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Summary
The maritime industry faces the critical challenge to decarbonise, with alternative fuels offering a
promising route towards being net-zero. While technical progress on these fuels continues to evolve
rapidly, their introduction brings significant operational challenges . One of the most affected and over-
looked areas is the bunker supply chain, which is essential to enabling global maritime logistics. This
research focusses on quantifying the operational implications of implementing sustainable fuels in the
ship-to-ship bunkering segment, with a specific focus via a case study on the bunkering hub of Gibraltar.

To provide this outlook, a hybrid-modelling approach was implemented, combining the dynamics of
agent-based simulations with iterative optimisation. This model captures the dynamics involved in the
ship-to-ship bunkering framework and the stakeholders involved under evolving supply and demand
conditions. Actual operational data, provided through Peninsula a global physical bunker supplier, en-
sures that the model will produce outcomes that reflect the practical constraints and variability.

The results reveal that the implementation of sustainable fuels will introduce increased service
times, higher operational complexity and a drastic increase in pressure on fleet utilisation. Support-
ing literature highlighted that segmentation of demand necessitates a transition from flexible, multi-fuel
bunkering vessels to purpose built single-fuel assets, resulting in more individual and fragmented sup-
ply chains.

The scenario-based optimisation further underscores this as the requirement for maintaining reli-
able service levels will require significantly larger fleets, driven by diversification and not by demand.
The extended service times revealed that for ship operators scheduling and port call planning may sig-
nificantly be influenced and that bunker operations could transition from an additional port call activity
to a critical path constraint.

To conclude, this research demonstrates that the effect of the transition to alternative fuels and
in particular the segmentation of demand require a drastic reconfiguration of the bunker fleet and the
bunker supply chain network. This thesis provides a quantitative framework for anticipating these stated
challenges and support suppliers in planning for a service-oriented transition.
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1
Introduction

80% of global transport is performed by the maritime industry, a share expected to increase annually
due to the ongoing increase in demand for transport capacity, resulting in substantial market expansion.
However, the industry accounts for 3% of global emissions, and combined with the projected growth,
an unsustainable outlook emerges.

This led to the development of a number of initiatives at the international and regional levels focused
on mitigating the impact of the maritime sector on the environment. Yet, a lack of coordination between
governing entities has led to overlapping and inconsistent regulations, creating a complex framework
for shipowners, charterers and operators to operate in. Ultimately, creating uncertainty around the
pathway for transitioning to a more sustainable industry.

Despite the uncertainty, the industry acknowledges the inevitability of transitioning to alternative fu-
els. While a multitude of alternatives have been marked as potential candidates, no single solution has
emerged due to varied operational requirements, implementation constraints and scalability limitations.
This segmentation introduces additional layers of complexities. Especially in the bunker supply chain,
a key part of the maritime supply chain, responsible for the sourcing and distribution of the fuels that
enable maritime transport. This introduces the need for diversification within the bunker supply chain
due to the direct impact of the expected market segmentation in the marine fuel market, as it directly
influences the two main aspects of ship-to-ship bunkering operations.

First, alternative fuels will transform the ship-to-ship delivery process and the corresponding bunker
vessels. This due to the need to adapt to the new requirements for accommodating and handling
these new fuels with different characteristics and safety requirements. Ultimately, resulting in a shift to
purpose-built bunker vessels, designed to handle a single fuel type in contrast to the current compati-
bility and flexibility of a multi-fuel setup.

Second, the lower energy content of these fuels combined with the expected market expansion,
which introduces additional and larger vessels to meet market demand, will require additional larger
and longer ship-to-ship operations. This necessitates increased bunkering capacity through larger and
additional bunker vessels, while handling extended operational times.

This outlook creates operational uncertainty for bunker suppliers, raising concerns about how day-
to-day operations will evolve, whether the current fleet will be adequate in the future years, and what
types and numbers of bunker vessels will be required. Questions also arise around the evolution of
the supply chain and how demand will shift. These uncertainties have a direct impact on long-term
policies aimed at keeping suppliers’ service levels consistent. This study, conducted in partnership with
Peninsula, attempts to quantify the challenges placed on the maritime fuel supply chain by identifying
the significant changes in terms of demand, operations, and the scale of operation required.
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2 1. Introduction

1.1. Problem Definition
The segmentation of the bunker market will introduce inevitable changes from a commercial and op-
erational point of view, as demand will shift and diversify. Operational changes and complexities are
attributed to the introduction of larger bunker quantities, more frequent supplies and the diverse re-
quirements for fuel compatibility. Commercial changes are to be explained by the shift in fuel types,
the demand to expect and a change in the size of operation. However, in order to anticipate these
changes, invest timely and maintain the same level of service and maintain the maritime supply chain,
a quantified outlook needs to be provided.

By analysing these changes systematically and translating them into a quantitative framework that
provides insights into future operational scenarios, bunker suppliers would be enabled to anticipate
the changes and possible challenges in future operations. This proactive approach would introduce a
mutual benefit, as it would allow operators to transition smoothly to these new and more sustainable
fuels and bunker suppliers to anticipate changes in a volatile market due to ever changing regulations.

1.2. Methodology
To address the implications of alternative fuel adoption in the bunker supply chain, this research follows
a two step approach that begins with developing a comprehensive practical and theoretical foundation
before developing the analytical tools.

First, a comprehensive overview of supporting literature was composed to fully comprehend the
current working mechanisms of the bunker supply chain, operational processes and supply chain com-
position. Additionally, the review will also evaluate a number of research methods from similar research
in supply chain analysis and transition studies to identify the most appropriate method of research in
the bunker supply chain context.

Based on the foundation developed in the literature review, an analytical model will be developed,
where the selected methodology will be implemented to analyse various transition scenarios and pro-
vide insights into operational changes, demand patterns and implications for the bunker suppliers in
the Gibraltar hub.

1.3. Research Objective and Questions
The main objective of this research is to provide a quantified outlook into the operational implications
of alternative fuel implementation in the bunker supply chain, this with a specific focus on the Gibraltar
bunker hub due to it prominent presence as a global bunkering hub and Peninsula’s centre of opera-
tions in this region. This cooperation with Peninsula enables access to real-world operational data and
industry expertise, ensuring that the research addresses the practical challenges bunker suppliers face.

To encapsulate all previously stated and desired insights, the following main research question is
proposed: What will the implications be of the implementation of sustainable fuels for the bunker
industry on an operational level.

Guided by the following sub questions:

• What changes occur in the bunker supply chain in the transition to sustainable fuels?

• How can a model be developed to represent the future bunker supply chain under demand diver-
sification?

• What are the projected operational impacts of different sustainable fuels on key stakeholder op-
erations?

• How effective is a model to quantifying demand and supply chain diversification, and what insights
does it provide for future operations?
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Literature Review

In order to understand what challenges might be introduced with the transition to sustainable fuels in the
bunker industry, a comprehensive overview of the bunker supply chain, possible alternative fuels and
researchmethodologies needs to be established in order to determine potential, feasibility, compatibility
and requirements. In the following chapter, an overview of supporting literature is provided in order to
support all subsequent parts of the research.

2.1. Bunker Supply Chain
The global bunker supply chain can be broken down into two distinct phases, a global or regional sourc-
ing phase, depending on the size of the operation, and a regional delivery phase [10]. The sourcing
phase consists of collecting a specific fuel blend or different types of fuel grades to create the desired
blend of fuel itself and delivering it to a regional storage facility. The secondary phase is the distribu-
tion of the fuels to the vessel by the bunker supplier. In figure 2.1 an overview of the most common
combinations of the supply chain is depicted.

Figure 2.1: Global overview of the bunker supply chain

After evaluating the diagram of the most common combinations in the fuel supply chain, it should
be noted that all types of distribution operations are performed, yet the most common type of operation
performed is the ship-to-ship and barge-to-ship transaction in large bunker hubs globally. This is to be
explained by the fact that these types of operations provide the ability to accommodate large quantities
of fuel and offer operational flexibility in terms of location as they allow for a greater operational coverage
[10].

3



4 2. Literature Review

2.2. Ship-to-Ship Bunkering Framework
After establishing the significance of the ship-to-ship bunkering operations in the maritime fuel supply
chain, a comprehensive breakdown of the operation framework should be provided in order to fully
comprehend all aspects that are involved and could be influenced in the transition to more sustainable
marine fuels.

2.2.1. Bunkering Hubs
Most ship-to-ship bunkering operations are carried out in global bunkering hubs, which can be a single
port, like Singapore, or multiple ports, such as the ARA (Antwerp-Rotterdam-Amsterdam) [53], [10], see
illustration 2.2. In these locations, either a single bunker supplier or multiple bunker suppliers serve
vessels requesting bunkers. The number of suppliers in a port or region is commonly determined by the
amount of bunkering licenses issued for a specific fuel type by the local port authorities. The bunkering
operation generally takes place at either an allocated anchorage or at a berth or terminal within the
port. Based on location and the availability of infrastructure, these bunkering hubs can be classified
into three categories: anchorage, port, and port-and-anchorage hubs. This classification determines
how operations are organised among stakeholders, who the stakeholders are, the types of vessels
requesting bunkers, and the capacity of these operations.

Figure 2.2: Simplified diagram of a bunkering hub

Evaluating global bunkering hubs, the observation can be made that these hubs mostly coincide
with ports or regions that are exposed to highly dense marine traffic [34]. The concentrated nature of
these bunkering hubs ultimately results in a highly concentrated demand for bunkers in specific loca-
tions. In turn, this concentrated demand results in a concentrated number of suppliers operating in
these bunkering hubs, providing the requested bunkers to the vessel operators.

The multitude of bunker suppliers operating in these bunkering hubs may vary significantly in scale,
covered region, fuel type offerings, bunker supplying vessels and operational organisation. Based
on literature and industry insights the variation in fuel type offerings and scale of operation is to be
explained by the supply chain configuration of the supplier in the specific bunkering hub [53], [26].
Variations in supply chain setup are to be traced back to access to local production capacity (refineries),
storage configurations or the bunkering vessels deployed by the bunker suppliers, varying from a single
fuel type offering to multi-fuel type configurations.
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2.2.2. Ship-to-Ship Bunkering Process
The ship-to-ship bunkering operation is most commonly performed between a bunker requesting ves-
sel moored in port or at anchorage and a dedicated bunkering vessel. At anchorage or in port bunker
supplies may occur simultaneously with other in port processes depending on the fuel type, the port
of choice and the bunker requesting client. During the operation a bunker supplying vessel will moor
alongside the receiving vessel in order to supply the requested bunkers. The entire bunkering process
can consists of a single fuel type delivery or a more complex operation where multiple fuel types are
requested by the receiving vessel. Based on the availability of fuel type, required quantity and available
bunkering vessels, the operation will either be performed by a single bunkering vessel carrying a single
or multiple fuel types or a number of bunkering vessels carrying various fuel types [10].

Figure 2.3: Diagram of bunker setup [2]

The transfer process is enabled by a connection with a flexible hydraulic hose between the supply-
ing and the receiving vessel, as illustrated in figure 2.3. The supply process can either be performed
by a single connection or multiple connections depending on the bunker station of the receiving ves-
sel and the pump setup of the supplying vessel [10]. The rate of transfer is determined by the rated
pressure of the receiving vessels piping system and the material properties of the delivered fuel type,
this is to be explained by the various densities of the fuel types requested which influence the pres-
sure introduced in the system when pumping and to mitigate the introduction of air into the fuel mixture,
which is referred to as the ’cappuccino’ effect within the industry. Highlighting the fact that the operation
is dependent on the available infrastructure and the product being transferred. Measurement points
can be utilised during the transfer process on either the supplying vessel, receiving vessel or both,
yet are not mandatory. Common industry practice is verification of the delivered quantity by fuel level
measurements from manholes, hence the reason air needs to be mitigated during the transfer process
as additional air might influence fuel level readings and evoke disputes between supplier and client [26].
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2.2.3. Ship-to-Ship Bunkering Stakeholders
As bunkering is an integrated subprocess of the global maritime supply chain which requires signifi-
cant coordination between multiple stakeholders, a stakeholder framework needs to be evaluated that
extends beyond the direct parties involved in the transfer process itself. Understanding the broader
scope of this ecosystem of stakeholders becomes important for evaluating how alternative fuels will
impact the entire bunkering operation and the maritime supply chain on an operational level.

The operational requirements of ship-to-ship bunkering operations create interdependent relation-
ships between four primary stakeholders, each contributing on their own level by facilitating infrastruc-
ture or services while all aiming to maximise their own distinct operational priorities.

Bunker Suppliers facilitate the fuel transfer process described in the previous section. Their oper-
ations centre around coordinating the complex logistics between the vessel, bunker vessel and loading
terminal under the time-sensitive constraints of global maritime operations. Therefore their focus lies
on developing reliant and efficient supply chains. However, based on the fact that fuel costs represent
50-60% of the operational expenses of a vessel, cost management becomes equally critical, intro-
ducing the need to balance supply chain efficiency and cost-per-unit-delivered to maintain competitive
positioning in the market [29], [34].

Lastly, based on the fact that client relationships are not solely based on price, yet on quality as-
surance and reliability. Bunker suppliers aim to maximise their assets and provide a reliable service in
order to retain clients [26].

Ship Operators are the receiving party in the transfer process. Their main focus centres around
maintaining reliable sailing schedules and a safe work environment. In general this results in minimising
the turnaround times of vessels in port or at anchorage. Stakeholder research in bunkering operations
further establishes this as service reliability was the primary differentiator aside from price in choosing
a bunker provider, making reliable on time performance rates a key metric in bunkering operations [26],
[34].

Terminal Operators provide infrastructure during port-call bunkering operations, where the vessel
is moored at a terminal to load or unload cargo. Terminal operators centre their operations on provid-
ing infrastructure and services to port calling vessels, therefore their main priority is to maximise the
berth allocation and their infrastructure availability [22]. Bunkering operations that may be performed
simultaneously or sequentially directly impact their allocation strategies at berth [32].

Port Authorities provide the policies, infrastructure and possibly port services (e.g. towage) for
anchorage bunkering calls in or outside of ports and provide infrastructure to enable bunkering in some
ports. Based on limited availability of anchorages, berths and terminal availability, ports aim to max-
imise these assets in a similar way as terminal operators. Therefore their aim is to enable bunker
processes with the shortest turnaround time possible while performed in a safe manner [26].

Based on the evaluated framework above the conclusion can be drawn that ship-to-ship bunkering
operations create unique yet similar priorities in operations across all stakeholders. The interdepen-
dencies created by the simultaneous operations, safety requirements and other external factors result
in a need for collaboration between all parties. Especially when these challenges are projected onto the
implementation of alternative fuels, as the technical modifications required for the different fuel types
could fundamentally alter operational parameters, safety requirements and the interactions between
stakeholders outlined above. Furthermore, it could influence how each individual stakeholder will be
influenced by the ship-to-ship bunkering operation in general.
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2.3. Alternative Fuels
As described in the previous section, the ship-to-ship bunkering operation is integrated in the entire
global maritime supply chain and involves a number of stakeholders involved in the operation itself.
Implementing new alternative fuels might significantly influence the operation and consequently all
stakeholders. In the following section the most promising candidates for alternative fuel types are
discussed based onmultiple industry reports. This in order to establish all plausible new fuels that might
be introduced in the supply chain, how they could integrate and their requirements to be integrated in
the maritime fuel supply chain.

Biofuels
Biofuel, also known as B100, originates from biologically renewable resources such as plants, algae
or second and third generation food waste, offering flexibility due to its ability to be blended with con-
ventional fuels. The fuel can be classified as a ’drop-in fuel’ as it requires minor modifications to be
brought into practice, making it an attractive option due to it’s low investment cost and barrier of entry
[19]. The two most common types of biofuels produced to date are:

• FAME: Fatty Acid Methyl Ester (1st gen.)

• HVO: Hydrogenated Vegetable Oil (2nd & 3rd gen.)

By blending the fuel with conventional marine fuels in different percentages, different emission sav-
ings can be achieved, allowing for a gradual implementation [11]. However, high grades of biofuels
are required for long-term compliance and deep decarbonisation. High grades of biofuels introduce
the risk of bio-corrosion and fuel instability, especially in marine environments, introducing the need for
tank lining and type I chemical tanks for transport [11], [12]. In addition, intra-competitiveness with the
aerospace and automotive industry will limit availability [11].

LNG & Bio-LNG
Liquefied Natural Gas (LNG) is an already established and proven marine fuel in the industry. Pro-
duced from natural gas or derived from renewable sources by refining bio-methane. It is stored as a
liquid at cryogenic temperatures (-162°C).

LNG enables a 20-25% reduction in CO2 emissions on a TtW-basis [11]. It achieves a 90% re-
duction in SO𝑥, 85% reduction in particulate matter (PM), and up to 80% reduction in NO𝑥 emissions.
Implementing bio-LNG offers a carbon neutral solution on a WtW-basis [23]. However, methane slip
during combustion and production emissions reduces its overall climate benefit on a WtW basis, being
similar to HFO [63].

The energy density of LNG is approximately 50 MJ/kg being similar to HFO. However, its den-
sity as a liquid is 431kg/m3 meaning its storage requires 1.8 times more space than MDO or HFO.
LNG’s handling, storage, and safety requirements for pressurised storage create a vastly different set
of requirements for bunkering operations, introducing additional safety requirements slowing down all
procedures.

Methanol
Methanol is a fuel that can be produced from a variety of feedstocks, such as natural gas, biomass, or
renewable energy sources, enabling flexible production. The fuel can be stored as a liquid at ambient
temperatures, making it an easy to handle fuel. Operations can be performed either on stand alone
methanol engines or on dual fuelled engines with a pilot fuel to promote combustion [47].

Methanol offers a 57% reduction in CO2 emissions, a 99% reduction in SO𝑥 and can cut up to 60%
of NO𝑥 emissions on a TtW-basis. Produced from renewables methanol has the ability to cut CO2 by
95% on a WtW basis. Furthermore, methanol has the ability to be blended with all forms of methanol
(grey, blue, green), allowing for a gradual transition in the usage of feedstocks [47], [23].

Due to the fuel handling characteristics methanol has a low barrier of entry for retrofit capabilities,
enabling retrofit capabilities with most modern diesel engines [24]. However, the energy density of the
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fuel is only 22MJ/kg, requiring additional fuel carrying capacity of around a factor of 2.2 to keep the
vessel in the same operational window [48]. Furthermore, the toxicity and high flammability present
challenges to the adaptation of the fuel. Ultimately this results in the type II chemical tanks for storage
and handling.

Ammonia
Ammonia is a versatile option for the adaptation to cleaner combustion within shipping, as it can be
sourced from a variety of production pathways such as natural gas, biomass, or renewables, offering
flexible and scalable production. The fuel can be stored pressurised at 8 bar at ambient temperatures
or as a liquid refrigerated at minus 30 degrees.

Ammonia offers a 100% reduction in CO2 on a TtW-basis and has the potential of being net-zero
on a WtW-basis (if produced from renewable energy), emits no SO𝑥 and has a significant reduction in
NO𝑥 emissions depending on the efficiency of the engine cycle [11]. Incomplete combustion can lead
to NO𝑥-slip, posing operational challenges. NO𝑥-slip can be avoided altogether with fuel cell usage.

However, ammonia’s low energy density of 18.6 MJ/kg requires ships to carry 2.7 times more fuel
compared to MDO or HFO [11]. Additionally, its toxicity, corrosiveness, and invisible flame during
combustion present safety challenges. Yet, combustion can be promoted by introducing a catalyst
such as methanol, circumnavigating some of the challenges presented by methanol and ammonia as
a stand-alone fuel [64].

Hydrogen
Hydrogen is another alternative to mitigate emissions. The fuel can be sourced from a variety of produc-
tion pathways such as natural gas (grey hydrogen), biomass (blue hydrogen), and renewable energy
(green hydrogen). It is stored as a compressed gas or in liquid form at cryogenic temperatures (-253°C).

Hydrogen as a fuel offers 100% reduction in CO2 and SO𝑥 emissions during combustion or in fuel
cell applications. NO𝑥 emissions depend on the combustion method but can be mitigated with ad-
vanced technologies or avoided altogether in fuel cell [11].

Hydrogen has a high energy density of 120 MJ/kg (by mass), but a low volumetric energy density of
8.5 MJ/L (by volume). Resulting in significant challenges in fuel-storage (approximately 4.7 times more
than HFO/MDO). This presents challenges for long-distance maritime operations, as onboard storage
and infrastructure need substantial adaptation.

Nuclear
Powered by uranium or thorium as a fuel, Nuclear power eliminates CO2, SO𝑥, and NO𝑥 emissions
entirely during operation. Nuclear energy’s high energy density allows vessels to operate for extended
periods without refuelling, circumnavigating fuel supply chain dependency entirely [11].

However, due to the high capital expenses for the implementation of a reactor and the usually high
energy output, it is unsuitable for most use-cases in the industry due to redundancy. Additionally, reg-
ulation and public concern pose challenges as well [4]. It can be viable option for VLBC, ULCC and
offshore vessels as these usually have high hotel loads.
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2.4. Fuel Viability
Due to the various options available to decarbonise the maritime industry, widespread analysis has
been sparked to determine the most viable candidate. However, evaluating all options, the conclusion
can be drawn that there is no ’one-size fits all’ solution, as it depends on a mix of operational, tech-
nical, economical and environmental factors. Evaluating academic and industry reports, a number of
frameworks have been proposed to asses fuel suitability:

• Techno-economic models: frameworks that compare fuels based on factors such as lifecycle
emissions, fuel cost and availability [20], [33].

• Feasibility matrices: frameworks that evaluate (score) fuels in a matrix based on factors such
as retrofit capabilities and/or costs, handling requirements and safety [57].

• Scenario-based roadmaps: frameworks that evaluate/project fuel adoption based on regulatory
pressures and/or market conditions [50].

While these various approaches provide a vast number of insights on all fuel types, a more opera-
tionally constrained framework would benefit this research, specifically focussing on:

• Energy demand: Evaluate the required energy based on vessel parameters such as size, type
and sailing route deployed on.

• Scalability: Evaluate the scalability of a fuel, defined as the combined feasibility of sourcing
transporting and distribution at scale in the maritime fuel supply chain context.

The proposed method introduces an application-specific, bottom-up framework for fuel selection,
based on individual energy demand and fuel scalability. Compared to top-down strategies, the pro-
posed method aligns fuel choice with operational and infrastructure constraints, making it well-suited
for supply chain analysis and bunker demand modelling. By segmenting the fleet into short-sea and
deep-sea categories based on technical and logistical feasibility rather than abstract preference, the
framework enables a more direct planning of future fleet composition and the required bunker infras-
tructure.

The proposed framework builds on prior work such as Smith et al. [56] and the IEA’s route spe-
cific assessments [iea2022], by projecting a similar segmentation framework onto the evaluation of the
bunker supply chain of the hub of Gibraltar. Here vessel diversity, demand uncertainty and infrastruc-
ture variation are influential factors [53], making a bottom-up and operationally constrained approach
necessary for accurate scenario development.

Short Sea Shipping
Characterised by small to medium vessels, capable of navigating maritime choke holds such as the
Suez and Panama Canal and mostly responsible for the transportation of goods on a regional level
[31]. For these vessels the following alternatives are to be considered as the most suitable alternatives:
biofuels and methanol. This is based on the following assumptions:

• Energy demand: deployed on shorter routes, the total energy requirement is lower for operations
performed [31], [18].

• Routing: deployed on shorter coastal routes, these vessels have more flexible options for refu-
elling allowing the accommodation of less energy dense fuels [53].

• Technological Scalability: based on the size, the barrier of entry for scaling and successfully
implementing the technology becomes smaller [47].

• Compliance: often constrained to regional trade, regional regulations apply. Necessitating short
and long term compliance [16],[1].
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Deep Sea Shipping
Consisting of large vessels such as ULCC and ULBC that transport goods on a global scale, deep-sea
liners have a different set of requirements for feasible integration of alternative fuels. For decarbon-
ising this segment of the maritime market, the following fuels are to be considered as the most viable
alternatives for deep-sea applications: ammonia, methanol and LNG. This selection is based on the
following assumptions:

• Energy Demand: deployed on longer routes and with higher daily energy consumption, the total
energy necessitated for transport is significant, requiring either energy dense fuels or fuels with
the ability to be blended [31].

• Routing: depending on the vessel type long sailing trajectories apply, limiting access to bunkering
facilities [31]. Additionally it introduces the need for stable fuel types, due to the longer voyages
on which these vessels are deployed.

• Global Availability: with the greater introduced energy demand, greater volumes of fuel are
needed not only per vessel but sufficient availability of a specified fuel is necessitated on a global
scale [40].

Based on the most prominent discussed operational requirements for the short-sea and deep-sea
shipping segments, the following fuel evaluation matrix was composed to determine the most plausi-
ble/viable fuel applications in figure 2.4. The fuel evaluation matrix is limited to the most viable alterna-
tives and highlights the supporting characteristics needed for the specified segment.

Figure 2.4: Fuel Selection Matrix

Evaluating the viability matrix, the observation can be made that multiple fuel types share the same
operational requirements for both segments highlighting the viability for multiple fuel types per segment.
Based on the results from the operational requirements the following fuel segmentation is proposed for
applicability in an operational context for ship operators:

• Short-Sea: are most likely to adopt biofuels andmethanol in the fuel mix in the energy transition

• Deep-Sea: are most likely to adopt methanol, ammonia and LNG in the energy transition

Based on this segmentation the conclusion can be drawn that ship owners will have a variety of
options available to decarbonise their operations. However, as previously mentioned and illustrated
in the fuel selection matrix 2.4, this will mostly depend on operational factors, indicating a possible
diversification in fuel adoption strategies.



2.4. Fuel Viability 11

To operationalise these projections, the segmentation between short-sea and deep-sea shipping was
projected onto commonly used vessels classes. This mapping, based on DWT and data from Peni-
nusla, offers a more tangible perspective on fuel compatibility (table 2.1) [53], [15].

Vessel Type DWT Range Bio Methanol Ammonia LNG
Feeder /
Feedermax

10,000–25,000
DWT

Yes Yes No No

Baby Bulker / NN 10,000–25,000
DWT

Yes Yes No No

Handysize (Small
Handy)

10,000–35,000
DWT

Yes Yes No No

Handymax /
Supramax

35,000–60,000
DWT

No Yes Yes Yes

MR / MR1 / MR2 45,000–55,000
DWT

No Yes Yes Yes

Panamax /
Kamsarmax

60,000–85,000
DWT

No Yes Yes Yes

Aframax / LR Type 75,000–120,000
DWT

No Yes Yes Yes

Post-Panamax /
Mini Capesize

85,000–120,000
DWT

No Yes Yes Yes

Mini Capesize 100,000–130,000
DWT

No Yes Yes Yes

Suezmax 120,000–200,000
DWT

No Yes Yes Yes

Capesize / VLOC 130,000–200,000+
DWT

No Yes Yes Yes

Newcastlemax 180,000–200,000
DWT

No Yes Yes Yes

VLCC 150,000–320,000
DWT

No Yes Yes Yes

ULCC >320,000 DWT No Yes Yes Yes

Table 2.1: Vessel Types and Fuel Compatibility based on DWT classification from [15].

Industry Alignment
While the vessel-based segmentation provides a technical outlook on fuel compatibility, it is useful to
compare/validate these assumptions with current industry reports. Table 2.2 provides an overview of
how maritime forecasts anticipate fuel adoption across the various segments and validates the previ-
ously discussed segmentation.

Fuel Short-Sea / Small
Vessels

Deep-Sea / Large
Vessels

Industry Insight (key
takeaway)

Bio Yes – Preferred
(drop-in) [11]

No – Costly at scale [11] Biofuels seen as drop-in for
near term, especially in
short-sea shipping [21].

Methanol Yes – Easy retrofit [21] Yes – Growing adoption
(Maersk, COSCO) [15]

Methanol emerging as a
cross-segment contender [49].

Ammonia No – Toxicity/safety
concerns [21]

Yes – High energy
density and long-haul
suitability [61]

Suitable for deep-sea, bulk, and
tankers [61].

LNG No – Storage
inefficiency [33]

Yes – Transitional fuel for
larger vessels [30]

Still dominant transitional fuel
for deep-sea newbuilds [30].

Table 2.2: Industry-aligned fuel adoption outlook by vessel segment.



12 2. Literature Review

2.5. Implications On The Ship-to-Ship Bunkering Framework
As illustrated in the previous section 2.4, a single and universal transition path will remain elusive. In-
stead, market segmentation is to be expected, with fuel selection based on vessel size, vessel type,
operational profile, regional fuel supply, and costs. Ultimately, this will result in specific market seg-
ments embracing different fuel options based on their unique constraints. However, based on the
discussed characteristics of all viable candidates, a number of general implications can be deduced
that will impact the ship-to-ship bunkering framework.

A shared challenge across all viable alternatives is their lower energy density compared to con-
ventional fuels, which in turn will result in a significant increase in individual demanded fuel quantity
in order to maintain identical or similar operational windows. This translates into shipowners facing
trade-off between fuel storage, cargo capacity and deployed voyages. In many cases this will result in
larger or additional fuel tanks, reducing the cargo space or lead to increased vessel sizes, especially
for deep-sea shipping where long voyages are performed on a single fuelling operation. Short-sea op-
erations could see more frequent refuelling patterns as shipowners aim to retain as much cargo space
as possible to minimise cost per transported capacity.

Additionally, when assessing the handling and storage needs of these new fuels, it becomes ap-
parent that they vary considerably from each other: LNG and Hydrogen introduce the need for cryo-
genic storage, ammonia and methanol require corrosion-resistant and/or pressurised storage and high
grades of biofuels introduce the need for tank liners due to the challenge of bio-corrosion and fuel insta-
bility. In turn this will result in significantly different infrastructure per operated fuel type aboard vessels
(bunkering station, operational procedures and storage infrastructure), resulting in a greater variety of
operational procedures. When projected onto the ship-to-ship bunkering framework, fuel specific com-
patibility is introduced with this diversification of demand.

This fuel specific compatibility has a significant and immediate impact on the bunker supply chain
infrastructure, as the current fleet of conventional bunkering vessels, storage facilities and safety pro-
cedures will not be compatible with all the alternatives expected to enter the market. Instead, a fleet of
fuel-specific bunker vessels, each designed to meet their unique containment, pressurisation, insula-
tion and safety standards specific to the intended fuel it carries is to be expected. Evaluating the most
viable fuel types outlined in section 2.4, the following compatibility requirements are introduced in order
to offer all fuel types [11], [21]:

Figure 2.5: Overview of bunker requirements per selected fuel type

Evaluating the bunker vessel requirement matrix 2.5, the observation can be made that across all
fuel types little overlap is to be found in terms of requirements and specified vessel classes provided by
classification societies. Ultimately, this will result in the inevitable requirement of fuel-specific bunkering
vessels or highly complex multi-fuel combinations.
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As a result, diversification of the bunker fleet will be inevitable with the introduction of these fuel-
specific vessels, leading to an increased complexity in fuel logistics, the requirement for redeveloping
the supporting infrastructure, and an increased complexity in operational protocols in terms of fuel han-
dling and safety, impacting the entire bunker supply chain and consequently the global maritime supply
chain.

The complexity of this diversification becomes particularly apparent when examining the compat-
ibility requirements between bunker supply vessels and receiving vessels for alternative fuels. The
compatibility matrix presented in the figure 2.6 demonstrates how market segmentation could alter the
existing ship-to-ship operation framework, in particular when balancing supply capabilities with demand
requirements. The industry could be forced to transition from a unified single-asset model to a diversi-
fied five-vessel-type system, each serving distinct market segments within the maritime fuel market.

Figure 2.6: Compatibility Diagram of Bunker supplier and receiver

This diversification extends beyond immediate operational challenges during ship-to-ship bunker-
ing operations. When examining the broader infrastructure implications, a comprehensive analysis of
the complete bunker supply chain reveals a potential fragmentation from one integrated system into
five separate, independent supply chains. Each chain will require specialised infrastructure, dedicated
storage facilities, unique handling procedures, and distinct safety protocols, representing a fundamen-
tal shift in organisation of operations for large bunker suppliers worldwide.

This highlights the primary challenge of integrating sustainable fuels into the maritime supply chain:
the shift from a uniform and integrated, multi-fuel-based system to a network of parallel, fuel-
specific supply chains. Each of these individual supply chains will require dedicated infrastructure,
fuel-specific bunkering vessels and operational procedures, redefining the current bunker supply chain
and the ship-to-ship bunkering framework. This challenge is further amplified by the need to synchro-
nise these parallel systems within existing port operations, where space, infrastructure and operational
schedules are already highly constrained. Aside from infrastructure, performance, vulnerabilities and
resilience of these projected supply chains should be evaluated, particularly under the conditions of
fluctuating demand and marine traffic typical to a bunkering hub. Understanding how these systems
perform within the broader maritime network and among diverse stakeholders is therefore essential
and this research aims to quantify these changes.
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2.6. Research Gap
The maritime industry’s shift towards alternative fuels presents significant challenges in infrastructure,
supply chain management, and operations, particularly at the port level. While existing literature offers
valuable insights through techno-economic comparison and high-level scenario modelling, they often
fall short in representing the dynamics of bunkering, infrastructure compatibility and multi-fuel supply
chain coordination.

Most existing literature simplifies the bunkering transition by assuming homogenous fuel adoption,
uniform demand across vessel types and static infrastructure readiness. These assumptions limit their
ability to guide decisions on bunker-hub specific infrastructure planning, bunker fleet composition or the
quantification of parallel supply chains. In addition, current frameworks generally apply generic assess-
ments of fuel adaption. This often leads to exclusion of taking into consideration of how vessel-level
energy demand and refuelling opportunities influence the technical and logistical feasibility of adopting
specific fuels. particularly when they vary across the two main segments of shipping.

Several methods have been applied to explore maritime supply chains, which include:

• Scenario-based techno-economic models: aimed at offering macro-level insights of systems
but often lack environmental and stakeholder behaviour detail.

• Linear and network optimisation models: aimed at addressing routing, transport capacity or
infrastructure requirements but do not capture vessel interactions or system feedback.

• Simulation-based models: aimed at providing higher operational detail, yet are often discon-
nected from fuel adoption frameworks or demand segmentation (focus on a single fuel or pro-
cess).

What is missing is a modelling framework that dynamically links the segmented fuel demand with
the constraints and behaviours of future bunkering hubs and fuel supply chains. What the framework
should be incorporating/taking into account:

• the diversity and variability of vessel operations in bunkering hubs

• the infrastructure requirements of multiple fuel types

• the dynamics of ship-to-ship bunkering operations in bunkering hubs.

This thesis aims to develop such a framework, building on the fuel market segmentation and bunker
supply chain considerations in the ship-to-ship bunkering context, outlined in the previous sections.
The following sections will define the modelling method, objectives and structure used to evaluate the
impact of a multi-fuel maritime context on the bunker supply chain.

2.7. Method
The modelling framework selected to evaluate the future of bunker supply chains under a multi-fuel
transition scenario should support themain goal of this research: to assess how themaritime fuel supply
chain can be maintained reliably with alternative fuels, while accounting for fuel diversity, infrastructure
and operational limitations. The model should replicate the key dynamics of a bunkering hub, described
in section 2.1. In particular, the dynamics of the ship-to-ship bunkering operation in the context of
segmented fuel demand, fuel compatibility constraints and specialised supply infrastructure. To capture
these important details, the modelling approach should reflect the following principles:

• Fleet diversity: account for a diverse fleet, segmented by operational constraints (short-sea vs.
deep-sea) and their respective energy demand.

• Fuel diversity: account for multiple fuel types, each with unique bunkering and compatibility
requirements.

• Bunker fleet performance: account for achieving vessel servicing within realistic time and ca-
pacity constraints. In addition, it should quantify the effect of fleet composition on system wide
performance and individual bunker vessel performance.
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Based on the stated requirements, the model should not only simulate bunker hub-level refuelling
operations, but evaluate the relative performance of different fleet configurations and bunker vessels
as well. This enables the development of a comprehensive understanding of individual supply chain
performance and fleet requirements. In order to develop the desired framework, the following section
evaluates recent and relevant modelling approaches for supply chain analysis. This in order to apply
the most relevant modelling technique to account for all the stated requirements.

2.7.1. Supply Chain Modelling Techniques
In order to develop an effective quantitative framework that meets the requirements for modelling fleet
composition and performance evaluation, a comprehensive review of existing literature on supply chain
modelling techniques is required. The main goal is to determine how the bunker supply chain can be
reliably maintained with the integration of alternative fuels, taking into account fuel diversity, infrastruc-
ture, compatibility and operational constraints. The complexity of the transition to sustainable fuels,
which requires a reorganisation of the bunker fleet and supply chain network, results in an asset allo-
cation problem: determining the required types and respective number of bunker vessels needed
for future operations.

As a result, recent literature on supply chain modelling techniques for asset allocation problems
have been evaluated and can be broadly classified into three categories for strategy: analytical mod-
els, system-level simulation approaches, and agent-level simulation frameworks. When applied to the
context of maritime logistics systems, each method offers its own set of pros and disadvantages.

Mathematical Formulation Approaches
Analytical methods represent the most commonly applied approach to fleet composition and deploy-
ment problems in maritime logistics. Linear programming, mixed-integer programming, and their vari-
ants have been extensively applied to fleet sizing and capacity allocation decisions [13], [39]. These
mathematically formulated models excel at determining globally optimal solutions under well-defined
problem constraints, providing convergence guarantees and sensitivity analysis options to support the
validity of the obtained solution [44].

However, pure optimisation approaches face significant limitations in the bunker supply chain con-
text. First, the assumption of perfect information inherent in a deterministic approach stands in contrast
to the stochastic and dynamic nature of bunker hubs described in section 2.1, especially in combination
with the shifting demand of the energy transition [3]. Second, optimisation models assume centralised
decision-making where a single entity controls all system variables, fundamentally misrepresenting the
bunker supply chain where multiple independent stakeholders make autonomous decision based on in-
dividual objectives [34], [58]. Third, these models fail to capture the dynamics of ship-to-ship bunkering
operations and time-varying demand patterns.

System-Level Simulation Approaches
System dynamics modelling accommodates for the integration of complex dynamics such as feedback
loops and delays within supply chain systems. This approach enables to capture aggregate system
behaviour and non-linear relationships that are typically associated with supply chains over extended
timelines [59], [25]. However, system dynamics operates at aggregated level system where individual
stakeholder behaviour and individual operational behaviour are obscured, treating system components
as homogeneous entities [42]. This abstraction eliminates the vessel-specific operational details and
stakeholders interactions that are critical in bunker fleet composition decisions.

Discrete-event simulations provides more granular modelling of individual operational processes
while accommodating stochastic elements characteristic of maritime logistics. This approach effec-
tively represents fluctuations in market conditions and operational variability including vessel arrival
patterns, service variability, and resource allocation conflicts [36], [7]. Discrete-event simulation can
capture the operational complexity of ship-to-ship bunkering, including queue dynamics, service time
variations, and capacity constraints. However, conventional discrete-event simulations employ static
decision processes and fixed sequential operational parameters that fail to capture the stochastic de-
cision processes characterised in the system described in section 2.1 [51].
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Agent-Level Simulation Approach
The stakeholder framework described in section 2.1 indicates an asymmetry in operational structure
among supply chain participants. The bunker supplier operates as a collection of individual vessels
that continuously adapt their behaviour on fuel demand and service requirements, due to their role
as a service provider. In contrast, other stakeholders (vessel operators, terminal operators and port
authorities) maintain consistent operational frameworks enforced regulatory requirements, established
infrastructure constraints and optimised operational cycles per adopted fuel technology [7], [46].

Agent-based modelling provides the necessary provides the necessary framework for represent-
ing this mixed system of adaptive and non-adaptive entities. In this context, individual bunker vessels
function as agents with predetermined fuel type capabilities, capacity constraints and operational pa-
rameters making decisions regarding operational execution based on assigned objectives [37], [8].
Complex system behaviour is created by the interactions between the various bunkering vessels and
the static operational patterns of other stakeholders, creating realistic representations of resource al-
location and operational conflicts.

This approach captures the three required aspects absent in the other evaluated modelling tech-
niques. First, it represents the diversity in capabilities, operational characteristics and performance
constraints of various bunker vessels for various fuel types that characterise real bunker fleets. Sec-
ond, it models the effects of individual vessel operations on system-wide performance, including queue
formation, service reliability and capacity utilisation patters. Third, it provides the simulation framework
within which fleet composition decisions can be evaluated and/or optimised based on operational per-
formance feedback. Therefore the conclusion can be drawn that agent-based can directly address the
fuel transition challenge and should be the appropriate modelling technique for the outlined problem.

2.7.2. Optimising Agent-Based Discrete Event Simulation
While the agent-based discrete-event simulation effectively captures the operational dynamics and
interactions, the core research challenge requires to determine optimal fleet compositions under various
fuel demand scenarios. This introduced the need for the integration of optimisation capabilities that
allow for adaptations in fleet composition in response to performance feedback.

Multi-Objective Framework
The stakeholder framework demonstrates that bunker suppliers face a multi-objective optimisation
problem characterised by three primary components: maximising asset utilisation, maximising capac-
ity utilisation and maintaining service reliability across various supply chains. Industry surveys indicate
that service reliability takes priority over cost in supplier-client relationships [34],[26]. When projected
onto scenarios where alternative fuels enter the market with distinct operational characteristics and
infrastructure requirements, suppliers must adapt fleet composition to ensure reliable service levels
while avoiding redundant assets.

Therefore, the optimisation problem becomes determining the minimal fleet composition that
maintains acceptable service levels across all fuel types while maximising individual asset util-
isation. Ultimately, this becomes a constraint satisfaction problem with performance thresholds rather
than unconstrained optimisation.

Performance-Bounded Optimisation Framework
The ship-to-ship bunkering framework exhibits fundamental efficiency thresholds imposed by phys-
ical constraints (vessel capacity, transfer rates, infrastructure), operational limitations (fuel handling
protocols) and market dynamics (demand variability) [26]. These system level-constraints create per-
formance boundaries beyond which fleet composition adjustments cannot improve service reliability.

These efficiency thresholds enable performance-bounded optimisation that utilises system perfor-
mance metrics rather than attempting to mathematically formulate the underlying dynamics [43], [66].
This approach recognises that bunker supply chains operate within the bounded feasibility regions
where service reliability and asset utilisation reach natural limits imposed by infrastructure and opera-
tions. Therefore the optimisation objective transforms into identifying fleet compositions that operate
near these efficiency thresholds while maintaining service reliability above acceptable levels.
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Gradient-Based Fleet Optimisation
The performance-bounded characteristics of the bunker supply chain align with gradient-based optimi-
sation properties, as the outlined system cannot indefinitely reduce fleet requirements beyond the limits
imposed by the infrastructure and satisfy service reliability constraints [6]. This characteristic enables
iterative adjustments in fleet compositions based on performance indicators derived from simulation
outputs until locally optimal configurations are achieved within the feasible decision space [9].

This output-based approach transforms the fleet composition challenge into a dynamic program-
ming problem where optimal configurations for specific demand scenarios are determined through iter-
ative optimisation cycles [5]. The system constraints and reliability thresholds provide natural stopping
criteria when further fleet reductions would deteriorate service reliability levels. A review of recent liter-
ature, applying a similar hybrid-optimisation approach, validates the effectiveness for asset allocation
problems in supply chain systems [66], [45].

Proposed Strategy Framework
The hybrid simulation-optimisation approach would operate on an evaluation-cycle basis, as illustrated
in figure 2.7. In each iteration a simulation is performed using a certain fleet composition. The system
provides returns performance indicators such as service time and asset utilisation after each simulation.
Based on the obtained results, the optimisation module modifies the fleet composition and feeds it back
into the simulation. This process is repeated until a near optimal configuration is achieved for each fuel
type.

Figure 2.7: outline of proposed strategy

This framework would incorporate three capabilities that are often absent in reviewed approaches:

1. Operational realism: the simulation module enables the framework to closely replicate actual
stakeholder behaviour, compatibility constraints and ship-to-ship bunkering dynamics.

2. Adaptive optimisation: the optimisation module enables the framework to respond to changing
fuel demand by iterative adjustments in fleet composition.

3. Performance evaluation/validation: key output metrics enable the framework to quantify the
system’s ability to maintain service reliability across multiple fuel types and evaluate individual
performance.

By linking segmented fuel demand to infrastructure requirements and constraints on an operational
level, this framework directly addresses the outlined research gap. It offers a structured, scenario- and
bottom-up approach to determining how the bunker supply chain may need to evolve in response to
fuel demand diversification.
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Model

3.1. System and Model Architecture
This section outlines the structure of the framework and the implementation. It includes the system
architecture, essential assumptions and discusses the input and output parameters.

3.1.1. System Description
The system represented in the simulation is the bunker supply chain in the Strait of Gibraltar, which
consists of several actors and dynamics. However, evaluating the entire system, two distinct phases
can be determined in the supply chain: a loading-phase where the bunker vessel gathers product from
the terminal and a supply-phase where the same bunker vessel distributes the product among bunker
receiving vessels. A general overview of the system can be seen in figure 3.1 below.

Figure 3.1: Overview of the Gibraltar Bunkering Hub [52]

The loading-phase consists out of the interaction between the bunker vessel and the loading ter-
minal, the Cepsa refinery circled in black in figure 3.1, where bunkering vessels gather various grades
of product from the refinery. This interaction is mostly dependent on two factors: terminal availability
and product availability. The loading-phase will be defined as the refuelling process in the structuring
of the simulation and from this point onwards will refer to the corresponding phase of the supply chain.

The supply-phase consists out of the interaction between the bunker vessel and the bunker re-
ceiving vessel at anchorage, circled in gray in figure 2.1. The operation is dependent on a number
factors such as the fuel-type, the quantity and the receiving rate of the vessel requesting bunkers, as
outlined in section 2.1. The supply-phase will be defined as the supply process in the structuring in
the simulation and from this point onwards will refer to the corresponding phase of the system operation.

19
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3.1.2. Agent Behaviour and Interactions
According to the stakeholder framework in section 2.1 and the system description from the previous sec-
tion, the simulation must include five main agents. Each of these agents should have certain attributes,
behaviours, interaction patterns, and processes to accurately represent the environment discussed
earlier. The following subsection will discuss all these required components and their core processes.

Terminal
The terminal will act as the access, storage and production point of the corresponding fuel types for
the bunker vessels to distribute during operation. The terminal will have two processes running simul-
taneously, the production process, which will create product to be distributed in the system (figure 3.2)
and an allocation process, responsible for managing queues and terminal loading slots (figure 3.3).

Figure 3.2: Closed production loop

Based on available information, the operational profile of the Cepsa refinery, highlighted in the sys-
tem description, was determined to be continuous [65], therefore a production loop was chosen as
process. The production loop as depicted in figure 3.2 is mathematically formulated as the following
function in terms of level of availability in the simulation environment per refinery entity:

𝑙𝑓(𝑡) = {
𝑙𝑓(𝑡 − 1) − 𝑑𝑓(𝑡) + 𝑟𝑓 , 𝑙𝑖(𝑡) < 𝑐𝑓
𝑐𝑓 − 𝑑𝑓(𝑡), 𝑙𝑓(𝑡 − 1) > 𝑐𝑓

Where:

𝑓 : Fuel type

𝑟𝑓 : Production rate for fuel type 𝑓 formulated as 𝑟𝑓 = 𝑡𝑓 ∗Δ𝑠𝑖𝑚 where 𝑡𝑓 is the average daily produc-
tion and Δ𝑠𝑖𝑚 is the time step of the simulation

𝑐𝑓 : Storage capacity for fuel type 𝑓

𝑑𝑓(𝑡) : Demand for fuel type 𝑓 at time 𝑡

𝑙𝑓(𝑡) : Level of fuel type 𝑓 in storage at time t

The terminal class will initiate with the previously mentioned properties in terms of production rate,
storage capacities and fuel types. In addition, terminal capacity needs to be defined as well, this in
order to define the number of vessels that can be accommodated for refuelling simultaneously. When
the terminal is at full capacity a queue will be handled as described in 3.3. Queue management will be
performed using a First in, First Out technique, preserving the sequence of arrival at the terminal.

Figure 3.3: Terminal allocation process diagram

Within the environment, a classification can be made between 4 types of terminals: fossil fuels
(MDO, HFO, VLSFO), LNG, ammonia and methanol terminals. These are all attributed to their individ-
ual classes due to the segmentation of infrastructure outlined in chapter 2.
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Vessel
The vessel will initiate all other processes in the simulation, as this process interacts with the bunker
vessels who will interact with the vessel and terminal. The vessel is initiated with a single process,
requesting resources from the environment until a bunker vessel is allocated and the delivery is pro-
cessed. A simple overview of this process can be seen in figure 3.4 below.

Figure 3.4: vessel process diagram

When initiated the vessel class is attributed with a number of key specifications needed in all sub-
processes to replicate the bunkering process and market conditions.

• size: when initiated the vessel class will be attributed with a random size class 𝑖 drawn from the
vessel sizes distribution vector 𝑝⃗, which was derived from the historical data from PTA and S&P
Mint, see appendix A.

• type: based on the allocated size of the vessel the vessel type will be defined based on the vessel
type distribution of each size class drawn from row 𝑖 of the matrix 𝐶, this distribution was obtained
from the fleet register and S&P Mint, see appendix A.

• fuel: based on size and type a specific fuel type will be allocated to the vessel class, defining its
compatibility. See appendix A.

• quantity: based on the previously allocated vessel size, the quantity demanded by the vessel
will be drawn from a deal size matrix 𝑄𝑓,𝑖 for the corresponding vessel size and fuel-type, see
appendix A.

• receiving rate: based on the type of vessel 𝑗 the corresponding receiving rate will be allocated
based on the fuel type 𝑓 and vessel type 𝑗 from the matrix 𝑅, where 𝑓 represents the column for
fuel type and 𝑗 the type of vessel, please see appendix A.

Vessel Generator
In order to replicate the current market structure a subprocess is initiated in the environment responsible
for generating the correct number of bunker enquiries. This is achieved by modelling the inter-arrival
times of vessels as a stochastic process. 𝑇𝑖 denotes the inter-arrival time between the 𝑖-th and (𝑖+1)-th
vessel. The model assumes:

𝑇𝑖 = 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑎 , 𝜎2𝑎)
where 𝜇𝑎 and 𝜎𝑎 are the log-scale mean and standard deviation estimated from the historical market

data (see appendix A). The arrival rate can then be approximated as:

𝜆𝑠 =
1

𝔼[𝑇𝑖]
= 1
exp(𝜇𝑎 +

𝜎2𝑎
2 )

This formulation allows vessel arrivals to be spaced over time, while capturing the variability of
demanded bunker enquiries. The subprocess follows the logic illustrated in figure 3.5.

Figure 3.5: vessel generation flow
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Bunker Vessels
The bunker vessels will act as the connection between the terminal and the vessels requesting bunkers,
by delivering the required fuel type in the desired quantities to the vessels. Evaluating bunker vessels,
the conclusion could be drawn that they all vary in size, setup and specification. However, a classifica-
tion can be applied to liquid & gaseous bunkering operations, due to the inherent differences of the fuel
handling requirements. The same classification is applied in the system, resulting in a distinct liquids
and gas bunkering vessel.

Liquid bunkering vessels will consists of a multi-tank and multi-compatibility specification. This
results in bunker vessels with the ability to carry various types of products simultaneously. In the
simulation the number of tanks, tank size and product per tank are allocated. See figure 3.6 for an
simple overview of a possible the tank setup.

Figure 3.6: simplified structure of a liquid/conventional bunker vessel [54]

Gas bunkering vessels will consist of a single or multi-tank specification with a single fuel com-
patibility. This results in a bunkering vessel able to carry a single fuel type. This is mostly due to the
different storage handling requirements. In addition this vessel class will be equipped with an additional
process, simulating the boil off gases that occur during storage. See figure 3.7 for an simple overview
of a possible the tank setup.

Figure 3.7: simplified structure of a gas bunker vessel [28]

Supply process both class types will follow the same supply logic when allocated to a vessel re-
quiring bunkers. However, during the process the classes will draw process durations from distributions
allocated to liquid or gas operations, which were derived from the operational logs, see figure 3.8 for a
process overview.

Figure 3.8: overview of the supply process by the bunker barge
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When translating this process to a discrete timeline in the simulation, the following mathematical
description is formulated in order to yield the correct service time by the bunker vessel for delivering
quantity 𝑞:

𝑇service,𝑓 = {
𝑠(𝑞, 𝑟) + 2𝑡𝑚 + 2𝑡𝑐 + 𝑡𝑠 + 𝑟(𝑞𝑟 , 𝑟𝑏), 𝑙𝑓 < 𝑞
𝑠(𝑞, 𝑟) + 2𝑡𝑚 + 2𝑡𝑐 + 𝑡𝑠 , 𝑙𝑓 > 𝑞

The individual components are given by:

𝑠(𝑞, 𝑟𝑓,𝑗) =
𝑞
𝑟𝑓,𝑗
, 𝑟(𝑞𝑟 , 𝑟𝑏) =

𝑞
𝑟𝑏
+ 2𝑡𝑚 + 2𝑡𝑐 + 2𝑡𝑠

where:

• 𝑇service,𝑓 is the total service time for the bunkering operation for fuel type 𝑓.

• 𝑙𝑓 the fuel level of requested fuel type 𝑓.

• 𝑠(𝑞, 𝑟𝑓,𝑗) is the pumping time, with 𝑞 the quantity and 𝑟𝑓,𝑗 the receiving rate for fuel type 𝑓 and
vessel type 𝑗.

• 𝑡𝑚 is the mooring or unmooring time for STS-operations, drawn from the distribution for mooring
and unmooring of the corresponding bunkering type.

• 𝑡𝑐 is the connecting or disconnecting time for STS-operations, drawn from distribution for con-
necting and disconnecting of the corresponding bunkering type.

• 𝑡𝑠 is the sailing time between bunkering operations, drawn from the distribution of the correspond-
ing bunkering type.

• 𝑟(𝑞𝑟 , 𝑟𝑏) is the resupply time, with 𝑟𝑏 the barge resupply rate for quantity 𝑞𝑟 for a complete resupply.

In addition to the supply process, the bunkering vessel also partakes in a pro-active bunkering
strategy. This ultimately results in the vessel automatically engaging in the resupply process below
a specified fuel-level threshold. This threshold has been specified as 𝑡𝑓𝑙,𝑓 for fuel type 𝑓 which is
derived from the lower quartile of the combined probability of the quantity matrix 𝑄𝑓,𝑗 and the vessel size
probability vector 𝑝⃗. This process is aimed to trigger a resupply for a non-operational bunkering vessel
when 75% of possible bunker enquiries can not be fulfilled by current fuel levels on board the vessel,
this is in line with Peninsula’s operational strategy. This is determined by calculating the following
distribution:

𝑄̃𝑓 =
𝐽

∑
𝑗=1
𝑝𝑗 ⋅ 𝑄𝑓,𝑗

The calculated distribution allows to determine the fuel-level threshold, which is defined as the lower
quartile of 𝑄̃𝑓 for specified fuel type 𝑓:

𝑡𝑓𝑙,𝑓 = Q1(𝑄̃𝑓)
The process logic for this subprocess is outlined in figure 3.9, which first verifies that the vessel is

non-operational before performing the threshold check for the bunkering vessel.

Figure 3.9: Fuel Evaluation Loop
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Barge Pool
The final class implemented in the scheme is the barge pool. Representing several bunker operators
who assign their boats to nominated bunker enquiries. The barge pool class will receive the vessel’s
inquiry and assign a compatible and available vessel with adequate capacity and the appropriate fuel
type to that asset. The following diagram 3.10 depicts the process logic for allocation.

Figure 3.10: allocation process diagram

Evaluating the allocation diagram, the enquiry for bunkers enters the queue process. This queue
operates on a first in first out principle. From this queue process two distinct flows are to be observed.
A process flow for single allocation of resources and a flow for double allocation of resources, this is
in place in order to replicate the current challenge of accommodating larger bunker enquiries, where
the bunker enquiry is fulfilled by two vessels. After allocation the vessel will leave the queue and the
process is handed over to the allocated bunkering vessel.

Diving deeper into the double allocation branch, two types of delivery modes are to be observed. A
direct supply mode and the normal supply mode, the normal supply mode follows the logic as shown
in diagram 3.8. The direct supply mode of the system follows the same logic for supplying the bunker
vessel, yet does not have access to the resupply loop resulting in directly delivering the maximum level
of fuel the vessel has in its tanks. Based on this division of tasks the delivered quantities will be allo-
cated to the bunker supplying vessels in order to fulfil the bunker enquiry.

Lastly, another flow can be observed where double allocation is not possible due to insufficient
capacity of bunker vessels operating in the system. In this case, the primary assigned barge will re-
vert back to the normal supply mode delivering as much as possible to the bunker requesting vessel.
Ultimately, this results in an incomplete delivery by the bunker operator due to an under-capacitated
system due to a possible combination of unavailability of the required assets and under-capacitated
assets.
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3.1.3. System Logic
Integrating all individual processes, a comprehensive operational framework is established that inte-
grates all aspects involved in ship-to-ship operations in a bunkering hub. This framework captures the
sequential logic and interactions among system components. The complete system logic is illustrated
in the swim-lane diagram 3.11, which visualises the sequential flow and interactions between system
components.

Figure 3.11: system overview swim lane model

The diagram (Figure 3.11) depicts the lifecycle of a bunker inquiry within the simulated system,
managed from beginning to end. The inquiry operates according to these procedural steps:

1. Vessel initialisation: a vessel class is instantiated in the simulated environment, characterised
by the following attributes:

• Required fuel type
• Requested fuel quantity
• Vessel’s receiving rate

2. Inquiry queuing and allocation: the generated inquiry is transferred to the barge pool, where
the vessel enters a service queue. It waits for either a single or double allocation, depending on:

• Fuel type compatibility
• Requested quantity

3. Supply Process: after allocation, the vessel exits the queue and interacts with the assigned
bunker vessel(s), which triggers the supply process. Two scenarios are possible:

(a) Sufficient fuel levels: the bunker vessel delivers the requested amount directly.
(b) Insufficient fuel levels: initiates a resupply request with a terminal. The terminal handles

the allocation of fuel and the resupply operation. After resupply, the bunker vessel resumes
the delivery process.

4. Completion: after all assigned bunker vessels confirm the completion of their respective supply
operation, the enquiry is marked as complete.

Once all processes are completed, the system will terminate the vessel class and handle the next
enquiry in the system. This cycle continues until the simulation reaches the predefined duration.
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3.2. Model Metrics
After establishing a complete description of all operations and the system’s architecture, the model is
nearly ready for implementation. This is because the system’s input parameters, as well as the system’s
output and key performance indicators (KPIs), must be established in order to report performance and
provide the needed input for the optimisation module.

3.2.1. System Input
Based on the previous chapter’s requirements, a number of inputs must be defined in order to execute
a simulation that closely resembles reality. The following input parameters were defined to run the
simulation for current and future scenarios.

Base Parameters
in order to set up the environment a number of base parameters should be specified based on opera-
tional and commercial data:
𝜎𝑎 : the inter arrival time distribution between vessels, drawing the inter arrival time 𝜆0
𝑝⃗𝑠 : the probability mass function of vessel sizes in vector: 𝑝⃗𝑠 = (𝑝1, 𝑝2, … , 𝑝𝐾), with ∑

𝐾
𝑘=1 𝑝𝑘 = 1

𝐶 : the composition of the fleet represented as a matrix 𝐶 ∈ ℝ𝐼×𝐽, translating the normalised prob-
ability of vessel type 𝑗 in vessel size category 𝑖.

Fleet Growth
as market expansion will increase transport capacity demand, the number of vessels in operation will
increase. This was mathematically formulated as:

𝜇′𝑎 = 𝜇𝑎/𝑓 → 𝜆𝑠 = 𝜆0/𝑓
Where the new inter-arrival time 𝜆𝑠, 𝜆0 is the base inter-arrival time and 𝑓 is the frequency factor.

Vessel Size
Aside from expansion of the fleet in absolute numbers, an increase in general vessel size is expected
due to economies of scale and regulations such as EEDI. This is implemented through the following
vector transformation:

𝑝′𝑠 = 𝑣⃗ ∘ 𝑝𝑠
Where 𝑝⃗′𝑠 is the new size probability vector, 𝑣⃗ is the growth vector and 𝑝⃗𝑠 is the original size prob-

ability vector. Shifting the probability of vessel sizes to larger vessels, while taking into account port
limitations, as 𝑝⃗ to derived from port data.

Fleet composition:
as the energy transition may introduce a shift in types of vessels, the model should be able to handle
and process a shift in vessel types. This is represented in the following matrix transformation:

𝐶′ = 𝑇𝐶
Where 𝐶′ is the transformed composition matrix, 𝑇 the transformation matrix and 𝐶 the original

composition matrix.

Demand
The entire demand distribution is represented as a matrix 𝐷 where each element 𝑑𝑖,𝑗 represents the
possibility of demand for fuel type 𝑗 by vessel size 𝑖. The global demand fractions are given by vector
𝑇⃗, which transforms matrix 𝐷 into 𝐷′, while applying the fuel adoption segmentation outlined in section
2.4:

𝑇 = [𝑡fossil, 𝑡bio, 𝑡MeOH, 𝑡NH3 , 𝑡LNG] | 𝐷′𝑖,𝑓 = Φ𝑖,𝑓 , 𝑇𝑓 =

𝑛

∑
𝑖=1
Φ𝑖,𝑓 𝑝𝑖 𝑞̄𝑖 LCV𝑓

𝑛

∑
𝑖=1

𝑚

∑
𝑘=1

Φ𝑖,𝑘 𝑝𝑖 𝑞̄𝑖 LCV𝑘
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3.2.2. Performance Indicators
After the simulation is ran, a number of performance indicators in the system need to be reported.
These will be grouped into two categories. The performance indicators for the vessel operators and
the performance indicators for the bunker operators as these are the main stakeholders involved in the
ship-to-ship bunkering operation, as outlined in section 2.1.

Bunker Operators
For bunker operators the following performance indicators are introduced in order to define performance
of the system that is being simulated which are relevant to their stakeholder priorities:

• average operation time: the operation time is the main measure for the efficiency of the bunker
operations, as it provides insights into the average duration per enquiry. This also doubles as a
measure for service reliability. In the system this measure is calculated as follows:

𝑇̄oper,𝑓 =
1
𝑛𝑓

𝑛𝑓

∑
𝑘=1

𝑇(𝑘)service,𝑓

where 𝑇service,𝑓 is the service time for the 𝑘th operation involving fuel type 𝑓, and 𝑛𝑓 is the number
of such operations for type 𝑓.

• bunker vessel downtime: downtime of a bunker vessel is defined as the time the vessel is not
performing operations, as the it will be waiting until the next operation. This measure represents
the asset utilisation. In the system this measure is calculated as follows:

𝑓downtime,𝑓 = 1 −
∑𝑓∈ℱ ∑

𝑛𝑓
𝑘=1 𝑇

(𝑘)
service,𝑓

∑𝑓∈ℱ 𝑥𝑓 ⋅ 𝑇sim

Where 𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 represents the total simulation duration, 𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒,𝑓 the time of the bunker vessel
performing refuelling operations and where 𝑥𝑓 is the number of bunker vessels assigned to fuel
type 𝑓.

• tank utilisation: tank utilisation is an important measure nowadays, as it allows for a tangible
way to measure the utilisation of tank capacity before engaging in a refuelling operation. This
measure represents the capacity utilisation. In the system this is mathematically described by
the following fraction:

𝑓𝑢,𝑓 = 1 −
𝑙𝑓
𝑐𝑓

Where 𝑙𝑓 represents the fuel level and 𝑐𝑓 the tank capacity for fuel type 𝑓 of the bunker supplying
vessel.

• double allocations: important to know if the current vessel sizes are insufficient to deliver the
necessitated capacity needed for the supply. This measure will be numerically tracked by the
barge pool as follows:

𝑛𝑑,𝑓 =
𝑛𝑓

∑
𝑘=1

𝟙 {𝑎(𝑘)𝑓 ≥ 2}

where 𝑎(𝑘)𝑓 is the number of vessels allocated for the 𝑘-th delivery of fuel type 𝑓, and 𝟙{⋅} is the
indicator function.

• insufficient capacity: A discrete count of failed deliveries where available bunker vessel capac-
ity was insufficient to meet demand for fuel type 𝑓. Similar to the service this measure provides
feedback for service reliability.
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Operators
For vessel operators a set of different requirements for reporting performance is defined. These are
mostly focussed on how fast and reliable a vessel can be serviced in order to continue its operation,
as outlined in section 2.1..

• average waiting time: the waiting time of the vessel has a significant impact for operators as
they would be out of operation awaiting a refuel. This could lead to vessel operators opting to
taking fuels at another port. This is a measure for reliability.

𝑇̄wait,𝑓 =
1
𝑛𝑓

𝑛𝑓

∑
𝑘=1

𝑇(𝑘)wait,𝑓 | 𝑇(𝑘)wait,𝑓 = 𝑡
(𝑘)
a,𝑓 − 𝑡

(𝑘)
s,𝑓

where 𝑡(𝑘)a,𝑓 is the system time at which a bunker vessel is allocated, and 𝑡(𝑘)s,𝑓 is the system time
for the start of the enquiry of the 𝑘th request involving fuel 𝑓.

• average service time: the expected service time for operators is an important measure as it
gives an indication into how long the bunker operation will take. This is a measure for efficiency.

𝑇̄service,𝑓 =
1
𝑛𝑓

𝑛𝑓

∑
𝑘=1

𝑡(𝑘)t,𝑓 − 𝑡
(𝑘)
a,𝑓 | 𝑇(𝑘)service,𝑓 = 𝑡

(𝑘)
t,𝑓 − 𝑡

(𝑘)
a,𝑓

where 𝑡(𝑘)t,𝑓 represents the system time the bunker enquiry is terminated and 𝑡(𝑘)a,𝑓 represents the
system time the bunker vessel(s) where allocated for the 𝑘𝑡ℎ operation involving fuel 𝑓.

• average turnaround time: the turnaround time, consolidates the waiting time and service time,
including the possibility of a barge refuel before operation. This is a performance measure for
efficiency and reliability.

𝑇̄turnaround,𝑓 =
1
𝑛𝑓

𝑛𝑓

∑
𝑘=1

𝑇(𝑘)turnaround,𝑓 | 𝑇(𝑘)turnaround,𝑓 = 𝑇
(𝑘)
wait,𝑓 + 𝑇

(𝑘)
service,𝑓

3.2.3. Desired output and objective
Lastly, the system should report a number of global outputs in order to report trends and verify results.
The following outputs were defined:

• local demand the local demand will be defined as the total demanded quantities in the system
for each fuel type for a given scenario. In the system this is defined as follows:

𝑄𝑓 =
𝑛𝑖
∑
𝑘=1

𝑞(𝑘)𝑓

where 𝑞𝑓 represents the quantity demanded for the 𝑘-th bunker enquiry for fuel type 𝑓.
• global turnaround time is defined as the average turnaround time of all operations performed
in the system, aimed a tracking the global system performance. In the system this is defined as
follows:

𝑇̄turnaround =
1
𝑁 ∑
𝑓∈ℱ

𝑛𝑓

∑
𝑘=1

𝑇(𝑘)turnaround,𝑓

where 𝑇(𝑘)turnaround,𝑓 is the turnaround time for the 𝑘-th operation involving fuel type 𝑓, and 𝑁 =
∑𝑓∈ℱ 𝑛𝑓 is the total number of operations across all fuel types.

• optimal bunker fleet composition The optimal number of bunker vessels 𝑥𝑓 required to maintain
service levels for fuel type 𝑓, as determined by the optimisation model.
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3.3. Data
Once all the components, as well as the input and output parameters for the simulation framework, are
defined, the essential operational input can be derived to develop the entire system. Before building the
discrete-event simulation, datasets were gathered to establish the basis for all model components. This
section outlines the different data sources, processing techniques, and data quality considerations.

3.3.1. Operational Data
For developing a representative approach to model the ship-to-ship bunkering operation, a combina-
tion of input based calculations and distributions will be used, as outlined in the agent processes in
section 3.1.2. In order to derive all the corresponding distributions for the stochastic processes and the
required inputs for the processes in function of time, two operational datasets were used:

Conventional-bunkering: The operational data for conventional marine fuels or liquid fuels (VLSFO,
HFO and MGO) was obtained from Peninsula’s internal CRM system (PTA). The original dataset in-
cluded records of 10000 operations from the Gibraltar bunker hub. Each entry detailed the quantity
provided, pumping duration, mooring/unmooring times, connection/disconnection times and times be-
tween start of operation to arrival at vessel. Data filtering excluded incomplete or inconsistent entries,
decreasing the usable dataset to 5000 entries. Fuel and vessel-type pumping rates were calculated
based on these records using the relationship between quantity and pumping duration. Standard sta-
tistical approaches were used to fit distributions to fit the observed distributions of all subprocesses.

LNG-bunkering: Gas-based operations were analysed using the operational logs from Peninusla’s
LNG vessel Levante. This dataset included 140 entries, which represents the whole operational life-
cycle of the vessel to date. The LNG dataset provided timing breakdowns for all subprocesses and
receiving vessel characteristics such as connecting time, disconnecting time, pumping time, receiving
vessel size, vessel type and receiving rates for gas-based systems. Receiving rates for gas-based
systems were extracted per vessel type, and similar to the conventional bunkering operations standard
statistical approaches were used to fit distributions to fit based on the data of all subprocesses.

For a complete overview of the exact fitted distributions for all subprocesses for the gas- and liquid
bunkering operations, please see appendix A.

3.3.2. Commercial Data
For developing realistic demand patterns corresponding to the various vessels, the dataset of size
and type specific fuel-type and quantity demanded was developed. Individual demand patterns were
analysed based on the same operational data-sets from PTA and the Levante to develop fuel-specific
demand distributions and vessel compatibility matrices.

Fuel Compatibility Matrix: To establish a baseline for fuel types demanded by different vessels,
a fuel preference matrix was constructed using the PTA dataset. This resulted in a demand probability
matrix 𝐷, where 𝑑𝑖,𝑓 represents the likelihood of vessel size 𝑖 preferring fuel type 𝑓. This matrix cap-
tures current market preferences and serves as a reference for alternative fuel adoption scenarios.

Individual Demand: To establish a baseline for energy demanded by various sizes of vessels, deal-
size distributions were derived from both conventional and LNG datasets by comparing the delivered
quantities to vessel size classifications. These entries resulted in distributions with the primary variable
being the vessel size, with separate distributions per fuel type. Distribution selection was based on fit
testing across multiple distributions.
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3.3.3. Shipping Data
To create representative market conditions, a dataset on market characteristics was constructed. Ves-
sel arrival patterns and fleet composition were analysed using S&P Global’s MINT platform [52], which
includes market intelligence reports on bunkering activities in the Gibraltar Strait. The dataset included
recorded bunkering activities from the period between 01/01/2024 - 31/12/2024.

Vessel Arrival Patterns: In order to create representative market conditions, realistic vessel ar-
rival patterns for bunkering needed to be developed. The shipping dataset initially included 8,500
reported ship-to-ship bunkering operations. However, quality and validity assessment removed opera-
tions lasting less than 4 hours and those performed by vessels other than bunkering vessels (e.g. STS
operations by slop barges or wrong reports), resulting in a dataset of around 4,850 verified operations.
Based on the data the following three distributions were extracted to develop realistic arrival patterns:

• Inter-arrival time distribution (𝜎𝑎): To accurately model the frequency of ship-to-ship opera-
tions at the bunker-hub, the inter-arrival time between reported operations was analysed. By
fitting a distribution to the time intervals between logged bunkering operations, the simulation can
generate realistic inter-arrival times 𝜆𝑠 for vessels.

• Vessel Size Distribution (𝑝⃗):To effectively model vessel sizes requesting bunkers, the probability
vector 𝑝⃗ was designed to represent the likelihood of any vessel size 𝑖 arriving at the bunker hub.
The vector 𝑝⃗ was based on the frequency of arriving vessel sizes.

• Vessel Type Matrix (𝐶): To capture the variety of vessel types arriving in the bunker hub, the
vessel type matrix 𝐶 was constructed. This matrix maps the probability of vessel types 𝑗 in each
size category 𝑖, where element 𝑐𝑖,𝑗 represents the probability of vessel type 𝑗 for vessel size 𝑖.
The matrix is based on the frequency of vessel type 𝑗 in vessel size 𝑖.

The combination of these three elements allows for realistic simulation of market conditions in a
given bunker hub for a given duration. It also provides the necessary input for the operational and
commercial parameters from the previous subsection, which in turn provide the correct input for the
processes outlined in section 3.1.2. Appendix A provides a comprehensive summary of all derived
distributions and data fit.

3.3.4. Data Quality
After accumulating all of the data required for the simulation’s foundation, a thorough evaluation should
be conducted to assess the data’s reliability, as data quality has a substantial impact on model correct-
ness. When evaluating all datasets used, a number of remarks should be in place regarding data
quality:

Data Collection Issues: Due to partial entries, missing timestamps and inconsistent entries, the
conventional dataset had to be filtered down from 10000 entries to 5000 acceptable records. This 50%
rejection rate illustrates the current challenge of digitalisation in the bunker industry. The LNG dataset,
while complete and accurate, only has 140 entries due to the short lifespan of gas bunkering operations
within Peninsula. These observations in both datasets should introduce a careful bias when interpret-
ing the obtained results.

Alternative Fuel Extrapolation: Extrapolation of normal operations, vessel design requirements
based on engineering principles and limited pilot project data, yielded operational requirements for
methanol, ammonia and biofuel. This strategy involves uncertainty yet is the best available practice
given the early stages of alternative fuel operations.

Despite the limitations, the datasets capture the operational complexity and market dynamics that
are typical of large bunker hubs. The model’s emphasis on relative changes and system transformation
patterns, rather than absolute forecast, makes it able to stand to data limitations. The breadth of the
data collected gives a solid foundation for understanding the amount and nature of bunker hubs and to
project the adjustments required for sustainable fuel implementation in bunkering operations.
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3.4. Validation:
Prior to developing the optimisation module, the simulation framework must be validated against histor-
ical operational data to confirm its accurate representation of the modelled processes and consistency
to produce reliable results.

3.4.1. Process verification
To validate the simulated processes, a subset of the initial datasets was reserved and used as input for
the model to replicate similar operating conditions. Given the stochastic nature of the simulation, the
model’s validity needs to be assessed through distributional analysis rather than point-by-point compar-
ison, which would naturally showcase individual deviations. Figure 3.16c–3.16d show the distribution
comparisons for both VLSFO and LNG fuel types fitted with KDE-curves and Q-Q plots for both fuel
types. These fuels were selected as they provide the foundation for all types of liquid and gaseous
bunkering operations. The VLSFO- and LNG-simulation were verified against 250 and 75 data points
respectively. Visually, the simulated distributions align closely with the actual data, suggesting that the
model effectively reproduces the variability of the real world.

(a) PTA vs. model distribution VLSFO (b) PTA vs. model distribution LNG

(c) Q-Q plot VLSFO (d) Q-Q plot LNG

In order to quantitatively assess the similarity between the actual and simulated distributions, the
Kolmogorov-Smirnov (K-S) test was performed. This metric highlights the maximum distance between
the cumulative distribution functions (CDFs) of two samples, while the corresponding p-value tests the
null hypothesis of both samples being drawn from the same distribution.

Fuel Type K-S Statistic P-value (K-S)

LNG 0.2167 0.1198
VLSFO 0.1731 0.0887

Table 3.1: Distribution Comparison for Stochastic Fuel Simulations (K-S Test Results)

Table 3.1 shows that both LNG and VLSFO have p-values that exceed the 0.05 threshold, indicating
no statistically significant difference between the simulated and actual distributions. This shows that
the model accurately simulates the statistical properties of real-world processes. The LNG instance
produces a p-value of 0.1198, which exceeds the more cautious 0.1 threshold indicative of significant
distributional resemblance [38]. While the VLSFO result (p = 0.0887) is slightly lower than this level, it
is still within an acceptable range, indicating the model’s overall validity.
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3.4.2. Agent Behaviour
After verifying the accuracy of the individual processes implemented in the simulation, the individual
agent behaviour needs to be evaluated. This in order to evaluate if the agents behave according to
their predefined processes.

Bunker Vessels
The bunker vessel agents demonstrated consistent and realistic behaviour throughout testing. Tank
levels shown in figures 3.13a and 3.13b illustrate expected operational cycles, with clear supply opera-
tions visible at various timestamps and resupply events occurring at appropriatemoments (conventional
vessels at timestamp 400, gas-type vessels at timestamps 350 and 690). The gradual depletion of tank
levels and the resupply events align with the predefined processes in section 3.1.2, confirming that the
agent behaves as intended and reflects the operational profiles and responds to system demands.

(a) tank level per fuel type for conventional bunker vessel (b) tank level over time for gas-type bunker vessel

Product Terminals
For the modelled terminal the results vary significantly. The terminal agent displayed sensitive and
unrealistic behaviour at baseline conditions that raising significant concerns about the underlying data
used for modelling the terminal processes and infrastructure. Figure 3.14a depicts how terminal fuel
levels increase for two of the three fuel kinds. Furthermore, when analysing 3.14b the observation can
be made that the queue length grows over time, with vessels queuing up to 60 hours. Based on both
observations made in the simulation, the conclusion can be drawn that the model produced for the
refinery is built on inadequate data as it is not able to replicate real world operations in the baseline
scenario.

(a) tank level per fuel type at terminal over time (b) queue length at terminal over time

Model Scope Refinement: Based on the observed behaviour, the decision was made to exclude
the terminal operations from the final simulation model. This change ensures model integrity by fo-
cussing on components with validated behaviour while avoiding potentially misleading results from
problematic agents. The accuracy of the discrete event simulation is largely dependent on the quality
of input data and the validity of the model’s assumptions. As a result, fuel availability was regarded as
an external parameter, allowing the simulation to focus on proven supply-phase operations.
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3.4.3. Stability
Before assessing other aspects of the simulation, stability assessment is crucial to determine the relia-
bility across single or multiple simulation runs. This reflection is necessary due to the stochastic nature
of the simulation, which introduces a certain level of variance based on the input. Evaluating variance
and consistency is therefore mandatory.

The parameter having the most significant impact on system noise is identified to be the duration of
the simulation. This parameter can be tuned to minimise, yet never completely eliminate system noise.
This is to be explained by the statistical variations that occur in every run, making noise inherently part
of every simulation result.

(a) Variance in simulation based on duration for conventional (b) Variance in simulation based on duration for alternatives

As shown in figures 3.15a and 3.15b, the variance in the system reduces over longer simulation du-
rations. This could be explained by the fact that the system is reaching a ’steady-state’ during extended
periods. Based on the variance results, the decision was made to implement all further simulations for
a duration of 6 months and to exclude the first month. This due to presented steady variance. In table
3.2 the reduction of variance between 100 iterations of 1 month vs. 6 months can be observed.

(a) 100 iterations of a simulation duration of 1 month for conventional (b) 100 iterations of a simulation duration of 1 month for alternative

(c) 100 iterations of a simulation duration of 1 year for conventional (d) 100 iterations of a simulation duration of 1 year for alternative

Table 3.2: Variance of Fuel Types for Different Simulation Durations

Group Sim. Duration HFO MGO VLSFO Bio LNG Ammonia Methanol

Conventional 1 0.2976 0.0289 0.0330 – – – –
6 0.0316 0.0020 0.0028 – – – –

Alternative 1 0.2563 0.0224 0.0382 0.0314 2.7921 1.0304 0.8217
6 0.0587 0.0046 0.0088 0.0089 0.4221 0.2083 0.1921
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3.4.4. Commercial verification
To validate the system’s representation of the current market and the systems expected behaviour to
fleet changes, a saturation test was performed and verified against the commercial data made avail-
able from the business origination division from Peninsula and commercial data available from the
platform S&P CI MINT on the operating region the system is representing. During this test, the num-
ber of bunker vessels in operation was increased incrementally with a step size of one bunker vessel
while logging the system’s turnaround and waiting time. This approach allowed to determine when the
system should be operating at an ’optimum’ (the point where an increase in additional vessels had no
significant impact on turnaround times). The obtained values will be used to verify how accurate the
simulation represents current market dynamics and present a baseline reference for the optimisation
later implemented in the simulation.

(a) number of conventional bunker vessels vs. turnaround time (b) number of alternative bunker vessels vs. turnaround time

(c) number of conventional bunker vessels vs. waiting time (d) number of alternative bunker vessels vs. waiting time

Evaluating figure 3.17a-3.17d two conclusions can be drawn. The first key takeaway is the direct
correlation between the waiting time of the system and the turnaround time of the system, highlighting
the relation of a near optimal turnaround time when the system showcases no waiting time. The second
takeaway from these saturation tests is the fact that the turnaround time can be optimised beyond the
point of an optimal waiting time. Which emphasises the fact that the turnaround time should be the
decisive KPI for determining an optimum in the system.

When evaluating both figures 3.17a and 3.17c an optimum can be determined by identifying the
saturation point or knee in the turnaround time graph. Based on this analysis, the optimal number
of bunker vessels operating in the Gibraltar straight should be 20 vessels. However, the combined
commercial data provided by the business origination team and the data from S&P Market Intelligence
indicates that 25 vessels currently operate as bunker suppliers in the region [52]. This discrepancy be-
tween simulation results and actual market results is to be explained by several factors, the first being
that the saturation test optimises with one type of bunker vessel, while the market consists of a variety
of vessels with different specifications. Secondly external factors such as market dynamics, weather
conditions and operational challenges necessitate system redundancy..

Lastly, the total demanded quantity for conventional fuels was obtained from the system perfor-
mance indicators and compared to the reported estimated quantity of the modelled year of 2024. The
model reported a total demanded tonnage of 4.7 mT, while estimates state a demand varying between
4.5 mT and 5mT [53], [26]. This overlap highlights the potential validity of the modelled bottom-up
approach for demand, yet is unfortunately unverifiable due to no verified total bunker demand figure.
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3.5. Optimisation
After constructing and verifying the simulation model of the framework, the optimisation module needs
to be integrated. As outlined in the literature review and verified by the performed saturation test in
the previous section, gradient-based optimisation based on simulation outputs should be employed to
determine the optimal fleet configuration.

Evaluating all defined output parameters, the conclusion could be drawn that the turnaround time
and waiting time should be optimised by varying the number of bunker vessels in operation, as these
are the most important KPIs for vessel and bunker operators aside from bunker price, as outlined in
the stakeholder framework in section 2.1. According to graphs 3.17a and 3.17c, a strong correlation
between these parameters is observed. When evaluating both parameters individually, the conclusion
can be drawn that the turnaround time can be optimised beyond the point of the optimal waiting time.
This highlights that turnaround time should be optimised with a hard constraint for waiting time.

Method
In order to determine the optimal fleet composition based on the turnaround time of the system a
gradient-based optimisation method was employed [17], this due to underlying characteristics outlined
in section 2.1 and the behaviour the system showcased in the saturation test. Figure 3.17a and 3.17b
illustrate a distinct gradient change in which the system deteriorates in performance near the optimal
number of vessels in operation. Additionally, the method accommodates heterogeneity across opti-
misation vectors, as was highlighted in the variance in responses for different fuel types shown in the
same figures.

Mathematical Formulation
Implementing the gradient-based optimisation strategy in the simulation requires a vector-based ap-
proach in order to determine all the various saturation points for all fuel types. This led to the following
objective function f(𝑥), which represents the multi-objective optimisation problem focused on minimis-
ing turnaround times across all fuel types:

f(𝑥) =
⎡
⎢
⎢
⎣

𝑇1(𝑥)
𝑇2(𝑥)
⋮

𝑇𝑁(𝑥)

⎤
⎥
⎥
⎦

(3.1)

Subject to the following constraints for optimisation, where constraint 3.2 represents the optimisation
constraint for the gradient of the turnaround time and equation 3.3 represents the hard constraint for
the waiting time:

∇𝑛(𝑥) ≤ ∇ref,𝑛 ∀𝑛 ∈ {1,… ,𝑁} (3.2)

𝑊𝑛(𝑥) ≤ 𝜏 ∀𝑛 ∈ {1,… ,𝑁} (3.3)

𝑥 ∈ ℤ+ (3.4)

Where:
• 𝑥 Number of bunker vessels in operation (decision variable)

• 𝑛 Fuel type index, 𝑛 ∈ {1,… ,𝑁}
• 𝑇𝑛(𝑥) Turnaround time function for fuel type 𝑛
• 𝑊𝑛(𝑥)Waiting time function for fuel type 𝑛
• ∇𝑛(𝑥) Gradient of turnaround time for fuel 𝑛
• ∇ref,𝑛 Gradient threshold for fuel 𝑛
• 𝜏 Maximum allowable waiting time

• f(𝑥) Vector-valued objective function: all 𝑇𝑛(𝑥)
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Noise
Evaluating the stability test, the observation can be made that the system showcased some level of
variability due to the stochastic nature of the simulation. In order to determine an optimal solution, the
influence of this noise should be minimised. To mitigate this system noise the following solutions were
implemented:

1. A coarse-to-fine search strategy to identify plausible solutions across the entire optimisation do-
main, aimed at mitigating local optima and improving computational time. Follows the logic of
optimisation theory [60].

2. Exponential smoothing to reduce the noise showcased in the turnaround time curve measure-
ments, aimed at improving curve detection. Follows the logic of noise in time measurements in
systems [27].

3. Weighted moving average in the gradient evaluation, prioritising the most recent trend in the
turnaround time curve. Follows the logic of noise reduction in signal processing [55].

4. Multiple simulation runs at potential optima to increase confidence in results, this in order to
minimise the effect of variance. Follows the logic of stochastic simulation theory [35].

5. Fuel-specific sensitivity factors to account for different responses to fleet size changes and the
difference in variance showcased per fuel type in table 3.2. Follows the potential of adaptive
optimisation [66].

Adaptive Knee Detection
Different fuel types exhibited varying degrees of variance in the stability test, which leads to different
responses to changes in the number of bunker vessels in operation. In order to mitigate this, fuel
specific gradients were introduced.

∇ref,𝑛 = ∇base ⋅ 𝑓𝑛
Where the base threshold (∇𝑏𝑎𝑠𝑒) is defined by the optimisation constraint of the simulation, the fuel

factor (𝑓𝑛) by the variance in the stability results from table 3.2.

Exponential Smoothing
To reduce the impact of noise in the turnaround measurements obtained from the simulation, exponen-
tial smoothing was applied to the return values from turnaround time:

𝑆𝑛(𝑥) = 𝛼 × 𝑇𝑛(𝑥) + (1 − 𝛼) × 𝑆𝑛(𝑥 − 1), for x > 0

Transforming the value 𝑇𝑛(𝑥) observed at point 𝑥 in the number of barges and returning the smoothed
value 𝑆𝑛(𝑥) by applying the smoothing factor 𝛼 = 0.3. This factor alpha preserves the underlying trends
of the simulation model while reducing noise observed in the system, this value was determined by it-
erative testing of different values for 𝛼.

Weighted Moving Average
As observed in figure 3.17a and 3.17b, the change of gradient of the turnaround slope is aggressive. In
order to accommodate for this, a weighted moving average was implemented to give a higher priority
to recent changes in trends.

∇𝑛(𝑥) = 0.6 ×
𝛿𝑆𝑛(𝑥)
𝛿𝑥 + 0.3 × 𝛿𝑆𝑛(𝑥 − 1)𝛿𝑥 + 0.1 × 𝛿𝑆𝑛(𝑥 − 2)𝛿𝑥

This method allows for a more responsive detection of the knee point, while still maintaining the
advantage of filtering out system noise. Identifying the optimal number of vessels in operation before
deterioration in the system occurs.
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Coarse-to-Fine Search
In order to efficiently identify the optimal fleet composition over the entire solution space, a two-phase
search strategy was implemented:

1. Phase 1 (Coarse Search): Evaluate the solution space by larger step sizes (3 vessels) in order
to identify plausible regions where the system gradient increases significantly, while minimising
the number of computations.

2. Phase 2 (Fine-grained Search): Evaluate the identified regions with the smallest step size in
combination with multiple simulation runs evaluating the same point. The increased number of
runs is aimed at increasing the confidence of the results, allowing for a more detailed and accurate
analysis.

This strategy allows for a significant reduction in computational time by reducing the number of
computations while maintaining high accuracy in determining the optimal fleet composition.

Implementation
Combining all previous steps, the following optimisation procedure is implemented:

1. Initiate the optimisation at the starting point, which is the maximum number of bunker vessels in
the solution space, defined by the input of the user.

2. Reduce the number of barges in a coarse step size, identifying the regions of a potential optimum.

3. For each region identified to have a plausible optimum, execute a fine grained search according
to the following principles:

• Multiple simulation runs at each step to increase the confidence of the result.
• Application of exponential smoothing to reduce noise in the results obtained from the simu-
lation.

• Application of weighted moving average of the slopes to prioritise most recent trends.

4. Identify the optimal point by meeting the following criteria:

• the hard constraint of wait time is met: 𝑊𝑛(𝑥 − 𝑖) ≤ 0.01 for 𝑖 ∈ {0, 1, 2}
• the optimisation criteria is met: ∇𝑛(𝑥) ≤ ∇𝑟𝑒𝑓,𝑛

Validation
In order to validate the optimisation module implemented in the framework, a repetitive test was per-
formed to measure solution consistency and to validate the results. The gradient-based strategy was
applied to determine the optimal number of conventional bunkering vessels required for the baseline
conditions of the current market structure.

When repetitively applied to the simulation model of the conventional market, the solver yielded
consistent results of an optimal bunker fleet of 20 conventional ships, which corresponds to the visual
results observed in figure 3.17a from the saturation test performed in the previous section. The overlap
between the visually observed saturation point and the obtained results verifies the solvers ability to
interpret the simulation results correctly and return the minimal amount of bunker vessels needed to
maintain similar service conditions in the simulated market conditions. Furthermore, it establishes that
the model is able to determine results that are representative to current market conditions.
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Simulation

After establishing the outlined framework, a number of various simulations are to be performed. In
these simulations the projected market trends were recreated by varying the system input parameters
outlined in section 3.1.

4.1. Scenario
To reflect the changing marine landscape, a transition scenario was developed based on expected
trends from multiple industry sources and a literature analysis. This is due to the fact that each forecast
applies a different method and produces different outcomes, as stated in section 2.1. Based on the
operationally grounded segmentation established in section 2.1, the energy demand breakdown from
the energy outlook of DNV was used in combination with market and fleet forecasts and created the
foundation for the scenario inputs. The literature review’s rule-based principles were changed to provide
compatibility with different fuel types. This led to the following broad guidelines/assumptions:

• Alternative fuel uptake: 70% of alternative fuels in the energy mix by 2050 [18].

• Fleet size: 35% increase in number of vessels in the fleet by 2050 [62].

• Vessel size: 10% increase in the size of vessels [62].

• Compatibility

– low energy demand vessels are able to adopt Biofuels and Methanol, based on the con-
clusion established from the supporting literature in section 2.

– medium to large energy demand vessels are able to adopt Methanol, LNG, and ammonia.
Based on the conclusion established from the supporting literature in section 2.

These assumptions were translated and compiled into a transition timeline of 30 years, spanning
from 2020 until 2050 and having a step size of 5 years in-between each scenario, resulting in the
following input parameters:

Year Fossil [𝑡𝑓𝑜𝑠𝑠𝑖𝑙] Bio [𝑡𝑏𝑖𝑜] Methanol [𝑡𝑀𝑒𝑂𝐻] Ammonia [𝑡𝑁𝐻3] LNG [𝑡𝐿𝑁𝐺] Frequency [𝑓] Growth [𝑣⃗]
2020 1.00 0.00 0.00 0.00 0.00 1.00 1.00
2025 0.93 0.02 0.02 0.00 0.03 1.06 1.03
2030 0.82 0.04 0.04 0.04 0.06 1.12 1.05
2035 0.65 0.06 0.07 0.10 0.12 1.18 1.08
2040 0.50 0.08 0.10 0.12 0.20 1.24 1.10
2045 0.38 0.10 0.12 0.15 0.25 1.29 1.13
2050 0.27 0.10 0.15 0.20 0.28 1.35 1.15

Table 4.1: Fuel transition energy share, fleet growth, and frequency over time (2020–2050)
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4.2. Scenario Analysis
The analysis of the simulation of the transition to sustainable fuels was performed by two complemen-
tary methods. An evolving analysis where the system progresses along the predetermined timeline and
fixed scenarios where single parameter evaluation will be performed at specified points in the transition
timeline to evaluate single supply chain performance and resilience.

Evolving Scenario Evaluation
In order to comprehend how the bunker supply chain must adapt during the transition to more sustain-
able fuels within the maritime supply chain, an evolving scenario analysis was conducted. This analysis
spans the full 30-year timeline, incorporating gradual shifts in fuel-types, vessel sizes and fleet compo-
sition.

At each time step, the model determines the optimal bunker fleet composition, aiming to minimise
both the number of required bunker vessels and the turnaround time per fuel while tracking the follow-
ing key performance indicators:

• fuel-specific turnaround time
• tank utilisation rates

• downtime percentages per bunker vessels
• total demand per fuel type

This system wide evaluation should provide insight into how the bunker ecosystem evolves under
increasing alternative fuel uptake and quantifies the assets and resources required to maintain consis-
tent system performance.

Single Scenario Evaluation
After establishing the global trends in the transition, it is equally important to assess the robustness of
individual supply chains at various points in the transition timeline. These scenarios offer a snapshot of
system performance under specific conditions and test sensitivity to isolated parameter changes. The
years 2020,2030,2040 and 2050 in the transition timeline were selected for evaluation with the single
scenario analysis to evaluate how each system responds to variations in:

• vessel frequency: which will be exposed to
an additional 15% in frequency from the pro-
jected scenario.

• vessel size: which will be exposed to an ad-
ditional 10% in growth in vessel size from the
projected scenario.

The 2020 scenario serves as the conventional baseline, while the subsequent scenarios correspond
to intermediate and advanced stages of fuel diversification. In each analysis the number of bunker
vessels in operation was fixed based on the results for the optimal fleet composition obtained from the
evolving scenario analysis. This method allows for evaluating each system’s resilience and flexibility,
especially for deviations from projected market trends.

Table 4.2: Fuel demand and fleet composition in number of vessels under different uptake scenarios

Scenario Growth [𝑣⃗] Frequency [𝑓] Conventional Bio Methanol LNG Ammonia
2020 1.00 - 1.10 1.00 - 1.15 25 0 0 0 0
2030 1.05 - 1.15 1.12 - 1.27 20 8 8 5 5
2040 1.10 - 1.20 1.24 - 1.39 15 8 8 8 8
2050 1.15 - 1.25 1.35 - 1.50 10 10 10 15 8

Implementing this methodology should enable a deeper understanding of fuel-specific supply chain
responses to stress, if there is inter supply chain interaction and possibly aid in identifying potential
bottlenecks.
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4.3. Results
Implementing the proposed transition timeline into the simulation, the following results were obtained
for the evolving scenario and the single scenario analysis.

4.3.1. Evolving Scenarios
When implementing the proposed timeline of the transition into the model, aiming to achieve the 70%
uptake of alternatives in the energy mix by 2050, the following results were obtained in terms of optimal
bunker fleet composition, demand and service times projections in the bunker ecosystem.

Bunker Fleet Evolution
Evaluating the results of the solver for optimal fleet composition, a clear increase in the number and
types of bunker vessels required to sustain comparable service levels is to be observed, as the fleet
size is projected to increase with 230% and significantly diversify as conventional bunker vessels are
projected to reduce by 83% in fleet share by the end of the transition period in 2050.

Figure 4.1: Optimal fleet composition

However, the most significant change to note is the shift in required bunker vessels that can be
observed in figure 4.1 when transitioning to the first step in the timeline of the energy transition. Show-
casing the significant influence of the diversification fuel demand on the fleet composition, resulting in
double the number of bunker vessels needed in operation while the total fuel uptake does not signifi-
cantly shift in figure 4.2 over the first time step. Highlighting that the initial fleet growth of bunker vessels
is not driven by an increase in demand but by diversification of demand. This is to be explained by the
introduction of new product types and the different set of requirements for bunker vessels in order to be
able to supply the corresponding product, highlighting the potential challenges that the segmentation
of the fuel demand introduces.

Year Conventional vessel Bio vessel Methanol vessel LNG vessel Ammonia vessel Total vessels
2020 20 0 0 0 0 20
2025 20 8 5 8 0 41
2030 17 8 8 8 5 46
2035 14 8 8 10 9 49
2040 14 8 8 10 12 52
2045 14 10 12 16 12 64
2050 11 8 10 20 17 66

Table 4.3: Barge fleet composition by fuel type (2020-2050)
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Fuel Demand Evolution
The projected fuel demand within the simulated system showcases substantial growth throughout the
modelled scenario of a transition to more sustainable fuels, as can be observed in figure 4.2. Total
fuel demand is projected to increase from 5 million tonnes in 2020 to 16.3 million tonnes by 2050, rep-
resenting a 226% increase over the complete timeline of the transition period. The growth trajectory
in the figure exhibits acceleration over time, with demand already reaching 9.7 million tons by 2035,
indicating a 94% increase from the baseline within the first 15 years of the transition. The growth rate
becomes more pronounced in the latter stages of the timeline, with demand increasing by 68% be-
tween 2035 and 2050, from 9.7 million to 16.3 million tonnes, representing a 40% increase in growth
rate compared to the first 15 years of the transition period.

Figure 4.2: absolute demand over time

These increases in demand highlight the challenge that alternative fuels introduce into the simulated
system in terms of demand, due to their lower volumetric energy density compared to conventional ma-
rine fuels. This becomes apparent when examining the overall demand relative to the required energy
share demanded in the system, see table 4.1 and 4.4.

Demand Shares
Breaking down the demand into individual components, the most significant share is to be attributed to
LNG, followed suit by Ammonia and Methanol. Observing graph 4.2 and table 4.4 the conclusion can
be drawn that these new fuels are driving the increase in total demand, as they contribute to 78% of
the demanded tonnage in 2050. This is mostly to be explained by either the lower energy density or
fuel handling requirements of the newly introduced fuels, ultimately resulting in larger shares in terms
of tonnes to deliver the same energy in the system.

Year HFO MGO VLSFO Bio LNG Ammonia Methanol Total Demand in tonnes
2020 1,000,000 1,000,000 3,000,000 0 0 0 0 5,000,000
2025 1,000,000 1,000,000 3,500,000 200,000 200,000 0 200,000 6,100,000
2030 1,000,000 1,000,000 3,200,000 500,000 800,000 500,000 500,000 7,500,000
2035 800,000 1,000,000 2,700,000 700,000 2,000,000 1,300,000 1,200,000 9,700,000
2040 500,000 1,000,000 2,200,000 1,000,000 3,000,000 2,000,000 1,800,000 11,500,000
2045 300,000 700,000 1,600,000 1,300,000 4,000,000 2,800,000 2,800,000 13,500,000
2050 200,000 500,000 1,300,000 1,500,000 4,300,000 4,000,000 4,500,000 16,300,000

Table 4.4: Fuel demand composition by fuel type (2020-2050) in metric tonnes
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Turnaround Evolution
The results obtained from themodel in terms of turnaround time throughout the transition timeline show-
case systematic changes. As presented in table 4.5, the global average turnaround time increases from
9.5 hours in 2020 to 13.9 hours by 2050 per operation, representing a 46% increase from baseline sys-
tem performance. The progression showcases consistent increases across the modelled time frame,
with a change of rate in 2030 when alternative fuels achieve greater market penetration.

Evaluating fuel specific turnaround times, illustrated in figure 4.3, great variation can be observed
between fuel types. Gas-type fuels demonstrate the longest operational periods, as the average
turnaround times for LNG and ammonia are projected at 25 and 20 hours respectively by 2050. Both
fuels showcase substantial time variability, with standard deviations ranging from ±7 to ±8.5 hours,
indicating considerable variation in duration of individual operations.

Figure 4.3: turnaround time and deviation per type

Alternative liquid fuels present different operational characteristics. Methanol bunkering operations
as described in table 4.5, require around 12 hours throughout the transition period. These projected
durations remain below gas-type fuel requirements while exceeding all conventional fuels, despite sim-
ilar handling characteristics. Further establishing the influence of the lower energy density of these
alternative fuels, requiring larger bunker quantities as already established in the demand analysis

Year HFO MGO VLSFO Bio LNG Ammonia Methanol Average Turnaround
2020 12.0 ± 4.6 7.6 ± 2.2 8.9 ± 3.0 - - - - 9.50
2025 12.2 ± 4.6 7.9 ± 2.3 9.3 ± 3.1 7.6 ± 1.3 21.2 ± 7.9 - 12.2 ± 4.6 11.72
2030 12.4 ± 4.6 7.8 ± 2.6 9.5 ± 3.3 7.8 ± 1.4 21.7 ± 8.5 19.9 ± 7.3 11.0 ± 2.7 12.87
2035 12.4 ± 4.4 7.9 ± 2.7 9.5 ± 3.1 8.0 ± 1.3 22.8 ± 8.1 20.3 ± 7.3 11.4 ± 2.7 13.18
2040 12.2 ± 4.4 8.0 ± 2.6 9.6 ± 2.9 8.2 ± 1.4 23.4 ± 8.2 21.4 ± 7.2 11.7 ± 2.8 13.50
2045 11.9 ± 4.2 8.2 ± 2.8 9.6 ± 2.5 8.4 ± 1.6 24.2 ± 8.4 21.9 ± 8.0 12.0 ± 2.8 13.76
2050 10.9 ± 3.8 8.3 ± 2.5 9.5 ± 2.4 8.6 ± 1.6 24.7 ± 8.5 23.0 ± 7.5 12.4 ± 3.0 13.90

Table 4.5: Evolution of turnaround times (2020–2050) with average standard deviation (in hours)

Lastly, the impact of the shift in vessel sizes can be observed, as the data indicates systematic
increases in turnaround time across all fuel types, with the rate of change varying considerably by fuel
type. The global increase in turnaround time is aligns with the fuel transition patterns observed in the
changes in demand, where gas-type fuels become increasingly more dominant in the system’s fuel
mix.
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Bunker Vessel Utilisation
The operational efficiency of bunker vessels showcases varying performance across different fuel types
throughout the transition period, as can be observed in figure 4.4a. Conventional bunker barges show-
case an upward trend for the downtime fraction increasing from approximately 49% in 2020 to 72%
by 2050, indicating declining operational efficiency for traditional bunkering vessels over the modelled
transition period.

Alternative fuel bunker vessels present unique utilisation trends. LNG bunker barges showcase
the lowest initial utilisation with a downtime of 87% in 2025, followed by a consistent downward trend
reaching 61% by 2050. Methanol bunker vessels display more variable performance, with downtime
fluctuating across various scenarios, though generally declining from peak levels observed around
2025-2030 to 67% by 2050. Ammonia bunker vessels demonstrate moderate variability in downtime,
demonstrating an initial 84% downtime percentage in 2030 and declining with variations to 67% by
2050. Bio bunker vessels maintain relatively stable decrease, starting off at 85% in 2025 and decreas-
ing to 76% by 2050. Resulting in the projection that bio barges will face the highest downtime at the
end of the energy transition.

(a) Downtime fraction across scenarios (b) Tank utilisation across scenarios

Tank utilisation varies considerably across fuel types, as presented in figure 4.4b. Among conven-
tional fuels VLSFO demonstrates the highest utilisation rates, increasing from 52% in 2020 to 67% by
2050. In contrast to VLSFO, MGO showcases a a declining pattern, decreasing from 34% in 2020 to
22% by 2050. HFO maintains a relatively low and stable utilisation between 15% and 27% throughout
the period.

Alternative fuels achieve notably higher tank utilisation rates compared to all conventional fuels, in
particular the gaseous fuels. LNG maintains consistently high utilisation rates above 80% across the
transition period with minor variations. Ammonia showcases similarly high utilisation, remaining above
85% throughout most of the modelled transition. Highlighting the efficient storage and refuelling these
gas-bunkering vessels achieve, despite the additional challenge of managing boil-off gases. Methanol
utilisation rates showcase significant improvements across themodelled scenario, increasing from 13%
in 2025 to 56% by 2050. This increase in efficiency is to be attributed to the increase in methanol adop-
tion in the system, serving a wider range of vessels. Bio fuels follow a similar growth pattern progressing
from 6% in 2025 to 41% by 2050, reflecting the gradual integration of biofuels into the bunkering system.

Comparing the data for downtime and tank utilisation across all fuel types, an interesting pattern
emerges. Conventional bunker vessels, while experiencing lower downtime compared to most alterna-
tive fuels, correspond to the fuel types with the lowest tank utilisation rates. In contrast, alternative fuel
bunker vessels experience higher downtime percentages, yet make more efficient use of tanks and
thus refuelling opportunities. This suggests that operational efficiency does not necessarily correlate
with storage efficiency, indicating potentially different operational dynamics. Reflecting on the tank ca-
pacity of these vessels, higher utilisation rates may be achieved by a more optimal capacity matched
for the specific demand in their segment.
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4.3.2. Single Scenario
After obtaining the projections for the global trends in the modelled timeline, unique system perfor-
mance should be evaluated by applying various single parameter variations. This in order to develop
an understanding of how all of the individual supply chains respond to unforeseen stress in the timeline.

Scenario 2020
The frequency sensitivity test for the 2020 scenario, evaluated inter-arrival time scaling factors 𝑓 in the
range of 1.0 to 1.15, with the results illustrated in figures 4.5a-4.7b. The analysis showcases that the
existing bunker fleet demonstrates limited adaptability to increased frequency of arriving vessels. A
critical threshold emerges at an increase of 10%, where figure 4.5a shows a sharp rise in turnaround
times for all fuel types, while figure 4.5b showcases corresponding increases in wait times, indicating
that the system is under capacitated at this point.

(a) turnaround time vs. frequency (b) wait time vs. frequency

The results for double allocations and incomplete supplies reveal various operational challenges.
Figure 4.6a showcases that double allocations occur even under baseline conditions despite no system
growth, suggesting capacity limitations in the current fleet of bunker vessels. As frequency increases,
figure 4.6a shows a gradual decrease in double allocations, while figure 4.6b shows a corresponding
increase in incomplete supplies beginning at 8% above baseline frequency. This inverse relationship
confirms the system’s capacity limitations and indicates a transition from resource redundancy to ser-
vice deficiency as demand intensifies.

(a) double allocations vs. frequency (b) incomplete supplies vs. frequency
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The downtime metric provides further insight into system performance under varying frequency.
Figure 4.7a illustrates a relatively stable downtime across all frequency factors, decreasing marginally
from 0.48 to 0.42 at maximum frequency. This consistent downtime performance indicates that indi-
vidual vessel availability is not a limiting factor in the system’s capacity constraints. The fuel-specific
tank utilisation metrics shown in figure 4.7b showcase individual performance characteristics across
the three types a conventional bunker vessels carries. All three fuel types showcase relatively sta-
ble utilisation rates across frequency variations, this is to be explained by the fact that the demand
proportions remain consistent despite overall increased system load.

(a) downtime vs. frequency (b) tank utilisation vs. frequency

The growth sensitivity test evaluated vessel scaling factors 𝑣⃗ from the range of 1.0 to 1.10, obtaining
the following results illustrated in figure 4.8a-4.8b. The results from the analysis showcase significant
capacity thresholds within the modelled system to an increase in vessel sizes. Evaluating figures 4.8a-
4.8b, a drastic increase in both turnaround and waiting times is to be observed at only an increase
of 6% of the vessel sizes, highlighting the potential constraint capacity versus demanded quantities
imposes on the current system.

(a) turnaround time vs. growth (b) wait time vs. growth

Evaluating the metrics for double allocation a drastic increase is to be observed from a 2% increase
for all fuel types in figure 4.9a. From an increase of 4% the double allocations decrease, while figure
4.9b showcases a drastic increase. This transition demonstrates how the system initially attempts
to accommodate larger vessel fuel demands through resource redundancy, but ultimately shifts from
multiple vessel assignments to service failure as the larger individual bunker requirements of growing
vessels exceed available capacity. This highlights the constraint of bunker vessel capacity.

(a) double allocations vs. growth (b) incomplete supplies vs. growth
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The downtime metric showcases in figure 4.10a a positive response to the growth factor up to a
4% increase showcasing a 5% improvement, reducing initial system redundancy. Past the point of 4%
growth the downtime factor stops to improve, which coincides with the observations made in figure 4.9b
as the system in unable to perform complete supplies at that point.

(a) downtime vs. growth (b) tank utilisation vs. growth

Evaluating the tank utilisation of all fuel types during this scenario, an improvement of 5% is to
be observed in figure 4.10b over the growth test. This further establishes the limiting factor of the
determined capacity of a bunker vessel on system performance.
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Scenarios 2030-2050
For the alternative scenarios the results were consolidated into a single overview, as all scenarios in-
clude all types of required supply chains at various points in time, yet at a different scale of operation.
Therefore, consolidating the results from all three different scenarios would provide the most complete
insights into the sensitivity, resilience and characteristics of each individual supply chain.

The frequency sensitivity tests performed for the 2030, 2040 and 2050 scenario evaluated the
same additional stress as the 2020 scenario for the inter-arrival scaling factor 𝑓, evaluating the range
of 1.12 to 1.27, 1.24 to 1.38 and 1.35 to 1.50 respectively, with the results illustrated in 4.11a-4.13f.
The analysis showcases notably different results from the baseline 2020 scenario in response to the
frequency increase for all scenarios.

The turnaround and wait time results demonstrate vastly different results to the characteristics
demonstrated in the 2020 baseline. In contrast to the 2020 scenario where a significant response was
observed at increases above 10%, figures 4.11a-4.11f illustrates stable results across all frequency
factors for the conventional and newly introduced LNG, ammonia and methanol supply chains. This
performance consistency suggests that the system, obtained from the solver, possesses substantially
different capacity margins than the threshold-sensitive 2020 scenario.

(a) frequency vs. turnaround time scenario 2030 (b) frequency vs. waiting time 2030

(c) frequency vs. turnaround time scenario 2040 (d) frequency vs. waiting time 2040

(e) frequency vs. turnaround time scenario 2050 (f) frequency vs. waiting time 2050

The stable performance across variations in frequency indicates that future supply chain configu-
rations possess adequate capacity buffers to absorb demand volatility without compromising service
levels within the system. This additional buffer represents an improvement over the baseline system
where increases in frequency resulted in waiting times and service degradation.
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However, evaluating the results for the double and incomplete allocations reveals the fundamental
issue of redundancy-based system design. Figures 4.6a-4.12e show persistent double allocations for
the conventional supply chain across all frequency variations, indicating that the solver relied on re-
source redundancy to meet turnaround and waiting time criteria. Meanwhile the persistent incomplete
allocations shown in figures 4.12b-4.12f demonstrate that systematic over-provisioning with limited in-
dividual bunker vessel capacity fails to guarantee service reliability.

This pattern reveals a critical limitation in conventional system scaling. Despite deploying additional
vessels to maintain service standards, the rigid constraint of individual vessel capacity creates persis-
tent operational failures. The decreasing frequency of these failures across the simulated scenarios
reflects reduced demand for conventional fuels rather than improved system performance, highlighting
the importance of bunker vessel design.

Alternative supply chains for LNG, ammonia, and methanol show different results, with no double
or incomplete allocations across all frequency ranges and scenarios. This absence of operational
failures indicates a fundamental architectural advantage: purpose-built vessels with optimised capacity
for specific fuel types eliminate the multi-fuel compromise constraints.

(a) frequency vs. double allocations scenario 2030 (b) frequency vs. incomplete allocations time scenario 2030

(c) frequency vs. double allocations scenario 2030 (d) frequency vs. incomplete allocations time scenario 2040

(e) frequency vs. double allocations scenario 2030 (f) frequency vs. incomplete allocations time scenario 2050

The results illustrate the effect of individual capacity of bunker vessels on scalability and perfor-
mance when comparing the conventional supply chain with the alternatives. The continued presence
across all simulated scenarios for incomplete allocation demonstrates that the elimination of critical
frequency thresholds has been achieved by systematic over-capacitated system design, rather than
capacity optimisation. Despite the additional resources implemented in the system, the supply chain
fails to eliminate incomplete allocations, establishing that under capacitated systems cannot achieve
reliability through fleet expansion alone.
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The downtime analysis confirms the redundancy-based capacity across all scenarios. Figures
4.13a-4.13e showcase the conventional bunker vessels maintaining similar levels of downtime across
all modelled scenarios , while LNG, ammonia and methanol bunker vessels display various downtime
factors. These availability patterns remain relatively stable across variations in frequency factors, in
contrast to the 2020 scenario where availability decreased under operational pressure, confirming the
deliberate over-capacitated fleet.

The tank utilisation metrics, to be observed in figure 4.13b-4.13f, demonstrate the efficiency implica-
tions of the implemented strategy to maintain operational levels, as for conventional bunker vessels the
most dominant fuel type achieves the highest utilisation rate, while other fuel types achieve significantly
lower utilisation rates. Ammonia and LNG operations achieve high utilisation rates, unused capacity
persists across other conventional fuel types throughout all scenarios. This systematic under-utilisation
of capacity, occurring in combination with the incomplete allocations, highlights the fundamental flaw
of the redundancy-based system design.

(a) frequency vs. down time scenario 2030 (b) frequency vs. tank utilisation scenario 2030

(c) frequency vs. down time scenario 2040 (d) frequency vs. tank utilisation scenario 2040

(e) frequency vs. down time scenario 2050 (f) frequency vs. tank utilisation scenario 2050



4.3. Results 51

The growth sensitivity tests for the simulated scenarios evaluated growth factors in the range of
1.05 to 1.15 for 2030, 1.10 to 1.20 and 1.15 to 1.25 for 2050, with results visualised in figures 4.14a-
4.16f. In contrast to the frequency sensitivity tests which demonstrated smooth operational curves and
resilience to additional stress introduced in the system by increasing the frequency, the growth scenar-
ios display threshold effects similar to those observed in the 2020 baseline.

The turnaround and wait time metrics reveal threshold-driven performance degradation across all
scenarios for liquid type bunker vessels. In 2030, illustrated by figures 4.14a-4.14b, the system demon-
strates stable results for liquid type bunkers up to 7% growth. Bio and methanol bunker vessels display
a more gradual resilience to simulated growth, introducing waiting time in the system from 10% addi-
tional growth. In 2040 and 2050 (figures 4.14c-4.14f) this threshold is further compressed.

The progressive threshold reduction reveals that the redundancy-based approach becomes less
effective over time. As demand grows, capacity limitations of liquid bunker vessels become more bind-
ing, creating increasingly more vulnerable supply chains.

In contrast to the liquid type bunkers, the gas type bunkers display vastly different results. Fig-
ures 4.14a-4.14e display an initial increase to growth, yet stabilise across further growth. Furthermore,
across all scenarios no waiting time is introduced into the system. This stability showcases the greater
scalability potential of these bunker vessels as capacity constraints are less binding in system operation.

(a) growth vs. turnaround time scenario 2030 (b) growth vs. wait time scenario 2030

(c) growth vs. turnaround time scenario 2040 (d) growth vs. wait time scenario 2040

(e) growth vs. turnaround time scenario 2050 (f) growth vs. wait time scenario 2050
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The analysis of the results for double and incomplete allocations provide the complete breakdown
of the redundancy-based approach under unexpected growth pressures. In the 2030 scenario, illus-
trated in figure 4.15a and 4.15b, double allocations initially increase with growth factors for all liquid
bunker fuels, reaching peaks of 15-40 occurrences before rapidly dropping to zero as the system rapidly
transitions to incomplete allocations, demonstrating complete depletion of system redundancy for the
methanol, bio and fossil fuel supply chains.

Under growth pressure, the systems redundancy reserves are rapidly depleted, leading to an in-
stant transition from resource over-allocation to unmaintainable and failed service levels. The 2040 and
2050 scenarios (figures 4.15c-4.15f) exhibit similar but more compressed and extreme failure patterns,
with critical transitions occurring at lower growth thresholds.

The binary transition of double to incomplete allocations demonstrates that growth drive demand
increases expose flaws in the redundancy-based solution space. Unlike frequency variations which
can be observed through over-capacitated systems, sustained growth requires individual capacity ex-
pansion which the system is unable to accommodate. This limitation highlights once more that system
scaling cannot be achieved by fleet expansion strategies alone, instead requiring optimisation of vessel
capacity.

(a) growth vs. double allocation scenario 2030 (b) growth vs. incomplete allocation scenario 2030

(c) growth vs. double allocation scenario 2040 (d) growth vs. incomplete allocation scenario 2040

(e) growth vs. double allocation scenario 2050 (f) growth vs. incomplete allocation scenario 2050

The increasingly severe failure patterns across the various scenarios indicate that the problem com-
pounds over time. Systems that appear to be adequately capacitated in early phases of the transition
become critically vulnerable as demand growth continues, suggesting that capacity planning should
consider long-term scaling requirements rather than immediate operational needs.
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The results from the downtime metric confirm the complete utilisation of the available fleet capacity
under the simulated growth scenarios for the liquid bunkering vessels. In 2030 (figure 4.16a), vessel
downtime decreases across all vessel types carrying liquid bunkers as growth factors increase, with
conventional bunker vessels improving from 55% to 38% downtime and methanol and bio matching
similar downtime percentages at 14% growth. This utilisation improvement occurs at the corresponding
points of failure of system performance, exposing an operational paradox that maximum fleet deploy-
ment coincides with operational failure.

Tank utilisation metrics, illustrated in figure 4.16b,4.16d and 4.16f, reveal the complete saturation
of the capacity under varying growth factors. In contrast to the stable utilisation patterns observed in
frequency scenarios, growth driven demand forces utilisation rates to approach or exceed 80% across
multiple fuel types before system performance drastically deteriorates. The utilisation saturation, com-
bined with the performance failures, demonstrates that the current vessels implemented in the simula-
tion face scalability constraints.

(a) growth vs. down time scenario 2030 (b) growth vs. tank utilisation scenario 2030

(c) growth vs. down time scenario 2040 (d) growth vs. tank utilisation scenario 2040

(e) growth vs. down time scenario 2050 (f) growth vs. tank utilisation scenario 2050

The single scenario analysis demonstrates that growth sensitivity exposes the critical weakness of
redundancy-based system optimisation employed in future scenarios. While frequency variations can
be absorbed through systematic over-capacity, sustained demand growth reveals that the elimination of
capacity optimisation in favour of redundancy creates systems that appear stable under a vast amount
of different operational scenarios, yet fail under scaling requirements. This highlights the importance of
individual bunker vessel capacity over number of bunker vessels deployed in a system. Furthermore,
it establishes that under-capacitated systems cannot be scaled through introducing additional assets,
only through scaling individual assets.
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Discussion and Conclusion

The discrete-event simulation of the bunker supply chain in the Strait of Gibraltar has revealed various
insights into how the maritime industry’s transition to sustainable fuels will reshape bunker operations.
This chapter discusses the implications of the results and places the findings in a broader context of
the maritime industry, besides the bunker industry.

5.1. Discussion
The Scale of Transformation: Beyond Fuel Substitution
The simulation results show that the shift to sustainable fuels would entail substantial changes in bunker
operations, fundamentally altering the industry’s notion of what exactly constitutes as a ’fuel transition.’
The projected 230% increase in bunker fleet size from 20 conventional vessels for a single integrated
supply chain in 2020 to 66 vessels over 5 unique supply chains by 2050 illustrates that this transfor-
mation will go well beyond simple fuel substitution to include a expansive restructuring of operational
infrastructure and models.

The observation that the fleet is required to double in the initial transition stage (2020-2025), when
just 7% of the total energy mix moves to alternatives, emphasises that diversification, rather than vol-
ume growth drives the first phases of infrastructure investment. This conclusion challenges the fun-
damental assumption about gradual transition impacts that have supported industry planning. The
assumption that moderate alternative fuel uptake will necessitate correspondingly small infrastructure
changes proves incorrect - even little diversification necessitates large infrastructure requirements.

The underlying driver of this step-change lies in the incompatibility between current multi-fuel op-
erational requirements and alternative fuel requirements. The demand for purpose-built, fuel-specific
bunker vessels, as illustrated by the transition from a single multi-fuel supply chain to five unique sup-
ply chains, introduces capacity constraints that cannot be addressed via gradual modifications. Each
new fuel type necessitates the development of a new supply chain, including specialised vessels, fuel
specific operational processes and dedicated storage infrastructure.

This realisation has consequences for the transition strategy in place by the industry and investment
timing. These findings highlight that the traditional method of building infrastructure in stages may be
misaligned with the actual industry requirements of alternative fuel adoption. Instead, the industry faces
a binary choice: maintain current infrastructure for conventional fuels while creating parallel infrastruc-
ture for alternatives, or commit to comprehensive system transformation that anticipates the full scale
of necessary change.

The scale of this transition is further illustrated by the projected 226% rise in overall fuel demand
from 5 million tons in 2020 to 16.3 million tons by 2050. This tripling of demand volumes, caused
mostly by the lower energy density of alternative fuels, complicates the infrastructure challenges be-
yond simple fleet diversification. The simulation shows that LNG and ammonia alone will account for
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78% of the total tonnage by 2050, despite being a smaller portion of the energy mix, demonstrating
how differences in energy density amplify logistical complexities in ways that conventional volumetric
planning approaches fail to capture.

The scale of change displayed in the results of the simulation indicate that the bunker industry will
undergo significant changes beyond simple infrastructure and fuel portfolio diversification. The need for
purpose-built vessels and infrastructure, combined with the capital requirements of these systems, may
encourage industry consolidation as smaller market shareholders lack the resources to sustain compet-
itive positions across several fuel types. :The simulation results further establish this as purpose-built
systems displayed greater scalability compared to multi-fuel systems, suggesting that the future bunker
industry may be characterised by fuel-specific operators rather than universal fuel suppliers.

Operational Performance Implications
The simulation findings show a substantial shift in operational efficiency, that extends beyond simple
increases in turnaround time, altering the complexity in scheduling maritime operations and route dy-
namics of marine logistics. The 46% increase in average turnaround time from 9.5 hours in 2020 to 13.9
hours by 2050 suggests not only longer operations, but also significantly broader operational windows,
challenging the strict scheduling on which maritime operations are based. By 2050, LNG and ammo-
nia operations are projected to extend to 25 hours and 23 hours respectively, with significant variability
ranges of ±7 to ±8.5 hours. This transforms bunkering from a narrow-window auxiliary operation to a
wide-window scheduling constraint, requiring significantly larger time buffers.

When compared to present maritime operations the extent of this transition becomes clear. While
container vessel turnaround times in major ports currently range from 24-72 hours [14], simulation re-
sults show that alternative fuel bunkering operations are approaching 30 hours for dominant fuel types,
indicating that bunkering is moving from a minor port call component to a potential critical path con-
straint, illustrated in figure 5.1. Beyond causing operational strain, this convergence alters the critical
path analysis that forms the basis of maritime scheduling. The extended duration of alternative fuel
bunkering operations, combined with safety and regulatory considerations that may limit simultane-
ous cargo operations, creates uncertainty about whether bunkering can continue as a parallel activity
alongside cargo handling or must transition to a sequential constraint that determines overall port stay
duration. This operational unpredictability adds to the scheduling complexity, as port call planning
must account for several different operational situations based on individual port regulations, safety
measures, and infrastructural capabilities for each alternative fuel type.

Figure 5.1: loading vs bunkering times
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The implications extend beyond individual vessels and have an impact on the entire shipping net-
work efficiency. Extended and variable bunkering times reduce the effective capacity of the maritime
transport system by increasing the downtime in port, just when global trade demand necessitates higher
transport capacity. This capacity reduction can not be addressed by typical optimisation since the lower
energy density and fuel handling requirements of alternatives fuels result in inescapable increases in
operational time that persist independent of operational efficiency of bunkering operations.

The operational performance changes illustrated in the simulation create a multiplicative rather than
additive effects across maritime networks, having an impact that extends beyond bunkering operations.
Extended bunkering times at major bunkering hubs like Gibraltar cause accumulating delays acrossma-
rine networks, particularly for line services that operate on set schedules and rely on predictable port
call scheduling. The concentration of fuel demand in in these bunker hubs compounds these impacts,
potentially resulting in congestion bottlenecks that degrade overall system reliability.

These effects across the network suggest that the transition to alternative fuels may need/introduce
changes in maritime network design and operating philosophy. Traditional operating models that pri-
oritise transit time and fuel economy may be insufficient when bunkering activities become more time
consuming and variable. The industry may require new network designs that can handle stochastic
rather than deterministic bunkering processes, which could necessitate more distributed infrastructure
or alternate service patterns that reduce reliance on main bunker hubs.

The extended bunkering operations would necessitate increased collaboration among bunker sup-
pliers, terminal operators and port authorities to manage this new operational reality. Port authorities
face the problem of restructuring locations for bunkering operations, which may require alternative fuel
bunkering areas in order to mitigate prolonged berth allocations that conflict with the high utilisation
patterns of modern ports. Terminal operators must include lengthier, more variable bunkering opera-
tions into cargo handling schedules, which may necessitate additional safety protocols and system that
allow for simultaneous operations with alternative fuels.

Supply Chain Resilience and Vulnerability Patterns
The sensitivity analysis displays that the industry’s redundancy-based optimisation creates systematic
vulnerabilities in both conventional and alternative fuel supply chains, with these flaws becoming in-
creasingly more amplified in future systems due to the higher individual capacity requirements. The
baseline system already demonstrates the limitations of the current optimisation philosophy, operating
within narrow margins that displayed performance degradation at an 8% increase in vessel frequency
and system failure at 10% growth in individual vessel demand. These results highlight that the existing
approach of prioritising vessel quantities over individual capacity, creates supply chains that lack op-
erational buffers needed for reliable service under modest demand fluctuations.

When the same redundancy-based approach is applied to future energy transition scenarios, the
underlying design flaws are magnified, resulting in even more sensitive supply chains with lower thresh-
olds. The solver’s consistent response of adding more vessels rather than deploying more capable
vessels, becomes inevitably more inadequate as individual demand increases to exceed single vessel
capabilities. This fundamental mismatch between optimisation philosophy and operational reality re-
sults in the various asymmetric risk profiles seen across the simulated scenarios.

The 2030-2050 scenarios show how these optimisation flawsmanifest in the conventional, methanol
and biofuel systems: while they can accommodate significant increases in vessel frequency (up to an
additional 15% in tolerance) using the redundancy-based approach of adding more vessels, they fail
when individual vessels require moderately larger fuel quantities (as little as a 2% increase in growth).
This asymmetric pattern is a direct result of using quantity-over-capability optimisation on systems. As
a result, systems appear over-resourced under typical conditions yet become inadequate as energy
demands rise - a more extreme version of the baseline system’s already narrow margins.
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The persistent presence of double allocations across future scenarios, occurring simultaneously
with incomplete allocations, demonstrates how redundancy-based optimisation errors worsen rather
than improve through system scaling. While baseline supply chains show gradual performance degra-
dation under load, future scenarios go from apparent overcapacity to service failure. This transition from
progressive to binary failure modes highlights the limitation of redundancy-based solutions to increas-
ingly complex operational requirements. This pattern highlights that the optimisation strategy requires
a revision to address individual capacity over minimising assets.

The analysis finds significant performance variations across fuel types that have implications for
system scaling and risk management. Gas-based systems (LNG and ammonia) are more resilient to
both frequency and growth variations, with no double or incomplete allocations across all scenarios due
to their purpose-built design philosophy with increased individual capacity. In contrast, liquid fuel sys-
tems (conventional, methanol and biofuels), often based on conventional small tanker designs, exhibit
threshold effects and binary failure modes, suggesting that individual vessel capacity is the primary
constraint creating the observed vulnerabilities.

The better resilience of gas-type systems supports the key strategic takeaway from the single sce-
nario analyses: in order to develop reliable and future proof supply chains, expansion strategies must
prioritise individual capacity over vessel count. The complete absence of operational problems in LNG
and ammonia systems, together with favourable resilience to system growth, illustrates that larger ca-
pacitated purpose-built vessels overcome optimisation flaws from quantity-based methods. These re-
sults suggest that bunker suppliers should avoid deploying a large number of smaller vessels in favour
of fewer, larger, purpose-built vessels matched to long term operational requirements.

The capacity focused approach represents a shift fromminimising capital investment and risk through
vessel count minimisation to maximising operational reliability through capability optimisation. While
this strategy will necessitate higher individual capital expenditure, the results show that the operational
benefits justify the additional capital through improved long term reliability and reduced operational risk.
The strategic imperative is clear: sustainable fuel implementation necessitates purpose-built vessels
with capacity as the fundamental design criterion, with fleet size defined by capacity needs rather than
asset minimisation.

Infrastructure and Capacity Challenges
The results of the simulation consistently indicate that individual vessel capacity is the key constraint
limiting system performance and scalability in bunker supply chains, which challenges the strategy be-
hind present industry practices and regulatory regulatory frameworks. The analysis directly confronts
the widespread strategy of employing vessels under 4,999 GT to avoid pollution frameworks such as
EU-ETS, Fuel EU and IMO Net-Zero, demonstrating that these avoiding tactics result in an imbalance
between compliance and operational optimisation. The sensitivity analysis demonstrates that capacity
constraints cannot be addressed just through fleet expansion, they necessitate individual scaling of
assets, requiring to prioritise capability over number and compliance cost.

The comparison between liquid and gas-type bunkering illustrates the implications of this capacity
constraint. While conventional bunker vessels serving multiple fuels achieve utilisation rates of 20-
70%, constrained by the operational complexity of managing diverse fuel requirements, purpose built
vessels gas-type vessels achieve 80% utilisation rates on average. This higher utilisation, combined
with the absence of operational capacity shortage, suggests that larger single-fuel purpose-built ves-
sels are a better platform to scale, despite the need for a larger more diversified fleet.
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The failure of redundancy-based scaling through the constraint-driven behaviour patterns of the op-
timisation solver in the research identifies a key shortcoming in the conventional capacity management
in the industry. When confronted with capacity shortages, the solver responds systematically by adding
additional vessels rather than deploying vessels with larger individual capacity, not by choice, but by
the limitations imposed by the fixed vessel specifications based on current vessel designs. This con-
straint reflects the inadequacy of design requirements imagined by bunker suppliers for alternative fuel
operations, in which individual fuel demands exceed the capacities of current bunker vessel layouts.
The end result is a redundancy-based scaling approach, that prioritises vessel count over capacity,
resulting in systems that appear to be over-resourced in terms of vessel count while essentially under-
designed for actual operating requirements.

The effects of these design constraints are demonstrated by the frequent occurrence of double and
incomplete allocations across all simulated scenarios. The combination highlights the basic shortcom-
ings of current design proposals when applied to future scenarios, as it necessitates multiple assets
for individual deliveries while simultaneously failing to service other enquiries. The binary transition
patterns observed under growth stress, in which systems go from apparent over-capacity to service
failure, show that current vessel designs in combination with redundancy-based scaling create fragile
systems that conceal fundamental deficiencies until operational thresholds are exceeded. The results
obtained from the solver demonstrates that the fault lies in the limited underlying vessel designs that
determine capacity possibilities.

The demand projections suggest significant imbalances that could entail changes in sourcing strate-
gies and potentially storage strategies. The difference between the expected methanol demand and
announced regional production capacity illustrates these difficulties. The aggregate production capac-
ity of one confirmed and two conceptual methanol plants around Gibraltar is set to deliver 687, 000
tons per year by 2035 [41], yet the simulation projects regional methanol demand to reach 1.2 million
tons by the same year, suggesting a supply gap approaching 2:1 even in the near future.

This regional imbalance despite worldwide methanol production capacity forecasts of 14 million tons
by 2035 [41], demonstrates the localised nature of bunker supply chain networks and the difference
between the global capacity evaluation for regional operational requirements. This gap suggests that
bunker suppliers will need to adopt more extensive sourcing strategies that go beyond regional sup-
pliers, possibly requiring proactive storage in order to meet demand that exceeds local production by
quite a margin.

These supply-demand imbalances suggest that bunker supply chains will face the challenge of
a significant restructuring, potentially including greater storage facilities, long-distance sourcing and
pro-active inventory management strategies that differ significantly from current real-time inventory
availability models. The need to source alternative fuels from distant production facilities introduces
new forms of supply chain risk, including transportation delays, quality variations and supply chain
disruptions.

Strategic Implications for Bunker Suppliers
The transition from a single integrated supply chain to five distinct supply chains represents a signifi-
cant shift in business model that will challenge all aspects of current suppliers operational models. The
results suggest that bunker suppliers could face a strategic choice between diversification across mul-
tiple fuel types and increased operation complexity versus specialisation in specific fuel segments that
allow for concentrated optimisation and risk management. The operational complexity suggested by
the simulation for managing diverse fuel portfolios, compared to the efficiency demonstrated by single
supply chains, could indicate that the traditional universal supplier model may become economically
unviable.

The efficiency differences between approaches further provide evidence for the specialisation strate-
gies. Purpose-built systems demonstrate higher utilisation rates, better resilience across stress sce-
narios and better long term operational viability. However, specialisation introduces the risk of market
concentration and reduced diversification that must be weighed against the operational benefits.
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The 230% increase in required bunker vessels, along with the need for complex fuel-specific ves-
sels, creates a serious capital investment challenge for the bunker industry. The results from the optimi-
sation show that this investment cannot be scaled progressively due to the step-change in infrastructure
requirements driven by diversification of demand, necessitating significant upfront capital investment
before demand and revenue mature. This temporary mismatch between investment requirements and
revenue generation raises basic finance issues that could affect structure and ownership. Furthermore,
it raises the question whether to adopt an a first mover advantage and be proactive or adopt a reactive
mindset and follow demand.

The capacity constraint findings suggest that investment decisions should prioritise vessel capabil-
ity over vessel quantity, contradicting the traditional cost management strategy of employing smaller,
less expensive vessels. The simulation demonstrates that under-capacitated vessels cannot achieve
reliability through redundancy, suggesting that investment should be targeted at fewer larger vessels
over larger fleets of smaller vessels - an investment strategy that significantly influences capital alloca-
tion and fleet planning.

Model Performance and Applicability
The hybrid-modelling framework developed in this research provides a quantitative method for evaluat-
ing the operational implications on the ship-to-ship bunkering operation for transitioning to sustainable
marine fuels. The main component of the model lies in the discrete-event simulation module, which
enables a detailed representation of ship-to-ship bunkering operations. By simulating each process
individually, the model offers a detailed analysis of how different fuel types and demand profiles influ-
ence system performance, including turnaround times, asset utilisation and queue formation.

The integration of real-world operational data provided by Peninsula grounded the simulated be-
haviour, ensuring outcomes reflect practical constraints rather than theoretical abstractions/assumptions.
The integration of distinguished liquid and gas-based bunkering adds value, as it is a critical require-
ment given the operational divide between emerging fuels. Methanol and biofuel follow conventional
liquid handling procedures, whereas LNG and ammonia introduce cryogenic or pressurised conditions,
requiring fundamentally different operational approached. By modelling both types based on actual
process characteristics, the simulation supports data-grounded extrapolation to future fuels without re-
lying solely on generic assumptions.

The optimisation module of the framework adds value by identifying near-optimal fleet compositions
for transition scenarios through a structured search technique, which combines results from multiple
simulation runs. The module effectively assessed various combinations of bunker vessels using perfor-
mance measures such as turnaround time and waiting time. This enabled the module to determine not
just the number of bunkering vessels required, but also the fuel configurations required to meet future
demand under segmented demand conditions. The optimisation module’s results revealed that diversi-
fication, rather than expansion, drives fleet growth, which has obvious consequences for fleet planning.

Modelling Assumptions
Despite these outlined strengths, the model still faces several limitation in its current implemented form
that must be discussed. A key constraint lies in the behavioural rules governing agent interaction.
Stakeholders are modelled with fixed decision patterns and are unable to adapt their decision making
process in response to changing conditions. As a result, realistic dynamics such as supplier compe-
tition, re-routing, or reactive scheduling are not represented, limiting the models ability to capture the
full dynamics between stakeholders in a bunkering hub.
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In addition, a number of parameters related to alternative fuels were derived from vessel design
guidelines, limited pilot studies/projects or engineering assumptions. While some operational charac-
teristics are based on real-world data from similar processes, large-scale bunkering of fuels such as
methanol and ammonia remains untested. This introduces a certain degree of uncertainty into the
outcomes of the simulation, in particular to the results obtained for service duration and infrastruc-
ture requirements. The results of should therefore be interpreted with a careful bias, especially when
assessing fleet sizing and demand for future scenarios.

Operational Constraints and Scope
On an operational aspect, the simulation excludes several important real-world variables. Unplanned
disruptions such as equipment failures, weather delays and human error are excluded from the perfor-
mance, even though these elements often shape day-to-day bunker operations. Similarly, fuel-specific
safety procedures for toxic fuels like ammonia and methanol are not explicitly accounted for in the pro-
cess logic, potentially leading to an underestimation of service durations for certain fuel-specific supply
chains.

Furthermore, the model does not simulate terminal operations in detail, excluding production and
storage constraints, infrastructure availability and berth allocation queues. This abstraction limits the
models ability to assess bottlenecks or queuing dynamics created by terminal throughput limitations.
Vessel transport times are drawn from distributions rather than position based routing, which removes
the influence of spatial layout and reduces the accuracy of queue dynamics.

The optimisation framework is constrained as well by its reliance on predefined vessel designs. All
bunker vessels are modelled as rigid, fuel specific platforms, instead of flexible or modular configura-
tions that are the current standard in modern bunkering operations. This limits the solution space the
solver can explore for determining optimal fleet compositions and potentially under-represents the op-
erational flexibility that could be achieved through mixed-fuel vessel strategies or adaptive deployment
models. Furthermore, by optimising on each individual scenario instead of a longer duration for the
transition timeline, the optimiser only obtains an temporary fleet configuration.

Lastly, the models spatial scope presents a fundamental constraint. The simulation environment
is specifically calibrated for the bunkering hub of Gibraltar, using data and infrastructure parameters
unique to that operating area. While this specificity enables for more realistic modelling, it also limits
generalisability.

Overview Discussion
Despite all the outlined limitations, the model served its purpose. It provided a framework to quantify the
influence of fuel diversification on service times, fleet performance, fleet composition and overall system
pressure. It enabled a consistent evaluation of each simulated scenario using the same operational
logic. Its integration of real-world data and scenario-based logic allows for meaningful comparisons
across transition pathways, offering insights that are both prescriptive and grounded in plausible oper-
ational conditions.

To conclude on the results of the discussion, the transition to sustainable marine fuels will not only
introduce new fuel types, but will also reshape the structure and function of bunker supply chains.
This model demonstrates how fuel diversification increases systemic complexity, amplifies pressure on
existing assets, and challenges the assumptions underpinning current fleet configurations. Although
simplifications were necessary to enable implementation, the simulation produces results that align
with projected transition dynamics. With further development of infrastructure modelling and dynamic
infrastructure allocation, the model could prove to be a helpful for suppliers to understand the energy
transition.
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5.2. Conclusion
The maritime industry’s transition toward sustainable fuels represents far more than a simple fuel sub-
stitution; it is a fundamental shift that will redefine the structure of fuel logistics, operational performance
and infrastructure requirements across the bunker and maritime supply chain. This research applied
a research framework for developing a case study of the Gibraltar bunkering hub to quantify the op-
erational impact of this transition on a port-level basis. The results demonstrate how even a small
transition to alternative fuels can result in large infrastructure requirements, driven mostly by the pro-
jected segmented fuel uptake. The model produces three key findings that challenge current industry
assumptions on the transition to sustainable fuels:

Fleet expansion through market diversification: The shift from a single integrated supply chain
to five fuel-specific supply chains may require a 230% increase in number of bunker vessels. Remark-
ably, fleet requirements may already double when alternative fuels represent only 7% of total energy
demand. This challenges the gradual planning approaches, as infrastructure strain is caused by the
segmentation effects inherent in fuel diversity, rather than by growing demand. Early-stage infrastruc-
ture constraints appear unavoidable without directed investment initiatives.

Operational Performance Under Pressure: The transition introduces challenging operational
complexities that extend well beyond fuel handling. Average system turnaround times increase by 46%,
while gas-based operations stretch to 23-25 hours on average with considerable variability based on
the receiving vessel. These extended durations could potentially transform bunkering from a routine
background operation into a critical constraint that directly impacts port planning and voyage schedul-
ing. The effects could prove substantial as operational margins would compress across the maritime
supply chain.

Rethinking Vessel Design Philosophy: Conventional approaches to vessel design and deploy-
ment prove inadequate for alternative fuel scenarios. The research demonstrates that traditional tactics
that rely on redundant deployment and use a large number of vessels with limited individual capacity
are vulnerable to systemic failure under operational pressure. In turn, purpose-built vessels, particu-
larly those designed for gas-based fuel, achieve complete reliability across all scenarios when equipped
with sufficient individual capacity. This suggests that future infrastructure requirements should prioritise
individual vessel capability over fleet quantity.

These insights were derived from the hybrid-modelling approach applied in the case study that inte-
grates discrete-event simulation with optimisation. The model included both liquid and gas-based fuels,
enabling realistic projections for emerging fuels including methanol, ammonia and potentially hydrogen.
The simulation enables a high level of detail in system analysis by modelling the operational dynamics
of bunkering, including service time variability and queueing behaviour.The optimisation component
identifies fuel-specific fleet configurations that can operate reliably under a variety of future demand
scenarios. This dual approach provides both diagnostic insight on current limits and prescriptive direc-
tion for strategic fleet expansion and resource allocation.

The research presented here challenges market participants to reconsider incremental implementa-
tion and account for more discontinuous operational shifts in the transition to sustainable marine fuels.
The findings suggest a revision of asset acquisition strategies where individual vessel capability and
capacity exceed fleet size.

As the maritime sector transitions to alternative fuels, ensuring reliable bunker operations remains
fundamental to ensure global trade functionality. The quantitative framework applied in this study pro-
vides initial guidance for understanding the impact of this transition and ensuring that projections align
with operational practice.

The path forward necessitates significant infrastructure decisions now to support tomorrow’s fuel
scenario. Only by taking proactive steps can the sector avoid the operational constraints that threaten
to constrain the very energy transition it seeks to achieve.
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5.3. Recommendations for Future Research
The findings derived from the results highlight several critical areas requiring additional research to fur-
ther develop an understanding of the bunker supply chain transition to sustainable fuels and to provide
more comprehensive decision support for industry stakeholders.

Enhanced Model Complexity: Future studies should include terminal modelling to capture the
interactions between bunker vessels and loading terminals, such as product and berth availability. To
generate more realistic operational time predictions, future models should take into account operational
inefficiencies, delays and additional safety procedures. Position-based transportation calculations and
queue modelling would for a more detailed study of bunker hubs that serve multiple ports, as well as a
more accurate portrayal of the transport phase in the supply chain.

Expanded Scenario and Sensitivity Analysis: The scope of research should extend beyond a
single transition scenario to include various transition timelines, delayed fuel uptake, shifts in projected
demand in order to challenge the results found from this research. Multi-hub dynamics and demand
migration patterns between bunker hubs are significant additions that should be addresses in order to
understand the implications of concentrated regional demand and availability. Shifts in regulation and
their effect on vessel design requirements and in particular on operational process need to be further
investigated.

Multi Parameter Optimisation: Future models should implement multi-parameter optimisation in-
corporating bunker vessel capacity, fuel type compatibility and asset allocation across the transition
timeline rather than static five-year intervals. Cost-based optimisation integrating capital and opera-
tional expenditure and revenue would provide more realistic recommendations for commercial decision
making for determining fleet composition.

Market Dynamics: Market mechanisms such as fuel price changes, supply and demand elasticity,
supplier competition and customer decision behaviour should be considered in further research. Asset
lifecycle modelling, which includes vessel replacement cycles, retrofit options and mixed-generation
fleet management throughout the transition scenario would further provide more accurate planning in-
sights.

By implementing the outlined suggestions a more comprehensive picture could be created on the
impact the energy transition will have on the bunker industry and what challenges they might face now
or in the future.





A
Statistics

In figures A.1a and A.1b, the results comparing the actual and simulated operations can be observed
for a set of random operations, highlighting similar grouping. Please take note that the K-S test rep-
resents the actual comparison between the distributions as the stochastic nature of the simulation
misrepresents these results.

(a) PTA data vs. model VSLFO (b) PTA data vs. model LNG

Operation Distribution Mathematical Formulation
Gas Mooring Connection Time Lognormal 𝑋 ∼ Lognormal(𝑠 = 0.870, loc = 0, scale = 0.3150)
Gas Mooring Time Lognormal 𝑋 ∼ Lognormal(𝑠 = 0.820, loc = 0, scale = 1.6807)
Gas Unmooring Time Lognormal 𝑋 ∼ Lognormal(𝑠 = 0.820, loc = 0, scale = 1.6807)
Gas Disconnection Time Gamma 𝑋 ∼ Γ(𝑘 = 2.375, loc = 0, 𝜃 = 0.1762)
Bio/Conv Mooring + Unmooring Uniform 𝑋 ∼ 𝒰(0.9, 1.1)
Sailing Time (All Barges) Uniform (Scaled Int) 𝑋 = 2 ⋅ 𝒰int(7, 13)/10

Table A.1: Stochastic Distributions Used in Bunker Barge Operations

The following table A.2 includes the variance in results for the various simulated operations per
fuel type. The scale of the variance determined the factors for the thresholds of the gradient based
optimisation, higher variance meant a higher threshold factor.

Table A.2: Factors for fueltypes

Type HFO MGO VLSFO Bio Methanol LNG Ammonia
Variance low low standard medium medium high high
Factor 0.80 0.80 1.00 1.20 1.20 1.50 1.50
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The following distribution was drawn from the S&P data in order to determine the inter arrival time
between bunkering operations performed in the Gibraltar bunkering hub. Based on the obtained distri-
bution the lognormal distribution was fitted in order to develop the simulation component for the vessel
generator. Where 𝜇𝑎 = −0.131 and 𝜎𝑎 = 1.113

Figure A.2: Overview of drawn distribution of IAT probability (01/01/2024 - 31/12/2024)

The following two tables include the probability weights of the sizes of vessels (A.3) arriving in the
Gibraltar bunkering hub and the type probabilities corresponding to the respective sizes (A.4). For
confidentiality the tables for respective deal sizes for size/type and receiving rates have been excluded
from the research.

Figure A.3: Size Probability Vector For Gibraltar Bunkering Hub (01/01/2024 - 31/12/2024)
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Figure A.4: Size vs. Type Probability Matrix For Gibraltar Bunkering Hub (01/01/2024 - 31/12/2024)
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