [Ogilvie et al., 2018]. This water index is considered to be more reli-
able in urban areas than the NDWI [Donchyts et al., 2016]. However the limitation
of MNDWI is that it cannot discriminate so easily water from snow or cold clouds
[Thissen, 2019]. It is expressed by Equation 2.2. The resulting positive values rep-
resent the water features because of their higher reflectance in GREEN and SWIR

bands, while non-water features are smaller or equal to zero.

MNDWI =
GREEN − SWIR1
GREEN + SWIR1

(2.2)

Recently a new Automated Water Extraction Index (AWEI) was introduced by Fey-
isa et al. [2014], which shows improved and more accurate classification results in
areas with dark surfaces or shadows (Equation 2.3).

AWEI = 4× (GREEN − SWIR1)− (0.25× NIR + 2.75× SWIR1) (2.3)

Some studies propose also the use of the Normalised Difference Vegetation In-
dex (NDVI), which can be used to exclude dark vegetated areas (see Equation 2.4) by
setting a high threshold value. Water pixels in this case have negative values and
with the vegetation index we can detect water and floods in some areas [Domeniki-
otis et al., 2003].

NDVI =
NIR− RED
NIR + RED

(2.4)

The various water indices have performance differences and their use is also chal-
lenged by the need for an automated optimal threshold method [Li et al., 2019].
Therefore, alternative methods have been used to extract information from remotely
sensed image data. Frazier and Page [2000] used a simple process in which a single
infrared band is density sliced to acquire a waterbody map, by dividing the range
of brightness values of this band to intervals and then assigning a color to each
interval [Campbell, 2002]. A histogram is generated from the values of the pixels
of this map. The different colors assigned to each interval allow the separation wa-
ter from non water features. Other very common classification techniques are the
supervised (with training samples) or unsupervised (without training samples) clas-
sification methods [Manavalan et al., 1993; Ozesmi and Bauer, 2002]. These were
used to generate land cover maps, from which water maps could be extracted. How-
ever, these techniques are based on rules that are not easily formed and possibly
not robust enough to be applied on a global scale [Huang et al., 2018].
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2.1.3 Surface water Detection challenges

Cloud obstructions are a significant problem when analyzing satellite imagery.
Donchyts et al. [2016] and Hansen et al. [2013b] proposed the creation of cloudless
composite images that are based on average cloud-free reflectance values [Thissen,
2019]. Another approach was introduced by Donchyts [2018], who uses multiple
cloud-free images and a probability density function to accurately detect large-sized
water reservoirs that present only small changes in their shape. The view angle of
the satellite, and the position of the sun, have been used by Zhu and Woodcock
[2014] for cloud shadow and snow detection. This technique was adapted by Tan
et al. [2013] in combination with a Digital Elevation Model (DEM) for terrain shadow
detection.

The nature of waterbodies is dynamic as they change over time and between
seasons. Considering this, it is clear that the static vector maps might not always
give a representative idea of the true extend of the surface water. A way to create
better quality water maps is by using multi-temporal images, which are equally
important with the analysis of higher resolution imagery for more accurate water
body mapping. Mueller et al. [2016] implemented an algorithm to map the surface
water extend across Australia, by analysing 25 years of Landsat imagery using a
decision tree classifier and logistic regression that compares the water classification
results with ancillary datasets. This way it was possible to identify the areas where
the occurrence of water is more persistent (e.g reservoirs) and where more tempo-
ral (e.g floodplains). Yamazaki et al. [2015] created a global 90 m resolution water
body map from multi-temporal Landsat satellite images. Feng and Bai [2019] cre-
ated a global land cover map produced through integrating multi-source instead of
mulitemporal, satellite imagery datasets.

2.2 data processing algorithms

2.2.1 Morphological Operators

The morphological operators are commonly used in image processing for manip-
ulating raster images and more specifically in applications such as hole filling,
thinning and thickening, boundary extraction of features and identification of con-
nected components [Srisha and Khan, 2013]. The shape or morphology of objects
in a binary image can be changed with four basic morphological operators: erosion,
dilation, closing or opening.

These morphological operations are done by applying to the input image a struc-
turing element, which is a small binary matrix. The matrix is scanned as a sliding
mask over each pixel in the input image to change its values and create an output
image of the same size. The effect of the interaction between the input image and
the structuring operator depends on the characteristics of the matrix (shape and
size). The structuring elements can have varying sizes and different arrangement of
one, zero or none values within the matrix which affects its shape (see Figure 2.5).

The 3x3 square is probably the most common structuring element used in dilation
and erosion operations. Larger structuring elements will produce more extreme ef-
fects. With larger structuring elements, it is quite common to use an approximately
round-shaped structuring element, as opposed to a square one. Kernels of different
shapes (e.g. square, circle, cross, diamond) can be acquired by placing the values
within the matrix in certain positions [Thissen, 2019].
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(a) Square 5× 5 element
(b) Diamond-shaped 5 × 5 ele-

ment

(c) Cross-shaped 5× 5 element (d) Square 3× 3 element

Figure 2.5: Representation of structuring elements

The four operators can be explained as follows:

• Erosion: The basic effect of erosion on an image, is to shrink image regions
that represent features and to remove structures of certain shape such as
branches or connections depending on the selected structuring element. As
the areas of the object pixels shrink holes within those areas become bigger
(see Figure 2.6b).

• Dilation: This operator enlarges the object areas of an image. As these areas
grow in size holes and gaps within these regions become smaller. The effect
of the operator on the input image depends on the shape and size of the
structuring element (see Figure 2.6c).

• Opening: This operation combines both an erosion and dilation. It similar to
erosion as it tends to smooth the contour of an image object and remove thin
protrusions, but it less destructive (see Figure 2.6d).

• Closing: Closing is a dilation followed by an erosion operation. It keeps the
general shape of the original object and is often less destructive while smooth-
ing it, filling holes and eliminating thin gulfs (see Figure 2.6e)

The effect of these operations is shown in the following illustrations (Figure 2.6):

(a) Original Image (b) Erosion (c) Dilation

(d) Opening (e) Closing

Figure 2.6: Morphological Operators [Bhatia and Goel, 2011]

2.2.2 Rasterization

The raster model is a grid-like structure used widely for storing geographic data
(e.g. satellite or aerial imagery). According to this model spatial objects are usually
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represented in uniformly spaced cells or pixels organized in a structure of rows
and columns, where each element represents one cell/pixel. It is usually used for
continuous data such as temperature, or electromagnetic radiation and each cell
describes a value that contains information about that specific phenomenon in this
location. The size of each cell defines the resolution of the raster image, measured
in linear units of distance in metric terms (e.g meters, feet) or in degrees of latitude
and longitude [Goetz and Zipf, 2013].

The advantages of raster representation is that it is a very simple data structure
and efficient for performing overlay processes (Section 2.2.4). Moreover, map alge-
bra tasks such as arithmetic (e.g. addition) and statistical operations (e.g. mean,
median etc.) are quick and easy to perform and also the time required for opera-
tions like interpolation or resampling is reduced. Lastly, it is considered to require
less storage memory when dealing with continuous data. On the other hand, raster
data come also with a number of disadvantages. More specifically, when dealing
with dense grids, higher memory and computational resources are needed. Apart
from that, it is difficult to adequately observe fine details or small features depend-
ing on the cell resolution of the raster (pixel size).

In some cases, vector-to-raster data conversion is required, as most datasets are
in vector format (points, lines and polygons). This process is called rasterization,
during which, point, linear or polygonal primitives are decomposed into pixels, i.e.
the interior of these features is filled with pixels (see Figure 2.7). The Bresenham’s
line algorithm is a raster conversion algorithm, which is based on finding which
pixels on a raster image need to be selected in order to approximate as closely as
possible a line that connects two points or a polygon connecting multiple points.
The result of this transformation is a binary image (0 and/or 1 values) . This algo-
rithm is used widely for drawing geometric primitives onto an image as it utilizes
low demanding, in terms of computational power, operations.

(a) Linear Primitive (b) Polygonal Primitive

Figure 2.7: Bresenham’s Line Algorithm

2.2.3 Resampling with bicubic interpolation

Conversion from raster to vector might cause inconsistencies between the created
polygons, due to the varying resolution of the datasets. A way to avoid this, is by
resampling the raster image. Image resampling is a mathematical process of creat-
ing a new version of the raster cell grid with a with a different width and/or height
in pixels. The value of each cell in the new raster will be computed by sampling
or interpolating in a neighborhood of cells of this pixel in the original raster object
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[Sachs, 2001]. Bicubic interpolation is considered to be slower in computation speed,
but it is supposed to have better smoothing results when upsampling.

f (x, y) =
3

∑
i=0

3

∑
j=0

aijxiyj (2.5)

where x and y the coordinates of the new location, f(x,y) the value of the pixel and
aij the 16 coefficients for the 16 neighbors.

2.2.4 Venn Diagrams

Overlay operations are used when we want to combine and find the logical relation-
ships between two or more sets of spatial or other data. Venn diagrams are widely
used in GIS environments, as an indication of all the possible logical relations be-
tween sets when performing overlay operations. These diagrams depict elements
that are modelled as members of a collection. This way can identify the set-based
geometry of the Euclidean 2D space and perform operations on the different sets.
There are four basic operations in Venn Diagrams that represent the Intersection,
Union and Complement between sets. To do this the sets are overlapped in every
possible way (see Figure 2.8).

Figure 2.8: Venn Diagrams representing the union, intersection, symmetrical difference, ab-
solute and relative complement of sets [Cardinal, 2019].

2.2.5 Line Simplification Algorithm

Line simplification is an operation used widely in cartographic generalization on
lines and area boundary features to remove unnecessary detail, i.e. unnecessary
points while retaining the most imortant ones and preserving the essential shape of
the line [Ivanov et al., 2000]. The advantages of simplification of linear objects are
the reduced storage space and plotting time, faster vector processing (e.g rotation,
scaling etc.) and vector to raster conversion . The Douglas–Peucker algorithm is one
of the traditional methods to simplify linear objects [Douglas and Peucker, 1973].
The algorithm uses a recursive function (Figure 2.93). A line is of a set of points.
Initially, only the first and last points are kept and are connected with a straight

3 http://resources.esri.com/help/9.3/arcgisengine/java/gp toolref/data management tools/how simplify line data management works.htm
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line. Afterwards, it computes the distance of all intermediate points perpendicular
to the straight line. The point (P) that is furthest away from the line segment that
has the first and last point as endpoints is then chosen. If this point is closer to
the line segment than a tolerance value (threshold), then all points between the first
and last point of this line segment can be discarded. Otherwise, this point is kept
and the process is being repeated for the line segment between the first and furthest
point P and the furthest point P and last point. The process is repeated, until no
more vertices of the original curve are available, for which the distance to the curve
is greater than the predefined threshold. After the completion of the recursion, a
new curve is being acquired that consists of all the points that have been marked as
kept.

Figure 2.9: Stages of recursive function of line simplification

The tolerance value dictates the degree of simplification. The choice of the thresh-
old value can be made non-parametric by using the error bound due to digitization
4. When the tolerance is used for many features, a trial and error process may be
required to find one threshold that is suitable for all features.

4 https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker algorithm





3 R E L AT E D W O R K

OSM geographic information has assisted several mapping procedures. However at
the same time, OSM data have been criticized about their inherent variable quality
amongst locations. Because of this, several studies over the past years have put
these data to test, to quantify the differences with other datasets. A number of
automated and semi-automated procedures have been developed, that make use of
different OSM features in various locations but also varying quality measures and
software.

Haklay [2010] compared the OSM road network in England with the Meridian
dataset of the national mapping agency for Great Britain, by performing an SQL
query analysis. This dataset is highly accurate as it is based on topographical mea-
surements. The outcome if this survey showed that, when it comes to positional
accuracy, OSM performs very well and in some cases even better that the Meridian
dataset. However, it still is very incomplete regarding the registration of the existing
streets. The evaluation of the positional accuracy of these linear features was con-
ducted according to the Goodchild and Hunter [1997] comparison method, which
creates a buffer around the features of the high quality dataset and the percentage of
the tested object that falls within this buffer is calculated (Figure 3.1). To assess the
completeness, a grid in the extend of the whole UK road network was created, and
then for each cell the total length of the Meridian and OSM datasets was compared.

Figure 3.1: Goodchild and Hunter buffer comparison technique [Goodchild and Hunter,
1997]

A similar survey was performed by Girres and Touya [2010], in which the quality
of the OSM spatial data in France were assessed, by using as a reference a national
topographical dataset. Because of the complexity of the analysis they used a qual-
ity control procedure of various quality components, carried out in a geographic
database. More specifically, the geometric accuracy was evaluated by choosing the
euclidean distance for point primitives, the Hausdorff and average distance for lin-
ear features and the surface distance and granularity for area primitives. Moreover
the semantic accuracy, the logical consistency, currentness and lineage were ana-
lyzed to show the level at which the OSM database is in agreement with the real
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world. The quantitative quality assessment, which was performed on a number of
manually selected features that were matched in both datasets, showed that there
is a big heterogeneity in the geometric accuracy of the compared features. As for
the completeness, when performed in terms of the number of objects is still lacking
information (10%), whereas when considering the length or area of an object, a 40%
match was achieved.
Brovelli et al. [2017] developed an automated comparison algorithm of OSM and

authoritative road datasets that was based on a grid based evaluation of the com-
pleteness and positional accuracy of road objects. The algorithm, which is available
as an open source module of GRASS GIS, showed good results in the tested area
of Paris. Later in 2018 Brovelli and Zamboni [2018] performed a map matching
and similarity check analysis for buildings to estimate the completeness of building
registrations in the OSM database.

Bhattacharya [2012] attempted to find similarities and dissimilarities between the
OSM and the Dutch topographic map Top10 NL. The quality assessment and object
matching was performed in terms of the positional accuracy, the shape of OSM

polygons and the lineage, i.e. the time related information about the collection and
evolvement of the data. An interesting part of the positional accuracy evaluation,
is the use of the difference of angle of the direction between two objects, as extra
geometric quality measure. Following the same mindset, Fairbairn and Al-Bakri
[2013] assessed the positional and shape quality (geometric similarity analysis) of
OSM and other large scale data with ultimate goal to evaluate if the integration of
these type of datasets is feasible in terms of accuracy and precision.

Mooney et al. [2010b] created an automated quality control algorithm, without
considering any of the used datasets as reference. The comparison process was
tested on OSM natural features (e.g lakes, ponds,forests) and various authoritative
datasets in several European countries. As a quality metric for the shape similarity
between objects, the authors used a turning function. This tool is used to describe
the shape of a feature in a discrete format. More analytically, the shapes total length
is normalized to 1, by dividing the length of each edge segment to the perimeter
of the shape. Basically it represents 2D shapes in 1D. The spacing between points
in the OSM polygons plays a significant role, as the larger the amount of points the
more complete the turning function. The metric returns a value in the range [0,1]
where 1 corresponds to identical polygons and 0 to completely dissimilar.

A matching process of linear features in Britain was developed by Koukoletsos
et al. [2012]. OSM linear data were put to test against a reference dataset, to assess
the heterogeneity of the two sources. The study area was first divided in 1km2 grid
tiles. The analysis was performed at both segment and feature level, forming dif-
ferent steps of the process. The reason for this, is that a feature in one dataset may
correspond to more than one in the other, creating errors and obstacles in the match-
ing process. Therefore, both reference and tested features were decomposed into
segments. As criteria for the segment based matching they used two geometric con-
straints. Since the OSM information is manually digitized on maps that are provided
amongst others from sources such as acgps, the OSM feature accuracy is considered
to depend on the GPS receiver accuracy. Based on that, the distance and angular
tolerance, forming the two constraints, are calculated by taking into consideration
the GPS accuracy. Ones the distance tolerance was formed, the segments within the
searching area were analyzed to identify sections of similar orientation. Moreover,
the analysis focused on identifying segments without any attributes, matching the
names of features, classifying features as matched and non matched and finally es-
timating the data completeness according to the percentage of the matched data in
each tile of the grid. The outcome of their survey showed that OSM data in Britain
prove to be more complete in the urban than rural areas.

The quality of the OSM bulding data in Munich was analysed by Fan et al. [2014]
relatively to the completeness, semantic accuracy, positional and shape accuracy of
these features against a topographical authoritative dataset of buildings. As an out-
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come of their research they found that the OSM data have high completeness and
semantic accuracy, whereas their positional accuracy did not perform equally well
(an average of 4m offset between datasets was noticed). To the contrary, the OSM

building footprints presented high shape similarity to the German reference dataset.
The assessment of the completeness was based on choosing as matched objects only
the ones that presented an overlap of over 30% than the smaller part in the two
datasets. In the cases of 1:1 correspondence they key points of the reference dataset
where chosen and the for both objects was calculated. The minimum bounding rect-
angle of OSM was then shifted to the center of the authoritative minimum bounding
rectangle, and if the edges of the former matched the edges of the latter, the match
was considered successful. The positional accuracy was assessed according to the
average distance of the corresponding points between the two datasets, and their
shape similarity based on the turning function.

In the same concept, Müller et al. [2015], compared the OSM buildings in Switzer-
land with an authoritative dataset. The centroid distance and turning function were
used as quality criteria. The research has shown that even though Switzerland has
some gaps, its overall performance especially in the urban regions is quite good if
not better that the reference data in some parts.

Donchyts et al. [2016] produced a 30 m resolution surface water mask for rivers
by using Landsat satellite imagery, the Shuttle Radar Topography Mission DEM and
OSM data in the Murray Darling River Basin in Australia. The goodness of fit be-
tween OSM and the LANDSAT water masks was assessed in terms of the complete-
ness (based on total water area) and the positional differences of the two datasets
using the Goodchild and Hunter [1997] method of increasing overlay polygons. As
a result of his research it was concluded that 50% of the OSM linear water features
agreed with the water extend extracted from Landsat 8 and the drainage network
created from the Shuttle Radar Topography Mission DEM.

3.1 conclusions
Many surveys have examined the quality of OSM features over various locations,
however mostly in a small extend. Moreover, even though features such as build-
ings, roads or rivers have been assessed for their quality, there is no research that
focuses specifically on the quality assessment of water reservoir features. The de-
scribed methods and algorithms, which consist of various quality metrics and soft-
ware, can also be applied in the case of water reservoirs. Their main characteristic
nonetheless, is that firstly they usually compare the tested OSM features with au-
thoritative datasets and secondly this comparison is mostly on a local scale.

Remote sensing is considered a valuable source of information over the last
decades, as it has offered freely, large amounts of satellite data at a global scale.
Although, these data have their limitations, their main advantage is that they offer
the possibility of taking into consideration short or long term changes of surface
water, by combining images from different moments in time. At the same time,
although other water reservoir datasets in vector format exist (e.g GRaND), they are
are still lacking information. Furthermore, the accuracy of their data is questionable
because of their monitoring process or tea fact that they are a static representation,
in which the changes of the reservoirs in time or within seasons have not been con-
sidered. Therefore the need emerges to explore different databases to examine how
much they agree regarding their geometry and extend.

To conclude, while OSM spatial data have been put to test in the past, a general
algorithm that compares different formats of data in one environment and at large
scale does not yet exist. Therefore there is still room for investigating and develop-
ing new algorithms. The Google Earth Engine (GEE) platform offers the possibility
of large scale analysis as it can store and process these constantly growing volumes
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of satellite data, while also enabling the processing of vector data at the same time.
This research will not make use of ground truth data, as no specific water reservoir
dataset will be considered a reference, but it will attempt to create an algorithm that
compares the accuracy of different formats of water reservoir datasets by utilizing
both satellite imagery and vector data.
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The following methodology aims to compare and assess the quality of the different
surface water datasets. To do this, we firstly focus on the pre-processing proce-
dures that were followed for the preparation of the input data. More specifically,
Section 4.1.1, describes the steps and the methods used to generate the Sentinel 2

water features. Next, Section 4.2 presents the chosen accuracy measures for the
comparison analysis process. Starting with the completeness analysis (Section 4.2.1)
which demonstrates the percentage of common water area between datasets within
the specified study area. The Section 4.2.2 refers to the ’percentage of overlap’ be-
tween two datasets, which is a positional accuracy measure for linear and polygonal
features that shows the spatial offset between two features. Lastly, Section 4.2.3 and
present the Euclidean which is necessary for the computation of the final quality
metric, the Hausdorff distance (Section 4.2.4), as measures of dissimilarity of the
shape and position of two features. Figure 4.1 provides an overview of the work-
flow of this research. Further details of each step shall be explained in Chapter 6.

Figure 4.1: Workflow of study

4.1 pre-processing
The implementation of the methodology described in Section 4.2, required initially
a pre-processing step for the selected datasets. This preparation varied amongst the
datasets, but in general it had two main objectives. Firstly, the Sentinel 2 satellite
images in raw format, provide no information about the surface water. Therefore
the Sentinel 2 water mask data had to be generated from the start. In order to
detect and classify water pixels, certain steps need to be followed as described in
Section 4.1.1. Secondly, as the datasets have different formats, an essential step is
the conversion into one matching format so that the data can be compared. More
specifically, all input datasets were converted into vector format. Furthermore, the
comparison analysis in terms of completeness and percentage of overlap was per-
formed in vector format. However the Hausdorff Distance contained also a conver-
sion from vector to raster format as part of its computational workflow. Other steps
such as filtering, cropping and other minor transformations of the input datasets
are explained thoroughly in Chapter 5 and Chapter 6.
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4.1.1 Sentinel 2 surface water dataset

Sentinel-2 being the latest temporal resolution and highest spatial resolution data
available, is very useful for detailed water surface boundary extraction. The pres-
ence of water in a pixel can be described with historical observations of the same
area in different moments in time. The approach is based on the sampling of dif-
ferent cloudless historical images, to compute a single image that presents where
water occurred during this period. The values of this composite image represent
the 20th percentile of the values of the GREEN and SWIR bands for each pixel in all
sampled images. The 20th percentile is the value below which 20% of the observa-
tions fall within, in other words 80% of the observations are above this value. The
percentile images appeared according to Donchyts et al. [2016] to describe better
the water dynamics that the median of all values, which was used in other stud-
ies [Hansen et al., 2013a]. This was confirmed by visual inspection only, and it is
explained based on the fact that surface water, changes sharply depending on the
topographical conditions that appear locally. The choice of the 20th percentile is
explained in more detail in Section 6.2.1.

Cloudless composite images can be generated by employing percentile images to
estimate the average cloud-free reflectance values. Cloud coverage is estimated by
exploiting the statistical properties of the image and more specifically the reflectance
property of clouds. The main idea is that the more bright the pixel appears in cer-
tain bands, the more likely it is that it is covered by clouds. High brightness in
the SWIR band is ideal for cloud detection. Moreover, pixels with low reflectance
in the B2 (Blue) and high reflectance in the B10 (Cirrus) bands are highly possible
of being cirrus cloud. The percentile images are computed according to Donchyts
et al. [2016] on a per-band basis using Top of Atmosphere Top of Atmosphere (TOA)
reflectance values, to avoid the confusion created by different atmospheric correc-
tion algorithms of satellites. TOA measurements is the reflectance measured by the
sensor without performing any type of corrections for clouds, atmospheric aerosols
and gases.

To acquire cloud free images, a quantile analysis of the distribution of the re-
flectance of each pixel in the entire image is performed, just to choose that part that
is considered cloud free. In more detail, the images are first sorted from cloudy to
less or no cloudy, by calculating per image, the reflectance value for which a specific
percentage of the pixels (percentile) falls below. Thereafter, once the sorted listed
of the images is formed, they can be categorized relatively to their cloud coverage
depending on a threshold value indicated from the mean annual cloud frequency
acquired by MODIS satellite imagery. Finally, after classifying those images into
cloudy and cloudless, only the cloud-free images are being kept for further process-
ing.

The generation of the surface water mask based on cloud-free Sentinel 2 images
requires a certain process, based mainly on two image processing algorithms as
proposed by Donchyts et al. [2016]. The steps in short can be described as follows
(see Figure 4.2):

1. Computation of spectral water index

2. Computation of edges using the Canny edge detector

3. Buffering of detected edges

4. Computation of a threshold value for buffered area by using the Otsu thresh-
olding method
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Figure 4.2: Water detection pipeline

4.1.2 Canny edge detector

The Canny edge detector is a widely used method for accurate edge detection in
images [Duan et al., 2005]. The edge filter can assist in the detection of boundaries
between water (black pixels) and non water (white) pixels (Figure 4.3), which helps
further to reduce the extend of the area where the Otsu thresholding is applied (see
Section 4.1.3).

Figure 4.3: Canny Edge Detection in Satellite Image [Donchyts, 2018]

The algorithm consists of the following stages:

1. Image Smoothing: Edge detectors are prone to noise and therefore they are
firstly smoothed with a square-sized Gaussian structural kernel usually of size
5× 5 Li et al. [2019].

2. Gradient intensity calculation: The gradient direction defines the orientation
of an edge, whereas the gradient magnitude indicates the intensity of a change
in the reflectance values. High gradient magnitudes reveal the detection of an
edge.

G =
√

Gx
2 + Gy

2 (4.1)

θ = tan−1 Gx

Gy
(4.2)



26 methodology

where Gx and Gy the x,y derivatives of the current pixel. θ is rounded to 0

(horizontally),45 (diagonally), 90 (vertically) or 130 (diagonally) degrees.

3. Non-maximum suppression: All pixels are checked to see if they are a lo-
cal maximum in certain neighborhood. If they are not, they are suppressed,
resulting in very thin edges.

4. Double thresholding: Removal of small pixel noises, based on two threshold
values of the intensity gradient. It is applied to detect strong edges only.

5. Hysteresis thresholding: Pixels below a certain threshold are discarded. This
way edges that are weak are suppressed.

The detected sharp edges between water and land will be expanded with a buffer
zone to make sure that all probable water and land pixels around the boundary are
captured. This way, we it will be possible to obtain a bimodal distribution which
will assist the distinction of the two classes in the derived histogram of MNDWI val-
ues (Figure 4.4 5).

Figure 4.4: Otsu’s Thresholding in Water Indexed Image

4.1.3 Otsu Thresholding

In order to separate water from non water features, a threshold value for MNDWI has
to be estimated. Dynamic local thresholding will help avoiding errors in the surface
water extraction procedure. Otsu thresholding is based on a histogram of all MNDWI

values in a certain area Otsu [1979]. The goal of this method is to create a binary
image [0,1] of two different classes, no water (object pixels) and water (background)
pixels Figure 4.5.

5 Reference of image otsuexample https://www.gsi.ie/en-ie/programmes-and-
projects/groundwater/activities/groundwater-flooding/gwflood-project-2016-2019/Pages/Mapping-
methodologies.aspx
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Figure 4.5: Bimodal histogram and selected threshold value (T) [Rogowska, 2009]

The general idea of the method is to find the threshold that minimizes the weighted
within-class variance which is equal to the weighted sum of variances of the two
classes (Equation 4.3). This is done by exploring all possible threshold values and
calculating the variance of all pixels on each side of the threshold.

σw
2(t) = ω0

2(t) ∗ σ0
2(t) + ω1

2(t) ∗ σ1
2(t) (4.3)

where σw is the intra-class variance, ω0 and ω1 are the probabilities of the two
classes separated by the threshold t and σ0 and σ1 are the variances of the two
classes. The class probability is computed from the number (L) of the bins of the
histogram.

ω0 =
t−1

∑
i=0

P(i) (4.4)

ω1 =
L

∑
i=t

P(i) (4.5)

The class means µ0, are given by the following equations:

µ0(t) =
∑t−1

i=0 iP(i)
ω0(t)

(4.6)

µ1(t) =
∑L−1

t iP(i)
ω1(t)

(4.7)

Yousefi [2011] proved that maximizing the between-class variance, instead of mini-
mizing the within-class variance has a higher performance. Therefore,

σb
2(t) = σ2 − 2σw = ω0(t) ∗ω1(t) ∗ (µ0(t)− µ1(t))

2 (4.8)

4.2 comparison of accuraccy of datasets
The comparison of accuracy analysis is performed in terms of the completeness of
water area of the datasets (Section 4.2.1) and their positional accuracy (Section 4.2.2,
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Section 4.2.4). The purpose of a positional accuracy analysis is to provide quantita-
tive information about the positional difference between two objects, in other words
how they are placed in Euclidean space relatively to each other (Section 4.2.3). The
assessment of this quality indicator, is performed in terms of tho measures:

1. Percentage of overlap between two objects

2. Hausdorff distance between two objects

4.2.1 Completeness Analysis

The completeness of registered features is an important measure to assess the qual-
ity of OSM. To estimate the completeness of the water reservoir features in the OSM

database, the total overlap between the datasets is calculated. In order to do this in
an aggregated form for the whole extend of the study area, a 40× 40 km regular
grid is generated Figure 4.6. Thereafter, for every grid cell, the total covered water
area of each dataset, the common water area between datasets, and the missing
area of each dataset are computed. The choice of the size of the grid has no effect
on the computation of the completeness for the whole study area, as it serves only
visualization purposes for the results.

Figure 4.6: Grid of 40× 40 km over the extend of the study area

4.2.2 Percentage of overlap

The percentage of overlap is a method introduced by Goodchild and Hunter [1997]
for the assessment of the positional accuracy of geometric primitives. The method
calculates the percentage of area of one dataset that is within a specified distance
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of another dataset (see Figure 4.7). To do this, one of the two datasets is considered
the reference (higher accuracy) feature and the percentage of overlap of the tested
feature is calculated for a number of buffers of different widths for the reference
source. The concept of the increasing buffers, is based on the idea that by calculat-
ing the percentage of overlap for different buffer zones, we can identify the accuracy
of the tested dataset, i.e the closeness (or offset) to the true location of the object.

Figure 4.7: Goodchild’s Percentage of overlap

The advantage of this quality metrics is that it can be implemented, for both raster
and vector representations. Moreover, a) it is statistically based, b) is relatively in-
sensitive to extreme outliers and, c) does not require matching of points between
representations. Moreover, it is performed with a simple overlay process (see Sec-
tion 2.2.4).

4.2.3 Euclidean Distance

The Euclidean Distance is defined as the minimum distance between two objects,
i.e. the length of the shortest line that connects them. In raster discrete space (see
Section 2.2.2) the euclidean distance is the distance from each cell to the nearest
source cell location, i.e. the cells with value 1. It is calculated from the center of the
source cell to the center of each of the surrounding cells (see Figure 4.8).

Figure 4.8: Euclidean Distance
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(a) Binary Raster Image (b) Euclidean Distance Grid

Figure 4.9: Euclidean Distance Grid for Rasterized Linear feature

4.2.4 Hausdorff Distance

The Hausdorff distance (h) measures the maximum deviation between two sets.
More specifically, it is the maximum from all minimum distances from one set to
the nearest point in the other set, as given by the Equation 4.9. It is calculated by
finding the minimum distance of a point a ∈ A to any point in B, and then by
selecting the maximum distance from all the shortest distance values computed for
all the points in set A.

h(A, B) = max
{

min d(a, b)
}

(4.9)

where d is the Euclidean distance between point a ∈ A and b ∈ B.

However, as the forward distance (from set A to set B), is not always equal to the
backward distance (from set B to set A), the bidirectional Hausdorff Distance is
defined as a symmetric distance from the Equation 4.10 [Huttenlocher et al., 1993;
Thirusittampalam et al., 2013]:

H(A, B) = max
{

h(A, B), h(B, A)
}

(4.10)

Figure 4.10: Hausdorff Distance between two polylines

Hossain et al. [2012] proposes a method for computing the Hausdorff Distance
between raster representations, by making use of a Distance Transform , also known
as Distance Map. This map is generated by computing the distance of each pixel to
the closest boundary point based on the Euclidean Distance [Meijster, 2004]:

EDT(x, y) = min(x− i)2 + G(i, y) (4.11)

G(i, y) = min(y− j)2 where F(i, j) = 0 (4.12)
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where F(i,j) the input image, i,j the rows and columns of the image array respec-
tively.

The algorithm works as follows: The image is stored in an array of columns and
rows. Afterwards, the algorithm iterates through all pixels from top to bottom and
then bottom to top to, to compute the minimum distances in this dimension G(x,y)
to the closest boundary pixel. Then the array G is scanned from left to right and
right to left to calculate again the minimum distance to the closest boundary point
Thissen [2019].

(a) Raster Image B (b) Binary Image

(c) Euclidean Distance Transform Map of Object A (d) Hausdorff Distance h(B,A)

Figure 4.11: Computation of backwards Hausdorff Distance h(B,A)

There are two different methods to compute the Hausdorff Distance from the Dis-
tance Transform Map. The first method utilizes the Equation 4.10, and the second
is a modified version as shown in Equation 4.15.

h(A, B) = avg
{

min(.a, b)
}

(4.13)

h(B, A) = avg
{

min(.b, a)
}

(4.14)

Finally, the Hausdorff Distance is calculated by Equation 4.15:

H(A, B) = h(A, B) + h(B, A) (4.15)



32 methodology

(a) Raster Image A (b) Binary Image

(c) Euclidean Distance Transform Map B
(d) Hausdorff Distance h(B,A)

Figure 4.12: Computation of forwards Hausdorff Distance h(A,B)

This metric can also be used as an indication of the level of similarity/dissimilarity
between two raster images of size m. All pixels with value 1 represent an object
whereas pixels with 0 values are background pixels. The Hausdorff Distance can be
computed by:

1. Method 1: First the h(B,A) is computed by assigning to it the maximum value
of the Euclidean Distance Transform (EDT) of image A of the cells where
B[i][j] = 1 edt such that the image B is in the object A (Figure 4.11). Sec-
ondly, h(A, B) is computed similarly from the edt of B and then by taking tha
maximum of all values in edt in the cells where there is an object of A (A[i,j]=1)
(Figure 4.12). Finally, the Hausdorff Distance is the max (h(A, b),h(B, A)).

2. Method 2: To compute the Hausdorff distance h(B,A) and h(A,B) are assigned
with the average, instead of the maximum, values of EDT of A, where B[i][j] =
1 and EDT of B where A[i][j] = 1.

Lastly, the Hausdorff Distance algorithm as described above is slightly adjusted to
work also with vector data while following the same logic. More specifically, instead
of estimating the Hausdorff Distance by overlapping two raster representations A
and B, only the feature for which the Euclidean Distance Map (EDM) is be computed
will be rasterized (e.g. object A). Afterwards, this generated EDM of object A will
be overlapped with the vector feature B (Figure 4.14). Each of the points forming
the vector B will be overlapped with the values of the EDM of the rasterized feature
A. Same process will also be applied reversely, resulting in the estimation of the
Euclidean distance values for the points of vector A based on its overlap with the
EDM of rasterized object B (Figure 4.13).
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(a) Vector Polygon Object A (b) Intersection of EDM of B with object A

Figure 4.13: Euclidean Distances of Object A to B

(a) Vector Polygon Object B (b) Intersection of EDM of A with object B

Figure 4.14: Euclidean Distances of Object B to A
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5.1 datasets

5.1.1 Sentinel-2

The Sentinel-2 mission was launched by the European Space Agency (ESA) in June
2015 as part of the Copernicus program. The constellation is equipped with two
identical polar-orbiting multispectral-imaging satellites, Sentinel-2A (2015) and Sentinel-
2B (2017). They are placed in the same sun-synchronous orbit, phased at 180◦ to
each other 6. The purpose of this mission is to monitor the land environment (the
vegetation, inland waterways, soil, water and coastal areas). Its territorial coverage
extents globally, between latitudes 56

◦ south and 84
◦ north.

The wide swath width along with the high revisit time (10 days) allows the moni-
toring of temporal changes of the Earth’s surface (Figure 5.17). With the combined
satellites, the overlap between swaths from adjacent orbits increases the frequency
of observations, as all areas at the Equator are revisited every 5 days under the same
viewing conditions.

Figure 5.1: Sentinel 2 revisit temporal resolution

For this research, the dataset used is the Sentinel-2 MSI (MultiSpectral Instrument
Level-1C). This product is a map projection of the acquired image referenced in the
WGS84 global reference system, using a DEM which offers geometric correction for
ground distortions. It contains 13 spectral channels representing TOA reflectance
values, which are provided together with the parameters to transform them into
pixel based radiances. This offers a radiometric correction to the raw pixel values of
the images. Lastly a bitmask band with cloud mask information (QA60) is included.
(Table 6.88). The spatial resolution of this dataset varies from 10 to 60 offering dif-

6 https://sentinel.esa.int/web/sentinel/missions/sentinel-2
7 https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/revisit-coverage
8 https://www.usgs.gov/centers/eros/science/usgs-eros-archive-sentinel-2?qt-

science center objects=0qt-science center objects

35
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ferent Ground Sample Distance (GSD), i.e. the ground area captured in a single pixel.

Band Resolution (m) Wavelength (nm) Description
B1 60 443 Aerosols
B2 10 490 Blue
B3 10 560 Green
B4 10 665 Red
B5 20 705 Red Edge 1

B6 20 740 Red Edge 2

B7 20 783 Red Edge 3

B8 10 842 NIR
B8A 20 865 Red Edge 4

B9 60 945 Water Vapor
B10 60 1375 Sirus
B11 20 1610 SWIR 1

B12 20 2190 SWIR 2

QA60 60 - Cloud mask

Table 5.1: Sentinel-2 Spectral and QA Bands

5.1.2 JRC Global Surface Water Mapping

The Global Surface Water Mapping dataset was created by the Joint Research Center
in collaboration with Google Earth Engine. It is a map generated based on 3 million
Landsat satellite images of 30 m resolution collected between 1984 and 2018. It
offers information about the location and the changes of the extend of the surface
water all over the globe in the past three decades (Table 5.29).

Band Range (%) Description
occurrence [0,100] Frequency of of presence of surface water
change abs [-100,100] Absolute change in occurrence between 1984-1999 vs 2000-2018.
change norm [-100,100] Normalized change in occurrence
seasonality [0,12] Number of months where water occured
recurrence [0,100] The frequency with which water returns from year to year.
transition - Categorical classification of change between first and last year.
max extent - Binary image containing 1 anywhere water has ever been detected.

Table 5.2: JRC Global Surface Water Bands

5.1.3 OpenStreetMap

OpenStreetMap, as a croudsourcing platform, is built upon the contribution of vol-
unteers that manually share the location of geographical information on an editable
web map. The acquired information is stored in a database organised according to
a specific data model, which is based on expressing the geometric features as three
objects: nodes, ways and relations. According to OpenStreetMap Wiki contributors
10 these three elements are described as follows:

• Nodes: Are used to represent point features and they are defined by their
coordinates (latitude, longitude). They can be presented as standalone com-
ponents or as part of a group of nodes.

9 https://developers.google.com/earth-engine/datasets/catalog/JRC GSW1 1 GlobalSurfaceWater
10 http://wiki.openstreetmap.org/wiki/Main Page
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• Ways: They represent linear features that connect two or more nodes. Closed
ways (first and last node are the same) specifically, describe area features (e.g.
polygons).

• Relations: Are used to describe the relationship between multiple nodes or
ways and to organize them into groups.

All types of data objects are saved as tagged geometric primitives. These tags are
used as description of the map features and consist of two text fields in the form of
a dictionary (key and value). The keys add meaning to the features by describing
a category or type whereas the value provides the detailed information of this key-
feature (e.g. name). There is no fixed and predefined tag list, as every user is able
to create a new tag and add it on existing or new map objects. However, there is a
tag info website 11 that contains all the existing tags in the database, together with
statistics about the frequency and type of their use.

The OSM data are distributed in different digital formats. The data used for this
research were download in vector format from the recent files in the Geofabrik
website 12 for the country of Angola. In order to acquire only the water reservoir
features from the original file, a filtering and data format conversion intermediate
step was performed. The specific tags used to extract the water features are shown
in Table5.3 13. The degree of accuracy of the OSM data varies depending on location
of data and also the node spacing in the OSM is not standard.

Finally, from the filtered features, only polygons and multipolygons were consid-
ered. Specifically, multipolygons had to be broken down to simple polygons.

Key Value Description
Natural Water Areas of water
Natural Spring Area to which water is discharged from an underground source
Waterway Dam A wall built across a river to stop the flow of water
Waterway weir Low-rise dam
Landuse Reservoir Man made body to store water
Landuse Saltpond Area where salt is extracted from sea water by humans
Landuse Basin Area of land artificially created to hold water by lowering its level
Barrier Ditch Man-made barrier dugged in the ground

Table 5.3: OSM filtering tags

5.1.4 Global Reservoir Datasets

• HydroLAKES: Dataset that provides the boundary polygons of all global lakes
with a surface area of at least 10 ha.

• GRanD: Contains information about existing dam and reservoir features in
vector format at a planetary scale.

11 https://wiki.openstreetmap.org/wiki/Elements
12 https://download.geofabrik.de/africa/angola.html
13 https://taginfo.openstreetmap.org/tags
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The number of the water features included in each of the input datasets are given in
Table 5.4. In the case of GSW and Sentinel 2, the stated number refers to all possible
features including rivers.

Dataset Number of Water Features
OSM 1189

HydroLAKES 433

GRaND 10

GSW 47952

Sentinel 2 44079

Table 5.4: Number of registered water features in the source datasets

5.2 tools
Google Earth Engine is a cloud-based platform that is offering access to multi-
petabyte satellite imagery and other geospatial datasets at a global scale. It pro-
vides the possibility of analysis and visualization of space and time changes and
trends over large Image and Feature Collections, as it utilizes parallel processing.
This enables the simultaneous execution of processes and calculations, a concept
used in big data analysis, where instead of using for loops the functions are being
”mapped” and executed for all data at the same time. The integrated code editor
enables the computation of statistics and other image processing functions [Gore-
lick et al., 2017] by using the JavaScript programming language, the outcome of
which can be directly displayed at the built-in output console. GEE is also available
through Python and JavaScript Application Programming Interface (API). Moreover,
the user has the option of uploading and exporting datasets.

Quantum GIS or QGIS is a free, open-source software application for analysing,
editing and visualising geographic information. In this research it was used initially
for separating the OSM GeoPackage files into individual lines, points and polygon
shapefiles (SHP) and dissolving multipolygons. Moreover, it was employed for the
visualization of the datasets and results of the implemented algorithms.

Python for computng statistics and visualising results. The following packages
were used:

• matplotlib: Library for creating visualizations.

• NumPy: organizes and stores the data in arrays and matrices and offers vari-
ous mathematical functions for manipulation of the data of this format.

• pyproject: Library for cartographic projections and coordinate transforma-
tions to check the coordinate system of the OSM data.

• Shapely: Module to process planar vector data and perform geometric opera-
tions.

The acquire the OSM information about reservoirs a filtering and format conver-
sion pre-processing step was performed by using the following tools:

• Osmfilter: Command line Java application for filtering of OSM data with specif-
ically desired tags

• ogr2ogr: It is part of the Geospatial Data Abstraction Library (GDAL) which
is used for vector and raster data manipulation. In particular, ogr2ogr con-
verts simple features (standardized geographic data model) between different
formats. During this research it was utilized to convert OSM files from .osm
format to GeoPackage (.gpkg) files
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5.3 implemented algorithms
This section provides the link to the generated scripts for the pre-processing and
main analysis of the data. Moreover, the resulting datasets of the implemented
methods are included. All scripts are available in the following Google Earth Engine
Repository or Github Repository .

https://code.earthengine.google.com/?accept_repo=users/mamoscholaki/Deltares_Thesis
https://code.earthengine.google.com/?accept_repo=users/mamoscholaki/Deltares_Thesis
https://github.com/mariamosxolaki/Thesis_Deltares.git
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6.1 study area
The study area of this research is the country of Angola in Africa, located in the
tropical zone of the Earth. Its climate is characterized by alternating rainy and dry
seasons. However, millions of litres of rainwater are being lost from evaporation
or ground absorption. Especially the southern Angola, where the climate is more
arid, is facing a significant lack of available water. Reservoirs and lakes can support
the storage and management of surface and atmospheric freshwater that can be
collected throughout the year to assist the water supply in periods of drought. Both
natural and man-made water features of Angola have been registered in different
datasets (OSM, HydroLAKES, GRaND). However, these databases are still incomplete,
so new information or the assessment of the accuracy of existing data on water
reservoirs in Angola is essential. Another reason this area was selected is the fact
that it is a 1.247 million km2 region, which is completely in line with the objective of
this study to create an accuracy control tool that can perform large scale analysis.

Figure 6.1: Overview of study area (Angola)
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6.2 preprocessing

6.2.1 Sentinel 2

The method for surface water detection with Sentinel 2 as described in Section 4.1.1,
required huge computational resources, causing the GEE platform to fail when pro-
cessing the area of Angola as a whole. Therefore, the process had to be decomposed
in intermediate steps and be applied in smaller sub areas. A grid of 1km× 1km was
generated over the extend of the research area. This way the steps of the described
methodology could be implemented for each tile individually.

As satellite images are often disturbed by cloud obstructions, the most clean im-
ages over the sampled time period (2016-2019) for each tile were chosen. Cloudy
pixels appear very bright in all visible bands. To assess the cloudiness of each im-
age, their reflectance values in the Green visible band were computed at a pixel
level. This way the same pixels were sampled over the years and for each image
a histogram of the reflectance values was created. The distribution of these values
for every image was then assessed, so that they can be sorted depending on their
cloudiness (Figure 6.3a14). The acquired histogram is basically a joint distribution
of all possible types of noise (clouds, shadows etc). Therefore, a 75% percentile was
utilized, to find for each image what is the value of reflectance for which 75% of pix-
els lie within. Once this characteristic quality score, i.e their reflection in Green band
was acquired for each image, the images were sorted. Then, to distinguish between
cloudy and cloudless images the mean annual cloud frequency by MODIS satellite
imagery was used as a threshold for the calculated cloud-scores (Figure 6.3b). The
reasoning behind the 75% percentile comes from the fact that we were interested
in finding the top reflectance values for most pixels in each image, and therefore
a high percentile was logical to be chosen. Finding the best performing percentile
heuristically was considered out of the scope of this thesis, due to time constraints.

Figure 6.2: Cloudy and Cloud-free Satellite Images

14 Planetary-scale geospatial analysis with Google Earth engine, Gennadii Donchyts & Josh Friedman,
Deltares, https://www.slideshare.net/Delft Software Days/dsd-int-2015-planetaryscale-geospatial-
analysis-with-google-earth-engine-gennadii-donchyts-amp-josh-friedman-deltares
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(a) Sorted images depending on cloudyness (b) Mean Cloud Frequency MODIS

Figure 6.3: Classification of satellite images to cloudy and cloud-free images

Once, the most clean images were acquired, to detect the existing water areas the
MNDWI water index for every pixel in each image was calculated by employing the
Green and SWIR1 bands. Next, the median reflectance value for each pixel amongst
all images was computed to create a single image. The problem however, with
this part of the workflow is that the amount of clean images was so big that the
process eventually failed when computing the median image. Therefore this part of
the algorithm had to be adjusted in a way that it requires less computational effort.
The surface water mask was delineated by employing the 20th percentile, of the
reflectance values for each pixel in the two selected bands, instead of the median,
and then computing the MNDWI. This would result in the value of Green and SWIR1

reflectance for which 80% of the observations at pixel level are above. The 20th

percentile was chosen, apart from visual inspection, based on the logic that when
acquiring the most clean images, a small percent of the pixels remain cloudy. The
idea was to choose a low percentile which corresponds to higher water land, but
not too low to acquire shadows, so practically the lower the percentile the bigger
the water area that is detected.

This process could not be fully automatized, because of the ruinous required com-
putational resources for analyzing thousands of cloud-free satellite images. There-
fore, the resulting surface water masks were firstly exported and imported again to
be used as input for the next steps. The reason for this was to avoid the crashing
of the algorithm when functioning for all the steps consecutively. The detection of
the surface water masks was followed by the Canny edge detector. Ones the edges
of each waterbody were dilated, they were buffered in order to focus on the sharp
changes between water and land that take place within this buffer zone. Then, a
bimodal distribution of the MNDWI values of the water and land pixels was obtained
and thereafter separated with Otsu’s Thresholding method.

(a) Cloudy Image (b) Cloud-free Image

Figure 6.4: Cloudy and cloud-free image of sampled area
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(a) Sentinel 2 Satellite Image (b) MNDWI Calculation

(c) Edge Detection (d) Buffered Edges

(e) Threshold computation with Otsu’s dynamic method (f ) Final Water Mask

Figure 6.5: Sentinel 2 surface water dataset workflow

After acquiring the final water mask for the whole extend of Angola, a vector-
ization process was performed. To avoid bulky polygons as shown in Figure 6.6,
the boundaries of the polygons were simplified according to Deuglas Peucker Line
Algorithm (see Section 2.2.5). This was a necessary step also for exporting the final
vector features of Sentinel 2, as without it, huge computational efforts were required
and the algorithm ultimately failed.
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(a) Water feature before simplification (b) Water feature after simplification

Figure 6.6: Line Simplification

6.2.2 Global Surface Water

The Global Surface Water (GSW) dataset in raw format contains raster images of
30 m resolution where each pixel contains information about seasonal and year
changes of the water extend. More specifically its values ([0,1]) show how often
water appeared in each pixel throughout the years. To use this dataset in the main
comparison analysis, a pre-processing step was performed (Figure 6.7). First of all,
converting this raster data directly to vector polygons would result in acquiring
bulky boundaries, because of their 30× 30 m resolution. To avoid this and obtain
a more detailed water mask and thereafter a vector, the GSW raster images were
resampled with bicubic interpolation to 10 m resolution (see Section 2.2.3). This
way more pixels were generated, although it is to be mentioned that the accuracy
of the contained pixels remained at 30 m.

Figure 6.7: Global Surface Water pre-processing workflow

Another issue with the raw GSW data is that sometimes they contain gaps or
no data values. To remove this gaps and delineate better the water masks, a clos-
ing morphological operation was performed, to eliminate holes while keeping the
general shape of the original water mask (see Section 2.2.1). Finally, the water occur-
rence was thresholded to 0.1 (90%) occurrence to obtain the final watermask, which
was subsequently vectorized and simplified. As the amount of processed data was
enormous, and the creation of one vector water dataset for the entire Angola at once
was not possible, a grid of 1km× 1km was used to divide the study area in smaller
regions. Thereafter, the generated vectors were initially exported per tile and then
merged into one file that contained the GSW water vectors of the entire Angola.
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Figure 6.8: Satellite Image

(a) Water Occurrence (b) Bicubic Interpolation

(c) Thresholding of water mask (d) Morphological closing operation

(e) Vectorized surface water mask (f ) GSW feature after simplification

Figure 6.9: GSW surface water dataset workflow
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6.2.3 OpenStreetMap

The OSM data were initially filtered to make sure they would contain information
only relative to water reservoirs and lakes. Nevertheless, the initial filtering was
not completely successful, due to the fact the OSM features might have multiple
tags. For example the tag ”natural = water” was contained also in data that were
not water areas. More specifically, island features, rivers, land covered with shrub
and bushes or stunted trees amongst others, were falsely included in the OSM reser-
voir dataset. Therefore, throughout this research the OSM data were multiple times
refined whenever a false entry was located.

The data in the OSM database are represented as Simple Features (SF), meaning
they have standardized representation each simple feature is a sequence of spatial
coordinates. For OSM specifically only XY coordinates are stored as strings. Accord-
ing to SF there are 7 standardized classes 15:

1. POINT

2. POINT

3. MULTIPOINT

4. LINESTRING

5. MULTILINESTRING

6. POLYGON

7. MULTIPOLYGON

8. GEOMETRYCOLLECTION

Even though only the Polygon and Multipolygon geometries were chosen during
the initial filtering, the OSM data still GeometryCollections which include several
geometries in one. During this research this SF class created problems in the imple-
mentation of the methodology. Therefore all GeometryCollections had to be broken
down in single geometries and then only the Polygons were choosen for further pro-
cessing. Same operation was performed also in the case of Multipolygons, which
were converted into single Polygons.

6.3 comparison of accuraccy of datasets
The assesment of the water area completeness and the positional accuracy compu-
tation of the datasets, was performed in pairwise comparison. More specifically,
all input datasets (GSW, Sentinel 2, HydroLAKES, GRaND) were compared against
the OSM dataset. The reason for selecting the OSM as part of each individual com-
parison analysis, is the fact that it contains both large scale information, highly
detailed geometrical primitives and features that refer specifically to water reser-
voirs. Nonetheless, it is not considered of higher accuracy compared to the other
datasets, since it has its own limitations.

The completeness analysis was performed relatively to the water area, and indi-
cates apart from the common area between datasets and total water area of each,
also the lack or overestimation of water in the datasets. The percentage of overlap
indicates the distance between two overlapping features, i.e. how much one feature
is spatially shifted relatively to the other. Lastly, the Hausdorff distance measures
the degree of mismatch between two corresponding features from different datasets.

15 https://cran.r-project.org/web/packages/osmdata/vignettes/osm-sf-translation.html
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6.3.1 Completeness

To calculate the completeness, the OSM and the rest of the input datasets were
clipped into the 40× 40 km grid squares. Within each cell, the total water area of
each dataset was computed but also the difference of total covered area, indicating
the places where the two compared datasets do not agree. The completeness quality
metric is assessing the total common area of OSM with each of the other datasets.
However, as the Sentinel 2 and GSW datasets contain also information about rivers,
their total water area was overestimated. The thematic differences presented in Fig-
ure 6.10, Figure 6.12, Figure 6.14 and Figure 6.16, indicate the cell regions in which
each dataset detected water.

Figure 6.10: Thematic differences between water surface of OSM and HydroLAKES

Figure 6.11: Area of intersection of OSM and Hydrolakes
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Dataset Area (km2) Ratio(%)
Total Water 5437 100 %
HydroLAKES 2201 41%
OSM 2267 42%
OSM and HydroLAKES 1311 24%
OSM,no HydroLAKES 956 18%
HydroLAKES, no OSM 3171 58%

Table 6.1: Overlap between surface water of OSM and HydroLAKES

Figure 6.12: Thematic differences between water surface of OSM and GRaND

Figure 6.13: Area of intersection of OSM and GRaND
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Dataset Area (km2) Ratio (%)
Total Water 5030 100 %
OSM 2267 45%
GRanD 1813 36%
OSM and GRanD 1087 22%
OSM, no GRanD 1180 24%
GRaND, no OSM 2763 54%

Table 6.2: Overlap between surface water of OSM and GRanD

Figure 6.14: Thematic differences between water surface of OSM and GSW

Figure 6.15: Area of intersection of OSM and GSW
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Dataset Area (km2) Ration(%)
Total Water 21759 100 %
OSM 2267 10%
GSW 12865 59%
OSM and GSW 1906 9%
OSM, no GSW 8894 41%
GSW, no OSM 10959 50%

Table 6.3: Overlap between surface water of OSM and GSW

Figure 6.16: Thematic differences between water surface of OSM and Sentinel 2

Figure 6.17: Area of intersection of OSM and Sentinel 2
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Dataset Area (km2) Ration(%)
Total Water 6933 100%
OSM 2267 33%
Sentinel 3783 55%
OSM and Sentinel 1252 19%
OSM,no Sentinel 3151 45%
Sentinel,no OSM 2530 36%

Table 6.4: Overlap between surface water of OSM and Sentinel 2

6.4 positional accuraccy

6.4.1 Percentage of overlap

The percentage of overlap was computed for 15 different buffer zones from 0 to
150 m, created around the OSM features (see Figure 6.18). Afterwards, to determine
the distance between each pair of features, the distribution of the percentages was
examined (see Figure 6.19). The peak of the histogram is identified as the distance
that quantifies how far away one feature is from the other. This conclusion was
based on the fact that as the buffer size increases, the compared features have higher
overlap until a certain buffer zone, after which the overlap reduces, i.e. the features
are spatially further apart from each other (e.g Figure 6.18).

(a) OSM and GSW features (b) Buffered OSM and GSW

Figure 6.18: Example of Percentage of Overlap

Figure 6.19: Peak of overlap percentage and and estimated positional difference in meters

The number of tested buffer zones used in this method were limited, because
an infinite number of buffer zones would not be supported by GEE, due to memory
limitations. Therefore, the 150 buffer zone implies a 150 m at the minimum, distance
between two features (see Figure 6.20).
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(a) OSM and GSW features (b) Buffered OSM and GSW

Figure 6.20: Example of Percentage of Overlap

Figure 6.21: Peak of overlap percentage and and estimated positional difference in meters

In Figure 6.22 the geometries of the Sentinel 2 and OSM features are very similar.
Therefore, as expected, the distance between the two features corresponds to the 0

m buffer zone.

(a) OSM and SEntinel 2 features (b) Buffered OSM and Sentinel 2

Figure 6.22: Example of Percentage of Overlap
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Figure 6.23: Peak of overlap percentage and and estimated positional difference in meters

The positional accuracy results in terms of percentage of overlap for the entire coun-
try of Angola, are presented in the following figures.

Figure 6.24: Percentage of overlap between OSM and HydroLAKES

Figure 6.25: Distances between OSM and HydroLAKES
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Figure 6.26: Percentage of overlap between OSM and GRanD

Figure 6.27: Distances between OSM and GRanD

Figure 6.28: Percentage of overlap between OSM and Sentinel 2
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Figure 6.29: Distances between OSM and Sentinel

The Goodchild’s quality metric in the case of Sentinel 2 versus OSM, shows a high
concentration of features with a distance of 150 m (Figure 6.29). This is expected,
as one peculiarity of the generated Sentinel 2 water dataset is that, in many cases it
contains clusters of smaller water features that actually represent one bigger feature
(see Figure 6.30). Although Sentinel 2 is considered a valuable source of informa-
tion for this and future research, the creation of an optimal Sentinel 2 dataset was
considered scope of this thesis as it was not feasible within the given available time
frame.

Figure 6.30: Example of cluster of Sentinel 2 water features
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Figure 6.31: Percentage of overlap between OSM and GSW

Figure 6.32: Distances between OSM and GSW

6.4.2 Euclidean Distance

The Euclidean Distance as defined in Section 4.2.3, is the minimum distance be-
tween two points in Euclidean 2D space. Each polygon feature consists of a set
of point primitives. Therefore, to estimate how far away the OSM polygons are
to the corresponding features from the other datasets, the euclidean distance per
point was computed. However, the amount of points and the distance between
them, varies amongst datasets and polygons. To avoid any potential bias due to
the lack of equidistance of the point primitives, new points were sampled along the
boundaries of the polygons to increase the point density with a stepsize of 10 m
(Figure 6.34). More details about the selection of the sampling step size are given in
Chapter 7.
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Figure 6.33: GSW and OSM water features

(a) Sampling of GSW points (b) Sampling of OSM points

Figure 6.34: Example of point sampling

Next, a EDM was obtained based on the new generated boundary points. The fact
that more densified points were acquired along the polygon boundaries, resulted in
the construction of a more detailed and accurate EDM. Each pixel of this raster dis-
tance map contains the distance value to the closest boundary point (Figure 6.35).
To acquire the values of euclidean distance for the points of a polygon primitive,
each polygon was overlapped with the EDM of the other dataset. The location of
the overlap between points and EDM, are the places where the euclidean distance
values for each feature were collected (see Figure 6.36). From this the average eu-
clidean distances between the boundaries of the various features were computed
(see Figure 6.38, Figure 6.37 and Figure 6.39).
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(a) Euclidean Distance Map of GSW (b) Euclidean Distance Map of OSM

Figure 6.35: Euclidean Distance Maps

(a) Overlap of OSM points with GSW Euclidean Distance Map (b) Overlap of GSW points with OSM Euclidean Distance Map

Figure 6.36: Euclidean Distances Calculation

Figure 6.37: OSM Point Distance Values
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Figure 6.38: GSW Point Distance Values

(a) Euclidean Distance Values GSW to OSM

(b) Euclidean Distance Values OSM to GSW

Figure 6.39: Euclidean Distance Values

6.4.3 Hausdorff Distance

The Hausdorff distance is a measure of the shape similarity between polygons. It
shows the maximum deviation between the boundaries of two polygons. However,
it suited for detecting significant dissimilarities and not for giving an estimation
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about the average similarity between them. Therefore, even if most of the euclidean
distance values of a polygon primitive are below a certain value, the Hausdorff
distance will converge to the value of the highest euclidean distance amongst all
distances.

For this research, as described in Section 4.2.4, to compute the Hausdorff distance
between two features , the sum of the mean Euclidean values of both EDM was used.
The results for all overlapping features between OSM and the other input datasets
over the extend of the entire Angola, are presented in the Figures and Tables below.

Figure 6.40: Hausdorff Distance Values for OSM and HydroLAKES

Statistical Value Distance (m)
Mean 20017.22

Median 206.19

Standard Deviation 68701.56

Table 6.5: Hausdorff Distance Statistics for OSM and HydroLAKES

Figure 6.41: Hausdorff Distance Values for OSM and GRaND

Statistical Value Distance (m)
Mean 93129.97

Median 41761.69

Standard Deviation 128483.62

Table 6.6: Hausdorff Distance Statisticsfor OSM and GRaND
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Figure 6.42: Hausdorff Distance Values for OSM and GSW

Statistical Value Distance (m)
Mean 109133.59

Median 236.07

Standard Deviation 143024.91

Table 6.7: Hausdorff Distance Statistics OSM and GSW

Due to some technical issues, a subset of the OSM and Sentinel 2 comparison
analysis was exported. From the total of 1228 common features between the two
datasets, only the 600 could be exported and visualized, as the processing time for
the entire dataset was extremely high without giving any specific notification for an
error (Figure 6.43). This possibly has to do with the of utilization of point resam-
pling, when dealing with relatively high number number of vertices, in the case of
very big geometrical primitives or high number of features. In particular, there is a
chance that the number of sampling points exceeded the computational capacity of
GEE. Due to time limitations of this research, this issue remains unsolved for now.
However, some optimization will be necessary in future research to increase the
scalability of the Hausdorff Distance algorithm when dealing with bigger datasets.

Figure 6.43: Hausdorff Distance Values for OSM and Sentinel 2

Statistical Value Distance (m)
Mean 152535.25

Median 92301.64

Standard Deviation 158434.63

Table 6.8: Hausdorff Distance Statistics for OSM and Sentinel 2
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In this chapter a sensitivity analysis is performed to explore the influence of a cer-
tain variable of the algorithm to the estimated Hausdorff Distance. The sensitivity
is analyzed based on sampled features.

As mentioned in Section 6.4.3, the number of points that form the water poly-
gons and the distance between them varies amongst features and input datasets.
The number of vertices used to create the EDM of the water polygons, affect the
level of detail and quality of the EDM. More specifically the distance between those
boundary points is very important for narrow geometries, where a high number of
vertices is necessary to compute an accurate EDM and therefore an accurate Haus-
dorff Distance.

Figure 7.1: Example of OSM and HydroLAKES features

The differences in the estimated EDM for the features presented in Figure 7.1 can
be seen in Figure 7.2. The red zone in the EDM of the OSM feature represents the area
with zero distance from the boundary. With the exclusion of the resampling along
the water polygons, this zone has a wide extend causing all the boundary points
of the HydroLAKES feature that are located inside of the OSM polygon to be falsely
estimated with a zero Euclidean Distance (see Figure 7.3).

(a) EDM without resampling of vertices (b) EDM with resampling of vertices

Figure 7.2: The impact of the number of vertices towards the quality of the EDM
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Figure 7.3: Vertices with zero Euclidean Distance values

The impact of this less accurate EDM on the computed Euclidean Distance can
be seen in Table 7.1. Considering the fact that the Hausdorff Distance is estimated
based on the sum of the mean Euclidean Distances from HydroLAKES to OSM and
OSM to HydroLAKES (Table 7.2) as explained in Section 4.2.4, we observe that this
false estimation of the mean Euclidean distance of 3.57 m instead of 47.04 m will
affect the result the Hausdorff Distance between the two features. The mean Eu-
clidean Distances with and without point sampling are 360.06 km and 360.02 km
respectively, resulting in a difference in the estimation of the Hausdorff Distance up
to 40 m.

Statistical Unit Euclidean Distance (m)
Without Sampling With Sampling

Max 50.67 152.64

Mean 3.57 47.04

Median 0 39.80

Mode 0 43.65

Standard Deviation 11.55 31.80

Table 7.1: Euclidean Distances from HydroLAKES to OSM

Figure 7.4: Euclidean Distances between OSM points to HydroLAKES features
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Statistical Unit Euclidean Distance (km)
Max 460.57

Mean 306.02

Median 298.70

Mode 406.33

Standard Deviation 216.93

Table 7.2: Euclidean Distances from OSM to HydroLAKES

The implementation of the Hausdorff Distance algorithm was performed with a
resampling of the vertices of the water polygons with a step size of 10 m . This de-
cision was based on two factors: to choose a point density that is enough to create
a detailed EDM with as few points as possible, so that the necessary computational
resources are operational from the GEE platform. To investigate the sensitivity of
this particular variable, two sample features were selected from the OSM and Hy-
droLAKES input datasets. The estimated Euclidean and thereafter Hausdorff Dis-
tances were tested for ten different step sizes (3, 5, 8, 10, 20, 50, 100, 200, 500, 1000).
The results demonstrated in Table 7.4 and Figure 7.7, show that the values of the
Hausdorff Distance for less than 20 m step size converge, but at the same time the
amount of sampled points increases largely. To avoid an enormous processing time
or failure of the algorithm, the 10 m step size was chosen as the most suitable for
being both computationally less intensive and frequent enough to provide accurate
results for the Hausdorff Distance computations.

(a) Satellite Image (b) OSM and HydroLAKES features

Figure 7.5: Example of OSM and HydroLAKES features

(a) Euclidean Distances of OSM points to HydroLAKES (b) Euclidean Distances of HydroLAKES points to OSM

Figure 7.6: Euclidean Distances between OSM and HydroLAKES features
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Step Sizes (m) Mean ED (Forward) Mean ED (Backward)
3 663.95 212.72

5 663.94 212.69

8 663.86 212.68

10 663.88 212.65

20 663.90 212.65

50 663.73 212.38

100 663.17 211.67

200 661.30 211.47

500 655.64 210.60

1000 657.46 226.05

Table 7.3: Mean Euclidean Distances (ED) between OSM and HydroLAKES features for var-
ious stepsizes

Step Sizes (m) Amount of Points Hausdorff Distance (m) Relative Difference [%]
3 14.357 876.67 -
5 8615 876.63 - 0.004

8 5385 876.54 - 0.010

10 4308 876.53 - 0.001

20 2154 876.55 + 0.002

50 862 876.11 - 0.050

100 432 874.84 + 0.145

200 217 872.77 - 0.237

500 88 866.20 - 0.753

1000 45 883.51 + 1.998

Table 7.4: Hausdorff Distance between OSM and HydroLAKES features for various stepsizes

Figure 7.7: Sensitivity of the Hausdorff Distance towards icreasing step sizes
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This chapter presents the conclusions of this research as well as the answers to the
main and sub research questions. Moreover, recommendations for the continuation
of this study are given.

8.1 conclusions
The aim of this study was to describe a workflow for comparing the accuracy of
some of the publicly available water reservoir datasets. This comparison was made,
based on the assumption that none of these datasets was considered ground truth
data. Therefore, the results of this research do not indicate or prove that one dataset
is better or worse than the other. Nevertheless, it focuses on describing a technical
methodology to facilitate the automatic comparison of remotely sensed and other
vector water reservoir datasets in one environment where both raster and vector
data can be processed, and most importantly in a large scale. This quality analysis
was conducted relatively to the geometry of the datasets that are compared.

This research shows promising results that large scale analysis is possible for the
comparison of reservoir waterbodies. However, due to time constraints, parts of the
developed algorithm are in semi-automated form. The main limitation arises from
the fact that two out of five input water reservoir datasets for this research, had
to be generated in order to perform the quality comparison. More specifically, the
generation of the Sentinel 2 and GSW remotely sensed datasets were performed in a
discontinuous workflow of intermediate steps, as the large amount of the available
data could not be processed successfully at once. As a result, the pre-processing
of these data was implemented with some manual export and import operations to
reduce the processing time for the generation of their vector water features and be
able to proceed to the main quality analysis, which is fully automated.

During the implementation of the research methodology, some interesting ob-
servations were made relatively to the data. The OSM data, although they are a
valuable source of information, they were quite challenging to filter properly so
that only geometrical information related to water reservoirs were included. Due to
the semantics (tagging) in the OSM data, it is possible that water features have been
overlooked, resulting in possible underestimation of the water area when calculat-
ing the completeness quality metric, or overestimation when land features were
falsely registered as water primitives.

In the case of Sentinel 2, the acquired most clean images were not comletely
cloudless, since the resulting samples still contained a small percent of cloudy pix-
els. Apart from the remained cloudy parts in the satellite images, the surface water
detection was also challenging, because of cloud and terrain shadows that lead to
missclassification of water pixels. Moreover, the fact that a low percentile was used
instead of the median of the water index values for all images, in some cases, re-
sulted in worse representation of the water mask. This was identified with visual
inspection of the satellite imagery. Consequently, the quantative results of the per-
formed quality analysis are as accurate as the input data.

To answer the main reasearch question, two subquestions were investigated:
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1. Question 2: What are the differences in terms of spatial coverage?

When analyzing the actual intersecting surface water area of OSM with Hy-
droLAKES, GRaND, GSW and Sentinel, a match of 24%, 36%, 9%, 19% respec-
tively was found.

2. Question 2: What are the differences in terms of positional accuracy?

The positional accuracy of the OSM data was evaluated in terms of percentage
of overlap and Hausdorff Distance only for the features that intersect amongst
the OSM and the other input datasets. More specifically, OSM compared to Hy-
droLAKES and GRaND shows a good agreement concerning the Goodchild’s
percentage of overlap with 59.6% and 54.69% respectively. Moreover, this met-
ric showed that there is a 35.93% overlap for the intersecting features of OSM

and GSW and a 43.73 % for OSM and Sentinel 2. With regards to the histograms
of the distances between the datasets based on the percentage of overlap, it
was found that 57% of the HydroLAKES and 46% of GRaND features lie within
a 10 m buffer zone from the OSM data. For GSW and Sentinel 2 the scores
for this metric are significantly lower, as only 15% and 1.7 % accordingly, are
found in a distance of 10 m from the OSM data.

When analyzing the Hausdorff Distance which indicates the shape similarity
between water reservoir features, in many cases a wide range of values in the
order of hundreds of kilometers was found. Therefore, although this metric
is feature based and the use of one statistical value for the entire Angola is
not representative, the median of all Hausdorff Distance values was chosen
to give a general insight in the variability of the shapes of the water features.
In particular, the median Hausdorff Distance when comparing OSM to Hydro-
LAKES is 206.19 m, whereas the median for GRaND is 41761.69 m. In the case
of GSW and the used subset of Sentinel 2, the median Hausdorff Distances are
equal to 236.07m and 92301.64 respectively.

The main research question :

”What are the spatial differences between Earth Observation based and Volunteered
Geographic Information for water reservoirs and how can they be addressed in an
automated way at a large scale?”

is answered as follows:

Based on existing concepts, a method was proposed to compute the spatial differ-
ences between water reservoir datasets. The comparison was perfomed in pairs of
datasets. The approach for performing this analysis was based on three quality met-
rics: the completeness of water area, Goodchild’s percentage of overlap for different
buffer sizes and lastly the Hausdorff Distance.

As none of the data was considered of higher accuracy due to their limitations,
the results of this approach have not been validated. Instead, the outcome of this
research indicates only the level of agreement in terms of spatial coverage and posi-
tional accuracy between OSM and the other input datasets.

To assess the overall large scale and possibly global applicability of the approach,
the methods have been tested over the extend of the country of Angola. This was
possible by exploiting the planetary-scale analysis capabilities of GEE. The quanti-
tative results from the accuracy comparison of the datasets were successfully esti-
mated for the entire Angola in most cases, proving that cloud based methods are
scalable. Even though the Hausdorff Distance metric when comparing Sentinel 2

and OSM provided results only for a subset of its features, possibly due to a scal-
ability error, the overall performance of the algorithm showed promising results.
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With an optimization of the Hausdorff Distance algorithm, the computational speed
could be increased, making even a global scale analysis for all three quality metrics
possible.

8.2 contributions
The main contributions of this thesis are given below.

• To develop an automated tool in an environment that enables firstly the use
of both big volumes of available satellite data for surface water detection and
vector datasets, and secondly is able to perform large scale analysis that com-
pares the accuracy of these data.

• The cross validation of datasets coming from different origins related specifi-
cally to water reservoirs.

8.3 future work
This section gives a few recommendations that may be helpful for future research:

• Additional processing of the input datasets is suggested, to refine the Sentinel
2 and GSW datasets. More specifically, in the case of Sentinel 2, possible im-
provements to the method of water detection might include the selection of
the ideal percentiles in a heuristic way instead of visual inspection. Further re-
search for the selection of an optimal threshold value of the GSW water masks
is suggested, to distinguish permanent water from short-term flooded areas.

• Exclusion of rivers from the GSW and Sentinel 2 datasets so that the results for
the completeness and positional accuracy metrics are more accurate. More-
over, this will reduce the amount of processed Sentinel 2 and GSW data, so the
algorithm will need less computational effort and therefore the pre-processing
of these datasets could be fully automated.

• Merging the clusters of Sentinel 2 smaller waterbodies into single homoge-
neous features for more accurate water reservoir delineation.

• Apart from the identification of dis/similarities between the datasets, the re-
search can be further extended by classifying into bad and good reservoirs.
As due to the time limitation of this research, the mismatches amongst the
datasets have not been resolved, a recommendation for future research would
be the development of a data fusion algorithm that combines the strengths
of all five input datasets. The process for resolving the mismatches and har-
monizing existing vector and raster water mask datasets would require the
introduction of objective criteria (e.g. topographic conditions) regarding con-
fidence of every water mask. By doing this, all input datasets could be in-
tegrated into one that is more accurate regarding the true geometries of the
water reservoir features, by consulting the accuracy metrics and making the
most out of the value of these datasets. This could lead to the generation of
water reservoir feature dataset with a better overall quality.

• Classifying the registered water features into types of water features (e.g.
lakes, agricultural water reservoirs, valley-dammed reservoirs etc.).
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a.1 marks for each of the criteria

Figure A.1: Reproducibility criteria to be assessed.

a.2 self-reflection
This study were performed in collaboration with Deltares 15; which is an indepen-
dent institute for applied research in the field of water and subsurface. All the
information used is publicly available. More specifically:

• Input Data [3]: Five Datasets have been used during this thesis. These datasets
are provided freely available in the Google Earth Engine platform, the Open-
StreetMap platform, and lastly the HydroLAKES and GRaND databases. The
information they provide is limited in the extend of the country of Angola.

• Preprocessing [1/2]: All the pre processing procedures are documented with
text. In the case of Sentinel 2 and Global Surface Water a workflow and the
scripts for the generation of these datasets in the Google Earth Engine Plat-
forms is included. For OpenStreetMap, apart from the preprocessing steps,
the list of the manipulation open source command line tools that were used is
presented.

• Methods [2]: The source code for the comparison analysis used in this research
is available online in Google Earth Engine repository. The algorithms are
documented with text.

• Computational environment [3]: This research is conducted by using the
Google Earth Engine platform which has a commercial license program, and
the open source QGIS software for the manipulation of data and visualization
of the results.

15 https://www.deltares.nl/en/
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• Results [2]: The are documented through text, graphs, maps, and they can
also be reproduced by using the freely available code.
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