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 A B S T R A C T

A Wave Data Assimilation System based on the Ensemble Kalman Filter (EnKF) is implemented for the North 
Sea showing improved performance and physical consistency. We first show the EnKF implementation and 
illustrate the wave data assimilation system using identical twin experiments to assimilate synthetic observa-
tions from buoys. A sensitivity analysis shows that the ensemble size, assimilation frequency and observation 
uncertainty are relatively important settings. Lastly, the potential for assimilating satellite measurements was 
assessed by assimilating synthetic altimeter measurements with real pass-over tracks. In these experiments, 
the state contains the full wave spectrum, unlike in most existing schemes. The results show that wave 
spectra and integral variables beyond significant wave height show physically consistent updates for the 
buoy and satellite experiments, by assimilating only significant wave height. This is a key advantage of this 
implementation compared to the more widely used implementations in wave data assimilation. Although the 
satellite experiment performs slightly worse than the buoy experiment due to decreased temporal availability 
of measurements, the results underline the potential for assimilation of satellite altimeter measurements. 
Such a system provides a promising framework for future observation impact study using satellite altimeter 
measurements.
1. Introduction

Wave hindcasting and forecasting are important for a better un-
derstanding of ocean and climate processes, early coastal warning 
systems, shipping and offshore engineering. Wave models continue to 
face limitations, particularly in coastal shelf seas, where uncertainties 
persist regarding wave–current interactions, wind forcing, and wave-
bottom interactions (Cavaleri et al., 2018). Satellite altimeters continue 
to have global coverage since 1985 (Ribal and Young, 2019), while 
satellite processing techniques are advancing (e.g., Tourain et al., 2021; 
Schlembach et al., 2023). Satellite measurements and wave models are 
two sources of information that can be integrated. Data assimilation 
(DA) leverages both model physics and measurement data by using 
knowledge of wave dynamics and observations to more accurately 
estimate the true wave state. Reanalyses (data assimilated products) 
are nowadays often considered the best source of training data for 
deep learning models. For example, the purely data-driven forecast 
model GraphCast (Google) is trained on 1979–2017 ERA5 reanalysis 
data (Lam et al., 2022). Similarly, ECMWF has deployed an Artificial 
Intelligence integrated forecasting system (AIFS), trained on ERA5 
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reanalysis data (Lang et al., 2024). Hence, the importance of (partly) 
physics-based modelling remains.

Early studies on wave DA date back to the eighties, with at-
tempts by Esteva (e.g., 1988), Janssen et al. (e.g., 1989) and Li-
onello et al. (e.g., 1995). These approaches used Optimal Interpolation 
schemes (OI). Others developed variational implementations using 
an adjoint (De Las Heras et al., 1994). The development continued 
with approaches using spectral partitioning to assimilate spectral wave 
data (Voorrips et al., 1997; Hasselmann et al., 1997). Kalman Filter 
methods were applied for the first time in wave DA by Voorrips 
et al. (1999). More recently, implementations of 4DVAR schemes (four-
dimensional variational) (Song and Mayerle, 2017), 3DVAR schemes 
(three-dimensional variational) (Saulter et al., 2020), the Ensemble 
Kalman Filter (EnKF) (Almeida et al., 2016; Caires et al., 2018b,a; 
Kim et al., 2020) and the Local Ensemble Transform Kalman Filter 
(LETKF) (Houghton et al., 2023) have been published. Even though 
the OI scheme dates back to the eighties, the relatively simple and fast 
OI scheme remains prominent in wave DA until today, (e.g., Skandrani 
et al., 2004; Aouf et al., 2006; Yu et al., 2018; Li and Zhang, 2020; 
Smit et al., 2021; Houghton et al., 2022; Wang et al., 2024). Most 
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operational forecasting centres still use the OI scheme, as pointed out 
by Houghton et al. (2022). Assimilating satellite wave measurements 
has been mainly done in global context, which raises the question of 
the added benefit of satellite measurements in coastal shelf seas like the 
North Sea. An exception for the North Sea using 3DVAR and satellite 
measurements has been published by Saulter et al. (2020). To date, an 
EnKF based wave DA system using satellite data for the North Sea does 
not exist, and other shelf sea implementations are scarce.

Most existing schemes (e.g., OI, 3DVAR) have three main diffi-
culties that we aim to overcome with an EnKF implementation. The 
EnKF is based on the Kalman Filter (Kalman, 1960) and it was devel-
oped by Evensen (1994). A conceptual overview of the EnKF and an 
implementation routine can be found in Evensen (2004).

In wave DA, the first difficulty is that usually the initial conditions 
are considered as control variables. This means that updates could 
be neutralized by the wind forcing in the next step, in particular in 
wind-wave dominated seas. Saulter et al. (2020) and Houghton et al. 
(2023) recommend moving towards coupled systems to advance wave 
DA performance. We take an intermediate approach similar to Caires 
et al. (2018a,b) and Kim et al. (2020), by using the EnKF and setting the 
wind forcing as control. A noise model is used to model the uncertainty 
in the wind fields. By means of the ensemble, the covariance between 
wind and wave fields is calculated. Corrections to the waves are made 
indirectly through the wind fields and the energy balance can evolve 
naturally.

The second drawback of existing schemes is that assumptions are 
made about the shape of the wave spectrum because 𝐻𝑠 is used as 
the state variable. By taking the directional wave spectrum as the state 
variable, these assumptions are omitted. This allows us to study how 
corrections based on 𝐻𝑠 observations translate to the directional wave 
spectrum and other integral variables like mean wave direction and 
mean wave period.

Thirdly, existing schemes often require prescribed error covari-
ances that might lack realistic dynamic system error estimates as a 
consequence. Ensemble methods provide an effective alternative by 
modelling uncertainty dynamically through the ensemble statistics.

Despite the fact that these approaches combined increase the com-
putational burden compared to the existing schemes, which may result 
in them not being operationally feasible, using them to create accurate 
reanalyses to train AI/ML models, or improving the efficiency at a later 
stage, could in the future support operational forecasting. The main 
aim of this study is to assess the potential information and physical 
consistency of the EnKF implementation and the potential of satellite 
altimeter observations. The study prepares the methods and setup for 
an Observing System Experiment (OSE).

The wave model is introduced in Section 2. Next, we explain how 
the model can be represented in state space in Section 3. From this, 
the conceptual formulation of the EnKF and implementation details 
naturally follow, in Section 4. Consequently, the identical twin ex-
periments are introduced followed by the storm case study with the 
model input (Sections 5 and 6). Results are then presented for synthetic 
buoys (Section 7), a sensitivity study (Section 8) and finally synthetic 
altimeter measurements (Section 9). We end with a discussion and 
conclusion in Sections 10 and 11.

2. Wave model SWAN

Simulating WAves Nearshore (SWAN) (Booij et al., 1999) is a third-
generation spectral wave model for shallow water that models the 
evolution of the wave spectrum according to the action balance equa-
tion (Eq.  (1)). For this study, SWAN version 41.45 was used. The 
evolution of the spectrum is modelled according to action density 𝑁
in space and time. The typical model output is in the form of the 
energy density 𝐸(𝜎, 𝜃), where 𝜎 refers to the radian frequency over 
which energy is distributed and 𝜃 the spatial direction. Action density, 
𝑁 , equals 𝐸∕𝜎. The rate of change of 𝑁 in geographical space (�⃗�; 𝜎, 𝜃)
2 
can be described by the action balance equation (Komen, 1994) (Eq. 
(1)). 
𝜕𝑁
𝜕𝑡

+ ∇�⃗� ⋅
[

(𝑐𝑔 + 𝑢)𝑁
]

+
𝜕𝑐𝜎𝑁
𝜕𝜎

+
𝜕𝑐𝜃𝑁
𝜕𝜃

=
𝑆tot
𝜎

(1)

On the left-hand side, The second term, ∇�⃗� ⋅
[

(𝑐𝑔 + 𝑢)𝑁
] describes the 

propagation of wave energy in geographical space, with wave group 
velocity 𝑐𝑔 = 𝜕𝜎∕𝜕�⃗�. The third term, 𝜕𝑐𝜎𝑁∕𝜕𝜎, represents the shift of 
wave energy between radian frequencies caused by variations in mean 
currents and water depth. The fourth term, 𝜕𝑐𝜃𝑁∕𝜕𝜃, models refraction 
by bottom topography and current variations. 𝑆𝑡𝑜𝑡 is the source and sink 
term including all processes that put energy in, redistribute or dissi-
pate. This term comprises wind input, wave dissipation through wave 
breaking and nonlinear wave interactions (triads and quadruplets). 
These terms can be controlled with SWAN-specific settings. SWAN state 
variables are expressed as energy density or variance density 𝐸(𝜎, 𝜃), 
not as action density.

3. State space representation of the model

Most spectral wave models contain the full wave energy density 
spectrum as the model state. A reduced state containing significant 
wave height (𝐻𝑠) and peak period (𝑇𝑝) is computationally more effi-
cient but lacks realistic wave energy updates (Voorrips et al., 1999). 
Here, the model state contains the wave energy spectrum for 36 fre-
quencies and 32 directional bins for the entire spatial grid (21 × 27 =
567). The model state vector thus has a length of 32 × 36 × 567 =
653 184. As mentioned, note that a limitation of other methods used 
in wave DA like OI and 3DVAR, is that corrections are made in terms 
of observation values in significant wave height, 𝐻𝑠 (e.g., Saulter et al. 
(2020), and Houghton et al. (2022) for 3DVAR and OI respectively). 
An ad hoc step is required to scale back 𝐻𝑠 to the full wave energy 
spectrum. This is bound to make simplified assumptions on the sea 
state. This can be avoided by taking the full directional wave spectrum 
as model state variable.

Let 𝐱(𝑡𝑘−1) ∈ R𝑛 be the state vector that represents the state of the 
system at discrete time 𝑘 − 1: 
𝐱(𝑡𝑘−1) = [𝑥1(𝑡𝑘−1), 𝑥2(𝑡𝑘−1),… , 𝑥𝑛(𝑡𝑘−1)]𝑇 (2)

In this case, the state vector contains the energy density wave 
spectrum, 𝐸(𝜎, 𝜃).

Let 𝑀 ∶ R𝑛 → R𝑛 denote the mapping of the state space or the 
nonlinear model. That is, 𝑀(𝐱) =

(

𝑀1(𝐱),𝑀2(𝐱),… ,𝑀𝑛(𝐱)
)𝑇  is a vector 

function of the vector 𝐱. The evolution of the state of the dynamic 
system can then be described as: 
𝐱(𝑡𝑘) = 𝑀(𝐱(𝑡𝑘−1), 𝑡𝑘−1) (3)

To represent model errors or uncertainty in the system an additional 
term is added (randomness can be introduced by initial conditions, 
model forcing or model parameters). The stochastic model equation can 
be represented as: 
𝐱(𝑡𝑘) = 𝑀(𝐱(𝑡𝑘−1), 𝑡𝑘−1) + 𝐰(𝑡𝑘−1) (4)

with dynamic system noise as white Gaussian noise with 𝐰(𝑡𝑘) ∼
 (0,𝐐𝑘). The measurements 𝐳(𝑡𝑘) are assumed to be a linear function 
of the state: 
𝐳(𝑡𝑘) = 𝐇𝐱(𝑡𝑘) + 𝐯(𝑡𝑘) (5)

with 𝐇 as the measurement operator that maps the observations to 
the model state and 𝐯(𝑡𝑘) as white Gaussian observation noise with 
𝐯(𝑡𝑘) ∼  (0,𝐑𝑘). Here we assume a linear measurement operator, 
but later we will explain how to deal with a nonlinear measurement 
operator. Illustrative for the measurement operator in this case, is that 
wave measurements are often given in significant wave height 𝐻𝑠 and 
have to be mapped to the model state that is represented in terms of 
the energy density spectrum 𝐸(𝜎, 𝜃).
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4. Ensemble Kalman Filter (EnKF)

The EnKF approximates the model uncertainty represented by
𝐰(𝑡𝑘−1) in Eq.  (4) by means of an ensemble of perturbed states (Evensen, 
2004). This is part of the forecast step in the first part of the EnKF. In 
the second step, the analysis, a best estimate is made by using a weight 
matrix to minimize the variance between measurement and model.

More precisely, consider an initial ensemble 𝝃𝑎𝑖 (𝑡0) to compute the 
wave model state sequentially in time with nonlinear model operator 
𝑀 for each ensemble member 𝑖 to 𝑁 and generate a forecast for each 
member 𝝃𝒇𝒊  at 𝑡𝑘: 

𝝃𝒇𝒊 (𝑡𝑘) = 𝑀(𝝃𝑎𝑖 (𝑡𝑘−1), 𝑡𝑘−1) + 𝐰𝑖(𝑡𝑘−1) (6)

where 𝝃𝑎𝑖 (𝑡𝑘−1) denotes the analysis member at time 𝑡𝑘−1 and 𝑤𝑖(𝑡𝑘−1)
represents the system noise. The ensemble mean �̂�𝑓 (𝑡𝑘) is then given 
by: 

�̂�𝑓 (𝑡𝑘) =
1
𝑁

𝑁
∑

𝑖=1
𝝃𝑓𝑖 (𝑡𝑘) (7)

and the forecast error 𝒆𝑓𝑖 (𝑡𝑘) by: 

𝒆𝑓𝑖 (𝑡𝑘) = 𝝃𝑓𝑖 (𝑡𝑘) − �̂�𝑓 (𝑡𝑘) (8)

The ensemble model error covariance 𝐏𝑓 (𝑡𝑘) is given by: 

𝐏𝑓 (𝑡𝑘) =
1

𝑁 − 1

𝑁
∑

𝑖=1

[

𝒆𝑓𝑖 (𝑡𝑘)
] [

𝒆𝑓𝑖 (𝑡𝑘)
]𝑇

(9)

Eqs. (6)–(9) are called the forecast step in DA. The analysis or mea-
surement step essentially minimizes the variance between observations 
𝐳𝑖(𝑡𝑘) and the transformed model state 𝐇𝝃𝑓𝑖 (𝑡𝑘). The analysis 𝝃𝑎𝑖  at 𝑡𝑘 is 
given by: 

𝝃𝑎𝑖 (𝑡𝑘) = 𝝃𝑓𝑖 (𝑡𝑘) +𝐊(𝑡𝑘)
[

𝐳𝑖(𝑡𝑘) −𝐇𝝃𝑓𝑖 (𝑡𝑘) − 𝐯𝑖(𝑡𝑘)
]

(10)

where 𝐯𝑖(𝑡𝑘) represents a perturbation of the observations to obtain a 
consistent ensemble, avoiding a too low variance (Burgers et al., 1998). 
We can express the Kalman Gain 𝐊(𝑡𝑘) that represents the combined 
weights of measurements and model as: 
𝐊(𝑡𝑘) = 𝐏𝑓 (𝑡𝑘)𝐇𝑇 [

𝐇𝐏𝑓 (𝑡𝑘)𝐇𝑇 + 𝐑(𝑡𝑘)
]−1 (11)

where 𝐇 denotes the linear observation operator that maps the model 
state to the observation measurements. Here 𝐑(𝑡𝑘) denotes the obser-
vation error covariance matrix. After this the analysis mean �̂�𝑎(𝑡𝑘) can 
be obtained: 

�̂�𝑎(𝑡𝑘) =
1
𝑁

𝑁
∑

𝑖=1
𝝃𝑎𝑖 (𝑡𝑘), (12)

the analysis error: 
𝒆𝑎𝑖 (𝑡𝑘) = 𝝃𝑎𝑖 (𝑡𝑘) − �̂�𝑎(𝑡𝑘) (13)

and the analysis covariance 𝐏𝑎(𝑡𝑘): 

𝐏𝑎(𝑡𝑘) =
1

𝑁 − 1

𝑁
∑

𝑖=1

[

𝒆𝑎𝑖 (𝑡𝑘)
] [

𝒆𝑎𝑖 (𝑡𝑘)
]𝑇 (14)

Note that in the actual implementation of the algorithm the com-
putation of covariance matrices (Eqs.  (9) and (14)) can be avoided 
(Appendix  A). In the conceptual formulation, we defined a linear 
measurement operator and we assume that each observation is a linear 
combination of the model state. However, the wave measurements are 
often in 𝐻𝑠 [m] and the wave model state in 𝐸(𝜎, 𝜃) [m2/Hz], so a 
nonlinear operation is needed. Appendix  B shows how we linearize the 
observation operator. It will not always be the case that observations ar-
rive on regular intervals on the analysis times, in particular for satellite 
observations. In this case, we take the ensemble of observations within 
the assimilation window, using the asynchronous EnKF implementation 
from Sakov et al. (2010). The solution is ideal for linear observations 
and models but provides a suboptimal solution for weak violation of 
3 
the linear case. We used the open data assimilation toolbox OpenDA 
(version 3.1.1), which has a black box model wrapper and hosts a 
wide range of data assimilation algorithms (Ridler et al., 2014) (https:
//github.com/OpenDA-Association).

4.1. System uncertainty

In wave DA it is commonly assumed that the ocean wave state 
is the main source of uncertainty and therefore a perturbed wave 
model ensemble is often used. (Saulter et al., 2020; Houghton et al., 
2022, e.g.,). This could be partially inspired by the dynamics of ocean 
waves, not always correlated with wind fields, its heritage in DA in 
meteorology where weather models are sensitive to initial conditions, 
or the computational expense of coupled models.

The implementation in this study is based on the assumption that 
the main source of system uncertainty is contained in the wind fields. 
The wind forcing is the so-called control variable. Wave parameters at 
the boundary or the initial wave state can also be considered sources 
of uncertainty in the system. Nonetheless, we assume that for the 
North Sea wind and wave fields are highly correlated most of the time. 
To model the uncertainty in the wind field, a stochastic first-order 
autoregressive process or AR(1) noise model was implemented: 

𝜼(𝑡𝑘) = 𝑎𝜼(𝑡𝑘−1) + 𝐰(𝑡𝑘) (15)

with the auto-regressive coefficient 𝑎 = exp(−
𝛥𝑡
𝑇 ) and 𝐰(𝑡𝑘) ∼  (0,𝐐(𝑡𝑘)). 

Where 𝑇  is the time at which the correlation becomes negligible.
The meridional and zonal wind components were treated indepen-

dently. The error covariance also decays exponentially over distance. 
The error covariance can be described by: 

𝐐(𝑡𝑘) = 𝜎𝑥1𝜎𝑥2exp
(− 𝛥𝑥

𝐿 ) (16)

with 𝜎𝑥1  and 𝜎𝑥2  being the standard deviation of the errors at location 
𝑥1 and 𝑥2, 𝐿 the distance at which the correlation becomes negligible. 
Sequential algorithms like the EnKF are required to satisfy the Markov 
property. The property states that a stochastic process only depends on 
its current state and does not have ‘memory’ of history. The noise model 
in a sequential algorithm like the EnKF introduces the issue that 𝐰(𝑡𝑘)
is not independent of the previous noise term 𝐰(𝑡𝑘−1) through 𝜼(𝑡𝑘−1). 
This problem is solved by augmenting the state with the AR(1) forcing.

Localization is a common way in DA to limit spurious correlations 
as a result of finite ensemble size and possibly in combination with 
a large number of observations. We did not implement localization 
yet, because we were able to run experiments with sufficiently large 
ensemble sizes.

Fig. 1. Schematic overview of an identical twin experiment.

https://github.com/OpenDA-Association
https://github.com/OpenDA-Association
https://github.com/OpenDA-Association


C.W.E. de Korte et al. Ocean Modelling 197 (2025) 102586 
Fig. 2. (a) Model grid (0.5 by 0.5 degrees) with assimilated stations in green and the two boundary points in orange, that were used to make a uniform west and north boundary; 
(b) Coarsened (0.5 by 0.5 degrees) NOOS bathymetry; (c) Coarsened (0.5 by 0.5 degrees) HARMONIE input wind field at 2022-31T07:00.
/h.
5. Identical twin experiments

Identical twin experiments are a common starting point in setting 
up a DA system because they facilitate the assessment of the relative 
impact of various settings and the observations in a controlled way. 
Another advantage is that we have access to all variables. This is 
often considered a necessary step before assimilating real data. In the 
identical twin experiments, we created synthetic observations from the 
so-called truth run. This is a wave model run where the wind fields 
were perturbed with the noise model defined in Section 4.1. Gaussian 
white noise was added to the observations extracted from the truth 
run. We assimilate these observations with the EnKF and test how 
well the truth is reconstructed. Fig.  1 shows a schematic overview of 
an identical twin experiment. We have conducted two types of twin 
experiments: firstly assimilating synthetic buoy measurements to set 
up the wave DA system. In addition, we used the buoy experiment to 
conduct a sensitivity analysis to better estimate the importance of the 
filter settings. Secondly, we are interested in assessing the potential 
impact of wave altimeter measurements in this wave DA system. To 
this end, synthetic altimeter wave measurements with real pass-over 
signatures were assimilated.

6. Storm case study

For all experiments, we take a six-day period in 2022 that cap-
tured storms Malik and Corrie. This period was chosen because it has 
several intervals of storm growth and decay in a short time window. 
Consequently, the EnKF can be tested on a range of system dynamics.

Two sequential intense low-pressure fields moved over Scotland at 
the end of January/beginning of February 2022. Storm Malik (2022-
01-28 to 2022-01-30) and Storm Corrie (2022-01-31 to 2022-02-01) 
crossed the North Sea in quick succession and were associated with 
strong north-westerly winds, with wind gusts recorded up to 120–130 km

For the wind forcing HARMONIE winds were obtained from the 
KNMI (Royal Netherlands Meteorological Institute) with resolution 2.5 
by 2.5 km. These were converted to coarse resolution (0.5 by 0.5 de-
grees) to match the wave model resolution. Wind fields were available 
every 3 h. This simplification does not impact the results of identical 
twin experiments but will play a role when assimilating real data.

Boundaries were taken from a nested SWAN-DCSM (Dutch Conti-
nental Shelf Model) run (Gautier and Caires, 2015). For this experi-
ment, a uniform boundary condition across the northern and western 
boundaries was used for convenience in implementation. Wave pa-
rameters from the 5th point on the northern boundary and the 19th 
point on the western boundary were taken as representative for re-
spectively the north and west boundary, marked in Fig.  2a. A coarse 
version of the NOOS (North West European Shelf Operational Oceano-
graphic System) bathymetry (Zijderveld and Verlaan, 2004) (Fig.  2b) 
and DCSM-FM-100 m HARMONIE (Zijl et al., 2022) water levels were 
used.
4 
To represent wind growth and white-capping, formulations from 
Komen et al. (1984) were used. Only quadruplets were included from 
wave-wave interactions. For dissipation by wave breaking, a constant 
breaking index was used with a proportionality coefficient for the 
rate of dissipation of 1, and a breaker index of 0.73. Wave dissipa-
tion by bottom friction is included with the JONSWAP semi-empirical 
formulation from Hasselmann et al. (1973). These are SWAN default 
settings.

7. Results: assimilation synthetic buoy observations

7.1. Initial settings

Assessing the impact of observations with a twin experiment re-
quires that realistic, although not necessarily perfect values for the 
EnKF parameters are specified. To choose realistic first values for 
system uncertainty, we analysed samples of differences between dif-
ferent HARMONIE wind field nowcasts and a 24 h forecast for the 
same moment, provided by KNMI (Royal Netherlands Meteorological 
Institute). We approximated the error in the wind fields taking the 
standard deviation of the errors between nowcast and forecast. The 
time and distance length scales over which the error correlation be-
comes negligible, was approximated from the covariances of nowcast 
and forecast binned per distance and time.

Recall that we implemented an AR(1) noise model for the wind 
forcing (Eq.  (15)). The error covariance decays exponentially over time 
and distance with a typical length and time scale. The initial values for 
𝜎𝑥1  and 𝜎𝑥2  were set to 2 m/s and 𝑇 = 15 h and 𝐿 = 500 km, based 
on the distribution and covariance of differences between HARMONIE 
nowcast and forecast wind fields. Except the standard deviation of the 
wind noise model was taken higher to maintain sufficient ensemble 
spread.

For the measurement uncertainty, typical errors between model and 
buoy measurements were taken as representative. Based on this, a 
standard deviation of 0.2 m for 𝐻𝑠 was chosen, corresponding with the 
true noise standard deviation of the synthetic observations.

An ensemble size of 𝑁 = 64 was chosen. The assimilation frequency 
was set to 1 h since wave buoys typically have at least hourly mea-
surements. From an operational and computational point of view, the 
assimilation frequency can be decreased, although this will decrease 
performance (illustrated in Section 8.

A sensitivity analysis of the initial settings was done and is presented 
in Section 8. In this identical twin experiment, five buoys displayed in 
green in Fig.  2 were used to assimilate synthetic hourly measurement. 
The buoy marked in yellow is used as an independent validation station 
to visualize typical time series and spectra. Since this is an identical 
twin experiment we have access to all hidden variables and thus 
validate performance over the entire spatio-temporal domain. With real 
data, validation can only be done with a limited number of observation 
stations.
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Fig. 3. Time series at the validation station showing the model free run (green), truth run (black), analysis (EnKF after correction) (blue) and background (EnKF before correction) 
(orange) for integral variables: (a) Significant wave height 𝐻𝑠; (b) Mean wave period 𝑇𝑚01; (c) Mean wave direction 𝜃; (d) Wind speed at 10 m above surface |𝑈10|. The dashed 
red line represents the moment in time where the wave spectrum is shown in Fig.  4.
7.2. Physical consistency and performance

In this experiment, we assimilated 𝐻𝑠 observations, but we also 
assessed the impact on other wave integral variables and wave spectra. 
If the EnKF performs well, spatio-temporal updates will display physical 
consistency and reduced errors. Additionally, a good representation of 
uncertainty requires the truth run to fall within the ensemble spread. 
Two particular questions of interest, when just assimilating 𝐻𝑠, are: 
(1) do the updates translate to other integral wave variables?; (2) 
are the updates confined to the area around the buoys? Note that 
in the identical twin context uncertainty statistics of the model and 
measurement are known.

To answer these questions, the time series of several integral vari-
ables are displayed in Fig.  3a,b,c and d displaying significant wave 
height 𝐻 , mean wave period 𝑇 , mean wave direction 𝜃 and wind 
𝑠 𝑚01

5 
speed |𝑢10| at the validation station. The analysis (blue) pulls closer 
towards the truth run (black) for 𝐻𝑠 and notably for all integral 
variables, showcasing decreasing errors compared to the model free 
run (green). The truth run falls within the bounds of the ensemble 
spread, which means that uncertainty is represented correctly. The 
background (EnKF before correction) helps to visualize where strong 
updates are made. Not surprisingly, ensemble spread is typically larger 
for 𝐻𝑠 during storm peaks where wind speeds reach their local maxima 
and because of the nonlinear relation between wind and wave growth. 
Interestingly, for mean wave period and direction, the ensemble spread 
is typically larger in a state of wind build-up (2022-01-28T12:00 to 
2022-01-29T12:00) and rotating wind fields (2022-01-31T06:00 to 
2022-01-31T14:00). This is likely to be associated with strong gradients 
in time and space. A snapshot of the rotating wind field is displayed in 
Fig.  2c.
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Fig. 4. 1D wave spectrum at 2022-01-29T20:00 with free run model, background 
(EnKF before correction) and analysis (EnKF after correction) and truth.

The fact that all integral variables – not just 𝐻𝑠 – show improve-
ments and a consistent ensemble, gives confidence that updates in the 
wind forcing translate well through the wave spectrum. To confirm this, 
a snapshot one-dimensional wave spectrum is displayed in Fig.  4. For a 
more straightforward visualization of the ensemble spread in Fig.  4, the 
one-dimensional instead of the two-dimensional spectrum was shown, 
but note that the directional bins are also updated. The corresponding 
moment in time for Fig.  4 is marked by a red dashed line in the time 
series panel in Fig.  3. Consistent updates between the one-dimensional 
spectrum and time series are displayed. The model free run (green) 
initially overestimated the wave energy and wave integral variables and 
the background (before update) and analysis (after update) converge 
towards the truth run (black). We can also observe a shift in peak 
energy from a lower frequency (model) to a higher frequency (EnKF), 
consistent with the mean wave period in Fig.  3.

After an illustration of physical consistency, the overall performance 
can be verified. Fig.  5a shows a scatter plot for the model free run 
result for variable 𝐻𝑠 and Fig.  5b for the EnKF, including RMSE, scatter 
index (SI), bias and correlation coefficient R. The colour bar represents 
the relative likelihood of occurrence. The model scatter has some bi-
modality that is caused by a clear separation of underestimation on the 
first day of the time series, while the model free run is mostly overes-
timating after the first day. It is difficult to draw any conclusions from 
this bi-modality, given that we have a short time window with very 
specific storm dynamics. RMSE score for 𝐻  was reduced from 0.45 m 
𝑠
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to 0.16 m, SI from 0.13 to 0.05 and R was increased from 0.97 to 1.00. 
Bias remained the same. We cannot adhere strongly to the absolute 
values from this identical twin experiment, but the relative comparison 
between the model and EnKF is informative. For reference, Caires et al. 
(2018b) found reductions in a similar order assimilating real buoy data: 
SWAN driven by HARMONIE showed RMSE scores of 0.49–0.65 m, 
while the EnKF run reduced RMSE scores to 0.23–0.28 m.

The question that remains is whether updates are confined to the 
surroundings of the wave buoys or not. Fig.  6 shows that RMSE re-
ductions up to 80 percent have been achieved throughout a large part 
of the North Sea, while the smallest reductions are found along the 
boundaries of the model. Most likely, a short wind fetch on the model 
edges limits the range of possible wind and wave updates.

Although good results were achieved with our initial settings de-
rived from wind nowcast and forecast error estimates, one could ques-
tion the validity and robustness of these settings when we do not have 
full knowledge of the system and measurement uncertainty statistics, 
e.g. when using real data. Next, we study the sensitivity of the initial 
settings

8. Results: EnKF sensitivity study

This Section is dedicated to understanding the sensitivity of the 
settings by using slightly different statistics in the EnKF compared 
to what we used to generate the synthetic truth and measurements. 
The EnKF is sensitive to: (a) the numerical settings of the filter; (b) 
the system uncertainty settings and (c) the measurement uncertainty 
settings. All sensitivity experiments are based on the twin experiment 
where observations from five synthetic wave buoys, displayed in Fig. 
2a, were assimilated. To minimize the interaction between parameters 
during the sensitivity study, other parameters were kept constant. 
These values are displayed as grey dashed lines in Fig.  7.

8.1. Filter settings

Two important settings in the EnKF are the ensemble size and the 
assimilation frequency. Fig.  7a,b and c display sensitivity experiments 
for ensemble size, analysis frequency and computational speed for 
analysis frequency. Fig.  7a shows that the filter converges fully after 
ensemble size 𝑁 = 64 (RMSE = 0.26 m). Although reasonable results 
can be achieved from 𝑁 = 16 (RMSE = 0.28 m), statistics will be 
more prone to variance with a smaller ensemble size and slightly 
different case studies. The associated computational speed increases 
(not displayed here) exponentially with ensemble size from 15 (𝑁 = 1) 
min to 17 h (𝑁 = 144) with an hourly analysis frequency. For the rest of 
the experiments ensemble size 64 was used. Note that all grey vertical 
Fig. 5. Scatter plots for predicted 𝐻𝑠 and true 𝐻𝑠: (a) results for the model free run; (b) results for the EnKF buoy observation assimilation. The colour bar shows the relative 
likelihood of pairs to occur.
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Fig. 6. Percentage of RMSE reduction between model and EnKF for 𝐻𝑠 averaged over 
time. Positive percentages indicate a reduction in RMSE for the EnKF.

dashed lines in Fig.  7 display the settings that were kept constant in 
the other experiments.

The filter is also sensitive to how often observations are assimilated: 
the analysis or assimilation frequency. This is relevant when obser-
vations are not available at regular intervals (satellite observations). 
There is a trade-off between performance and computational speed. 
This becomes evident when comparing the nonlinear increase of the 
RMSE in Fig.  7b and the associated computational speed in Fig.  7c. The 
best performance occurs when hourly observations are assimilated, but 
computational speed decreases rapidly for a frequency of 6 h, while 
still maintaining acceptable performance. An assimilation frequency of 
6 h was used for the rest of the experiments, anticipating the satellite 
altimeter twin experiment. Changing the assimilation frequency to 1 h 
did not change the results significantly.

8.2. Observation uncertainty settings

Fig.  7d shows RMSE scores for the availability of observations. It 
shows that there is little benefit in assimilating hourly observations 
when the assimilation frequency is 6 h (even a RMSE increase from 
0.27 m compared to 0.3 m). RMSE scores increase nonlinearly to a 
lower availability of 21 h. Given the short simulation time window, the 
observation samples become too small after 21 h. Fig.  7e displays the 
sensitivity to observation uncertainty while keeping the standard devi-
ation of the observation noise of the synthetic observations constant. It 
is obvious that underestimating the observation noise is penalized more 
than overestimating it, with exponentially increasing RMSE scores. 
Although the optimal standard deviation was found to be 0.3 m, slightly 
higher compared to the actual noise standard deviation on synthetic 
observations (0.2 m). This could be caused by two things. A compen-
sation effect due to a limited ensemble size and the 6-h assimilation 
frequency, to maintain sufficient ensemble spread.

8.3. System uncertainty settings

Recall that we chose initial settings based on the nowcast and 
forecast HARMONIE wind fields. Fig.  7f,g and h show low sensitivity to 
wind correlation length and time scale as well as uncertainty. Fig.  7f,g 
and h display that the optimal values slightly shift, compared to the 
settings to generate the synthetic truth (grey dashed lines), when using 
a 6-hourly assimilation frequency. In contrast, the ensemble spread was 
slightly less optimal for the lowest RMSE scores. Therefore, the initial 
settings consistent with the truth run settings were not changed.
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9. Results: assimilation synthetic altimetry observations

9.1. Synthetic satellite altimeter measurements

This Section evaluates the potential impact of satellite altimeter 
measurements in an EnKF wave DA system for the North Sea. This 
also allows for a relative comparison between the impact of assimi-
lating buoy and satellite altimeter measurements. In this experiment, 
synthetic 𝐻𝑠 observations from satellite altimeters were assimilated, 
using the actual spatial coverage and pass-over times. This comparison 
is of interest because buoy measurements are typically abundant in 
time, but scarce in space, while satellite altimeter measurements are 
typically scarce in time and abundant in space. All available satellite 
observations of 𝐻𝑠 were used and include satellites: nadir CFOSAT, 
Haiyang-2B, Cryosat −2, Jason-3, Sentinel-3, Saral and Altika. They 
were obtained from the Copernicus Marine Environment Monitoring 
Service (CMEMS) Data Store. Fig.  8 shows a typical day (2022-01-31) 
of satellite altimeter tracks that provide 𝐻𝑠 observations in colour, and 
all tracks over the simulation period in grey.

It must be noted that one Sentinel-3B track was not available on 
CMEMS. Moreover, Altika and Saral did not cross the North Sea on this 
date. The average time between tracks is approximately 4 h, but the 
maximum gap between tracks is 12 h. Occasionally 2 tracks within one 
hour occur. The synthetic 𝐻𝑠 measurements for satellite tracks were 
created by extracting them from the perturbed truth model run and 
perturbed with white noise with a standard deviation of 0.2 m, which is 
approximately equal to the error statistics that CMEMS provides for the 
wave altimeter product (Taburet et al., 2024). Although there are small 
variations between satellite altimeters, the standard deviation was kept 
constant for consistency of the identical twin experiments. To avoid 
overloading the system with observations, while using a coarse grid, 
sufficient spacing between points on the track was taken (every 10th 
point). A coastal mask of 50 km was applied to be consistent with the 
decreased performance of altimeter tracks nearshore.

9.2. Physical consistency: Haiyang-2B snapshot

To verify the behaviour of the EnKF using satellite altimeter mea-
surements and the physical consistency in the system, this Section 
shows a detailed comparison of the corrections in time and space. 
Fig.  9 shows a time series at validation station Anasuria. The SWAN 
model free run is displayed in green, the synthetic truth in black, 
the background (before correction) in orange and the analysis (EnKF 
after correction) in blue. The dashed lines indicate when satellite 
observations were assimilated, with the red dashed line representing 
the pass-over of Haiyang-2B satellite track on 2022-01-31 07:00.

First of all the EnKF analysis (blue) is closer to the truth (black) 
compared to the model (green) and EnKF background (orange), show-
casing a good performance of the EnKF. Secondly, the ensemble spread 
varies over time, underlining the dynamic state-dependent uncertainty 
in the system similar to our buoy experiment.

The difference here is that the ensemble spread grows larger com-
pared to the buoy experiment, caused by the decreased temporal avail-
ability of satellite measurements. This holds in particular when wind 
speeds are high. The ensemble spread during the time interval between 
2022-01-31 17:00 and 2022-02-01 09:00 clearly shows this. Thirdly, by 
comparing the background (before correction) with the analysis (after 
correction) on the analysis intervals, the impact of the EnKF becomes 
apparent. The pass-over of Haiyang-2B on 2022-01-31 07:00 is partic-
ularly interesting because the system has not received an observation 
for a longer period and encountered growing uncertainty. The dashed 
line marks a decrease in 𝐻𝑠 after the correction. Also, the ensemble 
spread decreases as a result of the updated information in the system 
(and possibly the decaying wind speed).

Although the time series indicate good corrections on 𝐻𝑠, the 
wave spectrum could provide more convincing evidence for physically 
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Fig. 7. Sensitivity experiments for the EnKF Wave DA system. Sensitivity for (a) ensemble size; (b) analysis frequency; (c) computational speed for analysis frequency; (d) observation 
frequency; (e) observation uncertainty; (f) wind correlation length scale; g) wind correlation length scale (h); standard deviation of the wind forcing noise. Dashed lines indicate 
settings kept constant.
Fig. 8. Observed daily altimeter tracks for 2022-01-31 (colour) and remaining tracks 
(grey) including nadir CFOSAT, Haiyang-2B, Cryosat −2, Jason-3, Sentinel-3.

consistent and realistic corrections. After all, corrections are made 
through covariance between the wind fields and the wave spectrum. 
Fig.  10 shows the model free run one-dimensional wave spectrum, 
the background EnKF (before correction) and the analysis EnKF (after 
correction). A consistent correction is made on the wave spectrum, de-
creasing the energy in the peak of the spectrum that was overestimated 
as a result of uncertainty in the wind field. It is worth noting that we 
occasionally found wave spectra where the low-frequency energy was 
increased, while the wind speed was decreased. This could occur when 
wind speed drops and correlates with the low-frequency part of the 
wave spectrum, which can be physically consistent.

To illustrate the wave DA system with satellite altimeter measure-
ments, spatial patterns of the wind and wave fields and the respective 
corrections are analysed. Fig.  11 displays 6 panels. The first row 
displays the background wind field (𝑈 ) at 2022-01-31 07:00, the 
10
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correction on the wind field after assimilating Haiyang-2B and the error 
reduction of 𝑈10 after the analysis. The second row in the panel displays 
the same metrics, but instead for the wave field (𝐻𝑠). Additionally, 
Fig.  11d also marks the Haiyang-2B (H2b) observations. 11e displays 
the innovation (observed-background) at the satellite track points. Fig. 
11e and f show the location of validation station Anasuria. The sharp 
gradient in the wind and wave fields makes this an interesting moment 
in time. Panels 11b and e clearly display both positive and negative 
updates for 𝑈10 and 𝐻𝑠. This can be explained by the difference in 
the covariance structure of strong winds in the western North Sea 
and weaker (rotated) winds in the eastern North Sea. Improved error 
reduction scores are shown (in blue) in the third column for both wind 
and waves, although the extent of improvement is larger for the wave 
field. This is to be expected, knowing that wind fields are corrected to 
be consistent with wave fields. The southwestern North Sea performs 
slightly worse. This could be caused by the use of a uniform correlation 
length scale and the absence of observations in the southwestern part 
of the North Sea.

9.3. Overall spatial performance

After an illustration of the physical consistency of the wave DA 
system, the overall performance metrics can be assessed in terms of 
the respective distributions and errors in space and time. Fig.  12 shows 
the percentage of RMSE reduction between the model and EnKF for 𝐻𝑠
averaged over time. Although, less widespread compared to the hourly 
buoy assimilation, RMSE reductions of up to 60 percent are achieved. 
The decreased observation availability impacts the southwestern part of 
the North Sea most, similarly as visible in the snapshot in Fig.  11f. Most 
likely, hourly buoy measurements covering the entire North Sea extent, 
can partly compensate for the simplified uniform correlation length 
scale of the wind noise model. However, when the satellite tracks do 
not extend across the meridional extent of the North Sea, the EnKF 
(unfavourably) relies more on the uniform correlation length scale.
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Fig. 9. Time series at validation station Anasuria displaying the ensemble spread (grey), the analysis (EnKF after correction) (blue), the background (EnKF before correction) 
(orange), the free run model (green), the synthetic truth (black), all satellite pass-over times and the Haiyang-2B pass-over time (also displayed in Fig.  11).

Fig. 10. 1D wave spectrum at 2022-01-31T07:00:00 with free run model, background (EnKF before correction), analysis (EnKF after correction) and truth.

Fig. 11. Spatial fields at 2022-01-31T07:00:00 with (a) EnKF background 𝑈10 [m/s]; (b) 𝑈10 EnkF update (analysis-background) [m/s]; (c) 𝑈10 Error reduction compared to 
background [m]; (d) EnKF background 𝐻𝑠 [m] and Haiyang-2B satellite observations; (e) 𝐻𝑠 EnKF update and the innovation (observed-background) for Haiyang-2B track; (f) 𝐻𝑠
Error reduction compared to background [m].

Ocean Modelling 197 (2025) 102586 
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Fig. 12. Percentage of RMSE reduction between model and EnKF for 𝐻𝑠 averaged over 
time. Positive percentages indicate a reduction in RMSE for the EnKF.

9.4. Overall time performance

Fig.  13 shows a scatter plot of truth and predicted 𝐻𝑠 for both the 
EnKF and the model free run, including performance metrics for all grid 
cells and the entire time series. The density on the colour bar shows 
the relative likelihood of the distributions. The EnKF shows improved 
performance reducing the RMSE from 0.44 to 0.21 and scatter index 
from 0.13 to 0.06. Bias reverses from 0.02 to −0.03, but it should be 
taken into account that we assessed a limited time period.

To illustrate the co-dependence of the error and uncertainty on the 
information availability in the system, Fig.  14 shows that ensemble 
spread and RMSE grow, when satellite observations are absent for a 
longer period, indicated by the dashed lines. The time windows, where 
this is not the case, e.g. 2022-02-01 11:00 and 19:00 can be explained 
by the fact that the satellite track just crosses a small tip of the model 
domain, allowing the error to grow because of limited observations.

10. Discussion

The buoy experiment (RMSE = 0.16 m) relatively outperforms the 
satellite experiment (RMSE = 0.21 m) and strong RMSE reductions are 
more widespread throughout the North Sea. The time between satellite 
passes sometimes shows larger gaps, and errors can grow significantly 
if this coincides with increasing strong winds and waves. In contrast, 
buoys have a very regular sampling, but there are several parts of the 
North Sea with few buoys (although there are more platforms and 
10 
buoys than used in this study). In space and time, both experiments 
have physically consistent corrections, that are to some extent confined 
by the surroundings of the measurements.

The RMSE averaged over the model domain shows the reduced 
impact of irregular measurement sampling when comparing satellite 
and buoy results. Despite this, the study shows that the impact of 
assimilating satellite altimeter measurements can be significant. Iden-
tical twin results cannot support strong conclusions in relation to real 
data. Still results from Caires et al. (2018a) are in the same order of 
magnitude of 10–30 cm in an experiment where buoy 𝐻𝑠 observations 
were assimilated. Ensemble size, observation frequency, observation 
uncertainty, and analysis frequency are relatively important settings to 
consider in the EnKF. The parameters for the noise model to perturb 
the wind fields are less sensitive. There is some interaction between 
parameters while changing the analysis frequency, but this does not 
significantly change the outcome. Note that we considered a specific 
storm within a short time window, so some variance in results can be 
expected under different physical conditions and a longer simulation 
period. Another limitation is that we used a relatively coarse resolution 
for our model domain and inputs.

Putting the results in a broader perspective, several promising re-
search opportunities arise. Firstly, an observation impact study would 
allow us to test this framework with real satellite data.

Secondly, the recent launch of the SWOT satellite mission (Surface 
Water Ocean Topography) opens up several ways of looking at 𝐻𝑠
spatial variability (Bohé et al., 2025). The instrument measures over 
a wide swath of 120 km with a 20 km gap in the middle (Fu et al., 
2024). Moreover, this adds one extra satellite, increasing the temporal 
density.

Due to the nature of satellite altimeter wave measurements, only 
measurements of 𝐻𝑠 were assimilated. Nonetheless, the EnKF imple-
mentation is suitable for the assimilation of various other variables. In-
vestigating the potential of assimilating wind measurements (e.g. from 
scatterometer) is an interesting opportunity for future research.

11. Conclusion

We implemented a wave DA system based on the EnKF, illustrating 
advantages over existing schemes with identical twin experiments. By 
using the full wave spectra in the state and just assimilating integral 
variable 𝐻𝑠, physically consistent correction on the wave spectrum 
and other integral variables are achieved. A sensitivity study shows 
the relative importance of observation frequency, knowledge of ob-
servation uncertainty, ensemble size and assimilation frequency. In 
contrast, the noise model parameters are less sensitive. The satellite 
experiment (0.44 to 0.21 RMSE reduction) performs slightly worse 
than the buoy experiment (0.45 m to 0.16 m RMSE reduction), due to 
Fig. 13. Scatter plots for predicted 𝐻𝑠 and true 𝐻𝑠: (a) results for the model free run; (b) results for the EnKF satellite assimilation. The colour bar shows the relative likelihood 
of pairs to occur.
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Fig. 14. Time series of the 𝐻𝑠 RMSE, averaged over the model domain, the ensemble spread and the pass-over times of the assimilated satellite observations.
reduced observation availability and varying spatial coverage. Despite 
this, such a system provides a promising framework for observation 
impact studies. A good improvement over existing schemes is that the 
assimilation impact is not affected by ad-hoc choices for converting 
changes in 𝐻𝑠 to updates of the full wave spectra. The experiments 
indicate that the potential impact of satellite 𝐻𝑠 measurements in the 
North Sea can be significant and worth further exploration. Although 
the error structure and settings are realistic, one should still be careful 
about extrapolation to experiments with real measurements.
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Appendix A. Cholesky factorization

In the actual implementation of the EnKF scheme, the computation 
of covariance matrices (Eqs.  (9) and (14)) can be avoided. More specif-
ically, we take the Cholesky factorization (Lewis et al., 2006, 9.1) of 
real symmetric positive and definite matrix 𝐏𝑓 (𝑡𝑘) as 

𝐏𝑓 (𝑡𝑘) = 𝐋(𝑡𝑘)𝐋𝑇 (𝑡𝑘), (A.1)

where 𝐋 is the perturbation matrix of size 𝑛𝑥𝑁 , with 𝑛 being the 
number of state variables and 𝑁 the ensemble size: 
𝐋(𝑡𝑘) =

1
√

𝑁 − 1

[

𝝃𝑓𝑖 (𝑡𝑘) − �̂�𝑓 (𝑡𝑘), … , 𝝃𝑓𝑁 (𝑡𝑘) − �̂�𝑓 (𝑡𝑘)
]

(A.2)

We can map the perturbation matrix to the observations to reduce 
dimensions by taking 
Ψ(𝑡 ) = 𝐇𝐋𝑓 (𝑡 ) (A.3)
𝑘 𝑘
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with dimensions of 𝛹 (𝑡𝑘) being 𝑚𝑥𝑁 where 𝑚 is the number of obser-
vations and 𝑛 the number of state variables. By means of substitution 
using Eqs.  (A.1) and (A.3), the Kalman gain can be reformulated as: 
𝐊(𝑡𝑘) = 𝐋(𝑡𝑘)Ψ𝑇 (𝑡𝑘)

[

Ψ(𝑡𝑘)Ψ𝑇 (𝑡𝑘) + 𝐑(𝑡𝑘)
]−1 (A.4)

Appendix B. Non-linear observation operator

In the EnKF formulation, the measurement operator 𝐇 is assumed 
linear. However, the wave measurements are often in 𝐻𝑠 [m] and 
the wave model state in 𝐸(𝜎, 𝜃) [m2/Hz], so a nonlinear operation is 
needed. We use a similar concept as in Hunt et al. (2007) and apply 𝐻
to each ensemble member and the ensemble mean separately. To this 
end Ψ can be defined as: 

Ψ(𝑡𝑘) =
1

√

𝑁 − 1

[

𝐻(𝝃𝑓𝑖 (𝑡𝑘)) −𝐻(�̂�𝑓 (𝑡𝑘))
]𝑁

𝑖=1
(B.1)

It is obvious that this holds with a linear measurement operator, 
but it is also a reasonable approximation for a nonlinear measurement 
operator when deviations around the mean are small. Thus we can 
replace Eq.  (A.3) with Eq.  (B.1). Consequently, Eqs.  (A.2) and (A.4) 
contain the transformed ensemble predictions of the observations.

Data availability

The open source data assimilation software, OpenDA, can be down-
loaded from: https://github.com/OpenDA-Association. The wave
model SWAN can be downloaded from: https://gitlab.tudelft.nl/citg/w
avemodels/swan. Satellite altimeter tracks used to create synthetic data 
are accessible through the Copernicus Marine Environment Monitoring 
Service (CMEMS): https://doi.org/10.48670/moi-00179.
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