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Abstract 
Process-based method forward stratigraphic modelling provides advantages in reservoir modelling by sim-
ulating the geological process mathematically, and the genesis of geologic formations over time (Michael 
et al., 2010). In spite of its advantages, Miller et al. (2008) have recognised significant challenges in 
process-based simulation models, one of them is the incapability to condition to subsurface data. The prob-
lem in conditioning the data can be addressed by using an alternative method named multiple-point geo-
statistics (MPS) in modelling the subsurface since its introduction in 1993 by Guardiano and Srivastava. 
MPS considers the relationship between multiple data points that is different from the conventional geosta-
tistical methods that are commonly limited to using a linear relationship between data (Guardiano and 
Srivastava, 1993). By using the process-based simulation model as training image (TI) for MPS simulation, 
MPS should be able to address the conditioning issue in process-based simulation model. 

Over the past decade, most research in MPS has emphasized on new algorithms for improving efficiency 
of MPS (Mariethoz and Caers, 2014; Mariethoz and Lefebvre, 2014), but there are still issues remain for 
the workflow to be widely used in geosciences. Furthermore, using nonstationary TI such as process-based 
simulation model in MPS are still an issue because the workflow is always different for specific cases. Until 
recently, little published works are available in applicating nonstationary TI in MPS. 

The principal objective of this project was to determine an optimised methodology that allows the use of 
nonstationary process-based simulation model for TI input with MPS simulation in the fluvial-dominated 
delta. The process-based simulation model used in the study is a post-processed data from numerical 
model done in process-based modelling software Delft3D (Lesser et al., 2004) which is the PhD work of 
van der Vegt in 2018. There were two different cases utilised in this study that represents the whole delta 
development: Case A with high repetition in the patterns and Case B with low repetition in the patterns. 

In order to achieve the desired outcome, this study links process-based simulation model with MPS using 
unconditional and conditional 2D MPS simulation with two different approaches: zonation approach and 
control map approach. The realisations from the unconditional simulation have to be validated until suc-
cessful unconditional MPS simulation. The conditional MPS simulation were carried out when the uncondi-
tional realisations have been acknowledged as the approved results in mimicking the patterns of the Delft3D 
model. Lastly, the results were evaluated with four methods: connectivity function, E-type models, condi-
tional variance models, and analysis of distance (ANODI). 

In all of the MPS simulation results, the use of control map approach with unilateral simulation path proved 
to deliver better realisations for unconditional and conditional MPS simulations. Also, this study has pre-
sented an optimised workflow of 2D MPS simulation on using process-based simulation model in fluvial-
dominated delta environment as TI based on different conditions of patterns’ repetition and hard data dis-
tribution. 
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1 
1 Introduction 

Reservoir characterisation is essential in the field of earth sciences. One of the most challenging 
problems in reservoir characterisation is the limitation of the subsurface information, which is re-
quired to construct accurate geological models. The subsurface condition is often heterogeneous 
and complex, combined with different subsurface information coming from various sources at 
different scales and detail, the uncertainty in the modelling process is unavoidable. Geostatistics, 
a part of statistics that focuses on spatial or spatiotemporal data, provides the idea of estimating 
the correlations between the spatially close subsurface property values to those unsampled loca-
tions. The estimation is then used to capture the model uncertainty with the stochastic simulation 
of the reservoir properties, provided by the alternative, equiprobable solutions (Michael J. Pyrcz 
and Deutsch, 2014). The produced reservoir model is presented in a grid-based mathematical 
representation of the reservoir, which is comprised of different data from various sources, such 
as seismic, well logs, core, dynamic and analogue data. 

The advances of the computer-based technology and computational power compared to the past 
times makes possible of the complex calculations which are not practical in the previous times. 
These advances in technology create new and improved geostatistical reservoir characterisation 
methods that would improve the realism of the geostatistical numerical models for complex geo-
logic features and leads to enhanced subsurface prediction. Some of the most advanced geosta-
tistical techniques used in the study are presented in the following sections, which are the pro-
cess-based simulation and multiple-point geostatistics (MPS). 

1.1 Process-based and Multiple-point Geostatistics (MPS) method in 
facies modelling 

In the process of reservoir modelling, facies modelling is one of the essential procedures in the 
whole process. Each of the facies defines the geometry of the reservoir rocks and the distribution 
of their petrophysical properties, such as porosity and permeability. In this case, geostatistics 
method plays a significant role in controlling the distribution of the facies in the model simulation 
by estimating the unsampled locations and produce it as a simulation model. 

Some of the latest advances in the geostatistical method used in the reservoir modelling are pro-
cess-based method modelling and multiple-point geostatistics (MPS) (Pyrcz and Deutsch, 2014; 
Mariethoz and Lefebvre, 2014). 
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Process-based method forward stratigraphic modelling provides an excellent way to model com-
plex subsurface geology because it simulates the geological process mathematically, and the 
genesis of geologic formations over time (Michael et al., 2010). The facies properties generated 
by the process-based simulation model were defined by the initial and the boundary conditions, 
with the geologic processes associated within the modelling software. Some of the purposes of 
constructing the process-based models are useful in helping developing theory and the interaction 
of processes, the development of conceptual models, and composing reservoir framework in 
large-scale modelling (Michael J. Pyrcz and Deutsch, 2014). 

In spite of the advantages in modelling with process-based methods, Miller et al. (2008) have 
recognised significant challenges in process-based simulation models, one of them is the 
incapability to condition to subsurface data. The problem in conditioning the data, for instance in 
facies properties, can be addressed by using an alternative method named multiple-point geosta-
tistics (MPS) in modelling the subsurface since its introduction in 1993 by Guardiano and 
Srivastava. 

MPS considers the relationship between multiple data points that is different from the conventional 
geostatistical methods that are commonly limited to using a linear relationship between data, rep-
resented by variogram models (Guardiano and Srivastava, 1993). Instead of using a variogram, 
it introduces the use of a training image (TI), which considers the multiple-point numerical con-
ceptual representation of the variables deemed to be present in the modelled reservoir (Strebelle 
and Chevron, 2012). 

TI represents a grid-based numerical representation that includes the information of the reservoir 
in a two or three-dimensional grids. The properties in the TI grid can be facies properties, porosity, 
grain size, or other reservoir properties. It is under the assumption that the TI has the same mul-
tiple-point statistics and contains the same complexity of the geological features of the area of 
interest, or in other words, assumed stationary (Michael J. Pyrcz and Deutsch, 2014). The as-
sumption of stationarity means that the area considered has the same statistical properties 
throughout, while in reality, there is no stationary data, termed nonstationary, where the properties 
are always changing following the processes applied. 

The TI can be constructed from various techniques such as object-based methods, process-
based method, or from available training image databases (Michael J. Pyrcz and Deutsch, 2014). 
Those methods generated various variables, including facies variable which the facies pattern will 
be used as the input. With using process-based simulation model as TI, MPS will infer and repro-
duce facies’ patterns in the TI, honour both hard and soft data, and deliver results within low 
computational costs (Journel, 2003; Mariethoz and Caers, 2014; Strebelle and Chevron, 2012). 
It directly uses empirical multivariate distributions deduced from training images, so any complex 
architecture of geological facies is dependent to the geomodeller’s knowledge of the depositional 
environment in building the training images (Boisvert, Pyrcz, and Deutsch, 2007). In the process, 
MPS can accommodate the nonstationarity within its TI by several means that will be discussed 
in the following sections. Therefore, the training-image based approach can use the process-
based simulation model as the TI, hence can handle the complexity, nonstationarity, and condi-
tioning matter that pose the significant challenges. 

1.2 Motivation and objective of the study 

Over the past decade, most research in MPS has emphasized on new algorithms for improving 
efficiency in dealing pattern matching, searching, and synthesis (Mariethoz and Caers, 2014; 
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Mariethoz and Lefebvre, 2014), but there are still issues remain for the workflow to be widely used 
in geosciences. Furthermore, the solution for using nonstationary TI such as process-based sim-
ulation model in MPS are still an issue because the workflow is always different for specific cases. 
Very little published works available in applicating nonstationary TI in MPS. Some of the most 
notable and recent ones did not address the workflow and best practices along and the data-to-
model evaluation applicable with industry or academic (Mariethoz and Kelly, 2011; Mariethoz, 
Renard, and Straubhaar, 2010; Michael et al., 2010; Strebelle, 2002). 

Based on the background described previously, there are some questions that are addressed in 
combining the process-based simulation models as training images for MPS simulation: 

• How does the nonstationary data need to be prepared to be suitable for MPS? 
• How to optimise the workflow in using process-based simulation model as TI in uncondi-

tional MPS simulation? 
• What is the conditioning capability in MPS simulation with using process-based simulation 

model as TI? 

Previous successful attempts to model nonstationarity in MPS simulation has used zonation 
(Honarkhah and Caers, 2012) and control maps, also called auxiliary variables (Chugunova and 
Hu, 2008). Some of the problems addressed in the combining process were the nonstationarity 
in the process-based model which can be challenging to reproduce location-specific features and 
trend (Hoffimann, Scheidt, Barfod, and Caers, 2017; Michael et al., 2010). 

MPS in facies modelling is still a relatively new topic, and recently is rapidly growing in popularity 
by providing the modeller with the flexibility of modelling complex geometries which still have a 
long academic history ahead. The use of MPS also being adapted in modern commercial and 
non-commercial reservoir modelling software such as BHGE's JewelSuite, Schlumberger’s Pet-
rel, Halliburton’s DecisionSpace Geosciences, and Stanford University's SGeMS. The extensive 
usage of MPS motivates the study to discuss the MPS even further by improving the previous 
works and making new approaches by using nonstationary TI in a particular case, so we can 
establish optimised workflow in MPS simulation using nonstationary TI with most general use of 
MPS algorithm by most geoscientists. 

This study focuses on deltaic reservoir in the application of MPS in with nonstationary TI. There 
are three main types of deltaic system: fluvial-dominated, wave-dominated, and tidal-dominated 
delta (Orton and Reading, 1993). Through the years, science has approached the understanding 
of deltaic environment sedimentation processes has been based on field data. The recent addition 
of process-based forward stratigraphic modelling can serve further information on understanding 
the sedimentary processes within the deltaic environment. We used a fluvial-dominated reservoir 
model generated from process-based forward stratigraphic modelling which contains nonstation-
arity in its fluvial patterns. 

By considering the underlying questions in using process-based simulation models on MPS sim-
ulation, the primary objective of the study is to determine an optimised methodology that allows 
the use of nonstationary process-based simulation model for TI input with MPS simulation in the 
fluvial-dominated delta. The method should be capable of measuring the capability of generating 
unconditional and conditional MPS simulation model that is based on the process-based simula-
tion model.  
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The structure of this study is summarily described in the following section. Methodology which 
contains detailed explanation in the stochastic geostatistical method of this study is firstly de-
scribed in Chapter 2. Then, followed by the data that encompasses the preparation of the data, 
and the selection of hard data for conditioning in Chapter 3. In Chapter 4, the results from the 
unconditional and conditional MPS simulations are presented, including the evaluation of the re-
sults. Chapter 5 discusses the results from previous chapter; and lastly, Chapter 6 gives the con-
clusions and future recommendations for the improvement of the topic. 

1.3 The scope of the study 

This study focuses on the restrictions and boundaries of the nonstationarity in the fluvial-domi-
nated delta process-based model which can be used in the MPS method. These two aspects are 
compared by using visual inspection and data-to-model statistical evaluation to ensure that the 
realised MPS simulation model represents a proper realisation from the process-based model it 
is based on. 

With the nature of the MPS simulation, the main idea of the simulation is not to create a copy of 
the process-based simulation model, but to generate stochastic simulation model realisations that 
mimic the patterns and geostatistical properties of the TI. Similar patterns are assumed to resem-
ble similar geostatistical properties for the compared models. 

This study used MPS’ IMPALA algorithm in JewelSuite software, an improvement of the SNESIM 
algorithm in the search tree component. Both algorithms considered same in the basis of nodes' 
simulation. SNESIM is one of the most popular MPS algorithms and being used in most of com-
mercial and non-commercial reservoir modelling software available in the market. The other soft-
wares used in the study are MATLAB R2016b and SGeMS version 2.1. 

Also, this study is limited to the usage of 2D facies model in both training image and realisations, 
which reasons are described in the section 3.2. 

Since this study is based on the numerically simulated physical processes of the process-based 
model in the work of van der Vegt in 2018, so several pre-defined parameters of the delta model 
are addressed, such as the accommodation space, the hydrodynamic conditions, the sediment 
supply, and time. All pre-defined parameters are based on a detailed literature study, to emulate 
delta progradation onto shelves with low slopes. For more detailed parameters of the input data, 
see (van der Vegt, 2018).



 

5 

  

2 
2 Methodology 

2.1 Multiple-point geostatistics (MPS) 

Multiple-point geostatistics (MPS) is a recent branch of geostatistics that has been developed to 
characterise spatial continuity over more than two points (Mariethoz and Caers, 2014). It is an 
improvement proposed by Guardiano and Strivastava in 1993 to overcome the limitations of the 
conventional variogram-based simulation methods. This method would be able to provide corre-
lations between three or more locations at a time (Figure 2.1). 

MPS can benefit some improvements over the conventional variogram-based simulation methods 
because the latter cannot characterise curvilinear features and ordering relationships (Michael J. 
Pyrcz and Deutsch, 2014). Those curvilinear characters, such as sinuous fluvial channels, and 
higher order relationship are commonly present in the real world. To achieve that improvement 
over conventional variogram-based simulation methods, MPS makes use of training images (TI) 
to distinguish the spatial variability of the natural phenomena, then simulated in a stochastic way 
(Mariethoz and Caers, 2014). MPS has a capability in recreating complex geometries within ge-
ological features in inferring the statistics from the TI. 

 

 

Figure 2.1. The illustration of a multiple-point event (Michael J. Pyrcz and Deutsch, 2014). 

Many different MPS algorithms available and being developed. These algorithms have different 
methods to be applied to making a stochastic geostatistical simulation. Mariethoz and Caers wrote 
in 2014 about the classification of those MPS algorithms into two types: pixel-based and pattern-
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based algorithm. The primary difference between of those two methods is the way algorithm vis-
iting the training image grid and simulation grid nodes. The pixel-based method simulates the 
properties on the Cartesian grid by visiting the grid nodes one at a time (Saripally and Caers, 
2008). On the other hand, the pattern-based method extracts the data event defined by the pattern 
template then scans through all the patterns in the training image to find the most similar one 
(Honarkhah and Caers, 2010). 

2.1.1 MPS algorithms 

The MPS simulation in this study will use the pixel-based method, which is IMPALA (Straubhaar 
et al., 2011) based on the SNESIM (Strebelle, 2002) algorithm. The next section will explain the 
following algorithms. 

2.1.1.1 Single Normal Equation Simulation (SNESIM) algorithm 

Single Normal Equation Simulation (SNESIM) was introduced in 2002 by Strabelle, with the im-
provement in the TI events storage in a search tree data structure instead of searching the TI 
each every time for each conditioning data template, resulting in a much-decreased duration in 
simulation (Strebelle, 2002). Fast retrieval of required conditional probabilities is now possible 
with using the search tree data structure, with the one-time scanning of the TI. 

The name itself came from the use of a single normal equation in the process of property proba-
bility modelling, Bayes relation defining a conditional probability. With SNESIM, the TI is scanned 
by utilising a pre-defined search template for each pattern, searches for replicates of the pattern 
and then fetches the corresponding histogram of the central value (Figure 2.2). 

 

Figure 2.2. An example of SNESIM algorithm in simulating a cell (Zhang, 2008). 
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For instance, based on the sand/no-sand facies in Figure 2.2, if a data patterns in the simulation 
grid within the search template is found ten times in the TI, with the central node is being a sand 
facies seven times, then the conditional sand probability is 0.7. After that, SNESIM draws a sim-
ulated value back to the simulation grid, with the sand facies probability of the central node with 
the value of 0.7. The data simulated is stored in the search tree. 

Nonetheless, several drawbacks occur in the SNESIM algorithm. The search tree only store data 
patterns that is present in the TI. When the data pattern is not repeated often enough in the TI, 
especially in the complex TI and large search templates, the algorithm will drop one datum of that 
event, generally the datum that is the farthest from the centre datum and repeats the pattern 
search process until the pattern matches (Strebelle, 2002). This will potentially lead to a removal 
of many data in the search template, reducing the information which follows into a poor reproduc-
tion of the TI patterns. 

One of the solutions to this problem is to use a pattern-rich TI, but the memory required for the 
simulation will be more significant because it is based on the number of unique events present in 
the TI. For example, one MPS simulation using very large and rich TIs will lead to several giga-
bytes of Random-Access Memory (RAM) of the computer. Alternatively, several methods have 
been developed for making the process more efficient, and one of the methods is explained in 
the following section. 

2.1.1.2 Improved Parallel Multiple-point Algorithm Using a List Approach (IMPALA) algo-
rithm 

A further improvement to SNESIM algorithm is Improved Parallel Multiple-point Algorithm Using 
a List Approach (IMPALA) algorithm, developed by Straubhaar et al.  in 2011. They proposed to 
replace the tree, which is a construction of the search tree by a list. This IMPALA list structure 
requires much less RAM which is a significant problem in SNESIM in dealing up with complex 
and rich TI.  

It has three advantages: (1) it allows for the use of larger templates, (2) the list structure is efficient, 
can be extended to include additional information, (3) allows one to parallelise the part of the 
algorithm in which the conditional probability density function is computed. By decreasing the 
RAM consumption in the process, the higher Central Processing Unit (CPU) of the computer is 
costed. Despite the memory advantages and parallelisation in the process, IMPALA behaves pre-
cisely similar to the SNESIM algorithm.  

Ephesia Consult implements IMPALA algorithm that is used in this study in the JewelSuite 2018.1 
software from Baker Hughes, a GE company. 

2.1.2 Training image (TI) and its stationarity 

Training image (TI) by definition is a two or three-dimensional numerical grids that quantify the 
heterogeneity from the properties of the reservoir (Mariethoz and Caers, 2014). The TI acts as 
the representative of the geological concept of the area of interest, and the statistics required by 
the stochastic algorithm can be inferred from the TI (Journel, 2003). It is also able to provide the 
constraints of the spatial variability within the patterns in the TI, and also provide sufficient free-
dom to produce the variability in each of the realisations (Mariethoz and Caers, 2014). In the MPS 
simulations, the idea is not to reproduce almost identical patterns in the TI, but to generate similar 
features by inferring to the TI, while keeping an aspect of randomisation to the simulation. 
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Like any other geostatistical approaches, MPS assumes the stationarity to simulate the reservoir 
characterisation, and TI as the input have to meet this requirement of stationarity, or else the 
calculation of the geostatistics would not be achievable. Mariethoz and Caers in 2014 explain 
stationarity of a process in a spatial context as the assumption of the similarity of the statistical 
variation of the entire spatial domain. It means that if in a specific location domain lies a statistic 
property, the statistics, such as mean and variance, will be similar to any other portion of the 
domain.  An ideal TI that meets the stationarity requirement should have patterns that is plausibly 
homogeneous with enough repetition all over the TI grid (Maharaja, 2008), or else, considered as 
nonstationary TI. Figure 2.3 illustrates nonstationary and stationary TI with fluvial patterns. In 
nonstationary TI, we can see that the channels are nonhomogeneous and have varying patterns 
throughout the grid. 

 

 

Figure 2.3. An example of TIs in fluvial environment. Left picture shows nonstationary TI, and right picture 
shows stationary TI. In stationary TI, the patterns shows enough repetition compared to the nonstationary 
TI (Arpat and Caers, 2007). 

Despite the fact of the assumption of the stationarity in the TI for MPS simulation, most of the 
physical processes that happened in the world are nonstationary. Stationarity in MPS is a decision 
of the geomodeler, and the geomodeler has to choose the TI that has enough data for getting 
sufficient geostatistical inference without overfitting the local data and underestimating model un-
certainty (Michael J. Pyrcz and Deutsch, 2014). Also, the data in TI has to be pooled close enough 
with similar properties and has enough repetitions in the pattern, so it may show significant res-
ervoir heterogeneity and not overestimating the model uncertainty (Zhang, Bombarde, Strebelle, 
and Oatney, 2006). 

2.1.3 Source of TI 

The construction of the TI is the subjectivity of the geomodeler to incorporate the representing 
statistics in the desired reservoir model. The TI has to describe natural processes which often 
complex and random, and also can be used in the MPS simulation. Establishing TI has the same 
manner with establishing conceptual geological model; it must be able to represent the actual 
reservoir model and be specific to the case that is being modelled. 

There are several sources to obtain the suitable TI for the simulation, and one of the approaches 
integrates the available model from another methods. 
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2.1.3.1 TI from analogue data 

A direct approach to construct TI is by using the data directly as patterns. The data can be ob-
tained from idealised conceptual geological models from literature, analogue photos (Ringrose 
and Bentley, 2015), satellite images (Feng and Wu, 2016) (Figure 2.4), or tomographic images 
(Lochbühler, Pirot, Straubhaar, and Linde, 2014). Those data are usually converted and pro-
cessed into a simplified model of a reservoir that shows the key elements of the corresponding 
environment. 

The geomodeller can utilise built-in graphical module in commercial reservoir modelling software 
such as JewelSuite and Petrel to make the representing patterns manually based on the analogue 
data. Another method would be drawing the patterns using commercial and non-commercial 
graphical software such as Photoshop and GIMP, then convert it into numerical representation 
file. An improvement also made by Fadlelmula F., Killough, and Fraim in 2016 by making a soft-
ware called TiConverter to easily convert raster image into numerical representations. The pat-
terns derived from the analogue data contains the representative patterns and will be used in 
simulations. 

 

Figure 2.4. An example of constructing TI from Lena River Delta’s satellite image (Feng and Wu, 2016). 

2.1.3.2 TI from databases 

TI databases has been created as deterministic methods to provide a ready-to-use TI in MPS 
simulation. The databases comprise of architectural features like geometry, spatial distribution, 
and specific patterns combined with variety of filters which enables the user to easily construct 
the desired TI. Several notable examples of the TI databases are: 

• FAKTS (Colombera, Felletti, Mountney, and McCaffrey, 2012). The database provides 
fluvial reservoir TI that includes fluvial architectural data obtained from literature- and field-
derived modern rivers and ancient successions. 
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• Carbdb (Jung and Aigner, 2012). Presenting a hierarchical classification of carbonate bod-
ies that includes carbonate systems from outcrops, the subsurface, and modern environ-
ments. The classification comprised of depositional time, depositional system, deposi-
tional zone, depositional shape, depositional element, and facies. 

• Database for fluvial and deepwater reservoirs by M. J. Pyrcz, Boisvert, and Deutsch 
(2008). The database presents a program for creating object-based TI for fluvial and deep-
water environment, which includes TI from idealised surface-based, event-based, and ob-
ject-based models such as FLUVSIM (Deutsch and Tran, 2002). 

2.1.3.3 TI from object-based methods 

Object-based methods populates the grids with predefined objects in 2D or 3D using specific 
algorithms. The objects’ shape are generated with using non-iterative, unconditional Boolean sim-
ulation (Maharaja, 2008) (Figure 2.5). One of most notable object-based methods software avail-
able is TiGenerator (Maharaja, 2008). In using TiGenerator, the geomodeler could decide on the 
shape of the object by setting the geometry, and the algorithm would set the rules between the 
interacting simulated objects. 

 

Figure 2.5. An example of object-based method in generating TI using TiGenerator. The patterns represent 
channels with crevasse-splay (Maharaja, 2008). 

Main advantages of using object-based method is the fast and simple approach of making the 
patterns. The graphical user interface has made it easy for the geomodeler to set the constraints 
by setting and specifying the parameters. While some of the drawbacks are the lack of flexibility 
and oversimplification in modelling complex structures (Mariethoz and Caers, 2014). 



Process-based modelling  11 

  

2.1.3.4 TI from process-based simulation models 

Process-based simulation models can serve as a working TI because the process-based simula-
tion models are made with the idea of numerically forward simulate the processes of the sedi-
mentation (Mariethoz and Caers, 2014). Technically, process-based simulation model serves as 
a conceptual geological model in geological modelling workflow. The use of process-based sim-
ulation model as TI can fine tune the model by conditioning it through MPS simulation, although 
the workflow of applicating process-based simulation model is not that simple because of the 
nonstationarity. 

The explanation of the process-based simulation model and the application in MPS workflow will 
be discussed in detail in the next section. 

2.2 Process-based modelling 

Process-based modelling is a numerical forward-modelling method that integrates geological in-
formation controlled by geological rules (Michael J. Pyrcz and Deutsch, 2014). The idea of for-
ward-modelling of the reservoir is to construct the layers of the model sequentially based on the 
chronological geologic processes so that it mimics how the sedimentation processes in the real-
world situation (Michael J. Pyrcz and Deutsch, 2014). Many of the different process-based algo-
rithms have been developed, such as DIONISOS (Granjeon and Joseph, 1999), (SEDSIM (Tetz-
laff, 1990), and Delft3D (Lesser, Roelvink, van Kester, and Stelling, 2004). 

With using a predefined description of underlying physical processes, several modules of the 
modelling method which describe different processes (Dastgheib, Roelvink, and Wang, 2008) that 
ended up with a modelling result in high detail (Figure 2.6). In making a realistic process-based 
simulation model that captures the complex heterogeneities within the model, the simulation 
needs extensive characterisations of paleo-conditions that occurred during the actual reservoir 
formation (Michael J. Pyrcz and Deutsch, 2014). The process-based method simulation can only 
set the initial conditions and boundary conditions of the model, alas the forward evolution of the 
simulation is out of control of the modeller. 

 

Figure 2.6. The process-based simulation model of Delft3D software for deltaic environment (van der Vegt, 
2018). 



Modelling nonstationarity in MPS  12 

  

Miller et al. (2008) have recognised five significant challenges in process-based modelling, 
including: (1) accurate quantification of geologic processes, (2) complex and unknown input 
parameters with unknown initial conditions, (3) potential for non-unique solutions, (4) 
computational effort, and (5) incapability to condition to subsurface data. The latter is one of the 
most critical issues in using the process-based model in reservoir characterisation. Reservoir 
modelling in reproducing well and seismic data is essential, and its failure to condition makes the 
typical process-based workflow in including the heavy modifications on the input to match the 
wells and seismic observation. 

The nonstationarity in the statistical variation of the process-based simulation is also expected in 
the model. The statistics within the model vary with location and time. For example, in Figure 2.6, 
the transitional patterns of the facies are developing through the slope, following the boundaries 
and condition in the functions defined. The statistics property of the facies developing in the prox-
imal part is different compared to those emerging in the distal part of the shelf. Preparing nonsta-
tionary TI such as process-based simulation model is different than stationary TI. There are two 
different ways to prepare the TI that is going to be explained in detail in the next section: (1) make 
a new separate TI within the assumed stationary zonations, and (2) use the process-based sim-
ulation model directly. 

2.3 Modelling nonstationarity in MPS 

Intricate patterns in the area of interest with high-order nonstationarity cannot be described by 
regular MPS algorithm. The trends are usually present with complicated patterns with a wide 
range of different scales. The replication of the patterns is more severe in more complex and high-
order nonstationarity. To handle the nonstationarity, several mechanisms can define the location 
for each pattern in the TI and simulation grid: zonation and control map approaches. 

2.3.1 Zonation approach 

Zonation, or region concept, split the entire nonstationary TI into zones that are considered sta-
tionary, and then simulating each zonation with different TI specific to the zone (Wu, Zhang, and 
Boucher, 2007). The considered stationary zonations are treated as they were separated TI, so 
a new stationary TI is needed to represent each stationary zone (Figure 2.7). The new TI is con-
structed with patterns and facies that are present in the previous zonations. 

 

Figure 2.7. Example of the use of zonation concept in MPS modelling. Each zone (yellow and red) has its 
corresponding TI that shares the same channel facies (Daly and Caers, 2010). 
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By having different zonations with each zonation is considered stationary, the MPS simulation will 
take place independently in each zonation using the appropriate stationary TI. To achieve a good 
continuity between the boundaries, the TIs in interacting zonations must share the same facies 
(Wu et al., 2007). For example, in Figure 2.7, both TI for each zone share the same channel 
facies. The simulation will occur independently in each zonations, and the presence of the channel 
facies ensures the smooth transition between the boundaries, shown in the simulation result. 

Deciding the stationarity is a matter of geomodeller’s subjectivity to decide the structures differ 
significantly from one zonation to another. Also, the geomodeler has to be able to create the 
representing TI from each zonations. The process is often complicated following the order of non-
stationarity and complexity of the TI. 

Additional step to increase the similarity of the results to the TI is to apply rotation to the simulation. 
The use of rotation provides a means of mimicking the patterns, especially in zones with different 
orientation over the domain (Mariethoz and Caers, 2014). 

 

Figure 2.8. Example of rotation and affinity zones in SNESIM algorithm (Liu, 2006). 
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2.3.2 Control map approach 

When the restriction of the zonation method is too rigid for the simulation case, control maps can 
be the solution to handle the nonstationarity. Often the patterns in the TI show a smooth transition 
which caused difficulty in determining the boundary of the stationarity. Hu and Chugunova in 2008 
introduced the idea control maps, containing continuous variables that are defined in the TI and 
simulation grid (Figure 2.9 and Figure 2.10). Control maps will decide which patterns in the TI 
would occur in the simulation grid with defining its location. 

 

Figure 2.9. Example of control maps in nonstationary MPS modelling. (a) and (a’) represent the TI and its 
control maps, where (b) and (b’) represent the simulation grid and its control map. Notice the patterns’ 
orientation between the TI grid and simulation grid (Mariethoz and Caers, 2014). 

 

Figure 2.10. Another example of control maps in nonstationary MPS modelling. By using the control map, 
the geomodeler can control the occurrence of the patterns in the simulation grid. The value in the control 
map is similar for each stationary zonation (Ephesia Consult, 2017). 
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Each of the similar values of the control map is present in both the TI and simulation grid, so the 
joint probability of the simulation grid is inferred from the TI and its control map. Consequently, 
for every pair control map value in the simulation grid and the TI grid will also infer the similar 
patterns, so the control map describes the presence of a trend in both grids (Hu and Chugunova, 
2008). For most of the cases, the control maps are based on the distance to the coastline or along 
the depositional gradient, while more complex control maps are needed for the more difficult 
cases. Riou, Höcker, and Hughes in 2015 suggested the use of the available data from the model, 
such as net-to-gross or grain size can be used to define the connection between the nonstationary 
patterns. 

To make a usable control map, we can see the application from Figure 2.9 and Figure 2.10 where 
the control map defined the patterns in the TI in regards of the distance to coastline. The values 
of the control map can either be continuous for the whole grid like in Figure 2.9, or non-continuous 
as long as the same values are representing the assumed stationary zones like in the case of 
Figure 2.10. 

The construction of control maps proves to be problematic for describing accurate nonstationarity 
in both TI and simulation grid. The control map has to be accurately translated the trend into a 
continuous variable which relies on the modeller geological knowledge of the TI, and often the 
process is deterministic (Mariethoz and Caers, 2014). 

2.4 MPS simulation path type 

In the MPS simulation, one of the most decisive factors is the way MPS simulation visit the grid 
nodes, called simulation path. The simulation path determines the final result of the simulation 
because each pattern observed in the TI are unique; hence appropriate visitation order is needed 
to deliver adequate results. Several paths are used in this study, that will be discussed in the 
following section. 

2.4.1 Random simulation path 

The most common MPS simulation simulates sequentially along a random simulation path. This 
means the visitation of all uninformed nodes in the TI and simulation grid are in random order 
(Mariethoz and Caers, 2014). The first nodes simulated show a tendency in the further away from 
its neighbour, resulting large-scaled features first; then as the close neighbour frequency in-
creases, it starts to generate small-scale features (Figure 2.11). 

 

Figure 2.11. An illustration of the random simulation path in MPS simulation. From left to right depicts the 
percentage of cells simulated (Mariethoz and Caers, 2014). 
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In reproducing features with long-range continuity, such as fluvial channel patterns, the random 
simulation path would over-constrained the simulated nodes because of the relatively few multiple 
points in the early stage of the simulation, so they are weakly informed from the TI (Michael J. 
Pyrcz and Deutsch, 2014). The resulting outcomes would be the features are failing to connect 
within the random visitation of the cells and dismantling of the long-range features. Daly in 2005 
suggested that the connectivity issues in reproducing long-range features with the random simu-
lation path can be overcome by linearly visiting the nodes, called a unilateral simulation path. 

2.4.2 Unilateral simulation path 

In the unilateral simulation path, the grid nodes are visited in a sequential, non-random order. It 
starts with the node in one corner, then continuing along one of the directions at a time. The 
walking direction can be determined by adjusting the I, J, and K direction, where I, J, K is a Car-
tesian grid system. The convention of the direction of the path presented in positive or negative 
notation, while positive notation nods to a higher value of the Cartesian grid system coordinates. 

For instance, say the origin node of the grid is in the lower-left corner, and we want to simulate 
with a unilateral simulation path in +I+J+K direction. The simulation will move to start from the 
origin node in the lower-left node, walking through the first row along the +I direction (from west 
to east) and when the first row is completed, it will continue to the next row along the +J direction 
(from south to north). The simulation will continue until the IJ plane is completed, then advance 
to the next plane in the +K direction (from bottom to top). The illustration of the unilateral simula-
tion path in +I+J direction is shown in Figure 2.12. 

 

Figure 2.12. The illustration of the unilateral simulation path in MPS simulation in the +I+J direction 
(Mariethoz and Caers, 2014). 

The output of the unilateral simulation path tends to be parallel to the first path direction and often 
leads to better reproduction of TI patterns and long-range continuity (Mariethoz and Caers, 2014). 
Especially in the case of long-range continuity, connected structures are represented better but 
appears elongated in the path direction (Figure 2.13).  
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Figure 2.13. Training image and the realisations with using random and different unilateral simulation path 
(Mariethoz and Caers, 2014). 

In this study, the direction of the unilateral simulation path used was -J+I direction based on the 
direction of the simulated delta from the source. The -J direction would simulate the column from 
north to south, then increments through the +I direction (left to right) when it arrives at the end of 
the column (Figure 2.14). The I-direction can be interchangeable (can be positive or negative), 
but for simplicity, we use the positive direction (started in the top left corner of the grid). 

 

Figure 2.14. The illustration of MPS simulation using unilateral simulation path in -J+I direction in an exam-
ple 4 x 4 grid. The simulation started at the top left corner, then increments through the +I direction after 
the column has been simulated in -J direction. The red node depicts the cell that is being simulated, the 
grey nodes depicts simulated cells, and the white nodes depict cells that have not been simulated. 

2.5 Conditioning in MPS simulation 

When using the hard date to condition in the MPS simulation, the MPS realisation model must 
honour the data in the specific data location. In using the process-based simulation model as its 
TI, MPS simulation can overcome the incapability of conditioning in the process-based simulation. 
Pyrcz and Deutsch in 2014 stated this situation in the data reproduction, that is may be linked to 
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the issues in the assignment to grid and conditioning in the simulation method. Checking the data 
reproduction in its according location may exhibit the performance of the MPS algorithm. 

The nature of the pixel-based algorithm such as IMPALA should not confront the problem in the 
hard data preservation, because the data are estimated at the data locations with zero kriging 
variance (Michael J. Pyrcz and Deutsch, 2014). However, the hard data will affect the continuity 
in the case of channel patterns reproductions around the data, especially in using the unilateral 
simulation path where the data ahead of the path may not be compatible with the structures that 
built preceding the simulation data (Daly, 2005; Parra and Ortiz, 2011). Usually, the conditioned 
data values influenced the simulation only when data points are encountered in the search tem-
plate (Figure 2.15). 

 

Figure 2.15. The left picture depicts a typical L-shaped search template for unilateral simulation path simu-
lation that started in the lower-left corner. The right picture depicts the conditioning with hard data. The 
green nodes represent hard data, the white nodes are the simulated nodes before the conditioning, and the 
pink nodes represent the conditioned simulated nodes (Mariethoz and Caers, 2014). 

2.6 Evaluation of MPS simulation 
2.6.1.1 Visual inspection 

One of the most basic things and may be the most important one is checking through visual 
inspection. The objective of the MPS stochastic modelling is to mimic a realistic geological model 
through MPS that follow the geological rules in its structures of the patterns. While it is hard to 
judge the similarity only with human eyes, we can highlight several features in both TI and reali-
sations, such as low and high-valued areas, trends, and continuity (Michael J. Pyrcz and Deutsch, 
2014). For example, if we want to simulate delta reservoir model in MPS simulation that have 
mouth bar connected to the channels, the resulting MPS simulation models must have the same 
features as the original model. 

Limitations of the MPS simulation also need to be considered. The features of the realisation 
models may not be giving the impression of being geologically plausible, considering the limited 
model resolution or the limitation of the TI itself in conveying a geologic model (Michael J. Pyrcz 
and Deutsch, 2014). Those reasons make allowances for the acceptance of the MPS simulated 
realisations in case of visual inspection, as long as the TI’s features are recreated correctly. 
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2.6.1.2 Connectivity function 

The connectivity function considers the probability between two locations, say A and B, separated 
by lag distance h along a particular direction to be connected (Pardo-Igúzquiza and Dowd, 2003). 
If between those locations are connected, then the probability for two locations A and B are pre-
sent (Figure 2.16). A collection of adjacent grid nodes of the same connected category, called 
geobody, represents the connectivity between those locations. For example, if those two locations 
belong to the same geobody, then they are connected and have the probability of connection; or 
else, disconnected. The application is useful to evaluate the similarity between the realisations 
and TI with connecting patterns like fluvial environment, 

 

Figure 2.16. An example of connectivity function in x direction of TI compared to the MPS realisations. 
Similar connectivity functions indicates the similarity of the patterns between the TI and the MPS realisa-
tions (Pourfard, Abdollahifard, Faez, Motamedi, and Hosseinian, 2017). 

The workflow of the connectivity functions is as follows, using MATLAB: 

1. Import the TI and realisations with GSLIB format 
2. Decide which facies that want to be evaluated and change the facies’ code with number 

1, else is 0 
3. Identify and label each geobodies 
4. Calculate the connectivity function in the defined direction 

The mathematical expression expresses the connectivity function: 

�̂�𝜏(ℎ) =
#𝑁𝑁 (𝑢𝑢 ⇔ 𝑢𝑢 + ℎ|𝑢𝑢,𝑢𝑢 + ℎ ∈ 𝑆𝑆)

#𝑁𝑁(𝑢𝑢,𝑢𝑢 + ℎ ∈ 𝑆𝑆)
 (𝐼𝐼𝐼𝐼. 2.4) 

where �̂�𝜏(ℎ) is the estimate of the connectivity function for distance ℎ, #𝑁𝑁 (𝑢𝑢 ⇔ 𝑢𝑢 + ℎ|𝑢𝑢,𝑢𝑢 + ℎ ∈ 𝑆𝑆) 
is the number of cells separated by distance ℎ, that belong to the phase S and are connected. 
#𝑁𝑁(𝑢𝑢,𝑢𝑢 + ℎ ∈ 𝑆𝑆) is the number of cells separated by distance ℎ that belong to the phase S and 
may or may not be connected. 
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In the validation between the MPS realisations and the TI, connectivity functions are generated 
for each realisation and then compared. The similarity between the functions indicates the simi-
larity of the patterns between the TI and its realisations (Mariethoz and Caers, 2014).  

2.6.1.3 E-type and conditional variance model 

Usual approaches to compare the performances of the conditional simulation is to use the E-type 
and conditional variance model. Both models can be generated with using MATLAB or SGeMS 
software. E-type model is the local average of all realisations at each location in the model 
(Goovaerts, 1997) (Figure 2.17), where E is short for “expected value”. This model allows a result 
of the most likely value in each reservoir property at each location.  

The study uses SGeMS to calculate the E-type and conditional variance models, where the work-
flow is as follows: 

1. Import the TI and realisations in GSLIB format 
2. Calculate the E-type and conditional variance models for each method 

The expected value 𝑧𝑧̅ at each location 𝑢𝑢𝛼𝛼 is presented in the next mathematical expression: 

𝑧𝑧̅(𝑢𝑢𝛼𝛼) =  
1
𝐿𝐿
�𝑧𝑧𝑙𝑙
𝐿𝐿

𝑙𝑙=1

(𝑢𝑢𝛼𝛼), ∀𝛼𝛼 ∈  𝑉𝑉 (𝐼𝐼𝐼𝐼. 2.5) 

Where L is the realisations of the property z at all locations within the volume of interest V. By 
using the E-type model, we can see how the tendency of the simulated patterns in all realisations 
produced. 

Conditional variance model measures the variance of the local realisations at each location (Fig-
ure 2.17) (Goovaerts, 1997). The conditional variance 𝜎𝜎2 at each location 𝑢𝑢𝛼𝛼 is expressed with:   

𝜎𝜎2(𝑢𝑢𝛼𝛼) =  
1
𝐿𝐿�[𝑧𝑧𝑙𝑙

𝐿𝐿

𝑙𝑙=1
(𝑢𝑢𝛼𝛼)− 𝑧𝑧�(𝑢𝑢𝛼𝛼)]2, ∀𝛼𝛼 ∈  𝑉𝑉 (𝐼𝐼𝐼𝐼. 2.6) 
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Using those two models would supply a visualisation of the reproduction of trends in the presence 
of conditioning data by comparing the similarity of the E-type and conditional variance model value 
near the conditioning data. A good conditional MPS simulation results at around hard data location 
would have similar E-type value to the hard data, and small value of conditional variance. 

Figure 2.17. Left picture shows the example of E-type model for conditional MPS simulation with the straight 
line as the hard data (Tahmasebi, Sahimi, and Caers, 2014), and the right picture shows the example of 
conditional variance model for conditional MPS simulation with circles as hard data (Pourfard et al., 2017). 
A good conditional MPS simulation would show similar facies around hard data (left picture, shown in red 
colour) and low values of variance around the hard data (right picture, shown in blue colour). 

2.6.2 Analysis of distance (ANODI) 

This methodology uses a distance of the statistics as the basis of the comparison between reali-
sations and the TI (Tan, Tahmasebi, and Caers, 2014). Analysis of distance (ANODI) aims to rank 
the algorithms based on two aspects of distance, which are: the spatial uncertainty (variability 
between the realisations, termed “between-realisation”) and pattern reproduction (resemblance 
between realisations and the TI, termed “within-realisation”). The reason why distance is preferred 
over variances and covariances is the dimensionality problem (Tan et al., 2014). The dimensions 
of the covariances grow rapidly, but covariance or variance do not address the dimensionality 
problem by present as measure of linear relationship/variation. Hence, it is favoured to work with 
dot-products that associated to the Euclidean distance. For more information, see (Tan et al., 
2014). 

The study used MATLAB to perform ANODI1, which has workflow as follows: 

1. Determine the template size of TI using “elbow” in scree-plots 
2. Create pyramid of subresolutions for TI and realisations, using bicubic interpolation 
3. Classify patterns of TI and realisations as clusters for each subresolution in each method 

by: 
a. Extract the patterns using the template size 
b. Calculate dissimilarity matrix of the patterns using Euclidean distance for each TI 

and realisation 
                                                

1 The ANODI code is modified from https://github.com/SCRFpublic/ANODI (Tan et al., 2014). 

https://github.com/SCRFpublic/ANODI
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c. Cluster the patterns using kernel k-means analysis 
4. Summarise the clusters as cluster-based histograms of patterns (CHP) for each TI and 

realisation in each subresolution 
5. Compute the distances of CHP with JS-divergence distances and show the J-S diver-

gence distances in MDS plot 
6. Calculate the between-distances and within-distances for each method 
7. Calculate the ratio of between-distances, within-distances, and total-distances between 

methods 

First, we determine the template size of each grid is defined using "elbow" in scree-plots based 
on the correlation between the eigenvalues of the covariance matrix and its dimensions (Zhu and 
Ghodsi, 2006) (Figure 2.18). The values were obtained by performing principal component anal-
ysis (PCA) on the patterns, and the "elbow" is identified by a sharp decrease in eigenvalues then 
stabilise for the remaining points. The elbow is supported by maximum likelihood estimate (MLE), 
which also represents the dimension for which the covariance matrix decreases. For a more de-
tailed explanation, see (Zhu and Ghodsi, 2006). 

 

Figure 2.18. Example of similarity between scree-plot obtained from PCA and profile log-likelihood from 
MLE (Zhu and Ghodsi, 2006). 

Then, a pyramid of multiple subresolutions (or multiresolutions) is created from every single real-
isation and training image using bicubic interpolation, owing to the presence of statistical variation 
that takes place at multiple scales (Tan et al., 2014). For higher subresolutions, previous resolu-
tion was divided into two between each level. For example, the original resolution is 101 x 101 
cells, so the subresolutions 2 and 3 are 51 x 51 and 26 x 26 cells, respectively. 
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Figure 2.19. An example of a pyramid of 3 subresolutions from a single TI (Tan et al., 2014). 

For each subresolution of the pyramid’s statistics, we classify the patterns of TI and realisations 
by extracting the patterns using the template size acquired using the “elbow” from the scree-plot. 
The next step is we calculate the distance between the patterns in each template to cluster the 
patterns. Distance calculation used is using Euclidean distance function, which is given by: 

𝑑𝑑𝐸𝐸�𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑚𝑚(𝑢𝑢),𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑛𝑛(𝑢𝑢)� = ��𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑚𝑚(ℎ𝑖𝑖)− 𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑛𝑛(ℎ𝑖𝑖)�
2

𝑛𝑛𝑇𝑇

𝑖𝑖=1

(𝐼𝐼𝐼𝐼. 2.7) 

Where the formula describes the Euclidean distance 𝑑𝑑𝐸𝐸 for a pair of patterns from the pattern 
database 𝑇𝑇. Patterns with the high similarity, result in a small value, and different patterns result 
in a larger value (Suzuki and Caers, 2006). Within the range of similarity, one can cluster the 
patterns using kernel k-means analysis (see Campedel, 2005) (Figure 2.20). 
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Figure 2.20. An example of kernel k-means clustering (Honarkhah and Caers, 2010). 

We can summarise the clusters of patterns of each TI or realisations into multiple-point histograms 
(MPH) or cluster-based histograms of patterns (CHP), based on the more suitable way. We used 
CHP (see Honarkhah and Caers, 2010) for this study case because MPH can only handle small 
cases and binary variables, while the frequency table explodes when going to significant cases 
or dealing with multicategory (Tan et al., 2014). 

The summarising process as CHP in TI and each specific realisation 𝑙𝑙 are presented by: 

{𝑝𝑝𝑖𝑖1, 𝑝𝑝𝑖𝑖2, … , 𝑝𝑝𝑖𝑖𝐺𝐺}
𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠
�⎯⎯⎯⎯⎯⎯⎯� {𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝𝑖𝑖1),𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝𝑖𝑖2), … ,𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝𝑖𝑖𝐺𝐺)} 

�𝑟𝑟𝑟𝑟1
(𝑙𝑙), 𝑟𝑟𝑟𝑟2

(𝑙𝑙), … , 𝑟𝑟𝑟𝑟𝐺𝐺
(𝑙𝑙)�

𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠
�⎯⎯⎯⎯⎯⎯⎯� �𝐶𝐶𝐶𝐶𝐶𝐶 �𝑟𝑟𝑟𝑟1

(𝑙𝑙)� ,𝐶𝐶𝐶𝐶𝐶𝐶 �𝑟𝑟𝑟𝑟2
(𝑙𝑙)� , … ,𝐶𝐶𝐶𝐶𝐶𝐶 �𝑟𝑟𝑟𝑟𝐺𝐺

(𝑙𝑙)�� (𝐼𝐼𝐼𝐼. 2.7) 

Then, two types of distance can be calculated: (1) the distance between two given realisations 
(between-realisation) and (2) the distance between any realisation and the TI (within-realisation). 
The distance has to be able to summarise total differences between the CHPs of realisations and 
TI. Thomas and Joy in 2006 proposed a statistical measure of distance, termed Jensen-Shannon 
divergence where the divergence for two frequency distributions is the average of two Kullback-
Leibler divergences. Regarding CHP, in each subresolution 𝑔𝑔, the Jensen-Shannon distance be-
tween the CHPs of 𝑙𝑙th realisation and TI in one algorithm 𝑘𝑘 is: 

𝑑𝑑𝑔𝑔 �𝑟𝑟𝑟𝑟𝑘𝑘
(𝑙𝑙), 𝑝𝑝𝑖𝑖𝑘𝑘� =

1
2
� 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑔𝑔 �𝑟𝑟𝑟𝑟𝑘𝑘,𝑔𝑔

(𝑙𝑙) � log�
𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑔𝑔 �𝑟𝑟𝑟𝑟𝑘𝑘,𝑔𝑔

(𝑙𝑙) �

𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑔𝑔�𝑝𝑝𝑖𝑖𝑔𝑔�
�

𝐶𝐶𝑔𝑔

𝑐𝑐𝑔𝑔=1

                                +
1
2
� 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑔𝑔�𝑝𝑝𝑖𝑖𝑔𝑔� log�

𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑔𝑔�𝑝𝑝𝑖𝑖𝑔𝑔�

𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑔𝑔 �𝑟𝑟𝑟𝑟𝑘𝑘,𝑔𝑔
(𝑙𝑙) �

�

𝐶𝐶𝑔𝑔

𝑐𝑐𝑔𝑔=1

 (𝐼𝐼𝐼𝐼. 2.8)
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For calculating Jensen-Shannon distance between each realisation, the same formula is applied 
by changing the TI as the other realisation. 

After the J-S distances between realisations and TI have been obtained, we can map the CHP as 
a set of points in space as multidimensional scaling (MDS) (Figure 2.21). MDS visualises the 
distances in each subresolution between clusters of realisations and the TI based on the eigen-
value decomposition (Tan et al., 2014). MDS is needed to analyse the statistical variability in the 
change of dimension visually; the size of the cloud of data plotted reflected the variability of the 
data. The axis of the MDS plot shows the largest and second-largest eigenvalues. 

 

Figure 2.21. An example of TI and MDS space. The x-axis represents the largest eigenvalue, and the y-
axis represents the second largest eigenvalue (Honarkhah and Caers, 2010).  

After that, we can now summarise the distance as variability (space of uncertainty) for within-
realisation and between-realisation in one algorithm 𝑘𝑘 for each subresolution 𝑔𝑔 that is expressed 
by: 

𝑑𝑑𝑔𝑔,𝑘𝑘
𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑛𝑛 =

1
𝐿𝐿(𝐿𝐿 − 1)�  

𝐿𝐿

𝑙𝑙=1

� 𝑑𝑑𝑔𝑔 �𝑟𝑟𝑟𝑟𝑘𝑘
(𝑙𝑙), 𝑟𝑟𝑟𝑟𝑘𝑘

�𝑙𝑙′��
𝐿𝐿

𝑙𝑙′=1

(𝐼𝐼𝐼𝐼. 2.9) 

𝑑𝑑𝑔𝑔,𝑘𝑘
𝑏𝑏𝑖𝑖𝑏𝑏ℎ𝑖𝑖𝑛𝑛 =

1
𝐿𝐿
�𝑑𝑑𝑔𝑔 �𝑟𝑟𝑟𝑟𝑘𝑘

(𝑙𝑙), 𝑝𝑝𝑖𝑖𝑘𝑘�
𝐿𝐿

𝑙𝑙=1

 (𝐼𝐼𝐼𝐼. 2.10) 

With realisation 𝑟𝑟𝑟𝑟, training image 𝑝𝑝𝑖𝑖, distance 𝑑𝑑, one specific realisation 𝑙𝑙, and the total number 
of realisations 𝐿𝐿. 

To obtain a single distance, the next step is to sum the variabilities from these subresolutions. By 
ranking of the algorithms, we have to compare between two algorithms to get the relative ordering. 
The ratios that quantify between-realisations and within-realisations differences between two al-
gorithms 𝑘𝑘 and 𝑚𝑚 per subresolution grid are expressed as below: 
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𝑟𝑟𝑘𝑘,𝑚𝑚
𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑛𝑛 = �

1
2𝑔𝑔

𝑑𝑑𝑔𝑔,𝑘𝑘
𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑛𝑛

𝑑𝑑𝑔𝑔,𝑚𝑚
𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑛𝑛

𝐺𝐺

𝑔𝑔=1

(𝐼𝐼𝐼𝐼. 2.11) 

𝑟𝑟𝑘𝑘,𝑚𝑚
𝑏𝑏𝑖𝑖𝑏𝑏ℎ𝑖𝑖𝑛𝑛 = �

1
2𝑔𝑔

𝑑𝑑𝑔𝑔,𝑘𝑘
𝑏𝑏𝑖𝑖𝑏𝑏ℎ𝑖𝑖𝑛𝑛

𝑑𝑑𝑔𝑔,𝑚𝑚
𝑏𝑏𝑖𝑖𝑏𝑏ℎ𝑖𝑖𝑛𝑛

𝐺𝐺

𝑔𝑔=1

(𝐼𝐼𝐼𝐼. 2.12) 

The ratios are a weighted average, so the higher resolution grids get more weight than lower 
resolution grids. In essence, the grid with lower resolution will contain less information and have 
less variability than the grid with higher resolution, and shorter scale pattern is more essential 
than the larger scale pattern (Tan et al., 2014). 

A good algorithm will reproduce higher spatial uncertainty between realisations (higher between-
realisation distance) and better pattern reproduction based on the TI (lower within-realisation dis-
tance). Based on those criteria, the ratio of these distances will be calculated and be ranked. The 
ranking is presented by total ratio 𝑟𝑟, expressed by: 

𝑟𝑟𝑘𝑘,𝑚𝑚
𝑏𝑏𝑡𝑡𝑏𝑏𝑠𝑠𝑙𝑙 =

𝑟𝑟𝑘𝑘,𝑚𝑚
𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑛𝑛

𝑟𝑟𝑘𝑘 ,𝑚𝑚
𝑏𝑏𝑖𝑖𝑏𝑏ℎ𝑖𝑖𝑛𝑛 (𝐼𝐼𝐼𝐼. 2.13) 

Where the best algorithm has the largest ratio compared to all other algorithms. 

2.7 Workflow 

There were three steps that became the basis in this study: data input preparation, linking pro-
cess-based simulation model with MPS, and evaluation of the results. Figure 2.22 presents the 
overall workflow in a diagram. 

Data input preparation includes importing the process-based simulation model into supported for-
mat in JewelSuite and TI construction for each particular approach. In this case, the NETCDF 
format file from the process-based simulation model data is converted into GSLIB format, so it 
can be supported and displayed properly in JewelSuite. Once the imported data has been pro-
cessed, TI were constructed. Different approaches in MPS simulation requires different TI appro-
priate for the methods. 

Linking process-based simulation model with MPS contains unconditional and conditional MPS 
simulation with two different approaches: zonation approach and control map approach. Before 
establishing conditional MPS simulation, the realisation from the unconditional simulations has to 
be validated by visual evaluation through trial-and-error processes started from the TI construction 
until successful unconditional MPS simulation. The conditional MPS simulation were carried out 
when the unconditional realisations have been acknowledged as the approved results in mimick-
ing the patterns of the Delft3D model. In this way, we can evaluate the conditional capability from 
the methods by comparing unconditional and conditional MPS simulations’ results (Arpat and 
Caers, 2007). 

The last step evaluates the results with four methods: connectivity function, E-type models, con-
ditional variance models, and analysis of distance (ANODI). The resulting evaluation will conclude 
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the optimised methodology in the study that allows the use of nonstationary process-based sim-
ulation model for TI input with MPS simulation in the fluvial-dominated delta. 

 

Figure 2.22. The flowchart in using process-based simulation model in MPS simulation in this study. 
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3 
3 Data 

3.1 Process-based simulation model as input data 

The process-based simulation model used in the study is a post-processed data from numerical 
model done in process-based modelling software Delft3D (Lesser et al., 2004), which is the PhD 
work of van der Vegt in 2018 (Figure 3.1). The output from simulation is synthetic sediment bodies 
that requires post-processing to make the translation from simulation output to descriptions fre-
quently used by geologists as fixed-size predefined calculation cells. The post-processing proce-
dures identify the active channel network, describe delta architecture as subenvironments and 
facies, also analyse grain size distributions throughout the sediment bodies. 

This study chose a model that comprises a dominantly medium sand composition delta that mim-
ics fluvial-dominated delta progradation onto shelves with low slopes (van der Vegt, 2018) (Figure 
3.1). For a more detailed explanation on the delta’s parameters, see (van der Vegt, 2018). The 
post-processed files are in the NETCDF4 format, that allows the storage of a diverse set of pa-
rameters and their descriptions so that it can be later processed in most widely used programming 
software. 

 

Figure 3.1. Final bathymetry of the fluvial-dominated delta simulation output from Delft3D, shown in a ver-
tical section. Each line in the vertical section represents time-slice in one time deposition. Note that the 
displayed data is the original simulation output data, not the post-processed data (van der Vegt, 2018). 
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The total dimension of the NETCDF4 file is 282 x 302 x 321 (i x j x k) cells, each of the horizontal 
dimensions of the calculation cells used are 50 m x 50 m. The 3D grid of the NETCDF4 file does 
not necessarily show a 3D model of the reservoir, but only a display of 321 layers of time-slices 
(defined as k-layers in the k-axis) that each represents one layer of sediment that is being depos-
ited in that period. The period is a user-defined amount of time defined as the hydrodynamic time, 
where an initial and final date is prescribed, in this case, is 320 days. Each day was applied a 
morphological scaling factor of 30 (Ranasinghe et al., 2001; as cited in van der Vegt, 2018), which 
means the one hydrodynamic year represents 30 years of deposition and erosion. The first layer 
is the layer with no deposition and erosion (start of the simulation). 

Each grid in the layer is defined with one value of each property, such as thickness, facies, and 
depth value. The represented time in the process-based simulation model is expected to be in 
the order of a century to millennial scale, considering the volume of deltaic deposition (Li, Storms, 
and Walstra, 2018). The assumption taken in the simulation is the constant and high-level fluvial 
input, representing bankfull discharge when the most sediment is expected to be delivered in the 
basin. For a more detailed description on the data, see (van der Vegt, 2018). 

Available post-processed data from Delft3D that can be used in this study as variables are: 

• Subenvironment 
• Architectural element (facies) 
• Diameter 
• Net-to-gross 
• Sorting 

The study focuses on the use of the facies’ pattern in the MPS simulation, which resulted from 
the subdivision of the subenvironment variable. The subenvironment variables are: 

• Delta top, including deposition below 5 m of water depth, deposition within the active chan-
nel network until the brink point depth, deposition above the brink point depth, any cell that 
is 0.5 m below the brink point and contains 1% sand. 

• Delta front, including deposition down to 10 m of water depth, and deposition above the 
delta front limit that contains at least 1% sand 

• Prodelta, including everything below the prodelta cut-off depth  
• Inactive, including everything which have not at least 15 mm deposition in one time interval 

The basis on the subenvironment definition is the hydrodynamic processes that is controlling how 
the grain size classes will be retained by the subenvironment, and which will be eroded (van der 
Vegt, 2018). Also, the sediment supply composition affects to the grain size classes available and 
affects the interaction within sediment. In the end, the whole processes combined with the sedi-
ment supply composition will determine the geometry, depositional, and reworking processes in 
each subenvironment (van der Vegt, 2018). 

The subenvironments are further subdivided into seven architectural elements (Figure 3.2): 

• Delta top subenvironment: 
o Channel accretion facies, defined as lateral and vertical accretion deposit as the 

channels migrate 
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o Channel fill facies, defined as fining upwards deposit within previously active chan-
nels until it reaches the delta brink 

o Delta top background facies, defined as the remainder of the delta top deposit 
between the active distributary channels 

• Delta front subenvironment: 
o Mouth bar facies, defined as sandy sediment deposited where sediment-laden jet 

exits channel mouth 
o Delta front background facies, defined as the lobate deposits travelling further than 

the mouth bar sands and the remainder sediments 
• Prodelta subenvironment: 

o Prodelta facies, defined as the fine sediment deposited below the fair-weather 
wave base 

• Inactive subenvironment: 
o Inactive facies, including everything which have not at least 15 mm deposition in 

one time interval of deposition 

3.2 Preparation of the input data 

The study used JewelSuite software to generate MPS realisations using process-based data as 
the TI. One of the supported grid data in JewelSuite is GSLIB, a simple ASCII format with no data 
compression or alphanumeric characters that have flexibility in changing and storing the data. 
This GSLIB format particularly using the simplified GEO-EAS format, in which each variable 
stored in vertical columns (Ziegel, Deutsch, and Journel, 1995). To convert the process-based 
model format in NETCDF into GSLIB format, MATLAB software was used. The data sequence 
was manipulated and converted into GSLIB format and be displayed in JewelSuite software 
whether the data has been formatted correctly or not. 

Again, while the process-based simulation model grid itself is 3D, the output from the Delft3D 
software describes each time-slice as one layer of sediment which deposited in the range of each 
time layer and listed the grid properties as the properties of each cell. In the process-based sim-
ulation model, erosion might occur (depicted as a negative number of thickness value), and one 
time-slice layer grid might overlap with the other time-slice (showed by overlaying in the depth 
value). 

JewelSuite’s capability in importing the GSLIB data stores each grid into the grid counting system 
is limited, defining each cell in sequence within its grid counting system, instead of placing each 
cell in its according to the depth value. This results in importing the process-based simulation 
model into JewelSuite as a 3D grid, with each k-layer of time-slice as 2D map view with no differ-
ence in depth in each time-slice (Figure 3.2). Correspondingly, this study treated each time-slice 
as a 2D time-slice layer with a 50 x 50 x 50 m cube dimension in each cell. 

Channel accretion and channel fill facies were two of the facies that comprises the channel sedi-
ments. A problem with the channel fill facies is that it shows scattered distribution to the TI grid, 
resulting in a chaotic pattern of the channels (Figure 3.2). A solution for the distribution problem 
is we combined two of the facies in order to create one channel facies, labelled as channel ac-
cretion facies for simplicity. The results were more consistent channels where little artefacts were 
found in the channel bodies (Figure 3.10) and (Figure 3.11). 
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Figure 3.2. The Delft3D simulation model in JewelSuite. The whole grid consists of variables including 
inactive cells that is also needed in the MPS simulation. Display without inactive cells were shown in middle 
and lower pictures to clearly show the sediment bodies. Each k-layer time-slice represents a period of 
deposition in a period of the order of a century to millennial scale, shown in a flat 2D layer. 

(a) Whole 3D grid of the data (b) Sliced 3D grid of the data 

(c) Subenvironment for older, 250th k-
layer 

(d) Subenvironment for younger, 1st k-layer 

(e) Facies for older, 250th k-layer (f) Facies for younger, 1st k-layer 
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3.3 TI construction and its properties 

The limitation of displaying the process-based model in JewelSuite without the difference of depth 
value made this study opted for the use of 2D grid in displaying of each time-slice. Consequently, 
the overlapping and the erosion of the sediment presented in simulation cells will not be apparent. 
This choice of 2D grid will show the patterns of the variable correctly in a map view. 

Two approaches in handling nonstationarity were done in the study, which were zonation and 
control map approaches, and each of the approach needed different TI. Prior to commencing the 
construction of the TI, the decision of the suitable k-layer (layer in the k-direction) as time-slice 
were done to represents the while fluvial-dominated delta development. One of the most important 
of the adequate TI to be used in MPS simulation is the necessity of sufficient pattern repetition 
and broad enough so it is becoming unbiased and represents the range of variability (Michael et 
al., 2010). Judging from the facies patterns, the variations of repetitions lies in the channels rep-
resented by channel accretion and mouth bar facies, and their patterns become the basis of the 
TI time-slices selection. 

This study chose two cases of the patterns’ repetition in time-slices that represents the whole 
fluvial-dominated delta development: Case A with high repetition in the patterns, represented by 
the 240th k-layer and Case B with low repetition in the patterns, represented by the 100th k-layer 
(Figure 3.3). 

Figure 3.3. Facies display of the architectural elements (facies) variable. Upper picture depicts Case A: 
240th k-layer with high repetition, lower picture depicts Case B: 100th k-layer with low repetition. 

(a) Case A: TI 240th k-layer 

(b) Case B: 100th k-layer 
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Case A denotes early development of the delta (anabranching channels, high repetition in the 
patterns) and Case B for the later stages of the delta (meandering to straight channels, low rep-
etition in the patterns). Those two time-slices assumed enough to illustrate the capability of MPS’ 
IMPALA algorithm in handling the complexity of the various channels patterns. We also cropped 
the non-marine part of the delta where the sediment source originated, shown in the east (upper) 
part of the simulated delta so the MPS simulation could focus on the reservoir. The resulting TI 
grids is shown in the Figure 3.3, with the grid’s dimension of 228 x 121 x 1 cells, which is also 
going to be used as the dimension of the simulation grid. 

3.3.1 TI for zonation approach 

The zonation approach implies that we identify several zones in the TI grid that are considered 
stationary and use new different TI specifically designed for the patterns in the zonation. The 
information on the statistics and structural geometry can be obtained from the Delft3D simulation 
model, then utilised on the new TI that has increased pattern repetition so that it can be assumed 
approaching stationarity. 

The Delft3D simulation model defines the subenvironment based on the hydrodynamic processes 
and sediment supply composition; resulting in similar geometry, depositional, and reworking pro-
cesses in each subenvironment (van der Vegt, 2018). Based on those rules that act as the prin-
cipal, we can determine that each subenvironment is statistically assumed stationary with the 
same processes that controlled the processes and use each subenvironment as stationary zona-
tion (Figure 3.4). 

 

Figure 3.4. Facies and its subenvironments of Case A and Case B. The subenvironments act as the sta-
tionary zonations for the zonation approach. 

There are no distinct sediment bodies with peculiar patterns within the prodelta and inactive zo-
nations. With this consideration, those zonations will not be considered as required reservoir to 
be simulated in MPS simulation and will be applied with the same facies from the Delft3D data. 
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New TIs will only be required for each delta top and delta front zonations where both TI for each 
zonations share the same facies accretion facies for transition purposes in MPS simulation. 

The striking variation of the patterns obtained in the sediment bodies which are the channel ac-
cretion and the mouth bar facies (Figure 3.3), both represent the distributary channels and the 
resulting sandy mouth bars building out at the end of the channels. The study then chose one 
representative channel and the delta lobes to has its dimension extracted to be used in the new 
TI construction (Figure 3.5), then constructed the new TI using the built-in graphical module in 
JewelSuite. Resulting new TIs were presented in the next sections. 

 

Figure 3.5. Dimension extraction from the Delft3D simulation model. There are three dimensions acquired 
from the channel accretion and the mouth bar facies (channel width, lobe width, and lobe length) which 
serve as the dimensions in the new TI construction. 

3.3.1.1 Case A: high repetition 

New smaller TIs were created for Case A with the dimensions of 50 x 50 x 1 cells. This grid size 
is suitable enough to capture the anabranching patterns of the facies and also the mouth bars. 
Between the delta top and delta front zonations, channel accretion facies acts as the bridge be-
tween the patterns across the zonations. For the delta top zonation, we created the anabranching 
channels pattern with the channel accretion facies. For the delta front zonation, single mouth bar 
and channel accretion facies are enough to accommodate the reproduction of the delta, so the 
MPS simulation will recreate mouth bars in the boundary of delta top and delta front zonations. 

Channel width 

Lobe width 

Lobe length 
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Figure 3.6. The 240th k-layer for each of new TI for delta top and delta front subenvironment. 

From the Figure 3.3, this case has distributary channels that develop radially from the source of 
the sediment. To mimic the realisations to be as closely as possible to the original data had the 
need of data event transformation variable in the form of azimuth map. The azimuth map defines 
the rotation to the area it applied, so we can impersonate the radial distribution of the channels. 
We created an azimuth map that is divided into eight different azimuth zones, each of the zones 
has 30 degrees of clockwise rotation increment (Figure 3.7). It was considered that eight zones 
of azimuth rotation would similarly accommodate the rotation based on the Case A and Case B 
TIs. 

 

Figure 3.7. The azimuth map used in the Case A and Case B. The zones will apply clockwise rotation to 
the patterns found on the zones. 
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3.3.1.2 Case B: low repetition 

The new TIs for Case B is similar to Case A, where new TIs were required in the delta top and 
delta front zonation. The grids have the same grid dimension (50 x 50 x 1 cells) and the same 
facies that are embodied in each zonations, but the difference is the patterns in the delta top 
zonation. Only two channel bodies in channel accretion facies compared to Case A whose chan-
nels were anabranching. These channels in Case B were branching in the south part of the TI 
grid to mimic the patterns in original Delft3D data. 

 

Figure 3.8. The 100th k-layer for each of new TI for delta top and delta front subenvironment. 

Azimuth map needed in the Case B is similar to Case A, where the distributary channels are 
developing radially through the grid. Although the rotation is not necessarily the same, we decided 
to use the same azimuth map as Case A as it accommodated the rotation properly in Case B 
(Figure 2.1).  

3.3.2 TI for control map approach 

Handling nonstationarity in MPS simulation using control map utilises a single original TI as the 
input. No azimuth map is needed because the control map will decide which patterns that would 
occur in the simulation grid, including the data properties transformation such as rotation. 

Riou, Höcker, and Hughes in 2015 stated the availability of the auxiliary variables from the data 
available can be used to define the connection between the nonstationary patterns. We have the 
diameter, sorting, net-to-gross fraction, and subenvironment variables from the input data (Figure 
3.9). Those data were tried in MPS simulation to see its capability as the control map. 
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Figure 3.9. The diameter, net-to-gross, and sorting variable of Case A and Case B. 

As can be seen from the Figure 3.9, the variables are either strictly positioned to the sediment 
body (diameter variable) or there is very little variation throughout the whole delta (net-to-gross 
and sorting variables). We decided not to constrain the delta development with the goal of creating 
freedom for the MPS simulation in simulating the facies by the control map. After all, the objective 
of the MPS simulation is to stochastically simulate the patterns to mimic the original data, not to 
force behaviour to the sediment body. The diameter, sorting, and net-to-gross fraction variables 
revealed to be too constrained in space (Figure 3.9), hence we utilised subenvironment (Figure 
3.4) as the basis of our control map. 

The decision to use subenvironment as control map was based on the hydrodynamic processes 
and the sediment supply composition that differ in every subenvironment. The MPS algorithm will 
have the freedom on simulating sediment bodies within each subenvironment and fulfil our objec-
tive of stochastic simulation. 
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3.3.2.1 Case A: high repetition 

The TI used in Case A is the 240th k-layer from the Delft3D data. It has high repetition in the fluvial 
patterns, shown by anabranching channels from proximal part of the delta (Figure 3.10). The 
distribution of the fluvial patterns reveal radial patterns of the distributary channels development 
where multiple, interconnected channels were separated by the delta top background facies. 

To commence the control map construction, the subenvironment variable was transformed into 
0-1 values where the highest value is in the delta top subenvironment and the lowest value is in 
the inactive subenvironment. There is no definite rule on deciding the value, as long as the values 
were sorted from high to low and there are no overlapping values between the subenvironments. 
Once the variables have been converted into values, smoothing process were performed to en-
sure the smooth transition in the simulation process. 

 

Figure 3.10. TI display of the 240th k-layer which shows low repetition in the fluvial patterns and its control 
map based on its subenvironment. 

3.3.2.2 Case B: low repetition 

The 100th k-layer of Delft3D data as TI in Case B has low repetition of patterns in the grid. Same 
steps have been taken to construct the control map in Case B where the subenvironment variable 
was converted into 0-1 values and then smoothened. 
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There are obvious difficulties in handling nonstationarity with low repetition of patterns, but the 
use of subenvironment as control map were considered able to overcome the limitation by simu-
lating the patterns within the stationary subenvironment. 

 

Figure 3.11. TI display of the 100th k-layer which shows low repetition in the fluvial patterns. 

3.4 Hard data selection for conditional simulations 

The presence of hard data in MPS simulation will define the similarity between the simulated 
model and real data. In this study, the hard data are grid cells comprised of facies variable from 
the Delft3D data. In an attempt to investigate the conditional capability of the IMPALA MPS algo-
rithm, the study chosen dense and sparse hard data to be used in the conditional simulations. 
Both dense and sparse data will be affecting the conditional results of the MPS simulation. 

The placement of the hard data was carried out in the area where the variation of the patterns 
takes place, which are the delta top and delta front subenvironments (Figure 3.12). Particularly in 
the sparse data case, the hard data were placed in the distal area where the channels already 
developed (Figure 3.12c and Figure 3.12d). Also, the hard data were put in sandy deposit (Figure 
3.12c and Figure 3.12d), which are channel accretion and mouth bar facies, owing to the nature 
of the MPS’ algorithm in using the search template size and the small width of the sandy deposit’s 
facies. Positioning the hard data in this manner offers another advantage in evaluating the unilat-
eral simulation path where the data ahead of the path may not be compatible with the structures 
preceding the simulation data (Daly, 2005). 
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Figure 3.12. Hard data placement for Case A and Case B. In sparse hard data distribution, the placement 
of the hard data took place in the distal area and the sandy deposit’s facies that offers advantage in eval-
uating the unilateral simulation path. 
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4 
4 Results 

 

This chapter describes the results from unconditional and conditional MPS simulations using zo-
nation and control map approaches. The study used visual inspection to determine the method in 
unconditional MPS simulations that produces the patterns of the sandy deposit (channel accretion 
and mouth bar facies) properly, then further evaluated using connectivity function. There were 
several approaches with different simulation paths that have been taken in Case A and Case B, 
termed with Method I-IV: 

• Method I, zonation approach with random simulation path 
• Method II, zonation approach with unilateral -J+I simulation path 
• Method III, control map approach with random simulation path 
• Method IV, control map approach with unilateral -J+I simulation path 

The conditional MPS simulations were carried out with using the methods from unconditional 
simulation that have passed the visual inspection, using dense and sparse hard data. This deci-
sion helps to ensure that the approved methods can mimic the patterns in Delft3D model correctly 
and can be evaluated for both unconditional and conditional MPS simulations (Arpat and Caers, 
2007). E-type model, conditional variance model, and analysis of distance (ANODI) were adopted 
to obtain further in-depth information on the conditional capabilities. The final stage of this chapter 
comprised an evaluation on the best performance in mimicking the patterns within the performed 
method for both unconditional and conditional MPS simulation in fluvial-dominated delta model 
using process-bases simulation model. 

4.1 Unconditional MPS simulation results 

In zonation approach, azimuth map was used to apply the data events transformation in order to 
mimic the Delft3D data. For control map approach, there are no additional data events transfor-
mation variable other than control map to handle the nonstationarity in the MPS simulation. 

To evaluate the whole fluvial-dominated delta development in MPS simulation, this study used 
two cases based on two different time-slices: 240th k-layer as Case A that has high repetition in 
its sandy deposit’s patterns, depicted in Figure 4.1, and 100th k-layer as Case B that has low 
repetition in its sandy deposit’s patterns, shown in Figure 4.2. The sandy deposit are channel 
accretion and mouth bar facies, in the delta top and delta front subenvironment. 
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Figure 4.1. Case A and its histogram for its facies. Case A has high repetition in its sandy deposit’s facies, 
which are channel accretion and mouth bar facies. 

 

Figure 4.2. Case B and its histogram for its facies. Case B has low repetition in its sandy deposit’s facies, 
which are channel accretion and mouth bar facies. 
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4.1.1 Case A 
4.1.1.1 Method I 

All the result in Method I was carried out using zonation approach with random simulation path 
(Figure 4.3). This method utilised four different TI for each of the zonations and azimuth map as 
additional input. 

 

Figure 4.3. Unconditional simulation results from Case A and its facies’ histogram using Method I. 

As shown in Figure 4.3, results from Method I showed good continuity with the channel accretion 
facies, continued by the mouth bar facies advancing through the end of the channels. There were 
several dispersed delta front facies in the delta top zonation caused by the original mouth bar 
facies shown in the Delft3D model. On average, Method I delivered visually similar results to the 
original Delft3D model. 
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4.1.1.2 Method II 

Method II was carried out using zonation approach and unilateral simulation path with -J+I direc-
tion (Figure 4.4). This method utilised four different TI for each of the zonations and azimuth map 
as additional input. 

 

Figure 4.4. Unconditional simulation results from Case A and its facies’ histogram using Method II. 

Looking at Figure 4.4, it is apparent that the realisation from Method II were comparable to Method 
II and the original Deltf3D model. The channel continuity was good, and the mouth bar facies 
were constructed correctly in the end of the channel accretion facies. The dispersed delta front 
background facies was also found in Method II’s realisations. In summary, a positive visual cor-
relation was found between the Method II realisations and the original Delft3D model. 
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4.1.1.3 Method III 

Method III simulated the TI using control map approach and random simulation path (Figure 4.5). 
This method only utilises single Delft3D k-layer as its TI with no additional input. 

 

Figure 4.5. Unconditional simulation results from Case A and its facies’ histogram using Method III. 

As can be seen from the Figure 4.5 above, the realisation from Method III did not show any sat-
isfactory channel continuity and the simulation of the mouth bar facies. Interestingly, there were 
also differences between the realisations of Method III with control map approach compared to 
Method I and Method II with zonation approach. Control map approach gave less smooth results 
compared to the zonation approach, and there were more artefacts found in the realisations. The 
findings clearly indicate that Method III had failed in mimicking the original Delft3D model. 
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4.1.1.4 Method IV 

Method IV was performed using control map approach with unilateral simulation path in -J+I di-
rection (Figure 4.6). This method only utilises single Delft3D k-layer as its TI with no additional 
input. 

 

Figure 4.6. Unconditional simulation results from Case A and its facies’ histogram using Method IV. 

The difference between Method III and Method IV was significant. Compared to Method III, 
Method IV gave a more appealing results in using the control map approach. Method IV has 
successfully simulated the channel continuity owing to the unilateral simulation path, supported 
with the mouth bars that was recreated in the end of the channel accretion facies. These results 
suggest that Method IV with the combination of unilateral simulation path in control map approach 
had managed the nonstationarity well. 
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4.1.2 Case B 
4.1.2.1 Method I 

Using the zonation approach with random simulation path, Method I was conducted to the Case 
B with low repetition in the patterns. This method made use of four different TI in each zonations 
and azimuth map as additional input. 

 

Figure 4.7. Unconditional simulation results from Case B and its facies’ histogram using Method I. 

The figure above illustrates the realisations from Method I. What stands out in the realisation is 
the channel accretion facies, where more proportions and much higher repetitions were created. 
While the channels were developing correctly where mouth bars facies were identifiable at the 
end of the channels, this method suffered from channel discontinuity. 
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4.1.2.2 Method II 

Nonstationarity was being handled using Method II with zonation approach and unilateral -J+I 
path. This method employed four different TIs for each zonations and additional input of azimuth 
map. 

 

Figure 4.8. Unconditional simulation results from Case B and its facies’ histogram using Method II. 

Method II brought equivalent results to Method I, notably in the channels’ patterns reproduction. 
Channels discontinuity was also found in the realisations. No significant similarity was found from 
this method to the original Delft3D model, that leads us to the incapability of the zonation map in 
delivering good results from the Case B with low repetition in the patterns. 
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4.1.2.3 Method III 

Method III was carried out using control map approach and unilateral -J+I path. Single TI based 
on the original Delft3D data was used with no additional input in azimuth map. 

 

 

Figure 4.9. Unconditional simulation results from Case B and its facies’ histogram using Method III. 

From the realisation, it can be seen that Method III gave disorganised patterns in both of channels 
accretion facies and mouth bars. The boundaries between facies were roughly simulated and 
several artefacts were identified. But we can see from the realisation that the centre channel 
accretion facies was simulated, although it is disconnected. Overall, the combination of control 
map approach with random simulation path did not give favourable results to the simulation, so 
we see how the results were in using unilateral simulation path with Method IV, explained in the 
next section. 
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4.1.2.4 Method IV 

Method IV simulated the single TI using control map approach and unilateral -J+I map. No addi-
tional input was introduced in azimuth map. 

 

Figure 4.10. Unconditional simulation results from Case B and its facies’ histogram using Method IV. 

The correlation of the realisations between Method IV and Method III is interesting because while 
using the same control map approach in the same Case B, the difference in the use of unilateral 
simulation path delivered proper results to the simulation. The main channel was simulated cor-
rectly with good continuity, at the same time keeping the boundaries between the facies reason-
ably smooth. Comparing those four methods in simulating Case B, only this method had success-
fully simulated the complete sandy deposit facies in low repetitive patterns. 

4.1.3 Evaluation of the results 
4.1.3.1 Visual inspection of Case A and Case B 

In this evaluation, all the realisations from four methods for each Case A and Case B were as-
sessed based on the features of the original Delft3D model, which are the continuity of the chan-
nels pattern, the recreation of the mouth bar facies in the end of the channel accretion facies, and 
the proportion of the patterns’ repetition. The judgment of the visual inspection from the realisation 
is a decision of the geomodeler, so subjectivity of the geomodeler become the uncertainty in the 
evaluation. The appropriate methods in unconditional MPS simulation are important to determine 
which method that simulate the patterns correctly, and later to be used in the conditional MPS 
simulation. 

In Case A, zonation approach represented in Method I and Method II delivered good results in 
recreating Delft3D patterns. The channels and mouth bar patterns were simulated similarly to the 
Delft3D model, along with proportion of the channel accretion facies. In the control map approach 
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of Method III and Method IV, only Method IV showed acceptable results in channels continuity. 
Together these results provide important insights to the acceptable methods in simulating TI with 
high repetitions, and they are Method I, Method II, and Method IV. 

Case B showed pleasing results only in Method IV where the channels continuity was simulated 
correctly. The other methods revealed either poor continuity, a much higher facies proportion, or 
rough edges along the facies. Taken together, the methods that passed the visual inspection for 
Case B in low repetition patterns is only Method IV; nevertheless, Method III was tested next in 
the conditional results to see its conditional capability and be compared to Method IV within the 
same control map approach. 

4.1.3.2 Connectivity function 

By using MATLAB, connectivity function calculation was performed to analyse the similarity be-
tween the realisations of the methods and the TI from the original data of Delft3D simulation 
model. The comparations of the connectivity function in each method tested were to support the 
visual inspection. 

The facies used in the analysis was the sandy deposit consisting of the combination between 
channel accretion facies and mouth bar facies. This was because the variation of the patterns lies 
in those two facies, so performing connectivity function in those facies would be the most appro-
priate way. The carried-out connectivity function calculation was on the north-south direction 
where the delta was developing. 

In the connectivity function plot, the x-axis depicts the separation between the two locations in y-
direction as lag distance (measured in pixels), and the y-axis shows the connectivity function 
defined as the probability of the connection between two locations. The similarity of the appear-
ance of the connectivity function between the realisations and the TI represents the similarity of 
the sandy deposit’s patterns between the results. For better visual representation, only 10 reali-
sations were displayed in the plot. 

4.1.3.2.1 Case A 

It can be seen in the connectivity functions results through Figure 4.11 that in general, there was 
a variability in the plots between the TI and the realisations for all the methods. Some of the 
realisations managed to get a close similarity, visible in Method II and Method IV, while most of 
the realisations did not manage to get a reasonable similarity to the TI in Method I and Method III. 

A distinct anisotropy, shown in the dissimilarity of the connectivity function of the TI and its reali-
sations, was present amongst most of the realisations. Most of the anisotropy were at a lag dis-
tance above 10 pixels where the connectivity functions started to diverge. In higher lag distances, 
the plateau of connectivity function was reached with the value of 1 in some of the realisations in 
all approaches and paths, most prominent in Method IV that is zonation approach with the unilat-
eral simulation path. Higher connectivity function in the higher lag distance where the TI's con-
nectivity function had reached 0 means that the simulated realisations were able to simulate 
longer geobodies and better connectivity contrast to the TI's geobodies. 

While there were no results that shown close similarity, Case A with high repetition in its patterns 
shown better similarity in connectivity function in Method II and Method IV, both made use of 
unilateral path as the simulation path. 
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Figure 4.11. Connectivity function of Method I, Method II, Method III, and Method IV in Case A. The similarity 
of the connectivity function reflects good patterns’ reproduction between realisations and TI. Only 10 reali-
sations are displayed in the plot to show better visual representation. 

4.1.3.2.2 Case B 

In the evaluation of Case B with low repetition in sandy deposit’s patterns through connectivity 
function, unilateral path as the simulation path revealed better results through Method II and 
Method IV as shown in Figure 4.12. 
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Figure 4.12. Connectivity function of Method I, Method II, Method III, and Method IV in Case B. The similarity 
of the connectivity function reflects good patterns’ reproduction between realisations and TI. Only 10 reali-
sations are displayed in the plot to show better visual representation. 

In Method I and Method III, which were both using random simulation path, had failed to manage 
good connectivity. Method I depicts a high anisotropy with high divergence in connectivity func-
tion. In Method III, none of the realisations had succeeded in achieving similar connectivity func-
tion nor reached the same connectivity function as the TI. 

The realisations in the Method III and Method IV appeared much better in connectivity function, 
while some of them also did not have the similar connectivity as the TI by reaching the value 0 
before the lag distance achieved by the TI. The most interesting aspect of those two methods is 
in Method II, where the realisations achieved similar connectivity function with the TI. From its 
realisation (Figure 4.8), Method III is visually not similar to the original Delft3D data but managed 
to get good results in connectivity function. The connectivity function evaluates connectivity within 
the sandy deposit where in some cases like Method III supports good connectivity with the method 
but failed to mimic the patterns from the TI. 

The results from connectivity function in Case B with low repetition in the patterns had shown that 
the unilateral simulation path in Method II and Method IV succeeded in reproducing low repetition 
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in patterns and delivered better connectivity compared to random simulation path in Method I and 
Method III.  

4.1.4 Summary of the unconditional MPS simulation results 

After performing all the unconditional results using Method I-IV and evaluating the results using 
visual inspection and connectivity function, this study has identified the applicable method to han-
dle nonstationarity in unconditional MPS simulations using Delft3D simulation model data. The 
chosen methods were based from the visual inspection where the facies were simulated correctly 
and similar to the original Delft3D data, and also supported by the connectivity function: 

• In Case A with high repetition in the patterns, the good results from visual inspection were 
obtained from Method I (zonation approach with random simulation path), Method II (zo-
nation approach with unilateral simulation path), and Method IV (control map approach 
with unilateral simulation path). Those methods have succeeded in simulating distributary 
channels in channel accretion facies and its sandy mouth bar in the mouth bar facies, 
added with the acceptable similarity of the patterns. 

• In Case B with low repetition in the patterns, Method IV (control map approach with uni-
lateral simulation path) had passed the visual inspection. Although only Method IV had 
managed to get a good continuity within the channels, Method III (control map approach 
with random simulation path) was included in the next simulation and evaluation to be a 
comparison with the Method IV. 

• All of the connectivity function calculation results had a range of variability between the TI 
and the realisations, shown with diverging connectivity functions in the plots. The use of 
unilateral simulation path in MPS simulation showed better connectivity for the sandy de-
posit compared to the random simulation path and succeeded to simulate Case B com-
bined with control map approach. 

4.2 Conditional MPS simulation results 

Having conducted the unconditional MPS simulation and evaluated the method through visual 
inspection and connectivity function analysis, we have acquired acceptable methods in mimicking 
the patterns in Delft3D model. Those method will be tested in conditional MPS simulation using 
dense and sparse hard data for both Case A and Case B to evaluate the conditional capabilities 
using hard data: 

• Case A 
o Method I, zonation approach with random simulation path 
o Method II, zonation approach with unilateral -J+I simulation path 
o Method IV, control map approach with unilateral -J+I simulation path 

• Case B 
o Method III, control map approach with random simulation path 
o Method IV, control map approach with unilateral -J+I simulation path 
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4.2.1 Case A 
4.2.1.1 Method I 

Method I used zonation approach with random simulation path. The inputs were the same as the 
unconditional simulations, where four different TIs were used with azimuth map as the additional 
input. 

 

Figure 4.13. Conditional simulation results from Case A using Method I. 

As shown in Figure 4.13, the results in using dense and sparse data were visually similar. Closer 
inspection of the channel accretion facies revealed that there was more discontinuity in the sparse 
hard data. Other than that, both of the hard data distribution contributes to the conditional MPS 
simulation performance. 
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4.2.1.2 Method II 

Method II incorporated zonation approach with unilateral -J+I path in four different TIs in each 
zonations. Azimuth map as rotation was used as additional input data. 

 

Figure 4.14. Conditional simulation results from Case A using Method II. 

The capability of unilateral simulation path had shown its shortcomings, strikingly in the sparse 
hard data realisations. It is apparent from Figure 4.14 that more discontinuity had appeared in the 
channel accretion facies in sparse hard data. In the other hand, there was no problem in mimick-
ing the Delft3D patterns using dense hard data. 
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4.2.1.3 Method IV 

Using the control map with unilateral -J+I path, Method IV was performed to Case A with both 
dense and sparse data. Single TI from the original Delft3D simulation model data was used, and 
the results were expressed in realisations for each hard data distribution. 

 

Figure 4.15. Conditional simulation results from Case A using Method IV. 

As Figure 4.15 shows, there is an indicative difference between conditional and unconditional 
MPS simulations of Method IV. In conditional simulations, the appearance of the facies’ patterns 
was disordered, particularly in the case with dense hard data. The prodelta facies in dense hard 
data gave the chaotic patterns with artefacts that was not found in sparse hard data or uncondi-
tional MPS simulations. In terms of the channel continuity, both dense and sparse hard data 
struggled to achieve good continuity. 
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4.2.2 Case B 
4.2.2.1 Method III 

Method III simulated the single TI based on the Delft3D model data with using control map and 
random simulation path. There was no additional azimuth required in the simulation. 

 

Figure 4.16. Conditional simulation results from Case B using Method III. 

From this Figure, we can see that Method III resulted in poor channels continuity from the channel 
accretion facies. Dense hard data did not make the continuity better, and it was more discontinued 
in the sparse hard data. There was also a tendency in making the main channel in the centre in 
the dense hard data. The results expressed that random simulation path strived in giving continu-
ity of the channels’ pattern. 
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4.2.2.2 Method IV 

Method IV conditionally simulated the single TI from Delft3D simulation model with control map in 
unilateral -J+I path. Realisations were represented for dense hard data and sparse hard data. 

 

Figure 4.17. Conditional simulation results from Case B using Method IV. 

The results from conditional simulation using Method IV is revealing in several ways. First, unlike 
the other methods, this method had successfully stochastically simulated channel continuity with 
low repetitions. The realisations, shown in Figure 4.17, had channels simulated from north to 
south. Trouble in simulating the channel was apparent in Figure 4.17c where the channels was 
finally simulated after had encountered the hard data, leaving delta top background in cells in the 
north side of the grid. 
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4.2.3 Evaluation of the results 
4.2.3.1 Connectivity function 
4.2.3.1.1 Case A 

 

Figure 4.18. Connectivity function of Method I, Method II, and Method IV in Case A with dense hard data. 
The similarity of the connectivity function reflects good patterns’ reproduction between realisations and TI. 
Only 10 realisations are displayed in the plot to show better visual representation. 

Interestingly, in overall judging from the connectivity results in Figure 4.18 where the dense hard 
data were applied in Case A, the realisations has lower connectivity compared to its TI. Unilateral 
simulation path results in Method II and Method IV has higher connectivity in contrast to the ran-
dom simulation path in Method I. 



Conditional MPS simulation results 61 

  

 

Figure 4.19. Connectivity function of Method I, Method II, and Method IV in Case A with sparse hard data. 
The similarity of the connectivity function reflects good patterns’ reproduction between realisations and TI. 
Only 10 realisations are displayed in the plot to show better visual representation. 

The results from Case A using sparse hard data again shown better connectivity in unilateral 
simulation path in Method II and Method IV (Figure 4.19). Random simulation path shown in 
Method I reflects low connectivity where MPS simulation with random simulation path struggled 
to simulate channels’ patterns in sparse data. From Method II and Method IV with unilateral sim-
ulation path, connectivity function of the realisations has the tendency to increase in higher lag 
distance, especially in Method II with zonation approach. 

Taken together, these results suggest that there is an association between better connectivity 
with unilateral simulation path in conditional MPS simulation, for both dense and sparse hard data 
distribution. Correlated with the unconditional MPS simulation, the presence of hard data de-
creases the overall connectivity in the realisations. 
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4.2.3.1.2 Case B 

 

Figure 4.20. Connectivity function of Method III and Method IV in Case B with dense hard data. The simi-
larity of the connectivity function reflects good patterns’ reproduction between realisations and TI. Only 10 
realisations are displayed in the plot to show better visual representation. 

Similar to Case A, testing the connectivity of conditional MPS simulation of Case B has shown 
much lower connectivity in the realisations. Figure 4.21 shows clearly that none of the realisations 
has similar connectivity function compared to the TI, with all of them showing low connectivity. 

 

Figure 4.21. Connectivity function of Method III and Method IV in Case B with sparse hard data. The simi-
larity of the connectivity function reflects good patterns’ reproduction between realisations and TI. Only 10 
realisations are displayed in the plot to show better visual representation. 

In Figure 4.21 with sparse hard data, lower connectivity is again depicted in the realisations’ con-
nectivity function. The absence of the connectivity function that has high similarity with the TI has 
shown that the MPS struggled in conditionally simulating patterns with low repetition. The results 
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indicate that in conditionally simulating Case B with low repetitive patterns will give lower connec-
tivity in the realisations, for both dense and sparse distribution of hard data. 

4.2.3.2 E-type and conditional variance models of Case A 

E-type model represented the local average (expected value) of the realisations tested, while 
conditional variance model measured the variance of the realisations as well. Both models were 
constructed from 50 realisations in each method. 

4.2.3.2.1 Method I 

 

Figure 4.22. E-type and conditional variance models of Method I for conditional MPS simulations in Case 
A. The channels accretion facies in the E-type model was shown by the value of 1. 

Dense hard data distribution in conditional MPS simulation using Method I (zonation approach 
with random simulation path) tend to simulate the patterns in specific location. In contrast, sparse 
hard data E-type and conditional variance models revealed smooth expressions, showing insig-
nificant trend in patterns reproduction. The value 0 in the location of the hard data revealed the 
quality of the conditional capability with Method I. 
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4.2.3.2.2 Method II 

 

Figure 4.23. E-type and conditional variance models of Method II for conditional MPS simulations in Case 
A. The channels accretion facies in the E-type model was shown by the value of 1. 

Both Method II (zonation approach with unilateral simulation path) and Method I (zonation ap-
proach with random simulation path) share a similarity in the E-type and conditional variance 
models. Dense hard data gave inclination in creating particular patterns, where sparse hard data 
did not give any tendency by showing smooth appearance in the models. 
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4.2.3.2.3 Method IV 

 

Figure 4.24. E-type and conditional variance models of Method IV for conditional MPS simulations in Case 
A. The channels accretion facies in the E-type model was shown by the value of 1. 

In contrast to the Method I and Method II where using zonation approach, Method IV in using 
control map approach with unilateral simulation path did not show any significant trend in the 
results of E-type and conditional variance models. Both of the E-type were smooth, supported by 
the variance where there was a number of variance across the simulation grid, even in the dense 
hard data simulation. 
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4.2.3.3 E-type and conditional variance models of Case B 
4.2.3.3.1 Method III 

 

Figure 4.25. E-type and conditional variance models of Method III for conditional MPS simulations in Case 
B. The channels accretion facies in the E-type model was shown by the value of 1. 

In Method III (control map approach with random simulation path), we can see the trend in E-type 
and conditional variance for the two channels in Case B with low patterns’ repetition. Discontinuity 
of the results were apparent for both the hard data distribution, supporting the poor continuity in 
the conditional MPS simulation results. 
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4.2.3.3.2 Method IV 

 

Figure 4.26. E-type and conditional variance models of Method IV for conditional MPS simulations in Case 
B. The channels accretion facies in the E-type model was shown by the value of 1. 

Compared to the E-type and conditional variance models of Method III (control map approach 
with random simulation path), Method IV (control map approach with unilateral simulation path) 
gave a much better trend in the channels reproduction, especially in the dense hard data results. 
In sparse hard data, the conditional simulations tend to simulate the main channel in the centre 
after encountering the hard data. In overall, the presence of hard data aided the unilateral simu-
lation path in constructing the channels’ continuity. 

4.2.3.4 Analysis of distance (ANODI) 

Prior to analysis of distance (ANODI), the template size of each grid was defined using “elbow” 
from the scree-plots based on the correlation between the eigenvalues of the covariance matrix 
and its dimensions. With using MATLAB, principal component analysis (PCA) were performed to 
determine the scree-plots and supported by maximum likelihood estimate (MLE) for the decrease 
of the covariance matrix whose dimensions is the same with the “elbow” value. 
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Figure 4.27. Left picture shows scree-plot for case A with eigenvalue in normal scale, and the right picture 
shows scree-plot for Case A with logarithmic scale for the eigenvalues. 

 

Figure 4.28. Left picture shows scree-plot for case B with eigenvalue in normal scale, and the right picture 
shows scree-plot for Case B with logarithmic scale for the eigenvalues. 

Resulting eigenvalues of the covariance matrix were plotted against the dimensions to determine 
the “elbow” which can be conjured up with a sharp decrease in eigenvalues up to the elbow loca-
tion, then a nearly flattening behaviour for the remaining points. To make it easier to find the 
“elbow” in scree-plots, the eigenvalues are shown in the logarithmic scale (Figure 4.27 and Figure 
4.28). The best choice for the dimensions is 6 for both Case A and Case B as the slope changed 
significantly and started to stabilise. This result was supported by the MLE, which was 6.26 and 
5.62 for Case A and Case B respectively. Lastly, we could use the template size of 6 x 6 for 
scanning the patterns in each subresolution. 

Statistical variations as described by Tan et al. (2014) occur at multiple scales, so we divided the 
training image and realisations into three different levels of subresolution g to compare the statis-
tical variations on the different resolution. The process started in TI's original resolution (228 x 
121 cells) and divided the resolution into two between each level with bicubic interpolation with 
the resolution 114 x 61 and 57 x 30 cells, respectively. 

The patterns within close similarity were classified and clustered as cluster-based histograms of 
patterns (CHP), which then later be used in calculating JS-divergence distances for the MDS 
plots. 
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4.2.3.4.1 MDS plot of Case A 

JS-divergence distances were calculated with the CHPs between TI-realisation and realisation-
realisation in three subresolutions, resulting in a table of 51 x 51 x 3 distances in each method. 
Multidimensional scaling (MDS) plot was used to visually show the distances between methods 
with eigenvalue decomposition, consequently between TI and the realisations of each method. 
The closer the visual distance, the more similar in statistics reproduction between the TI and the 
realisations. The x-axis on the MDS plot indicates the largest eigenvalue, y-axis to the second 
largest eigenvalue, and z-axis to the third largest eigenvalue. The results obtained from the MDS 
plot are provided in Figure 4.29 and Figure 4.30 for both dense and sparse hard data conditional 
MPS simulation. 

 

Figure 4.29. MDS plot of Case A with dense hard data. The left plot depicts the x-y plot, and the right plot 
depicts the x-y-z plot. 

 

Figure 4.30. MDS plot of Case A with sparse hard data. The left plot depicts the x-y plot, and the right plot 
depicts the x-y-z plot. 

From both of the hard data distribution in both figures, it is apparent that the size of the point 
clouds was similar in each method. The largest point cloud of data was the Method IV indicating 
high variability in the generated realisations, while Method I and Method II share the close-packed 
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distribution depicting low variability in the realisations. One can see that none of the methods was 
plotted close to the TI, saying that all of those methods were not performing well in reproducing 
the statistics of the TI, while the relatively nearest methods to the TI were Method II in dense hard 
data and Method IV in sparse hard data. 

4.2.3.4.2 MDS plot of Case B 

In Case B, same procedures were run in order to determine JS-divergence distances with the 
CHP between TI-realisation and realisation-realisation in three subresolutions. The distances 
then displayed in Multidimensional scaling (MDS) plot where distances in its eigenvalue decom-
position can be visually displayed. The x-axis indicated the largest eigenvalue, the y-axis to the 
second largest eigenvalue, and the z-axis to the third largest eigenvalue. 

 

Figure 4.31. MDS plot of Case B with dense hard data. The left plot depicts the x-y plot, and the right plot 
depicts the x-y-z plot. 

 

Figure 4.32. MDS plot of Case B with sparse hard data. The left plot depicts the x-y plot, and the right plot 
depicts the x-y-z plot. 
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The visual appreciation of Case B in MDS plot indicated that both Method III and Method IV had 
high variability in the realisations generated, showed by the massive size of the point cloud. 
Method IV gives a relatively closer statistic to the TI compared to Method III in dense hard data 
distribution, while in sparse hard data, the point cloud Method IV were plotted further against the 
TI. 

4.2.3.4.3 Ranking algorithms of Case A 

With the JS-divergence distances, we can now summarise the variability between the realisations 
("between-realisation" distance) and the resemblance between realisation and the TI ("within-
realisation" distance) of each method in each subresolution. The study calculated the sum of the 
variabilities from these subresolutions to get the overall relative ordering. The ANODI scores are 
a comparison between methods, so all the methods that have been tested are compared relative 
to Method IV (control map approach with unilateral simulation path), resulting in the value 1 for 
the score of Method IV. 

The ratios that quantify "between-realisation" and "within-realisation" distance between algorithms 
in all subresolution grid are presented in Table 4.1 and Table 4.2. The better performing methods 
compared to Method IV will give a higher “between” distance, lower “within” distance, and higher 
“total” distance. 

Table 4.1. ANODI scores for Case A with dense hard data. 

Distance Method I Method II Method III Method IV 
Space of uncertainty ("between") 0.04 0.02 0.37 1 
Pattern reproduction ("within") 0.60 0.49 1.15 1 
Total ("between/within") 0.06 0.05 0.32 1 

Table 4.2. ANODI scores for Case A with sparse hard data. 

Distance Method I Method II Method III Method IV 
Space of uncertainty ("between") 0.04 0.02 0.31 1 
Pattern reproduction ("within") 0.63 0.72 1.19 1 
Total ("between/within") 0.06 0.02 0.26 1 

In the case of conditional MPS simulation capability in Case A with dense hard data, we can 
confirm that using Method IV (control map approach with unilateral simulation path) had the high-
est space of uncertainty, shown by the largest point cloud in the MDS plot, Method III as the 
second largest space of uncertainty, while Method I had a marginally larger "between-realisation" 
distance to Method II. The results were similar to sparse hard data distribution. 

In the aspect of pattern reproduction (“within” distances) with dense and sparse hard data, Method 
I and Method II outperformed Method III and Method IV. It was proven in the MDS plot by the 
lower relative distances to the TI compared to the Method IV. The total ratio concluded that 
Method IV is the best algorithm in performing conditional MPS simulation in Case A for both dense 
and sparse hard data distribution. 
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4.2.3.4.4 Ranking algorithms of Case B 

For Case B, the variability between the realisations (“between-realisation” distance) and the re-
semblance between realisation and the TI (“within-realisation” distance) of each method were 
calculated in each subresolution. The sum of the variabilities from the subresolutions were then 
used to get the overall relative ordering in distances ranking, depicted in Table 4.3 and Table 4.4. 

Again, ANODI scores are a comparison between methods, so all the methods that have been 
tested are compared relative to Method IV (control map approach with unilateral simulation path), 
resulting in the value 1 for the score of Method IV. The better performing methods compared to 
Method IV will give a higher “between” distance, lower “within” distance, and higher “total” dis-
tance. 

Table 4.3. ANODI scores for Case B with dense hard data. 

Distance Method I Method II Method III Method IV 
Space of uncertainty ("between") 0.15 0.28 0.82 1 
Pattern reproduction ("within") 0.63 1.08 1.19 1 
Total ("between/within") 0.23 0.26 0.69 1 

Table 4.4. ANODI scores for Case B with sparse hard data 

Distance Method I Method II Method III Method IV 
Space of uncertainty ("between") 0.24 0.22 0.60 1 
Pattern reproduction ("within") 0.98 0.65 0.88 1 
Total ("between/within") 0.25 0.34 0.69 1 

The issue of conditioning using low repetitive patterns were supported in the ANODI scores. 
Dense hard data in conditional MPS simulation of Case B proved to be different with sparse hard 
data. For example, Method III outperformed the pattern reproduction of Method I in sparse hard 
data while the opposite in the dense hard data. Method IV in both hard data distribution held the 
first place in performance. 

In overall, using control map is the better performing method in conditional MPS simulation with 
low patterns’ repetition (Method III and Method IV). Combined with unilateral simulation path, 
control map approach had successfully surpassed the other methods. 

4.2.4 Summary of the conditional MPS simulation results 

After performing all the conditional results using different methods and evaluating the results using 
connectivity function, E-type models, conditional variance models, and ANODI, this study has 
identified the applicable method to handle nonstationarity in conditional MPS simulations using 
Delft3D simulation model data: 

• In Case A, the visually good results in reproducing the sediment bodies with conditional 
simulation with both dense and sparse hard data were Method I (zonation approach with 
random simulation path) and Method II (zonation approach with unilateral simulation path).  
Method IV (control map approach with unilateral simulation path) delivered rough edges 
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and disorganised in the reproduced facies. In Case B, Method IV successfully simulate 
the channel continuity through the realisations. 

• In connectivity function from conditional MPS simulation, unilateral simulation path shown 
better connectivity compared to the random simulation path methods. But, in contrast to 
the unconditional MPS simulation, the presence of hard data lowers the connectivity from 
the realisations. 

• In E-type and conditional variance models, only Method IV in Case A that had low varia-
bility and low tendency in the patterns’ reproduction. In Case B, Method IV tend to simulate 
the main channel in the centre with the significant effect of the hard data. This feature was 
most visible in sparse hard data where low possibility of the channel reproduction in the 
north side in the absent of hard data. 

• In MDS plot, Method I and Method II had condensed point cloud, compared to the Method 
IV that had large point cloud. The point cloud indicated the variability between the realisa-
tions, where the variability is proportional to the size of the point cloud. In Case A, the 
relatively nearest point of cloud to the TI was the Method II in dense hard data, and Method 
IV in sparse hard data. In Case B, Method IV had the distance relatively closer to the TI. 

• In ranking algorithms of both cases, Method IV had the best performance indicated by the 
highest total ratio compared to the other methods. Methods with unilateral simulation path 
gives better results to those method with random simulation path. 
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5 
5 Discussion 

5.1 Unconditional MPS IMPALA simulation 
5.1.1 Determining assumed stationarity zonations in unconditional MPS simula-

tion 

There are two different approaches in simulating unconditional MPS simulation using 2D nonsta-
tionary TI from the process-based model in the fluvial-dominated delta that this study focuses on, 
which are zonation approach (Method I and Method II) and control map approach (Method III and 
Method IV). Both methods had successfully simulated the TI in MPS, but the selection of nonsta-
tionary TI delivered different results in different simulation paths. The repetition of patterns ruled 
these aspects in MPS simulation, shown in Case A where less difficulty in reproducing the pat-
terns compared to Case B with low repetition. This finding is consistent with that of  Zhang et al., 
(2006) who expressed the necessity of enough repetition in successful nonstationary MPS simu-
lation. 

It is critical to identify the stationary area in the TI in modelling nonstationarity in MPS. MPS de-
pends on its assumption of stationarity in order to be successfully simulated. Subenvironment has 
similar hydrodynamic processes and sediment supply composition within each zonations, so this 
study used subenvironment variable from the process-based simulation model to become the 
base of assumed stationary zonations. The choice delivered successful unconditional MPS sim-
ulation for both zonation approach (Method I and Method II) and control map approach (Method 
III and Method IV). 

5.1.2 Comparing the realisations from zonation approach and control map ap-
proach in unconditional MPS simulation 

Zonation approach in Method I (zonation approach with random simulation path) and Method II 
(zonation approach with unilateral simulation path) only produced satisfactory visual inspection 
results in using a TI with high repetition like Case A. It was challenging to reproduce low repetitive 
patterns using new assumed stationary TIs in zonation approach without creating a much higher 
repetition in the realisations. The resulting zonation approach simulations in the low repetition TI 
like Case B always produce realisations with a higher proportion of sandy deposit facies (channel 
accretion and mouth bar facies), as shown in Figure 4.7 and Figure 4.8. 

Choice of correct rotational angle in creating the azimuth map also contributed in reproducing 
original TI’s patterns. For instance, the bending channels in the west part of the grid in Case A 
(Figure 3.3). This study decided not to constrain the delta development by creating freedom for 
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the MPS simulation in simulating the facies, but to recreate the similar patterns, we need a nar-
rower restrict in the azimuth that would violate our stochastic simulation basis. We can only create 
a TI with an assumption of stationarity; and if we honour the stationarity, it was just simply impos-
sible to reproduce such highly nonstationary patterns without restricting the variables into a higher 
order of controls. Again, MPS was designed to generate stochastic models, not to force a partic-
ular behaviour. 

Control map approach (Method III and Method IV) has different characteristics in creating reali-
sations compared to the zonation approach (Method I and Method II). To illustrate, the realisations 
from the direct control approach make less-smooth channel accretion and mouth bars facies. An 
explanation for this result is the use of the whole statistics from control map approach in Method 
III (control map approach with random simulation path) and Method IV (control map approach 
with unilateral simulation path). Compared to the zonation approach, control map approach uses 
the whole TI and utilises control map to determine the patterns’ location in the simulation grid 
Figure 5.1. In this manner, there is a higher possibility of artefact within the simulation in connec-
tion with search template and MPS algorithm. In the other hand, zonation approach only ad-
dressed variations in the delta top and delta front subenvironments, so the simulated statistics is 
limited to those two subenvironments. 

 

Figure 5.1. An example of comparation between Method II (zonation approach with unilateral simulation 
path) and Method IV (control map approach with unilateral simulation path). Method IV has rougher 
edges between the boundaries of the facies. 

In contrast to the zonation approach that failed in reproducing patterns with low repetition, using 
the unilateral simulation path in direct control map approach simulated the patterns well. The 
bending channels in the west part were still becoming the weak point in this method since the 
unilateral simulation path make the patterns tend to be parallel to the first direction (north-south 
direction), so the channels with east-west direction would not be simulated well (Figure 4.9 and 
Figure 4.10). 
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5.1.3 The effect of various parameters in the connectivity function 

The connectivity function of the method also supported the characteristics of random and unilat-
eral simulation path. In the connectivity function plot of Case A using control map approach with 
the unilateral simulation path (Method IV), some of the connectivity function of the realisations 
were highly similar to the TI. Based on visual inspection, the use of the direct control map ap-
proach has successfully recreated low repetition patterns by not recreating higher repetitions and 
honour the global statistics from the original TI. 

The tendency of reaching high connectivity function value in higher lag distance were caused by 
the stochastic nature of MPS in recreating mouth bar in the end of the delta, which occurred in 
higher lag distances. Most of the cases, the mouth bars were reproduced near one another, so it 
created new connection to the neighbouring channels, resulting in higher connectivity function 
value (e.g. see Figure 4.3 and Figure 4.7). 

Also, higher and similar connectivity function between the realisations and TI does not necessarily 
a good reproduction of the original TI. For instance, the connectivity function of Method II (zona-
tion approach with unilateral simulation path) in Case B (Figure 4.12b). It shows good connectivity 
with similar appearance of the connectivity function, but based on the visual inspection, Method 
II in Case B did not show proper facies reproduction. Its realisation appeared to reproduce more 
channel accretion facies compared to the original Delft3D model, but with good connectivity along 
the channels. It is essential to compare both connectivity function and visual inspection to the 
original TI’s features to ensure proper MPS simulation. 

5.1.4 Preference of unilateral simulation path in simulating channel features 

The decision of a specific simulation path affected the channel construction in the MPS simulation. 
Based on the unconditional MPS simulation results and evaluation, the choice of the unilateral 
simulation path is better for the continuity of the fluvial-dominated delta to the random simulation 
path. These results corroborate the ideas of Mariethoz and Caers (2014) who suggested the use 
of unilateral simulation path in ensuring the continuity of the channels, especially in simulating 
features that has orientation parallel to the first direction of the unilateral simulation path. In this 
study’s Case B with only two channels with the major orientation north-south in the original TI, the 
choice of -J+I direction in unilateral simulation path has sufficiently reproduce the channels in 
unconditional MPS simulation. 

Before moving on to the conditional MPS simulation, it is important to use the approved method 
throughout visual evaluation and the connectivity function from the unconditional simulations first. 
The unconditional simulation phase makes certain that the MPS algorithm correctly simulated the 
patterns from the original TI to mimic the original deterministic model like process-based simula-
tion model. 

5.2 Conditional MPS IMPALA simulation 
5.2.1 Capability in honouring the hard data 

IMPALA as an improvement of SNESIM algorithm did not address any problem in honouring the 
hard data in conditional MPS simulation. This was proven by the zero variance in conditional 
variance maps in hard data locations for all the realisations. Pixel-based algorithm like IMPALA 
estimated the hard data in its location with zero variance, but at the same time, it will affect the 
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cells around the hard data (Mariethoz and Caers, 2014). The effects become clear in the cases 
of low repetition in Case B where the highest variance were the parts around the hard data, as 
shown in Figure 4.25 and Figure 4.26.  

One or more thing that may cause high variance around in the hard data is because in the location 
where the delta top background facies surround the main channel. Especially in the Case B with 
low repetition in the patterns, the possibility of stochastically simulating the location around hard 
data not as channel accretion facies is high, resulting in disconnection within the channels. The 
features may not be apparent in cases with high repetitive patterns because the probability of 
simulating facies accretion is higher than those with low repetition, referring to the SNESIM algo-
rithm in referring the probability of cells reproduction (Strebelle, 2002). 

Disconnection within the channels is also consistent with the connectivity function results in Sec-
tion 4.2.3.1. The presence of hard data lowers the overall connectivity function, most visible in 
Case B with low repetition in the patterns (Figure 4.20 and Figure 4.21). 

5.2.2 Limitation of unilateral simulation path 

Unilateral simulation path showed good results in simulating straight channel, but it depended on 
the location of the hard data and the cases on which direction the channels went. This feature is 
most prominent in Case B, especially with Method IV (control map approach with unilateral sim-
ulation path). Consistent with Daly in 2005, the study found that the data ahead of the path is not 
compatible with the structures that built preceding the simulation data. Figure 5.2 indicates the 
incapability with the circle through the realisations, E-type model, and conditional variance model. 

 

Figure 5.2. An example of incapability of unilateral simulation path in conditional MPS simulation with 
Method IV (control map approach with unilateral simulation path) in Case B. The circle represents the dis-
continuity of the facies before it encountered the hard data. 

5.2.3 Interpolation capability in conditional MPS simulation 

Conditional MPS simulation with unilateral simulation path expressed an interpolation in the case 
of low repetition in Case B (Figure 5.3). A tendency of new channel development on the east part 
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of the grid where there are none hard data was revealed in both E-type and conditional variance 
map. When we look closer to the channel, actually it shows approximately the same gap distance 
from the original TI. The algorithm of the pixel-based method compared the patterns from the 
original TI and matched it with the simulation grid, and the interpolation of the new channel in the 
east side of the simulation grid is comparable with the two channels in original TI.  

The interpolation capability shown in control map approach with unilateral simulation path moti-
vated a positive side in stochastic simulations. The results validated the choice of control map 
approach in reproduce channels' pattern in the assumed stationary zonations. MPS simulation is 
capable of creating patterns that are learned from the original TI, even with low repetition, and 
applied it to the new zones with the absence of hard data.  

 

Figure 5.3. Interpolation capability in reproducing new channel in a specific location with Method IV in Case 
B. Notice the arrow indicating the same length to the new channel in the realisation, E-type model and 
conditional variance model. 

5.2.4 Variability of realisations between zonation and control map approaches 

Comparing zonation approach and control map in handling Case A and Case B, control map 
inclines to create a higher variability in the realisations. Most imminent in the E-type and condi-
tional variance map that showing smoother results compared to the zonation approach. The ex-
planation to this is referring to the SNESIM algorithm in simulating the whole statistics for the 
control map approach (Daly, 2005). 

By taking account of the whole statistics in the simulation grid, there are more possibility of repro-
ducing different patterns in accordance to its search template (Figure 2.2). The resulting realisa-
tions’ patterns would be more varied compared to the realisations from zonation approach in 
Method I and Method II, where only making use of delta top and delta front subenvironments. 
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5.2.5 ANODI scoring results compared to the other evaluation 

Analysis of distance (ANODI)'s objective in ranking the best algorithm compared to the others 
was depended on two distance aspects: the space of uncertainty between the realisations (“be-
tween” distance) and the pattern reproduction based on the TI (“within” distance). The results 
have shown the dominance of any control map approach's results (Method III and Method IV) to 
the zonation approaches (Method I and Method II). 

One thing to be noted that the zonations approach only simulated the delta top and delta front 
subenvironment, where the control map approach technically simulated the whole simulation grid. 
ANODI rankings are based on the total statistics of the simulation grid compared to the TI grid. 
The control map took account of the non-simulated cells wherein the zonations approach stay 
untouched. Therefore, the space uncertainty of the control map approaches performed poorly, 
where the cells other than the simulated cells remain the same through the realisations. An opti-
mum comparison should be within the same methods but different paths or parameter (between 
Method I-II or Method III-IV), so the rankings would be more objective. 

If we compare the results between distance ranking and the visual evaluation of Method IV in 
Case B, the results were contradicting with another. Visual evaluation gave poor results on the 
channel continuity (Figure 4.17), while the distance ranking of Method IV outperformed Method 
III (Table 4.4), making Method IV the best method compared to the others. One thing to remember 
is the total ratio of the ranking takes account of the space uncertainty and the pattern reproduction 
within the realisations. From the visual evaluation, we can say that the pattern reproduction is 
unsatisfactory (for the sparse hard data), but the space of uncertainty of Method IV supported the 
poor pattern reproduction score. The space of uncertainty in Method IV significantly surpass the 
Method III.  This is the objective of creating ANODI by Tan et al. in 2014: to create unbiased 
evaluation between different methods in conditional MPS simulation. 

The final score, contributing to both “between” and “within” distances, still makes Method IV the 
preferred method in modelling the Case B.
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5 
6 Conclusions and future recommendation 
This study had tested and validated the unconditional and conditional MPS simulation in using 2D 
nonstationary TI of fluvial-dominated delta reservoir model. From the results, we have concluded 
some of the critical remarks that become the recommendation of the optimised workflow in MPS 
simulation with a process-based model and might be applicated in similar other cases. 

6.1 Ideal TI for MPS simulation using nonstationary fluvial-dominated 
delta simulation model 

The study has done two different approaches to model the nonstationarity in the case of two 
representative TI (Case A and Case B) that have high and low repetition of patterns in fluvial-
deltaic environment. The approaches were zonation approach (Method I and Method II) and con-
trol map approach (Method III and Method IV). 

An ideal TI used for MPS simulation must have enough repetition in the patterns because of the 
MPS’ inferring of multiple point facies joint correlation moments from the provided TI. In the case 
of simulating model with low repetition of patterns like Case B, the geomodeler can use the orig-
inal TI with low repetition in the control map approach to get the desired results. 

Zonation approach requires the construction of new TIs that represent each of the stationary zo-
nations. The obvious limitation in this method appeared when we tried to model low repetition in 
the TI, where MPS tends to make higher repetition in new patterns. This approach could only 
deliver pleasing simulation models with the high repetition in the original TI, so it is preferable to 
only use zonation approach in the case with high repetition in the patterns. The high subjectivity 
of the modeller was also a concern in this approach that necessitates the modeller to mimic the 
model as similar as possible with different parameters which capture the patterns in the governing 
TI. 

In practice, the process of constructing new TI in zonation approach is an often-exceedingly de-
manding task. The modeller not only have built the appropriate TI that captures the pattern and 
the stationarity of the original TI but also has to establish the correct parameters and data event 
transformation properties for mimicking the complexity in the original TI's patterns. Frequently this 
process is a trial-and-error attempt that is indirect and unsystematic. 

In the other hand, control map approach does not require the construction of new TI owing to the 
use the original TI, and the control map will decide which patterns in the TI would occur in the 
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simulation grid. The subjectivity comes when determining the assumed stationary zonations for 
the values of the control map, and in this study’s case, the choice of subenvironment as the sta-
tionary zonations. 

6.2 The optimised method to unconditionally model the nonstation-
arity in fluvial-dominated delta reservoir model based on the 
study’s methods 

The results have shown the nonstationary could be modelled in a non-ideal TI even with low 
repetition in acceptable results, with few caveats. 

First, the importance of choosing the considered stationary zonations in the original TI. The de-
fined stationary zonations must have a similar characteristic in the patterns. In the zonation ap-
proach, a distinct geobodies pattern in each zonation is simulated with MPS, while the zonation 
with no distinct reservoir patterns is not going to be simulated. Control map approach simulates 
the entire TI, with a distinction of the values in the control map as the substitute of the zonations. 
In the study results, we chose the zonations with the basis of subenvironment in the process-
based simulation of the original TI because of the same hydrodynamic processes and resulting 
patterns underlying in each subenvironment. The similarity of the patterns exhibits similar statis-
tics that are used in the MPS' inferring statistics existing at different spatial locations. 

One can see this task of determining stationary zonations as a subjective one for the modeller, 
because in most of the cases it is difficult to be accurately defined the boundaries between the 
zonations. The boundary commonly comprised of gradual transition from zonations to the other. 
Zonation approach can overcome this problem by the presence of the same facies in between TI 
that allows MPS to connect the facies across the boundary between the zonations. Control map 
approach uses gradual values in between the boundary to map the smooth transition. One im-
provement was made by Honarkhah and Caers in 2012 with the propose of Gabor filters to auto-
matically segment a TI into stationary zonations, which was not covered in this study. 

Second, the uses of simulation path within the MPS simulation. The method of unilateral simula-
tion path proved to carry out satisfactory connectivity in the case of the fluvial-deltaic environment 
by correctly simulate the end of the channel accretion facies which feeds the mouth bar facies 
with sediments. This path also made the modelling of low repetition such as Case B possible by 
simulating the connectivity from the proximal-to-distal parallel to the first unilateral simulation path 
direction with control map approach. 

In brief, the optimised approach to perform an unconditional MPS simulation in the case of high 
repetitions were both the zonation and control map approach with the unilateral simulation path. 
In modelling the case of low repetitions, the use of control map approach with unilateral simulation 
path proved able to overcome the patterns reproduction capability of zonation approach with ran-
dom simulation path. This study recommends the use of the control map with the unilateral sim-
ulation path for performing successful continuing patterns of fluvial-dominated delta reservoir 
model and the ease in preparing the data without any additional TI construction. 
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6.3 The optimised method to conditionally model the nonstationarity 
in fluvial-dominated delta reservoir model based on the study's 
methods 

Conditional simulation using MPS demonstrated the capability of conditioning with the IMPALA 
algorithm. The algorithm honoured the data well with zero variance in the hard data location. 
Between the simulation paths, unilateral simulation path proved to be superior in conditional MPS 
simulations compared to random simulation path. While this may be true, there are several out-
looks to be in consideration in the optimised way of utilising unilateral simulation path in different 
conditions. 

First, when the TI has little repetition in the patterns, and there are only several hard data availa-
ble, we have to consider the position of the hard data compared to the simulated geobody. If the 
hard data are in the middle of the geobody, one has to validate the realisations whether it has 
simulated the geobody properly or not. The unilateral simulation path tends to simulate parallel to 
the first direction, and conditioning will be applied to the cells after it has encountered the hard 
data. It means that the patterns can only be correctly simulated if the patterns are parallel to the 
first direction of unilateral simulation path and encounter the hard data. If a high number of hard 
data is available, the conditioning the nonstationary TI should not be much of a problem other 
than the direction of the patterns whether is parallel or not to the first direction of unilateral simu-
lation path. 

Second, the effect of interpolation capability in IMPALA algorithm. Despite the favourable results 
in the case of stochastic simulations, the new stochastic channels have to be considered in build-
ing the model where no data is available. One has to make sure of the validation of the new 
stochastic variables in accord to the original TI. 

In summary, similar as the previous unconditional MPS recommendation, this study recommends 
the use of control map approach with unilateral simulation path for performing successful condi-
tional MPS simulation using nonstationary fluvial-dominated delta reservoir model and the ease 
in preparing the data without any additional TI construction. 

6.4 Future recommendations 

The tedious work of selecting assumed stationary zonations can be overcome with techniques 
introduced by Honarkhah and Caers in 2012 termed spatial-similarity method (SSM) and auto-
matic segmentation method (ASM). Those methods eliminate the subjectivity of the modeller in 
choosing the boundaries within the assumed stationarity zonations and provide auxiliary variables 
that serve as the control map that aids the MPS simulation.   

The nonstationary model used in this study is a 2D model, so the use of a 3D model should be 
beneficial in determining optimised MPS workflow in the 3D model. MPS simulation in 3D case 
requires different approach compared to the 2D case, and the complexity lies in the introduction 
of the vertical axis. The flow simulation also can be used in both the underlying reservoir model 
as TI and the resulting realisations model from MPS simulation, so we can see that the MPS could 
reproduce the connecting geobodies in 3D. 
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The E-type invalidating the realisations in this study used a simple averaging calculation that 
expressed the expected value at each location, but it proved difficult in distinguishing facies in low 
repetitions such as Case B that the background facies surround the channels accretion. A differ-
ent weighting approaches can be applied to the E-type generation, so better identification can be 
achieved with distinct patterns.
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A 
Appendix 

Appendix A contains unconditional MPS simulation realisations for Method I, Method II, Method 
III, and Method IV in Case A and Case B. Three representative realisations were shown in each 
method. 

 

 

Figure 7.1 Unconditional simulation results from Case A using Method I. 
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Figure 7.2. Unconditional simulation results from Case A using Method II. 

 

 

Figure 7.3. Unconditional simulation results from Case A using Method III. 
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Figure 7.4. Unconditional simulation results from Case A using Method IV. 

 

 

Figure 7.5. Unconditional simulation results from Case B using Method I. 
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Figure 7.6. Unconditional simulation results from Case B using Method II. 

 

 

Figure 7.7. Unconditional simulation results from Case B using Method III. 
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Figure 7.8. Unconditional simulation results from Case B using Method IV.
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B 
Appendix 

Appendix B contains conditional MPS simulation realisations for methods used in Case A and 
Case B. Three representative realisations were shown in each method. 

 

 

Figure 7.9. Conditional simulation results from Case A using Method I for dense and sparse hard data. 
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Figure 7.10. Conditional simulation results from Case A using Method II for dense and sparse hard data. 
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Figure 7.11. Conditional simulation results from Case A using Method IV for dense and sparse hard data. 
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Figure 7.12. Conditional simulation results from Case B using Method III for dense and sparse hard data. 
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Figure 7.13. Conditional simulation results from Case A using Method IV for dense and sparse hard data. 
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