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Summary
Data-driven feedforward control for tracking of varying and non-resetting
point-to-point references requires continuous updating of feedforward param-
eters instead of task-by-task updating. The aim of this paper is to develop an
adaptive feedforward controller for non-resetting point-to-point motion tasks
by a data-driven feedforward controller. An approximate optimal instrumental
variable (IV) estimator with real-time bootstrapping is employed in a closed-loop
setting to update the feedforward parameters. A case study on a wafer-stage and
experimental validation on a benchmark motion system show the performance
benefit.

K E Y W O R D S
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1 INTRODUCTION

Data-driven feedforward control can yield tremendous performance improvement for high-precision motion systems that
require highly flexible and non-resetting motion tasks as in Figure 1. Consider for example the wafer-stage for semi-
conductor manufacturing in Figure 2, which has a short-stroke stage (blue) for accurate and fast positioning of the
semiconductor components in front of a gripper, and a long-stroke stage (yellow) to enable a large range. Sequentially
picking up semiconductor components from the wafer constitutes such a varying and non-resetting point-to-point refer-
ence in Figure 1, where Δri varies depending on the relative position between the current and the next semiconductor
component, and the dwell timeΔti depends on other modules in the system to be ready for the next task, see, for example,
References 1-3. Moreover, the system dynamics are position-dependent due to the large range. Hence, a data-driven feed-
forward approach is required that can cope with continuous motion tasks with a varying step size and task length, that
is, the system does not resets to the same initial condition at the start of a next task which is required for batch-wise feed-
forward approaches.4 As a result, batch-wise learning of feedforward parameters is not possible and does not exploit data
during the current task.

Manual tuning of feedforward parameters and model-based feedforward can compensate for non-resetting and vary-
ing references, that is, with an inverse model of the system any reference can be completely compensated. However, the
performance is directly related to the inverse-model quality, and manual tuning of feedforward parameters,5 for example,
mass, snap and jerk parameters, or non-linear phenomena such as hysteresis,6 is often time-consuming and need to be
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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F I G U R E 1 Example of a typical point-to-point non-resetting reference with varying step size Δri ∈ R and dwell time Δti ∈ N.

F I G U R E 2 Motivating application: A long-stroke short-stroke wafer-stage for semiconductor manufacturing that performs
non-resetting and varying point-to-point motion tasks.

performed on an inefficient machine-specific basis. Moreover, in the case of position-dependent behavior, a different feed-
forward tuning is required over the entire range. In view of these challenges, an automatic data-driven tuning approach
is preferred to learn feedforward controllers.

Batch-wise learning approaches, such as iterative learning control (ILC), learn from previous tasks to improve track-
ing performance for systems with resetting references. Iterative learning control (ILC) learning a feedforward signal that
exactly compensates the same reference, even in the case of a non-perfect model.4,7,8 If varying and resetting tasks appear,
then ILC can be combined with basis function and learn the corresponding parameters.9,10 However, as ILC requires
the same initial condition at the start of each task ri this batch-wise approach is not applicable11 if the reference is
non-resetting as in Figure 1.

On-line learning of feedforward parameters enables performance improvements within a task without imposing
restrictions on the resetting behavior of the reference. In Reference 12 recursive least squares (RLS) is successfully used
for on-line estimation of the acceleration feedforward parameter on a wafer-stage resulting in an immediate performance
improvement. However, in Reference 13 it is shown that this approach inherently suffers from a closed-loop estimation
problem resulting in biased estimates resulting in performance degradation. For accurate reference tracking, it is essential
that unbiased parameter estimates in an on-line setting.

Instrumental variable (IV) estimators can obtain unbiased estimates in a closed-loop setting by appropriate design of
so-called instrumental variables, see, for example, References 14-20. In Reference 21 an IV estimator is applied for optimal
updating of feedforward parameters. This result shows that for rational systems with resetting point-to-point motion tasks,
a combination of an adaptive input-shaper and feedforward-controller facilitates a convex optimization problem with an
analytic solution. However, IV estimation is performed in a batch-wise setting it is not applicable to non-resetting varying
references.

Although recent progress has been made for on-line feedforward controller tuning for non-resetting tasks, an approach
that yields an accurate estimate, that is, unbiased with small variance, in a closed-loop setting is not yet available. The
main contribution of this paper is an optimal IV-based adaptive feedforward controller for non-resetting point-to-point
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11002 MOOREN et al.

references with an on-line bootstrapping approach,14,22,23 yielding a convex optimization problem for efficient on-line
implementation. The following contributions are identified.

C1 IV estimation of feedforward parameters for arbitrary non-resetting point-to-point references,
C2 recursive IV estimation through on-line bootstrapping,
C3 a case study on the wafer-stage in Figure 2 with non-resetting varying point-to-point references, and
C4 experimental validation on benchmark motion system.

The outline of this paper is as follows. In Section 2, the control problem is formulated as an estimation problem
that is formally presented. In Section 3, the recursive IV-based estimator for on-line feedforward parameter estimation
is presented with an on-line bootstrapping approach. In Section 4, additional design aspects are outlined. In Section 5, a
simulation case-study is performed with a wafer-stage setup, and in Section 6 the approach is validated on a benchmark
motion system. Finally, in Section 7, the conclusions are presented.

2 PROBLEM DEFINITION

2.1 Control setting and problem definition

The control setting is depicted in Figure 3, where P is a linear time-invariant (LTI) single-input single-output (SISO)
system that represent the dynamics of the short-stroke wafer-stage in the x-direction, and Cfb is a stabilizing LTI feedback
controller. The system P is rational given by

P =
B0(q−1

, 𝜃0)
A0(q−1

, 𝜃0)
, (1)

where A0 and B0 are polynomials in the backwards time-shift operator q−1, that is, u(k − 1) = q−1u(k)with k ∈ Z discrete
time, and 𝜃0 ∈ Rn

𝜃 are the true system parameters. The aim is to track a non-resetting point-to-point reference r depicted
in Figure 1, by designing the adaptive feedforward controller Cff(𝜃) and input shaper Cr(𝜃) that depend on 𝜃(k). The
signal 𝜃(k) ∈ Rn

𝜃 contains n
𝜃
∈ N parameters that are updated in an on-line fashion by a parameter estimator on the

basis of r(k), the system input u(k) and the noisy output y(k) = y0(k) + v(k), where v(k) ∼ (0, 𝜎2
v ) is zero-mean normally

distributed with variance 𝜎2
v . By updating the feedforward parameters adaptively, essentially an additional feedback loop

is closed around the feedforward controller. In the remainder, the focus is on improving performance in the dwell time
phase Δti ∈ N, for example, where the semi-conductor component in the earlier example is picked-up from the wafer.

Definition 1. The control goal is to minimize the reference tracking error ||er||
2 with er = r − y, during the

dwell time Δti by designing the adaptive feedforward controller Cff(𝜃) and input shaper Cr(𝜃).
The tracking error er to be minimized is given by

er = (1 − SP(Cff(𝜃k) + CfbCr(𝜃k))) r, (2)

F I G U R E 3 Control problem with adaptive input shaper Cr and feedforward controller Cff with parameter 𝜃(k) this is estimated in
real-time.
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MOOREN et al. 11003

where S = (1 + PCfb)−1 is the sensitivity function and 𝜃k = 𝜃(k). It is important to note that the error (2) is not necessarily
equal to the feedback error e = r − y, with r = Cr(𝜃)r, which is minimized by Cfb.

Remark 1. The feedback controller Cfb is assumed to be LTI and stabilizing, furthermore, the design of Cfb
does not influence the design of the algorithm provided in this paper. Therefore, the design of Cfb is considered
out-of-the-scope in the remainder of this article.

2.2 Feedforward controller parameterization

The input-shaper Cr and feedforward controller Cff are polynomials and linear in the parameters 𝜃, which facilitate a con-
vex feedforward parameter estimation problem that is beneficial for the on-line implementation. Consider the following
parameterization, see also Reference 3.

Definition 2. The input shaper Cr(𝜃) and feedforward controller Cff(𝜃) are of the form

 =

{
(

Cr,Cff
)
|
|
|
|
|
|

Cff = A(q−1
, 𝜃k)

Cr = B(q−1
, 𝜃k)

}

, (3)

with A(q−1
, 𝜃k) and B(q−1

, 𝜃k) polynomials in q−1 given by,

A(q−1
, 𝜃k) =

na∑

i=1
𝜓

i(q−1)i𝜃i
k = Ψ

⊤

A𝜃A, and, (4)

B(q−1
, 𝜃k) = 1 +

na+nb∑

i=na+1
𝜓

i(q−1)i𝜃i
k = 1 + Ψ⊤B𝜃B, (5)

which are linear in 𝜃k. Where𝜓(q−1) ∈ R[q−1] are the basis functions where nb,na ∈ N, and with the following
notation

ΨA =
[

𝜓

1 … 𝜓

na

]
⊤

∈ R
na[q−1] (6)

ΨB =
[

𝜓

na+1 … 𝜓

n
𝜃

]
⊤

∈ R
nb[q−1] (7)

these are basis functions of Cff and Cr respectively with corresponding parameters 𝜃A =
[
𝜃

1 … 𝜃

na
]
⊤ ∈

Rna , 𝜃B =
[
𝜃

nb … 𝜃

na+nb
]
⊤ ∈ Rnb , and 𝜃(k) =

[
𝜃A(k) 𝜃B(k)

]
⊤ ∈ Rn

𝜃 with n
𝜃
= na + nb.

The following assumption is imposed on the input shaper.

Assumption 1. The input shaper Cr satisfies that

Cr(𝜃, q−1)|q−1=1 = 1, (8)

such that it has unit steady-state gain.

Assumption 1 avoids scaling of the reference. Note that the reference r(k) = Crr(k) reaches steady state nk samples
after r(k) is constant which is the case in the dwell time Δt, with nk the order of Cr. Consequently, r(k) = r(k) for k ∈ ΔT
with ΔT = [ti + Ti + nk, ti+1] ∀ i ∈ N, see, for example, Reference 3. As a result, the tracking error (2) is identical to the
feedback error

e = S(Cr(𝜃) − PCff(𝜃))r, (9)
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11004 MOOREN et al.

for all k ∈ ΔT, minimization of (9) is obtained if, ideally,

Cr(𝜃) = PCff(𝜃) (10)

for some 𝜃 such that CffC−1
r = P−1 contains a model of the inverse system.

2.3 Estimation for feedforward control

In this section, the control goal in Definition 1 is reformulated as an equivalent estimation problem under Assumption 1
and the feedforward controller parameterization. The ideal setting in (10) implies that e = 0 if Cr(𝜃) = A0 and Cff(𝜃) = B0
for arbitrairy references. Hence, it is necessary that the true system P must be in the model set that is defined by the basis
functions ΨA and ΨB.

Assumption 2. The true system is in the model set, that is, the basis functionsΨA andΨB satisfy thatΨA𝜃A =
A0, and ΨB𝜃B = B0 for some 𝜃A and 𝜃B.

The following definition outlines properties of the parameter estimator such that the tracking error is minimized
during the dwell time Δt.

Definition 3. In the setting in Figure 3 under Assumptions 1 and 2, and with the parameterization ,
the tracking error er(k) for k ∈ ΔT is minimized by obtaining an accurate estimate 𝜃(k), i.e., such that the
estimation error 𝜃(k) − 𝜃0 asymptotically has the normal distribution

√
k(𝜃 − 𝜃0)→ (0,Pcov) for k →∞, (11)

with the following properties:

R1 (𝜃(k) − 𝜃0) → 0 as k → ∞; and
R2 Pcov is minimal.

Definition 3 yields that by design of an appropriate estimator, that is, that recovers the true plant parame-
ters in the presence of noise v and in a closed-loop setting, the tracking error is minimized during the dwell
time Δti.

2.4 Control problem

Estimation of the feedforward controller parameters is in practice often done using a least-squares estimator, see, for
example, References 12, 24. However, it is shown that biased estimates are often obtained if the estimation is performed
in a closed-loop setting with measurement noise, see, for example, Reference 13. The aim of this paper is to use a suit-
able estimator, in view of Definition 3, to estimate the feedforward parameters in the closed-loop setting in Figure 3
with v ≠ 0.

3 ON-LINE IV-BASED FEEDFORWARD CONTROLLER TUNING

In this section, an approximate optimal IV estimator with on-line bootstrapping is presented that yields a recursive update
law for the feedforward parameters 𝜃(k) in the setting in Figure 3, which consequently minimizes the tracking error dur-
ing the dwell time, see Sections 3.1 and 3.3. This includes conditions on the optimal instrumental variables to obtain
the theoretical lower bound, which appears to depend on the true system parameters. Therefore, an on-line bootstrap-
ping procedure is presented that approximates the optimal instrumental variables in practice in Section 3.2. Finally, an
implementation procedure is provided in Section 3.4.
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MOOREN et al. 11005

3.1 Optimal IV estimation for feedforward

A suitable estimator must be developed for the adaptive feedforward parameters 𝜃(k) as shown in Definition 3 to minimize
the tracking error. An IV estimator is used that enables recursive tuning of 𝜃(k) on the basis u(k), y(k) and r(k). Moreover,
it is shown that the presented IV estimation problem yields a recursive update law for the feedforward parameters 𝜃(k)
that is suitable for on-line implementation.

Theorem 1. Consider the setup of Figure 3 with feedforward parameterization  in (3), and under Assumptions
1 and 2. The feedforward parameters that satisfy R1 and R2, and consequently minimize the er(k) for k ∈ ΔT,
are obtained by

𝜃(k) = arg min
𝜃

VIV(k, 𝜃), (12)

with

VIV(k, 𝜃) =
‖
‖
‖
‖
‖
‖

[

1
k

k∑

i=1
z(i)

(
F(q−1)𝜖(i, 𝜃)

)
]‖
‖
‖
‖
‖
‖

2

, (13)

𝜖(k, 𝜃) = u(k) − 𝜙⊤(k)𝜃(k), (14)

where 𝜖(k, 𝜃) ∈ R is linear in 𝜃, z(k) ∈ Rnz , F(q−1) is a stable filter, and

𝜙(k) =

[
ΨA(q−1)y(k)
− ΨB(q−1)u(k)

]

∈ R
n
𝜃

. (15)

The estimate (12) is consistent, that is, (𝜃0 − 𝜃(k)) → 0 for k → ∞, if

C1 E[z(k)F(q−1)A0(𝜃0)v(k)] = 0, that is, such that the noise v is uncorrelated with the instrumental variables z,
C2 E[z(k)F(q−1)𝜙(k)] is non-singular, that is, the regressor 𝜙 and the instruments z must be correlated, and

the estimator error has optimal asymptotic distribution (𝜃(k) − 𝜃0)→ (0,PIV ) with minimal variance if

z(k) = A−1
0 (q

−1
, 𝜃0)𝜙r(k) ∶= zopt(k) (16)

F(q−1) = A−1
0 (q

−1
, 𝜃0) ∶= Fopt(q−1), (17)

where

𝜙r(k) =

[
ΨA(q−1)yr(k)
− ΨB(q−1)ur(k)

]

, (18)

is the noise-free part of 𝜙(k), that is, with v = 0, and ur(k) and yr(k) are the noise-free input and output
respectively.

The proof of Theorem 1 is included in Appendix.
In this paper, a recursive IV-based procedure is presented that exploits on-line bootstrapping to closely approximate

optimal IV. Under optimality conditions, the result in Theorem 1 yields that the plant parameters are consistently recov-
ered with minimal variance. Moreover, in the non-optimal case the parameter estimates remain unbiased but the variance
can be larger than the theoretical lower bound. As a result, the reference-induced tracking error (9) is minimized. The
presented approach updates each sample in contrast to the existing approaches, for example, Reference 25 which exploits
resetting reference tasks. In the case of repeating reference tasks the batch-wise approach in Reference 25 can be used,
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11006 MOOREN et al.

where bootstrapping is avoided as shown later. Alternatively, one can use a regularized LS estimation to minimize variance
at the cost of introducing a bias.

Next, consider the following persistence of excitation condition.

Definition 4. The input u is persistently exciting of order n if for all k there exists an integer m such that

𝛾1I >
k+m∑

i=k
𝜉(i)𝜉(i)⊤ > 𝛾2I, (19)

where 𝛾1, 𝛾2 > 0, and 𝜉(k) =
[
u(k − 1) … u(k − n)

]
see [chap. 2.4; References 26, 27].

Assumption 3. The reference is persistently exciting according to Definition 4.

Remark 2. In practice, Assumption 3 can be satisfied by ensuring that the order of the reference or the
feedback controller Cfb, which influence the input u, are sufficiently high.

Theorem 1 reveals that with the IV-estimator (12) the estimate 𝜃(k) → 𝜃0 for k → ∞ if the instrumental variables
z(t) are uncorrelated with the noise v(t) (C1) and correlated with the regressor (C2), satisfying R1. Moreover, with
the optimal instrumental variables zopt in (16) and the optimal pre-filter Fopt in (17), the theoretical lower-bound of
the covariance matrix PIV is obtained, satisfying R2. However, since both zopt and Fopt depend on the unknown sys-
tem parameters 𝜃0, approximations of the optimal instrumental variables and pre-filter are provided next with on-line
bootstrapping. Finally, under Assumptions 2 and 3 and with the estimator in Theorem 1 the estimate is said to be
identifiable.14

Note that C1 directly imposes the limitation that z(t) cannot be constructed from measured signals that contain noise.
Therefore, an external signal is required; in this work the reference is used to construct the instrumental variables, that
is, z(t) = f (r(t), ṙ(t), r̈(t), …), as in, for example, Reference 21.

3.2 Towards optimal feedforward using on-line bootstrapping

In this section, an approximation of the optimal instruments zopt and pre-filter Fopt is provided using on-line bootstrap-
ping to approximate the optimal variance, see, for example, References 14, 22, 23 for more details on bootstrapping.
This is done by replacing 𝜃0 by an estimate denoted 𝜃bs(k) at each sample. The aim is to approximate the theoretical
lower-bound of the estimator variance. The approach is presented in Figure 4, where L is an optional pre-filter, and ẑ and
̂F are approximation of their optimal versions. In this section, set L(q−1) = q−1, such that 𝜃bs(k) = 𝜃(k − 1) is the previous
estimate.

First, the approximation of the optimal pre-filter in (17) is straight forward by replacing 𝜃0 with 𝜃bs(k) yielding

̂F(q−1
, 𝜃bs, k) = (ΨA(q−1)𝜃A

bs(k))
−1
. (20)

F I G U R E 4 Schematic representation for approximate optimal instrumental variable (IV) estimation for adaptive feedforward with
on-line bootstrapping, where Ψ = [ΨA − ΨB]⊤.

 10991239, 2023, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6925 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [19/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MOOREN et al. 11007

Second, the approximation of zopt in (16) is more involved, because it requires the noise-free regressor 𝜙r(k) in (18)
that requires yr and ur. To approximate 𝜙r(k), note that ur and output yr can be written as function of r(k), i.e.,

yr(k) = Tyr(𝜃0)r(k) (21)

ur(k) = Tur(𝜃0)r(k), (22)

with

Tyr(𝜃0) = S(𝜃0)C(𝜃) (23)

Tur(𝜃0) = P(𝜃0)S(𝜃0)C(𝜃) (24)

C(𝜃) = Cff(𝜃) + CfbCr(𝜃), (25)

here, Tur(q−1
, 𝜃0) and Tyr(q−1

, 𝜃0) are the mappings from r to the noise-free input and output respectively. Since Tur and
Tyr also depend on 𝜃0, a similar bootstrapping approach is utilized, i.e.,

ûr(k) = ̂Tur(𝜃bs(k))r(k) (26)

ŷr(k) = ̂Tyr(𝜃bs(k))r(k) (27)

are used as the approximations of the noise-free input and output with

̂Tyr(q−1
, 𝜃bs) = S(𝜃bs)C(𝜃) (28a)

̂Tur(q−1
, 𝜃bs) = P(𝜃bs)S(𝜃bs)C(𝜃). (28b)

Remark 3. The filters (28) can become unstable for some 𝜃bs, in which case a stable approximation is presented
in Section 4. Moreover, a practical design choice for the optional filter L is presented in Section 4 to minimize
potential divergence of 𝜃bs.

Consequently, the noise-free regressor is given by

ẑ(k) =
[

ΨA ̂Tyr(𝜃bs) ΨB ̂Tur(𝜃bs)
]

r(k). (29)

In summary, the optimal instruments and the pre-filter are approximated with (29) and (20) respectively, where the
parameters 𝜃bs(k) are (filtered versions) of 𝜃(k − 1)which is referred to as on-line bootstrapping. In the following section,
the resulting update law for the feedforward parameters 𝜃 is outlined.

Remark 4. If the reference is resetting, that is, can be split into individual batches, then the parameterized
filters (28) can be replaced by a stable approximation of C−1, see Reference 25. However, that approach is
limited to SISO systems which is not the case for the presented approach with bootstrapping.

3.3 Recursive IV for on-line feedforward control

A recursive solution to the parameter estimation problem in Theorem 1 that is suitable for the on-line tuning of Cr(𝜃) and
Cff(𝜃) is presented in the following Definition.
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11008 MOOREN et al.

Definition 5. The parameters 𝜃(k) in Cff(𝜃) and Cr(𝜃) at sample k are given by the recursive solution to (12)
on the basis of u(k), 𝜙(k), z(k), and the (initial) parameter estimate 𝜃(k − 1), with the update law

𝜃(k) = 𝜃(k − 1) + K(k)
(
𝜈(k) − Φ⊤(k)𝜃(k − 1)

)
, (30)

with

K(k) = P(k − 1)Φ(k)[Λ(k) + Φ⊤(k)P(k − 1)Φ(k)]−1

Φ(k) =
[

R⊤(k − 1)z(k) 𝜙F(k)
]

∈ R
n
𝜃

×2

Λ(k) =

[
− z⊤(k)z(k) 1

1 0

]

∈ R
2×2

𝜈(k) =

[
z⊤(k)𝜂(k − 1)

uF(k)

]

∈ R
2

R(k) = R(k − 1) + z(k)𝜙⊤F (k)
𝜂(k) = 𝜂(k − 1) + z(k)uF(k)
P(k) = P(k − 1) − K(k)Φ⊤(k)P(k − 1),

where K(k) ∈ Rn
𝜃

×2, P(k) ∈ Rn
𝜃

×n
𝜃 , 𝜂(k) ∈ Rnz , and R(k) ∈ Rnz×n

𝜃 are recursively computed, and uF(k) =
F(q−1)u(k) and 𝜙F(k) = F(q−1)𝜙(k), constituting the recursive solution to the IV estimate in Theorem 1.

The update law for the feedforward parameters (30) is used to update the feedforward controllers at each sample.
Hence, the control input uff and the reference r at sample k are given by

uff(k) = ΨA(q−1)𝜃A(k)r(k) (31)

r(k) = ΨB(q−1)𝜃B(k)r(k), (32)

where 𝜃(k) is computed using Definition 5.
To compute 𝜃(k), only the previous estimate 𝜃(k − 1), the current value of the input u(k), the output y(k) and the

instruments z(k) are required, that is, the recursive algorithm does not require memory of all the past samples to com-
pute the parameter update for the current time step. Moreover, the matrix inversion to compute K(k) is of size 2 × 2 for
all k which is computationally inexpensive, this allows to implement the IV-based feedforward controller in an on-line
setting.

Remark 5. If the reference can be separated in individual tasks that start from the same initial conditions,
then the batch-wise solution to the identification problem in Theorem 1 is given by

𝜃i = (R⊤N RN

)−1
R⊤N UN ,

for task i with N the number of data points and RN =
∑N

i=1 z(i)F(q−1)𝜙⊤(i) and UN =
∑N

i=1 z(i)F(q−1)u(i), see,
for example, Reference 28.

3.4 Procedure

The following procedure outlines the implementation for approximate optimal IV-based feedforward control.

This procedure completes the basic implementation of on-line bootstrapping IV for adaptive feedforward. In Section 4
additional implementation aspects are provided, for example, how to ensure stability of the filter Tur(𝜃bs) and Tyr(𝜃bs).
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MOOREN et al. 11009

Procedure 1. On-line approximate bootstrapping IV

Step 1: Initialization
(a) Set 𝜃(0) = 𝜃init, P(0) = 𝛼In

𝜃

with 𝛼 a large number, 𝜂(0) = 0 and R(0) = 0 with 0 a matrix of appropriate size,
and k = 1. Moreover, define ΨA(q−1) and ΨB(q−1).

Step 2: On-line IV-based feedforward
(a) Compute ̂Fopt(𝜃bs), ̂Tyr(𝜃bs) and ̂Tur(𝜃bs) in (28) with 𝜃bs(k) = L(q−1)𝜃(k − 1).
(b) Obtain u(k), y(k) and r(k), compute 𝜙(k) in (15), and z(k).
(c) Compute 𝜃(k), and consequently r̄(k) and uff (k) using Definition∼5.
(d) set k → k + 1 and repeat step (2a)–(2c).

Remark 6. The bootstrapping step can also be performed in a batch-wise approach instead of at each sample.
By starting to bootstrap with k > ks and ks > 1, the estimate 𝜃(k) has already converged to avoid divergence at
the start of the algorithm.

4 DESIGN ASPECTS

In this section, implementation aspects are provided, including a stable approximation of the adaptive filters Tur, Tyr, and
̂Fopt, the inclusion of an exponential forgetting factor in the Definition 5, and how to choose the optimal filter L in Figure 4.

4.1 Stable approximations for on-line bootstrapping

The filters ̂Tyr(𝜃bs), Tur(𝜃bs) and ̂Fopt(𝜃bs) can be unstable for some 𝜃bs(k) such that ûr and ŷr can become unbounded
which is undesirable. The filters defined in (20) and (28) are expected to be stable by design. Therefore, the following
procedure presents a stable approximation approach where the possibly unstable poles in ̂Tyr(𝜃bs), Tur(𝜃bs) and ̂Fopt(𝜃bs)
are approximated with stable poles.

Procedure 2 creates a stable approximation that has zero magnitude error, similar to zero-magnitude-error-
tracking-control (ZMETC) to obtain a stable approximation in Reference 29, see Figure 5. Alternative approaches
are conceptually possible, for example, ZPETC30 to obtain a zero-phase error estimate if desired, by replac-
ing unstable poles by non-minimum phase zeros. The motivation for Procedure 2 is that it replaces unstable
poles by stable poles which is expected since the filters ̂F(𝜃bs), ̂Tur(𝜃bs), and ̂Tyr(𝜃bs) are expected to be stable
as well.

Procedure 2. Zero magnitude stable approximation

1. Separate the denominator of G into a stable part As and an unstable part Au, that is,

G(q−1) =
B(q−1)

Au(q−1)As(q−1)
, (33)

where Au(q−1) = a0 + a1q−1 +…+ anq−n.
2. The stable approximation of G such that |G| = | ̂Gs| is given by

̂Gs(q−1) =
B(q−1)

Af
u(q−1)As(q−1)

, (34)

where Af
u(q−1) = an + an−1q−1 +…+ a0q−n.
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11010 MOOREN et al.

F I G U R E 5 Graphical illustration of the stable approximation in Procedure 2 where unstable poles ( ) are approximated with stable
poles ( ) with zero magnitude error.

Remark 7. If the P contains a rigid-body mode, i.e., poles at 1 + 0i, then Fopt(𝜃0) is unstable. To avoid this for
̂F(𝜃bs) the basis functions can be altered such that the poles are shifted slightly into the unit disk.

4.2 Filtering of 𝜽(k) for bootstrapping

The parameter estimate 𝜃 obtained with Procedure 1 can be erratic when few data points are available, potentially leading
to divergence of the bootstrapping approach. Directly using these erratic parameters for bootstrapping and feedforward
is undesirable. Therefore, the filter L in Figure 4 is introduced to filter the output of the recursive IV algorithm before
bootstrapping, for example, with a low-pass filter characteristic. In this paper, a moving average filter is used such that

𝜃bs(k) =
(1 − 𝛾)q−1

1 − 𝛾q−1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

L(q−1)

𝜃(k), (35)

with 𝛾 = e−2𝜋fcTs where fc ≥ 0 is the cut-off frequency and Ts the sample time. Note that fc is a tuning parameter, decreasing
fc yields that 𝜃bs is smoother, and for limfc→∞ L(q−1

, fc) = q−1, i.e., no filtering. Note that with fc > 0 the filter L introduces
a modeling error in ̂Fopt, ̂Tur and ̂Tyr. Hence, there is a trade-off between performance and robustness in the tuning of fc
that is preferably large.

4.3 Incorporating system knowledge

Modern control systems are implemented in discrete-time, i.e., a part of the plant that is introduced through
zero-order-hold discretization and system delays are often known in advance. To use this knowledge instead of estimating
it, the system can be parameterized as

P(q−1
, 𝜃0) = ̃P

(
q−1)B0(q−1

, 𝜃0)
A0(q−1

, 𝜃0)
, (36)

where ̃P
(

q−1) contains the known part. Consequently, by using ũ(k) = ̃P
(

q−1)u(k) instead of u(k) in Definition 5, the
adaptation law is adapted accordingly. Moreover, the implementation of the adaptive feedforward becomes ̃Cr(q−1) =
Cr(q−1) ̃P(q−1) accordingly.

Remark 8. Alternatively, the inverse of ̃P can be implemented in the feedforward controller, i.e., ̃Cff = ̃P−1Cr,
if ̃P−1 is stable. Moreover, a combination where the numerator and denominator of ̃P are implemented in Cr
and Cff respectively is also possible.
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MOOREN et al. 11011

F I G U R E 6 Case study: Simplified model of the short-stroke wafer stage dynamics in the x-direction.

5 WAFER-STAGE CASE STUDY

In this section, a case study is performed that mimics the model and the type of references that are encountered in the
wafer-stage motivating example in Figure 2. A simplified model of the short-stroke stage dynamics in the x-direction is
depicted in Figure 6, that is, it is modeled as two masses with a flexible element in-between.

5.1 Wafer-stage model

The model is given by

P(q−1) = ̃P
(

q−1)ΨB(q−1)𝜃B
0

ΨA(q−1)𝜃A
0

= ̃P
(

q−1) 9.26 ⋅ 10−6(1 + q−1)
(1 − q−1)2(1 − 1.967q−1 + 0.9977q−2)

,

where ̃P contains a discrete-time approximation of 2.2 samples delay, and the basis functions are

ΨB(q−1) =
(

1 − q−1

Ts

)

(37)

ΨA(q−1) =
[(

1−q−1

Ts

)2 (
1−q−1

Ts

)3 (
1−q−1

Ts

)4]⊤
(38)

with true system parameters 𝜃A
0 =

[
39.4 −0.018 0.00031

]
⋅ 10−5 and 𝜃B

0 = −24.4 ⋅ 10−5. A Bode plot of the system is
shown in Figure 7 ( ). A stabilizing feedback controller is designed given by

Cfb(q−1) =
0.69 + 0.006q−1 − 0.68q−2

1 − 1.672q−1 + 0.696q−2 , (39)

this results in a bandwidth of approximately 10 Hz. Moreover, the system output is subject to additive normally distributed
zero-mean noise with variance 𝜎v = 10−4.

The aim is to track a point-to-point reference with a random step size Δri and random dwell times Δti, similar to the
actual references encountered in the wafer stage setup. Several point-to-point reference tasks are depicted in Figure 8
which are shifted to the origin for comparison.

5.2 Tuning for IV-based feedforward control

In view of Assumption 2, the basis functions for feedforward are selected as in (38). The initial parameter estimates are
chosen as

𝜃

A(0) =
[

0.75 1.25 1.5
]

𝜃

A
0 ,

𝜃

B(0) = 0,
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11012 MOOREN et al.

F I G U R E 7 Case study: Bode plot of the true system ( ) and the model that is obtained with recursive approximate optimal IV
identification with on-line bootstrapping ( ) with the initial estimate ( ).

F I G U R E 8 Case study: Individual reference tasks taken from the point-to-point reference in the simulation case study. Note that each
tasks has a different random step size and dwell time, the end of a task is indicated with the markers ( ).

such that there is a significant initial error. Moreover,

P(0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0.2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⋅ 104
,

and the cut-off frequency in (35) fc = 5 Hz to filter out the high-frequency variations in 𝜃 before on-line bootstrapping.

5.3 Result: Estimation performance through Monte Carlo simulation

To investigate the convergence and the variance of the recursive IV estimator with on-line bootstrapping, a set of 1000
Monte-Carlo simulations is performed with random noise realizations where each simulation consists of 60 point-to-point
tasks as in Figure 1. The optimal recursive IV estimator with the true system parameters is used in the simulations to
compare the theoretical lower bound for the variance with the obtained approximate optimal IV variance. In addition,
a simulation is performed without bootstrapping such that C1 and C2 in Theorem 1 are satisfied and the estimator is
asymptotically unbiased, but the variance is not optimized. The converged estimation error 𝜃 − 𝜃0 of all simulations is
shown in the histogram plot in Figure 9 for the first parameter with Procedure 1 (left) and with optimal IV (right).

From the results, it can be concluded that;

1. the estimation error is normally distributed as shown in Theorem 1,
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MOOREN et al. 11013

F I G U R E 9 Case study: Histogram plot of the estimation error for 𝜃2 over 1000 Monte Carlo simulations for optimal IV ( ) and with a
fixed set of instrumental variables ( ), that is, without bootstrapping (left). By employing the presented bootstrapping method in
Procedure 1 the estimator variance ( ) (right) is significantly improved and closely approximates the optimal variance ( ).

T A B L E 1 Mean and standard deviation of the converged error with 1000 Monte Carlo simulations for optimal IV, approximate
optimal IV with bootstrapping and IV without bootstrapping.

Opt. IV IV + bootstrapping IV

Mean 1.61 × 10−7 1.59 × 10−7 −1.17 × 10−6

Standard deviation 5.28 × 10−6 5.53 × 10−6 5.06 × 10−5

F I G U R E 10 Case study single simulation: Convergence of the tracking error er in (2) ( ) with on-line IV-based feedforward in
Procedure 1 in comparison to the tracking error er without feedforward ( ). A scaled version of the reference ( ) and its velocity ( ) are
also shown, the areas ( ) indicate ΔT where performance is required, that is, where e ( ) in (9) is equal to er .

2. the variance of the on-line bootstrapping IV estimator ( ) closely resembles the optimal IV estimator variance ( ),
and

3. the IV estimator without bootstrapping ( ) has much larger variance as expected.

To summarize the results, the mean and variance of the optimal estimator and the approximate bootstrapping IV
estimator are given in Table 1, confirming these observations.

The obtained plant estimate CrC−1
ff ≈ P, as in (10), is shown in Figure 7 together with the true plant P0 and the initial

estimate. This result shows that indeed the true system is accurately recovered using the adaptive estimator.

5.4 Result: Feedforward performance

The results of using the estimate 𝜃(k) obtained with approximate optimal on-line bootstrapping IV for feedforward control,
as in Figure 3, in shown in Figure 10. The tracking error e = r − y is shown in addition to the feedback error er = r − y.
Moreover, the tracking error er is also shown without feedforward control for comparison.
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11014 MOOREN et al.

The results show that;

1. with feedforward a significant performance improvement is obtained within the first task w.r.t. only feedback control.
2. in the part where the velocity of the reference is zero, where performance is crucial in the wafer-stage application, both

error er and e are identical because of the underlying Assumption 1, indicating that good performance is obtained by
properly estimating the system dynamics from data while operating in closed-loop.

This shows that indeed for varying point-to-point motion tasks good estimation and tracking performance can be
obtained with IV-based adaptive feedforward control by using on-line bootstrapping.

6 EXPERIMENTS ON A BENCHMARK MOTION SYSTEM

A benchmark motion system is used for experimental validation in a practical situation, i.e., where the system is not fully
captured by the basis functions. The introduced approximate optimal IV approach with on-line bootstrapping is used
for feedforward, moreover, a comparison is made with a recursive least squares (RLS) approach using the same basis
functions. For a comparison with existing batch-wise approaches, see, for example, Reference 31.

6.1 Experimental setup and tuning

The experimental setup is shown in Figure 11 which consists of two masses that are connected by a flexible axle, as
schematically depicted in Figure 6. The position of the collocated mass is used for feedback which is measured by an
encoder with a resolution of 2𝜋

2000
rad, this induces additional quantization noise.

A frequency response function of the setup is measured and depicted in Figure 12 in ( ), which contains similar
dynamics as the model used in Section 5. Therefore, the same set of basis functions is used. The setup also contains
2.2 samples of input-output delay and a sampling zero that is included in ̃P as in (36), that is, this is not estimated.
For convenience, the other settings and initial parameters are identical so the simulation case study and provided in
Section 5.2.

6.2 Experimental results

The resulting system estimates CrC−1
ff and errors obtained in the experiments are shown in Figures 12 and 13 respectively,

from which the following conclusions can be made.

F I G U R E 11 Benchmark motion system used for experimental validation.

 10991239, 2023, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6925 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [19/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MOOREN et al. 11015

F I G U R E 12 Experimental validation: Bode plot of the measured frequency response function (FRF) of the experimental setup ( ),
the plant model CrC−1

ff obtained with approximate optimal on-line IV feedforward ( ) and with recursive least squares identification ( ).

F I G U R E 13 Experimental validation: Tracking error er ( ) in (2) obtained with Procedure 1 yielding good performance in
comparison with the case without feedforward ( ). Also a recursive least-squares based feedforward ( ) is used that performs poor due to
estimation bias. A scaled version of the reference ( ) and its velocity ( ) are also shown, and the areas ( ) indicate where performance is
required and where e (9) is equal to er .

1. The obtained plant estimate for feedforward, with the converged parameters, corresponds well with the measured FRF,
indicating that a good model is obtained. In contrast to the recursive LS estimator, which yields a very poor estimate
of the system due to an estimation bias.13

2. The tracking error with IV-based on-line feedforward is significantly smaller compared with only feedback control, that
is, within 0.2 s the error converges to a small value and remains small. This indicates that the feedforward parameters
converge fast to the actual system values.

3. The tracking performance with Recursive LS-based on-line feedforward is even worse than without feedforward due
to the biased estimates that are obtained.

These results confirm that in the presence of noise the recursive IV-based estimator is able to obtain a good system
estimate and consequently good performance in the dwell time as required for the actual wafer-stage application.

7 CONCLUSIONS

On-line learning of adaptive feedforward parameters for the tracking of varying point-to-point references is enabled
through an approximate optimal instrumental variable (IV) estimator with an on-line bootstrapping approach. Traditional
batch-wise learning approaches, such as ILC, are not applicable due to the non-resetting behavior of such references. In
this paper, feedforward parameters are estimated in an on-line setting on the basis of data, that is, the reference and the
system input and output are used. This estimator yields an unbiased estimate with approximate optimal variance in a
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11016 MOOREN et al.

closed-loop setting with measurement noise. A simulation case study of a wafer-stage setup and experiments on a bench-
mark motion system shows the immediate performance improvement. Ongoing work focuses on the implementation for
systems that have slowly varying parameters by incorporating a forgetting factor in the on-line IV algorithm, such that
the feedforward parameters are updated accordingly.
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APPENDIX

Proof of Theorem 1. The proof of Theorem 1 consists of three parts, (i) it is shown that the minimizer of
(12) has an analytic expression 𝜃(k), (ii) it is shown that for k → ∞ this solution converges to 𝜃0 under the
conditions in Theorem 1, and (iii) it is shown that the obtained estimator variance, with zopt(k) and Fopt, is
equal to the theoretical lower bound.

Part (i) The cost function VIV is quadratic ||x||2 = x⊤x and linear in 𝜃, hence, a sufficient condition for the
minimizer is that 𝜕V(𝜃)

𝜕𝜃

= 0. By substituting (14) in (13) and equating the derivative to zero, it follows that the
minimizer is 𝜃(k) = (R⊤k Rk)−1R⊤k Uk with

Rk =
k∑

i=1
z(i)F(q−1)𝜙⊤(i), Uk =

k∑

i=1
z(i)F(q−1)u(i),

and (R⊤k Rk) is non-singular.
Part (ii) To prove consistency, that is, (𝜃 − 𝜃0) → 0 for k → ∞with probability one, under the conditions

in Theorem 1, use the relation u(k) = 𝜙⊤𝜃0 + v(k) with v(k) = −A0v(k), and define Vk =
∑k

i=1 z(i)F(q−1)v(i) to
write Uk = Rk𝜃0 + Vk. Consequently, the estimation error is

(𝜃(k) − 𝜃0) = (R⊤k Rk)−1RkVk,

using Lemma B.2 in Reference 14. where it is shown that under mild conditions

lim
k→∞

Rk = E
[
z(k)F(q−1)𝜙r(k)

]
=∶ R (A1)

lim
k→∞

Vk = E
[
z(k)F(q−1)v(k)

]
=∶ V , (A2)

with 𝜙r(k) the noise-free part of 𝜙(k). Consequently, the asymptotic estimation error, i.e., for k → ∞, (𝜃0 −
𝜃) = (R⊤R)−1R⊤V is zero if R is non-singular, and Ez(i)F(q−1)v(i) = 0, which is the case since zopt(k) in (16) is
uncorrelated with v.
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Part (iii) The final part of the proof is based on [Chapter 8.2],14 where it is shown that (𝜃(k) − 𝜃0) →
 (0,PIV) for k → ∞ with

PIV = (R⊤R)−1R⊤ΓR(R⊤R)−1
, (A3)

where R = limk→∞
∑k

i=1 z(i)F(q−1)𝜙⊤(i) under mild assumptions in Reference 32, and

Γ = 𝜎2
v E[F(q−1)H(q−1)z(k)][F(q−1)H(q−1)z(k)]⊤, (A4)

with H(q−1) = A(q−1
, 𝜃0), a proof of this result can be found in Appendix A8.1 in Reference 14. In Reference 14

it is also proven that

PIV ≥ Popt
IV =

[
𝜎

2
v E

(
[A−1

0 𝜙r(k)]⊤[A−1
0 𝜙r(k)]

)]−1
. (A5)

Finally, it remains to show that by substitution of (16) and (17) in (A3) it follows that PIV = Popt
IV , which is

outlined in detail in Reference 14 [p. 274], which completes the proof. ▪
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