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Wavenumber-dependent dynamic light
scattering optical coherence tomography
measurements of collective and self-diffusion
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1Department of Imaging Physics, Delft University of Technology , Lorentzweg 1, 2628 CJ, Delft, The
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2InProcess-LSP, Kloosterstraat 9, 5349 AB, Oss, The Netherlands

Abstract: We demonstrate wavenumber-dependent DLS-OCT measurements of collective and
self-diffusion coefficients in concentrated silica suspensions across a broad q-range, utilizing a
custom home-built OCT system. Depending on the sample polydispersity, either the collective
or self-diffusion is measured. The measured collective-diffusion coefficient shows excellent
agreement with hard-sphere theory and serves as an effective tool for accurately determining
particle sizes. We employ the decoupling approximation for simultaneously measuring collective
and self-diffusion coefficients, even in sufficiently monodisperse suspensions, using a high-speed
Thorlabs OCT system. This enables particle size and volume fraction determination without
the necessity of wavenumber-dependent measurements. We derive a relationship between the
particle number-based polydispersity index and the ratio of self and collective mode amplitudes
in the autocorrelation function and utilize it to measure the particle number-based polydispersity
index. Notably, the polydispersity determined in this manner demonstrates improved sensitivity to
smaller particle sizes compared to the standard intensity-based DLS cumulant analysis performed
on dilute samples.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Colloidal dispersions are widely used in chemical, pharmaceutical, and food industries, as well
as in the domains of biology and medicine. Dynamic light scattering (DLS) is one of the most
popular experimental techniques for studying colloidal systems [1–3]. It is a relatively simple
and versatile technique that relies on the measurement of fluctuations in scattered light to obtain
information about the diffusive motion of colloidal particles, predominantly used to obtain
colloidal size characteristics. However, conventional DLS is limited to samples that are not in
flow and have a low concentration of scatterers that have little multiple scattering. Dynamic light
scattering optical coherence tomography (DLS-OCT) incorporates coherence gating to obtain
a depth-resolved particle diffusion coefficient [4]. In DLS-OCT coherence gating suppresses
multiple scattering and allows to study diffusive dynamics in more concentrated samples [5–7]
and under flow [8–10].

In low-concentration particle suspensions, particle interactions are negligible, and the diffusion
coefficient is inversely proportional to the particle hydrodynamic radius via the Stokes-Einstein
relation. However, there is generally no such simple relation for concentrated samples. Con-
centrated particle suspension dynamics has been an active area of research for many years
[11] and rheological models have been developed for highly concentrated charge-stabilized
hard-sphere particle suspensions. These models describe particle diffusion through collective
and self-diffusion mechanisms over short and long time scales [12–15]. Collective diffusion
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describes the relaxation of concentration gradients over specific length scales and thus depends
on the scattering wavenumber q, while self-diffusion describes the mean squared displacement
(MSD) of individual colloid particles. Conventional DLS has been utilized to measure the
collective and/or self-diffusion coefficient of concentrated hard-sphere particle suspensions using
an index-matching procedure [16–18]. This is a non-trivial process that requires extensive sample
preparation to minimize multiple scattering and make self-diffusion measurable. Two-color
[11,14] or cross correlation [19] DLS has been employed to measure the collective diffusion
coefficient over a large q-range in concentrated samples. While these methods effectively suppress
multiple scattering, they require a more complex setup with at least two different scattering
arms or wavelengths and involves laborious subsequent measurement of different incident and/or
scattering vectors to obtain wavenumber-dependent dynamics.

In this work, we employ DLS-OCT to measure the q-dependent particle diffusion in dense
suspensions in the spectral domain. DLS-OCT is generally used for conducting spatially
resolved coherence-gated measurements of diffusion and flow by Fourier transformation over all
wavenumbers. Nonetheless, when operated in the spectral domain, it can provide heterodyne
correlation measurements at the different wavelengths of the OCT bandwidth and thus can be
employed to simultaneously measure wavenumber-dependent diffusion over the entire bandwidth.
This is akin to conducting parallel DLS measurements at different wavelengths or scattering
angles. However, the limited spectral width of typical OCT systems makes the q-range relatively
small. In this study, we employ a custom-built broad bandwidth DLS-OCT system to measure
wavenumber-dependent dynamics in a single measurement over a large q-range. From the
scattering wavenumber dependency of the decorrelation, we measured the long- and short-time
collective and self-diffusion coefficients in concentrated silica suspensions in a straightforward
manner and correlated them with particle size and polydispersity.

2. Theory

2.1. Particle diffusion

In dilute particle suspensions with a particle volume fraction fv → 0, direct and hydrodynamic
interactions between the particles are negligible [20]. The diffusion coefficient for non-interacting
particles undergoing Brownian motion is given by the Stokes-Einstein equation

D0 =
kBT

6πη0a
, (1)

where kB is the Boltzmann constant, T is the absolute temperature, η0 is the suspension dynamic
viscosity, and a is the particle hydrodynamic radius. For charge-stabilized particle suspensions
with a sufficient salt concentration, the hydrodynamic radius is the particle radius [16].

In concentrated suspensions, particle motion is affected by the presence of surrounding
particles. For these suspensions we differentiate between short-time (t ≪ τ0) and long-time
(t ≫ τ0) diffusive regimes, as well as between collective and self-diffusion. Here, t is the time
over which the motion is probed (lag time in DLS-OCT correlation functions), while τ0 is the
interaction time defined as τ0 = a2/D0 [20,21]. In the short-time regime, particle motion is
primarily influenced by solvent-mediated hydrodynamic interactions between the particles. In the
long-time regime, excluded volume interactions and direct electrostatic interactions additionally
affect the diffusion (in different ways for collective and self-diffusion and at different time scales).
Self-diffusion pertains to the mean squared displacement of individual colloid particles, while
collective diffusion involves the relaxation of concentration gradients across specific length
scales. Dynamic light scattering (DLS) on a monodisperse particle suspension measures the
collective diffusion coefficient for a particular length scale related to the wavelength and angle of
the experiment [20].
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In the dilute limit, there is no difference between the two different time scales or collective
and self-diffusion. However, due to the interactions described above in concentrated systems,
both collective and self-diffusion coefficients become functions of the particle volume fraction
due to both hydrodynamic and direct interactions, and a function of time, represented by the
transition from short to long-time dynamics [21–24]. Furthermore, the collective diffusion
coefficient becomes a function of the scattering wavenumber, q = 4πn sin (θ/2)/λ0, where λ0 is
the illuminating light wavelength, n is the suspension refractive index, and θ is the angle between
the illumination and scattering directions. The wavenumber dependence of collective diffusion
reflects the fact that, due to particle interactions, the diffusion of a density fluctuation in the
suspension can strongly depend on the length scale of that fluctuation.

2.1.1. Self-diffusion

Self-diffusion describes how an individual particle diffuses in the presence of other Brownian
particles. Therefore, it can only be detected when individual particles are optically distinguishable,
either due to the polydispersity of particle scattering properties in the suspension, or by index-
matching the majority of particles within the solvent, leaving only a small fraction of optically
contrasting particles of interest that determine the scattered light fluctuations. Index matching
ensures that the light-scattering particles do not interact with each other but do interact with
other non light-scattering particles. Since self-diffusion depends solely on the motion of a single
particle, the self-diffusion coefficient, Ds(t), depends only on time and volume fraction and not
on the scattering wavenumber. It equals the collective diffusion coefficient in the limit of infinite
q [25]. The self-diffusion coefficient is proportional to the slope of the particle mean-squared
displacement curve [20] and, for hard spheres, is given by [15,20,26]

Ds(t) = Ds
s − (Ds

s − Dl
s)

2σ√
π

[︃
t
τM

]︃1/2
as t → 0+, (2)

and

Ds(t) = Dl
s + (Ds

s − Dl
s)
σ

2
√
π

[︃
τM
t

]︃3/2
as t → ∞, (3)

where Dl
s is the long-time self-diffusion coefficient, Ds

s is the short-time self-diffusion coefficient,
τM is the relaxation time of the velocity autocorrelation function [27], and σ is the width of the
relaxation rate spectrum [26]. For dilute particle suspensions, Ds(t) = D0, the characteristic time
for structural rearrangements τM = τ0, and σ =

√
2 [20,26]. For more concentrated suspensions

such analytical relations for τM and σ are not available. Based on simulations Cichocki and
Hinsen [26,27] suggested that τM ≲ τ0 and σ ≳

√
2.

It has been reported that the time-dependent part in Eqs. (2) and (3) has a small relative
amplitude, making it problematic to observe in typical light scattering experiments and even in
simulations [20,22,26,27]. Therefore, we simplify the time-dependent self-diffusion coefficient
into a constant short-time self-diffusion [21–24]

Ds(t ≪ τ0) ≈ Ds(t → 0) = Ds
s , (4)

and a constant long-time self-diffusion

Ds(t ≫ τ0) ≈ Ds(t → ∞) = Dl
s , (5)

for times shorter or longer with respect to τ0, respectively. For hard-sphere particle suspensions,
Ds

s can be computed numerically using Eq. (7.2) derived by Beenakker and Mazur [12,28], while
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Fig. 1. Diffusion coefficients and structure factors for hard-sphere particles. (a) Self-
diffusion coefficients Dl

s and Ds
s as a function of volume fraction. (b) Structure factor S(q),

where the dashed line corresponds to fv = 0. (c) Short- and (d) long-time collective diffusion
coefficients.

Dl
s can be calculated analytically using [16]

Dl
s = D0

(1 − fv)3
1 + 1.5fv + 2f 2

v + 3f 3
v

. (6)

Both Ds
s and Dl

s are plotted in Fig. 1(a) as a function of fv. They decrease with increasing fv, but
Ds

s is consistently larger than Dl
s. It has been further suggested that Dl

s can be determined more
accurately using [16,29–32]

Dl
s = D0

η0
η

, (7)

where η is the measured low-shear viscosity of a concentrated particle suspension.

2.1.2. Collective diffusion

Collective diffusion describes a simultaneous motion of many Brownian particles due to
concentration gradients in a suspension [20]. The term "collective" refers to the coherent
displacement of particles from a region of high concentration to region of low concentration [33].
In addition to dependence on t and fv, the collective diffusion coefficient Dc(q, t) also depends
on the scattering wavenumber q. It has been demonstrated that the time dependency in Dc(q, t)
solely arises from the mean-square displacement of individual particles [11,14,34], establishing
its relation to self-diffusion. Assuming uniform time-dependency across all wavenumbers,
the collective diffusion coefficient can be factorized into the product of wavenumber and
time-dependent factors [11,14,35], resulting in

Dc(q, t) = Ds
c(q)

Ds(t)
Ds

s
, (8)
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where Ds
c(q) is the short-time collective diffusion coefficient given by [13]

Ds
c(q) = D0

H(q)
S(q) , (9)

with H(q) the hydrodynamic mobility function, and S(q) the static structure factor. For hard-
sphere particles, H(q) can be obtained from the Beenakker-Mazur or so the called δY theory
[12,13,28], and S(q) can be determined using the Percus-Yevick approximation [36–38]. For
dilute suspensions, i.e. for suspension for which fv → 0, S(q) = H(q) = 1 and Dc(q, t) = D0.
Figure 1(b,c) shows theoretical curves for S(q) and Ds

c(q), respectively, for hard-sphere particles
as a function of the dimensionless wavenumber qa and fv. At low qa values, S(q) is small,
reflecting the suppression of long wavelength density fluctuations in concentrated suspensions,
while at large qa, it approaches unity. The short-time collective diffusion is highest at low qa and
converges to Ds

s at large qa.
Since the time-dependency in collective diffusion arises from self-diffusion, we can use the

same approximation as in Eq. (4), (5) and simplify Dc(q, t) for shorter times into

Dc(q, t ≪ τ0) ≈ Dc(q, t → 0) = Ds
c(q) = D0

H(q)
S(q) , (10)

and for longer times into

Dc(q, t ≫ τ0) ≈ Dc(q, t → ∞) = Dl
c(q) = D0

H(q)
S(q)

Dl
s

Ds
s

. (11)

The long-time collective diffusion coefficient Dl
c(q) is given in Fig. 1(d) as a function of qa

and fv. The long-time collective diffusion coefficient is consistently smaller than its short-time
counterpart due to the direct electrosteric interactions that hamper particle movement; these
interactions are not yet operative at short times [21].

Dynamic light scattering optical coherence tomography (DLS-OCT) can be used to measure
the wavenumber-dependent collective diffusion coefficient of a particle suspensions by analyzing
temporal fluctuations in the scattered light intensity for different wavenumbers detected by the
OCT spectrometer. When the reference power is much larger than the sample power (at least
an order of magnitude larger), DLS-OCT measures the collective diffusion coefficient using a
heterodyne detection scheme [20]. When the optical properties of the particles are identical
and the particles are monodisperse, all intensity fluctuations arise from microscopic density
changes. The normalized autocovariance of q-dependent spectral intensity fluctuations, which is
the heterodyne correlation function, is given by

g1(q, τ) = Sc(q, τ)
S(q) =

1
1 + 1

SNR(q)
e−Dc(q)q2τ = A(q)e−Dc(q)q2τ , (12)

where SNR(q) is the signal-to-noise ratio as defined in [39], τ is the lag time, A(q) is the
autocovariance amplitude containing the effect of a diminishing SNR, S(q, τ) is the collective
dynamic structure factor [20], and Dc(q) is the short- or long-time collective diffusion coefficient.
Here we have neglected the time dependence of the collective diffusion coefficient based on
Sec. 2.1.2. Whether Ds

c(q) or Dl
c(q) is measured depends on the DLS-OCT acquisition time

and particle size (through τ0). Equation (12) is also known as the first-order autocorrelation
function and decorrelates with a decay rate of Dc(q)q2 in contrast to the scattered intensity
correlation function obtained from spatially resolved OCT intensity measurements, which decays
at twice this rate [5,10]. Note that the collective diffusion rate is q-dependent in contrast to the
self-diffusion which is q-independent.
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2.2. Particle polydispersity

In the previous section, single-size monodisperse particles were assumed. However, particle
polydispersity significantly affects the DLS-OCT correlation measurements. We distinguish
between size polydispersity, particularly relevant for dilute samples, and optical polydispersity,
which holds broader significance and becomes more relevant when measuring particle diffusion
in concentrated suspensions.

2.2.1. Particle size polydispersity

When particle sizes in a suspension are not identical, the sample is polydisperse in size. For
large size polydispersities single exponential fits using Eq. (12) underestimate the decay rate [40].
In dilute suspensions, size polydispersity affects g1(q, t) by introducing additional higher-order
correlation terms (in time) in the exponent in Eq. (12), where the magnitude of these terms is
related to the degree of polydispersity [20]. For dilute particle suspensions, size polydispersity
can be accounted for in the correlation function using cumulant or Laplace analysis [40]. In the
cumulant analysis, instead of using D0 in the exponent of Eq. (12), the temporal evolution of the
exponent is expanded as a polynomial as proposed in [40],

g1(q, τ) = A(q)e−D0q2τ+
µ2
2 τ2− µ3

3! τ
3+

µ4
4! τ

4−..., (13)

where µj corresponds to the jth order in the cumulant analysis. Including the second order in τ in
the expansion, the intensity-averaged polydispersity index is then defined as [2,40]

PDII =
µ2(︁

D0q2)︁2 = σ2
I

⟨a⟩2
I

, (14)

where ⟨a⟩I and σI represent the mean and standard deviation (width) of the intensity-averaged
particle radius distribution, respectively. The second equality hols true only for Gaussian-
distributed particle sizes [41]. For perfectly monodisperse particles, PDII = 0.

When measuring diffusion of particles small compared to the wavelength of DLS-OCT, the
Rayleigh scattered intensity is proportional to the squared volume of the particle [42]. In this case,
the first-order autocorrelation function measures quantities averaged over the squared volume of
the particle, and PDII = PDIv2 . Theoretically, the measured polydispersity index may vary as a
function of q due to the scattering anisotropy in DLS-OCT. However, for small particles with
isotropic scattering properties this effect can be neglected [43].

2.2.2. Optical polydispersity

Optical polydispersity refers to the variation of optical properties of the particle scattering ampli-
tude and includes the size polydispersity [20]. Even if all particles are identical and statistically
equivalent, their scattering amplitudes can vary due to non-uniform illumination intensity and
light scattering directions caused by a nonzero system numerical aperture (NA). Variations in
particle size, shape, and refractive index significantly increase the optical polydispersity. In
an optically perfect monodisperse system, intensity fluctuations arise solely from microscopic
density changes. However, optical polydispersity gives rise to variations in the scattering intensity
that are not related to microscopic density changes. For example, when two optically distinct
particles interchange their positions, the scattered intensity changes but the microscopic density
remains unchanged [20]. This intensity fluctuation is solely related to self-diffusion. The
autocovariance of these intensity fluctuations is related to the self-diffusion of these particles
instead of the collective diffusion. As a result, for optically polydisperse systems, an additional
self-diffusion term appears in g1(q, t). For particles with a narrow size distribution, g1(q, t) can



Research Article Vol. 32, No. 11 / 20 May 2024 / Optics Express 19969

be approximated using the decoupling approximation [20,23,44,45]

g1(q, τ) = Ac(q)e−Dc(q)q2τ⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
collective term

+As(q)e−Dsq2τ⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
self-term

, (15)

where Dc(q) and Ds are the short- or long-time collective and self-diffusion coefficients. Higher-
order terms in the exponents, similar to Eq. (13), due to the size polydispersity are neglected.
The mode amplitudes Ac(q) and As(q) are the relative weights of the collective and self-diffusion
terms and given by [20]

Ac(q) =
⟨︁
B(q)⟩︁2

N(︂⟨︁
B2(q)⟩︁N − ⟨︁

B(q)⟩︁2
N +

⟨︁
B(q)⟩︁2

NS(q)
)︂ (︂

1 + 1
SNR(q)

)︂ , (16)

and

As(q) =
⟨︁
B2(q)⟩︁N − ⟨︁

B(q)⟩︁2
N(︂⟨︁

B2(q)⟩︁N − ⟨︁
B(q)⟩︁2

N +
⟨︁
B(q)⟩︁2

NS(q)
)︂ (︂

1 + 1
SNR(q)

)︂ , (17)

where B(q) is the particle scattering amplitude and ⟨..⟩N denotes number-averaged quantities.
The collective term of Eq. (15) is often called "coherent" due to a scattering contribution from
coherent particle motions, while the self term is referred to as "incoherent" due to the unrelated
scattering from individual particles [19,35,46]. The self and collective modes in Eq. (15) become
evident only at high particle concentrations when the collective and self-diffusion coefficients are
different. In dilute particle suspensions there is always only one mode because Dc(q) = Ds = D0,
and Eq. (15) simplifies into Eq. (12).

In suspensions where particles are made from the same material, we assume that the variation
in refractive index between particles can be neglected [47]. In typical low-NA OCT systems, the
beam intensity and scattering angle variations among the particles are also negligible. In this
case, the optical polydispersity arises solely from the size polydispersity. If we further assume
that particles are much smaller than the wavelength (a ≪ λ) such that the scattering process
is described by Rayleigh scattering [42,48], we find that B(q) ∝ a3 [49]. For particles with a
number-based Gaussian size distribution, the ratio of the self and collective mode amplitudes is
given by

As(q)
Ac(q) =

⟨︁
B2(q)⟩︁N − ⟨︁

B(q)⟩︁2
N⟨︁

B(q)⟩︁2
N

=
15 · PDI3

N + 36 · PDI2
N + 9 · PDIN

9 · PDI2
N + 6 · PDIN + 1

, (18)

where PDIN is the particle number-based polydispersity index defined as

PDIN =
σ2

N

⟨a⟩2
N

, (19)

with ⟨a⟩N and σN being the mean and the standard deviation (width) of the number-averaged
particle radius distribution. The ratio of the self and collective mode amplitudes contains
information about the sample’s number polydispersity. As expected, the self mode vanishes for a
perfectly monodisperse particle suspension (PDIN = 0), resulting in the simplification of Eq. (15)
into Eq. (12).

Figure 2(a) shows simulated volume-based and intensity-based polydispersity indices (PDIv
and PDII , respectively) for particles characterized by a Gaussian number-based size distribution
with a number polydispersity index PDIN . For the considered PDIN values, both volume-based
and intensity-based distributions exhibit a Gaussian shape. Up to PDIN = 0.02, all three
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polydispersity indices are similar. PDIv and PDII remain close even up to PDIN = 0.04, but they
start to deviate for larger PDIN values.

In Fig. 2(b), it is illustrated that the quantity ⟨a⟩v
⟨a⟩N , the ratio of volume- to number-averaged

particle radii, is nearly proportional to PDIN , serving as a good indicator for the number-based
polydispersity index. For a number-based Gaussian size distribution, the relationship is given by

⟨a⟩v
⟨a⟩N =

3 · PDI2
N + 6 · PDIN + 1

3 · PDIN + 1
. (20)

Furthermore, in Fig. 2(b), we can observe how the ratio of the self and collective modes increases
with higher PDIN . At PDIN = 0.14, which corresponds to a PDII of approximately 0.04 for a
Gaussian number distribution, the self and collective terms become equal. Consequently, for
samples with much larger PDII , we anticipate As from Eq. (15) to be significantly larger than Ac.

3. Methods

3.1. OCT systems

Dynamic light scattering experiments were performed using two OCT systems. A custom-
built relatively slow ultra-broadband OCT system and a fast relatively narrowband Thorlabs
GANYMEDE II HR series spectral domain OCT. The latter, based on a stable superluminescent
diode, has been described in detail in our previous work [10,39]. Both OCT systems have
a backscattering configuration with NA = 0.05 and were operated in M-scan mode where
subsequent A-scans were acquired at a fixed sample position. All measurements were performed
at room temperature. Table 1 summarizes important parameters for both OCT systems. Figure 3(a)
shows the layout of our custom setup.
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Fig. 3. (a) Schematic overview of the custom-made OCT system. (b) DC spectra of the
custom-built and Thorlabs OCT system.
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Table 1. System parameters for the custom-built and Thorlabs OCT setup.

Setup k0 range [µm−1] FWHMλ [nm] FWHMz [µm] zmax [mm] Rate [kHz]

Custom 6.49 − 15.64 217 0.6 0.27 4.5

Thorlabs 6.23 − 7.82 112 3.1 1.87 36.0

The custom spectral-domain OCT setup was built using a supercontinuum laser from NKT
Photonics with an emission spectrum from visible to mid-infrared range. Data was acquired
with a high-speed spectrometer (Ocean FX, Ocean Optics) covering a wavelength range of
350 − 1000 nm. The optics was designed for the same wavelength range, utilizing achromatic
lenses (AC254-050-AB-ML, f = 50 mm, Thorlabs), a plate beamsplitter (BSW26R, Thorlabs),
a beamsplitter compensator (BCP42R, Thorlabs), and silver mirrors (PF10-03-P01, Thorlabs).
Backscattered sample and reference beams were coupled into a multi-mode fiber connected to
the spectrometer. Since the coherence length and NA are very low, the optical variation in q due
to a varying scattering angle is much smaller than the variation in q due to spectral sampling in
k0. Therefore, it can be assumed that the scattering angle is 180◦ and the scattering wavenumber
q in the correlation analysis is q = 2nk0.

Reference spectra of both OCT systems are shown in Fig. 3(b). The custom-built setup has a
lower temporal sampling rate but much larger wavelength range than the Thorlabs OCT system.
The custom-built setup has a higher noise level due to several reasons. First, the supercontinuum
source has a higher noise floor and worse sensitivity roll-off characteristics [50] compared to the
superluminescent diode used in the Thorlabs system. Second, the custom setup uses a multimode
fiber to deliver the interfered light to the spectrometer whereas the Thorlabs system is solely based
on single-mode fibers. The interference between different fiber modes increases the noise level.
It was not possible to use the single-mode fiber with our custom setup due to the single-mode
fiber’s limited spectral transmission bandwidth.

3.2. Particle suspensions

Four concentrated and NaCl charge-stabilized aqueous silica suspensions were procured. The
manufacturer-provided silica mass fraction in each sample was 50 wt.%. All relevant manufacturer-
provided sample properties are summarized in Table 2. Particle surface (Zeta) potential
measurements were not provided; they were obtained separately, along with transmission electron
microscope (TEM) images. The obtained TEM images are shown in Fig. 9 in the Appendix. The
measured Zeta potentials are strongly negative, indicating that the suspensions are very stable
against coalescence [51].

For the Kostrosöl samples manufactured and supplied by Chemiewerk Bad Köstritz GmbH
(CWK), the particle size distribution (PSD) properties were determined by the manufacturer
using a CPS Disc Centrifuge (CPS Instruments, USA), and they are provided in the Appendix.
Both volume and number-averaged distributions are depicted. The volume-based PSDs for all
samples exhibit a single peak around the mean particle size, resembling normal or log-normal
size distributions. In the case of Kostrosöl 9550, the number-based PSD is similar. However, in

Table 2. Manufacturer provided and measured sample properties.

Sample ⟨a⟩v [nm] PDIv ⟨a⟩v
⟨a⟩N Zeta [mV] η [cP]

Kostrosöl 8050 38.2 0.027 1.645 −43.3 ± 2.4 5.9

Kostrosöl 9550 37.5 0.033 1.033 −36.7 ± 2.8 6.0

Kostrosöl 10050 49.7 0.018 1.195 −45.1 ± 0.8 4.7

Levasil CS50-28 - - - −51.7 ± 0.7 -
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Kostrosöl 8050 and 10050, additional peaks in the number-based PSDs are observed due to the
presence of a large number of smaller particles. While these smaller particles scatter almost no
light and are negligible in the volume-averaged scheme, they are significant in the number-based
PSD.

Levasil CS50-28, manufactured by Nouryon and supplied by Inprocess-LSP, was provided to
us as a more polydisperse sample with a particle radius range of 5-75 nm. However, detailed
information about the particle properties is not available. DLS measurements from literature
report an average particle radius of 55 nm [52]. However, it’s important to note that this value
may vary from batch to batch.

In Table 2, ⟨a⟩v is the mean radius, and PDIv denotes the polydispersity index of the volume-
based particle radius distribution measured by the manufacturer. Since the exact shapes of the
distributions in the Appendix are unavailable to us, the volume-based polydispersity index was
approximated by dividing the square of the full width at half maximum (FWHMv) by the square
of the mean radius. The quantity ⟨a⟩v

⟨a⟩N , as provided by the manufacturer and shown in Fig. 10 in
the Appendix, represents the ratio of volume-averaged to number-averaged particle radius. As
illustrated in Fig. 2(b), this ratio is directly related to the number-based polydispersity in Eq. (19).

The particle volume fraction fv is necessary for calculating the theoretical collective and
self-diffusion coefficients. Even though our particles are charge-stabilized, we did not know the
exact thickness of the electric double layer around them, which can significantly affect fv [16].
For that reason we diluted our original suspensions with a small amount of highly concentrated
LiCl solution (mixing ratio 110:1). This did not affect the silica weight content when rounded to
the nearest integer but resulted in approximately 14 mM LiCl concentration in the suspensions.
At this salt concentration the thickness of the electrical double layer can be neglected and the
particles can be treated as hard-spheres [16,53]. To determine fv we have used the simplest
approach based on the particle mass and density [54] with

fv =
[︂
1 +
ρs

ρw
(w−1

s − 1)
]︂−1

, (21)

where ws is the manufacturer stated silica mass fraction in the suspension, ρs ≈ 2.0 g/mL and
ρw = 1.0 g/mL are the silica particle and water densities [55], respectively. Based on Eq. (21)
and ws = 0.5, and for all provided samples the maximum volume fraction is fv ≈ 0.33.

The mean sample refractive index n was calculated by finding the refractive indices of water
and silica separately and then mixing them using the Lorentz-Lorenz formula [56,57]. The
refractive index of water as a function of wavelength and temperature was calculated using
[58], and the refractive index of silica at the room temperature as a function of wavelength was
estimated using [59]. Since all suspensions have the same fv, we assume that their refractive
indices are identical.

3.3. Diffusion measurements in dilute suspensions

Dilute suspensions were prepared using the demineralized water with a silica weight content
of 1 wt.% corresponding to fv ≈ 0.005. This is sufficiently low to neglect particle interactions
and multiple scattering. The LiCl concentration was maintained at the same level as in dense
suspensions. In dilute suspensions D0 is constant and does not depend on q. Therefore, all
DLS-OCT measurements were performed in the depth-domain using the Ganymede OCT system.
The dilute suspensions were used to determine D0 and PDII for all samples. In order to convert
D0 to the particle hydrodynamic radius, the viscosity of the dilute aqueous solution, η0, was
calculated using Eq. (21) from [60].

Every OCT acquisition consisted of 20 subsequent M-scans, each containing 32768 temporal
sampling points. The measured interference spectrum was first resampled to a linearly-sampled
wavenumber domain and then apodized using a Gaussian filter. After apodization, the measured
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FWHMz was 4.67 µm, exceeding the unapodized FWHMz value in Table 1. From the complex
OCT data the average of 20 first-order normalized autocorrelation functions was calculated at
every depth. The depth-resolved g1(z, τ) was noise-corrected [61,62] and averaged over the depth
range with SNR>10 inside the sample. The resultant average g1(τ) was fitted using Eq. (13) with
A = 1/(1 + SNR−1), Dc = D0, and µj as free parameters. The second- or fourth-order nonlinear
fits were performed depending on the sample polydispersity [40] for the range of τ for which
g1(τ)>0.01. The intensity-averaged particle size and PDII were subsequently calculated using
Eq. (1) and Eq. (14).

3.4. Diffusion measurements in concentrated suspensions

Wavenumber-domain DLS-OCT measurements were performed either with the custom or Thorlabs
OCT system. Due to temporal sampling and sensitivity limitations, only the samples with the
largest particles, Kostrosöl 10050 and Levasil CS50-28, could be measured using the custom
setup. The small particles, Kostrosöl 8050 and 9550, were measured using the Thorlabs system.
Two additional suspensions were made by mixing both samples in each pair with 1:1 mixing
ratio. In total 20 measurements were performed with 8192 and 32768 temporal sampling points
for the custom and Thorlabs systems, respectively.

Wavenumber-dependent DLS-OCT data processing steps are shown in Fig. 4. Similar to the
dilute case, we initially obtain the complex OCT signal from the spectral interference. Then
we compute the average depth-resolved g1(z, τ) and determine its decay rate as a function of
depth. We identify the depth region with a constant diffusion coefficient and without the effects
of multiple scattering or sensitivity roll-off [63]. We apodize the complex OCT signal in this
region using the Tukey window function and transform it back to the wavenumber-domain via
the forward Fourier transformation. As a result we obtain a fully real-valued spectral interference
signal. Subsequently, the average temporal autocovariances are computed and fitted for every k0
to determine the wavenumber-dependent diffusion coefficient.
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Fig. 4. Overview of the processing steps in DLS-OCT for obtaining the wavenumber-
dependent diffusion coefficient in a single acquisition. The data are from the custom-built
setup where we measured the collective diffusion coefficient in the Kostrosöl 10050 sample,
containing 100 nm particles at fv = 0.33.

In concentrated suspensions, particle size polydispersity can affect both the collective [20,24]
and self-diffusion [64,65] coefficients. For purely exponential decays Eq. (12) is used to fit with
autocovariance amplitude and the diffusion coefficient as fit parameters. For g1(q, τ) with a
non-exponential behaviour we use Eq. (15) to fit with Ac, As, Dc, and Ds as fit parameters.
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4. Results

Table 3 presents the results obtained from dilute particle suspensions using the Thorlabs OCT
system. Diffusion coefficients were obtained by fitting Eq. (13), and particle radii were determined
using the Stokes-Einstein relation. The errors in radii were calculated by propagating the assumed
temperature uncertainty of half a degree and incorporating statistical errors. Polydispersity
indices were then calculated using Eq. (14). Interaction times, calculated using τ0 = ⟨a⟩2

I /D0,
are also given. In general, the intensity-averaged particle sizes and PDII align well with the
volume-averaged values provided by the manufacturer in Table 2. The measured PDII values
for Kostrosöl samples are comparable in magnitude and slightly lower than the corresponding
PDIv from the manufacturer. This observation is consistent with our expectations for relatively
monodisperse samples, as indicated in Fig. 2. In contrast to Kostrosöl samples, Levasil CS50-28
and its mixtures exhibit significantly higher levels of polydispersity.

Table 3. Measured parameters for dilute particle suspensions using the
Thorlabs OCT system.

Sample ⟨a⟩I [nm] PDII τ0 [ms]

Kostrosöl 8050 38.9 ± 1.1 0.022 ± 0.002 0.26

Kostrosöl 9550 37.4 ± 1.1 0.022 ± 0.002 0.23

Kostrosöl 8050 & 9550 1:1 mix 38.6 ± 1.2 0.023 ± 0.002 0.26

Kostrosöl 10050 48.6 ± 1.5 0.018 ± 0.002 0.51

Levasil CS50-28 51.7 ± 1.6 0.162 ± 0.003 0.62

Levasil CS50-28 & Kostrosöl 10050 1:1 mix 49.9 ± 1.6 0.101 ± 0.004 0.56

4.1. Kostrosöl 10050 and Levasil CS50-28 measurements

Autocorrelation functions for dilute (depth-domain, Thorlabs OCT) Levasil CS50-28, Kostrosöl
10050, and their mixture are shown in Fig. 5(a). As expected from Eq. (13), the autocorrelation
function of dilute samples deviates from the single exponential trend with increasing size
polydispersity. Autocorrelation functions for concentrated (q-domain, custom OCT) Levasil
CS50-28, Kostrosöl 10050, and their mixture are shown in Fig. 5(b). The concentrated suspensions
do not exhibit a double exponential decay; instead, we observe only a single term from Eq. (15).
We attribute this to a combination of factors, such as low sensitivity and low acquisition rate of
the custom setup, very high or very low sample polydispersity, used qa range, and differences
in decay rates between the collective and self-terms at longer time scales. Hence, a single
exponential function was employed to fit the wavenumber-dependent diffusion coefficient D(q).

The concentrated samples are analyzed in the q-domain with the custom setup which operates
with an acquisition time ∆t = 222 ms. This implies that we are in the long-time diffusion regime,
with τ ≫ τ0 for all particles. The obtained wavenumber-dependent diffusion coefficients for
concentrated suspensions with fv ≈ 0.33 are given in Fig. 6. For comparison, the theoretical Dl

s
and Dl

c(q) from Sec. 2.1.1 and 2.1.2 are also shown. These were calculated with hard-sphere
models presented in Sec. 2 and a volume fraction of 0.33 and the particle radii from Table 3. For
Kostrosöl 10050, Dl

s was estimated based on the provided sample viscosity and using Eq. (7). The
viscosity for Levasil CS50-28 was not known, so Dl

s was calculated using Eq. (6). The obtained
diffusion coefficients were normalized using D0 values of the diluted suspensions, corresponding
to the radii in Table 3. The measured D(q)/D0 for Kostrosöl 10050 is wavenumber-dependent and
agrees remarkably well with the long-time collective diffusion coefficient. For Levasil CS50-28
the obtained D(q)/D0 is constant and matches well to the long-time self-diffusion coefficient.
For the mixed sample D(q) is also constant (marginally q-dependent) and lies in between Dl

s and
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Dl
c(q). At the edges of the spectrum the obtained diffusion coefficient fluctuates, which is caused

by a reduction in the signal-to-noise ratio at these wavenumbers.
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Fig. 5. Autocorrelation function of Levasil CS50-28, Kostrosöl 10050, and their mixture.
(a) Depth-averaged g1(τ) obtained at the center wavenumber qc = 18.8 µm−1 in dilute
suspensions using the Thorlabs OCT, fitted with Eq. (13). (b) Wavenumber-dependent
g1(q, τ) measured in concentrated samples for q = 22.7 µm−1 using the custom OCT system,
fitted with Eq. (12). Black solid lines represent the fits.
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Fig. 5. Autocorrelation function of Levasil CS50-28, Kostrosöl 10050, and their mixture.
(a) Depth-averaged 𝑔1 (𝜏) obtained at the center wavenumber 𝑞𝑐 = 18.8 µm−1 in dilute
suspensions using the Thorlabs OCT, fitted with Eq. (13). (b) Wavenumber-dependent
𝑔1 (𝑞, 𝜏) measured in concentrated samples for 𝑞 = 22.7 µm−1 using the custom OCT
system, fitted with Eq. (12). Black solid lines represent the fits.
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Fig. 6. Measured q-dependent diffusion coefficient for Levasil CS50-28 (polydisperse),
Kostrosöl 10050 (monodisperse), and their mixture at fv = 0.33.

4.2. Kostrosöl 8050 and 9550 measurements

The short-time dynamics of concentrated Kostrosöl 8050 and 9550 samples are shown in Fig. 7(a-
i). All measurements were performed using the Thorlabs OCT system with a much higher
acquisition rate and lower noise compared to the custom setup. In this case, ∆t = 0.028 ≪ τ0
ms, which implies that we are in the short-time diffusion regime. The double-exponential
behavior in concentrated samples was clearly visible, which is why we used Eq. (15) to fit the
collective and self-diffusion coefficients. Figure 7(a,b,c) show the obtained first-order normalized
autocovariance functions both for dilute and concentrated suspensions. The correlation functions
are very similar because all samples are quite monodisperse and have similar particle sizes and
concentrations. For the same reason we see in Fig. 7(d,e,f) that the measured Dc(q) and Ds from
all samples are almost identical. In this case, Dc(q) matches well with the short-time collective
diffusion coefficient from Eq. (9), and Ds matches the short-time self-diffusion coefficient from
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Fig. 7. Kostrosöl 9550 (very monodisperse) and 8050 (less monodisperse), and
their mixture. (a-c) Measured and fitted 𝑔1 (𝑞 = 18.8 µm−1, 𝜏). (d-f) Measured and
theoretical collective and self-diffusion coefficients. (g-i) Measured and smoothed
collective and self mode amplitudes obtained using Thorlabs OCT.
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Fig. 7. Kostrosöl 9550 (very monodisperse) and 8050 (less monodisperse), and their
mixture. (a-c) Measured and fitted g1(q = 18.8 µm−1, τ). (d-f) Measured and theoretical
collective and self-diffusion coefficients. (g-i) Measured and smoothed collective and self
mode amplitudes obtained using Thorlabs OCT.

Eq. (4). The presence of noise is also evident, highlighting the added value of averaging over
different wavenumbers.

Since the self-term becomes visible at larger lag times, it is theoretically possible that we
measure Dl

s rather than Ds
s. However, the obtained results match well with the calculated values

of Ds
s. The only parameters that differ among these samples are the mode amplitudes Ac(q) and

As(q), as shown in Fig. 7(g,h,i). Here, the solid curves correspond to wavenumber-smoothed
data. We see that Ac(q) is highest for Kostrosöl 9550 and lowest for Kostrosöl 8050, while
As(q) is highest for Kostrosöl 8050 and lowest for Kostrosöl 9550. These differences can be
explained by the difference in size polydispersities between these samples. Despite having nearly
identical volume-based and intensity-based polydispersity indices, the number-based particle size
distribution for Kostrosöl 8050 exhibits significantly less monodispersity, as shown in Fig. 10(b),
compared to that of Kostrosöl 9550, as illustrated in Fig. 10(d). Hence, the self-diffusion
amplitude for Kostrosöl 8050 is larger. This contrast is highlighted by the provided ⟨a⟩v

⟨a⟩N data
from Table 2.

Particle number-based polydispersity indices were calculated from measurements of concen-
trated samples using the ratio of collective and self-mode amplitudes. This approach is valid at all
diffusion time scales. For each sample we calculated As(q)

Ac(q) and averaged it over the wavenumber
range with SNR>10. PDIN values were determined numerically by inverting Eq. (18) and the
results are given in Table 4. Unlike the intensity-based polydispersity indices measured in dilute
samples, the PDIN obtained from concentrated suspensions differs between Kostrosöl samples
indicating the variation in number polydispersity. While PDIN is not directly comparable with
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the manufacturer-provided ⟨a⟩v
⟨a⟩N from the Appendix, we expect them to be almost proportional

based on Fig. 2(b), which is exactly what we observe in Table 4.

Table 4. PDIN obtained from concentrated particle
suspensions using Thorlabs OCT, along with the

manufacturer-provided ratio ⟨a⟩v
⟨a⟩N .

Sample PDIN ⟨a⟩v
⟨a⟩N

Kostrosöl 8050 0.061 ± 0.002 1.645

Kostrosöl 9550 0.029 ± 0.001 1.033

Kostrosöl 8050 & 9550 1:1 mix 0.045 ± 0.001 1.379

5. Discussion

In this work we investigated q-dependent diffusion coefficients in concentrated (silica) particle
suspensions at short and long times. We measured collective and/or self-diffusion coefficients in
samples with similar particle sizes and varying degrees of size (and optical) polydispersities.
The results were consistent with calculations based on hard-sphere diffusion theory.

We determined the long-time diffusion coefficients in Levasil CS50-28 and Kostrosöl 10050
samples using a custom-built OCT system with a broad wavelength range and a relatively
long sampling time. The average particle size for both samples was nearly 100 nm, but the
polydispersities were different. In monodisperse Kostrosöl 10050 we measured the wavenumber-
dependent collective diffusion coefficient Dl

c(q). The obtained g1(q, τ)was pure single exponential
and the self-diffusion term from the decoupling approximation could not be observed. This is
primarily attributed to low size and optical polydispersities of the sample. The sample Levasil
CS50-28 exhibited much greater polydispersity; however, in this case, only the self-diffusion
coefficient Dl

s was measured. This suggests that, in this scenario, the self-diffusion contribution
to the correlation function is significantly larger compared to the collective diffusion. This is
precisely what we expect when we analyze the curves in Fig. 2(a,b). Here, we anticipate that
the PDIN values of Levasil CS50-28 and its mixture will be very high, resulting in As ≫ Ac.
Therefore, it is unsurprising that only self-diffusion is measured, which also is in good agreement
with the theoretical estimate. The diffusion coefficient obtained from the mixed sample remained
nearly constant with q and was notably higher than Dl

s. Due to the high sample polydispersity, it
is more likely that we are still measuring self-diffusion, but Dl

s deviates from the value predicted
by Eq. (6). Therefore, similar to the method used for Kostrosöl 10050, a viscosity measurement is
needed to estimate Dl

s more accurately using Eq. (7). Additionally, there is a possibility that both
the collective and self terms were measured, but they cannot be separated. It has been suggested
that when the amplitudes and the diffusion coefficients of the collective and self-diffusion modes
are comparable, separating these modes becomes problematic, resulting in the measurement
of a mixed diffusion coefficient [17]. Overall, the decoupling approximation appears to work
remarkably well even for moderately polydisperse samples.

We employed the fast acquisition Thorlabs OCT system to measure the short-time diffusive
dynamics in Kostrosöl 8050 and 9550. These suspensions were quite monodisperse with the
average particle size of approximately 75 nm. In this case, the obtained g1(q, τ) clearly exhibited
a double-exponential behavior, enabling us to measure both the self and collective terms. This
is likely attributed to the utilization of a faster and more sensitive OCT system with lower q
and the use of smaller particles, resulting in lower qa value. First, as illustrated in Fig. 1(c,d),
decreasing qa increases the difference between Ds

c(q) and Ds
s, making the collective and self

modes more distinguishable. Second, at low qa values, self-diffusion becomes significant even
for monodisperse suspensions due to a reduction in the structure factor [22]. For the Thorlabs
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system the wavenumber range was limited due to a narrow spectral bandwidth. Therefore,
we could not clearly observe the wavenumber-dependent variations in the collective diffusion
coefficient. Nevertheless, we find it feasible to measure self-diffusion even in monodisperse
particle suspensions due to optical polydispersity. In this study, our primary focus was on
investigating the impact of particle size variations on optical polydispersity. We did not consider
refractive index dispersity, which is always present to some degree, and further contributes to
increasing optical polydispersity [47].

The smallest particle radius that our custom-built DLS-OCT system can reliably measure in a
dilute aqueous suspension at all wavelengths is limited by the acquisition rate of the spectrometer
to around 50 nm. Additionally, the signal-to-noise ratio is constrained by the 212 µs dead time
of the spectrometer. Therefore, a faster spectrometer without dead time will provide increased
sensitivity and access to shorter diffusion times. Furthermore, self-interference inside the
multimode fiber also decreases the experimental SNR, which could potentially be improved by
altering the setup to a free-space system.

5.1. Particle sizing

Diffusion measurements can be used for in-line particle sizing during process control [66].
However, in concentrated particle suspensions there is no simple relation between the diffusion
coefficient and the particle size. The self-diffusion coefficient is wavenumber-independent
and depends both on particle size and concentration. So, without a-priori knowledge of the
particle concentration, Ds cannot be used to determine the particle size. The collective diffusion
coefficient, on the other hand, is wavenumber-dependent. So, when measured over a sufficient
q-range, Dc(q) can be used to determine both the particle size and concentration. This is only
possible with large-bandwidth OCT systems covering a wide q-range, capable of capturing
q-dependent variations in the collective diffusion coefficient.

For our long-time analysis, we inverted Eq. (11) and performed a fit for both a and fv using the
measured Dl

c(q) in Kostrosöl 10050. The fitted values for particle size and volume fraction were
a = 50 ± 2 nm and fv = 0.18 ± 0.02, respectively. The measured and fitted Dl

c(q) are shown in
Fig. 8(a). The obtained particle radius is remarkably close to the expected value, but the volume
fraction deviates considerably. This deviation is likely caused by an inaccurate estimation of the
long-time self-diffusion coefficient using Eq. (6) in the fitting procedure. For Kostrosöl 10050,
based on Eq. (7) and the measured viscosity, Dl

s/D0 = 0.21. In contrast, according to Eq. (6),
Dl

s/D0 = 0.17. It is evident that Eq. (6) slightly underestimates Dl
s for Kostrosöl 10050. Since

Dl
c(q) ∝ Dl

s, using Eq. (6) in our fit introduces a bias into the obtained parameters. However,
this bias affects fv more because it is more sensitive to the magnitude of Dl

c(q). Conversely, the
particle radius is more sensitive to the slope and shape of the Dl

c(q) curve, leading to a more
accurate estimation.

In the short-time analysis, both the collective and self-diffusion coefficients are obtained from
the fit and wavenumber-dependent measurements are not necessary to simultaneously determine
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the values of a and fv. In this scenario, we have two measurements of Ds
s and Ds

c and two
unknown parameters, which can be solved using a nonlinear system of equations. Consequently,
we inverted Ds

c(q) and Ds
s from the δY theory and utilized our measurements of the samples

Kostrosöl 8050, 9550, and their mixture to determine the particle radius and volume fraction
in each sample. In this case, we obtain values for a and fv at every single q without the need
to fit over the large q-range. This also allows the analysis to be conducted in the depth-domain.
Figure 8(b) shows the fitted a as a function of q along with the expected particle radius range for
these samples. The average particle sizes over the entire q-range, along with their corresponding
standard deviations, for Kostrosöl 8050, 9550, and their mixture were 39 ± 9, 41 ± 9, and 39 ± 8
nm, respectively. The averaged volume fractions obtained for these samples are presented in
Fig. 8(c) and correspond to 0.32 ± 0.03, 0.34 ± 0.04, and 0.33 ± 0.04, respectively. So there
is a good agreement with the expected values for a and fv, although the noise in Fig. 8(b,c)
is also significant. So, even if q-dependent measurements are not available, it is possible to
obtain the particle size and volume fraction in concentrated suspensions from fast correlation
measurements of both the collective and self-diffusion coefficients. Regardless of which diffusion
coefficient is obtained, it is always necessary to determine whether the measurement corresponds
to long- or short-time particle dynamics. This determination is not trivial, as it depends not only
on the acquisition speed but also on the to-be-estimated particle size. Furthermore, accurate
estimates of collective and self-diffusion, crucial in determining particle size, depend on known
particle interactions. While we assumed hard-sphere interactions, in industrial scenarios, these
interactions may remain unknown.

5.2. Polydispersity measurement

We observed that the intensity-based polydispersity index, PDII , measured using DLS-OCT in
dilute particle suspensions, demonstrates less sensitivity towards smaller particles compared to
its number-based counterpart, PDIN . This difference arises from the influence of particle size
on the measured PDII , which depends on both the scattering intensities and decay rates of the
particles. Smaller particles scatter less light and exhibit faster decaying autocorrelations, making
them more challenging to detect.

The PDII values obtained from the dilute samples Kostrosöl 8050, 9550 and their mixture
using the cumulant analysis were virtually identical even though the actual number-based
polydispersities were knowingly different. In concentrated suspensions, where both collective
and self-diffusion are measured, we used the ratio of the self over collective mode amplitudes to
determine PDIN . Our method measures PDIN by observing exchange diffusion, where particles
swap positions, leading to variations in the intensity of scattered light. This method proved
to be much more sensitive to particles of all sizes and can effectively differentiate samples
with very similar PDIv and PDII but different PDIN . The results obtained using this technique
closely matched our expectations based on the manufacturer-provided number polydispersities.
Our approach relies on assuming a normal distribution for the particle size to establish an
analytic relationship between PDIN and As(q)

Ac(q) . However, our method is not restricted to Gaussian
distributions and can be extended to particle size distributions of any a priori assumed shape, as
long as the decoupling approximation remains valid.

6. Conclusion

We demonstrated the application of q-dependent DLS-OCT to measure both collective and self-
diffusion coefficients in concentrated silica suspensions. Depending on the sample polydispersity,
we successfully measured either long-time collective or long-time self-diffusion over a broad q-
range using our custom-built OCT system. The obtained long-time collective diffusion coefficient
agreed well with hard-sphere theory, providing further evidence for the dynamic scaling property
[14]. Fitting the particle size and volume fraction of the suspension to the q-dependent collective
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diffusion coefficient resulted in excellent agreement for particle size but yielded a less accurate
estimate of the volume fraction.

We found the decoupling approximation to be highly effective in describing the first-order
normalized autocovariance functions in both monodisperse and relatively polydisperse samples.
Utilizing a high-speed yet narrow q-range Thorlabs OCT system, we simultaneously measured
collective and self-diffusion even in sufficiently monodisperse samples. Using both terms allowed
us to determine particle size and volume fraction at a single wavenumber. Furthermore, for a
normal particle size distribution, we derived a relationship between the particle number-based
polydispersity index and the ratio of the self and collective mode amplitudes. This relationship was
employed to determine the size polydispersity of concentrated suspensions. Our method exhibits
considerably greater sensitivity to all particle sizes compared to the standard intensity-based
cumulant analysis performed in DLS on dilute samples.

Appendix

Fig. 9. TEM images of (a) Kostrosöl 10050, (b) Levasil CS50-28, (c) Kostrosöl 9550, and
(d) Kostrosöl 8050.

a) Kostrosöl 8050 b) Kostrosöl 8050

c) Kostrosöl 9550 d) Kostrosöl 9550

e) Kostrosöl 10050 f) Kostrosöl 10050

Fig. 10. Volume (left column) and number-based (right column) PSDs for Kostrosöl (a,b)
8050, (c,d) 9550, and (e,f) 10050, determined by disc centrifuge.
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