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A B S T R A C T

Ride-hailing has become an important part of the urban mobility landscape. The main contribution of this study 
is to estimate how travellers perceive time when using ride-hailing compared to using conventional public 
transport, to better understand ride-hailing mode choice. We combine two unique datasets containing actual, 
individual passenger behaviour for the Washington DC area from October 2018: a large set of almost 250,000 
individual ride-hailing trips made using Uber, and more than 326,000 public transport trips obtained from 
automated ticketing data. Contrary to previous studies our model estimations rely on over half a million directly 
observed passenger choices between ride-hailing and public transport, based on which we estimate a discrete 
choice model to infer travel time perceptions for both modes using a binomial logit model. Our results show that 
on average ride-hailing in-vehicle time is perceived 35% less negative than public transport in-vehicle time. We 
also found that waiting time for ride-hailing is valued 1.3 times more negative than ride-hailing in-vehicle time, 
which is about 20% less negative than the ratio between waiting and in-vehicle time found for public transport. 
Our study enables a more accurate modelling of ride-hailing by using mode-specific travel time coefficients 
derived from large-scale empirical data, which can improve the accuracy of modelling outputs and thus improve 
decision-making processes.

1. Introduction

In many cities around the world, ride-hailing has become an 
important part of the urban mobility landscape since the 2010 s. Since 
companies such as Uber, Lyft and Bolt started providing their services, 
there have been societal, political and scientific debates regarding their 
impact on road traffic congestion, mode choice and public transport (PT) 
usage (e.g. Clewlow and Mishra, 2017). Proponents argue that ride- 
hailing can complement conventional PT by feeding PT services or by 
operating at locations and times when conventional PT is not econom
ically viable or when it does not provide a competitive alternative, and 
that it can contribute to a car-independent lifestyle (e.g. Rayle et al., 
2016, Wang and Mu, 2018). Critics however mention the negative 
impact ride-hailing can have on car vehicle kilometres, road congestion 
and its potential cannibalisation of public transport (Tirachini, 2020, 
Young et al., 2020, Cats et al., 2022). An important topic in this debate is 
to better understand how travellers make their choice between ride- 
hailing and conventional public transport. Gaining more insight in 
how the perception of in-vehicle time and waiting time might differ 

between ride-hailing and PT will enable a better explanation and pre
diction of mode choice. Furthermore, this allows for a more accurate 
modelling of demand for ride-hailing services and consequentially their 
impact on PT, road traffic and emissions.

The characteristics of ride-hailing users are studied in several pre
vious studies, often finding that ride-hailing is mostly used by higher 
educated, middle-aged (age category 20–39) travellers with a relatively 
high income (see for example Alemi et al., 2018, Gehrke et al., 2019, 
Tirachini and del Rio, 2019, Young and Farber, 2019, Young et al., 
2020). However, based on a survey of nearly 1,000 ride-hailing pas
sengers in Boston in 2017, Gehrke et al., 2019 found that trip-specific 
attributes (such as in-vehicle time and waiting time) are more relevant 
in explaining mode choice between ride-hailing and conventional PT 
than sociodemographic variables. This indicates that a better under
standing of how these different trip attributes are valued by users for 
ride-hailing compared to PT is imperative to obtain a better insight in 
these mode choice decisions.

The topic of travel time valuation is relatively well studied for con
ventional urban transport modes, such as private car and regular PT. For 
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example, Shires and Jong (2009) and Wardman (2004) quantify the 
value of time for private cars and PT users, as well as the ratio between 
out-of-vehicle time (e.g. walking and waiting time) and in-vehicle time. 
Abrantes and Wardman (2011) study the value of time for different 
journey purposes using a meta-analysis of several previous studies, 
mostly based on Stated Preference data obtained through choice ex
periments. For example, based on a meta-analysis of British studies to 
time valuation, Wardman (2004) suggests using walking and waiting 
time coefficients of respectively 2.0–2.5. More recently, ratios between 
waiting time and in-vehicle time for urban PT networks have also been 
estimated using Revealed Preference approaches based on large-scale 
passenger ticketing data from Automated Fare Collection (AFC) sys
tems or based on video observations. For example, Yap et al. (2020)
found a ratio of 1.5 between PT waiting and in-vehicle time in the 
Netherlands, while Yap and Cats (2021) found a ratio of 1.62 between 
these two journey time components for Washington DC. Fan et al. 
(2016) reported average waiting time being perceived at least 1.2 times 
as negative as in-vehicle time, depending on waiting time duration, 
amenities at the stop and personal characteristics.

In recent years there have been some studies focusing on the valu
ation of ride-hailing trip attributes and the mode choice between ride- 
hailing and conventional public or private modes. For example, Ulak 
et al. (2020) derived the value of convenience as perceived by taxi users 
in New York City based on a taxi trips dataset in Manhattan, but no other 
modes were considered. Kouwenhoven et al. (2023) derived the value of 
travel time and value of reliability in the Netherlands for different 
modes, such as car, taxi, train and local public transport, based on a 
Stated Preference study. However, ride-hailing was not considered as a 
separate mode in this work. Geržinič et al. (2023) used 923 responses 
from a Stated Preference survey to estimate how variability of ride- 
hailing waiting time is valued. This study specifically derived the 
value of unexpected waiting time for ride-hailing, without considering 
alternative travel modes. Chavis and Gayah (2017) used a Stated Pref
erence approach to understand mode choice between conventional PT 
and ride-hailing by surveying PT users in Baltimore, whereas Dong 
(2020) surveyed Uber and Lyft users for the same purpose. Based on a 
Stated Preference experiment, Gao et al. (2019) derived that the value of 
in-vehicle time whilst being driven in a ride-hailing service is on average 
13 % less negative compared to driving one’s own private car, possibly 
explained by the opportunity to undertake other tasks during the trip. In 
another Stated Preference study, Azimi et al. (2020) studied mode 
choice between PT and ride-hailing based on surveys distributed 
amongst private car and PT users.

To the best of our knowledge, there are only a few studies which 
adopt a Revealed Preference approach when studying ride-hailing mode 
choice, in contrast to the abovementioned Stated Preference based mode 
choice studies. Habib (2019) estimated a mode choice model based on 
Toronto’s 2016 household travel survey. Based on travel diaries from 
the sampled respondents, ~11,000 trips were used to estimate a mode 
choice model. However, no complete fare information of the ride-hailing 
trips including surge pricing was available for this study. Garcia-Melero 
et al. (2022) developed a Revealed Preference based mode choice model 
for ride-hailing by conducting online surveys with Uber users in Chile. In 
these 1,912 completed surveys users are asked to report the travel time 
and cost attributes of a recent (non-pooled) UberX trip they made. As 
both studies rely on afterwards reported trip attribute values, there are 
potential reporting errors associated as attribute values are not directly 
observed values from source. None of these past studies has relied on 
direct observations of travel choices. Buchholz et al. (2024) conducted a 
large scale Revealed Preference study to derive customer’s willingness 
to pay for reduced ride-hailing waiting times. This was derived from 
detailed data from a ride-hailing company in Prague where drivers bid 
on trip requests and customers subsequently choose their preferred offer 
based on expected waiting time and fare. This study provides valuable 
insights in the trade-off between ride-hailing waiting time and fare, but 
it does not include the valuation of ride-hailing in-vehicle time nor 

positions ride-hailing time perception relative to conventional public 
transport.

From the literature review above we can conclude that studies to 
ride-hailing mode choice are predominantly based on Stated Preference 
approaches, and that the few Revealed Preference based models have 
been estimated based on incomplete and/or indirectly inferred (re
ported) attribute levels or focus solely on ride-hailing time valuation. 
This strong reliance on Stated Preference data or reported attribute 
values can partially be explained by the fact that ride-hailing data is 
owned by commercial parties, meaning that public access is often 
limited. Nevertheless, an inherent limitation of Stated Preference ap
proaches is the potential discrepancy between stated mode choice 
behaviour in surveys compared to actual behaviour, resulting in 
different or possibly biased coefficients. This discrepancy can occur if 
respondents have difficulties imagining the hypothetical choice situa
tion, or when lacking sufficient experience with similar circumstances in 
reality to fully grasp the trade-offs in the choice set (Yap et al., 2020). 
Whilst there have been previous studies to travel time valuation for taxis 
(e.g. Kouwenhoven et al., 2023, Wardman et al., 2023), there is typically 
limited a priori information available on the actual in-vehicle time, 
waiting time and fares before choosing a taxi. This means that the actual 
travel time and costs may provide less explanatory power to explain a 
mode choice decision. In contrast, the availability of the estimated or 
actual time and fare attribute levels before ordering a ride-hailing ser
vice means that the actual attribute values are suitable to use in a RP 
based mode choice model.

The main contribution of this study is to estimate how travellers 
value time for ride-hailing compared to conventional PT, thereby 
addressing the abovementioned limitations in the current state-of-the- 
art. For this purpose this study relies entirely on empirical, large-scale 
Revealed Preference data for both ride-hailing and public transport, 
instead of using Stated Preference or self-reported travel diaries. To this 
end we combine two unique datasets both containing actual, individual 
passenger behaviour for the Washington DC area for the same period 
between 1 and 25 October 2018: 

• A large sample of almost 250,000 individual ride-hailing trips made 
using Uber, including the travel time and travel cost attributes cor
responding to each individual trip.

• All individual public transport journeys made by bus and metro on 
the PT network of the Washington Metropolitan Area Transit Au
thority (WMATA), resulting in more than 326,000 relevant PT trips 
for this study.

To the best of our knowledge, this is the first study which positions 
travel time valuations for ride-hailing relative to conventional PT using 
empirical data from both modes on this scale, thus enabling a robust 
estimation of different travel time and cost coefficients. Contrary to 
previous studies our model estimations rely on more than half a million 
directly observed passenger mode choices between ride-hailing and PT, 
based on which we estimate discrete choice models to infer travel time 
perceptions for ride-hailing and PT.

The remainder of this paper is structured as follows. In chapter 2 we 
discuss our input datasets, data processing steps, choice set generation 
and specification of our discrete choice model. Model estimation results 
together with their policy implications are discussed in chapter 3. In 
chapter 4 we discuss the key conclusions and provide recommendations 
for follow-up research.

2. Methods

In this section we first discuss the ride-hailing data and the relevant 
data processing steps, followed by the public transport data. Next, we 
explain the choice set generation steps. At last, the specification of the 
travel mode choice model is discussed.
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2.1. Ride-hailing data

The ride-hailing data used as input for this study is a large sample of 
actual passenger trips made by Uber in the Washington DC area between 
1 and 25 October 2018. In our study we only consider non-shared UberX 
trips: UberPool trips where parts of the trip could have been shared with 
other users are not included in our research. In the current post- 
pandemic era we expect that primarily attitudes towards pooled trips 
may have changed as it would require sitting together with unknown 
travellers within a closed environment for an extended period of time. 
As our dataset stems from the pre-pandemic era, focusing solely on non- 
shared UberX trips makes our results robust against possible changes in 
post-pandemic perceptions of especially in-vehicle time. From all ride- 
hailing trips to/from the Washington DC area, only trips with both 
their origin and destination within the geo-fenced area of Washington 
DC metropolitan area are included, so that the same catchment area is 
used as served by the PT bus and metro services of WMATA. In addition, 
only ride-hailing trips of users for whom Washington DC is the city 
where they use Uber most frequently are included. This serves as indi
cator that users are acquainted with travel options in the Washington DC 
area. As we aim to estimate a discrete choice model based on Revealed 
Preference data, the observed travel time and cost attribute levels are 
used to derive preferences and to explain mode choice. This implies that 
travellers need to have some a priori knowledge or expectations about 
the travel times and costs of the ride-hailing service as well as the PT 
alternative, in order to make an informed choice between these alter
natives. When there would be a large discrepancy between the a priori 
expected travel time and cost, and the a posteriori actual travel times and 
cost, estimating a choice model based on actual attribute levels might 
not be opportune. By only including trips from users for whom Wash
ington DC is their most commonly used city for Uber trips, we aim to 
align expected and actual attribute levels as much as possible. For the 
same reason, ride-hailing trips to and from airports are excluded from 
our dataset. Furthermore, we focus on typical ride-hailing trips, 
excluding short trips with a duration of seven minutes or less and 
excluding the 5 % trips with the longest waiting time (exceeding 10 
min). After applying the above filtering rules our sample contains a total 
of 249,628 individual ride-hailing trips.

The structure of the ride-hailing dataset is shown in Table 1. Each 
row reflects an individual trip iRH, with the lat/lon coordinates of the 
origin and destination location of the trip provided. For privacy reasons 
the coordinates of the origins and destinations are rounded to three 
digits (which translates to ~50 m accuracy). The start time corresponds 
to the pick-up time, i.e. the moment the passenger enters the car, 
rounded to the nearest 5 min due to privacy reasons. Importantly, the 
trip duration − the time between boarding (pick-up) and alighting 
(drop-off) the car − is however accurately calculated in seconds without 
any rounding. We will refer to the trip duration as the ride-hailing in- 
vehicle time tRH

ivt,i. The wait/walk time is the time difference between the 
travel request time and the start time of the trip, further indicated by 
variable tRH

wtt,i. Given that ride-hailing provides door-to-door services, no 
further additional walking time is assumed beyond the registered origin 
and destination coordinates. Based on the available data we cannot 
disentangle tRH

wtt,i further into a separate walking time and waiting time 
component, as there is no information about the location of the pas
senger at the time when the request was made. It could be that the user 
requested the ride-hailing service whilst already waiting at the pick-up 
location, or for example when still in the house or at a restaurant, 

meaning that some walking towards the pick-up point could be involved 
within tRH

wtt,i. Using a combined waiting + walking time can be justified 
further as we know from previous studies that walking and waiting time 
perceptions are often comparable (see for example Wardman et al., 
2016). The trip fare cRH

i expressed in USD corresponds to the actual fare 
paid for the ride including any potential surge pricing. Note that during 
the analysis period the announced Uber fare upon request was equal to 
the actual fare paid in Washington DC, meaning that the actual fare was 
not affected by the eventual traffic conditions along the route. As such, 
there is no discrepancy between the announced/anticipated fare upon 
travel request, i.e. when performing the ride-hailing mode choice, and 
the actual fare in the dataset provided.

Based on the start date and time we add a variable reflecting the day 
of the week (weekday vs. weekend) and the hour of travel based on the 
starting time of the trip. Both the origin and the destination location are 
clustered into an origin zone and a destination zone by using the H3 
hexagonal geospatial indexing system (Uber, 2018). Aggregation of each 
individual ride-hailing trip to day of week, hour of the day, origin zone 
and destination zone is necessary, so that at a later stage the attribute 
levels for the corresponding, non-chosen PT alternative for this same 
day-hour-origin–destination cluster can be derived. To retain a high 
level of disaggregation we use H3 clustering resolution 9, meaning that 
each hexagonal zone covers 0.105 km2. This means that the Washington 
DC area is composed of ~1,700 zones in our analysis.

2.2. Public transport data

The public transport data used as input to the subsequent choice 
modelling is constructed from all individual PT passenger movements in 
metro and bus in the Washington DC metropolitan area under authority 
of WMATA between 1–25 October 2018. We are not aware of any major 
planned maintenance works which took place on the public transport 
network during this period. Table 2 illustrates the structure of the data, 
where each row in the dataset reflects an individual passenger move
ment which is derived from the Automated Fare Collection (AFC) and 
Automated Vehicle Location (AVL) systems in place. As there is already 
a solid body of knowledge regarding how to process raw AFC and AVL 
data to construct PT journeys (e.g. Gordon et al., 2013; Munizaga and 
Palma, 2012; Trépanier et al., 2007; Zhu et al., 2017), we made use of 
passenger journey data which was processed using the ODX algorithm as 
implemented by Sánchez-Martinez (2017) and which was made avail
able for this study purpose. In this algorithm the most plausible alighting 
stop is inferred for PT bus journeys using a destination inference algo
rithm, as passengers only tap in upon boarding buses in the DC area. For 
metro journeys the time and location of the gate-line entry and gate-line 
exit station is empirically available, based upon which the most plau
sible route through the metro network is derived based on actual vehicle 

Table 1 
An illustration of the structure of the ride-hailing dataset.

Origin lat Origin lon Dest lat Dest lon Start time 
(rounded to 5 min)

Waitþwalk time (s) Trip duration (s) Trip fare ($)

38.906 − 76.977 38.846 − 76.969 2018–10-01 16:05 220 878 11.26

Table 2 
An illustration of the structure of the public transport dataset.

Journey 
key

Sequence Mode Start 
Stop

End 
Stop

Start 
Time

End 
Time

141906 1 Walk / 
wait

048 C13- 
1

07:53:46 07:55:52

141906 2 Metrorail C13-1 C08- 
1

07:55:52 08:03:46

141906 3 Walk / 
wait

C08-1 057 08:03:46 08:05:17
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arrival and departure times from the AVL database. PT journeys are 
constructed from the individual passenger movements based on a 
journey inference (linkage) algorithm, i.e. identifying whether subse
quent trips constitute successive legs of a single journey or separate 
journeys. Incomplete journeys are excluded from the analysis, which 
results in a total of 23.3 million individual passenger journeys made 
using PT (metro or bus) on the WMATA network in the aforementioned 
period. For more details on the PT data processing steps we refer the 
reader to Yap and Cats (2021) and Sánchez-Martinez (2017). Similar as 
for ride-hailing trips, short PT journeys (with an in-vehicle time of 7 min 
or less) and PT journeys with excessive waiting time (longer than 60 
min) are excluded from the dataset.

The PT passenger movement example shown in Table 2 illustrates a 
passenger journey only involving a metro trip from stop C13 (King St- 
Old Town) to stop C08 (Pentagon City). In this case the start time at 
the gate-line entry (gate 048 at stop C13) and the end time at the gate- 
line exit (gate 057 at stop C08) are directly available from the AFC 
ticketing system. Based on these times the most plausible metro taken 
from stop C13-1 to stop C08-1 is inferred. Based on the actual arrival and 
departure times of this metro as recorded in the AVL data, the PT in- 
vehicle time tPT

ivt equals the difference between the end time (08:03:46) 
and start time (07:55:52) of the Metrorail movement. The combined PT 
walking and waiting time tPT

wtt equals the walking time from gate-line 
entry (07:53:46) to the platform, the platform waiting time until 
boarding the metro (07:55:52) plus the walking time after alighting the 
metro (08:03:46) until the gate-line exit (08:05:17), indicated by walk / 
wait in Table 2. Similar as for ride-hailing we refrain from disentangling 
PT walk/wait time further into waiting and walking time separately, as 
this would require making assumptions on the walking speed of indi
vidual passengers to estimate the walking time required from the station 
entry to the metro platform. The Journey key column indicates that these 
three passenger movements belong to one total PT journey. In the event 
of a PT journey which includes a bus-metro interchange, the identical 
journey key indicates that these passenger movements are part of one PT 
journey. tPT

ivt and tPT
wtt are then calculated by summing over the respective 

individual movements.
As the travel costs cPT

i are not provided in the ODX database, travel 
costs are calculated off the fare system in place in Washington DC. Based 
on the distance based fare for metro and the flat bus fare applicable to 
the peak / off-peak time period each individual passenger is travelling, 
the total fare is calculated. All fares in place as per October 2018 are 
used, including fare caps where applicable, to provide an adequate 
comparison with the corresponding ride-hailing trip fare. No conces

sionary fares (e.g. for the elderly or children) are considered in this 
calculation, as no age information is available. However, for the trav
eller segment actively using both PT and ride-hailing, age based fare 
discounts are typically not expected to apply (e.g. Sikder, 2019). For a 
more detailed discussion on the PT fare calculation the reader is referred 
to Cats et al. (2022). Similar as for ride-hailing trips, the ultimate origin 
and destination of each PT journey is clustered into the same H3 hex
agonal origin and destination zones (using clustering resolution 9) and 
grouped by day-hour-origin–destination cluster to make them compa
rable to the ride-hailing journeys.

2.3. Choice set generation

From the datasets described in section 2.1 and section 2.2 the 
chosen mode alternative (ride-hailing or PT) for each individual pas
senger is known, including the values of the travel time and cost attri
butes of this chosen alternative. To generate a choice set for our discrete 
choice model, in the next step we add the attribute values of the non- 
chosen alternative for each chosen alternative. This process is visual
ised in Fig. 1.

For each observed ride-hailing trip, we query Open Trip Planner 
(OTP) to find the most plausible non-chosen PT counterpart trip (htt 
ps://www.opentripplanner.org). Based on the coordinates of the 
origin and destination of the ride-hailing trip and the requested depar
ture time, the fastest PT alternative is found in OTP by searching through 
a detailed time-dependent graph built from the actual PT schedule and a 
detailed walk network. In our settings we search for the fastest PT 
alternative within a maximum total walking distance of 2 km, from 
which the attribute levels (in-vehicle time tPT

ivt and waiting + walking 
time tPT

wtt) are derived. The PT fare cPT
i is calculated in a post-processing 

step similar to the approach discussed in section 2.2. We opt for using 
OTP to derive the attributes for the non-chosen PT alternative for each 
ride-hailing trip, instead of using the actual travel times and costs for the 
equivalent PT journey from the AFC data. If we were to rely on the AFC 
data to populate the non-chosen attribute values, then we could only 
retain ride-hailing trips for the same day-hour-origin–destination zone 
combinations for which there are also actual observed PT trips. Ride- 
hailing data for day-hour-origin–destination zone combinations 
without equivalent observed PT journeys would have to be excluded 
from the choice set as it would not be possible to populate the non- 
chosen attribute values, meaning a loss of valuable choice informa
tion. By querying OTP we can find the attribute values of the most 
feasible PT counterpart for each ride-hailing trip, which means that all 

Fig. 1. Choice set generation: composing the non-chosen alternative.
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249,628 observed ride-hailing trips can be retained in the choice set. 
Furthermore, by relying on the Open Trip Planner we can also include 
the first access time from the origin coordinates to the PT stop and the 
last egress time from the last PT stop to the destination coordinates in 
the PT waiting + walking time. This provides an additional advantage 
over using AFC data, as the latter does not contain information on access 
(egress) time to (from) the first (last) PT stop.

For each chosen PT trip, the attribute levels of the non-chosen ride- 
hailing counterpart trip are obtained by averaging the realised attribute 
levels for all empirical ride-hailing trips for the same day-hour-origin
–destination zone combination. Contrary to populating non-chosen PT 
attribute values, ride-hailing travel time and cost attribute values are not 
publicly available. Therefore, in order to populate these non-chosen 
attribute values, we are constrained to the data from those day-hour- 
origin–destination zone combinations for which there are observed ride- 
hailing trips in our dataset. Consequentially, this implies that only PT 
journeys between zones for which there is also observed ride-hailing 
data can be retained, i.e. the intersection between PT and ride-hailing 
in terms of day-hour-origin–destination zone combinations. As a result 
326,884 PT journeys are included in the choice set, amounting to more 
than half a million (576,512) observed ride-hailing or PT mode choices 
in our choice set. For consistency purposes we add the average first 
access and last egress walking time for the corresponding day-hour- 
origin–destination zone combination as derived from the OTP to the 
waiting + walking time tPT

wtt for chosen PT journeys, so that in all cases 
access and egress time to/from the PT stop is included.

2.4. Mode choice model specification

We estimate a simple binomial logit model with PT and ride-hailing 
as mode choice alternatives to obtain the value ride-hailing and PT users 
attribute to the different journey components. Equations (1) and (2)
show the structural part of the utility functions as specified for ride- 
hailing trips VRH and PT trips VPT, respectively. As can be seen from 
the utility functions, mode-specific in-vehicle time and waiting +
waiting time coefficients are used to allow positioning ride-hailing time 
coefficients relative to PT time coefficients. Additionally, a generic cost 
coefficient is estimated. We add an alternative-specific constant asc to 
each utility function to capture the average utility across all variables 
not included in the model, which is fixed to zero for PT.

In addition to trip-specific attributes, we also extract relevant soci
odemographic data based on the 2019 US Census data (Oakes et al., 
2019). Based on the coordinates of the origin and destination of the 
chosen PT or ride-hailing trip, sociodemographic data for both the 
corresponding origin and destination census zone is extracted to allow 
for testing the importance of sociodemographic attributes. The 
following attributes are considered potentially relevant for our analysis: 
median household income, proportion unemployed, person density per 
km2 and housing density per km2. For each of these four sociodemo
graphic attributes the average value across the origin zone and desti
nation zone of the trip is calculated, as there is no information in our 
dataset what the home-end and the activity-end is of the journey. After 
initial testing we found that only the variable housing density hd (the 
number of houses per km2 averaged across the census zone of the origin 
and destination of the journey) added plausible explanatory power to 
our model results, hence only this variable is included in the utility 
functions. βPT

hd is fixed to zero, with βRH
hd quantifying the additional 

importance of house density for RH utility relative to PT. 

VRH = βRH
ivt • tRH

ivt + βRH
ivt • βRH

wtt:ivt • tRH
wtt + βc • cRH + βRH

hd • hd+ ascRH (1) 

VPT = βPT
ivt • tPT

ivt + βPT
ivt • βPT

wtt:ivt • tPT
wtt + βc • cPT + βPT

hd • hd+ ascPT (2) 

The total utility function equals the sum of the structural component 
of the utility function V and the error term ε, as shown by Equation (3). 
As ride-hailing and PT are distinct modes we do not anticipate any 

violation of the assumption of the IID (independent and identically 
distributed) error terms, implying that using a standard closed-form 
binomial logit model to calculate mode choice probabilities (Equation 
(4) is considered adequate for the purpose of this study. Due to privacy 
constraints there is no information on the panel structure of our data. 
One could expect that among the 576,512 observed choices included in 
the choice set, some of these choices are repeated choices made by the 
same individual. Due to the correlations between mode choices made by 
the same individual, in these cases it would be preferred to estimate a 
panel effects mixed logit model instead of a standard binomial logit 
model. However, as there is no unique identifier of PT card IDs or ride- 
hailing users in the data, incorporating a panel structure is not possible. 
Instead, we therefore report the robust t-values as sandwich estimator to 
reduce the risk of overestimation of certain coefficients.

We perform maximum likelihood estimation (MLE) to find the co
efficients of the variables in the utility function which best explain the 
observed mode choices. The maximum likelihood estimation is per
formed in PythonBiogeme and solved using the Newton algorithm as an 
iterative method for solving this nonlinear optimisation problem 
(Bierlaire, 2016). We express the waiting + walking time coefficient βwtt 
(for consistency purposes for both PT and RH) as multiplicative factor of 
the in-vehicle time, so that waiting time perception can be interpreted 
directly relative to in-vehicle time perception. This means that βwtt =

βwtt:ivt • βivt , where we estimate the coefficient reflecting the ratio be
tween waiting + walking time and in-vehicle time βwtt:ivt in our model. 
Important to mention is that we additionally fixed this ratio for public 
transport βPT

wtt:ivt to 1.62 times the PT in-vehicle time coefficient βPT
ivt based 

on the choice model estimation results from Yap and Cats (2021). The 
latter estimated a PT route choice model based on the same Washington 
DC PT network based solely on AFC passenger demand data, where a 
ratio of 1.62 was found between βPT

wtt and βPT
ivt . This ratio was estimated 

entirely based on actual PT journeys for origin–destination pairs with at 
least two different observed PT paths. This means that these estimation 
results were not partially relying on data obtained from Open
TripPlanner to obtain the attribute values for the non-chosen alterna
tive, but rather that attribute values for both the chosen and non-chosen 
PT path were derived entirely from observed PT data. Furthermore, as 
PT lines often operate with a similar service frequency, in some cases it 
can be difficult to find a meaningful or statistically significant waiting 
time coefficient due to the limited variation in actual PT waiting time 
values in the RP choice set. Therefore, adopting a pre-specified ratio 
between βPT

wtt and βPT
ivt as previously established is preferred in this case. 

As the objective of our study is to position ride-hailing preferences 
relative to PT, fixing solely the PT waiting time coefficient does not 
further influence the results. 

URH = VRH + εRH (3) 

PRH =
1

1 + eVPT (4) 

3. Results and discussion

This section shows the empirical results and model estimation results 
first, followed by a discussion on the results, study limitations and the 
study implications.

3.1. Results

3.1.1. Empirical results
By fusing the empirical ride-hailing and PT data sources, we can 

illustrate the spatial and temporal mode share in Washington DC 
(Fig. 2). The mode share of Uber as ride-hailing provider is shown in 
relation to the sum of Uber and PT usage for different areas of Wash
ington DC and for different time periods on a weekday, based on the 
origin zone of the journey. For the visualisation of the empirical results 
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in Fig. 2 we use a higher spatial aggregation level of trip origins based on 
H3 resolution 7. Note that only trips made by Uber (for ride-hailing) and 
WMATA (for public transport) are included in this figure, thus excluding 
any trips made by private car, walking, taxi or other ride-hailing pro
viders. Remarkably, Uber ride-hailing trips make up the majority of all 
trips for a considerable number of spatial–temporal combinations.

It can clearly be observed that the share of Uber ride-hailing in
creases during time periods and for areas with limited or no rail based PT 
supply, such as the weekday evening and night compared to weekday 
peak hours and midday. For example, areas near the main ring highway 
around DC typically have a higher Uber ride-hailing share, as well as 
areas in the north-western part of the city near the Potomac River where 
rail based PT supply (indicated in blue in Fig. 2) is limited. The high 
share of Uber ride-hailing in the evening and night may also be 
explained by perceived safety concerns which might be experienced by 
some users whilst travelling in the dark, for example when having to 
wait at a quiet or unlit PT stop for the bus or metro to arrive. Addi
tionally, the PT share is highest during the AM and PM peak periods 
where PT is generally most competitive in terms of frequencies and 
speed, suggesting a stronger preference for PT during peak hours 
compared to ride-hailing. A possible explanation can be that especially 
rail bound PT is not affected by road traffic congestion, resulting in 
faster and more reliable journey times compared to ride-hailing, where 
the risk on congestion adds additional uncertainty to the expected 
arrival time at the destination.

3.1.2. Model estimation results
In Table 3 the results from our estimated discrete choice model are 

reported. The model − with a sample size of 576,512 choices and 6 
estimated coefficients − converged after 23 iterations in less than 2 min 
on a regular i7 PC. The Rho-square and Rho-square-bar are 0.97. The 
Akaike Information Criterion (AIC) is 6,952,290, whereas the Bayesian 
Information Criterion (BIC) equals 6,953,358. By inspecting the esti
mated coefficients we can conclude that the signs of all coefficients align 
with expectations, with generally negative signs for time and cost co
efficients. All estimated coefficients have high absolute robust t-values 
with robust p-values for all coefficients smaller than 0.01, indicating 
that the found results are statistically highly significant. The correlations 
between the coefficients are generally low, with no correlation coeffi
cient being higher than 0.55.

3.2. Discussion

When comparing the in-vehicle time coefficient for PT βPT
ivt and the in- 

vehicle time coefficient for ride-hailing βRH
ivt , the ratio βRH

ivt /βPT
ivt equals 

0.65. This implies that one minute travelling in a ride-hailing service is 
on average perceived 35 % less negative than travelling one minute in a 
conventional PT vehicle. Formulated from the ride-hailing perspective, 
oppositely this means that on average PT in-vehicle time is perceived 
(− 0.0548/-0.0357 = ) 54 % more negative than ride-hailing in-vehicle 
time. Our model results provide strong quantitative evidence on the 
extent to which travellers value in-vehicle time in a ride-hailing service 
as less negative than PT in-vehicle time. For both PT and ride-hailing the 
traveller has the ability to perform other tasks (such as phone calls), but 
ride-hailing has a competitive advantage over PT in the sense that the 
vehicle is not shared with other, unknown, passengers. Furthermore, 
using ride-hailing means there is no risk of crowding or not having a 
seat, which can be important especially compared to using crowded PT 
systems in peak hours.

Fig. 2. Uber demand share as percentage of Uber and public transport demand. Metro lines are shown in blue; darker red colours indicate a higher Uber de
mand share.

Table 3 
Estimation results.

Coefficient Name Value (t-value)

βPT
ivt in-vehicle time PT (minutes) − 0.0548** 

(− 158)
βPT

wtt:ivt ratio waiting + walking time to in-vehicle time 
PT

1.62 (fixed)a

βRH
ivt in-vehicle time ride-hailing (minutes) − 0.0357** 

(− 69.5)
βRH

wtt:ivt ratio waiting + walking time to in-vehicle time 
ride-hailing

1.32** (30.7)

βc fare (USD) − 0.0775** 
(− 71.0)

βRH
hd housing density (1,000 housing units / km2) 

ride-hailing
− 0.133** 
(− 90.9)

βPT
hd housing density (1,000 housing units / km2) PT 0.0 (fixed)

ascRH alternative-specific constant ride-hailing − 0.273** 
(− 18.5)

ascPT alternative-specific constant PT 0.0 (fixed)

robust t-values in parentheses. * robust p < 0.05; ** robust p < 0.01.
a Estimated in Yap M. & Cats O. (2021). Taking the path less travelled: Valuation 

of denied boarding in crowded public transport systems. Transportation Research Part 
A, 147, 1–13.
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We find an estimated coefficient of 1.32 for the ride-hailing waiting 
+ walking time relative to the ride-hailing in-vehicle time βRH

wtt:ivt. This 
coefficient indicates that ride-hailing users value waiting + walking 
time for the ride-hailing service on average 32 % more negative 
compared to in-vehicle time on-board the ride-hailing service. The 
equivalent ratio of 1.62 for PT derived in Yap and Cats (2021) indicates 
that PT users value waiting + walking time on average 62 % more 
negative than uncrowded PT in-vehicle time. This shows that ride- 
hailing waiting time relative to the in-vehicle time is perceived about 
20 % less negative than PT waiting time relative to in-vehicle time, 
although the difference between these ratios is not as distinct as the 
difference between the estimated in-vehicle time coefficients. Waiting 
time for ride-hailing has the advantage that the real-time position of the 
car is always shown via the app after requesting a trip. Furthermore, 
users have the ability to contact the driver directly via the app if 
necessary. We argue that provision of real-time information takes away 
some degree of uncertainty associated with waiting time, especially 
when comparing to waiting time for PT services without real-time 
arrival information provision, resulting in a less negative waiting time 
valuation. Another possible factor is that a PT passenger has to be alert 
and aware of the PT departure time when waiting, as the responsibility 
for not missing the PT vehicle lies entirely with the passenger. When 
using ride-hailing one knows that the driver might wait a few minutes 
after arriving at the requested location, meaning there is a joint re
sponsibility between user and driver to make the trip happen. This could 
imply that a lower level of alertness is required from the ride-hailing 
user whilst waiting or walking, possibly reducing the perceived wait
ing time. On the other hand, one can argue that waiting for regular PT 
has an advantage over ride-hailing as the PT stop is a dedicated, clearly 
indicated location with certain facilities such as benches, cover or other 
amenities. As the pickup location for ride-hailing can be virtually any 
location where the vehicle is allowed to stop, the pickup point might be 
perceived as less clear and provides fewer facilities to the user. However, 
given that the waiting time to in-vehicle time ratio for ride-hailing of 
~1.3 is about 20 % lower compared to this ratio of ~1.6 for PT, our 
study results suggest that the overall balance falls in favour of ride- 
hailing in terms of waiting time valuation.

The value of travel time (VOTT) for ride-hailing users can be 
computed by dividing the ride-hailing in-vehicle time coefficient βRH

ivt by 
the fare coefficient βc. As times are currently expressed in minutes, 
converting to hours results in an average VOTT of $27.6 per hour for 
ride-hailing users. This is somewhat higher than the typical range for 
hourly value of times between $10.00 and $17.00 used by the US 
Department of Transportation (DoT, 2016). This may suggest that the 
average customer segment using ride-hailing has a higher than average 
time valuation. As we estimated a generic fare coefficient, our results 
indicate a 35 % reduction in VOTT for ride-hailing compared to PT – 
which is directly associated with the 35 % less negative ride-hailing in- 
vehicle time valuation compared to PT. For a more complete comparison 
in VOTT between ride-hailing and PT users, a more detailed follow-up 
study is recommended where mode-specific fare coefficients are esti
mated and where heterogeneity in VOTT both between modes and 
within each mode is explicitly accounted for. For that purpose, a more 
detailed fare calculation for each individual PT passenger journey is 
recommended, which includes the impact from concessionary fares and 
monthly or annual travel passes on the actual and perceived PT fares.

At last, the negative coefficient for ride-hailing for the average 
housing density βRH

hd suggests an overall additional preference for PT in 
areas with higher housing densities relative to ride-hailing. We can 
expect that high-density areas are typically better served by public 
transport compared to low-density areas, as a certain degree of demand 
concentration is essential for PT systems to operate in an economic way. 
This coefficient therefore might reflect the overall better PT quality in 
high-density areas, above and beyond the associated travel time com
ponents already accounted for in the utility function.

3.3. Study limitations

Given that the exact origin and destination coordinates of the PT 
journeys are not empirically known, in our study we used the average 
first access and last egress walking time for the corresponding day-hour- 
origin–destination zone combination as derived from the OTP for the 
matching ride-hailing trip. If the corresponding ride-hailing trips origi
nate or terminate on average further from the PT stops or stations than 
the PT journeys, this may result in a slight overestimation of the assumed 
PT access or egress walking time. However, given that the matching 
between ride-hailing and PT journeys occurs using a relatively high level 
of disaggregation (H3 clustering resolution 9, with each zone covering 
an area of 0.105 km2), the impact on the total PT waiting + walking time 
is expected to be limited – especially because the access / egress walking 
time is only a subset of the total PT walking and waiting time tPT

wtt which 
also includes waiting time and station walking time.

As the ratio between PT waiting time and in-vehicle time is fixed to 
1.62 times the PT in-vehicle time coefficient in our study, we have 
performed a sensitivity analysis to this assumption. As choice proba
bilities in discrete choice modelling are driven by the difference in utility 
between the RH and PT alternatives rather than their absolute utility, 
the estimated RH coefficients change when changing βPT

wtt:ivt . When using 
a PT waiting time to in-vehicle time ratio βPT

wtt:ivt of 1.50 and 1.75, we find 
that the estimated ride-hailing waiting time to in-vehicle time ratio 
βRH

wtt:ivt equals 1.26 and 1.37, respectively. From this we can conclude that 
ride-hailing waiting time relative to ride-hailing in-vehicle time is 
consistently perceived about 20 % less negative than PT waiting time 
relative to PT in-vehicle time.

In our model we have specified bespoke alternative-specific con
stants and time coefficients for PT and ride-hailing. Even though subway 
and bus may be perceived differently by passengers, we have not made a 
further distinction within the PT mode between bus and subway given 
the research focus to obtain a better understanding of mode choice be
tween PT and ride-hailing. A suggested future improvement in the 
model specification is the introduction of mode-specific alternative- 
specific constants for bus and subway, as well as mode-specific time 
coefficients for bus and subway separately.

3.4. Study implications

Our study results allow policy makers to position ride-hailing ser
vices relative to conventional PT and – indicatively – to private car in 
terms of in-vehicle time perception. As mentioned in chapter 1, Gao 
et al. (2019) found that on average in-vehicle time in ride-hailing is 
perceived as 13 % less negative compared to in-vehicle time when 
driving a private car, presumably due to the ability to undertake other 
tasks whilst being driven. In Wardman (2004) it was found that PT in- 
vehicle time is valued 1.3–1.5 times higher than in-vehicle time in a 
private car, depending on the journey purpose. When combining these 
two ratios from both studies, PT in-vehicle time would be expected to be 
valued ~1.5–1.7 times more negative than ride-hailing in-vehicle time. 
As abovementioned, our estimation results show that on average PT in- 
vehicle time is valued 1.54 times more negative than ride-hailing in- 
vehicle time, thus pointing into the same direction. Taking this together 
we can conclude that the private car can be positioned between ride- 
hailing and PT in terms of in-vehicle time perception, although the 
private car in-vehicle time valuation sits closer to ride-hailing than to 
regular PT. This is visualised in Fig. 3, which shows the in-vehicle time 
perception ratios between ride-hailing, private car and PT. As illustra
tion, the figure shows the in-vehicle time ratio between ride-hailing and 
private car found in Gao et al. (2019), scaled relative to the ride-hailing 
in-vehicle time coefficient set to 1.00 (1.00/(1–0.13) = 1.15). Further
more, it shows the in-vehicle time ratio between private car and PT as 
found in Wardman (2004), scaled against the private car in-vehicle time 
which is set equal to 1.15, resulting in PT in-vehicle time ratios between 
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1.49 (1.15⋅1.3) and 1.72 (1.15⋅1.5). Finally, the in-vehicle time ratio 
between ride-hailing and PT as found in our study is shown, scaled to the 
ride-hailing in-vehicle time equalling 1.00, resulting in a PT in-vehicle 
time coefficient of 1.54 (− 0.0548/-0.0357).

A second implication of our study results is that it enables a more 
accurate modelling, and thereby forecasting, of ride-hailing services and 
their impacts on PT ridership and road traffic congestion. Currently, in 
the absence of bespoke coefficients and ratios between coefficients for 
ride-hailing based on observed choice behaviour, transport models 
aiming to model ride-hailing typically apply the same coefficients and 
ratios between coefficients as for PT or private car, or use Stated Pref
erence based estimated coefficients. For example, when assessing 
accessibility benefits provided by ride-hailing in addition to regular PT, 
Cats et al. (2022) apply the default PT waiting time to in-vehicle time 
ratios to ride-hailing as well. Kucharski and Cats (2022) use ride-hailing 
perception coefficients derived from a Stated Preference study (Geržinič 
et al. 2022) when simulating ride-hailing services with MaasSim. Our 
study results enable a more accurate modelling of ride-hailing as a 
distinct mode with bespoke travel time coefficients derived from 
observed mode choices, thereby contributing to the generation of more 
accurate modelling results that provide a sound empirical underpinning 
in support of decision-making processes.

4. Conclusions

The main objective of this study is to estimate how travellers 
perceive time for ride-hailing services compared to conventional public 
transport. In contrast to previous research on ride-hailing mode choice 
which often relies on Stated Preference approaches or self-reported 
samples, our study uses empirical, large-scale Revealed Preference 
data containing observed choices of both ride-hailing and public trans
port to understand travellers’ time valuations. Our estimated choice 
model is based on more than half a million actual ride-hailing and PT 
choices, resulting from Uber ride-hailing data and WMATA public 
transport demand data in the Washington DC metropolitan area.

Based on the model outputs we can conclude that in-vehicle time in 
ride-hailing is perceived substantially less negative compared to in- 
vehicle time on-board PT. Our findings suggest that ride-hailing in- 
vehicle time is perceived 35 % less negative, providing strong quanti
tative evidence for users’ preferences for ride-hailing. We also found that 
waiting time for ride-hailing is valued roughly 1.3 times more negatively 
than ride-hailing in-vehicle time, which is about 20 % less negative than 
the ratio between waiting and in-vehicle time found for PT. Our study 
enables a more accurate modelling of ride-hailing by using bespoke, 
mode-specific travel time coefficients derived from large-scale empirical 

data, which can improve the accuracy of modelling outputs and thereby 
improve decision-making processes.

We formulate two main directions for follow-up research. First, 
heterogeneity in travel preferences can be explored in future research. 
For example, taste heterogeneity could be further explored by esti
mating mixed MNL models to understand the variance in ride-hailing in- 
vehicle time and waiting time valuation between different users. 
Furthermore, latent class models could be estimated to derive 
segmented ride-hailing coefficients. Second, when data concerning at
tributes of individual users would be available, it is recommended to add 
user-specific characteristics such as gender, age, education level and 
income to the discrete choice model. Instead of relying on average 
sociodemographic data for the origin and destination area of a certain 
trip, accounting for personal characteristics could potentially increase 
the proportion of variance explained by the choice model.
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