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Abstract—The investigation of neural activity in the murine
brain through electrophysiological recordings stands as a fun-
damental pursuit within the domain of neuroscience. A specific
area of keen interest within this field pertains to the scrutiny
of Purkinje cells, nestled within the cerebellum, in order to
gain insights into the mechanisms underlying brain injuries
and the impairment of motor functions. Notably, Purkinje cells
manifest two distinct types of spikes – complex and simple – a
pivotal aspect for subsequent classification purposes. However,
a critical challenge has persisted in the experimental paradigm:
the prevailing setups necessitate the use of wired connections
linking the mouse’s head stage to data acquisition systems. This
constraint substantially curtails the mouse’s natural behavior
during the course of experimentation, limiting the ability to
study essential neural processes and motor function aspects over
extended periods. In this paper, we propose a new architectural
framework for the detection and classification of neuronal spikes
originating from Purkinje cells. This system is engineered to
exploit the distinct attributes of these neural entities, effectively
winnowing out extraneous data while retaining the pertinent
information. The resultant output is a refined dataset, amenable
to convenient storage within the mouse’s head stage, obviating
the need for unwieldy wiring configurations. Our proposed
implementation attains a classification accuracy of up to 98%
on an in-vivo dataset. Furthermore, its compact form factor en-
sures unhindered mobility for the experimental mouse, fostering
naturalistic behaviors during the course of scientific inquiry.

Index Terms—Electrophysiological recordings, Purkinje cells,
Spike detection, Spike classification, Spiking Neural Network
(SNN).

I. INTRODUCTION

Brain injuries resulting in motor function loss pose a sig-
nificant healthcare challenge, impacting the quality of life for
many individuals annually [1]. This pressing issue underscores
the importance of comprehending and treating these disorders.
In this context, the cerebellum emerges as a critical brain

structure, central to motor control and hand-eye coordination
[2]. Neuroscientists have long been captivated by its intricate
operations, seeking to elucidate the mechanisms governing its
function [2], [3].

Previous research in this area has predominantly relied
on invasive experiments involving animal subjects, notably
mice, due to the necessity of replicating complex neural
processes [4]. However, current experimental setups, involving
wired connections, limit the freedom of movement in these
subjects (Fig. 1) necessitating a transition towards wire-free
neuroscientific investigations [5]. While some wireless head
stages have been proposed, they fall short of the requisite
criteria, either being too heavy or unable to sustain long-
term recordings, essential for studying various aspects of brain
function [6].

This paper addresses these challenges by presenting a novel
approach for detecting and classifying neuronal spikes in Purk-
inje cells’ neural data, significantly reducing data dimension-
ality for efficient storage. Our proposed system architecture
comprises a controller orchestrating data flow from spike
detection to classification and storage in non-volatile memory.
Furthermore, we introduce an SNN architecture optimized for
low-power, extended operation within the size constraints of
a head stage [7]. Additionally, a training algorithm ensures
high classification accuracy [8], [9], enabling long-duration
experiments with freely moving mice. This work represents a
vital step towards facilitating comprehensive, wire-free neuro-
scientific investigations and extends the scope of research in
understanding and treating brain injuries affecting motor func-
tion. The implementation we have put forth in this study has
demonstrated an impressive classification accuracy, reaching
as high as 98%. This notable level of accuracy underscores
the effectiveness and reliability of our proposed approach
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in accurately classifying the recorded data. Furthermore, our
system’s efficiency is reinforced through the incorporation
of an SNN-based architecture. This deliberate design choice
empowers the head stage to maintain seamless operation over
an extended duration, all while conserving energy from a
compact battery source [10]. This results in prolonged and
consistent performance, eliminating the necessity for frequent
battery replacements.

The rest of the paper is organized as follows. A background
on neuroscientific cerebellar recordings and SNN is discussed
in Section II. Section III presents proposed ideas, including
detection and classification architecture. Section IV describes
the results to verify the proposed system-level SNN architec-
ture. The last section concludes the paper.

II. BRAIN ACTIVITY MONITORING WITH BRAIN INSPIRED
ARCHITECTURE

Purkinje cells and their associated complex and simple
spikes have been a subject of interest in neuroscience, partic-
ularly in understanding their role in sensory-motor and cogni-
tive functions [11] (Fig. 2). Neuroscientists have employed
electrophysiological recordings to investigate the electrical
activity of these cells in the cerebellum, aiming to unravel
the brain’s mysteries and potentially address brain injuries and
motor function losses [11]. However, experimental constraints,
such as head-fixed setups for animal recordings, have limited
the understanding of how neuronal signals correlate with
natural body movements. Recent years have seen significant
efforts in developing technologies for freely moving animal
recordings, particularly for small animals like mice, known for
their suitability in genetic manipulations. To achieve this, the
challenge lies in creating small, lightweight, low-power, and
wireless technologies to ensure the natural state of animals
during experiments [12]–[15].

Brain-inspired architecture systems play a vital role in
understanding neural processes and developing artificial net-
works [16]. To effectively design SNNs (Fig. 3), one must
grasp the fundamentals of spike encoding schemes, neuron
models, training algorithms, and SNN architectures [17]. Spike
encoding can be approached through rate coding, temporal

Fig. 1. Current wired setup for recording mice brain activity that disabling
free movement.

Fig. 2. Electrode-Recorded Mice Brain Activity Converted to Digital Signals
and Classified into Simple Spikes and Complex Spikes

coding, or level-crossing-based coding, each requiring careful
consideration of synchronization windows and digital input
frequencies [18]. Notably, level-crossing-based coding offers
the advantage of triggering spikes when data crosses pre-
defined thresholds [19]. In the context of SNN systems, it
is not always necessary to replicate complex neuron models
used in experimental neuroscience. Simpler neuron models
can be more practical and effective for designing artificial
networks [20]. Training algorithms in SNNs come in three
main types: unsupervised, indirectly supervised, and super-
vised. Unsupervised training focuses on local information but
may sacrifice accuracy. Indirectly supervised training relies
on spatial domain information similar to Convolutional Neural
Networks (CNNs) or Artificial Neural Networks (ANNs) [21].
For achieving high accuracy, the supervised training approach
is employed, where labeled data provided by neuroscientists
ensures correctness throughout the training process [22].

III. BRAIN INSPIRED SYSTEM

A. Overview
In the process of designing the Brain Inspired system, the

initial step involves encoding input data into spike represen-
tations while also taking into account the specific neuronal
model under consideration. This is followed by the integration
of specialized training algorithms, ultimately resulting in the
structuring of the SNN architecture (Fig. 4). The subsequent
section of this paper provides an in-depth exploration of the
SNN design architecture.

Fig. 3. A general spiking neuron model: It receives input spikes through
synapses with varying weights. Upon reaching a predefined threshold, it
generates an output spike.
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B. Input Spike Encoding

When employing temporal or rate coding, and given an
ADC frequency of 24 KHz, a digital processing frequency
of 24 MHz becomes necessary. However, to reduce the
computational frequency requirements, level-crossing-based
encoding is adopted. In this approach, a single input channel is
transformed into two channels: one for positive slope crossings
(excitatory channel) and the other for negative slope crossings
(inhibitory channel). A critical consideration is that each
recorded data sample should not deviate by more than one
level from its adjacent samples. This constraint ensures the
accurate reconstruction of the encoded data. By selecting an
appropriate threshold value and employing interpolation within
the data, it is feasible to achieve complete data encoding while
maintaining the ability to reconstruct it.

The mechanism underlying our encoding approach oper-
ates in the following manner: hypothetical levels with an
appropriate level difference are first identified. The current
sample and the previous sample are then considered. When the
current sample is lower in level than the previous sample, a
spike signal is produced in the inhibitory channel. Conversely,
when the current sample is higher in level than the previous
sample, a signal is generated in the excitatory channel. If the
current sample falls within the same level range as the previous
sample, no event or digital spike is generated.

One limitation of this encoding model is that when the
current sample passes through multiple levels, only a single
spike is generated instead of the expected number of spikes
corresponding to the number of levels passed. This can result
in an under-representation of the actual neural activity and
limit the resolution of the encoded data. The issue of multiple
levels being passed by the current sample is prevalent in the
recorded signal due to the rapid decay of neuronal activity.
As a result, this problem can significantly impact the recon-
struction of the input signal from the spikes, and identifying
the correct pattern of neural activity necessitates the accurate
determination of the number of spikes. Therefore, it is critical
to address this limitation of our encoding model to ensure a
more accurate representation of the recorded neuronal activity.

To address the issue of multiple levels being passed by the
current sample, we propose a solution involving interpolation
to an appropriate value. This interpolation is performed in
such a way that neighboring samples differ by only one
level, ensuring that a spike is created from this level. For
that, we first interpolate the input signal with a suitable

Fig. 4. Proposed top-level system architecture: The first phase involves
encoding input data into spikes, followed by the second phase which is
detection and then classification by trained SNN.

factor and then encode the interpolated signal into spikes. To
evaluate the accuracy of the encoding, the coded signal can
be reconstructed and downsampled using the same factor, and
then compared with the original signal. This approach helps
to get an accurate representation of the recorded neuronal
activity by reducing the impact of the limitation associated
with multiple levels being passed by the current sample.

By implementing the proposed interpolation-based ap-
proach, we are able to preserve the time, shape, and ampli-
tude of the signal with high accuracy during the encoding
and reconstruction process. This allows for a more faithful
representation of the original neuronal activity, which can be
crucial for accurate analysis and interpretation of the data.
Overall, the proposed approach offers a promising solution to
the limitations of the original encoding model, providing a
more precise and reliable method for encoding and decoding
single-channel neuronal activity.

The encoding process generates two channels from the
interpolated signal: the excitatory channel and the inhibitory
channel. These channels represent different aspects of the
neuronal activity and are used as input to the designed spiking
neural network (SNN). The excitatory channel corresponds to
the periods of increased neural activity, while the inhibitory
channel represents the periods of decreased neural activity. To-
gether, these channels provide a comprehensive representation
of the neuronal activity captured in the original signal. This
allows the SNN to capture the patterns and dynamics of the
underlying neural activity more accurately.

The recorded signal is shown in Fig. 5 after applying 20 uV
level crossing and 5 interpolation factors, finding empirically.
The signal is a short segment of the neuronal activity recorded
from a single channel, and it exhibits characteristic spikes of
varying amplitudes and shapes. This level crossing and the
interpolation factor of 5 has been applied to the signal as part
of the encoding process, resulting in the generation of the
excitatory and inhibitory channels with an input frequency of
120 kHz (Fig. 6.a).

C. Neuron Model

In this project, two distinct neuron models are employed:
the Leaky Integrate-and-Fire (LIF) neuron model is utilized
for the purpose of detection, while the Integrate-and-Fire (IF)
neuron model is employed for classification tasks.

LIF neuron model: The rationale behind selecting these
neuron models lies in their suitability for handling the input
of encoded spikes, especially considering their temporal rela-
tionships and the formation of neuron spikes from a collection
of encoded spikes. Leveraging neuron models in this context
allows for the recognition of contributions in the time domain,
which aligns with one of the primary features of SNNs – the
utilization of temporal data features. Furthermore, given the
sparse nature of these neuron spikes, the presence of a leaky
term in these models aids in the detection of sparse neuron
spikes, enhancing the robustness and accuracy of the network’s

11
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Fig. 5. Illustration of the signal encoding with a threshold level of 20uV and interpolation factor of 5: Raw signal and down-sampled reconstructed signal in
the top, interpolated and reconstructed signal in the second top, excitatory digital spike channel in the third top and inhibitory digital spike channel in bottom.

(a) (b)
Fig. 6. Proposed system: (a) Input data encoding model (b) System architecture

spike-based processing. This model adheres to the following
mathematical formula (Fig. 7):

uL
t = uL

t .f(O
L
t−1) +W.OL−1

t (1)

OL
t = g(uL

t ) (2)

Where uL
t represents the membrane potential of neuron

in layer L at time step t, f(x) = τ. exp−x/τ is the leaky
term, which depends on the previous membrane potential, W
represents the synaptic weight, and g(x) is the step function
used to generate the output spike.

IF neuron model: The rationale for selecting this simple
neuron model is grounded in the absence of correlation
between successive neuron spikes, obviating the need to
maintain temporal states. This model is specifically chosen

for classification purposes. Here’s the workflow: The input
data is initially stored in a buffer. Following detection by
the LIF neuron, these data are simultaneously fed into the
SNN Classifier. This process enables the determination of the
data class associated with the input neuron spike in a parallel
fashion, facilitating efficient classification. Since there is no
leaky term in this model, the corresponding part has been
removed from the formula. The model of this neuron is defined
by the following formula:

uL
t = W.OL−1

t (3)

D. Training Algorithm

For supervised training, the backpropagation algorithm is
employed. This algorithm relies on a two-step process: forward
propagation through the neuron equations to compute the

12
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Fig. 7. Comparison of Simplified LIF Neuron Model Behavior (Left) and IF
Neuron Model Behavior (Right)

output, followed by a comparison of the final output with the
intended label. Subsequently, the error signal is quantified by
computing the loss using a predefined formula. Finally, the
synaptic weights are adjusted according to the equation 4,
guided by the derivatives of both the neuron equations and
the loss formula.

∆W = −η.
∂Ls

∂W
(4)

Where η represents the learning rate, ∆W represents the
synaptic weight modification, and ∂Ls

∂W represents error signal.
The objective is to minimize the error and optimize the
network’s performance through these weight adjustments.

Ls =
1

2S
.
∥∥Yt −OL

t

∥∥2
2

(5)

Where Ls represents the loss, S denotes the number of
samples, and Y represents the label and L is the last layer
neuron output.

For the detection part, which comprises only one LIF neuron
with two synapses, the appropriate values for the synapses
can be determined manually due to its simplicity. However,
for the IF neuron, the derivatives required for the backward
propagation step are computed as follows:

∂Ls

∂W
=

∂Ls

∂OL
t

.
∂OL

t

∂uL
t

.
∂uL

t

∂W
(6)

Where
∂Ls

∂OL
t

= −1

s
.(Yt −OL

t ) (7)

To address the issue of the step function having an infinite
derivative, an approximation is employed using a surrogate
gradient function, defined as follows:

∂OL
t

∂uL
t

=
1

α
.

expvthr−uL
t

(1 + exp
vthr−uL

t
α )2

(8)

Where α represents the approximation factor and vthr the
voltage threshold to fire a spike by the IF neuron.

Finally, this process is repeated for N = 100 to determine
the precise value of synapses.

E. SNN architecture

As previously mentioned, for the detection phase, a LIF
neuron with two synapses is employed, with each synapse
connected to an input channel. Simultaneously, data is stored
in shift registers. If a neuron spike is detected, the associated
data is then entered into the classifier. The number of samples
stored in the buffer forms the input for the neurons in the
classifier.

In this designed system, the sampling frequency is set
at 24 kHz, with each neuron spike having a duration of
approximately 2 ms. This means that for an interpolation
factor of 5, 40 samples from the input are interpolated to 200
samples. Consequently, the input for the IF neurons in the
classifier consists of 200 neurons.

Moreover, the number of output IF neurons in the classi-
fier is configured to be 2, corresponding to the number of
classes (simple and complex). The architecture also includes
intermediate layers, and for this specific design, a neuron
layer comprising 240 IF neurons is utilized. Thus, the final
architecture is structured as follows: 200-240-2.

IV. RESULT

A. System Setup

In this study, we utilized the MATLAB software framework
to expedite the conceptualization and simulation of the system
under scrutiny. The dataset used in this investigation comprises
authentic data collected from mice within a medical research
facility. These data were meticulously annotated by neurosci-
entists to ensure their accuracy and relevance. Subsequently,
the meticulously curated dataset was imported into MATLAB
to facilitate the design and evaluation of the system.

B. Level Crossing-Based Encoding Result

In the initial phase, input data underwent transformation
via level-crossing-based encoding techniques. Subsequently, a
rigorous validation process ensued, encompassing the decod-
ing of the encoded data and the subsequent reconstruction of
the signal. It is noteworthy that the threshold crossing was
set at a precise value of 20uV, while the average peak-to-
peak amplitude associated with neural spikes was consistently
maintained at 400uV. Consequently, the system exhibited a
maximum error margin of 10%.

C. Spike Detection Result

Following the encoding phase, a LIF neuron model was
meticulously formulated and subsequently subjected to man-
ual training procedures. The outcomes of these efforts were
assessed through meticulous observation, with a single neuron
serving as the focal point for detection (Fig. 9). This detection
process was further augmented by a comprehensive compar-
ison with labeled data within a temporal window of 40ms.
This not only ensured successful detection (Table I), but also
facilitated the assignment of labels for subsequent stages.
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D. Fully Connected IF Neurons Classifier Results

The subsequent phase of the study involved the allocation
of 50% of the dataset for training the classifier, while the
remaining 50% was reserved for testing purposes. The results
obtained from the final system are comprehensively docu-
mented in Table II for reference and analysis.

The results demonstrate an overall accuracy rate exceeding
98%, calculated as the total number of correctly detected and
classified complex spikes and simple spikes over the total
number of spikes, whether correctly classified or not.

V. CONCLUSION

In this study, we have presented a novel and innovative
approach to address the limitations of traditional wired elec-
trophysiological recording setups, particularly in the context
of monitoring cerebellar Purkinje cells. Our proposed system
leverages level-crossing-based spike encoding, tailored neuron
models, and an SNN architecture to achieve real-time spike de-
tection and classification with remarkable accuracy. The results
obtained from our system demonstrate its effectiveness, with
an overall classification accuracy exceeding 98%. Moreover,
our system’s compact form factor and low-power design en-
able unhindered mobility for experimental subjects, fostering
more naturalistic behaviors during scientific inquiry. This work

TABLE I
RESULTS OF LIF NEURON DETECTION ON DATASET: DETECTED, NOT

DETECTED, AND OVERALL ACCURACY

in Dataset Detected Not Detected Accuracy
CS1 203 203 0 100%
SS2 17311 17300 11 99.93%

CS+SS 17514 17503 11 99.93%
1 Complex Spike 2 Simple Spike

TABLE II
CLASSIFIER RESULTS FOR SIMPLE AND COMPLEX SPIKE

CLASSIFICATION: TOTAL CLASSIFIED, FALSE CLASSIFIED, CORRECT
CLASSIFIED, AND OVERALL ACCURACY

Total False Correct Accuracy
Classified Classified Classified (CC/TC)

CS1 93 12 81 87.09%
SS2 8956 82 8874 98.97%

CS+SS 9049 94 8955 98.85%
1 Complex Spike 2 Simple Spike

represents a significant step forward in enabling wire-free
neuroscientific investigations and expanding our understanding
of brain injuries affecting motor function. As we continue
to refine and enhance this technology, it holds promise for
advancing the field of neuroscience and contributing to the
development of treatments for motor function disorders.
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