Network Monitoring with Soft-
ware Defined Networking

Towards OpenFlow network monitoring

2]
(7]
(&)

=

|_
[0}
O
[

2
O

wn

(-
(@)
[
(O]

e
(7]
3]

Delft
U D e I ft Uﬁiversity of) .
I Technology Network Architectures and Services

e
TU Delft

Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Network Architectures and Services Group

Network Monitoring with Software
Defined Networking

Towards OpenFlow network monitoring

Vassil Nikolaev Gourov
4181387

Committee members:
Supervisor: Prof.dr.ir. Piet Van Mieghem
Mentor: Dr.ir. Fernando Kuipers
Member: Dr.ir. Johan Pouwelse
Member: Ir. Niels van Adrichem

August 30, 2013
M.Sc. Thesis No:

Delft
e t University of
Technology

Copyright (© 2013 by Vassil Nikolaev Gourov
All rights reserved. No part of the material protected by this copyright may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying,

recording or by any information storage and retrieval system, without the permission from
the author and Delft University of Technology.

Abstract

Network monitoring is becoming more and more important as more Internet Service Providers
and Enterprise networks deploy real-time services, like voice and video. Network operators
need to have an up-to-date view of the network and to measure network performance with
metrics like link usage, packet loss and delay, in order to assure the quality of service for such
applications. Obtaining accurate and meaningful network statistics helps the service providers
to estimate the "health" of their network, to find service degradation due to congestion and
could even use them for routing optimization. Finally, a more accurate picture of the nature
of the Internet traffic is important for continued research and innovation.

In this thesis, Software Defined Networking is used as a unified solution to measure link
utilization, packet loss and delay. Currently, there is no single solution capable to measure all
the mentioned metrics, but a collection of multiple different methods. They all need separate
infrastructure which needs additional installations and expenses. Furthermore, those methods
are not capable to meet all the requirements for a monitoring solution, some are not accurate
or granular enough, others are adding additional network load or lack scalability.

Software Defined Networking is still in an early development stage. Unfortunately, obtaining
network statistics is a problem that has not been discussed very much. Nevertheless, Open-
Flow protocol is already gaining a lot of popularity and it could be used as a unified monitoring
solution. Its built-in features are already sufficient to provide accurate measurements. This
thesis explores what are the current monitoring methods with and without Software Defined
Networking and how monitoring could be archived in an OpenFlow enabled topology. It pro-
poses methods to measure link usage, packet loss and delay. In terms of link usage statistics
several approaches are proposed to reduce the generated overhead. Furthermore, the thesis
also suggests how to measure how packet loss in networks that use OpenFlow.

Abstract

Table of Contents

Abstract i
Introduction 1
1-1 Research Motivation 1
1-2 Research Question 2
1-3 Thesis Structure L 3
Software Defined Networking 5
2-1 Network Evolution and Problems 5
2-2 OVEIVIEW L 7
2-2-1 History 7
2-2-2 Architecture L 7
2-2-3 OpenFlow 9
Network Monitoring 15
3-1 Measurements 15
3-1-1 Metric Definition 15
3-1-2 Types of Measurements 17
3-2 Literature Review 18
3-2-1 Current Internet 18

3-2-2 SDN . . . 19

iv Table of Contents
4 Working with POX 21
4-1 Assumptions 21
4-2 OpenFlow Monitoring Architecture 22
4-2-1 POXAPIs 23

4-2-2 Topology 23

4-2-3 Forwarding 24

4-3 Overview 25

5 OpenFlow network monitoring 27
5-1 Objectives 27
5-2 Measuring Methods 28
5-2-1 Real-time link utilization oL 28

5-2-2 Link packet loss 31

5-2-3 Linkdelay 32

5-3 Monitoring 33

6 Evaluation 35
6-1 Test Environment 35
6-2 Link Utilization 36
6-2-1 Data collection schemes 36

6-2-2 Flow vs Aggregate statistics 38

6-2-3 Adaptive vs Recurring polling 39

6-2-4 Validation 41

6-3 Packet Loss 43
6-3-1 Validation 43

6-3-2 Dependency 45

7 Conclusions and Future Work 47
7-1 Conclusions L 47
7-2 Future Work 48

A Glossary 55
B Results 57

List of Figures

2-1 Basic Architecture of a Software Defined Network 8
2-2 OpenFlow Switch Architecture [17] 9
2-3 OpenFlow flow setup [57] 10
2-4 Scheme of OpenFlow controller 11
4-1 OpenFlow prototype 22
4-2 Initialization 24
4-3 Topology view 25
4-4 Forwarding 26
4-5 Basic diagram of the monitoring component 26
5-1 Calculating the packet loss percentage 31
5-2 Measuring the link delay 32
5-3 Monitoring 34
6-1 Evaluation Topology 36
6-2 Last Switch query 37
6-3 Round Robin scheduling test results 37
6-4 Comparison of the two querying schemes 38

6-5 Comparison of the link overhead per polling scheme: OpenTM approach (left)
versus Aggregated statistics approach (right) 38

6-6 Aggregate flow statistics test results for Round Robin 39

6-7 Aggregate flow statistics test results for Last Switch 39

vi

List of Figures

6-8 Different polling intervals - Data rate measurements with 2s and 10s recurring

interval L 40
6-9 Different polling intervals - data rate measurements with adaptive polling 40
6-10 CDF for different polling intervals., 41
6-11 CDF for different polling intervals - a closer look 41
6-12 A more complex evaluation topology - Physical topology (left) and Flows sent

through the topology (right) 42
6-13 Data Rate for the link between Node 3toNode 4 42
6-14 Data Rate for the link between Node 2to Node 3 42
6-15 Data Rate for the link between Node 1 to Node 2 43
6-16 Evaluation Topology 43
6-17 Packet loss Distribution 44
6-18 Example of packet loss measurements for flows of 64 kbps 44
6-19 Example of packet loss measurements for flows of 10 Mbps 45
6-20 Example of packet loss measurements for flows with different duration 46
6-21 Example of packet loss measurements for flows with different data rate 46
B-1 Wireshark report for Last Switch measurements 57
B-2 Iperf Server report for Last Switch measurements 58
B-3 Wireshark report for Round Robin measurements 58
B-4 Iperf Server report for Round Robin measurements 58
B-5 Round Robin scheduling Wireshark results 59
B-6 Wireshark report for Aggregated measurements when using Round Robin 59
B-7 Wireshark report for Aggregated measurements when using Last Switch 60
B-8 Iperf Server report for Aggregated measurements when using Round Robin . . . 60
B-9 Iperf Server report for Aggregated measurements when using Last Switch 61
B-10 Data Rate for the link between Node 3 to Node 4 as shown by Wireshark 61
B-11 Data Rate for the link between Node 2 to Node 3 as shown by Wireshark 61
B-12 Data Rate for the link between Node 1 to Node 2 as shown by Wireshark 61
B-13 Example server output L 62
B-14 64kbps tests server output L. L 63

B-15 10Mbps tests server output L 63

2-1
2-2

3-1

5-1

List of Tables

Fields from packets used to match against flow entries [17]

Open-Source OF Controllers
Measurement Issues [13]

Counters [17]

10
12

19

viii List of Tables

Chapter 1

Introduction

1-1 Research Motivation

Since the establishment of the first point-to-point communication in the 1950s, data commu-
nications have experienced fast development, and have on their own facilitated research and
technology advancement worldwide. The ARPANET, which is considered the predecessor of
today’s Internet, was founded during the end 70s and early 80s. When the networks that
are the foundation of the Internet were first designed, they were very simple (i.e. Ether-
net, invented 1973 and was commercially introduced in 1980 [27]). Multiple inter-networking
protocols, which we still use, were introduced during those initial days, such as the Internet
Protocol (IP) and the Transmission Control Protocol (TCP). Throughout the years, people
have discovered the application of the Internet and its penetration worldwide has grown ex-
ponentially. Its success is undeniable, it has now become a part of our daily life and billions
of people worldwide use it [20]. IP networks are now also widely used for business needs, such
as e-commerce, online banking, etc.

The network and protocol designers considered only the services and applications available
at that time, such as mail, telephony and file transfer. They tried to build an architecture
where resources are socially shared with other users. Unfortunately, there are some design
drawbacks that need to be considered. What was simple and straightforward in the begin-
ning started to change slowly and today the Internet has evolved into a huge structure, an
interconnection of thousands of networks. A lot of new services have been introduced, such
as video streaming, social networking, online gaming, bank transfers, etc. Every time a new
service was introduced, it came with new control requirements, which in turn led to increasing
network complexity. Currently, networks based on the old design have become too compli-
cated and hard to manage, they are also too expensive [5]. Furthermore, there is no guarantee
that any new architecture would not result in a similar problem a decade from now. Every
time when a new infrastructure capable of solving the past problems was introduced, new
problems came up. A solution that is able to meet the future requirements as they arise is
needed. This is where the philosophy of Software Defined Networking (SDN) may play an
important role.

2 Introduction

New services need an environment that is capable to dynamically adjust to their demands,
that is capable to provide them more than best effort point-to-point interconnection. While
this has been of a minor importance during the past years, at a certain point in time people
and organizations will get frustrated with the current best effort services. The performance
of applications depends on the efficient utilization of network resources. Currently, Internet
Service Providers (ISPs) have simply oversubscribed additional capacity. In the past this has
been a possible way to avoid network congestion, packet delays and losses [35]. Unfortunately,
the dramatic increase of Internet traffic in the past years suggests that this approach is not
feasible for the future as demands are growing exponentially. For example, one service that
has experienced an incredible growth during the last couple of years is video streaming over
the Internet. Its popularity has increased with an impressive rate up to the point that it
forms about 50 percent of the Internet traffic [47]. Additionally, it continues growing and it
is expected to reach 90 percent over the next years [4]. People constantly use the Internet to
watch TV shows, video tutorials, amateur videos, live events, etc. Such applications require
certain Quality of Service (QoS) guarantees to work properly.

A key aspect for network management, in order to reach QoS and for tasks like network
security and traffic engineering, is accurate traffic measurement. During the last decade this
has been an active research field, as it has become extremely difficult to obtain direct and
precise measurements in IP networks due to the large number of flow pairs, high volume of
traffic and the lack of measurement infrastructure [60]. Current flow-based measurements
use too many additional resources (i.e. bandwidth and central processor unit (CPU) time),
and other existing monitoring solutions require additional changes to the configuration of the
infrastructure, which is expensive, again bringing additional overhead. It is now obvious that
there is a need of management tools capable to provide an accurate, detailed and real-time
picture of what is actually happening on the network and, in the same time, are cheap and
easy to implement.

1-2 Research Question

Whenever network management is considered there are two main stages: monitoring and
control. Thus, the first step to achieve a scheme capable of battling those problems is to
design a suitable monitoring solution. The problem that this thesis addresses is how to
monitor network utilization efficiently in real time in the context of SDN and more specifically
OpenFlow. Hence, the main goals of this thesis are:

e Use Software Defined Networking as a lever to meet the future networking demands,

e by designing a monitoring solution capable to measure network utilization, delay and
packet loss and

e cvaluate it via an implementation using OpenFlow.
Subsequently, the research goal of this thesis is to provide an answer to the following questions:

e How can monitoring be achieved with Software Defined Networking?

e What kind of improvements could SDN bring compared to present solutions?

1-3 Thesis Structure 3

1-3 Thesis Structure

This thesis follows a standard research and development method. Initially, the problem
is formulated after investigation of the existing work and a review of the SDN technology.
Chapter 2 goes trough the development of the SDN during the years, followed by a preliminary
research of the SDN philosophy and current advances. Chapter 3 deals with a literature review
of the available network monitoring solutions. Once the investigation is finished, it is time to
build a conceptual architecture and a prototype. Chapter 4 focuses on the implementation of
a network monitoring solution in a real test environment using the OpenFlow protocol. First,
an overall architecture of the building components is given and each component is discussed
separately. Chapter 5 answers the question on how traffic monitoring should be achieved in
SDN. The chapter starts with describing the design objectives and assumptions. It explains in
details the architectural trade-offs. Last, in Chapter 6 the monitoring prototype is evaluated.
The chapter describes multiple evaluation scenarios, carefully designed to measure different
aspects of the monitoring solution. The final chapter, Chapter 7 presents conclusions and
future work.

Introduction

Chapter 2

Software Defined Networking

The goal of this chapter is to provide insight on the philosophy of a new network paradigm,
Software Defined Networking. The chapter starts with a brief summary of the history and
findings that led to recent advances in the field, explaining why SDN is needed and what in-
herited problems it should overcome. Secondly, an explanation of the SDN basics is provided.
The chapter finishes with an overview of OpenFlow, the protocol that is currently considered
as the SDN standard.

2-1 Network Evolution and Problems

Throughout the past decades the Internet has changed the way people live. Users enjoy
its simplicity and the ability to communicate world-wide. While using the Internet still re-
mains the same for the end users with almost no major changes, the underlying infrastructure
has undergone a significant change. New services that require certain network quality have
emerged and the ISPs had to adapt. It can be safely said that networking has been a trans-
formative event since the beginning. The overall architecture turned out to be a big success
due to its simplicity and effectiveness, but the supporting network infrastructure has been
slowly becoming a problem. Networks are growing large and need to support a lot of new
applications and protocols. Currently, they have become complex to manage which results
in expenses due to maintenance and operations, as well as, in network-downtime due to hu-
man errors [28] or due to network intrusions [15]. Furthermore, certain new services are not
capable to operate in a best effort (BE) environment (i.e. voice and video delivery), where
resources are socially shared, resulting in delays and losses.

To meet the demands of the emerging new applications, a lot of efforts have been made.
Several new techniques and changes in the infrastructure architecture were suggested, each
time the network operators had to invest substantial amount of money (e.g. MPLS or IPv6
enabled devices). Furthermore, a lot of work has been done in the direction of integrating new
services in the old architectures, that were never designed with those applications in mind.

6 Software Defined Networking

There are some inherited limitations (i.e. slow service development and upgrade cycle),
which make it impossible to meet current market requirements. With every new product
on the market the network complexity increases and instead of facing the real problem, it is
avoided. The current network architecture relies on devices where the control plane and data
plane is physically one entity, the architecture is coupled to the infrastructure. Furthermore,
every node within the current network architectures needs to be separately programmed to
follow the operator’s policies. It can be safely stated that network control is too complex.
Additionally, the companies that provide network devices had full control over the firmware
and the implementation of the control logic, as a result it is very difficult to assure vendor
inter-operability and flexibility, sometimes close to impossible. The constraints that limit the
networks evolution include:

e Complexity: Over the past decades a lot of new protocols were defined each one solving
a specific network problem. As a result, for any changes in the network topology or
implementation of a new policy, the network operators need to configure thousands of
devices and mechanisms (update ACLs, VLANSs, QoS, etc.) [41].

e Scalability: The demand for data grows exponentially, traffic patterns are changing
and are no longer predictable. Due to these changes, the cloud computing and the spawn
of new bandwidth hungry applications (i.e. content delivery), during peak hours the de-
mand for bandwidth reaches a level, dangerously close to the maximal network capacity.
However, having complexity problems also leads to scalability problems, because their
networks are no longer capable to continue growing at the same speed. Furthermore,
network providers are not be able to continue investing into new equipment endlessly
as they have already been heavily investing during the past decades into infrastructure.
Meanwhile, the innovation cycle speeds up, which means additional expenditures for
more hardware, but the service prices are shrinking [41].

e Dependability: The network operators need to tailor the network to their individual
environment, which requires inter-vendor operability, but very often such operability is
not provided by the equipment vendors.

In [11] is stated that an ideal network design should be exactly the opposite of what current
networks have become, or simply should involve hardware that is: Simple, Vendor-neutral
and Future-proof. The software remains agile, which means, capable of supporting all the
current network requirements (i.e. access control, traffic engineering). At the same time, it
should be able to meet any future requirements. New network architectures are proposed,
however the initial cost to implement them over the already existing infrastructure is too
big. The lesson is that network operators need a solution that can be implemented without
changing too much infrastructure and spending a lot of money. This is where SDN kicks in.
The SDN approach tries to solve the issues for the network providers by introducing a more
centralized control system for the whole network.

2-2 Overview 7

2-2 Overview

2-2-1 History

The idea of a centralized network architecture is not something new. A lot of research
initiatives have been working on the idea of split architectures during the past three decades.
It goes back to the 1980s when Network Control Point (NCP) [46], a circuit switched network
was introduced. Up until then all call control was managed by the circuit switches the calls
went through. However, there were a number of problems, like limited processing power of
the single switches, limited visibility of the network the switch had and the limited amount of
upgrades the switch could have. These problems were addressed by the NCP, which simply
is a processing platform external to the switch. A similar approach is later used as basis for
many voice features and is still in use today, for example, within the SS7 protocol suite.

At the end of the 90s another project emerged known as the Tempest [33]. It suggests a way
to delegate control to multiple parties over the same physical ATM network. The project
revolves around the idea that every service has specific needs and would require separate
control architecture. The main goal is to split the network into multiple virtual networks,
which could be used in a way suitable for a specific application. Shifting the question of how
to fit the new service within the current architecture to what is the best architecture for some
particular new service.

Around a decade ago AT&T’s researchers started working on a platform called "IP-NCP', a
platform separated from the infrastructure, where routing decisions could take place. Subse-
quently, 8 years ago, what is now known as the Routing Control Platform (RCP) [8] became
reality. RCP selects the Border Gateway Protocol (BGP) routes for an autonomous system
(AS) by collecting information about the topology and the external destinations. Afterwards,
it is capable to perform route selection and assign them to the routers using the iBGP pro-
tocol. This approach solves the scalability problem that current IP networks have with BGP.
Approximately at the same time frame, a research paper suggesting a new conceptual archi-
tecture called 4D [19] was published. Together with the RCP the 4D architecture could be
considered to be the forefathers of the SDN notion and the hype that followed afterwards.

More recently, the notion has gained even more widespread fame with the adoption of Open-
Flow (OF) [31] (see section 2.2.3) and the SANE [10] and Ethane [9] projects. Those two
projects defined an enterprise architecture and they are the predecessors of OpenFlow as it is
known today. The RCP concept is also re-examined using SDN abstraction and the specifics
of the OF protocol. In [45] a prototype of the RouteFlow Control Platform (RFCP) is pre-
sented. The authors suggest a hybrid model to assure smooth migration towards SDN and to
verify its efficiency, aBGP (Aggregated BGP) is implemented. The paper suggests use cases
which can be achieved by using the RFCP platform, such as Traffic Engineering and Optimal
Best Path reflection.

2-2-2 Architecture

In principle, network equipment is logically composed of a data and control plane, each of
them accomplishing a special task. The data plane is also known as forwarding plane and takes
care of forwarding packets through the network device, while the control plane is concerned

8 Software Defined Networking

with the decision logic behind. It uses the forwarding policies defined by the ISPs for each
packet, to take decision which is the next hop or/and final destination. Hence, the underlying
infrastructure could be split into two components: hardware and software that controls the
overall behaviour of the network and its forwarding layer.

The Software Defined Networking approach decouples the control plane from the network
equipment and places it in a logically "centralized" network operating system (NOS), also very
often referred to as controller. A protocol is used to interconnect the two separated planes,
providing an interface for remote access and management. Figure 2-1 illustrates the basic
SDN architecture. The architecture varies with the implementation and depends of the type
of network (i.e. data-centre, enterprise and wide area network) and its actual needs. The
physical infrastructure consists of switching equipment capable to perform standard tasks,
such as buffering, queueing, forwarding, etc. Although, referred to as physical environment,
many network deployments use also software switches (virtualization, mainly in data-centres
with virtual servers). While some discussion are going on how exactly the control plane should
be achieved (distributed or centralized), a common agreement is reached that it "decides" what
has to happen within the network, either proactively or reactively. Finally, the controller could
be closed or could provide Application Programmable Interface (API). The main idea behind
SDN is to abstract the architecture and provide an environment where it is easy to build
new applications. This would reduce the development time for new network applications and
allow network customization based on specific needs.

g‘

a Applications

Wt

()

s
A=

b
E
N

Network OS

-
Rt
’.

cscescsceadep

Physical Infrastructure

Figure 2-1: Basic Architecture of a Software Defined Network

Such architecture tries to achieve the following goals:

e Interoperability: Centralized control over the SDN enabled devices from any vendor
throughout the whole network.

e Simplicity: the complexity issues are eliminated. The network control is easier and
more fine grained, which results in an increased reliability and security, in a more
granular network control. Flow based control allows control over each session, user,
device and application.

2-2 Overview 9

e Innovativeness: The abstraction of the network services from the network infrastruc-
ture allows network operators to tailor the behaviour of the network and program new
services faster than before. The entire structure becomes much more evolvable.

Unfortunately, there are also some issues that need to be faced. The very centralized nature
of the SDN architecture raises scalability doubts. The main problem in such a centralized
architecture is the bottleneck that could be formed between the infrastructure and the con-
troller. Furthermore, there are also concerns for a bottleneck with the switching equipment,
in terms of forwarding capacity (table memory) and the overhead that could be created by
constant reactive invocation of the control plane. This problem brings discussions about how
distributed /centralized the SDN architecture should be.

2-2-3 OpenFlow

OpenFlow [31] is an implementation of a communication protocol that interconnects the
forwarding with the data plane. It enables part of the control operations to run on an
external controller. The architecture is based on the SDN paradigm, it uses flow tables
installed on switches, a controller and a protocol for the controller to talk securely with
switches (encrypted using TLS). Figure 2-2 presents the basic scope of an OF enabled switch.
The idea is to manage the switches (more precisely the switch flow tables) remotely using the
OpenFlow protocol. This protocol allows the controller to install, update and delete rules in
one or more flow tables, either proactively or reactively. The following subsection describes
each component separately, the switches and the controllers and their interaction.

KK ‘/ : % =OpenFlow Protocols =
4 -
9 \\,;
e A
Flow Table §
OF Switch Controller

Figure 2-2: OpenFlow Switch Architecture [17]

Data-Plane

The flow table of each OF switch contains a set of match fields, counters and instructions. The
header of every packet that enters the switch, together with the ingress port, is compared
against the flow table. If there is a match, the switch executes the specified actions (i.e.
forwards the packet). In case there is no match the controller needs to take decision and
install a new flow table entry. The switch sends a flow requests message to the controller
containing the new packet header. The controller takes decision on what to do with the
packet and sends instructions to the switch. This new rule specifies the actions that need
to be taken for this packet. The whole process could be summarized in four steps and is
illustrated in Figure 2-3.

A match is whenever the values in the header fields of the new packet are the same as those
defined in the flow table. If a field is assigned the value of ANY then it matches any header

10 Software Defined Networking

C i
~ E - I TS ——

Flow Table Controller
..
_____ .
Rule Rule 4New ‘‘‘‘ New
-:.E;§.i Rule Packet
OF Switch

Figure 2-3: OpenFlow flow setup [57]

values. Table 2-1 gives the fields of the new packet that are compared to the switch flow
tables. There might be multiple matches, then the entry with the exact match has higher
priority over the wildcard entries. If there are multiple entries with the same priority, the
switch is allowed to choose between them [17].

Table 2-1: Fields from packets used to match against flow entries [17]

Type ‘
Ingress Port

Metadata

Ethernet source address

Ethernet destination address

Ethernet type

VLAN id

VLAN priority

MPLS label

MPLS traffic class

IPv4 source address

IPv4 destination address

IPv4 protocol/ARP opcode

ToS bits

Transport source port/ICMP type
Transport destination port/ICMP code

During the last years the research community has focused its efforts towards SDN and the OF
protocol. A new non-profit consortium was launched in 2011 known as The Open Networking
Foundation (ONF). Its main goal is to establish a SDN ecosystem, by introducing standards
and solutions. By the end of 2012 it had already published OF switch specification version
1.3.1 [17], describing the requirements for an OF switch.

Multiple equipment vendors (like Brocade, IBM, NEC) have introduced OpenFlow enabled
switches to the market. There are also some options for building up a OF switch for research
purposes. First, in [37] there is a description on how to build an OF enabled hardware switch
using the NetFPGA platform. Linux Ethernet Switches can also work with OF protocol,
but the performance is limited. Additionally, OF is not limited to hardware only, there are
multiple projects for software switches. The one that remains most cited and is compatible

2-2 Overview 11

with most of the other projects is the Open vSwitch [44]. An open source software switch
targeted at virtual server environments. A more detailed list of commodity switches and
software switches that are complaint with OF can be seen in [32].

Control-Plane

The main task for the controller is to add and remove entries from the switch flow-tables.
Figure 2-4 provides a scheme of a basic controller. The controller interacts with a set of
switches via OpenFlow using the so called Southbound interface. For security reasons it
supports encrypted TLS and exchanges certificates with every switch. This varies with the
implementation as it is not specified. The controller is responsible for all the essential functions
such as service and topology management. It could be enhanced with additional features or
it could provide information to external applications. Currently, the so called northbound
communication is not standardized. Some efforts are made to enhance the abstraction level
by designing network programming languages on top of the controllers. Examples of such
languages are Frenetic [16] and Procera [55]. Finally, via the West and Eastbound interfaces
the controller is capable to communicate with other controllers. There are already a lot of
proposals for this interaction (e.g. Hyperflow [52]).

Applications
A
Northbound
v
Service/Controller Interface
3 3
= =
o |= =
c [Ewo 1= E)ﬂ
=3 (=] g =] g w
<o T SE -
n (02 o2 O
s 5 e 3
Controller] g Network 5 Controller
© Controller ©
Controller/Switch Interface
A
Southbound

Forwarding Devices

Figure 2-4: Scheme of OpenFlow controller

A lot of designing and implementation efforts are focused on the controller, since it is the
most important element of the whole architecture. Throughout the past years a number
of new controllers have been released. Table 2-2 depicts the most important existing open-
source controller projects, released for research and testing purpose (a more detailed list can
be seen in [32]). NOX [21] is the first OpenFlow controller. It has been used as a base for
new controllers and numerous experimental applications use it. It is designed for a campus

12 Software Defined Networking

network. The NOX creators made both C++ and Python interfaces, which made it hard to
use and a lot of users were only interested into using the Python interface. POX [30] was
designed to address that, to create a framework that makes it easier to write new components.
Floodlight is also picking up a lot of steam, an open source Java-based controller released by
BigSwitch Networks with the help of Beacon’s creator. It could be said that it is the first open
source commercial controller. It is capable to work with both physical and virtual switches.
Finally, Onix [29] is a framework for a distributed controller which runs on a cluster of one or
more physical servers, each of which may run multiple instances. Based on the foundations of
the Onix controller new proprietary OpenFlow controllers are under development by several
companies (NEC, BigSwitch Networks, Nicira Networks, Google and Ericsson). There are a
lot of projects dealing with different problems the SDN architecture faces. The main ongoing
discussions are about centralized vs distributed state (affecting the granularity) and reactive
vs proactive decisions. The only conclusion that can be drawn at this moment is that there is
not a one size fits all solution, as different approaches are more suitable for specific application
environments (i.e. data centres or enterprise networks).

Table 2-2: Open-Source OF Controllers

’ Name ‘ Language ‘ Developer
Beacon [14] Java Stanford University
Floodlight [40] Java Big Switch Networks
Maestro [61] Java Rice University
NOX [21] C++, Python Nicira
POX [30] Python Nicira

Applications

While the exact SDN architecture is not yet decided and it remains under investigation,
another hot topic is the applications that could be designed around it. A lot of research
efforts are targeting to integrate old applications that proved to be useful within the legacy
networks, but were also rather expensive or complicated to implement in the production
networks. This section briefly presents some of the applications currently being built over the
existing open controllers or considered by the industry. The idea is to illustrate the wide use
of OF in different network environments.

For enterprise and campus networks a network management application which is capa-
ble of enforcing security policies such as access control, packet inspection. For example,
SANE [10] inspects the first packet of every new flow that enters the network. For flow con-
trol and traffic engineering by flow prioritization, route selection, congestion control, load
balancing. There are some examples of OpenFlow applications deployed in campus networks
like Ethane [9] and wireless networks like Odin [50]. Multiple projects are already offering
network researchers an open source software router. Projects like RouteBricks, Click, Quagga
and XORP bring benefits to the network community by offering extensible forwarding plane.
QuagFlow [39] is built with the idea to partner Quagga with OpenFlow. Since then it has
evolved and is now known as RouteFlow (RF) [38]. It uses a virtual view of the topology
where the routing engine calculates the data path and executes the resulting flow commands

2-2 Overview 13

into the real network topology. There are also some suggestions for network monitoring
applications that collect network utilization statistics for the entire network [53].

Data centres also found use for SDN and OpenFlow. Server virtualization is already years
ahead and the next logical step is the network virtualization. SDN would enable hypervi-
sor scalability, automated virtual machine (VM) migration, faster communication between
the multiple virtual servers, bandwidth optimization, load balancing [56], energy consump-
tion [23]. For example, MicroTE [6] uses real-time host-based traffic monitoring to take
appropriate routing decisions every second for both what is considered predictable and un-
predictable traffic. Routing decisions are taken using a weighted form of Equal Cost Multipath
(ECMP) approach along the K equal hop length paths between the source and the destina-
tion or based on bin-packing heuristics. Furthermore, for the infrastructure networks it
would make bandwidth calendaring and demand placement possible. Those uses are necessary
for data centre replication or for any service that requires guarantees and network resource
coordination (content delivery or cloud services).

14

Software Defined Networking

Chapter 3

Network Monitoring

Using Software Defined Networking could solve some of the current monitoring problems in
today’s IP networks. Furthermore, there is insufficient work on how measurements should be
achieved in an OpenFlow enabled network. This chapter discusses basic traffic measurement
approaches used today by ISPs. Initially, it provides definition of network metrics, as well
as, their errors and uncertainties. The chapter ends with an overview of the current monitor-
ing approaches. Furthermore, it reviews not only the current monitoring methods, but the
proposed SDN approaches, as well.

3-1 Measurements

Every day millions of computers connect to the Internet, generating a huge amount of traffic.
This process is dynamic in the sense that the amount of traffic is still increasing, changing in
size and new applications are also constantly joining the flow. While this process continues, it
is fundamental for ISPs to keep up to date knowledge about what is going on within their part
of the network. Measuring the traffic parameters provides a real view of the network prop-
erties, an in-depth understanding of the network performance and the undergoing processes.
Network monitoring is crucial for QoS criteria and assures that the network systems function
properly, therefore granting Service Level Agreements (SLA) in a dynamic, constantly chang-
ing environment. The ability to obtain real traffic data allows to analyse network problems,
generate traffic matrices, optimize the network using traffic engineering techniques or even
upgrade it based on future predictions. Finally, a proper network view allows the routing algo-
rithms to take more appropriate decisions, increasing the resource utilization and decreasing
the congested nodes/links.

3-1-1 Metric Definition

An explanation of what to measure is needed, before diving into measuring classifications and
monitoring tools that are out there. This subsection tries to give a proper definition for all

16 Network Monitoring

the metrics that will be used later in this thesis. The definitions for delay and packet loss are
based on the IPPM Framework [43].

Link Usage and Utilization: Link usage is expressed as the number of correctly received
IP-layer bits sent from any source and passing trough link L. during the interval of time T.
There is a distinction between capacity and usage. While the link capacity is a theoretical
value, a representation of the maximum link usage, the link usage is a variable number that
changes. It is the average rate of bits that go trough the link and are correctly received
by the other node attached to it. Therefore, the link utilization is expressed as the current
link usage over the maximum link capacity and is a number from zero to one. When the
utilization is zero it means the link is not used and when it reaches one it means the link is
fully saturated [12]. Throughout this thesis the term utilization is used as a synonym for link
usage and is presented with the number of bytes that pass trough a link in a specific moment.

Packet delay: Some applications are directly influenced by the network delay, their per-
formance degenerates under large end-to-end delay, which makes it an important metric for
proper QoS and user experience assurance. The total network delay is composed of prop-
agation delay, processing delay, transmission delay and queueing delay. Propagation delay
depends on the signal speed and the link’s length. Processing delay is the time it takes each
forwarding node to find a match in the routing table and move the packet from the ingress
to the egress interface. Transmission delay is the time it takes the node to push the entire
amount of packet bits (counts from the first bit that reaches the transmission line) on the
link. Finally, queueing delay is the time packets spend waiting in buffers and queues due to
prioritizing certain traffic classes or congested links.

Delay is the total time it takes for a packet to travel from a source node to its destination
node. The time measurement starts as soon as the first bit is sent and finishes counting when
the last bit is received by the destination. Therefore, the one-way delay is the difference AT
between the time 77 the packet started transmitting and the time 75 when the packet was
entirely received [1].

Delay Uncertainties and Errors; Delay is extremely difficult to measure since it can be as
10us up to millisecond range. Therefore, measuring nodes need accurate clock synchronization
and often they should rely on Global Positioning System (GPS) clocks instead of Network
Time protocol (NTP) servers. There are four sources of error and uncertainty in today’s
network [36]. Accuracy defines how close a given node’s clock is to the coordinated universal
time (UTC). Resolution is how precisely a clock can measure time, i.e. some clocks are
capable to measure only with millisecond precision. When multiple clocks are involved they
can disagree on what time it is, therefore they have synchronization issues. Finally, over time
clocks are drifting, thus influencing their accuracy and synchronization.

Packet loss is the event when certain amount of packets sent from a source node fail to reach
their destination node. This may be caused by link failures and changes in the topology or
by network congestion. One-way packet loss is expressed as a number from 0 to 1 (sometimes
also presented in percent). It is exactly one when all the packets do not reach their destination
and zero when all were correctly received [2].

There are some additional terms that are related to the direct measurement of those metrics
and are frequently used in the following chapters.

A flow is a unidirectional data communication between two applications that is uniquely

3-1 Measurements 17

defined by the following five identificators: source IP, destination IP, the number of the
transportation protocol that is used and, if available, the source and destination ports. A
link is the physical interconnection between two neighbouring nodes.

Traffic Matrix(TM); A must have for Traffic Engineering (TE) is the Traffic Matrix. Simply
said, it contains information about the amount of data transmitted between each pair of
network nodes. Obtaining the traffic matrix has been a big problem for the last decade,
mainly because the network measurement techniques that are used in today’s IP networks
have some limitations. For example, they lack scalability or granularity. Furthermore, the
best method that could be used for TM estimation is based on direct measurements, but it is
prevented by the demand estimation paradox. Different source-destination pairs, often have
a number of common links and it is hard to separate which traffic goes where. Once the TM
is known, there are various possibilities for network improvements, such as, increase the link
bandwidth, implement load balancing, fine tune and optimize the Interior Gateway Protocol
(IGP) metrics and change the BGP exit points.

3-1-2 Types of Measurements

Traditionally, many different measurement techniques are used. The main types of measure-
ments and the trade-offs they bring are discussed in this subsection. It is important to note
that OpenFlow already provides means to implement any of the methods or combine them if
needed, while traditionally every type of measurement requires separate hardware or software
installations.

Active vs Passive methods

In the world of network measuring there are two distinct groups of measurement methods:
passive and active methods. Passive measurement methods consist of counting the network
traffic without injecting additional traffic in the form of probe packets. Those methods are
good in the sense that they do not generate additional network overhead, unfortunately, the
reliability of the gathered data depends on installing additional hardware (traffic monitors).
On the other hand, active measurements are achieved by generating additional packets. They
are sent trough the network, where their behaviour is monitored. Some of the most well
known active measurement methods are traceroute and ping.

Both active and passive measurement schemes are useful for network monitoring purposes and
for collecting large amounts of statistical data. However there are several aspects that need to
be taken into account when designing a new monitoring application: overhead and accuracy.
For example, active measurements contribute with additional network load. Additional traffic
could cause inaccurate results and it is unclear how unbiased those methods are.

Application and Network methods

There is also difference on which Open System Interconnection (OSI) layer the measurements
are being taken. Network layer measurements use infrastructure components (i.e. routers
and switches) to account for statistics. Since the Network layer is responsible to assure

18 Network Monitoring

end-to-end delivery it can provide more accurate data about delay, jitter, throughput and
losses. Network layer methods are mainly used by ISPs to include new services and improve
network design. Unfortunately, this approach is not granular enough. It lacks the ability
to differentiate between applications (i.e. accounts only for the network-layer protocols).
Furthermore, it requires additional infrastructure or network changes. This is why Application
layer measurements are attracting attention. They are easier to deploy and are application
specific, therefore granular. Since they are operating on the upper layer it is also possible
to use them for better service delivery. Unfortunately, this method requires access to end
devices, which ISPs normally do not have.

3-2 Literature Review

Traffic measurements have been a field of interest for years in the computer networks commu-
nity . Normally, it involves measuring the amount and type of traffic in a particular network.
Today, different techniques are used to measure link usage, end-to-end delay and packet loss.
This section is divided into two subsections, describing both the monitoring systems that are
currently actively deployed and the new measurement approaches utilizing SDN capabilities.
The first subsection focuses on methods that are currently used by ISPs to monitor their own
infrastructure. Unfortunately, their options are very limited and give only partial network
information. Recently, some new suggestions take advantage of the functionality provided by
SDN, which are discussed in the second subsection.

3-2-1 Current Internet

The first group of measurements is based on port counters. Today, ISPs mainly use Simple
Network Management Protocol (SNMP) [49] for link load measurements. SNMP counters
are used to gather information about packet and byte counts across every individual switch
interface. The SNMP protocol has been in development since 1988, and it is now incorporated
in most network devices. A poller periodically sends requests towards every device in an IP
network. The obtained information is then available on a central structure known as Man-
agement Information Base (MIB). Unfortunately, some concerns exist on how often a switch
can be queried (limited to once every 5 minute) and the overall resource utilization (SNMP
queries may result in higher CPU utilization than necessary). Furthermore, information gath-
ered from SNMP counters lacks insight into the flow-level statistics and hosts behaviour, thus,
obtained monitoring information simply lacks granularity. Furthermore, SNMP is unable to
measure other metrics, therefore, it is not good enough for a single monitoring solution. This
leads to additional measurement infrastructure for packet loss and delay.

For a scalable real-time monitoring solution flow-based measurements such as NetFlow and
sFlow [48] rely on packet sampling. The method collects periodic samples for every flow,
which does not give the most accurate results, but is sufficiently accurate. Samples are taken
for every specific number of packets that go through the network (i.e. every 200th packet).
Every 5th minute the router sends the flow statistics to a centralized collector for further
analysis. To avoid synchronization problems (cache overflow, etc.) the traffic is separated
into bins of interval size of multiple minutes.

3-2 Literature Review 19

Deep Packet Inspection (DPI) is another method that is heavily used within network moni-
toring, for security reasons and also for high speed packet statistics. The method consists
of directing traffic or mirroring (via span port) it towards devices that inspect the header of
every packet and collect statistical information. Unfortunately, few network devices support
it, so very often additional hardware installations are required.

All monitoring techniques mentioned above use direct measurement approaches and have
problems that are summarized in Table 3-1.

Table 3-1: Measurement Issues [13]

’ Issue ‘ Example
High Overhead NetFlow CPU usage
Missing data LDP ingress counters not implemented
Unreliable data RSVP counter resets, NetFlow cache overflow
Unavailable data LSPs not cover traffic to BGP peers
Inconsistent data timescales differences with link statistics

Today, delay and packet loss data is mainly obtained by application measurements. Unfor-
tunately, ISPs normally do not have access to the end devices and the applications they use,
therefore they are unable to use methods that involve end hosts. The common practice to
measure those two parameters is to use ping. It uses the round trip time (RTT) by sending
Internet Control Message Protocol (ICMP) requests, in other words, it sends a number of
packets from a source node to a destination node and measures the time it takes for it to
return back. For example, Skitter [26] uses beacons that are situated throughout the network
to actively send probes to a set of destinations. The link delay is calculated by finding the
difference between the RTT measures obtained from the endpoints of the link. However, using
such a strategy to monitor the network delay and packet losses requires installing additional
infrastructure, because every beacon is limited to monitor a set of links. Furthermore, using
this method accounts additional inaccuracy and uncertainties.

Passive measurements are another widely used methods for packet and delay monitoring.
An example of passive monitoring is given in [18] and consists of capturing the header of
each IP packet and timestamp it before letting it back on the wire. Packet tracers are
gathered by multiple measurement points at the same time. The technique is very accurate
(microseconds), but requires further processing in a centralized system and recurrent collecting
of the traces, which generates additional network overhead. Furthermore, every device needs
accurate clock synchronization between every node (GPS clocks). Another similar approach
is used to measure packet losses [51]. It tags uniquely each packet when it passes trough the
source node and accounts if it was received in the end node.

3-2-2 SDN
The OpenFlow protocol is capable of not only controlling the forwarding plane, but also to
monitor the traffic within the network.

OpenTM [53] estimates a TM, by keeping track of the statistics for each flow and polling
directly from the switches situated within the network. The application decides which switch

20 Network Monitoring

to query on runtime and converges to 3% error after 10 queries. In the paper presenting it,
several polling algorithms are compared for a querying interval of 5 seconds [53].

Another active measurement technique is suggested in [3]. The authors use the fact that every
new flow request has to pass through the controller. This allows to route the traffic towards
one of multiple traffic monitoring systems, record the traffic or analyse it with an Intrusion
Detection System (IDS) or simply said a firewall.

OpenFlow’s "PacketIn" and "FlowRemoved" messages sent by the switch to the controller
carry information about when a flow starts and end. Additionally, the "FlowRemoved"
packet account for the duration and the number of packets/bytes of each flow. This fea-
tures is used for passive measurements in FlowSense [58]. The measurements are evaluated
from three prospectives: accuracy (compared to polling), granularity (estimate refresh) and
staleness(how quickly can the utilization be estimated)

Furthermore, there are suggestions to implement a new SDN protocol that is oriented towards
statistic gathering. Some efforts in this direction are shown in [59], where a new software
defined traffic measurement architecture is proposed. To illustrate the capabilities of this
approach the authors implement five measurement tasks on top of an OpenSketch enabled
network. The measurement tasks are detection of: heavy hitters (small number of flows
account for most of the traffic), superspreader (a source that contacts multiple destinations),
traffic changes, flow size distribution, traffic count.

Chapter 4

Working with POX

While OpenFlow is not designed for monitoring purposes, it has some features capable of
providing a real-time network monitoring. This chapter gives an in depth overview of the
prototype, that is proposed and implemented in this thesis, using OpenFlow and POX. The
chapter starts with some architectural assumptions that are needed for the implementation.
Then it continues by giving concrete details, explaining how the POX controller works and
the additional modules that were required.

4-1 Assumptions

Since, SDN is a new paradigm, some architectural aspects are still under investigation. In
order to pay more attention on the research problems that were already outlined, the following
two architecture assumptions are made.

First, one centralized controller manages all switches and handles all the control
operations. There are indications that one controller is perfectly capable to handle current
networks. For example, a research on how many controllers are needed and where should
they be placed is presented in [24]. Multiple real network topologies taken from [7] are
evaluated there and the presented results show that for most of the cases one controller
covers suffices. Multiple projects propose a distributed controller system that still acts as a
centralized entity. For example, Hyperflow [52] is an application built over NOX. To solve the
controller scalability problem, it uses multiple controllers spread over the network. They act
as a decision element and manage their own network partition. Meanwhile, the Hyperflow
application instance on the top of each controller takes care of the global network view across
the whole network. The Onix framework [29], which suggests three strategies to solve the
scalability problems. First, the control applications are capable to partition the workload in
a way that adding instances reduces work without merely replicating it. Second, the network
that is managed by one Onix instance is presented as a single node to the other cluster’s
network information base. This reduces the amount of information required within a single
Onix instance, thus allowing a hierarchical structure of Onix clusters. Finally, Onix suggests

22 Working with POX

that applications that use the network should also be capable to obtain a complete view of
the consistency and durability of the network state, thus, are also able to take decisions [29].

Finally, there are no scalability issues for the controller and the switches. The
centralized controller is capable to deal with all the traffic and there are no scalability issues
at all. Maestro [61] is a controller build with the idea to improve and solve the scalability
problems that NOX has. It exploits parallelism in order to achieve near linear performance on
multi-core processors. Another improvement in this direction is NOX-MT [54], multithreaded
successor of NOX. The authors of [54] use cbench, a tool designed to test performance in terms
of flows per second the controller can handle via latency and throughput measurements, to
address the performance issues of current network controllers. While NOX-MT handles 1.6
million requests per second with an average response time of 2ms, the authors clearly state
this should be used as a lower bound benchmark for a single controller.

4-2 OpenFlow Monitoring Architecture

In this section, the architecture of the OpenFlow monitoring application is described in depth.
The section starts with presenting an overview of the different components that are needed
to build a monitoring application. Afterwards, every building component is explained and
discussed separately. To illustrate and confirm the monitoring abilities, a prototype of the
component was implemented as a Python application for POX [30]. Which, in few words,
is a Python based OpenFlow controller that can be used for fast implementation of network
control applications.

Controller
Environment
Forwarding f----+===-=====- » Monitoring

Topology
Discovery

A
i

Hardware
Environment

OF Switich

OF Swtich

Figure 4-1: OpenFlow prototype

4-2 OpenFlow Monitoring Architecture 23

The monitoring application works as a core component of the controller, therefore, it has
access to all the available information, including routing decisions. It is also capable to directly
interact with each switch that supports OpenFlow. Figure 4-1 illustrates the architecture of
the prototype. First, the discovery component builds a topology view. It is responsible to
build a graph representation of the network topology. Furthermore, there is a virtual switch
instance created for every new switch that connects to the controller. Each instance stores
switch specific information. The application waits until both the forwarding application and
the topology view are started and work properly. Then it is fired up. When this happens it is
first registered as a core component of the controller, gaining access to the view-from-the-top
information provided by the topology view. Everything known to the controller is also known
to the monitoring component: active switches and their parameters, active flows and global
routing information, link status, etc.

4-2-1 POX APIs

The Core object serves as the kernel of the POX API. It provides a lot of functions some of
which are unique for POX and others are just wrapped around some other functionalities,
that are already part of Python. The main goal of the Core is to provide interaction between
the different components. Basically, instead of importing one component into another and
vice-versa, the Core supplies data from all components that are registered with it. This
provides a flexible way to interchange components and add new functionalities. Apart from
registering components in the Core, POX supports some more functionalities which are
used for the prototype implementation:

e Raising events: In POX, a particular piece of code listens for an event and is called
once certain objects(i.e. new flow request from a switch) raise this event. In other
words, whenever something important happens (i.e. new node joins the network or new
packet enters it) the controller takes note of this event by raising a warning, which could
be used to trigger an application or .

e Working with packets: Since POX is a networking controller, most of the applications
that use it also work with packets. Thus, POX provides with means to easily construct
and analyse (de-construct) packets.

e Threads and Tasks: POX uses its own library for cooperation between the compo-
nents, which eliminates the need to worry about synchronization between modules.

Figure 4-2 illustrates the initialization phase for every component described in this chapter.
As soon as the controller is started all the components register within the Core. Once this is
done it becomes idle waiting for events.

4-2-2 Topology

One of the main responsibilities of POX is to interact with OpenFlow switches. For this
purpose, a separate component (openflow.of 01) is registered to the Core as soon as the con-
troller is fired up. Another component (openflow.discovery) uses LLDP messages to discover

24 Working with POX

Start

Register
components
in Core

v

Waiting for an
Event

Figure 4-2: Initialization

the network topology (switch discovery). Every time a new switch is discovered an event
"ConnectionUp" is fired. Furthermore, the controller associates it with a Connection object.
This could later be used by other components to communicate with the corresponding switch.
Apart from connection, each switch is also assigned a unique Datapath ID (DPID) which is
used for data plane identification. This DPID could be defined by the MAC or be a totally
different identification. As soon as there is a new switch event another Switch object is cre-
ated. It is used to store the connection and DPID information for this specific switch or other
relevant information. This object is also "listening" for switch specific events. The topology
module is responsible to generate a graph representation of the physical network and keep
it up to date. This graph is updated every time when a new node joins or leaves, based on
"ConnectionUp" and "ConnectionDown" events. Figure 4-3 illustrates the whole process.

4-2-3 Forwarding

Each Switch object is "listening" for events from its corresponding switch. The forwarding
module requiers one specific event called "Packet In". Every time an edge switch registers
a new packet and does not have a matching table entry for it, it sends a request to the
controller, which contains the packet header and a buffer ID. This event indicates to the
controller that there is a new flow in the network. The path calculation can be done using
any route calculation algorithm. It can be done in a reactive or a proactive way. In this
case, Dijkstra Shortest Path [35] algorithm is used. The metric used for routing decisions
is the inverse capacity. The controller assigns the route to the flow, installing table rules to
match on every switch on the path by sending a ofp_ flow mod command. Additionally, the
forwarding component is responsible to track every new flow together with its route. It keeps
information locally about every flow until a "FlowRemoved" event fires up. This happens
when a switch removes a flow entry from its table, because it was deleted or expired (idle or
hard time out). The diagram on Figure 4-4 presents the whole forwarding process.

4-3 Overview 25

Waiting for an
Ewvent
l : |
ConnectionUp ConnectionDiown
. Remove
Switch Switch object
Femove from
Add 10 Graph Graph
Waiting for an Waiting for an
Event Event

Figure 4-3: Topology view

4-3 Overview

At this point, only the monitoring component is left. It will be discussed in more details
in the next chapter. Figure 4-5 presents the basic scheme. To summarise it shortly, the
first thing every OpenFlow switch does, once it is started, is to establish a connection with
the designated controller. The switch gives its state and link information. This allows the
controller to keep a global up-to-date network view. Once a packet enters the network and
no matching rule for it exists, it is forwarded towards the controller. The controller inspects
the packet and determines how to handle it. Normally, the controller would install new flow
entry in every switch table that needs it and then return the packet to its source node. This
means that the controller has topology view of the network and information about the active
flows (IP source/destination, port source/destination, ToS, etc.) and the routes they take
trough the network. Each switching device within the network contains activity counters,
i.e. for OpenFlow there are separate table, port, flow and queue counters. The flow and
route information should be used as input parameters of the monitoring component. It is
responsible to poll network devices, which in terms should return the requested information.
Another option is to implement a passive measurement and wait for the switches to send
statistics once the flow has expired. The monitoring component should make use of the two
statistical gathering approaches. The final output should be data for link utilisation, delay
and packet loss.

26

Waiting for an
Ewvent
T
Packetin FlowRemoved
Path Fl
Computation Remove
ofp_flow_mod
Yes
Add Flow and
Path Remove Path
Waiting for an Waiting for an
Ewvent Ewent

Figure 4-4: Forwarding

OpenFlow
Monitoring

Waiting for an
Evant

Output

« Usage
* Delay

* Packet loss

Figure 4-5: Basic diagram of the monitoring component

Working with POX

Chapter 5

OpenFlow network monitoring

While OpenFlow is not designed for monitoring purposes, it has some features capable of
providing real-time network monitoring. The previous chapter presented the application
architecture and an explanation on how it works. The main goal of this chapter is to design a
solution that is able to monitor the network usage, delay and packet losses, track traffic flows
and applications in use, and show which users and devices are present and active. Such an
application can be used to generate Traffic Matrix (traffic demands for each different traffic
class is also a possibility) or for security purposes. Furthermore, the SDN controller requires
a network monitoring tool in order to efficiently forward network traffic and to achieve certain
QoS constraints.

5-1 Objectives

A network monitoring system should be able to observe and display up-to-date network state.
Several monitoring solutions are already capable to do that in one or another way. To meet
the specific challenges ISPs face, the following design requirements are considered:

e Fault detection: Whenever a link or node failure happens, the network monitoring
system should be warned as soon as possible. This option is already incorporated
in OpenFlow, where the controller is alerted every time there is a topology change.
Therefore, the monitoring system should only get data from the controller.

e Per-link statistics: ISPs require statistics for every link. This would allow them
to meet the SLAs and assure QoS within the boundaries of their network, without
bandwidth over-provisioning. As seen in the previous chapter there are ways to measure
link utilisation, packet-loss and delay, but those ways require additional infrastructure
and have more drawbacks, which leads to the overhead requirements:

e Overhead: The proposed solutions should not add too much network overhead. The
overhead should scale no matter how big the network is (as long as the controller can

28 OpenFlow network monitoring

handle them) or the number of active flows at any moment. The component should
be able to obtain statistics based on the routing information, thus, sending a query
requests only to those devices that are currently active.

e Accuracy: A big difference between the reported network statistics and the real amount
of used capacity should be avoided. Utilisation monitoring solutions that directly poll
statistical data from the network are considered to present the best results in terms of
accuracy, but are not granular enough. The methods that are used should be capable
to achieve accuracy comparable or better than the current implementations.

e Granularity: The system should be able to account for different type of services. It
should be able to make distinction between flows that have specific needs, i.e. require
special care (bandwidth, delay, etc.). Furthermore, it should make distinction between
applications, as well as, clients. This is another feature that is already integrated in
OpenFlow.

Subsequently, the main goal of the project is to reduce the generated overhead as much as
possible, without too much degradation of the measurement accuracy.

5-2 Measuring Methods

By using SDN to implement a network monitoring system some of the objectives are already
met. Since every device communicates with the controller, there is real-time view on the
network status, including links, nodes, interfaces, etc. Furthermore, it provides sufficient
granularity and it is capable to monitor the utilization of every link within a given network
without sampling any packet or adding more overhead to any of the switches.

5-2-1 Real-time link utilization

OpenFlow allows granular view of the network, but this is done by generating additional
network /switch load. Obtaining flow statistics is a task that requires polling for information
for every flow separately. In this section the following ways for its improvement are proposed:

e Aggregate flows; Generate only one query per set of flows that share the same source-
destination path instead of polling statistics for every flow separately.

e Data collection schemes; Poll different switches, thus reducing the overhead on a
single switch/link and spreading it evenly.

e Adaptive polling; Using a recurrent timer does not accommodate traffic changes and
spikes. Hence, an adaptive algorithm that adjusts its query rate could enhance the
accuracy and reduce the overhead.

Finally, a suitable passive measurement technique, capable to reduce the monitoring overhead
even more, is described in FlowSense [58]. Unfortunately, it indicates the link utilization once
the flow expires. While this is perfect for traffic matrix generation, it is not always usable to
take real-time forwarding decisions.

5-2 Measuring Methods 29

Counters

In the OpenFlow switch specifications [17] it is written that switches have to keep counters
for port, flow table/entry, queue, group, group bucket, meter and meter band. Table 5-1
presents the Per Flow Entry counters used in this thesis. Furthermore, in order to follow the
statistics for more than one flow, there is an option to bundle multiple flows in a group and
observe their aggregated statistics.

Table 5-1: Counters [17]

Counter ‘ Description

Received Packets Counts the number of packets

Received Bytes Counts the number of bytes

Duration (seconds) Indicates the time the flow has been installed on the

switch in seconds

Duration (nanoseconds) | Counts time the flow has been alive beyond
the seconds in the above counter

The OpenFlow specifications also state that "counters may be implemented in software and
maintained by polling hardware counters with more limited ranges" [17]. The switch manufac-
turers and designers decide when software counters are updated and how they are implemented
in hardware, meaning that the accuracy varies per switch vendor.

Flow statistics

Polling for each flow separately could result into scalability problems since the total number
of queries depends on the number of active flows. Which varies depending on the network
and increases with its growth. For example, the data from a 8000 host network [42] suggests
no more than 1.200 active flows per seconds and another source [37] show a number below
10.000 flows for a network with 5.500 active users.

The first step, in order to reduce the overhead is to send a single query for all flows sharing the
same path. For a solution that scales better and is not subject to the total number of active
flows, the queries should be sent based on the active source-destination pairs, bundling all the
flows together. Thus, the maximum number of queries for network with N edge nodes never
exceeds the maximum number of source-destination pairs N * (N — 1). Furthermore, only if
every flow has separate source-destination pair (goes trough a different route) the amount of
queries equals the number of flows.

Obtaining link utilisation statistics is done by sending a number of queries based on active
switch source-destination flow paths. This is done in a recurring manner. The frequency at
which queries are send to the switches can be specified. The controller polls for all flows
and/or ports of a chosen switch. The flow level statistics that have the same ingress and
egress switch and follow the same network route are added together in order to obtain the
aggregated throughput.

30 OpenFlow network monitoring

Data Collection

One of the most important aspects for a monitoring system that relies on active measurements,
is the polling algorithm. While flows traverse the network they are subject to packet losses and
drops, this means that switches that the flow passes may register different rates. Furthermore,
switches are subject to different traffic loads, etc. An important question is how utilization
information should be gathered. The following introduces some possible querying schemes.

Last Switch query: The normal practice is to query the last switch on the path of the flow.
Polling the last switch assures that the flow has passed thought the network and has been
subjected to any packet losses due to link degradation. It is the most accurate polling scheme
for traffic matrix generation. Unfortunately, when only the edge of the network is polled,
additional load on the edge switches is generated.

As a side note, in a partial SDN deployment, the most viable monitoring solution is to place
SDN enabled switches on the network edge. Once all the edge switches support a SDN protocol
such as OpenFlow, the traffic that passes across the network is known (source, destination,
ports, etc.).

Round-Robin query: Another algorithm that could be used is uses Round Robin schedul-
ing. In the context of information polling, it consists of loading each switch on the path
equally, by simply polling them in a circular order without giving priority to any of the
switches. While the best polling scheme is to query the edge switches all the time, it also
generates load only on those switches, a Round-Robin scheduling algorithm reduces the load
on the edge switches, trading it off with some additional inaccuracy. Furthermore, this algo-
rithm can be combined with another scheme that also takes into consideration the past values
(measurements), link statistics, etc.

Adaptive polling

Setting up a never changing recurrent timer has some drawbacks. Since the recurrent timer
is a fixed value it is unable to adjust fluctuating flow arrival rate. In case that flows arrive
too fast and the recurrent is large, the monitoring system would miss link utilization changes,
thus reducing the overall accuracy. If the flows arrive slower then the recurrent timer would
bring unneeded network overhead.

In order to solve the above problems the monitoring system should focus on the bandwidth
trend instead of the changes. This method is already suggested and evaluated in [34]. The
results presented there show decreased overhead. Unfortunately, the method is not entirely
suitable for SDN. The controller does not know the link utilization before sending a query to
the switch. Therefore, taking decisions based solely on link utilization is not feasible. On the
other hand, the controller learns when new flows are sent trough the network. Hence, this
is why the adaptive timer should be based on the flow arrival rate, more precisely, increase
the polling frequency whenever there is a new flow and then take further decisions based on
the link utilization. Thus, decision taking could depend on reaching a threshold value, as
well. This value could be obtained by comparing the mean throughput since the flow arrival
with its last measured utilization. For the monitoring component it is enough to increase the
polling frequency whenever there is "PacketIn" and "FlowRemoved" or whenever exceptional
increase of link utilization is measured without any specific event.

5-2 Measuring Methods 31

5-2-2 Link packet loss

As the amount of real time traffic is growing (mainly voice and video), packet loss is an
increasingly worrying problem. Dropped packets decrease the quality of applications (causing
pixelation or terminated sessions). A lot of enterprises lack proper infrastructure and tools
to measure packet loss and they do not even know it is there. Furthermore, this is one of the
metrics that could be used for constraint QoS routing.

Some active measurement proposals are used in real networks. In terms of SDN packet loss
measurement could be improved by implementing more switch capabilities to account for
them (i.e. automatically sending probes between each other and accounting link statistics).
Unfortunately, this would add more CPU and link overhead. Therefore, in this section a novel
approach to measure link packet loss is proposed, capable to eliminate the overhead. While
in the previous section the main concept focused on real time and active flow measurements,
here passive measurements are used. This is based on the idea that packet loss metrics
can be generalized on per class basis without loss of accuracy. Furthermore, measuring the
packet loss for every single flow would not be viable. To estimate a stable and accurate
link metric, that does not fluctuate too much, a set of measurements are required. Thus, a
metric that represents most of the packets, without accounting for the anomalous changes
or the statistical outliers. Finally, in an active network flows terminate every second, so the
obtained measurements would still be real-time.

On a new flow arrival and when the switch does not have any rules installed, the first packet
is sent towards the controller. The controller is then responsible to decide what to do with
the packet and eventually install table rules on each switch on the path of the flow. Once the
flow is finished each switch indicates this with another message to the controller. The whole
process is illustrated in Figure 5-1. The flow is installed at time ty with a "FlowMod" message
sent from the controller towards every switch on the route of the flow. At time t1, o, up
to ty(where N is the amount of switches), the controller receives "FlowRemoved" messages.
Those messages indicate the flow has expired and some specific statistics for the flow, such
as, the number of bytes, packets and the flow duration. Measuring the packet-loss relies on
the fact that each switch sends this information based on its own counters.

to t1 t2 Time

ad . o
H v H

A 4

I l g /_ Packet Loss _\ g C;g::l
@ /({*\ Plane

=
o
=1
@
-
=z
o

o
[

S

Figure 5-1: Calculating the packet loss percentage

Each switch has separate flow counters, but it counts different amount of bytes. This is

32 OpenFlow network monitoring

because there are link losses, congested links, etc. Receiving flow information from every
switch allows to compare their counter statistics and calculate the number of bytes that
were lost. Whenever messages that the flow has expired from the same flow are received
their recorded packet bytes are compared. This comparison allows to determine the packet
losses for this particular flow ((1 — packetsnoge2/packetsnoder). The technique is sufficient to
determine what the current link state for this traffic class is. In case there is a need for flow
packet loss, every node could send periodically its counters to the controller.

5-2-3 Link delay

Delay is another powerful metric that indicates the network health. It is often used in SLAs
between customers and the network provider. Like packet loss, it should report the latency
experienced by most of the packets that enter the system.

At this point, OpenFlow does not offer any new way for network delay measurements. Thus,
the used measurement techniques would be the same that were described in the literature
review (Chapter 3), sending active probes from one node to another. Nevertheless, SDN
could still bring improvements, because it would not require the use of special beacons or
synchronization between the nodes. The transmission, processing and skew delay remain
problem

The proposed method is illustrated on Figure 5-2. The controller generates an User Datagram
Protocol (UDP) packet and sends it towards Node 1 at ¢y, installing a new rule in Node 1 flow
table. This rules indicates to Node 1 to send this UDP packet to Node 2. At ¢; the packet
flows from Node 1 to Node 2. Since no rule installed in Node’s 2 flow table, the switch returns
the packet to the controller at ¢2. The controller keeps constant connection with every node,
therefore, knows the delay between it and the nodes. This allows to determine the delay
between every pair of nodes. The method uses each node as a beacon, thus, does not require
additional infrastructure. Finally, since only the controller does the measurements there is
no need for synchronization between the nodes.

Node 1 MNode 2

Figure 5-2: Measuring the link delay

5-3 Monitoring 33

5-3 Monitoring

After describing the design of the monitoring component and what it should achieve, it is
now time to give some insight on the implementation concept. Only the packet loss and link
utilization methods were implemented, since there is nothing new suggested for the delay
measurements. The monitoring component released in POX reacts every time there is a
"PacketIn", "FlowRemoved", "StatusReplay" or when a polling timer expires.

Whenever, a new packet enters the system it is sent to the controller. The controller has a
complete view of the network and based on the link weights decides where to route this packet.
The monitoring component registers every "PacketIn" event and creates a unique identification
based on the flow information. Additionally, a separate ID is used to distinguish between the
network paths. FEvery flow is assigned to a certain path. In few words, the monitoring
component keeps track of every flow that enters and the path it follows through the network.
Furthermore, every Switch object also account the flows that pass through it. This information
is later used to determine the link utilization.

In order to execute a piece of code in the future or assign a recurring event the monitoring
component uses the Timer class incorporated in POX. In case, this is the first packet that
uses this route, the monitoring component starts a polling timer for every second. Whenever
the timer expires it fires an event. During this event a data collection algorithm is used
(Round Robin or Last Switch). Those two algorithms present a trade-of between accuracy
and overhead. . Afterwards, a message "StatusRequest" to the chosen switch is sent. This is
the query requesting statistics for all the flows that follow the same path. Every path has a
separate timer.

When a switch receives a "StatusRequest" message it generates a response. The "StatusReply"
message contains the information obtained from the switch counters. On flow level it gives
the duration of the flow (in nanoseconds), packet and byte count. Port statistics give more
information about the state (both transmitted and received) such as number of dropped
packets, bytes, errors and collisions. The controller obtains information for every flow that
follows the same path. A part from that, the polling timer is also adjusted. The controller
tracks the time that passed since the last flow routed trough this path was registered, as this
time increases, the polling timer also increases. Currently, the controller polls every second
for the first five seconds, then every five seconds until the 15th second, moving to 15 seconds
until the end of the first minute and polling once per minute when there has not been any
flow activity for over a minute.

When the switch removed a flow entry from its table, because it was deleted or expired (idle
or hard time out), it also raises a "FlowRemoved" event. Such event means that this flow is no
longer active and the monitoring component does not need to account for it any more. The
controller receives a massage that indicates the whole duration of the flow together with the
data statistics for this particular flow. This is used to obtain packet loss information. The
whole process is described in Figure 5-3

34

OpenFlow network monitoring

Waiting for an
Event
1 — 1
Siats Reply Packetin FlowRemoved Timer
Assign switch
Link Usage Start Timer Packet Loss o query
Addjust Tirmer
{Time Waiting for an Waiting for an ofp_stats req
elapsed and Event Event uest
Threshaold)
Waiting for an Waiting for an
Event Ewvant

Figure 5-3: Monitoring

Chapter 6

Evaluation

The following chapter presents the evaluation results from the proposed traffic monitoring
component. The chapter begins with a description of the experiment scenario and the tools
that were used to build it and finishes with the obtained results. First, the proposed link
utilizations improvements are evaluated. Each experiment is made using an emulator and
then repeated within the physical topology. Throughout this chapter only the results from
the testbed are shown. The chapter finishes with evaluation of the suggested packet loss
method, trying to answer the question if the method is valid, how accurate is it and how
much does it depend on the flow parameters (duration and rate).

6-1 Test Environment

The emulation uses an Intel Core i5 computer with four 2.53 GHz cores and 4 GB RAM
and Mininet 2 [22]. Mininet is a container-based emulator able to create realistic virtual
topology. The containers mechanism uses groups of processes that run on the same kernel
and yet use separate system resources, like network interfaces and IDs. Thus, every emulated
switch or host creates its own process. Furthermore, network links can be assigned specific
link properties such as bandwidth and packet-loss. Unfortunately, like most emulators there
are also some drawbacks. Processes in Mininet do not run in parallel, instead they use time
multiplexing. This may cause delayed packet transmission, so it is not suitable for time
accurate experiments.

The testbed is installed on servers that have Intel(R) Xeon(TM) processor with four 3.00
GHz cores. Every switch uses separate physical machine with Ubuntu 12.04.2 LTS operating
system. The testbed uses Open vSwitch [44] as OpenFlow enabled switch. Traffic is generated
by the Iperf application. A network testing tool capable to create TCP and UDP traffic
between two hosts, one acting as client and the other as server. It measures the end-to-end
(either uni- or bi-directional) throughput, packet loss and jitter. NetEm [25] is used, in order
to emulate link packet losses and delay. It is an Linux kernel enhancement that uses the
queue discipline integrated from version 2.6.8 (2.4.28) and later.

36 Evaluation

6-2 Link Utilization

The topology used for the Link Utilization tests is illustrated in Figure 6-1. This topology
is enough to determine if all the suggestions from the previous chapter (Chapter 5) work as
expected. Any additional infrastructure would not give different results. Each link of the
topology is configured to have 100 ms delay and 1 % packet loss. The OpenFlow network
controller used in the experiment is POX. In order to evaluate the suggested methods, one or
multiple UDP flows are created between Node 1 towards Node 3. The experimental evaluation
aims to prove the systems accuracy and reduced overhead.

Node 1 Node 3

Node 2

Figure 6-1: Evaluation Topology

6-2-1 Data collection schemes

The first experiment aims to compare the two polling algorithms discussed in the previous
chapter to obtain throughput. Samples were taken once every 5 seconds for the duration of
an hour. Initially, a single UDP flow with data rate of 2 Mbps is sent from Node 1, through
the testbed.

Figure 6-2 illustrates the measured flow rate when only the last switch is polled. The error
compared to the Iperf Server report (See B-2 for it) averages to 2.86% and never exceeds 3.4%
for the whole duration of the experiment when polling the last switch only. Furthermore,
there is only an average of 0.2% difference (never exceeding 1%) difference compared to
the results reported by Wireshark (See B-1). The reason for this variation of the readings
between Iperf and Wireshark is because they operate on different layers of the OSI model,
thus, Wireshark accounts for the packet headers. Hence, the Wireshark readings are more
accurate. Furthermore, little traffic fluctuations can be seen on the measured results. Those
are because the emulated packet loss vary, therefore, data rate is not always the same. The
main reason for the spikes in the beginning are due to the forwarding module. At first packets
are buffered by the first switch while the controller is taking routing decisions. This problem
is outside the scope of the thesis.

Figure 6-3 illustrates the obtained results when using Round-Robin scheduling. Average
deviation from the Iperf Server report (See B-4) is 2.88% and 0.5% from Wireshark (See B-
3). Because the controller queries all switches one by one there are differences between their
traffic counters, this is causing the fluctuation of the readings. Those differences are subject
to the packet losses and in a network where there are no losses the difference would be really
small.

Figure 6-4 compares the two querying schemes. For this experiment there is almost no
difference. This is because there are only 2% packet loss. For networks where link losses

6-2 Link Utilization

37

Rate (MBps)

——Measured LS ++++Wireshark — Iperf

0.256

0.254

s g
5 B
B 2
=

1

o] 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300

Time (s)

Figure 6-2: Last Switch query

Rate (MBps)
o

Q
o
B
&

—— Measured RR ——Wireshark - --Iperf

0.246

0244

0.242
o 251 502 753 1004 1256 1512 1763 2014 2265 2516 2767 3018 3270 3521

Time (s)

Figure 6-3: Round Robin scheduling test results

38 Evaluation

are bigger the difference between those two algorithm will also increase. There is a small
fluctuation around the 1430th second of the experiment, the fluctuation is also registered
by Wireshark (Figure B-5), which means that the problem is not cause of the monitoring
prototype.

- Measured RR ===Measured LS

0.265

o
i
&

0255

Rate (MBps)

025

0245
o] 300 600 200 1200 1500 1800 2100 2400 2700 3000 3300

Time (s)

Figure 6-4: Comparison of the two querying schemes

6-2-2 Flow vs Aggregate statistics

In this section a comparison for added overhead is made, between polling for statistics for
every single flow separately or querying only once for all the flows that share the same source
and destination node. Four UDP flows are sent from Node 1 to Node 3.

Figure 6-5 compares the differences of overhead between the polling approach suggested in
this project (right graph) and the OpenTM uses (left graph). In the first case, when all the
flows follow the same path the controller queries only once per query interval. Meanwhile,
for the other case, there are four queries. The results prove that using aggregate flow query
method decreases the overhead that is generated.

Topic / Item Count Rate (ms) Percent | Topic/Item Count Rate (ms) Percent

¥ PacketLengths 2428 0.001564 ¥ Packet Lengths 650 0.000395
0-19 0 0.000000 0.00% 0-19 0 0.000000 0.00%
20-39 0 0.000000 0.00% 20-39 0 0.000000 0.00%
40-79 4 0.000003 0.16% 40-79 23 0.000014 3.54%
80-159 1196 0.000771 49.26% 80-159 317 0.000192 48.77%
160-319 20 0.000013 0.82% 160-319 7 0.000004 1.08%
320-639 1196 0.000771 49.26% 320-639 301 0.000183 46.31%
640-1279 12 0.000008 0.49% 640-1279 2 0.000001 0.31%
1280-2559] 0.000000 0.00% 1280-2559 0 0.000000 0.00%
2560-5119] 0.000000 0.00% 2560-5119 0 0.000000 0.00%
5120-] 0.000000 0.00% 5120- 0 0.000000 0.00%

Figure 6-5: Comparison of the link overhead per polling scheme: OpenTM approach (left) versus
Aggregated statistics approach (right)

Figure 6-6 (Wireshark results B-6 and Iperf results B-8) and 6-7 (Wireshark results B-7 and
Iperf results B-9) presents the measured results. The average deviation is 1% (LastSwtich)

6-2 Link Utilization 39

and 1.01% (RoundRobin) for Wireshark. This results prove that the proposed improvement
reduces the generated overhead, while the statistics remain accurate. It is important to note
there is a small increase of the difference between the reported by Wireshark and the mea-
surement results. This is because the flows are measured separately and summed afterwards,

which increases the average error, but makes the results more stable reducing the random
fluctuations.

——Aggregated RR ——Wireshark Iperf

Rate (MBps)

o
8

098

097

o 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500

Time (s)

Figure 6-6: Aggregate flow statistics test results for Round Robin

—— Aggregated LS ——Wireshark Iperf

1.03
-;I‘ 1.02 L
E 101 v
Q
2
&

099 P=————— e e e e

0.98

o 502 1004 1506 2009 2511 3013 3515
Time (s)

Figure 6-7: Aggregate flow statistics test results for Last Switch

6-2-3 Adaptive vs Recurring polling

The frequency at which switches could be polled is also a factor that affects the accuracy,
hence, it is also evaluated. In order to test how much of influence it is, two flows are sent from
Node 1 to Node 3 (two UDP flows worth of 2 Mbps each). Each flow has different duration,
the first flow continues for 80 seconds and the second flow has a duration of 5 seconds. Polling
frequencies are directly linked with the overhead, the more queries, the higher load. Figure
6-8 shows the obtained data rate for the duration of this experiment for both 2s and 10s
recurring interval. Once again the main reason for the spikes in the beginning of each flow

40 Evaluation

are due to the forwarding module. Packets are buffered by the first switch and then released
altogether when the controller is installs the new flow rule. This is why the graph looks
really inaccurate. Still, the figure shows how the polling intervals affect the accuracy of the
measurements. This is really dependent on how long a traffic flow continues, which varies
between the different kinds of traffic within the network. For this case recurrent timer with
2 seconds interval gives better results than the timer with 10 seconds interval.

---Interval of 2 seconds = —— Interval of 10 seconds
0.69 T T
|
' 1
059 i t ;
R I '
T s IR R A RRARA (1AL AT
1]] 1
= B IRRR TR st it
1]
= o039 {HHH ! H17i I ' by
] ! \ 4
R ! W
o 029 1
L
s i : el AR i AN
oo TR I8 1 [NE B
[}
NEEEHHE I 8 o b
P i [N R e " it
o 308 816 924 1232 1540 1848 2156 2464 2772 3080 3387 3695 4002 4311 4618 4926
time (s)

Figure 6-8: Different polling intervals - Data rate measurements with 2s and 10s recurring
interval

A static recurrent timer does not deal with the problem well enough. Whenever there is a
flow with long duration, the recurrent timer polls unnecessary, adding more overhead. As
soon as there is a short lived flow, the recurrent timer misses it. In the previous chapter it

was proposed to use adaptive technique instead of recurrent timer. Figure 6-9 presents the
measured results.

Rate (MBps)

019 +
| | | I | | I | | l | | | | I |
0 205 989 1484 1980 2473 2067 3462 3956 4415 4910

time (s)

Figure 6-9: Different polling intervals - data rate measurements with adaptive polling

Figure 6-10 and 6-11 compare the results from such a scheme with the results from 2 and 10
second recurring statistical requests. They show more consistency obtaining better accuracy
than the 2s interval timer and using 825 probes less. It still uses 350 probes more than
the 10 second interval scheme, but this could be improved. For a single experiment the

6-2 Link Utilization 41

adaptive technique does 15 requests more than the recurrent with 10 seconds interval. The
implementation with shorter interval does 28 queries more than the adaptive query scheme.
The proposed adaptive method eliminates the random factor by reacting on flow arrival and
not on a recurring timer. This method gives better results in terms of accuracy and overhead.

——10s interval —=2s interval Addaptive

s --—-—-—-——-—-ﬂ_/_ giae e—"1
08 / P il
. Zf

[

|

/

s

0.6
L
0o os
Q

0.4 ,

03]

K
0.2 }
01
I
+ &
o= =t- - T - T
015 02 025 03 03s 04 045 05

Rate (MBps)

Figure 6-10: CDF for different polling intervals

——10s interval —=2s interval Addaptive
1
o
—an
098 /
096 .
094 -u/ *H‘r
el s
092 sa—n i "’ *
('8
8 09 7 ol
0.38 s
—
0.86 r r= 4
0.84 + ,‘
—"
0.82 *
08 T T T T T T T
035 037 039 041 0.43 045 047 049
Rate (MBps)

Figure 6-11: CDF for different polling intervals - a closer look

6-2-4 Validation

All the suggested methods compared to the initial method in a more complex scenario. The
real traffic sent through the network is illustrated on Figure 6-12 to the right and the physical
topology is to the left. The experiment uses multiple flows with different source-destination
pairs. An UDP flow with data rate of 3 Mbps is sent from Node 1 to Node 2 for the duration
of 100 seconds. At the same time and for the same duration another UDP flow is sent from
Node 1 to Node 3. This flow has data rate of 4 Mbps. Finally, three UDP flows are sent from
Node 1 to Node 4, each worth of 2 Mbps. Two of the flows continue for 100 seconds and the
third has duration of 50 seconds.

The idea behind this experiment is to use together both the aggregate statistics method and

42 Evaluation

- D

Node 2 Nodk 3 Node 2 ." Node 3

0.375MBps o 5 MEne

-‘:---0 25 MBps -
«e=20.25 MBps ==
----0.25 MBps - -

Node 1 Node 4 Node 1 Node 4

Figure 6-12: A more complex evaluation topology - Physical topology (left) and Flows sent
through the topology (right)

Rate (MBps)
—

g

| 4
—

J

J
—

|
J
—
>]

" §
—
—

b

-
—
-

| |

—_
J
J
—

b]

=

J

06

05

04
o 260 519 779 1038 1298 1557 1817 2077 2336 2596 2855 3114 3374 3634

Time (s)

Figure 6-13: Data Rate for the link between Node 3 to Node 4

i)

17

[
n

Rate (MBps)
J

(e
jyut

——
—
——

—

(AR ArR AN

lLULLLLLlLILLLLL|LLLIL|

...
a
—
—
—
=

09

0.7
o 250 499 748 997 1247 149 1745 1995 2244 2493 2742 2991 3241 3490 3739

Time (s)

Figure 6-14: Data Rate for the link between Node 2 to Node 3

6-3 Packet Loss 43

24

[
b

ra

Rate (MBps)
—

=
i

12

o 250 499 748 997 1247 145 1745 1995 2244 2494 2742 2991 3241 3490 3739

Time (s)

Figure 6-15: Data Rate for the link between Node 1 to Node 2

the adaptive methods proposed in this thesis and to validate that they can work with more
than one flow. The obtained statistics are illustrated on Figures 6-15 for the link between
Node 1 and Node 2 (example Wireshark report B-12), 6-14 for the link between Node 2 to
Node 3 (example Wireshark report B-11) and 6-13 for the link between Node 3 and Node
4 (example Wireshark report B-10). The results are not different than the ones from the
previous experiments and show that both methods are capable to work with more than one
source-destination pairs and to provide accurate results.

6-3 Packet Loss

Apart from new link measurement methods the thesis also proposes a new method capable
to measure the packet loss. The topology used for this experiment is illustrated in Figure
6-16. The topology is enough to validate that the method works properly and to determine
its accuracy under different circumstances. Each test is first held in Mininet environment and

then repeated in the testbed.

Packet Loss 1%

Node 1 Node 2

Figure 6-16: Evaluation Topology

6-3-1 Validation

In order to confirm that the proposed measuring approaches for packet loss work, 1000 con-
secutive flows worth of 6 Mbps are sent from Node 1 to Node 2. The link is set to emulate

44 Evaluation

1% packet loss.

The results are shown on Figures 6-17 (See also Figure B-13 for Iperf Server report). As it
can be seen from the server output the packet-loss varies from flow to flow. However, the
packet-loss distribution shows really promising results, an average of 0.99% losses per flow and
standard deviation of +0.34. The deviation is expected since NetEm uses normal distribution
for packet loss emulation.

120

Frequency (-]
3

0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.051.1 1.15 1.2 125 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65
Packet Loss (%)

Figure 6-17: Packet loss Distribution

In order to determine exactly how accurate the method is 18 flows are recorded (Iperf Server
report) and then compared with the measured packet loss. The first measurement consists
of sending flows worth of 64 Kbps for the duration of 195 seconds (average call duration).
Results can be seen on Figure 6-18. They match perfectly the Iperf Server report (See Figure
B-14). Finally, the second set of measurements emulates short term Video connection using
MPEG 2 with data rate of 10 Mbps (Figure 6-19). Ten flows that are set to continue each
for 2 minutes are recorded. The results from both measurements prove that the proposed
measurement method gives perfect accuracy.

B Measured M Reported

Packet Loss (%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Experiment (#)

Figure 6-18: Example of packet loss measurements for flows of 64 kbps

6-3 Packet Loss 45

B Measured M Reported

Packet Loss (%)

Experiment (#)

Figure 6-19: Example of packet loss measurements for flows of 10 Mbps

6-3-2 Dependency

The proposed methodology is capable to measure packet losses accurately, but what would
happen if the flows are short lived or have lower throughput. Furthermore, if the method
would be used to determine link metrics and for SLAs it should give overall performance and
not the spikes that tend to occur from time to time. A thousand consecutive flows with either
different duration or data rate are sent from Node 1 to Node 2. The link is set to emulate 1%
packet loss. This experiment measures the packet losses under different network loads and
flow durations. A thousand measurements are done for every parameter change (both in flow
duration or in data rate).

The first experiment measures how the accuracy changes with the flow duration. Figure 6-20
presents the results. As it can be seen the more the flow duration increases the more accurate
the results are. Thus, flows that continue longer are more trustworthy. In this case flows with
duration of 20 seconds show packet loss close to the flows of 60 seconds. From this experiment
it is clear that really short lived flows with a duration of a second are not sufficiently accurate
for a metric estimation. The final experiment measures the accuracy in terms of data rate.
Figure 6-20 illustrates the results which are analogue to the previous experiment. With the
increase of the data rate the resulting graph is more granular and converges closer to the 1%
packet loss. Thus, the longer the flow continues or the bigger it is, the closer to the emulated
packet loss it gets. It is also obvious that one measurement would not be enough to estimate
a packet loss metric.

46

Evaluation

——1second —=—10 seconds —+ 20 seconds —— 30 seconds —*— 40 seconds —* 50 seconds 60 seconds
1
e
09
ja
z 0.7
= 05 LS
-n j
[i
o J
2 os
o ¥
03 j
[
. -
0.1 i
i | J*‘J:M
a ._._-=l=|:l.-=ns£_=sr& - . :
04 06 0.8 1 12 14 16
Packet Loss (%)

Figure 6-20: Example of packet loss measurements for flows with different duration

——0.5 Mbps —1 Mbps 1.5 Mbps ——2 Mbps

P | L

09 T i—'
08 H!_
it

g 05 ﬁ

'|.i',| 05 g

0

O os

o

I}
L

: oy

01 :J

[s] 02 04 06 08 1 12 14 16 18 2

Packet Loss (%)

Figure 6-21: Example of packet loss measurements for flows with different data rate

Chapter 7

Conclusions and Future Work

7-1 Conclusions

This thesis explores the concept of network monitoring implemented in SDN architectures.
This new network architecture provides a significant advantage over other because it is easier
to tune up and introduce new functionalities. In terms of network monitoring, SDN allows
to build a monitoring solution adjusted to the specific network needs. By using SDN the
monitoring system is capable to obtain a complete view of the network that includes nodes,
links and even ports. Furthermore, the solution is capable to obtain fine grained and accurate
statistics, for every flow that passes trough the network.

This thesis builds on the previous work within the field, including some improvements over
the link utilisation measurement method. First, a different data collecting scheme is proposed
to reduce the overhead imposed over a single switch and to distribute the load over all the
nodes through the network equally. Afterwards, in order to reduce the network overhead, a
technique that aggregates all flows that go through the same network route is evaluated. The
last improvement suggests to base the polling decisions not on some recurrent interval, but on
the occurrence of certain events instead, eliminating the need of trade-off between overhead
and accuracy. There is more additional overhead, for the cases when the polling requests are
too often and decreased accuracy when the polling interval is too long.

Finally, this thesis proposes a new measuring method for packet loss, which, has proven to
be accurate. This method is capable to determine the packet loss percentage for each link
and also for any path. Furthermore, it is a passive method, thus imposing zero additional
network overhead. It is not influenced by the network characteristics like the active probing
methods that currently exist. The method is capable to provide statistics for every different
type of service that passes trough the network.

Thus, this thesis answers the question of how monitoring can be achieved in SDN by im-
plementing a monitoring component that uses the OpenFlow protocol to communicate with
the hardware equipment. The component is responsible to poll switches for link usage and
to gather packet loss statistics. The suggested approach brings the following improvements

48 Conclusions and Future Work

over the already existing monitoring solutions. Starting from a more up to date view of the
network, including the state of the switches, ports and links, a fine grained and yet very
accurate measurements with the price of low overhead.

7-2 Future Work

Possible extensions to the measurement schemes suggested in this thesis could be considered.
The accuracy could be improved based on a combination of past statistics, link characteristics
or weighted measurements results without imposing additional overhead. The adaptive timer
requires more tuning, therefore, more research would be necessary on when more samples are
needed and when less. Furthermore, more experiments in a real environment (i.e. with real
traffic) are needed to fully evaluate the proposed measurement approaches. For the suggested
packet loss method some questions need to be answered. For example, how much data is
enough to take that the reported percentage of packet losses is not a random spike and how
long before the data is too old to be considered valid.

Once there are suitable monitoring systems capable to provide the necessary performance
and usage statistics, the next phase is the network optimization phase. The main goal of TE
is to enhance the performance of an operational network, at both traffic and resource level.
Network monitoring takes an important part in TE by measuring the traffic performance
parameters. Additionally, today’s traffic engineering in service provider networks works on
coarse scale of several hours. This gives big enough time frame for offline TM estimation or
it’s deduction via regressed measurements. Unfortunately, this approach is not always viable,
current IP traffic volume changes within seconds (or even miliseconds), which could lead to
congestion and packet losses at the most crucial moment.

Since SDN is a new architecture still gaining popularity, there are also some questions that
need to be answered in terms of routing. Obtaining an accurate and real time view of the
network could bring more benefits and open more options. Monitoring the network is the
first step towards a SDN forwarding protocol capable to provide sufficient QoS for all types
of applications and traffic.

1]

2]

3]

Bibliography

G. Almes, S. Kalidindi, and M. Zekauskas. A One-way Delay Metric for IPPM. RFC
2679 (Proposed Standard), September 1999.

G. Almes, S. Kalidindi, and M. Zekauskas. A One-way Packet Loss Metric for IPPM.
RFC 2680 (Proposed Standard), September 1999.

Jeffrey R. Ballard, Ian Rae, and Aditya Akella. Extensible and scalable network moni-
toring using OpenSAFE. In Proceedings of the 2010 internet network management con-
ference on Research on enterprise networking, INM/WREN’10, pages 88, Berkeley, CA,
USA, 2010. USENIX Association.

Ali Begen, Tankut Akgul, and Mark Baugher. Watching Video over the Web: Part 1:
Streaming Protocols. IEEE Internet Computing, 15(2):54—-63, March 2011.

Michael H. Behringer. Classifying network complexity. In Proceedings of the 2009 work-
shop on Re-architecting the internet, ReArch ’09, pages 13-18, New York, NY, USA,
2009. ACM.

Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. MicroTE: fine
grained traffic engineering for data centers. In Proceedings of the Seventh COnference
on emerging Networking EXperiments and Technologies, CONEXT ’11, pages 8:1-8:12,
New York, NY, USA, 2011. ACM.

Rhys Bowden, Hung X. Nguyen, Nickolas Falkner, Simon Knight, and Matthew Roughan.
Planarity of data networks. In Proceedings of the 23rd International Teletraffic Congress,
ITC ’11, pages 254-261. ITCP, 2011.

Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh, and
Jacobus van der Merwe. Design and implementation of a routing control platform.
In Proceedings of the 2nd conference on Symposium on Networked Systems Design &
Implementation - Volume 2, NSDI'05, pages 1528, Berkeley, CA, USA, 2005. USENIX
Association.

50

Bibliography

[9]

[10]

[20]

[21]

Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and
Scott Shenker. Ethane: taking control of the enterprise. SIGCOMM Comput. Commun.
Rev., 37(4):1-12, August 2007.

Martin Casado, Tal Garfinkel, Aditya Akella, Michael J. Freedman, Dan Boneh, Nick
McKeown, and Scott Shenker. SANE: a protection architecture for enterprise networks.
In Proceedings of the 15th conference on USENIX Security Symposium - Volume 15,
USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX Association.

Martin Casado, Teemu Koponen, Scott Shenker, and Amin Tootoonchian. Fabric: a
retrospective on evolving SDN. In Proceedings of the first workshop on Hot topics in
software defined networks, HotSDN ’12, pages 85-90, New York, NY, USA, 2012. ACM.

P. Chimento and J. Ishac. Defining Network Capacity. RFC 5136 (Informational),
February 2008.

Paolo Lucente Clarence Filsfils, Arman Maghbouleh. Best Practices in Network Planning
and Traffic Engineering. Technical report, CISCO Systems, 2011.

David Erickson. Beacon, URL: https://openflow.stanford.edu/display/Beacon/Home.
Online, July 2013.

eSecurityPlanet.com Staff. Sasser worms continue to threaten corporate productiv-
ity, URL: http://www.esecurityplanet.com/alerts/article.php/3349321/Sasser-Worms-
Continue-to-Threaten-Corporate-Productivity.htm. Online, May 2004.

Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer Rex-
ford, Alec Story, and David Walker. Frenetic: a network programming language. SIG-
PLAN Not., 46(9):279-291, September 2011.

The Open Networking Foundation. OpenFlow Switch Specification v1.3.1 URL:
https://www.opennetworking.org/images/stories /downloads/specification /openflow-
spec-v1.3.1.pdf. Online, September 2012.

Chuck Fraleigh, Sue Moon, Bryan Lyles, Chase Cotton, Mujahid Khan, Deb Moll, Rob
Rockell, Ted Seely, and Christophe Diot. Packet-Level Traffic Measurements from the
Sprint IP Backbone. IEEE Network, 17:6-16, 2003.

Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer Rexford,
Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A clean slate 4D approach to
network control and management. SIGCOMM Comput. Commun. Rev., 35(5):41-54,
October 2005.

Miniwatts Marketing Group. World Internet Usage Statistics, URL:
http://www.internetworldstats.com/stats.htm, December 2012.

Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin Casado, Nick McKe-
own, and Scott Shenker. NOX: towards an operating system for networks. SIGCOMM
Comput. Commun. Rev., 38(3):105-110, July 2008.

51

[22]

[35]
[36]

Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick McKe-
own. Reproducible network experiments using container-based emulation. In Proceedings

of the 8th international conference on Emerging networking experiments and technologies,
CoNEXT 12, pages 253264, New York, NY, USA, 2012. ACM.

Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis, Puneet
Sharma, Sujata Banerjee, and Nick McKeown. ElasticTree: saving energy in data center
networks. In Proceedings of the 7th USENIX conference on Networked systems design and
implementation, NSDI'10, pages 17-17, Berkeley, CA, USA, 2010. USENIX Association.

Brandon Heller, Rob Sherwood, and Nick McKeown. The controller placement problem.
SIGCOMM Comput. Commun. Rev., 42(4):473-478, September 2012.

Stephen Hemminger. Abstract Network Emulation with NetEm, 2005.

B. Huffaker, D. Plummer, D. Moore, and k. claffy. Topology discovery by active probing.
In Symposium on Applications and the Internet (SAINT), pages 90-96, Nara, Japan, Jan
2002. SAINT.

IEEE. History of Ethernet, URL: http://standards.ieee.org/events/ethernet /history.html.
Online, July 2013.

Z Kerravala. Configuration management delivers business resiliency. Technical report,
The Yankee Group, 2002.

Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,
Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and Scott
Shenker. Onix: a distributed control platform for large-scale production networks. In
Proceedings of the 9th USENIX conference on Operating systems design and implemen-
tation, OSDI’10, pages 1-6, Berkeley, CA, USA, 2010. USENIX Association.

Murphy McCauley. About POX, URL: http://www.noxrepo.org/pox/about-pox,/. On-
line, 2013.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69-74, March 2008.

Marc Mendonga, Bruno Nunes Astuto, Xuan Nam Nguyen, Katia Obraczka, and Thierry
Turletti. A Survey of Software-Defined Networking: Past, Present, and Future of Pro-
grammable Networks, June 2013. In Submission In Submission.

J. E. Van Der Merwe, S. Rooney, I. M. Leslie, and S. A. Crosby. The Tempest - A
Practical Framework for Network Programmability. IEEE Network, 12:20-28, 1997.

B. Lekovic & P. V. Mieghem. Link state update policies for Quality of Service routing.
In Proc. 8th IEEE Symp. on Communications and Vehicular Technology in the Benelux
(SCVT2001), pages 123-128, October 2001.

Piet Van Mieghem. Data communications networking. Techne Press, 2006.

D. Mills. Network Time Protocol (Version 3) Specification, Implementation, 1992.

52

Bibliography

[37]

[43]

[44]

[45]

Jad Naous, David Erickson, G. Adam Covington, Guido Appenzeller, and Nick McKe-
own. Implementing an OpenFlow switch on the NetFPGA platform. In Proceedings of
the 4th ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, ANCS ’08, pages 1-9, New York, NY, USA, 2008. ACM.

Marcelo R. Nascimento, Christian E. Rothenberg, Marcos R. Salvador, Carlos N. A.
Corréa, Sidney C. de Lucena, and Mauricio F. Magalhaes. Virtual routers as a service:
the RouteFlow approach leveraging software-defined networks. In Proceedings of the 6th
International Conference on Future Internet Technologies, CFI ’11, pages 34-37, New

York, NY, USA, 2011. ACM.

Marcelo Ribeiro Nascimento, Christian Esteve Rothenberg, Marcos Rogério Salvador,
and Mauricio Ferreira Magalhaes. QuagFlow: partnering Quagga with OpenFlow. SIG-
COMM Comput. Commun. Rev., 40(4):441-442, August 2010.

Big Switch Networks. Floodlight, an SDN controller, URL:
http://www.projectfloodlight.org/floodlight /. Online, July 2013.

ONF. Software-defined Networking: The New Norm for Networks. White Paper, April
2012.

Ruoming Pang, Mark Allman, Mike Bennett, Jason Lee, Vern Paxson, and Brian Tierney.
A first look at modern enterprise traffic. In Proceedings of the 5th ACM SIGCOMM
conference on Internet Measurement, IMC 05, pages 22, Berkeley, CA, USA, 2005.
USENIX Association.

V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framework for IP Performance
Metrics. RFC 2330 (Informational), May 1998.

Ben Pfaff, Justin Pettit, Teemu Koponen, Keith Amidon, Martin Casado, and Scott
Shenker. e.a.: Extending networking into the virtualization layer. In In: 8th ACM
Workshop on Hot Topics inNetworks (HotNets-VIII).New YorkCity, NY(October 20009,
2009.

Christian Esteve Rothenberg, Marcelo Ribeiro Nascimento, Marcos Rogerio Salvador,
Carlos Nilton Araujo Corréa, Sidney Cunha de Lucena, and Robert Raszuk. Revisiting
routing control platforms with the eyes and muscles of software-defined networking. In
Proceedings of the first workshop on Hot topics in software defined networks, HotSDN
12, pages 13-18, New York, NY, USA, 2012. ACM.

R. E. Staehler B.J. Yokelson S. Horing, J. Z. Menard. Stored program controlled network:
Overview. Bell System Technical Journal, 61:1579-1588, September 1982.

Sandvine. Global internet phenomena report. Technical report, Sandvine, 2011.

sFlow. Traffic Monitoring using sFlow, URL: http://www.sflow.org/sFlowOverview.pdf.
Online, July 2013.

W. Stallings. SNMP and SNMPv2: the infrastructure for network management. Comm.
Mag., 36(3):37-43, March 1998.

53

[50]

Lalith Suresh, Julius Schulz-Zander, Ruben Merz, Anja Feldmann, and Teresa Vazao.
Towards programmable enterprise WLANS with Odin. In Proceedings of the first work-
shop on Hot topics in software defined networks, HotSDN 12, pages 115-120, New York,
NY, USA, 2012. ACM.

Silver Peak Systems. How to Accurately Detect and Correct Packet Loss, URL:
http://www.silver-peak.com/info-center /how-accurately-detect-and-correct-packet-loss.
Online, July 2013.

Amin Tootoonchian and Yashar Ganjali. HyperFlow: a distributed control plane for
OpenFlow. In Proceedings of the 2010 internet network management conference on Re-
search on enterprise networking, INM/WREN’10, pages 3—-3, Berkeley, CA, USA, 2010.
USENIX Association.

Amin Tootoonchian, Monia Ghobadi, and Yashar Ganjali. OpenTM: traffic matrix es-
timator for OpenFlow networks. In Proceedings of the 11th international conference
on Passive and active measurement, PAM’10, pages 201-210, Berlin, Heidelberg, 2010.
Springer-Verlag.

Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and Rob Sher-
wood. On controller performance in software-defined networks. In Proceedings of the 2nd
USENIX conference on Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services, Hot-ICE’12, pages 10-10, Berkeley, CA, USA, 2012. USENIX

Association.

Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: a language for high-level
reactive network control. In Proceedings of the first workshop on Hot topics in software
defined networks, HotSDN 12, pages 43-48, New York, NY, USA, 2012. ACM.

Richard Wang, Dana Butnariu, and Jennifer Rexford. OpenFlow-based server load bal-
ancing gone wild. In Proceedings of the 11th USENIX conference on Hot topics in man-
agement of internet, cloud, and enterprise networks and services, Hot-ICE’11, pages
12-12, Berkeley, CA, USA, 2011. USENIX Association.

Soheil Hassas Yeganeh, Amin Tootoonchian, and Yashar Ganjali. On scalability of
software-defined networking. IEEE Communications Magazine, 51(2):136-141, 2013.

Curtis Yu, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang, and Har-
sha V. Madhyastha. FlowSense: monitoring network utilization with zero measurement
cost. In Proceedings of the 14th international conference on Passive and Active Measure-
ment, PAM’13, pages 31-41, Berlin, Heidelberg, 2013. Springer-Verlag.

Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement with
OpenSketch. In Proceedings of the 10th USENIX conference on Networked Systems De-
sign and Implementation, nsdi’13, pages 29-42, Berkeley, CA, USA, 2013. USENIX As-
sociation.

Qi Zhao, Zihui Ge, Jia Wang, and Jun Xu. Robust traffic matrix estimation with im-
perfect information: making use of multiple data sources. SIGMETRICS Perform. Eval.
Rev., 34(1):133-144, June 2006.

54 Bibliography

[61] T. S. Eugene Ng Zheng Cai, Alan L. Cox. Maestro: A System for Scalable OpenFlow
Control. Technical report, Rice University, 2011.

Appendix A

ACL: Access Control List

API: Application Programmable Interface
AS: Autonomous System

BE: Best Effort

BGP: Border Gateway Protocol

CPU: Central Processor Unit

UTC: Coordinated Universal Time
DPID: Datapath identification

DPI: Deep Packet Inspection

ECMP: Equal Cost Multipath

GPS: Global Positioning System

ID: Identification

IGP: Interior Gateway Protocol

ICMP: Internet Control Message Protocol
IP: Internet Protocol

ISP: Internet Service Provider

IDS: Intrusion Detection System

LDP: Label Distribution Protocol

Glossary

56

Glossary

LSP: Label-Switched Path

MIB: Management Information Base
NCP: Network Control Point

NOS: Network Operating System
NTP: Network Time protocol

OSI: Open System Interconnection
OF: OpenFlow

QoS: Quality of Service

RSVP: Resource Reservation Protocol
RTT: Round Trip Time

RF: RouteFlow

RFCP: RouteFlow Control Platform
RCP: Routing Control Platform

SLA: Service Level Agreements

SNMP: Simple Network Management Protocol

SDN: Software Defined Networking
TE: Traffic Engineering

TM: Traffic Matrix

TCP: Transmission Control Protocol
UDP: User Datagram Protocol
VLAN: Virtual Local Area Network

VM: Virtual Machine

Appendix B

Results

Figure B-1: Wireshark report for Last Switch measurements

[Yr— —— = %)
File
Namea: fAmpiwirshark_sih4.122_20130704203251_|VhnOK
Lengih: 917014293 byles
Format: Wiresharkicpdump!... - lbpeap
Encapsulaiion: Unknown
Packei size limil: B85535 byles
Time
First packet: 20130704 20:32:53
La=t packsi: 20130704 21:42:02
Elaps=d: 010908
Capture
Infe face: eih4.122
Dopped packsis: unknown
Caplume Filer ned flep pod 50920 and p hosl 10.10.8.20 and icp ped 22 and @ hesl 10.10.2.22)
Display
Display filer udp
lgnored packets: o
Traffic Capiured Digp layed Marked
Packeis 601915 600052 [}
Between firsl and lasl packe! 4148.798 sec 3600.001 s=c
Avg. packelszac 145.082 186,681
Avg. packst size 1507.495 byle=s 1512.000 byles
Eyles Q07383629 Q07278624
Avg. byles/zsc 218710.110 252021.777
Avg. MBil/zac 1.750 2.018

58

Results

Client connecting to 10.0.0.22, UDP port 5001
Sending 1470 byte datagrams
[UDP buffer size: 224 KByte (default)

[3] local 10.0.0.23 port 48011 connected with 10.0.0.22 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0-3600.0 sec 858 MBytes 2.00 Mbits/sec

[3] Sent 612246 datagrams

[3] Server Report:

[3] 0.0-38600.0 sec 8§41 MBytez 1.96 Mbits/sec 0.040 ms 12197/612246 (2%)
[3] 0.0-3600.0 sec 7 datagrams received out-of-order

Figure B-2: Iperf Server report for Last Switch measurements

i Wireshark: Summary
File
Name: fimp/wireshark_eih4.122_20130704222514_nhpTyT
Lengih: 917083266 byles
Formai: Wireshartkicpdump!... - lbpcap
Encapsulation: Unknown
Packed size limil: B85535 byles
Time
First packet: 20130704 22:25:16
Last packei: 20130704 23:26:32
Elapsad: 01:01:16
Capture
Infe face: eih4.122
Diopped packeis: unknown
Caplume FHller nei flep ped 50920 and p hosi 10.10.8.30 and 1cp pod 22 and p hest 10.10.2.22)
Display
Digplay filer: udp
lgnored packets: o
Traffic Captured Displayed Marked
Packeis 801788 800106 0

Beiween firsl and lasl packe! 36876.202 sec 3600.082 s=c

Avg. packsiz/zac 163.698 166.693

Avg. packsl size 1507 931 byles 1512.000 byles
Byles Q07454634 S0T360272
Avg. byles'zac 246845 B27 252040.155
Avg. MBit'z=c 1875 2.016

Figure B-3: Wireshark report for Round Robin measurements

Client connecting to 10.0.0.22, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 224 KByte (default)

[3] local 10.0.0.23 port 38254 connected with 10.0.0.22 port 5001

[ID] Interval Transfer Bandwidth

[31 0.0-3600.0 sec 858 MBytes 2.00 Mbits/sec

[3] Sent 612246 datagrams

[3] Server Report:

[3] 0.0-3600.0 sec 841 MBytes 1.96 Mbits/sec 0.041 ms 12143/612246 (2%)
[31 0.0-3600.0 sec 3 datagrams received out-of-order

Figure B-4: Iperf Server report for Round Robin measurements

59

— 500000

— 250000

Figure B-5: Round Robin scheduling Wireshark results

[Wireshark: Summary W = = 2

File
Name: fAmp/wireshark_eth4.122_20130705151848_fvSX4B
Length: 3645377613 byles
Farmat: Wiresharkicpdump!... - lbpcap
Encapsulation: Ethamet
Packei size limil: B5535 byles
Time
Firsl packsi: 20130705 15:18:57
Last packet: 20130705 16:25:25
Elapzad: 01:06:28
Capture
Inte face: eih4.122
Dopped packsis: unknown
Caplure filter not ficp por 50075 and p host 10.10.8.30 and 1cp por 22 and p host 10.10.2.22)
Display
Dieplay filer: udp
lgnoed packsis: o
Traffic Capiued Displayed Marked
Packeis 23ETIEG 2385638 [u]
Beiween Firsl and lasl packel 3988 458 sec 3600.526 s=c
Avg. packeis'ssc 598.574 BB2.580
Avyg. packel size 1510.933 byles 1511.998 byles
Byles 3607179413 3607080968
Avg. bylesisec 904404 488 1001820 541
Avg. MBit/z=c 7.235 2.01%5

Figure B-6: Wireshark report for Aggregated measurements when using Round Robin

60

Results

i Wireshark: Summary

File
Name: Amp/wireshars_eths_20130802121839_20cMZ
Length: 3687911166 byles
Formai: Wirsharkicpdump/... - lbpcap
Encapsulation: Unknown
Packei size limit: 65535 byles

Avg. packe! size

Time
First packei: 20130802 12:18:40
Last packet: 201308-02 13:24:08
Elbpsad: 01:05:27
Capture
Interfacs: eiths
Dmopped packeis: unknown
Capium filer none
Display
Display filer udp
Ignomed packeis: o
Traffie Captured Displayed Marked
Packelz 2422073 2412028 4]
Beiween fisl and last packe! 3927 925 sec 3600.307 sec
Avg. packeisizec B16.629 B70.200

1506 626 byles 1511.999 byles

Byles 3649157974 3648340424
Avg. byles'zac 920020 438 10132341 484
Avg. MBit's=c 7432 8.107

Figure B-7: Wireshark report for Aggregated measurements when

Client connecting to 10.0.0.22, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 224 KByte (default)

3] local 10.0.0.23 port 34079 connected with 10.0.0.22 port 5001
ID] Interval Transfer Bandwidth

3] 0.0-3600.0 sec 858 MBytes 2.00 Mbits/sec

3] Sent 612246 datagrams
ID] Interval Transfer
3] 0.0-3600.0 sec

Bandwidth

858 MBytes 2.00 Mbits/sec
3] Sent 612246 datagrams

ID] Interval Transfer
3] 0.0-3600.0 sec

Bandwidth
858 MBytes 2.00 Mbits/sec
3] Sent 612246 datagrams

ID] Interval
3] 0.0-3600.0 sec

3] Server Report:
3] 0.0-3600.0 sec
3] 0.0-3600.0 sec
3] Server Report:
3] 0.0-3600.0 sec
3] 0.0-3600.0 sec
3] Server Report:
3] 0.0-3600.0 sec
3] 0.0-3600.0 sec
3] Server Report:
3] 0.0-3600.0 sec
3] 0.0-3600.0 sec

Figure B-8: Iperf Server report for Aggregated measurements when using Round Robin

Transfer

[
[
[
[
[
[
[
[
[
[
[
[
[3] Sent 612246 datagrams
[
[
[
[
[
[
[
[
[
[
[
[

Bandwidth
858 MBytes 2.00 Mbits/sec

241 MBytes 1.96 Mbits/sec
149 datagrams received out-of-order

I

841 MBytes 1.96 Mbits/sec 0.034 m
150 datagrams received out-of-order

841 MBytes 1.96 Mbits/sec 0.018 m
157 datagrams received out-of-order

I

841 MBytes 1.96 Mbits/sec 0.171 m
161 datagrams received out-of-order

b

using Last Switch

0.021 ms 12359/612246 (2%)

12369/612246 (2%)

12450/612246 (2%)

12301/612246 (2%)

61

[
[
[
[
[
[
[
[
[
[
[
[
[
[31
[
[
[
[
[
[
[
[
[
[
-

Interval
0.0-3600.0 sec

Transfer

Bandwidth

858 MBytes 2.00 Mbits/sec

Sent 612246 datagrams

Interval
0.0-3600.0 sec

Transfer

Bandwidth

858 MBytes 2.00 Mbits/sec

Sent 612246 datagrams

Interval
0.0-3600.0 sec

Transfer

Bandwidth

858 MBytes 2.00 Mbits/sec

Sent 612246 datagrams

Interval
0.0-3600.0 sec

Transfer

Bandwidth

858 MBytes 2.00 Mbits/sec

Sent 612246 datagrams

Server Report:
0.0-35958.5 sec
0.0-3599.5 sec
Server Report:
0.0-3599.5 sec
0.0-3599.5 sec
Server Report:
0.0-3595.6 sec
0.0-3599.6 sec
Server Report:
0.0-3599.5 sec
0.0-3599.5 sec

850 MBytes 1.98 Mbits/sec
4 datagrams received out-of-order

849 MBytes 1.88 Mbits/sec
4 datagrams received out-of-order

850 MBytes 1.98 Mbits/sec
6 datagrams received out-of-order

850 MBytes 1.88 Mbits/sec
6 datagrams received out-of-order

0.057

0.018

0.206

0.014

ms

ms

ms

ms

6271/612246

6302/612246

6282/612246

6257/612246

Figure B-9: Iperf Server report for Aggregated measurements when

(1%)
(1%)
(1%)

(1%)

using Last Switch

— 10000000

— 5000000

Figure B-10: Data Rate for the link between Node 3 to Node 4 as shown by Wireshark

— 20000000

— 10000000

Figure B-11: Data Rate for the link between Node 2 to Node 3 as shown by Wireshark

— 20000000

— 10000000

200s

Figure B-12: Data Rate for the link between Node 1 to Node 2 as shown

4008

B00s 800s

1000s

by Wireshark

62

Results

Server lizstening on UDP port G001
Receiving 1470 byte datagrams

UDP buffer zize:

208 kByte (default)

]
]

—
=

o O T T A T T T T T T I T T O A A A T I A T T o o T e o e e e e

3]
3]
4

4]
4]
3]
3]
3]
4]
4]
4]
3]
3]
3]
4]
4]
4]
3]
3]
3]
4]
4]
4]
3]
3]
3]
4]
4]
4]
3]
3]
3]
4]
4]
4]
3]
3]
3]
4]
4]
4]
3]
3]
3]
4]
4]
4]

local 10,0,0.4
Interwal

0,0- 9,8 zec
0,0- 9,8 zec

] local 10,0,0,4

0,0-10,0 sec
0,0-10,0 sec
local 10,0,0,4
0,0- 9,9 zec
0,0- 9,9 sec
local 10,0,0.4
0,0-10,0 zec
0,0-10,0 =zec
local 10,0,0.4
0,0-10,0 sec
0,0-10,0 sec
local 10,0,0.4
0,0-10,0 =zec
0,0-10,0 sec
local 10,0,0,4
0,0-10,0 =zec
0,0-10,0 zec
local 10,0,0,4
0,0-10,0 sec
0,0-10,0 sec
local 10,0,0,4
0,0-10,0 zec
0,0-10,0 sec
local 10,0,0.4
0,0-10,0 zec
0,0-10,0 =zec
local 10,0,0.4
0,0-10,0 sec
0,0-10,0 sec
local 10,0,0.4
0,0-10,0 =zec
0,0-10,0 sec
local 10,0,0,4
0,0-10,0 =zec
0,0-10,0 zec
local 10,0,0,4
0,0- 9,9 sec
0,0- 9,9 sec
local 10,0,0,4
0,0-10,0 zec
0,0-10,0 sec
local 10,0,0.4
0,0- 9,9 sec
0,0- 19,9 =zec

port BO0L conmected with 10.0,0.1 port
Tranzfer Bandwidth Jitter
6,93 MBytes E,00 Mbitsdzec 0,191 m=
38 datagrams received out-of-order
port 5001 connected with 10,0,0,1 port
7.09 HBytes 5,95 Mbits/zec 0,096 ms
3 datagrams received out—of-order

port 5001 connected with 10,0,0,1 port
707 MBytes 5,96 Mbitsdzec 0,111 ms
26 datagrams received out-of-order
port 5001 conmected with 10,0,0,1 port
7.09 MBytes 5,96 Mbitadfzec 0,149 ms
12 datagrams received out-of-order
port BO0L conmected with 10.0,0.1 port
7.09 HBytes 5,96 Mbits/zec 0,178 ms
12 datagrams received out-of-order
port BO0L conmected with 10.0,0.1 port
7,03 MBytes 5,96 Mbitsfsec 0,267 ms
10 datagrams received out-of-order
part 5001 conmected with 10.0,0.1 port
7,09 MBytes 5,96 Mbitsdsec 0,283 mz
11 datagrams received out-of-order
port 5001 connected with 10,0,0,1 port
7.07 HBytes 5,96 Mbits/zec 0,107 ms
24 datagrams received out—of-order
port 5001 connected with 10,0,0,1 port
707 MBytes 5,99 Mbitsdzec 0,23V ms
13 datagrams received out-of-order
port 5001 conmected with 10,0,0,1 port
7.09 WBytes 5,97 Mbitadzec 0,130 ms
18 datagrams received out-of-order
port BO0L conmected with 10.0,0.1 port
7.09 HBytes 5,57 Mbita/zec 0,111 ms
17 datagrams received out-of-order
part 5001 contected with 10,0,0.1 port
7,08 MBytes 5,95 Mbitsfzec 0,089 ms
11 datagrams received out-of-order
port 5001 connected with 10,0,0,1 port
7,09 MBytes 5,97 Mbitsdszec 0,150 mz
20 datagramsz received out-of-order
port 5001 connected with 10,0,0,1 port
7.07 HBytes 5,96 Mbits/zec 0,195 ms
24 datagrams received out—of-order
port 5001 connected with 10,0,0,1 port
7.07 MBytes 5,94 Mbitsdzec 0073 ms
1 datagrams received out-of-order

port 5001 conmected with 10,0,0,1 port
7.09 HBytes 5,98 Hbitsdzec 0,1B0 ms
29 datagrams received out-of-order

25335
Lost/Total
114/ 5102

44281
46/ 5102

598050
29/ 5102

ahvle
43/ 5102

42296
43/ 5102

33510
45/ 5102

34806
45/ 5102

54449
5E/ 5102

5241R
29/ 5103

29056
43/ 5102

2h3E0
44/ 0102

44134
bE/S 5102

38470
43/ 5102

BhO28
29/ 5103

37408
57/ 5102

43013
43/ 0102

Figure B-13: Example server output

Tatagrams
(2.2%)

(0.9%)

(L2

(0,340

(0,36%)

(0,88%)

(0,882)

(1.1%)

(L2

(0,360

(0,B62)

(1.1%)

(0,340

(1.2

(1.1%)

(0,840

63

Server listening on UDP port 5001
Receiving 1470 byte datagrams

TUDP buffer size: 224 EByte (defaunlt)

[3] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 45056

[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams

[3] 0.0-190.3 sec 1.44 MBytes €3.5 Ebits/sec 0.019 ms 8/ 1036 (D.87%)

[4] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 59131

[4] 0.0-190.2 sec 1.44 MBytes &3.6 Kbits/sec 0.016 m= 7/ 1036 (0D.6&B%)

[2] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 60274

[31 0.0-190.3 sec 1.44 MBvtes €3.6 Kbits/sec 0.023 ms 7/ 1036 (D.68%)

[4] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 43604

[4] ©0.0-190.3 sec 1.44 MBytes €3.4 Kbits/sec 0.024 ms 10/ 1036 (D.97%)

[3] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 46084

[3] 0.0-190.3 sec 1.44 MBytes €3.4 Kbits/sec 0.024 ms 10/ 1036 (D.97%)

[4] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 35530

[4] ©0.0-190.4 sec 1.44 MBvtes €3.5 Kbits/sec 0.023 ms 8/ 1036 (D.77%)

[3] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 41122

[3] 0.0-190.3 sec 1.44 MBytes €3.5 Ebits/=sec 0.022 m=s 8/ 1036 (D.77%)

[4] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 35040

[4] 0.0-190.3 sec 1.44 MBytes €3.3 Kbits/sec 0.017 ms 11/ 1036 (1.1%)

[3] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 42974

[3] 0.0-190.3 sec 1.44 MBytes 63.3 Kbits/sec 0.025 ms 11/ 1036 (1.1%)

[4] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 47432

[4] 0.0-190.3 sec 1.44 MBytes €3.3 Ebits/=ec 0.015 ms 12/ 1036 (1.2%)

[3] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 44261

[3] 0.0-190.3 sec 1.44 MBytes €3.3 Kbits/sec 0.020 ms 11/ 1036 (1.1%)

[4] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 55545

[4] ©0.0-190.3 sec 1.44 MBytes €3.3 Kbits/sec 0.025 ms 11/ 1036 (1.1%)

[3] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 47411

[3] 0.0-190.3 sec 1.44 MBytes €3.4 Kbits/sec 0.014 ms 10/ 1036 (0.97%)

[4] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 43791

[4] 0.0-190.3 sec 1.44 MBytes €3.5 Kbits/sec 0.023 ms 9/ 1036 (D.87%)

[2] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 46535

[3] 0.0-190.3 sec 1.44 MBytes 63.3 Kbits/sec 0.020 ms 12/ 1036 (1.2%)

[4] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 50073

[4] 0.0-190.3 sec 1.44 MBytes &3.4 Kbits/sec 0.014 ms 10/ 1036 (0.97%)

[2] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 56248

[3] 0.0-190.3 sec 1.44 MBytes €3.5 Kbits/sec 0.013 ms 9/ 1036 (D.87%)

[4] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 56918

A 4] 0.0-190.3 sec 1.44 MBytes 63.3 Ebits/sec 0.016 ms 11/ 1036 (1.1%)
Figure B-14: 64kbps tests server output

|

Server listening on UDP port 5001

Receiving 1470 byte datagrams

UDP buffer =size: 224 EByte (default)

[3] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 58818

[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams

[3] 0.0-120.0 sec 142 MBytes 9.90 Mbits/sec 0.024 m=s 1022/102041 (1%)

[2] 0.0-120.0 sec 37 datagrams received out-of-order

[4] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 52255

[4] ©0.0-120.0 sec 142 MBytes 9.91 Mbits/sec 0.024 ms 965/102041 (0.35%)

[4] 0.0-120.0 sec 20 datagrams received out-of-order

[2] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 37823

[3] 0.0-120.0 sec 142 MBytes 9.90 Mbits/sec 0.022 m=s 1068/102042 (1%)

[2] 0.0-120.0 sec 18 datagrams received out-of-order

[4] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 56284

[4] ©0.0-118.9% sec 142 MBytes 9.91 Mbits/sec 0.025 ms 979/102042 (0.96%)

[4] 0.0-115.9 =sec 42 datagrams received out-of-order

[3] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 39708

[3] 0.0-120.0 sec 142 MBytes 9.90 Mbits/sec 0.024 m=s 1036/102041 (1%)

[3] 0.0-120.0 sec 18 datagrams received out-of-order

[4] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 56322

[4] ©0.0-120.0 sec 142 MBytes 9.90 Mbits/sec 0.024 ms 1054/102042 (1%)

[4] 0.0-120.0 =ec 41 datagrams received out-of-order

[3] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 60567

[3] 0.0-120.0 =ec 142 MBytes 9.90 Mbits/sec 0.023 m= 1068/102041 (1%)

[31 0.0-120.0 sec 32 datagrams received out-of-order

[4] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 54444

[4] ©0.0-120.0 sec 142 MBytes 9.90 Mbits/sec 0.023 ms 1040/102041 (1%)

[4] 0.0-120.0 =sec 43 datagrams received out-of-order

[3] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 51658

[3] 0.0-120.0 =ec 142 MBytes 9.90 Mbits/sec 0.023 m=s 981/102041 (0.96%)

[31 0.0-120.0 sec & datagrams received out-of-order

[4] local 10.0.0.22 port 5001 connected with 10.0.0.23 port 48871

[4] ©0.0-118.% sec 142 MBytes 9.91 Mbits/sec 0.025 ms 981/102041 (0.96%)

[4] 0.0-119.9 sec 47 datagrams received out-of-order

[

Figure B-15: 10Mbps tests server output

	Front Matter
	Cover Page
	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables

	Main Matter
	Introduction
	Research Motivation
	Research Question
	Thesis Structure

	Software Defined Networking
	Network Evolution and Problems
	Overview
	History
	Architecture
	OpenFlow

	Network Monitoring
	Measurements
	Metric Definition
	Types of Measurements

	Literature Review
	Current Internet
	SDN

	Working with POX
	Assumptions
	OpenFlow Monitoring Architecture
	POX APIs
	Topology
	Forwarding

	Overview

	OpenFlow network monitoring
	Objectives
	Measuring Methods
	Real-time link utilization
	Link packet loss
	Link delay

	Monitoring

	Evaluation
	Test Environment
	Link Utilization
	Data collection schemes
	Flow vs Aggregate statistics
	Adaptive vs Recurring polling
	Validation

	Packet Loss
	Validation
	Dependency

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Glossary
	Results

