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ABSTRACT

Self-adaptation can be used in robotics to increase system robust-

ness and reliability. This work describes the Metacontrol method

for self-adaptation in robotics. Particularly, it details how the MROS

(Metacontrol for ROS Systems) framework implements and pack-

ages Metacontrol, and it demonstrate how MROS can be applied in

a navigation scenario where a mobile robot navigates in a factory

floor. Video: https://www.youtube.com/watch?v=ISe9aMskJuE
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1 INTRODUCTION

Autonomous robots are usually programmed by integrating and

configuring individual robot capabilities in a governing static con-

trol architecture. However, static control architectures fall short

when addressing context variability in open-ended, dynamic envi-

ronments, where internal errors also compromise the quality and

autonomy of mission execution. The demand for higher autonomy

in robotic systems requires that robots can decide and switch be-

tween available alternative configurations, acting as a self-adaptive

system. The addition of self-adaptation capabilities to robotic sys-

tems could be performed by including the adaptation logic into

the robot’s application logic. However, this leads to the problems:

(1) the adaptation logic being tangled up with application logic,

making it difficult to individually change any of the separate logic;

(2) the lack of reuse of the adaptation reasoning, requiring it to be

reprogrammed for each application. Thus, it is advantageous to

use methods and tools that enable the separation of concerns and

promote reuse. This paper demonstrate how Metacontrol [6] can

be applied with the MROS [3] tooling to enable self-adaptation in

robotic systems.

Metacontrol [6] is a framework that incorporates systems with

the capability to self-adapt to maintain their functionalities at an

expected performance. Metacontrol has the design goals of being

reusable and extensible. This is achieved with the design principles:

(1) separating the adaptation and application reasoning; (2) exploit-

ing at runtime the engineering knowledge of how the system is

∗Authors are with the Department of Cognitive Robotics, Delft Univer-
sity of Technology, Delft, Netherlands; Emails: g.rezendesilva@tudelft.nl,
m.a.garzonOviedo@tudelft.nl, m.ramirezmontero-1@student.tudelft.nl,
c.h.corbato@tudelft.nl
†Authors is with IRIDIA, University Libre du Bruxelles, Bruxelles, Belgium; Email:
darko.bozhinoski@ulb.be
‡Authors are with Fraunhofer Institute for Manufacturing Engineering and Automa-
tion IPA, Stuttgart - Germany; Emails: nadia.hammoudeh.garcia@ipa.fraunhofer.de,
harshavardhan.deshpande@ipa.fraunhofer.de
§Author is with Computer Science Department IT University Conpenhagen, Denmark;
Email: wasowski@itu.dk

designed to reason how and when the system needs to adapt, i.e.,

by being model-based.

MROS [3] is a tooling that implements the Metacontrol frame-

work for ROS-based [12] systems. This paper demonstrates how

MROS1 lowers the barrier for robot developers to add self-adaptation

to a robot control architecture by leveraging Metacontrol’s design

principles to promote reuse and extensibility. In this paper, the

novel contributions are:

• A methodology for robotic developers to effectively use

the MROS tooling to add self-adaptation capabilities in a

robotic system.

• A case study that demonstrates the value of the MROS

tooling and the proposed methodology.

2 METACONTROL

Metacontrol [6] is a reference architecture that provides systems

with the capability to self-adapt to maintain their functionalities

at an expected performance, despite external disturbances, faults,

and unexpected behavior. For this, it uses engineering knowledge

of how the system is designed, in the form of a runtime model, to

reason when and how the system needs to adapt. Metacontrol is

further explored in the works [1, 3, 7–9, 11].

Metacontrol follows the standard model in self-adaptive systems

(Figure 1) that separates the application into a Managed system,

which consists of the robotic domain specific components, and a

Managing subsystem, which is a Metacontroller component that

closes a feedback loop with the Robot subsystem to monitor and

adapt it when necessary.

The Metacontroller operates following the MAPE-K loop [10],

which consists of a Monitor, Analyze, Plan and Execute steps, that

are based on a Knowledge Base (KB). The Monitor step is responsi-

ble for measuring relevant quality attributes for the functionalities

of the system. The Analyze step is responsible for deciding whether

the Managed system needs to reconfigure. When it is necessary to

perform reconfiguration, the Plan step is responsible for selecting

a new configuration for the Managed system that satisfies its re-

quirements. The Execute step is responsible for reconfiguring the

Managed system.

The KB is the main difference of Metacontrol with other self-

adaptation frameworks. It consists of a runtime model based on

the TOMASys metamodel. TOMASys contains concepts to describe

the functional and physical architecture of a system, and its vari-

ants, both at design time and at runtime. For the robotic developer

using MROS, only TOMASys design time concepts are needed to

create the Metacontrol KB, while the runtime elements are used

1This paper address the ROS1 version of MROS, which can be found at: https://github.
com/meta-control/mc_mros_reasoner/tree/mros1-master
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by an automatic reasoner in the Metacontroller. A more detailed

description of TOMASys can be found in [1, 6].

The Function element represents an abstract functionality of the

system, such as navigating from point A to B. A Function Design is an

engineering design solution that solves a specific Function with an

expected performance. Quality Attribute Type and Quality Attribute

Value are used to capture the systems engineering meaning of QAs.

A Quality Attribute Type represents a characteristic of the system

that shall be observed, such as energy. And a Quality Attribute Value

represents an amount of a Quality Attribute Type, e.g., 1 Joule.

Metacontrol (Managing)
Subsystem

Monitor

Analyze Plan

Execute
KB

Robot (Managed)  
Subsystem

Figure 1: Metacontrol

Function

estimated

solves

Function
Design

is

Quality
Attribute Value

Quality
Attribute Type

Figure 2: TOMASys

3 MROS FRAMEWORK

MROS is a ROS-based implementation of Metacontrol that enables

architectural self-adaptation in ROS-based robotic systems. MROS

monitors the state of the ROS system and updates its KB according

to it, then it uses ontological reasoning to Analyze and Plan the

required adaptations, which are then executed by reconfiguring the

ROS node graph. This section first describes how the MROS library

implements the MAPE-K loop and the Metacontrol KB, and then it

presents the methodology that robot developers can follow to use

it to implement self-adaptation in ROS 1 applications2.

3.1 MROS library

MROS follows the MAPE-K model for runtime adaptation, as shown

in in Figure 3.

Monitor: This component is realized with the ROS node ros-

graph_monitor , it provides system observers templates. The ob-

server nodes operate at a fixed frequency and publish the moni-

tored values to the Metacontrol reasoner using the standard ROS

diagnostic mechanism (i.e., a specific channel and data structure

in ROS systems). This means they easily integrate into an existing

ROS system and might use or provide services already needed in

the system, regardless of the presence of a Metacontroller.

Knowledge Base: The Knowledge Base consists of (1) the

TOMASys metamodel that allows modeling the functional architec-

ture of autonomous systems; (2)A TOMASys model of the Managed

subsystem that defines its unique Functions, Function Designs and

2There is already a beta version of MROS supporting ROS 2, but it requires a different
method

its expected Quality Attributes, in other words, all possible configu-

rations for the Managed subsystem. The KB is implemented as an

ontology using the Ontology Web Language (OWL) in combination

with the Semantic Web Rule Language (SWRL).

Analyze and Plan: These components are realized with the ROS

node mros1_reasoner , it integrates the OWL ontology, i.e. the KB,

with ROS and it reasons over it to decide when and how to adapt

the Managed subsystem. It consists of a ROS node implemented

with Python that makes use of the library OwlReady2 to bridge the

ontology with Python and ROS. And the reasoning is performed

with the off-the-shelf ontological reasoner Pellet.

Execute: This step is realized with the ROS node

mc_rosgraph_manipulator . It provides a ROS node that is respon-

sible for killing and starting new ROS nodes and changing the

necessary ROS parameters to fulfill the desired configuration.

3.2 MROS methodology

To use MROS to add self-adaptation to a ROS system, the activities

in Figure 4 may be followed.

Step 1: Define the possible adaptations, i.e. set of architectural

variants relevant for the robot to be able to perform a mission. For

each architectural variant, the developer creates a ROS launch file

for the automatic deployment of the corresponding configuration

of ROS nodes.

Step 2: Create the KB by modeling the ROS system architectural

variants with TOMASys. MROS provides an implementation of

TOMASys in OWL, the developer needs to create the individuals

for the application’s Functions, Function Designs and its expected

Quality Attribute Values and Quality Attribute Types.

Step 3: Create observers using the templates provided in the

ROS package rosgraph_monitor to monitor the status of the active

ROS nodes and to measure the relevant Quality Attributes.

Step 4:Configure themros1_reasoner andmc_rosgraph_manipulator

nodes by linking the system architectural variants (step 1) with
TOMASys Function Designs (step 2), and connecting them to application-

specific reconfiguration actions (e.g. to store required node states).

This is done simply editing a template Metacontroller configuration

file in YAML.

4 CASE STUDY

This section describes how MROS can be set up for a robot navi-

gating on a factory floor following the MROS methodology de-

scribed in Section 3.2. This case study comes for the previous

work of Bozhinoski et al. [3]. The experiment code can be found at

https://github.com/rosin-project/metacontrol_sim.

Case study description. The case study consists of a Clearpath

Ridgeback mobile robot that navigates in a factory floor. The robot is

equipped with two laser sensors, one IMU, and an odometry system.

The navigation system is realized with the ROS1 navigation stack.

As the robot navigates, unexpected obstacles may appear in it’s path

and it may get closer or further to objects, which causes its safety

quality attribute level to change. When safety levels are high (lower

risk of collision), the robot can navigate with higher speed and

acceleration. When safety levels are low (higher risk of collision),

it needs to use lower speeds. In addition, throughout the mission,

the battery level diminishes and with this the robot must navigate
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Figure 4: MROS Design time activities

with lower speed and acceleration to save energy. MROS is used

to adapt at runtime the navigation parameters, such as maximum

speed and acceleration, to satisfy safety and energy constraints.

4.1 Application to MROS to the case study

Step 1: Identify the architectural variants corresponding to dif-

ferent configurations (parameter values) of the main node of the

ROS1 navigation stack, and create its corresponding launch files.

In total, 27 different function designs were defined. A snippet of

the ROS launch file of one Function Design is shown in listing 1.

The parameters that have been specifically defined for this Function

Design are: max_vel_x, max_vel_y, acc_lim_x, acc_lim_y, qa_safety,

and qa_energy. The QA values are specified as ROS parameters to

enable, if necessary, to change them at runtime. The QA values

defined in the launchfiles override the ones defined in the ontology.

Listing 1: Function design 1 (out of 27)

1 <launch >
2 <param name=" qa_safety" value ="0.7"/ >
3 <param name=" qa_energy" value ="0.33"/ >
4 <node pkg=" move_base" type=" move_base" name=" move_base"
5 cwd="node" respawn =" false" output =" screen">
6 <param name=" TrajectoryPlannerROS/max_vel_x"
7 value ="0.3" />
8 <param name=" TrajectoryPlannerROS/max_vel_y"
9 value ="0.3" />

10 <param name=" TrajectoryPlannerROS/acc_lim_x"
11 value ="3.6" />
12 <param name=" TrajectoryPlannerROS/acc_lim_y"
13 value ="3.6" />
14 </node >
15 </launch >

Step 2:Model the architectural variants with the MROS TOMASys

ontology. To create the OWL file for the KB, the graphical tool Pro-

tegé can be used to simplify the process. The TOMASys metamodel

is available in the package mc_mdl_tomasys. It is only necessary

to set up the application-specific ontology by creating individuals

of the design time TOMASys classes (Figure 2).

For this case study, the following individuals are created:

• A Function individual for the navigation capability;

• Quality Attribute Type individuals for both safety and en-

ergy quality attributes;

• Function Design individuals for each variant that solves

navigation, including object property individuals of Quality

Attribute Value with their Quality Attribute Type and a data

field with the expected QA value.

Step 3: Create observers with the templates provided in the

ROS package rosgraph_monitor. These templates are two Python

classes called TopicObserver and ServiceObserver that implement the

general functionalities needed to monitor ROS topics and services,

respectively. For each specific quality attribute that needs to be

monitored, it is necessary to implement a new class that inherits

from one of them.

For the use case, two Observers are implemented: SafetyQuality-

Observer and EnergyQualityObserver. A snippet of the implemen-

tation of the latter can be seen in listing 2. The class EnergyQuali-

tyObserver inherits from TopicObserver. In the initialization of the

class, the topic to which the observer needs to subscribe and its
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message type are defined. In line 4, it is defined that it needs to

subscribe to the topic /power_load to retrieve information about the

battery, and that its message type is a float. For all observers, the

method calculate_attribute must be overloaded, it is responsible for

performing any necessary calculation with the data received via

the topic defined in the initialization, it must return the final data

as a key-value pair structured as a diagnostic_msgs/DiagnosticArray

message. In the EnergyQualityObserver, in line 9, the method cal-

culates the battery level as a normalized value, and returns it, for

example, as {𝑒𝑛𝑒𝑟𝑔𝑦, 0.9}. The output of the observers is published

in the topic diagnostics.

Listing 2: EnergyQualityObserver Observer snippet

1 class EnergyQualityObserver(TopicObserver ):
2 def __init__(self , name):
3 #topic to observe and msg type
4 topics = [("/power_load", Float32 )]
5 super(EnergyQualityObserver ,
6 self). __init__(name , 10, topics)
7
8 def calculate_attr(self , msgs):
9 status_msg = DiagnosticStatus ()

10
11 #normalized calculus for energy
12 attr =(msgs [0]. data - 0.2)/(5.0 -0.2)
13 print("normalized energy: {0}".format(str(attr )))
14
15 status_msg = DiagnosticStatus ()
16 status_msg.level = DiagnosticStatus.OK
17 status_msg.name = self._id
18 status_msg.values.append(KeyValue("energy", str(attr )))
19 status_msg.message = "QA status"
20 return status_msg

Step 4: Configure Metacontrol through a yaml file. This is used

to map each Function Design defined in the ontology (step 2) to its

respective launch file (step 1). Additionally, to indicate which ROS

nodes are killed and spawned during the reconfiguration process,

as well, what actions and goals must be saved to be reset when the

reconfiguration is performed. A snippet of the configuration file of

this use case can be seen in listing 3.

Listing 3: Metacontrol configuration file

1 reconfiguration_action_name: 'rosgraph_manipulator_action_server '
2 configurations:
3 f1_v1_r1:
4 command: roslaunch f1_v1_r1 f1_v1_r1.launch
5 f1_v1_r2:
6 command: roslaunch f1_v1_r2 f1_v1_r2.launch
7 f1_v1_r3:
8 command: roslaunch f1_v1_r3 f1_v1_r3.launch
9

10 kill_nodes: ['/move_base ']
11 save_action: 'move_base '
12 goal_msg_type: move_base_msgs.msg.MoveBaseAction

4.2 Results

Bozhinoski et al. [3] show that by adding self-adaptation with

MROS to this use case, the robot performance increases regarding

the amount of time it violates its required safety and energy quality

attributes, and the overall mission success. In average, safety viola-

tions decreases from 2.5% to 0.96%, energy violations from 2.98% to

1.86%, and mission success increases from 65.20% to 78.50%.

5 RELATEDWORK

Aldrich et al. leverages predictive data models to enable automated

robot adaptation to changes in the environment at run-time [2].

While the approach depicts the benefits of using models by captur-

ing high-level artifacts, it makes it extremely challenging for a ROS

developer to make use of them in robotic scenarios because: (1) it

does not introduce models that can be reused for a different appli-

cation; (2) it does not give insights on how to build similar models;

(3) it does not provide infrastructure to leverage those models.

Cheng et al. propose a framework that uses GSN assurance case

models to manage run-time adaptations for ROS systems [5]. The

framework integrates assurance information from GSN models to

ROS specific information to guide runtime monitoring and adap-

tation. It uses custom-developed libraries specific to the approach,

rather than standard libraries in ROS (such as ROS Diagnostics)

raising the entry barrier for ROS developers to effectively use it.

6 DISCUSSION AND FUTUREWORKS

This paper describes MROS - a tool that enables robots to per-

form self-adaptation at runtime based on ontological reasoning.

MROS establishes generic self-adaptation mechanisms that drive

self-adaptation through the MAPE-K reference feedback loop. This

eases the process of designing self-adaptation for robots since it

only requires users to define the proper observers, the Managed

system ontological model conforming to TOMASys, a few configu-

ration files, and the launch files for each architectural variant. Due

to its reusability and extensibility, MROS has been used to handle

different adaptation concerns in different robotic applications, such

as reliable propulsion and motion control in underwater robots [1],

contingency handling in mobile manipulators [3], and enhanced

safety and energy saving in the navigation of a mobile robot [4].
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