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1
Introduction

Solving Partial differential equations exactly is often times not possible, this is then done numerically. One
such numerical method is the Finite Element Method, how this method works will be briefly explained in
section 2.1. The accuracy of the solution obtained by applying the Finite element method can be increased
but usually at the cost of needing more compute and thus getting a solution will take more time. Roughly
speaking, the finite element method works by partitioning the domain into elements. These elements can be
piecewise linear lines in case of 1d problems, triangles in the case of a 2d problem or tetrahedra in the case of
3d problems.

The number of elements will determine how much compute and thus how long it will take to get a solution of
the Finite Element Method, but also how accurate the solution will be. The more elements in a subset of your
domain the less error the solution will have in that part of your domain. Thus more is gained when increasing
the number of elements in parts of your domain where the error is high than when the number of elements
is increased in a part of the domain with little error.

Hence if the error can be estimated in advance the number of elements can be increased where the error
estimate is high and can be kept the same where the error estimate is low, this way the amount of compute
needed for finding a solution will be lower than when increasing the amount of elements uniformly while
having a similar effect on the accuracy of your solution. Using error estimates to refine a mesh where the
estimated error is high is called adaptive mesh refinement, and the effectiveness of this method depends
strongly on how accurate the error estimates are. In this thesis will be looking at how to estimate errors using
the finite element method using neural networks. These errors are estimated per element using information
from the element itself and of neighbouring elements.

In this thesis the focus lies on one dimensional differential equations. But the ideas can generalise to arbi-
trary dimensions. However other neural network architectures might be better suited for this. This will be
discussed in section 8.2. Regarding the neural networks the thesis will focus on two architectures the multi-
layer perceptron and the Transformer network [15]. How these networks work will be discussed in detail, and
will be shown in pseudocode in the main text in section 2.2. Furthermore, how adaptive mesh refinement is
being done will be discussed in section 2.3.

The hyperparameters of neural networks will for this thesis also be tuned, how this works and what this is will
be treated in the thesis too, in section 2.4.
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2
Background theory

2.1. Finite element method
The finite element method consists of 4 steps that in general take the following form:

• Apply the weak formulation to the PDE. The problem that is obtained after applying the weak formula-
tion is in the literature formulated as:

B(u, v) = F (v),∀v ∈VgD

Where VgD = {v : ||v ||L2(Ω) +||∇v ||L2(Ω) <∞, v |∂Ω = gD }

• Generate the Mesh, the mesh is generated by partitioning the domain into elements an example of an
element in 1d is a line segment, in the 2d case elements can be triangles and in the 3d case it can be
tetrahedra.

• Define the Finite Element subspace Sh := Span{φi }N
i=1 ⊂VgD , where theφi ’s are the basis functions that

are specified in this step. The basis functions that are used in this thesis are shown in figure 2.1 below

Figure 2.1: linear 1d basis functions

• Formulate the Finite Element problem

B(uh , vh) = F (vh),∀vh ∈ Sh

3



4 2. Background theory

Where:

uh :=
N∑

j=1
U jφ j

vh :=
N∑

i=1
Viφi

Where U j and Vi scalars for all i , j ∈ {1, . . . , N }.

• Matrix formulation of the Finite Element problem

B(uh ,φi ) = F (φi ) =⇒

B(
N∑

j=1
U jφ j ,φi ) = F (φi )∀i ∈ {1, . . . , N } =⇒



∑N
j=1 B(U jφ j ,φ2) = F (φ1)∑N
j=1 B(U jφ j ,φ3) = F (φ3)

...∑N
j=1 B(U jφ j ,φN−1) = F (φN )

Where U j and V j scalars for all j ∈ {1, . . . , N }. In matrix form it would be:



B(φ1,φ1) B(φ2,φ1) · · · · · · B(φN−1,φ2) B(φN ,φ1)
B(φ1,φ2) B(φ2,φ2) · · · · · · B(φN−1,φ2) B(φN ,φ2)
B(φ1,φ3) B(φ2,φ3) · · · · · · B(φN−1,φ3) B(φN ,φ3)

...
...

. . .
...

...
...

...
. . .

...
...

B(φ1,φN−2) B(φ2,φN−2) · · · · · · B(φN−1,φN−2) B(φN ,φN−2)
B(φ1,φN−1) B(φ2,φN−1) · · · · · · B(φN−1,φN−1) B(φN ,φN−1)

B(φ1,φN ) B(φ2,φN ) · · · · · · B(φN ,φN ) B(φN ,φN )





U1

U2

U3
...
...

UN−2

UN−1

UN


=



F (φ1)
F (φ2)
F (φ3)

...

...
F (φN−2)
F (φN−1)

F (φN )


This linear system can then be solved using standard linear algebra computations.[10]

2.2. Neural networks
Neural networks come in different flavours: GNN’s, CNN, Transformer neural networks and the MLP, to name
a few. In this thesis two architectures are trained to estimate elementwise residual errors: Transformer net-
work and the Multilayer perceptron (MLP). Neural network architectures are very diverse and different ar-
chitectures are useful for different tasks, what they have in common however is that neural networks are
differentiable with respect to all its parameters. Which makes the training procedure that will be described in
the next section possible.

2.2.1. Training neural networks
The goal of training a neural network is to make it perform better with respect to a certain metric. This metric
is called the loss function, the loss function that is used in this thesis is the mean squared error loss also
known as MSE.The MSE loss looks like this:

LMSE (ŷ,y) = ||ŷ−y||2/n

Where n is the length of the vectors y and ŷ, furthermore ŷ is the predicted value of y given the corresponding
input x by the neural network (i.e. f (x,w) = ŷ). To train a neural network the derivatives with respect to the
loss function are calculated with respect to all its parameters. These derivatives are calculated by applying
the chain rule with respect to all parameters. The calculation of the chain rule is in turn done by a computer
using back-propagation.
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When these gradients are calculated an optimizer is used to update the parameters of the model. The op-
timizers that are used in this thesis are Adam and stochastic gradient descent. To speed up learning and
making learning more stable the optimizer updates the parameters with gradients that come from the loss
from multiple input vectors xi , i = 1, . . . , N where N is called the batch size.

Let the neural network be called f (xt ,w), where xt is an input vector and w are its parameters, also called
weights. And let L f (xt ,w) be the loss function evaluated. Then gradient descent on batch t Bt of N entries
does the following [17]:

w ← w−η 1

N

∑
i∈Bt

∂wL f (xi ,w)

Where η is called the learning rate, the learning rate determines how strongly the weights will move into
the direction opposite of the gradient. Having a learning rate that is too high will result in there being no
convergence as the optimizer will overshoot the minimum. Hence the loss will then not decrease. When
the learning rate is too low the optimization procedure will get stuck in a local minima or on a saddle point
making progress impossible or just very slow respectively. In the latter case it is because the gradient is zero
at the saddle point.

Figure 2.2: A saddle point in 3d[12]

As can be seen above graphically there are directions in which the parameters are pushed towards the saddle
point but also directions in which the parameters are pushed away from the saddle point, eventually the
parameter vector will diverge away from the saddle point provided the parameters are not exactly on the
saddle point itself. The picture above is in 3d but this is of course also true in higher dimensions as well.

During hyper-parameter tuning a different variation of stochastic gradient descent is tried as well. Namely
SGD with momentum and dampening. Adding momentum to SGD as the name suggests will make it less
likely that whenever you get close to a saddle point that learning becomes really slow. Similarly when getting
stuck in a local minima will become less likely as well since it will not immediately stand still. The opposite
however can happen as well, that the weights are optimal but then because of momentum will diverge from
the optimum again in the next optimization step. However in practice it is found that adding momentum
usually helps.

Momentum works by adding the gradient of the previous timestep g t−1 := 1
N

∑
i∈Bt−1 ∂w f (xi ,w) times some

factor µ to the gradient update. The exact expression is shown in algorithm 1.

Adding dampening to SGD will do the opposite, it will make the effect of the gradient g t = 1
N

∑
i∈Bt ∂w f (xi ,w)

in the current time step less pronounced by multiplying it with a factor (1−τ), where τ ∈ [0,1].

Let t again denote the current batch. In pseudocode the SGD algorithm becomes [3]:

As can be seen dampening will have effect whenever momentum is nonzero, furthermore with momentum
µ= 0 the previous SGD algorithm is obtained.

The second type of optimizer that is used in this thesis is Adam. Adam is the most popular optimizer because
it usually works well in practice, without there being a need to tune its hyper parameters, β1,β2 [9].



6 2. Background theory

Algorithm 1 SGD with momentum

Input: Loss function: L f (xt ,w), learning rate γ, parameters w0, momentum µ, dampening τ
Output: updated parameters wt

1 for t = 1 to . . . do
2 g t ← 1

N

∑
i∈Bt ∂wL f (xt ,w)

3 if µ ̸= 0
4 if t > 1
5 bt ←µbt−1 − (1−τ)g t

6 else
7 bt ← g t

8 g t ← bt

9 wt ← wt−1 −γ ·gt

10 return wt

Below the algorithm of ADAM can be seen[1], however explaining how this algorithm came about and what
the underlying intuition is behind mt and vt is beyond the scope of this thesis.

Algorithm 2 Adam

Input: Loss function: L f (xt ,w), learning rate γ, parameters w0, betas β1, β2

Initialize: m0 ← 0, v0 ← 0
Output: updated parameters wt
1 for t = 1 to . . . do
2 g t ← 1

N

∑
i∈Bt ∂wL f (xt ,w)

3 mt ←β1mt−1 + (1−β1)g t

4 vt ←β2vt−1 + (1−β2)g 2
t

5 m̂t ← mt /(1−β1)
6 v̂t ← vt /(1−β2)
7 wt ← wt−1 −γm̂t /(

√
v̂t +ϵ)

8 return wt

2.2.2. Multilayer perceptron
In the sections above the neural network is abstractly denoted as f (x,w) where x is the input vector and w are
its weights. But this leaves away a lot of details, the architecture plays an important role in the performance
of the model as well as what the input is that you give to the model. In this thesis the multilayer perceptron is
used.

The multilayer perceptron can be described as consecutively applying similar functions called layers. These
layers are called linear layers and activation functions. And in the implementation in this thesis dropout
layers are added as well. Each layer takes in input from the previous layer and produces output for the next
layer.

In the case of the multilayer perceptron at the start the input vector is fed to the first layer which is a linear
layer. This is then fed to an activation layer which in turn is then fed to the next linear layer, this is shown in
an example MLP 3.

The linear layer has two parameters that are set beforehand n,m which will specify the input dimension and
the output dimension respectively. It takes as input a column vector v that is 1×n this will then be matrix
multiplied by matrix W that is n ×m. A bias vector b of dimension 1×m will then be added to all the entries
of the vector vW the matrix. The output is Linear_layer(v) = vW +b. All the entries in the bias vector are
trainable. The entries of the matrix and of the bias vectors are randomly initialised.

The activation function takes as input a vector v = [v1, v2, . . . , vn] that is 1×n, where n is an arbitrary natural
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number. Then the activation function will for each entry of the vector apply a nonlinear function σ.

activation(v) =



σ(v1)
σ(v2)
σ(v3)

...

...
σ(vn−2)
σ(vn−1)
σ(vn)



T

The types of activation layers that are used in this thesis are ReLU and softplus.

Figure 2.3: The ReLU activation function [2]

Figure 2.4: Plot of the Softplus activation function obtained using the function Softplus(x) = log(1+exp(x))[4]

Another layer that is used in the thesis is the dropout layer, what this layer does is it takes a vector v as input
and zero’s out certain entries, randomly during training time.

dropout(v) =



v1

0
v3
...
...

vn−2

0
0



T

Here random entries are zero’d out. The dropout layer has parameter p ∈ [0,1] that is set beforehand that
determines represents the probability of an entry being zero’d out.
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The dropout layer will only affect the training, when the neural network is used for prediction the dropout
layer parameter p will become 0 (i.e. no values will be zero’d out). The reason dropout layers are added is to
avoid that the neural network will just memorize the dataset. By adding dropout layers the neural network
will not always be able to observe all the features, hence it needs to come up with a robust way to get the
desired prediction. When the model gets less sensitive to changes in input generalising to unseen data will
become better.

However adding dropout layers will work less well when the prediction really should be sensitive to changes
in the input data.

An example multilayer perceptron is shown below with the name MLP:

Algorithm 3 MLP

Input: Vector v of size 1×14
Initialize: For each linear layer Linear_layer the corresponding matrix W of size n × m each entry has
values sampled from U [−1/

p
m,1/

p
m], each entry of the corresponding bias vector b is sampled from

U [−1/
p

m,1/
p

m] as well
Output: vector y of size 1×1

1 layer1 ← Linear_layer(14,22)
2 y ← layer1(y) /* y ← yW +b, W is 14×22, b is 1×22 */
3 activation_layer ← ReLU()
4 y ← activation_layer(y)
5 layer2 ← Linear_layer(22,22)
6 y ← layer2(y)
7 dropout_layer ← dropout(.7)
8 y ← dropout_layer(y)
9 y ← activation_layer(y)

10 layer3 ← Linear_layer(22,1)
11 y ← layer3(y) /* y ← yW +b, W is 22×1, b is 1×1 */
12 activation_layer2 ← softplus()
13 y ← activation_layer2(y)
14 return y

When the MLP is first initialised the matrices and vectors are randomly initialized so its performance is com-
parable to that of randomly guessing the output. But during training each matrix entry and each bias entry
will be updated by using the optimizer such that the loss will be less on the batches B that it was fed during
training. In practice this usually also results in the model performing well on batches that it has not seen yet,
provided the data is shuffled properly. If it is not shuffled properly then batch Bi might have very different
data than B j thus performing better on batch Bi will then not generalize to better performance on batch
B j .

As mentioned before during inference the dropout probabilities will become 0. This will be mathematically
written out:

MLP:M1×n(R) →R that is defined as

MLP(v) = softplus◦Linear(22,1)
4 ◦Linear(22,22)

3 ◦ReLU◦Linear(22,22)
2 ◦ReLU◦Linear(14,22)

1 (v)

Where Linear(n,m)(x) = xW +b where W is n ×m and b is 1×m and x is 1×n

2.2.3. Transformer network
The second architecture type that was used in this thesis is the Transformer network architecture. The En-
coder part of the Transformer was used. The Transformer was furthermore modified such that it can be used
for regression. The Transformer network was first introduced in the paper Attention is all you need [15] and
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was initially used in the natural language processing domain. But was found to work well in other domains as
well. The transformer model was choosen since the data can be collected and fed to the model in a way that
would make learning the relationship between the input and output easier for the model, this will be further
explained in the discussion see section 7 The transformer encoder consists of the following layers:

• The Positional encoding layer

• The attention layer

• The multiheaded attention layer

• The Add & Norm layer

• The FeedForward layer

The transformer network is fed N vectors of the same size, where N is a natural number. These vectors are
called embedding vectors or token embeddings. 1 These N tokens are all fed to the model at the same time.
The main advantage of this is that computations on these vectors can be done in parallel. However the model
will not be able to tell the difference if it is being fed (token1, token2, token3) or (token1, token3, token2) i.e. it
will not be able to tell which token comes before another token.

The first new layer that is part of the transformer model is the Positional encoding layer, this will give the
model a way to take the ordering of the tokens into account. It does this by adding a value to each entry e j

0 ≤ j ≤ d of a token token j , where d is the size of the token vector and 0 ≤ j ≤ N . The value that is added to
the entry ei of token j depends on j (i.e. the index in a sequence of tokens) and on i i.e. the index of the entry
in the embedding vector. The size of the token vector must be even.

To each entry e j
i of token token j , p i

j = sin

(
j

10000
(i )
d

)
is added whenever i is even and when i is odd p i

j =

cos

(
j

10000
i−1

d

)
is added.

Or in other words

p(i )
j = f ( j )(i ) :=

{
sin(wk j ) if i = 2k

cos(wk j ) if i = 2k +1

Where

wk = 1

100002k/d

In column vector form p j becomes :

p j =



sin(w1 j )
cos(w1 j )
sin(w2 j )
cos(w2 j )

...
sin(wd/2 j )
cos(wd/2 j )



T

Where d is an even number.

Hence the positional encoding layer becomes [8]

positional_encoding((token1, token2, . . . , tokenN )) = (token1 +p1, . . . , tokenN +pN )

1In this thesis the term token is used instead of token embedding, these terms strictly speaking mean different things in natural language
processing but for the sake of abbreviation the term token is used instead of token embedding.
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Figure 2.5: Positional encoding for 128 entry token embeddings and maximum number of tokens is 50 [8]

The second new layer that is part of the Transformer architecture is the attention layer. The attention layer
takes as its input queries qi ∈Rn and keys ki ∈Rn and values vi ∈Rn for i = 1, . . . , N for some natural number
N . It essentially computes the similarity between the queries qi and keys ki . The similarity similarity(ki ,qi )
is a real number, and it represents how related the query qi and the key ki are. The value vi that corresponds
to the key ki will then be multiplied by a modified version of this similarity. How this will look concretely will
be shown below.

The similarity is calculated as follows:

similarity(q,k) = q ·k/
p

n

Where n is the dimension of the vectors q,k. The extra factor 1p
n

makes sure the similarity will not take

increasingly extreme values as the dimension of the query and key vectors become larger. Doing this for each
individual vector is equivalent to making the queries rows in a matrix Q and the keys columns in a matrix K .
Then the similarity can be calculated for all the queries and keys at the same time.

similarity(Q,K ) =QK T /
p

n

Now, let V be the matrix of values, that consists of the values vi ∈Rn as rows in the matrix. As mentioned above
the similarity can take on negative numbers. What the similarity represents is how related two embedding
vectors are, so it would be preferable if the similarity would only take on values between 0 and 1, where 0
meant unrelated and 1 meant the tokens are very related. What Vaswani et al. [15] came up with is applying
the softmax function to each column of the similarity matrix. The softmax function does the following per
embedding vector:

softmax(x) =



x1∑n
j=0 exp(x j )

x2∑n
j=0 exp(x j )

x3∑n
j=0 exp(x j )

x4∑n
j=0 exp(x j )

...
xi∑n

j=0 exp(x j )
...

xn∑n
j=0 exp(x j )


per entry of the columns Then the attention layer does the following:
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attention(Q,K ,V ) = softmax(
QK T

p
n

)V

Where the softmax applies the softmax function on each column of the matrix. The attention layer will output
a N ×n matrix. Where N is the number of tokens and n is the number of entries in the key query and value
vectors.

Now, the third new layer of the Transformer architecture builds on the attention layer described before. This
layer is called the multiheaded attention layer. It takes in N embedding vectors v ∈Rn and projects these onto
subspaces by means of matrix multiplication. These vectors then correspond to queries keys and values. The
matrices are usually named WQi ,WKi ,WVi , with i = 1, . . . ,m where m ∈N is called the number of heads, hence
the name multiheaded attention.

The embedding vectors are put in matrix form M where the embedding vectors form the columns of this
matrix M . Then Qi =WQi M ,Vi =WVi M ,Ki =WKi M

then the attention layer is applied for each i :

attentioni = attention(Qi ,Ki ,Vi )

For each i , attentioni is a N×n matrix as mentioned before. Now these matrices are concatinated horizontally
producing a N ×n ·m sized matrix. This is then put in a linear layer (see section 2.2.2) to shrink down the size
of the matrix to N ×n. This will be the output of the multiheaded attention layer.

In other words multiheaded_attention :MN×n(R) →MN×n(R) is defined as

multiheaded_attention(M) =



attention(WQ1 M ,WK1 M ,WV1 M)
attention(WQ2 M ,WK2 M ,WV2 M)
attention(WQ3 M ,WK3 M ,WV3 M)
attention(WQ4 M ,WK4 M ,WV4 M)

...
attention(WQi M ,WKi M ,WVi M)

...
attention(WQm M ,WKm M ,WVm M)



T

W +b

Where W is an (n ·m)×n matrix and b is 1×n.

The third layer that will be covered is the Add & Norm layer. This layer works by adding two inputs together
and normalizing the result. It is also sometimes referred to as a residual connection or skip connection. The
Add & Norm layer is added to avoid the vanishing gradient problem and to preserve knowledge after going
through a layer. Inputs can get modified a lot when going through a layer, the layers afterwards will not have
access to the original data anymore, which might have some usefull information that is lost, hence why the
transformer model has skip connections.

The add and norm layer does the following:

add_and_norm(x,F (x)) = LayerNorm(x+F (x))

Where the LayerNorm function is a layer defined as [5]:

LayerNorm(x) = x− x̄√
(x− x̄)2 +ε

where epsilon is a (hyper)parameter that is set beforehand and will make sure no division by zero occurs. And
F is a layer over which the residual connection takes place. The residual connection adds two inputs, one
from before a layer was applied and another from after the layer is applied. Suppose the skip connection did
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not have this normalization layer then adding two inputs, can make the output larger, having many of these
skip connections could make the output blow up making the loss from gradient descent very unstable, and
thus make learning very difficult. Hence why after addition the layerNorm is applied.

The last new layer that is part of the transformer layer is the feedforward layer. The feedforward layer consists
of two linear layers with in between an activation function, the feedforward layer is often abreviated to FFN:

FFN(v) =σ(vW1 +b1)W2 +b2

Where W2 is k×n and W1 is n×k. And n is the length of the embedding vectors. k is usually much larger than
n.

Lastly the Transformer encoder will be described using all the layers mentioned above and dropout layers.

Algorithm 4 TransformerEncoder

Input: Vectors vi , each of size 1×10 with i = 1, . . . ,7 in matrix form M
Initialize: All the parameters from the layers in the transformer network are randomly initialized
Output: vectors yi of size 10×1 with i = 1, . . . ,7 in matrix form O

1 mh_layer ← multiheaded_attention(8) /* the layer has 8 attention heads */
2 mh_output ← mh_layer(M)
3 add&norm_layer ← add_and_norm(.001) /* ε= 0.001 , ε is a hyperparameter of LayerNorm */
4 W ← add&norm_layer(W,mh_output)
5 FFN_layer ← FFN(150) /* the size of the vectors is increased to 150 then reduced again to 10 */
6 FFN_output ← FFN(W )
7 dropout_layer ← dropout(.7)
8 FFN_output ← dropout_layer(FFN_output)
9 O ← add&norm_layer(W,FFN_output)

10 return O

When condensing the Transformer to just a few mathematical expression the following will be obtained:

Let

F (M) = add&norm_layer0.001(multiheaded_attention8(M), M)

Then

transformer(M) = add&norm_layer0.001(F (M),dropout_layer0.7(FFN150(F (M))))

Where for each layer F , F x (M) means layer F is applied to M with value x assigned to the hyper-parameter
can be set for that layer.

Figure 2.6: Transformer network taken from Vaswani
et al. [15]

To the right a schematic of the Transformer neural net-
work can be seen.[15] The left part of the image is the
transformer encoder. Now, the Transformer in this thesis
will only consist of N TransformerEncoder layers, with N ∈
{3,5,10,22,32,64,128}, and after that a few linear layers to re-
duce the output vector sizes to 1. for more detailed informa-
tion on the Transformer model see Appendix D. N will be a
hyper-parameter that will be searched over, more on this in
section 2.4.

2.3. Adaptive mesh refinement
In this thesis the Adaptive mesh refinement strategy that is
specified by Verfürth [16] is being modified. The general al-
gorithm looks like this.
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Given: the data of a partial differential equation and a toler-
ance ε.
Output: a numerical solution with an error less than ε.

1. Construct an initial coarse mesh T0. Set k = 0.

2. Use the Finite Element Method to solve the PDE with
mesh Tk

3. For every element K in Tk compute the a posteriori er-
ror indicator

4. If the estimated global error is less than ε stop, other-
wise decide which elements have to be refined and con-
struct the next mesh Tk . Add 1 to k and go to step 2

Step 1 will be done by creating a uniform mesh. Since the problems partial differential equations that are
solved in this thesis are 1d this will be sufficient. Step 2 will be done using a finite element method imple-
mentation written in python. For step 3 the book by Verfürth [16] will give several different ways of creating
error indicators, however in this thesis this is changed to estimating the error using local information from
the element and neighbouring elements. Lastly, the specific mesh refinement strategy that used in step 4 is
called dörfler strategy [16].

Given: a mesh T , error indicators ηK for elements K ∈T , and threshold θ ∈ (0,1)
Output: a subset T̃ of marked elements that needs to be refined. [16]

1. Compute ηT ,max = maxK∈T ηK

2. If ηK ≥ θηT ,max mark K for refinement and put it into set T̃

Figure 2.7: Solution before and after mesh refinement 1d

After the elements are marked for refinement, the
refinement takes place by using certain refinement
rules. For higher dimensional problems implement-
ing these rules can become complicated. In the one
dimensional case however the elements are simply
lines, so the refinement rule can just be subdivid-
ing the line through the middle. An example of re-
finement can be seen in 2.3 where the finite ele-
ment method solution of the 1d Poisson equation is
shown twice, once before mesh refinement and one
after.

2.3.1. Error metric
The error metric that is used, is the standard W 1,p

semi-norm, but with the integrand squared. Where
W k,p (ω) is the standard Sobolev space, with k ≥ 1
and 1 ≤ p ≤∞.[16]. In higher dimensions the stan-
dard W 1,p (ω) looks like this:

|||φ|||ω = (||∇φ||pp) 1
p

= ||∇φ||p

Where
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||φ||p =
∫
ω
|φ|p dµd

Here µd is the Lebesque measure in Rd In 1d this reduces to

|||φ|||ω =
∫
ω
|φ′|dµ1

Thus since the integrand in the error metric is squared the following is used:

|||φ|||ω =
∫
ω
|φ′|2dµ1

2.4. Hyper optimisation
In the sections above the term hyper-parameter has been mentioned multiple times already. A hyperparam-
eter is a parameter that is set before the training occurs and will not be modified by the training procedure.
For instance the number of layers can be a hyperparameter or the learning rate.

In this thesis two neural network architectures are tried: The Transformer neural network and the Multilayer
perceptron. To make the comparison between the two fair, hyper-parameter search is done. Before doing
hyper-parameter optimisation the search space must first be specified. When doing hyper-parameter opti-
misation multiple instances of a machine learning model is started with different hyper-parameters. Each
instance has hyper-parameters that were sampled from the search space. Not all possible hyper-parameters
have to be equally likely to be selected. A search algorithm can be used to pick hyper-parameters that are
likely to perform well according to the algorithm, this can speed up the process of finding good hyper-
parameters. The hyper-parameter search algorithm that is used in this thesis is Hyperopt.

Now, another trick that can be used to speed up finding good hyper-parameters, is to cut-off training of bad
performing instances of the model a way of doing this is by using the algorithm called ASHA.

In this thesis 23 different hyper-parameters are optimised, to enumerate them all here will not be particularly
enlightening, but these will be mentioned in the results in section 6.

2.4.1. Hyperopt
Hyperopt uses the Tree structured Parzan estimator (TPE) algorithm.

TPE will apply the following steps [6]:

1. Sample randomly from the search space and start instances with these samples as hyper-parameters

2. Sort data by score and divide them into two groups usually the top 10−25% best performing samples
are put into one group x1 and the rest is put into the second group x2.

3. Two densities l (x1), g (x2) are modelled using Parzan estimators (See Figure 2.9 on how a 1 dimensional
parzan estimator is made)

4. Draw sample hyper-parameters from l (x1) evaluating in terms of E I (x) = l (x)
g (x) .Where E I is called the ex-

pected improvement.Then the sample x that has the maximal value of l (x)
g (x) will get an machine learning

model started with hyper-parameters x. In Figure 2.9 the sampling is graphically illustrated.

5. Update the observation list in step 1.

6. Repeat step 2 - 5.

A Parzan estimator of a group S is built by constructing a (multivariate) Gaussian to each point x ∈ S.
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Figure 2.8: 1d parzan estimators taken from Shevchuk [14]

Figure 2.9: sampling from l (x1) image taken from Shevchuk [14]

These are then summed up and the resulting distri-
bution is normalised. In Figure 2.8 this is illustrated
for the 1d case. In Figure 2.8 one by one samples
are added to the set S and the Parzan estimate up-
dated by summing these gaussians and normalising
the result.

2.4.2. ASHA
ASHA is an algorithm based on SHA:Successive
halving algorithm. The ASHA and SHA algorithm
uses the concept called rungs. The lowest rung has
the least amount of resources, the highest has the
highest amount of resources. SHA applies the fol-
lowing steps [11]

1. Uniformly allocate budget to a set of parame-
ters (possibly selected by a search algorithm)

2. Evaluate performance of all instances

3. Promote top half of instances to the next rung
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4. Double the amount of resources per instance
in the next rung.

This algorithm however has to wait until all configurations are done in order to determine which instances
will be promoted to the next rung. ASHA modifies this to work asynchronously. ASHA does the following
steps:

1. Starts instances and add to the bottom rung

2. When instance is done ASHA looks at rungs from top to bottom to see if there are instances that are in
the top half of each rung that can be promoted to the next rung. If no instance can be promoted ASHA
will add instances to the bottom rung, so that more instances can get promoted.
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Previous work

This thesis is not the first work that attempts to speed up or improve mesh refinement using neural networks.
In this chapter an overview of relevant previous articles will be presented.

3.1. Deep Learning Driven Self-adaptive Hp Finite Element Method
Here the authors Paszyński et al. [13] replaced the algorithm that selects optimal refinement in an Adaptive
Finite Element strategy called self-adaptive hp-FEM by a neural network. Instead of approximating the error
(as done in this thesis) the neural network outputs whether to do h-refinement or p-refinement.

3.2. Locally refined quad meshing for linear elasticity problems based on
convolutional neural networks

In this work the authors Chan et al. [7] feed the domain as input to the model as an image. The neural network
is based on the U-net architecture. The output of the neural network is another image which encodes the
amount of detail of the mesh locally. Two differences between our work an the one from Chan et al. [7] are
notable. In this thesis only local information is used: the data of the elements and of adjacent elements
are fed to the model, whereas in the work of Chan et al. [7] the whole domain was used as an image. The
second important difference is that in this thesis the goal is to estimate the residual error in an element and
do refinement based on this estimate, whereas in Chan et al. [7] the goal is to output a mesh immediately.

3.3. MeshingNet: A New Mesh Generation Method Based on Deep Learn-
ing

In this work the authors Zhang et al. [18]develop a way to do mesh generation using a neural network. The
neural network in this work is trained on coordinates of the vertices of a polygon P in the domain;parameters
of the PDE, and the (mean value) coordinates of a point within the polygon x. The neural network then
outputs the target local element area upper bound A(x), which is a number that can be fed to software called
Triangle that can then subdivide the corresponding polygon P if the area of this polygon is too large.

The trained model will then be fed a PDE and the i th element ei of a mesh for this PDE and centre x of ei and
will be able to output A(x)i . Local information is used to do this prediction, this is similar to what is done in
this thesis. However in Zhang et al. [18] the authors refine without using a residual error estimate prediction
in this thesis the refining is done using the residual error.

3.4. Adaptive mesh refinement using residual error estimates
In the book of Verfürth [16] adaptive mesh refinement is also done using residual error estimates. The ap-
proach in this thesis is strongly related to this work. In the work of Verfürth [16] residual error estimates are
estimated using upper bounds, these are then used to do adaptive mesh refinement as shown in 2.3. In this

17
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thesis a neural network is used instead of residual bounds.



4
Our contribution

Recall the psuedocode from the Background section 2.3
Given: the data of a partial differential equation and a tolerance ε.
Output: a numerical solution with an error less than ε.

1. Construct an initial coarse mesh T0. Set k = 0.

2. Use the Finite Element Method to solve the PDE with mesh Tk

3. For every element K in Tk compute the a posteriori error indicator

4. If the estimated global error is less than ε stop, otherwise decide which elements have to be refined and
construct the next mesh Tk . Add 1 to k and go to step 2

Step 3 in red is modified in this thesis, instead of constructing or using an a posteriori indicator a residual
error estimate is made using a neural network.

So the pseudocode becomes
Given: the data of a partial differential equation and a tolerance ε.
Output: a numerical solution with an error less than ε.

1. Construct an initial coarse mesh T0. Set k = 0.

2. Use the Finite Element Method to solve the PDE with mesh Tk

3. For every element K in Tk compute a residual error estimate using a neural network

4. If the estimated global error is less than ε stop, otherwise decide which elements have to be refined and
construct the next mesh Tk . Add 1 to k and go to step 2

Now to use a neural network for residual error estimation the neural network has to be trained. As input it
will receive data from the PDE local to an element, in this thesis this will be the right hand side f of the PDE
evaluated on points x, f (x) within the element e, along with the corresponding coordinates x. Furthermore
coordinates of the element and adjacent elements are given to the network as well.

Now to obtain data for the neural network a pipeline has to be built. A very general description of a General
Pipeline will be given below:

19
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Algorithm 5 General Pipeline

Output: Dataset containing local information per element
1 PDE_data ← Generate_pde_data() /* In this thesis random polynomial right hand sides f are generated */
2 Mesh ← Generate_initial_mesh() /* In the examples meshes are generated randomly */
3 FEM_solution ← solve_FEM(Mesh,PDE_data)
4 data ← EmptyDataset()
5 for each element ei in FEM_solution
6 /* In the (first) example evaluating rhs gets evaluated uniformly on mesh */
7 /* and returned along with the corresponding positions */
8 local_inf ← generate_local_information(PDE_data,Mesh)
9 E ← get_error(FEM_solution,PDE_data)

10 data ← add_to_dataset(data, local_inf,E)
11 return data



5
Neural error estimator

In the previous chapter the general idea of this thesis is explained here this will be applied on a simple 1d
problem. The residual error will be estimated for the following ODE:

−u′′(x) = f (x) for x ∈ (0,1)

u(0) = u(1) = 0

For the finite element method solver linear basis functions were used.

5.1. Pipeline
The pipeline below can be described in the following way:

• First random numbers are generated Num1 and Num2. These are then used to to generate points and
generate a mesh respectively.

(Num1,Num2) 7→ (generate_points(Num1),generate_mesh(Num2)) = (Points,Mesh)

Where Points = [(x1, y1), . . . , (xNum1 , yNum1 )], Mesh = [x1, . . . , xNum2 ]

• After that, the following mapping takes place Points and Mesh to h : [0,1] → [0,1] and Mesh respectively.

(Points,Mesh) 7→ (h,Mesh)

• h and Mesh are then mapped in the following way:

(h,Mesh) 7→ (h,−h′′,Mesh) = (h, f ,Mesh)

• h and f are then renormalised such that f only takes values between 0 and 10. h is then changed
accordingly as well. Thus

(h, f ,Mesh) 7→ (renormalize(h, f ),Mesh) = (h, f ,Mesh)

• h, f and Mesh maps to:

(h, f ,Mesh) 7→ (h, f ,Mesh,FEM.solve(Mesh, f )) = (h, f ,Mesh, û)

21
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• h, f , Mesh and û then maps to:

(h, f ,Mesh, û) 7→ (error(h, û,Mesh), f ,Mesh, û) = (E , f ,Mesh, û)

• E , f , Mesh and û maps to:

(E , f ,Mesh, û) 7→ (E , [ f , . . . , f ],make_tuple(û),make_tuple(Mesh)) = (E , f, [(û1, û2), . . . ,

(ûNum2−1, ûNum2 )], [(x1, x2), . . . , (xNum2−1, xNum2 )])

= (E , f,ut , xt )

• E = [e1, . . . ,eNum2 ], ut , xt and f is then flatmapped to:

(E , f,ut , xt ) 7→ (ei , f ,ui−1
0 , xi−1

0 ,ui
t , xi

t ,ui+1
1 , xi+1

1 )

In the case i = 0 or i is st xi is on the boundary we just say the adjacent node is outside the domain with
u there being 0.

• ei , f ,ui−1
0 , xi−1

0 ,ui
t , xi

t ,ui+1
1 , xi+1

1 is then mapped to:

(ei , f ,ui−1
0 , xi−1

0 ,ui
t , xi

t ,ui+1
1 , xi+1

1 ) 7→ (ei , f ,ui
t , xi

t , [xi
1, . . . , xi

N ],ui−1
0 , xi−1

0 ,ui+1
1 , xi+1

1 )

Where [xi
1, . . . , xi

N ] are nodes in element i , N is in this case 10.

• ei , f ,ui
t , xi

t , [xi
1, . . . , xi

N ],ui−1
0 , xi−1

0 ,ui+1
1 and xi+1

1 are then mapped to:

(ei , f ,ui
t , xi

t , [xi
1, . . . , xi

N ],ui−1
0 , xi−1

0 ,ui+1
1 , xi+1

1 ) 7→ (ei ,ui
t , xi

t , [ f (xi
1), . . . , f (xi

N )],ui−1
0 , xi−1

0 ,ui+1
1 , xi+1

1 )

• ei , f ,ui
t , xi

t , [ f (xi
1), . . . , f (xi

N )],ui−1
0 , xi−1

0 ,ui+1
1 and xi+1

1 are then mapped to:

(ei , f ,ui
t , xi

t , [ f (xi
1), . . . , f (xi

N )],ui−1
0 , xi−1

0 ,ui+1
1 , xi+1

1 ) 7→get_vectors((ei ,ui
t , xi

t , [ f (xi
1), . . . , f (xi

N )],ui−1
0 , xi−1

0 ,ui+1
1 , xi+1

1 ))

= (ei ,u,upr ev ,unext ,xpr ev ,x,xnext )

The resulting list with entries of the form (ei ,u,upr ev ,unext ,xpr ev ,x,xnext ) is then converted into a dictionary.
The dictionaries are then merged and converted into a pandas dataframe.



6
Results

6.1. Hyper parameter optimisation
For the 1d Poisson with linear basis problem, Hyper parameter optimisation was used to find neural network
models that perform well. However, the Hyper parameter optimisation loop had hardware related difficulties.
The computers that were running the program frequently ran out of memory resulting in model instances
being terminated prematurely. This might be the reason why the first Transformer model that was built per-
forms better than the top 10 best performing models from the hyper parameter search. Now, another reason

Figure 6.1: Results of hyper optimisation

why the hyper optimisation tuning usually ended prematurely is because some models had a learning rate
that was larger than one, resulting in models that can learn really fast. But these models are usually finished
with learning much quicker and cannot learn as well as the models that started with a smaller learning rate.
The models with a smaller learning rate then get disqualified by the ASHA algorithm (see section 2.4.2) lead-
ing to the models with higher learning rate obtaining an unfair advantage.

For this reason the models with a learning rate that is higher than 1 are filtered in subsequent analyses. The
5 best performing models with a learning rate smaller than 1 are retrained and their models are saved. More-
over, Adaptive mesh refinement using the actual error and using the estimated error will be compared, where
the estimated error will be calculated by the first transformer model, this model is retrained as well.
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Model Name final MSE loss num_layers layerwidth dropout1 dropout2 dropout3 batch_size optimizer momentum dampening lr NUM_EPOCHS
Model Orange 8.9787E-03 5 128 0.624878144 0.39031984 0.771958722 256 ADAM - - 0.05129 1900000
Model Green 8.8629E-03 5 32 0.8256 0.738 0.0445 128 SGD 0.3128 0.07994 0.005638 1900000
Model light Blue 1.8990E-02 64 32 0.59 0.64 0.1262 128 ADAM - - 9.66E-03 1900000

Table 6.1: Results of retrained MLP models

Model Name final MSE loss type num_layers batch_size optimizer momentum dampening lr NUM_EPOCHS d_model dropout nheads norm_first layer_norm_eps dim_FF pos_enc
Model Red 8.8999E-03 transformer 22 256 SGD 0.3074 0.058347 0.001426 1900000 22 0.449 4 FALSE 0.0000692912 50 FALSE
Model Purple 4.5895E-03 transformer_first* 6 128 ADAM - - 1.00E-03 1900000 10 0 3 FALSE 1.00E-05 10 FALSE
Model Grey 8.8057E-03 transformer 6 128 ADAM - - 1.00E-03 1900000 10 0 3 FALSE 1.00E-05 10 FALSE
Model Dark Blue 8.8998E-03 transformer 64 256 ADAM - - 0.00292472 1900000 16 0.08 16 TRUE 1.0000019 10 FALSE

Table 6.2: Results of retrained Transformer models

Lastly the best model is evaluated on a single difficult example just to give an indication of its performance.

Below the loss over training iterations is shown

Figure 6.2: training loss over training iterations

As can be seen, the changes in performance of the neural networks from the hyper parameter tuning are
negligible. However, the first transformer model performs significantly better than the other models, while
its architecture deviates only slightly, details on the architecture can be found in D. The similar performance
of the models produced by tuning can be explained by the fact that all these models only output a constant
value, as can be seen in the figures below. In the figures 6.3, 6.9, 6.4,6.7,6.8 and 6.5 the left plot gives the exact
solution and the blue and red lines give the finite element solution. The lines of the Finite element solution
are red when the error in that element is at least 70% as large as the maximum error. If the line segment of the
finite element method is dark red then on the corresponding element it takes on the maximum error.

It seems that the models cannot learn the right relationship between the input and output and thus output a
constant value independent of the input.

In figure 6.5 the model outputs 0 error this model also finished training the fastest. The model had the most
amount of layers of all the mlp models, furthermore its training loss was still going down (the training losses
are not displayed in the figure). Thus this is a clear sign of over-fitting from the model. Model purple in figure
6.7 is the only model that comes close to actually approximating the error.

When experimenting with the number of Dense layers (linear layer with afterwards an activation function)
of the transformer model another functioning model was obtained in figure 6.10 the loss can be seen of this
new model the model is called Transformer test. The training crashed hence why there are two lines that
belong to the transformer test model. The transformer test model only has one linear layer and afterwards a
softplus activation function. The linear layer takes the 70 inputs and maps it to just one output. This model
was the only model that together with the first transformer neural network(model purple) gave reasonable
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Figure 6.3: plot and histogram of model orange

Figure 6.4: plot and histogram of Model green

Figure 6.5: plot and histogram of Model light blue
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Figure 6.6: plot and histogram of Model red

Figure 6.7: plot and histogram of Model purple

Figure 6.8: plot and histogram of Model grey
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Figure 6.9: plot and histogram of Model Dark blue

predictions.

Figure 6.10: training loss over training iterations

6.2. Adaptive mesh refinements results
The two best performing models above have been evaluated on 40 different sample problems, each with a
different right hand side and a different finite element mesh. The models (residual) error estimates have
been used to refine the mesh 4 times and the average global error, average number of nodes and the two
multiplied have been collected into a table in table 6.2 As can be seen in table 6.2, the best performing model
and ground truth give comparable results when multiplying the average number of nodes with the average
global error. This is not the case for the test transformer which is the second best performing model. Thus
adaptive mesh refinement using the first transformer the performance is comparable to that of using the
ground truth. Whereas with the test transformer the performance can be seen as twice as bad.
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model avg global error avg #nodes avg #nodes * global error
Transformer original 5.4879E-02 23.6 1.2951
Transformer Test 1.0379E-01 23.4 2.4287
ground truth 1.6106E-02 71.1 1.1452

Table 6.3: results of adaptive mesh refinements using different error estimates



7
Discussion

In the results the transformer models perform significantly better which can be attributed to the data being
amenable to the transformer model. Recall the pipeline essentially generates data that comes from sample x
values on the element and adjacent elements for a visual depiction see figure 7.1.

The resulting output is in mathematical terms:

xpr ev =


xpr ev

0
xpr ev

1
...

xpr ev
N



x =


x0

x1
...

xN



xnext =


xnext

0
xnext

1
...

xnext
N


...

f =


f0

f1
...

fN


Now the vectors that come out of this can be fed as embedding tokens into the transformer model. These
tokens then can attend (or in other words pass on data) to one another in the multi-head attention layer.
And the result of this is then fed to the feedforward layer. The way each of these vectors is made is that
each vector has similar information in it: the f vector contains evaluations of the right hand side on the
sample x values for example. Hence you already introduce a inductive bias to the network that that data
should be lumped together and should attend to other lumped data. This was the reasoning behind using the
transformer model.

MLP models do not have this inductive bias. From all of the vectors above only the first and last entry are
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taken and fed to the model: [
x0

pr ev xN
pr ev x0

next xN
next . . . f0 fN ]

The multilayer perceptron is fed all these entries as seperate features with no hints to what the relationship
of these features are with respect to the other features, which will make learning very difficult. Only the first
and last entries are fed since the model otherwise would have a very difficult time learning anything at all.

Whether the explanations given here are the real reasons why there are such differences in performance is
debatable since neural networks are black box models thus researchers oftentimes use their intuition and
heuristics that are usually derived from experience rather than from rigorous deduction.

All the transformer models with more dense layers than the first transformer model performed significantly
worse than the first transformer model, to investigate whether the number of dense layers were really the cul-
prit, all the other hyperparameters that were different to the hyperparameters of the first transformer model
were one by one changed to the hyperparameters of the first transformer model, having little to no effect.
After that the test transformer model was developed that had an identical architecture as that of the first
transformer model except that the number of dense layers (linear layer with afterwards an activation layer)
were changed. The result can be seen in figure 6.10. How its modified is schematically displayed as in figure
7.2 . Thus the conclusion can be drawn that too many dense layers will hurt performance, but too little can
also hurt performance but significantly less so.
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Figure 7.1: Visual depiction of the sampling
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Figure 7.2: Visual depiction of the layers after the transformer-encoder layers



8
Conclusion and future work

8.1. Conclusion
As can be seen in chapter 6 results the quality of the residual error estimate strongly depends on the model
that is used. The majority of the models failed to give a good error estimate. The only model that gave a good
estimate was the first Transformer model and the test Transformer model.

8.2. Future work
Since Transformers 1 work well for this task it can be expected that other forms of graph neural networks
could work well for this problem as well.

Furthermore a way to extend this problem is by letting the network output the 5%, 50% and 95% quantiles
so that the model can output how confident it is in its prediction, which can be useful when using these
estimates for Adaptive mesh refinements.

Another extension to this method is letting the model predict 3 values: the residual error of an element, the
residual error of an element after splitting the element and predicting the error after doing p-refinement. This
too can make the model more useful when using it for Adaptive mesh refinement.

Lastly, most useful differential equations are 2d or 3d, however because of time constraints this thesis only
covers developing neural error estimates for 1d differential equations, thus extending this method to higher
dimensions is left as future work.

1provided that it has only a minimal amount dense layers it feeds its output to, see Appendix D
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A
MLP model

class MLP_hyperopt(nn.Module):
'''

Multilayer Perceptron
'''
def __init__(self,hyper_dict):

#invoke superclass initialization
super().__init__()

self.num_layers = hyper_dict["num_layers"]
self.dropout1 = hyper_dict["dropout1"]
self.dropout2 = hyper_dict["dropout2"]
self.dropout3 = hyper_dict["dropout3"]
self.layer_width = hyper_dict["layer_width"]

layer_size = 14
layer_list = []
while layer_size*2 < self.layer_width:

linear = nn.Linear(layer_size,layer_size*2)
activation = nn.ReLU()
layer_list.append(linear)
layer_list.append(activation)
layer_size=2*layer_size

linear = nn.Linear(layer_size,self.layer_width)
activation = nn.ReLU()
layer_list.append(linear)
layer_list.append(activation)
#print(layer_list)
#print(OrderedDict([layer_list]))
self.begin_layers = nn.Sequential(*layer_list)
#print(self.begin_layers)
self.dropout_layer1 = nn.Dropout(self.dropout1)
layer_list = []
for i in range(self.num_layers):

linear = nn.Linear(self.layer_width,self.layer_width)
activation = nn.ReLU()
layer_list.append(linear)
layer_list.append(activation)
if i == self.num_layers//2:
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layer_list.append(nn.Dropout(self.dropout2))
self.middle_layers = nn.Sequential(*layer_list)
#print(self.middle_layers)
self.dropout_layer3 = nn.Dropout(self.dropout3)

layer_list = []
layer_size = self.layer_width
while layer_size//2 > 1:

linear = nn.Linear(layer_size,layer_size//2)
activation = nn.ReLU()
layer_list.append(linear)
layer_list.append(activation)
layer_size=layer_size//2

linear = nn.Linear(layer_size,layer_size//2)
activation = nn.Softplus()
layer_list.append(linear)
layer_list.append(activation)
self.end_layers = nn.Sequential(*layer_list)
#print(self.end_layers)

def forward(self,x):
'''Forward pass'''

#dropout1 = nn.Dropout(self.dropout1)
x = self.begin_layers(x)
x = self.dropout_layer1(x)
x = self.middle_layers(x)
x = self.dropout_layer3(x)
#print(x.size())
#print(self.end_layers)
x = self.end_layers(x)

return x



B
Transformer model (hyperparameter

optimisation version)

# Transformer model
class TransformerHyperopt(nn.Module):

'''
Transformer

'''
def __init__(self,hyper_dict):

#invoke superclass initialization
super().__init__()

my_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#unpacking the hyperparameters
d_model = hyper_dict["d_model"]
dropout = hyper_dict["dropout"]
num_tokens = hyper_dict["num_tokens"]
nheads = hyper_dict["nheads"]
norm_first = hyper_dict["norm_first"]
layer_norm_eps = hyper_dict["layer_norm_eps"]
dim_feedforward = hyper_dict["dim_feedforward"]
num_layers = hyper_dict["num_layers"]
self.positional_encoding = hyper_dict["positional_encoding"]
self.d_model = d_model

if d_model is not None:
self.expand_token_size =nn.Sequential(nn.Linear(10,d_model), \
nn.ReLU()).to(device=my_device)

# if the tokens do not get expanded then positional encoding will
# take place on the original tokens
if d_model is None:

self.pos_encoding_layer = PositionalEncoding(10,dropout, \
max_len=num_tokens).to(device=my_device)
d_model=10

else:
self.pos_encoding_layer = PositionalEncoding(d_model,dropout, \
max_len=num_tokens).to(device=my_device)

37
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transformer_layers = [TransformerEncoder(d_model,nheads,dropout,num_tokens, \
norm_first,layer_norm_eps,dim_feedforward).to(device=my_device) \
for i in range(num_layers)]

self.encoder= nn.Sequential(
*transformer_layers

)
self.flatten = nn.Flatten(1,2)

layer_list = []
layer_size = num_tokens*d_model
while layer_size//2 > 1:

linear = nn.Linear(layer_size,layer_size//2)
activation = nn.ReLU()
layer_list.append(linear)
layer_list.append(activation)
layer_size=layer_size//2

linear = nn.Linear(layer_size,layer_size//2)
activation = nn.Softplus()
layer_list.append(linear)
layer_list.append(activation)
self.last_layers = nn.Sequential(*layer_list).to(device=my_device)

# self.softplus= nn.Softplus()
def forward(self,x):

'''Forward pass'''
if self.d_model is not None:

x = self.expand_token_size(x)
if self.positional_encoding:

x = self.pos_encoding_layer(x)
x = self.encoder(x)
x = self.flatten(x)

x = self.last_layers(x)
#x =self.softplus(x)
return x



C
Transformer model libraries

(hyperparameter optimisation version)

'''
############################################################################################################
# Transformer libraries
# below the libraries needed to run the transformer will be declared
############################################################################################################
'''
class attention(nn.Module):

'''
attention layer

'''
def __init__(self):

#invoke superclass initialization
super().__init__()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

self.softmax = nn.Softmax(dim=1).to(device)

def forward(self,Q,K,V):
'''Forward pass'''
#Q,K,V = x
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
attention_filter = torch.matmul(Q,torch.transpose(K,-1,-2))
#print(attention_filter.size()[0])
d_k=torch.sqrt(torch.tensor(attention_filter.size()[0], device=device))
attention_filter = attention_filter/d_k
soft_attention_filter = self.softmax(attention_filter)
#print(soft_attention_filter.size())
output = torch.matmul(soft_attention_filter,V)
#print(output.size())
return output

class multihead_attention(nn.Module):
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'''
multihead attention layer

'''
def __init__(self,d_model,nheads, dropout):

#invoke superclass initialization
super().__init__()
my_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.num_heads = nheads
self.embed_dim = d_model
self.dropout = nn.Dropout(dropout)
#initialise the key layers i.e. W_K^i
self.W_K = [nn.Linear(self.embed_dim,self.embed_dim, \
bias=False).to(device=my_device) for i in range(nheads)]

#initialise the Query layers i.e. W_Q^i
self.W_Q = [nn.Linear(self.embed_dim,self.embed_dim, \
bias = False).to(device=my_device) for i in range(nheads)]

#initialise the Value layers i.e. W_V^i
self.W_V = [nn.Linear(self.embed_dim,self.embed_dim, \
bias=False).to(device=my_device) for i in range(nheads)]

#initialise the attention layers
self.att = [attention().to(device=my_device) for i in range(nheads)]

#initialise the output layer
self.O_layer = nn.Linear(self.embed_dim*nheads,self.embed_dim, \
bias=False).to(device=my_device)

def forward(self,input):
'''Forward pass'''
#input = self.dropout(input)
att=[]
for i in range(self.num_heads):

att.append(self.dropout(self.att[i](self.W_Q[i](input), \
self.W_K[i](input),self.W_V[i](input))))
#print(self.att[i](self.W_Q[i](input),self.W_K[i](input), \
self.W_V[i](input)).size())

attention_concat = torch.cat(att,-1)

output = self.O_layer(attention_concat)

return output

class add_and_norm(nn.Module):
'''

add & normlayer
'''
def __init__(self,d_model,norm_first,num_tokens=None,layer_norm_eps = 1e-5):

#invoke superclass initialization
super().__init__()
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self.norm_first = norm_first
if num_tokens is None:

self.LayerNorm = nn.LayerNorm(d_model,eps=layer_norm_eps)
else:

self.LayerNorm = nn.LayerNorm((num_tokens,d_model),eps=layer_norm_eps)

def forward(self,input1,input2):
'''Forward pass'''
if self.norm_first == False:

x,output_layer = input1,input2
add = x+output_layer
output = self.LayerNorm(add)

else:
x,output_layer = input1,input2
add = x+self.LayerNorm(output_layer)
output=add

return output

class FFN(nn.Module):
'''

Feed Forward Layer
'''
def __init__(self, d_model ,dim_feedforward,dropout):

#invoke superclass initialization
super().__init__()

self.dropout = nn.Dropout(dropout)
self.layers = nn.Sequential(

nn.Linear(d_model,dim_feedforward),#
nn.ReLU(),
nn.Linear(dim_feedforward,d_model),

)

def forward(self,x):
'''Forward pass'''

return self.dropout(self.layers(x))

class TransformerEncoder(nn.Module):
'''

Transformer encoder
'''
def __init__(self,d_model,nheads,dropout,num_tokens,norm_first,\
layer_norm_eps,dim_feedforward):

#invoke superclass initialization
super().__init__()

#self.input_embedding = ...
self.multi_head_attention = multihead_attention(d_model,nheads,dropout)
self.add_and_norm = add_and_norm(d_model,norm_first,num_tokens,layer_norm_eps)
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self.FFN = FFN(d_model,dim_feedforward,dropout)

def forward(self,input):
'''Forward pass'''
multihead_att = self.multi_head_attention(input)
x=self.add_and_norm(input,multihead_att)

feedforward = self.FFN(x)
output = self.add_and_norm(x,feedforward)
return output

import math
class PositionalEncoding(nn.Module):

def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)

position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * \
(-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, d_model)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
#pe = pe.unsqueeze(0).transpose(0, 1)
#print(pe)
self.register_buffer('pe', pe)

def forward(self, x):
"""
Args:

x: Tensor, shape [batch_size, seq_len, embedding_dim]
"""
#print(self.pe.size())
x = x + self.pe[:x.size(0),:]
return self.dropout(x)

'''
############################################################################################################
# Original Transformer
# below the libraries needed to run the transformer will be declared
############################################################################################################
'''
import TransformerLib
class Transformer(nn.Module):

'''
Transformer

'''
def __init__(self):

#invoke superclass initialization
super().__init__()
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#use nn.Sequential to stack four densely connected linear layers
#with relu activation function
self.encoder= nn.Sequential(

#nn.LayerNorm(22),
TransformerEncoder_first_model(),
TransformerEncoder_first_model(),
TransformerEncoder_first_model(),
TransformerEncoder_first_model(),
TransformerEncoder_first_model(),
TransformerEncoder_first_model(),
#nn.Sigmoid()

)
self.flatten = nn.Flatten(1,2)
self.last_layers = nn.Sequential(

nn.Linear(70,35),
nn.ReLU(),
nn.Linear(35,10),
nn.ReLU(),
nn.Linear(10,1)

)
#self.Linear = nn.Linear(12,1)
self.softplus= nn.Softplus()

def forward(self,x):
'''Forward pass'''
x=self.encoder(x)
x = self.flatten(x)

x = self.last_layers(x)
x =self.softplus(x)
return x

class TransformerEncoder_first_model(nn.Module):
'''

Transformer encoder
'''
def __init__(self):

#invoke superclass initialization
super().__init__()

#self.K_layer = nn.Linear(5,3,bias=False).to(my_device)
#self.input_embedding = ...
self.multi_head_attention = TransformerLib.multihead_attention()
self.add_and_norm = TransformerLib.add_and_norm()
self.FFN = TransformerLib.FFN()

def forward(self,input):
'''Forward pass'''
multihead_att = self.multi_head_attention(input)
x=self.add_and_norm(input,multihead_att)

feedforward = self.FFN(x)
output = self.add_and_norm(x,feedforward)
return output





D
Original Transformer model

'''
############################################################################################################
# Original Transformer
# below the libraries needed to run the transformer will be declared
############################################################################################################
'''
import TransformerLib
class Transformer(nn.Module):

'''
Transformer

'''
def __init__(self):

#invoke superclass initialization
super().__init__()

#use nn.Sequential to stack four densely connected linear layers
#with relu activation function
self.encoder= nn.Sequential(

#nn.LayerNorm(22),
TransformerEncoder_first_model(),
TransformerEncoder_first_model(),
TransformerEncoder_first_model(),
TransformerEncoder_first_model(),
TransformerEncoder_first_model(),
TransformerEncoder_first_model(),
#nn.Sigmoid()

)
self.flatten = nn.Flatten(1,2)
self.last_layers = nn.Sequential(

nn.Linear(70,35),
nn.ReLU(),
nn.Linear(35,10),
nn.ReLU(),
nn.Linear(10,1)

)
#self.Linear = nn.Linear(12,1)
self.softplus= nn.Softplus()

def forward(self,x):
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'''Forward pass'''
x=self.encoder(x)
x = self.flatten(x)

x = self.last_layers(x)
x =self.softplus(x)
return x

class TransformerEncoder_first_model(nn.Module):
'''

Transformer encoder
'''
def __init__(self):

#invoke superclass initialization
super().__init__()

#self.K_layer = nn.Linear(5,3,bias=False).to(my_device)
#self.input_embedding = ...
self.multi_head_attention = TransformerLib.multihead_attention()
self.add_and_norm = TransformerLib.add_and_norm()
self.FFN = TransformerLib.FFN()

def forward(self,input):
'''Forward pass'''
multihead_att = self.multi_head_attention(input)
x=self.add_and_norm(input,multihead_att)

feedforward = self.FFN(x)
output = self.add_and_norm(x,feedforward)
return output
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